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Impedance of a Short Dipole Antenna
In a Cold Plasma

Pavel Nikitin and Charles Swenson

Abstract—This paper presents the analysis of the impedance sidered as the near-field source allowing him to obtain his well-
of a short dipole antenna in a cold plasma using a quasi-static known simple analytical expressions, which he later refined [7].
approach. Two radically different current distributions on the giar45 [8] proposed a cylindrically symmetrical exponentially
antenna are considered and their influences on the antenna . . . .
impedance are studied. These distributions include a one-dimen- decaylng.current (dlscus.sed. later as -a three-d|mens!ona! (3-D)
sional (1-D) triangular distribution and a three-dimensional (3-D)  €Xponential current), which is attractive because of its simple
exponential current distribution. Balmain analytically solved the analytical properties. However, Staras was not able to derive a
first problem. Staras proposed the second one. In this paper, we solution for this problem.
offer an analytical solution for the second one as proposed by Lafon and Weil [9] investigated what convergence prop-

Staras. We compare both distributions and find that impedances - - AOUPRE ; .
resulting from them are remarkably close. We conclude that the erties an arbitrary current distribution must satisfy in order

impedance of a short antenna, as derived using the quasi-static for impedance integrals, computed in a fu!I—Wave case, to
approximation, is insensitive to the choice of current distribution. converge. Other researchers approached this problem mostly

Therefore, any of these two theories can be used when analyzingysing a surface triangular current distribution and a few other

data from an impedance probe immersed in a space plasma. simplifying assumptions, including either a collisionless model

Index Terms—Dipole antennas, impedance, plasma covered an- for a plasma [10] or a transmission line approach to computing
tennas, probe antennas. the impedance [11].

Balmain [6] showed that the impedances resulting from two

I. INTRODUCTION different one-dimensional (1-D) current distributions are very

) similar. In this paper, we will complete Staras’ work by finding a
T HE ELECTRICAL impedance of an antenna exposed {@osed-form solution for an impedance of an antenna with a 3-D

the space environment depends upon the parameters ofdlonential current aligned with the external magnetic field. We

space plasma in which it is immersed (electron density, collij|| show that this impedance is very close to the one obtained
sion frequencies, external magnetic field, temperature). This gf; Baimain.

fect was first observed by Jackson and Kane [1]. Since then,
a number of probes have been built and flown in order to mea-
sure parameters of the space environment, based upon this effect
[2]-[4]. Recent developments in ionospheric probe technologyWe will briefly outline the quasi-static method for calcu-
allow for fast frequency sweeps and for recording of both matgting the impedance of a dipole antenna immersed in a plasma,
nitude and phase of the antenna impedance. Proper analysigsotised by a number of previously-mentioned authors. This
data from such probes requires an accurate theory for the profethod does not include electromagnetic (radiation) effects,
impedance. In analyzing the impedance of an antenna immergdtch have very little effect on the reactance of short antennas
in a plasma, all of the following simplifying assumptions listedh a plasma [6], [12]. The antenna resistance, predicted by this
below or some combination of them are typically made in orderethod, is due only to plasma losses. The geometry of the
to make this a tractable problem. The current distribution on tiioblem is shown in Fig. 1.

surface of the antenna cannot be measured directly and thus/Vhen the current density on the surface of the antenna is
is assumed. The quasi-static approach [5], which accounts kigewn, the antenna impedance can be derived as an integral of
curately for the fields in the vicinity of a short dipole, is typthe near-zone electric field. Assume the following time depen-
ically used. The dielectric tensor is usually derived using tteence for the current density(+, ¢) and electric fieldE (7, ¢):

fluid model for a cold plasma.

Il. THEORY

Balmain [6] used a quasi-static cold plasma theory to de- J(7, 1) = J(7)edt (1)
rive an expression for the impedance of a cylindrical dipole an- oo _ oot
tenna. In his work, the triangular current distribution was con- E(T, 1) = Bu(e )

whereJ(7) is the current distribution on the antenna ang7)
is the electric field distribution at the driving frequengy The
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Fig. 1. Dipole antenna oriented along the magnetic field.
wherel is the magnitude of the current at the antenna terminaldere
and the integral is taken over the surfatef the antenna. Using
the k-space Fourier transform defined symmetrically as 9 (1 v
w - j—)
- 1 e €1 = 1- ” ) (éd
F = — [ 1007 a7 (@) 2 (1-72) - a2
(27{') T w
2
allows us to simplify the computation of an integral and to €9 :%
rewrite (3) as w(w? — w?)
2
W
77 e3=1- ——""FL—— (7)

1 [
Z=—1 / F(RYE.(F) dF (5)

where the integral is now taken over the whélepace and/
andé&,, are thek-space Fourier transforms dgfand £, respec-
tively.

and wherew,, w., v are the plasma frequency, the cyclotron
frequency, and the collision frequency, respectively. The quasi-

The plasma can be approximated as a dielectric medium whiatic approach implies that the electric field can be expressed

permittivity tensofé. For a cold plasma with the magnetic fieldPUT€lY In terms of scalar potential. The electric field can be
along thez-axis, this tensor, as derived from a fluid model is found as a function o after inverting Maxwell’s equations

£1 —iEQ 0 . _,|: — _,:|
iEQ €1 0 (6) é; = _‘—A_ (8)

m>
I
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Fig. 2. Normalized current amplitude for (a) 1-D triangular and (b) 3-D exponential current distributionsrin thglane aty = 0.

The expression for impedance in cylindrical coordinates themay exponentially with radial distance from the surface. The

becomes current and its Fourier transform for this case are
Lo 7,2 Z2
j (7-F? - NatE
Z =- dk. 9 7, 0c N
weol? /,; e1k2 + e3k? ©) J(7) = —7‘2 = n (12)
271'0/2 ; + 2—2
201,

A. Current Distributions Tk = .. (13)

(2m)3/2(1 + kZa? + K212)
In this section we will describe two current distributions for

a cylindrical dipole antenna of radiusand length2/. These B. Antenna Impedance

distributions are not physical but they allow us to derive an an-gaimain [6] published an analytical solution for the

alytical solution for antenna impedance. Current amplitudes fapedance of a dipole antenna immersed in a cold collisional

both distributions are shownin Fig. 2 in the z plane ay = 0. plasma assuming a 1-D triangular current distribution For the

. o ~cylinder axis aligned with the magnetic field, this solution is
The 1-D triangular current distribution used by Balmain as-

. 1/2
sumes that an antenna is infinitesimally thin. The current and its g __J ln£ C1am(E / .14
Fourier transform for this case are 2rwegel a

To find a solution for the same antenna with the 3-D exponen-

B 12|\ 6(z)6(y) . tial current distribution, proposed by Staras, we need to solve the
J(r) =1 <1 7)) T ora = (10) following impedance integral:
Y A Z:—ji/ /
J(k) = @ sinc <7> Tz (11) w2weoesl Jo oo
s2tds dt

(15)

is not confined to the surface of the antenna, the current decays 2

The 3-D exponential current distribution proposed by Staras [8] <32 La t2> <$2 14 a_2 t2>2
€3
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Fig.3. Comparison of impedances of antennas with 1-D triangular and 3-D exponential current distributions for a typical Earth’s iohesphene,« = 0.01

integral can be computed from Cauchy’s theorem

wheres = k.l andt = k.l are unitless variables. The innewhereZ; andZ, are the following numerical integrals:

s2ds

o0
G(p7 Q) = /—oo (32 _ q2)(32 —|—p2)2 - 2]7(17 _jq)Q

whereq =t

and the complex contour is closed in the upper half-plane.

—e1/e3 andp? = 1 + a®t?/I?. Because the ’
plasma is collisional, the polekq do not lie on the real axis

We can write the impedance integral as

J

tdt
2rwegesl

=T

—Jq)?

7 =

Substituting values fay, ¢, €3 and performing a change of vari-
ables1/(2y) — y/2 = at/l we can define the impedance in

=Re(Z) +j Im(Z).

terms of single-quadrature expressions

2 1
T 1, = %
(16) @ Jo
(40 +50 =g Q=) (| oy
@+ sy +art-pP
(20)
2 1
7,=2L
a 0
201 -’14+ 97+ B -y
(17) [(1+92+ 81— y2) + 21— )2
(21)

These integrals can be derived in closed form for any given
values of parameteks and g defined as

w2 —v?
1 ) "Re £ (22)
o =-— -
Re(Z) = (18) a €3
27wegl 2\ 2 9
% + z l €
w? w? B =-Im < ——1> . (23)
a £3
and
oy wp — v C. Comparison
3p To— 11— L 3 A ' p
Im(Z) = 1 v “ (19) The resistance and reactance of the dipole under both current
27wegl

distributions are plotted in Fig. 3 versus frequency using a log-

arithmic scale along the ordinate displaying both negative and
positive values of impedance.
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We used plasma parameter values for a typical Earth’s iono{4]
sphere at an altitude of 100 km. We see that the antenna imped-
ances (both reactances and resistances) for both distributions af
remarkably close. The frequencies of most interest for analyzing
data lie in the regions where reactance becomes zero (known as
the cyclotron frequency region and upper hybrid frequency re-
gion). The difference between reactances predicted by both the-
ories is less than 1 percent in both regions. [7]

We have not performed calculations for the more complicated[B]
case of an antenna with a 3-D exponential current distribution
that is arbitrarily oriented with respect to the magnetic field.
The current distribution components change with respect to thégl
magnetic field but the distribution is still continuous and still
decays with distance. Therefore, we expect that the differencé’l
between the impedances of this antenna and Balmain’s will still
be very small. [11]

[1l. CONCLUSION [12]

We showed that impedances of two antennas with very dif-
ferent current distributions (1-D and 3-D) are very close to each
other. We conclude that the impedance of a dipole antenna im-
mersed in a collisional plasma is insensitive to the specific form
of current distribution assumed on the antenna. This is valid as
long as an antenna is electrically short (quasi-static approacl
valid) and the plasma is cold.

These results apply directly to the analysis of data from ion
spheric impedance probes. The correct choice of a theory
scribing the antenna impedance is important. A knowledge
the complex antenna impedance versus frequency is neec
This allows to derive some of the plasma parameters by locat
zero-crossing points of the dipole’s reactance. We conclude t
any of the two solutions for the antenna impedance considered
in this paper can be used for such an analysis, as well as other
possible solutions which satisfy the criteria discussed above.
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