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Abstract— In this paper, we analyze one of the most common 

UHF RFID tag antenna structures, a T-matched dipole. We for 

the first time derive the closed-form solutions for the resonant 

frequencies of tag sensitivity and backscatter responses as 

functions of tag equivalent circuit parameters.  We apply our 

general analysis to a 70 mm x 14 mm T-matched RFID tag with 

Monza R6 and show a good agreement between the model, the 

measurements, and the derived formulas. 

I. INTRODUCTION 

RFID is a technology with a long history, and UHF RFID 
(also known as RAIN RFID) is a major part of it. A very 
common antenna used in RAIN RFID tags is a T-matched 
dipole shown in Fig. 1 (tag shown is E62 [1]). Such an antenna 
is essentially a loop coupled to a dipole, with an IC placed on 
the loop. This type of antenna provides a good broadband 
impedance match using only distributed traces and has also 
been known in general antenna world beyond RFID [2].  

 

Fig.  1. Typical RFID tag with a T-matched antenna. 

Tag performance can be characterized by tag sensitivity 
(also called threshold POTF, Power on Tag Forward) and tag 
backscatter (also called POTR, Power on Tag Reverse). A 
typical response of a T-matched tag is shown in Fig. 2 where 
both POTF and POTR are at tag threshold. Tag designers 
know that in such tags there are three resonant frequencies: 
two minima in POTF (frequencies 𝑓𝑎  and 𝑓𝑏 ) and one 
maximum in POTR (frequency 𝑓𝑐 ). Locations of those 
frequencies are important for design of tags that work well on 
various materials and meet specifications such as ARC [3]. 

 
Fig.  2. Threshold POTF and POTR of a typical T-matched tag. 

As it is known in RFID, T-matched tag antenna impedance 
can be approximated by various broadband equivalent circuits 
(see e.g. [4]). Fig. 3 shows two such circuits which both 
approximate the tag antenna complex impedance 𝑍𝑎 = 𝑅𝑎 +
𝑗𝑋𝑎 , but one has a transformer and another instead has an 
equivalent T-network of inductors making it easier to use and 
analyze. An analysis of those circuits can explain tag POTF 
and POTR resonances locations and their dependence on tag 
parameters. Such analysis is the focus of this paper.   

II. ANALYSIS 

The transformer-based circuit in Fig. 3 contains a series 

RLC-combo (components 𝑅1, 𝐶1, 𝐿1 ) that represents tag 

dipole inductively coupled (with coupling coefficient 𝑘 , 0 <
𝑘 < 1) to a parallel RLC-combo (components 𝑅𝑝, 𝐶𝑝, 𝐿2) that 

represents tag loop loaded with RFID IC. Parallel Rp||Cp 

combination approximates chip threshold impedance in 

absorbing state. The circuit without a transformer has an 

equivalent T-network of three inductors, where 𝑀 =

𝑘√𝐿1𝐿2 . Thevenin voltage source represents a voltage 

induced on the tag antenna (|𝑉0|
2 = 8 𝑃𝑂𝑇𝐹 𝐺 𝑝 𝑅𝑎, where 

𝑉0 is peak open-circuit RF voltage, 𝐺 is the tag antenna gain 

and 𝑝  is the polarization mismatch factor). Component 

values in both circuits are frequency independent and can be 

extracted using standard techniques if antenna impedance is 

known from either measurements or simulation [5]. 

 
Fig.  3. Equivalent circuits of a T-matched tag antenna. 

Let us define complex reflection coefficients 𝜌𝑐  and 

𝜌𝑚 between the tag antenna impedance and the complex chip 

impedance in absorbing and modulating states as: 

𝜌𝑐 = 
𝑍𝑐− 𝑍𝑎

∗

𝑍𝑐+𝑍𝑎
,   𝜌𝑚 = 

𝑍𝑐∥ 𝑅𝑚𝑜𝑑−𝑍𝑎
∗

𝑍𝑐∥𝑅𝑚𝑜𝑑+𝑍𝑎
  ,                     (1) 

where 𝑍𝑐 = 𝑅𝑐 + 𝑗𝑋𝑐  is the complex chip impedance in 

absorbing state and 𝑅𝑚𝑜𝑑 is the modulation resistance. 

   To find the locations of POTF minima, let us recall that the 

chip sensitivity 𝑃𝑡ℎ is related to incident threshold POTF as 

𝑃𝑡ℎ = 𝑃𝑂𝑇𝐹𝑡ℎ 𝐺 𝑝 𝜏, (2) 

where 𝜏 = 1 − |𝜌𝑐|
2  is the tag impedance matching 

coefficient. For most tags, antenna gain 𝐺  is a slowly 

changing function of frequency compared to 𝜏   and 𝑝  is 

constant. Thus the minima of 𝑃𝑂𝑇𝐹𝑡ℎ are defined by the 

resonant frequencies of the transfer function of either circuit 

in Fig. 3 when tag is in absorbing mode.  

    Let us assume that 𝑅𝑝 → ∞ (IC requires no power to turn 

on) and 𝑅1 → 0 (antenna has very low radiation resistance). 

This assumption does not change the resonant frequencies of 

the circuit transfer function and can be viewed as an 

application of the two extra element theorem [6]. Our left 

circuit then turns into two inductively coupled lossless LC 

tanks for which we can write an impedance matrix as: 



𝑍̂ =

[
 
 
 
 

1

𝑗𝜔𝐶1

(1 − 𝜔2𝐿1𝐶1) −𝑗𝜔𝑀

−𝑗𝜔𝑀
1

𝑗𝜔𝐶𝑝

(1 − 𝜔2𝐿2𝐶𝑝)
]
 
 
 
 

 (3)  

        The resonances of the transfer function happen at 

frequencies where the determinant of the impedance matrix 

is zero (currents in either LC tank become infinite). This 

gives us a quadratic equation with 𝜔2 as a variable. Solution 

to that quadratic equation are the two frequencies of POTF 

minima, 𝜔𝑎 = 2𝜋𝑓𝑎 and 𝜔𝑏 = 2𝜋𝑓𝑏: 

𝜔𝑎,𝑏
2 =

𝜔1
2+𝜔2

2±√(𝜔1
2−𝜔2

2)
2
+4𝑘2𝜔1

2𝜔2
2

2(1−𝑘2) 
 , 

   (4) 

where 𝜔1 = 2𝜋𝑓1 = 1/√𝐿1𝐶1  and  𝜔2 = 2𝜋𝑓2 = 1/√𝐿2𝐶𝑝 

are the natural resonant frequencies of a dipole and a loop 

portions of the tag. In a general tag case, we can have 𝜔1 ≥
𝜔2 or 𝜔2 ≥ 𝜔1. Note that in the case of weak coupling (𝑘 →
0) we see that  𝜔𝑎 → min( 𝜔1, 𝜔2) and 𝜔𝑏 → max(𝜔1, 𝜔2).              

To find the location of POTR maximum, let us recall that 

during tag backscatter the modulator (a transistor) turns on 

and off, applying 𝑅𝑚𝑜𝑑  in parallel with the antenna. The 

differential modulated backscattered power can be related to 

incident threshold POTF via backscatter factor 𝐾 as 

    𝑃𝑂𝑇𝑅𝑡ℎ = 𝑃𝑂𝑇𝐹𝑡ℎ 𝐾 ,     𝐾 = 𝑀𝐺2𝑝2 ,              (5) 

where 𝑀 = 0.5|𝛥𝛤|2 =  0.5|𝜌𝑐 − 𝜌𝑚|2  is the modulation 

factor related to differential reflection coefficient 𝛥𝛤 that can 

be derived similarly to the derivation of modulated RCS (see 

e.g. [7]). The factor 0.5 is for 50% modulating duty cycle of 

the tag. Using the same assumptions for 𝐺 and 𝑝 and further 

assuming that modulating resistance is zero (this assumption 

does not change the frequency of POTR maximum), we see 

from (2) and (5) that the function whose maximum we need 

to find is defined by 𝛥𝛤 and 𝜏 and can be written as: 

 |𝛥𝛤|2

𝜏
 =

 |𝑍𝑐|
2

|𝑍𝑎|2
 
 𝑅𝑎

𝑅𝑐
  =  

 𝑅𝑝

𝑅𝑝𝑎
,  (6)  

where 𝑅𝑝𝑎  is the parallel resistance of the tag antenna: 

𝑅𝑝𝑎||𝑗𝑋𝑝𝑎 = 𝑍𝑎 . Because 𝑅𝑝 is frequency independent, we 

can see that POTR reaches maximum when 𝑅𝑝𝑎  is at 

minimum. We can express parallel resistance 𝑅𝑝𝑎 as: 

𝑅𝑝𝑎 =
𝐿2

𝑘2𝐿1𝑅1
[𝑅1

2 + 𝜔2𝐿1
2 (1 − 𝑘2 −

𝜔1
2

𝜔2)
2

]  (7)  

We can see from (7) that 𝑅𝑝𝑎 reaches minimum value at the 

frequency 𝜔𝑐 = 2𝜋𝑓𝑐 : 

𝜔𝑐
2 =

𝜔1
2

1−𝑘2 
   (8) 

This frequency gives the location of POTR peak. One can see 
from (4) and (8) that 𝜔𝑐 is a function of only dipole natural 
resonance frequency 𝜔1 and coupling coefficient 𝑘  while 
𝜔𝑎  and 𝜔𝑏  also depend on 𝜔2 (defined by chip capacitance 
and loop inductance). One can also show from (4) and (8) that 
for any 𝜔1,  𝜔2  and 𝑘 , POTR peak is always contained 
between the POTF minima, i.e. 𝜔𝑎 < 𝜔𝑐 < 𝜔𝑏. These facts 
are empirically known to some RFID tag antenna designers 
but formulas (4) and (8) now provide a mathematical insight. 

III.  EXAMPLE 

Let us consider a practical RFID tag example: a 70 mm x 
14 mm ER62 tag antenna (see Fig. 1) with Monza R6 IC [8]. 
We simulated this antenna on 2 mm thick cardboard material 
( 𝜀  =2.57, tan 𝛿  =0.0717) using CST EM simulator and 
extracted the following equivalent circuit values: 𝑅1  =77 
Ohm, 𝐶1 =0.186 pF, 𝐿1 =162 nH, 𝐿2 =23 nH, 𝑘 =0.19 that 
approximate tag impedance well as one can see from Fig. 4.  

 
Fig.  4. Top: tag antenna impedance (CST and equivalent circuit).  

Bottom: tag threshold POTF and POTR (model and measurements). 

 We measured this tag on the same cardboard material 
using our Voyantic [9] based setup described in [10] (autotune 
feature of Monza R6 was disabled to make POTF resonances 
more visible). Our modeled POTF and POTR calculated using 
(2) and (5) were in good agreement with measurements. We 
also calculated tag resonant frequencies from formulas given 
by (4) and (8) using 𝑅𝑝=1.56 kOhm and 𝐶𝑝 =1.3 pF for IC 

impedance and found that 𝑓𝑎 =842 MHz, 𝑓𝑐  =934 MHz, 𝑓𝑏 
=1021 MHz (dipole and loop natural frequencies were 𝑓1=915 
MHz and 𝑓2=920 MHz). Those values agree with tag resonant 
frequencies quite well as one can see from Fig. 4. 

IV. CONCLUSIONS 

In this paper, we derived closed-form solutions for T-

matched tag resonant frequencies as functions of tag 

equivalent circuit parameters. We hope that this paper will be 

useful to a wide audience of RFID tag antenna designers who 

want a deeper understanding of T-matched tags to design 

better tags for various applications. 
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