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Abstract—Kurokawa’s method of calculating the power reflec-
tion coefficient from the Smith chart in the situation when one
complex impedance is directly connected to another is applied to
passive RFID tag design, where power reflection is important, as
it determines the tag characteristics. The performance analysis of
a specific RFID tag is presented together with experimental data,
which is in close agreement with the theory.

Index Terms—Antennas, integrated circuits (ICs), power
reflection, RF identification (RFID).

1. INTRODUCTION

F identification (RFID) is a rapidly developing technology

[1]. A typical back-scattered RFID tag consists of an an-
tenna and a chip [2]. The chip is usually placed right at the ter-
minals of the tag antenna, and both the chip and antenna have
complex input impedances. For years, antennas have been de-
signed primarily to match either 50- or 75-(2 loads. However,
RFID tag antennas must be directly matched to the chip com-
plex impedance to maximize tag performance (adding an ex-
ternal matching network is usually prohibitive due to cost and
fabrication issues).

A very useful impedance matching tool for any microwave
engineer is the Smith chart. It was developed by Smith in the
1930s [3] and is the most widely known graphical impedance
chart. The Smith chart is typically normalized to a real
impedance and can be used to find a lossless transmission-line
section for desired impedance matching between two complex
impedances [4]. Kurokawa [5] proposed a method where a
modified impedance function is mapped onto the conventional
Smith chart to determine a power reflection coefficient in the
case when both generator and load impedances are complex,
but no lossless transmission line is present between them.

Such a case is typical in passive RFID tags, where the min-
imum power reflection coefficient between the antenna and chip
is desired. In this paper, the method of the power reflection co-
efficient proposed by Kurokawa is applied to RFID tag design.
We also present measurement data, which are in good agree-
ment with theory.
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Fig. 1. Generator—load circuit with two complex impedances.

II. POWER REFLECTION-COEFFICIENT METHOD

Consider a one-port network, shown in Fig. 1, which repre-
sents a generator—load circuit with complex source and load im-
pedances.

Kurokawa [5] described a concept of power waves traveling
between the generator and load and introduced the following
definitions for the power wave reflection coefficient s:

EE
and the power reflection coefficient |s|?
|s|? = ‘M : 0< s> <1. 2)
Zr+7Zs B N

The power reflection coefficient |s|? shows what fraction of the
maximum power available from the generator is not delivered
to the load.

Kurokawa also described a straightforward and graphically
intuitive way of calculating the power reflection coefficient |s|>
by observing that the power wave reflection coefficient s plotted
on the Smith chart corresponds to the vector drawn to the point
where the normalized impedance is

R, Xp+Xs

T+JjYy=—5"+J Rs

Rs 3

This allows a designer to utilize a conventional Smith chart nor-
malized to real impedance with the understanding that contours
of constant reactance X are now to be interpreted as contours
of constant modified reactance X1 + Xg, as shown in Fig. 2.
The contours of constant power |s|? are concentric circles
centered around the origin of the Smith chart, which corre-
sponds to a perfect complex conjugate match (Z; = Z%).
When both Ry, and Rg are real and positive, s lies within a unit
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Fig. 2. Complex power wave reflection coefficient s mapped onto the Smith
chart normalized to Rs.

circle, whose outer edge corresponds to a complete mismatch
case (|s|? = 1).

The power reflection coefficient |s|? can be easily determined
from the Smith chart as a square of the distance (measured as a
fraction of the circle radius) between the origin and the mapped
impedance point Ry, + j (X1 + Xg). Kurokawa’s method is
general and can be used for any microwave circuits with com-
plex impedances.

III. RFID TAG DESIGN EXAMPLE

A. Read Range

Let us demonstrate how Kurokawa’s method can be applied
to analyze the performance of a passive RFID tag. The fact that
passive RFID tags are powered solely by the incoming RF en-
ergy, combined with cost and fabrication requirements, imposes
a unique set of criteria on RFID tag antenna design, including
frequency bandwidth, directivity, size and form, sensitivity to
different objects the tag is placed on, reliability, and, finally, tag
read range.

Read range is an important characteristic of the RFID tag. Itis
the maximum distance from which the tag can be detected. One
limitation on the range is the maximum distance from which the
tag receives just enough power to turn on and scatter back. An-
other limitation is the maximum distance from which the reader
can detect this scattered signal. The read range is the smaller of
the two distances (typically, the first one since RFID reader sen-
sitivity is usually high).

Theoretical read range 7.,,.x depends on the power reflection
coefficient and can be calculated using the Friis free-space for-
mula as

A PthGr(l — |8|2)
max — S, 4
" 4m Pth ( )
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Fig. 3. Intermec UHF RFID tag.

where ) is the wavelength, P; is the power transmitted by the
RFID reader, G, is the gain of the transmitting antenna (P; G is
EIRP, equivalent isotropic radiated power), GG,. is the gain of the
receiving tag antenna, and Py, is the minimum threshold power
necessary to power up the chip. Typically P, G;, G,, and Py,
are slow varying, and |s|? is dominant in frequency dependence
and primarily determines the tag resonance.

B. Tag Design

RFID tag antennas are typically designed for an application-
specific integrated circuit (ASIC) (new integrated circuit (IC)
design and manufacturing is a big and costly venture), thus, chip
impedance is usually given to an antenna designer. When uti-
lizing Kurokawa’s method, we will look at power reflection be-
tween the chip and antenna with chip impedance fixed. A circuit
shown in Fig. 1 represents the RFID tag in the receiving mode,
where Zp, is the chip impedance, Zg is the antenna impedance,
and Vg is an open-circuit RF voltage developed on the terminals
of the tag antenna.

As an example, consider a UHF RFID tag developed at the
Intermec Technologies Corporation, Everett, WA [6]. This
tag was designed for pallet-labeling applications in Europe to
provide at least 2 m of range with 0.82-W transmitter EIRP
(European standard for RFID) in the 2-MHz band around
869 MHz when placed into a 30-mm-thick rectangular foam
container. These requirements resulted in the antenna whose
geometry is shown in Fig. 3. The tag consists of an RFID chip
connected to a copper antenna printed on an FR4 dielectric sub-
strate, 190 mm x 22 mm in size. The RFID chip is the Philips’
EPC 1.19 ASIC in a TSSOPS package with a threshold power
P, = —10 dBm and packaged chip-on-board impedance of
Zr, = 16 — 3350 2, approximately constant in the frequency
band of interest (860-960 MHz).

Due to size specifications, some type of dipole antenna was a
natural choice. Since relatively high range was needed, loading
bars were added to increase antenna gain and to control an-
tenna resistance. An inductive stub was added to provide a better
match for the chip capacitive impedance. The tag antenna was
designed using Ansoft HFSS for antenna gain and impedance
calculations.

Fig. 4 shows the frequency-dependent antenna impedance
Z, calculated in the 860-960-MHz band with Ansoft HFSS,
mapped using Kurokawa’s representation given by (3) onto the
Smith chart normalized to 16 2 (chip resistance).

Power reflection coefficient at the tag resonant frequency can
be easily determined as |s|?> = 0.62 = 0.36 (where 0.6 is the
minimum distance between the origin and the impedance locus
curve). The antenna impedance at this point can also be easily
found from r and y coordinates as Zs = R (5—3j0.8)—j X =
80 + 7363 Q. The tag resonant frequency (where |s|? is min-
imum) is determined to be 900 MHz.
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Fig. 4. Antenna impedance Zs mapped onto the Smith chart normalized to
16 €2 and a graphical method of determining the power reflection coefficient.
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Fig. 5. Normalized read range versus power reflection coefficient for different
tag antenna gain values (frequency is 900 MHz, normalization constant is 2.4 m,
calculated for P, = —10 dBm and EIRP = 0.82 W).

For the given frequency f, chip sensitivity Py, and RFID
reader EIRP, (4) can be normalized to the range of the tag with
G, = 0—dBi antenna perfectly matched to the complex conju-
gate chip impedance (|s|? = 0). Such normalization allows the
read range to be plotted as a function of the power reflection co-
efficient for different tag antenna gain values, as shown in Fig. 5
(where the frequency is 900 MHz and the normalization con-
stant is 2.4 m, calculated for chip sensitivity Py, = —10 dBm
and transmitter with EIRP = 0.82-W transmitter).

Our example RFID tag, which has G, = 4.1 dBi and p =
0.36, is represented as a point in Fig. 5. Tag range can be further
increased by either increasing the gain of the antenna and/or
improving the impedance match. The RFID tag design process
involves inevitable tradeoffs between antenna gain, impedance,
and bandwidth. The normalized chart shown in Fig. 5 helps the
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Fig. 6. RFID read-range measurement setup.
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Fig. 7. Tag range measurement chamber.

designer to estimate the range tradeoff between the impedance
matching and gain.

C. Comparison to Experimental Results

The tag read range was measured using the setup shown in
Fig. 6. An RFID reader with the variable power output was con-
nected to the transmitting antenna with gain G; using the cable
with loss L.. The tag was placed at a fixed distance d from the
reader antenna in an anechoic chamber and oriented in the direc-
tion of maximum gain. At each frequency, the minimum power
P required to communicate with the tag was recorded.

Since the gain of the transmitting antenna, the cable loss,
and the separation distance are known (G; = 6.3 dBi, L. =
—0.5 dB, and d = 0.9 m), the tag read range for any desired
value of EIRP can be determined as

[ EIRP
rmax - d PmlnGtLC . (5)

Maximum allowed value of EIRP used in any particular RFID
system implementation is determined by local country regula-
tions. Fig. 7 shows the inside view of the anechoic chamber used
at the Intermec Technologies Corporation for tag range mea-
surement.

Fig. 8 displays the measured range (from (5) for EIRP =
0.82 W) and the theoretical range [from (4)]. When the tag is
placed in a container on a pallet, its resonant frequency shifts
down to 869 MHz and the range becomes 2.2 m.
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Fig. 8. Theoretical and experimental read ranges for RFID tag shown in Fig. 3

(EIRP = 0.82 W).

It can be seen that theoretical and experimental curves for the
tag range are in close agreement, which demonstrates the ac-
curacy of the antenna model and validity of (4). The read range
reaches a maximum at 900 MHz, where the power reflection co-
efficient is minimal. This agrees with the frequency determined
from the Smith chart analysis of the power reflection coefficient.

IV. CONCLUSION

In this paper, we have applied Kurokawa’s power reflection
coefficient method to passive RFID tag design where an antenna
and chip with complex impedances are directly connected to
each another. We have described the design process for a spe-
cific RFID tag and have demonstrated good agreement between
experimental measurements and theory.
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