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Abstract—We present how RAIN RFID power-on-tag-reverse
(POTR) features can be used to reliably differentiate between
materials having different relative dielectric permittivity (ϵr) and
effective loss (tan(δ)). Our approach shows how this is achieved
using 15 diverse RAIN RFID tags, having an embedded T-
match antenna design, deployed on 7 different material types. We
present a data visualization and K-means clustering algorithm
that can reliably differentiate between material types with 94%
accuracy. We show how our approach is particularly useful
at differentiating between materials having very similar ϵr but
different tan(δ). We also demonstrate the technique appears to be
robust to reflections, wet inlay adhesives and material thickness
via a limited study conducted in a non-idealized warehouse
environment. Future research directions are also discussed.

Index Terms—Material identification, representation learning,
RAIN RFID tag signal features, circular economy application.

I. INTRODUCTION

Sustainability and waste minimization efforts have con-
tributed to the rise of the circular economy where product
and packaging materials are recycled for reuse [1]. Packaging
material such as plastics, in particular, are persistent, non-
biodegradable and are building up in the environment. Only
9% of plastics in the US are recycled [2]. This is due to a
combination of poor quality control at collection, consolidation
and transportation to the recycling center [3], and lack of label
standardization [4]. Commercial recycling efforts rely on or
incentivize [5] users to properly screen items prior to disposal
but this can be cumbersome and prone to error.

Optical methods such as barcode or camera data are pri-
marily used for material identification [6]. While these do not
need any hardware to be placed on the recycled item, the iden-
tification accuracy is dependent on line of sight and lighting
conditions. Recently, there has been interest in using wireless
material identification technologies. For instance, studies have
shown that chipless RFID tags can successfully differentiate
between 8 different material types with over 90% accuracy,
being 3-16 times faster than optical counterparts [7]. While
promising, the nascent nature of chipless RFID technology —
associated with a lack of standards and affordable data capture
hardware — limits its deployment in practice.

Concurrently, the deployment of passive Ultra-High Fre-
quency (UHF) RFID (also known as RAIN [8]) labels on prod-
uct packaging is increasing, driven by a substantial decrease in
tag costs and recent item level tagging mandates by retailers
like Walmart [9]. Research has shown that RAIN RFID tech-
nology can offer item-level information that goes beyond basic
identification, adding capabilities for material composition
sensing, thereby improving sorting accuracy. In this context,
Bhattacharyya et al. conducted pioneering research on the use
of RFID tag antennas for low-cost glass fill-level detection
via received signal strength indicator (RSSI) changes [10].
Building upon this, RAIN RFID has also been used for relative
permittivity (ϵr) and conductivity (σ) estimation and material
classification in the last decade (see Table I). For example,
Suwalak et al. use read range measurements to estimate ϵr
of construction materials [11], whereas Piccinno et al. exploit
a self-tunable RFID chip to extract information about the ϵr
of dielectric materials [12]. Some works estimate the complex
permittivity of liquids through frequency and magnitude shifts
on the transmitted power and read range curves combined
with multivariate regression models [13], [14]. However, all
these studies either require custom tag antennas or self-tuning
integrated circuits (ICs) (which have a limited impedance
tuning range and require the ability to read and record tuning
state), restricting their general applicability.

Fig. 1: Threshold POTR of a typical T-matched tag.

The are some research works that use commercial tags
(i.e., standardized and general-purpose) for wireless material
identification. For instance, the studies by Wang et al. and
Claucherty et al. focus on classifying commercial beverages
based on signal changes (e.g., phase, RSSI, power on tag
reverse (POTR), power on tag forward (POTF), theoretical



TABLE I: Comparison of reported RAIN RFID-based dielectric property estimation and material classification approaches

Ref. Materials Measured parameter(s) Post-processing Generalizable?
(custom/commercial tag(s))

Complex
permittivity

[11] 2 construction
materials Read range Simulation with prior

knowledge of material
No

(custom) No

[12] 10 dielectrics Sensor code of the
chip (capacitance) Capacitance vs. ϵr

No
(custom + self-tunable chip) No

[13] 9 liquids
Frequency shift on

the transmitted power
and read range

Multivariate regression No
(custom) Yes

[14] 5 liquids Frequency and magnitude
shift on the read range

Multivariate linear model +
power law with reference ϵr

No
(custom) Yes

[15] 10 commercial
beverages Phase and Received Signal Strength Indicator (RSSI) changes

Prior knowledge of
propagation distance

+ KNN classifier

No
(works for 1 commercial tag) No

[16] 6 commercial
beverages

POTR, POTF, TRRF
and radiation pattern Statistical analysis

No
(works for 1 commercial tag) No

[17] 4 dielectrics Frequency shift
on the POTR

Analytical model +
calibration curve

Yes
(works for 10 commercial tags) No

This
work

6 materials
in packaging

Frequency shift and
magnitude on the POTR

K-means clustering
and classification

Yes
(works for 12 commercial tags) Yes

read range forward (TRRF) etc.) [15], [16]. However, their
approaches are specific to a particular type of commercial
tag, with poor performance reported when tested with other
tag types. Recently, Nikitin et al. demonstrated how shifts in
the peak frequency of the POTR, fpotr, from any commercial
off-the-shelf RAIN RFID tag with an embedded T-matched
structure can be used for ϵr sensing (c.f. Fig. 1) [17]. Such
generalizable development once again brings the utility of
RAIN RFID technology for material identification to the
forefront.

As demonstrated by Villa-Gonzalez et al., many plastics
have similar ϵr ranging between 2.2 - 2.8 [18], but exhibit dif-
ferences in material loss (tan(δ)) ranging from 0.0003 - 0.006.
This paper explores an opportunity to expand Nikitin’s work
to examine the effect of tan(δ) on POTR curve characteristics,
such as POTR peak magnitude, Ppotr, of generic commercial
tags as an additional feature for material identification.

The contribution of this work is two fold. First, we experi-
mentally demonstrate how changes in Ppotr can be correlated
to effective tan(δ) repeatably and reliably using 6 different
material types (and air) with 12 different RAIN RFID tags.
We specifically demonstrate our ability to differentiate be-
tween materials having very similar ϵr but different tan(δ).
Second, we demonstrate how unsupervised machine learning
techniques, such as K-means, can be used to automatically
differentiate between and classify these materials, using Ppotr

and fpotr data, with high accuracy. Finally, the utility of this
technique in a practical, non-idealized setting is examined.

The rest of the paper is organized as follows. Section. II
discusses our hypothesis of how fpotr and Ppotr can be used
to detect the ϵr and tan(δ) of different materials. Section. III
presents the tags used, materials tested and hardware setup.
Section. IV discusses the data collected, how it is processed for
visualization as well as the results of implementing a k-means
clustering algorithm for material identification. Section. V then
demonstrates the robustness of our approach in a practical, non
idealized environment. Finally, Section. VI presents the main
conclusions and future research directions.

II. HYPOTHESIS FOR MATERIAL LOSS DETECTION

Previous studies have characterized the effect of dissipative
materials on antenna performance. For lossy dielectrics with
high tan(δ) = ϵ′′/ϵ′, the increased imaginary part of the
complex dielectric constant (ϵ′′) reduces the quality factor (Q)
of any antenna. This manifests as a reduction of peak radiation
conductance and increase in operational bandwidth [19]–[21].
RFID tag antennas may exhibit different geometries, but the
operating principle of all T-matched designs is based on a
coupled loop-dipole configuration. As derived by Nikitin et
al. in [22], the POTR of any tag is directly proportional to the
conductance of the tag antenna. We therefore expect a similar
relationship between Ppotr and tan(δ).

To test this hypothesis, we consider a typical RAIN RFID
small 40x15 mm inlay, Impinj AR-61F with Impinj Monza
R6 IC (c.f. Table II) and place it on polytetrafluoroethylene
(PTFE) and glass (see Table III), two materials typically found
in recycling chains. Both material samples were 4 mm thick in
order to avoid variations in effective ϵr. POTR measurements
utilized the Voyantic Tagformance Broadband Kit [23]. Fig. 2
illustrates the POTR curves for the AR-61F tag placed on the
two materials and in air. As outlined in [17], fpotr decreases
as ϵr increases. In addition, we also notice a decrease in Ppotr

as tan(δ) increases illustrating that there may be credence to
our hypothesis. However, from Fig. 6 in [17], we note that the
relationship between Ppotr and tan(δ) may not be consistent
across tags and needs to be investigated further in a systematic
manner.

In the next section, we therefore validate the repeatability
and reliability of our hypothesis more exhaustively by mea-
suring the POTR performance of 12 RAIN RFID tags, with an
embedded T-match structure, on 6 different types of materials
(and air) with different ϵr and tan(δ) values. In addition, the
accuracy of using fpotr and Ppotr as features to train a k-means
classifier to automate material identification will be examined.

III. EXPERIMENTAL SETUP

In this section, we discuss the tags and types of materials
used in the study and present the experimental setup.



A. RAIN RFID tags

Table II illustrates all the T-matched tags considered in
this study. The dimensions and the IC are also listed. As
observed, the tag antenna designs vary significantly as do
the size and attached ICs. T-matched designs represent most
of RAIN RFID tags on market, including ARC-certified tags
[24], and should be adequate to evaluate the efficacy of our
hypothesis experimentally. The Beontag models (A701, H61
and E702) are used twice, resulting in 15 diverse tags. In the
second test, a judicious amount of adhesive tape was used to
attach the tags to the materials, in order to evaluate the effect
of their typical attachment to packaging.

B. Materials tested

We use the reference material kit provided by Voyantic [25].
The materials and their dielectric properties are summarized
in Table III. The ϵr values vary from 2.05 to 7.11 and tan δ

Fig. 2: fpotr and Ppotr for the AR-61F tag in air and when
placed on 4 mm thick PTFE and glass materials.

values vary from 0.0002 to 0.0717. In addition, materials
such as POM and PVC, or glass and rubber are of particular
interest, given the very similar ϵr but different tan δ values.
All materials have a 130x130 mm footprint and are 4 mm
thick (see Fig. 3(A)).

TABLE III: Summary of material properties in Voyantic kit

Material ϵr tan(δ)
Cardboard (CB) 2.57 0.0717

PTFE 2.05 0.0002
Glass 7.11 0.0098

Polyvinyl chloride (PVC) 3 0.0079
Acetal (POM) 2.96 0.045

Rubber 6.73 0.0247

C. Reader hardware and test setup
We make use of the Voyantic Tagformance Broadband kit

[23], which is capable of testing tags in the 600-1300 MHz
band. The RAIN tag under test (TUT) (see Section III-A) is
placed on the material under test (MUT) (see Section III-B)
and placed at a distance of 0.5 m from the reader antenna
(c.f. Fig. 3(B)). In order to avoid an air gap and make
the TUT flush with the MUT surface, RF transparent foam
is gently wedged between the reader and tag antennas to
apply a uniform pressure on the tag. Tests are also conducted
in an anechoic chamber so as to minimize the effect of
environmental reflections (c.f. Fig. 3(C)). For each TUT and
MUT, a POTR measurement is conducted and fpotr and Ppotr

are extracted from curves similar to the ones in Fig. 2.

IV. RESULTS

In this section, we discuss the data processing, visualization
and results of applying machine learning for material classifi-

TABLE II: T-matched antenna-based commercial RAIN RFID tags considered in this study

Tag Model Size (mm) IC Image Tag Model Size (mm) IC Image

1 Beontag
A701 42 x 16

Impinj
Monza
M750

7 Arizon
AZ-B6 85 x 25

Impinj
Monza

R6

2 Arizon
AZ-MR71 42 x 16

Impinj
Monza
M730

8 Tageos
EOS-241 42 x 16 NXP

UCODE 9

3 Arizon
AR-61F 40 x 15

Impinj
Monza

R6
9 Invengo

Bullet 41 x 15
Impinj
Monza

R6

4 Beontag
H61 50 x 30

Impinj
Monza

R6
10 Invengo

Butterfly 50 x 30
Impinj
Monza

R6

5 Beontag
E702 70 x 14

Impinj
Monza
M730

11 Checkpoint
Vortex 42 x 16

Impinj
Monza
M750

6 Arizon
AZ-HR7G 71.5 x 18

Impinj
Monza
M730

12
Avery

Denison
AD-386

50 x 30
Impinj
Monza
M730



POM PVC

CB RUBBER

PTFE GLASS

(A)

Reader 
antenna

RF-transparent 
foam

MUT
TUT

0.
5 

m

(B) (C)

Fig. 3: Experimental setup: A) materials B) diagram C) test
environment (RF-transparent foam omitted for visibility).

cation.

A. Data processing and visualization

The first step in data processing is to perform normalization
of the data. Table IV shows (fpotr and Ppotr) across two
selected tags for the 6 materials and air (ϵr = 1.00006,
tan(δ) = 0). It is clear that the relative shifts in (fpotr and
Ppotr) need to be compared as the absolute values will clearly
differ across tags. This can also be seen in Table III in [17].

TABLE IV: fpotr and Ppotr values across two different tags.

Tag 4 Tag 3

Material fpotr
(MHz)

Ppotr

(dBm)
fpotr
(MHz)

Ppotr

(dBm)
Air 975 -12.17 1170 -11.6

Cardboard (CB) 885 -14.69 1000 -16.1
PTFE 860 -11.15 1010 -12.4
PVC 810 -11.71 935 -13.7
POM 810 -14.55 925 -16.4

Rubber 665 -11.03 730 -15.4
Glass 665 -10.61 735 -14.7

First, a simple normalization method is applied. For a par-
ticular TUT test, denoted as i, fpotr and Ppotr are normalized
for each MUT, j, relative to air (j = 1) such that:

fN
potr,ij =

fpotr,ij
fpotr,i1

, PN
potr,ij = Ppotr,ij − Ppotr,i1 (1)

where i = 1, 2, ..., 15 and j = 1, 2, ..., 7.
The advantage of this method is that only the performance

of the TUT in air is needed for calibration purposes. Fig. 4
illustrates the normalized fN

potr and PN
potr clusters for all 7

MUTs for each of the 15 TUT tests. While there are some
spatial similarities between MUTs, it may be difficult for an
automated algorithm such as a machine learning classifier
to reliably differentiate between them due to the regions of
overlap between cluster points.

In order to maximize the spacing between clusters, we apply
min-max scaling and represent all MUT clusters on a common
[0,1] scale using the highest fmax

potr,i and Pmax
potr,i and lowest

Fig. 4: MUT representation when fpotr and Ppotr are normal-
ized relative to air for each TUT.

fmin
potr,i and Pmin

potr,i values across all MUTs (j = 1, 2, ..., 7) for
a given TUT test, i, as follows:

fN
potr,ij =

fpotr,ij − fmin
potr,i

fmax
potr,i − fmin

potr,i

, PN
potr,ij =

Ppotr,ij − Pmin
potr,i

Pmax
potr,i − Pmin

potr,i
(2)

As observed in Fig. 5, the cluster points become much more
amenable for automated classification. The disadvantage of
min-max scaling is that a calibration set of each MUT for
a particular TUT is necessary in order position the cluster
point in the [0,1] space. Nevertheless, the trends in the data
are logically sound. For instance, materials with lower ϵr are
closer to fN

potr = 1 and materials with lower tan(δ) are closer
to PN

potr = 1. Moreover, it is possible to differentiate between
materials having similar ϵr and very different tan(δ) and seen
by the clusters formed by PVC (green) and POM (magenta).

Fig. 5: MUT representation after min-max and common [0,1]
scaling.

Finally, we apply Fisher Linear Discriminant Analysis
(LDA) [26] to the cluster data so as to maximize the inter-
cluster variation while minimizing the intra-cluster variation.
The new projected data is shown in Fig. 6.

B. K-means clustering and classification
While the color coded clusters in Fig. 6 appear separable to

the human eye, it is necessary to see how well a machine learn-
ing classifier is able to discern between them. We apply the



Fig. 6: MUT representation after Fisher LDA transformation

K-means clustering algorithm on the Fisher LDA transformed
data to test this ability [26]. We only specify the number of
clusters as prior information to the clustering algorithm. We
also specify the centroids of the clusters as starting seed values.

Fig. 7 and Table V show the results of clustering. The
algorithm is able to achieve 94.28% classification accuracy,
indicating the promising potential of using machine learning
techniques for material classification.

Fig. 7: K-means clustering results on LDA transformed data.

TABLE V: Confusion matrix of K-means classification

G
ro

un
d

tr
ut

h

Air 15 0 0 0 0 0 0
CB 0 15 0 0 0 0 0

PTFE 0 0 15 0 0 0 0
PVC 0 0 0 15 0 0 0
POM 0 2 0 0 13 0 0

Rubber 0 0 0 0 1 12 2
Glass 0 0 0 0 0 1 14

Air CB PTFE PVC POM Rubber Glass
Prediction

V. PRACTICAL STUDY

We conduct a study where the Voyantic system is deployed
in a non idealized real-life environment; in this case an open
warehouse environment (see Fig. 8(A)). The MUT is deployed
in front of the reader antenna at a distance of 55 cm. The
RFID tag on the MUT was placed facing the reader antenna.

Fig. 8(B) shows the materials considered in this study, which
are common items recycled by households. The dielectric
material properties of these items is shown in Table VI. We
made use of 6 RAIN RFID tags in the testing: tags 1, 4 and
5 in Table II and tags 13-15 in Table VII. The latter were
chosen because, unlike most of the tags in Table II, they are
wet inlays, which are more likely to be encountered in practice
as they are easily deployed on product packaging.

(A) (B)

Fig. 8: (A) Non idealized testing setup. (B) Recyclable mate-
rials used in this study.

TABLE VI: Dielectric properties of recyclable materials

Material ϵr tan(δ)
Cardboard 2.57 0.0717

HDPE 2.3 0.0005
PET 2.8 0.003

TABLE VII: Wet inlays considered in real-life testing

Tag Model Size (mm) IC Image

13
Avery

Dennison
AD-321

41 x 16
Impinj
Monza

R6

14
Avery

Dennison
AD-226

95 x 8 NXP
G2IM

15

Avery
Dennison
Smartrac

Belt

73 x 17
Impinj
Monza

R6

Fig. 9 shows the Fisher LDA transformed clusters obtained
by following the procedure outlined in Section IV. The ma-
terial clusters are correctly classified with 100% accuracy
indicating that this technique holds promise in non-idealized
settings. Furthermore, the cluster trends are also as expected.
Higher ϵr are closer to the left hand side of the graph while
higher tan(δ) are closer to bottom.

Moreover, there are some additional considerations that are
promising for the practical deployment of this technique. First,
the dielectric detuning caused by the adhesives and paper
by the three wet inlays used in this test is not significant
enough to compromise test performance. Second, the three



recyclable MUT materials were of different thicknesses (unlike
the standardized materials considered in Section III-B).

Fig. 9: Fisher LDA transformed MUT clusters using the 6
RAIN test tags.

VI. CONCLUSIONS AND FUTURE WORK

We present a data visualization and K-means clustering
algorithm that uses RAIN RFID tag fpotr and Ppotr to dif-
ferentiate between and classify materials with different ϵr and
tan(δ) values. We demonstrate this using 6 materials of known
permittivity values (plus air) and 12 RAIN RFID tags having
an embedded T-match antenna design, with 4 different ICs. We
specifically show the ability to differentiate between materials
having very similar ϵr but different tan(δ) such as POM
and PVC or rubber and glass. Overall the method achieves
94.28% accuracy in our testing. An additional study in a
non-idealized warehouse-like environment using 3 common
recyclable materials and 6 tags shows that the technique works
with 100% classification accuracy. Moreover, complicating
factors such as adhesives and paper in wet inlays do not unduly
compromise performance. Our approach therefore shows good
promise, contributing to the circular economy by identifying
tagged discarded packaging material for reuse and recycling.

As future work, we plan to examine the applicability of this
technique to RAIN RFID tags without a T-match structure.
Second, we would like to develop a lower-cost version of the
Tagformance reader based on existing parallel research efforts
[27] and understand the trade-off between lower cost elec-
tronics and classification accuracy. Third, we plan to examine
the effect of practical considerations such as different material
thicknesses, reading the tag through the material, exposure
to moisture and different humidity conditions and situations
where multiple tags and materials are in close proximity to one
another. Finally, we would also like to expand the approach to
additional materials, such as other types of plastics and bottles
with oils, alcohols and aqueous solutions.
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