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The AI Engine (AIE) is an optional component of the AMD Versal Adaptive Compute 

Acceleration Platform (ACAP). It is an innovative device that offers extensive parallelism to 

enhance compute density and reduce power consumption. However, the performance of the AIE, 

particularly for small models requiring low latency, remains uncertain. 

In this thesis, we mapped three neural network benchmarks to the AIE section of the Versal 

VCK190. We explored the best coding practices and characteristics of the AIE. Additionally, we 

mapped these models to the FPGA fabric portion of the VCK190 and compared the cost and 

performance with our AIE implementation. Based on six metrics, we found that the AIE's 

efficiency is slightly better than the FPGA fabric in terms of power and silicon area utilization, 

but worse than the FPGA in terms of performance, resource utilization and price. This 

discrepancy is due to limitations in interconnection and the inefficiency of hardware units when 

the vector data path cannot adapt to certain shapes of the input data. 
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1 Introduction 
In an era where artificial intelligence (AI) continues to be widely deployed, the increasing need of 

AI performance encounters growing AI complexity. To meet this trend, people came up with 

various hardware acceleration methods including using existing hardware (such as FPGA and 

GPU) and building ASIC accelerators. Among these options, the use of FPGAs stands out for its 

programmability, low latency and moderate cost. 

Meanwhile, from the FPGA vendor side, people have started to adopt AI domain-specific 

architectures and embed them into the FPGA, bridging the gap between the performance needs 

and the underlying hardware. Recently, AMD released its Versal adaptive SoC product family 

which integrates CPU, FPGA and high-speed interfaces. In this family, the AI series includes an 

additional, dedicated hardware region called the AI Engine (AIE)[Gaide19] for AI inference 

workloads. The AIE is an array of VLIW vector processors with versatile interconnections among 

each other, forming a dataflow architecture that suits ML workloads. Inside each AIE core, there 

is a vector unit that supports multiple data formats (8, 16, 32-bit fixed point and floating point), 

and has a dedicated data path for vector MAC operation. This brand-new architecture potentially 

offers advantages in performance per watt and higher throughput[Xilinx22], while keeping the 

programmability. This piqued our interest in evaluating this emerging hardware, and exploring the 

possibility of migrating low-latency and high-throughput FPGA ML applications to it, if the AIE 

proves efficient. 

In this work, we use the same benchmark model from previous work of our group[Johnson23]. We 

map models to both the AIE and FPGA fabric of the Versal AI series, measure performance and 

cost metrics, and analyze the outcome. The structure of this thesis is as follows: Section 2 provides 
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background information on typical neural network computations. Section 3 introduces the AI 

Engine, and Section 4 provides AIE characteristics for design considerations. Section 5 introduces 

metrics that are important to the evaluation. Section 6 demonstrates the benchmark 

implementations on the AIE, along with the optimization process. Section 7 describes the data 

acquisition process for the benchmark and presents the results. Section 8 discusses the underlying 

reasons for the results, possible limitations, and potential enhancement. 

1.1 Related Work 

Since the Versal AIE has been released, researchers have begun mapping specific computational 

operations to the Versal chip. CHARM[Zhuang23] mapped the matrix multiply (Matmul) 

operation to the Versal SoC, while MaxEVA[Taka23] proposed a higher performance Matmul 

without relying on the FPGA side. Lei et al. mapped parallel Matmul to the Versal exploiting multi-

level memory hierarchy[Lei24]. Vyasa explored a high-performance way of convolution on the 

AIE with 32-bit and 16-bit precision[Chatarasi20]. Chen et al. introduced a heterogeneous way to 

map graph neural network (GNN) to Versal[Chen23]; 

Meanwhile, evaluation of Versal AIE is being conducted across multiple fields. Brown et 

al.[Brown23] evaluated the use of Versal for atmospheric simulation, and SPARTA[Singh23] 

assessed AIE for weather stencil computation. TaPaSCo-AIE[Heinz24] is a framework leveraging 

AIE with heterogeneous stream acceleration, and evaluated the AIE performance with a simple 

feed-forward neural network. 

In addition, neural network accelerators have been built upon the AIE. XVDPU[Jia24] is a 

convolutional neural network accelerator that utilizes both AIE and programmable logic. 
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However, for our specific need to evaluate standalone AIE versus pure FPGA implementation of 

machine learning models, there is no direct reference. In this work, we will focus on pure-AIE 

mapping of ML models and emphasize comparisons to assist FPGA users in selecting next-

generation devices for ML applications. 

2 Neural Network Computation 

2.1 Dense Layer 
A dense layer, also known as a fully-connected layer, computes its output by performing matrix 

multiplication between the input data and the weights, followed by the addition of bias to each 

output. For example, if we have a dense layer with 10 inputs and 8 outputs, the weight matrix for 

this layer would be 8×10, and the bias would be a vector of length 8. 

                    

Figure 1. Dense computation example 
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2.2 Convolution Layer 
In general, the input to a convolution layer is a 2D image. Its computation is performed by a filter 

or kernel that conducts element-wise multiplication, followed by accumulation and addition with 

a bias. Each time the filter performs this computation, it produces one pixel of the layer's output. 

The filter slides over the input data horizontally and switches to the next row until it reaches the 

end of the row. If the window slides one pixel at a time horizontally, the stride of this convolution 

is one. The window could also slide more than one pixel at a time, the output shape of the conv 

layer would then be smaller. 

 

Figure 2. Convolution layer of 8*8 input and 3*3 kernel 

2.3 ReLU Layer 

ReLU stands for rectified linear unit, and is commonly used for the activation function in neural 

networks. For a given input, its output complies with the formula: 

𝑓(𝑥) = 		𝑥										𝑖𝑓	𝑥 > 0, 
																				0										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 
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Figure 3. ReLU function line plot 

2.4 Sigmoid Layer 

The sigmoid layer serves as an activation layer in a neural network, converting any range of input 

values to a range between 0 and 1. For very negative values, the output will be close to 0, while 

for large positive input values, the result will be close to 1. The sigmoid function is defined as 

follows: 

𝜎(𝑥) =
1

1 + 𝑒!"	

 

Figure 4. Sigmoid function line plot 

2.5 Softmax Layer 

The softmax layer is also an activation layer, with outputs guaranteed to be in the range of 0 to 1. 

Additionally, the softmax function takes a vector of inputs and ensures that the sum of the 

corresponding output vector is 1. It is commonly used as the final layer in a classification neural 

network, as the result can be interpreted as a probability distribution. 
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𝜎(𝑧#) =
𝑒$!

∑ 𝑒$"%
&'(

	𝑓𝑜𝑟	𝑖 = 1,… , 𝑘	

	
2.6 Possible Advantage of the AIE 

The dense and convolution layers are computation-intensive, and both of them require the MAC 

operation. Each AIE core has its vector MAC data path, and the dataflow between each AIE core 

can be specified. This provides a possibility for efficient mapping of the layer's computation to one 

or multiple AIEs' hardware units. The vector MAC unit provided better performance and energy 

efficiency than FPGA solutions in terms of computation, as the FPGA uses scattered resources to 

support the operation, and the programmable routing between the scattered resources added more 

delay and introduced more power consumption. 

For the Sigmoid and Softmax activation layers, the complex non-linear functions will be 

implemented in a look-up table fashion for both AIE and FPGA, and the look-up shouldn't take 

much time compared to the dense/conv layer. The overall performance of a full model should be 

boosted by the AIE MAC unit if there is no other overhead introduced while mapping the model. 

3 Versal Adaptive SoC and AI Engine Introduction 
The Versal Adaptive SoC is a next-generation device released by AMD/Xilinx. It provides a 

heterogeneous combination of CPU, vector processor array (AI Engine) and FPGA. This new 

category of device allows users to customize the application deployment according to the workload 

characteristics. For instance, the FPGA can implement arbitrary functionality but with a cost: The 

FPGA fabric contains fine-grained logic blocks (look-up tables, flip-flops, DSPs) and an 

interconnection network that connects them. Those logic blocks are often tied to a single operation 

repetitively, resulting in a large resource usage if the workload is compute-intensive. In contrast, 
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the AIE, as an array of parallel processors, provides a large density of mathematical operations, 

and its resources could execute and switch to different operations on a cycle-by-cycle basis. 

However, the AIE resources are fixed to specific organizations, and computations that do not fit 

this model can be implemented very inefficiently. The CPU is a better fit for light-weight and 

general-purpose workloads, as it has reasonable computational resources and supports a variety of 

operations. There is also a programmable network on chip (NoC) available on Versal, to integrate 

those three types of resources and creates better connectivity between them. 

The AIE is one of the distinct differences between Versal and the previous generation of devices. 

It aims to accelerate machine learning inference workloads. This could be a possible upgrade to 

FPGA acceleration of ML inference, as the AIE provides dedicated hardware resources for heavy 

computation operations, selected operations of ML inference could be faster, and the 

corresponding power consumption could be smaller. The resource utilization rate of those 

operations could also be better, as the AIE resource is not tied to specific operation and could be 

changed between each cycle in contrast to FPGA fabric. However, one of the biggest concerns is, 

for those operations that are not supported inherently by AIE, will the degradation harm the overall 

efficiency of ML inference on AIE. This will be evaluated and answered in section 6 and 7. 

3.1 AI Engine Core Architecture 

Each AI Engine core is a parallel processor, and the parallelism is implemented with a very long 

instruction word (VLIW) and single instruction multiple data (SIMD). This provides data-level 

and instruction-level parallelism (DLP and ILP), allowing for better throughput and efficiency. 

The VLIW feature of AIE allows 7 operations (2 scalar, 2 load, 1 store, 1 vector and 1 stream 

operation) per clock cycle. It is essential to balance the workload by evenly distributing different 
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types of operations to better use the hardware resource. Avoiding data dependencies or structure 

dependencies is also helpful to maintain efficiency, since the AIE is pipelined and the dependency 

causes stall or insertion of no operation (NOP). If any operation within the 7 issue slots stalls, the 

remaining 6 slots might also get stalled. 

The SIMD feature of AIE supports arbitrary data type and bit widths. For fixed point data, 32 bits, 

16 bits and 8 bits are supported. For floating point data, only 32 bits are supported. No matter 

which bit width or datatype is used, the supported total data length (vector length) remains the 

same. The underlying hardware are 16 128 bits-only registers. They could also be regarded as 256, 

512 and 1024 bits registers logically, with an exception of the 1024 bits register: They are 

overlapped because of hardware limitation. If we have two 1024b vectors on one AIE, register 

spilling could happen and the performance is reduced[Xilinx22]. 

vector 
length 

128 256 512 1024 

bit width int8/16/32/float32 int8/16/32/float32 int8/16/32/float32 int8/16/32/float32 
count 16/8/4/4 32/16/8/8 64/32/16/16 128/64/32/32 

Table 1. AIE supported data type 

 

Figure 5. AI Engine VLIW and SIMD 

 

   scalar   load   load   store   scalar   vector   stream 

   src1   src2   dst   MAC 
type   data 

permutation 

   8 b   8 b   8 b   8 b   8 b   b 8   b 8   b 8   b 8   b 8   8 b   8 b   8 b   8 b   8 b   8 b 
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Figure 6. AI Engine register file 

3.2 AI Engine Array Architecture 
Using a single AIE core, an array of AIE can be built and connected, providing thread-level 

parallelism (TLP). A typical Versal device with AIEs, for example, the VCK190 board, has an 

array of 400 AIEs. The TLP is realized by multiple AIEs doing different computations in parallel. 

However, in contrast to FPGA parallelism, which is using low-cost interconnection to conduct the 

dataflow among replicated hardware resources, there is an overhead for AIE due to inter-AIE core 

communications and synchronization. There are three ways available in AIE: Window, stream and 

cascade data transfer, and the communication way chosen affects the efficiency of TLP. The 

window transfer uses AIE local data memory as a shared buffer, and the buffer access is controlled 

by mutex lock. In this way we have a high bandwidth writing/reading the buffer but added an 

overhead of synchronization. The stream transfer has a much smaller bandwidth but is lock-free. 

If we have a relatively small amount of data needed to be transferred without synchronization and 

stall, stream is a good option. There are two pairs (input and output as a pair) of stream ports 

available on the AIE, making a data reduction structure (see section 4.5) possible. The cascade 

transfer is also stream-based, high bandwidth, but each AIE has only one pair of cascade ports. 

Usage of cascade transfer is mainly limited to passing partial results. More details about data 

transfer will be discussed in section 4.1, section 4.2 and section 4.3. 

Each AIE, along with its local data memory and interconnection, forms an AIE tile. This tile-based 

architecture creates a graph programming model. For each AIE tile we have a kernel function for 

 

b 128 b 128 b 128 b 128 b 128 b 128 b 128 128 b 128 b b 128 b 128 b 128 b 128 b 128 b 128 128 b 
256 b b 256 b 256 b 256 256 b 256 b 256 b 256 b 

b 512 b 512 b 512 b 512 
b 1024 1024 b 
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it to perform the computation along with the data I/O, and from the top level we specify the 

connectivity among these tiles. 

 

Figure 7. AI Engine array 

3.3 AI Engine Interface 
The AI Engine communicates with the rest of the parts of Versal by its interface tiles. These tiles 

can manage two types of interfaces (to the FPGA and to the NoC), and the bandwidth performance 

is shown below: 

 

Figure 8. AI Engine interface 

 FPGA NoC 

AIE Read (bits/cycle) 8*64 128 
AIE Write (bits/cycle) 6*64 128 

Table 2. AIE interface bandwidth performance 
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However, this is not the bandwidth for each of our AIE cores. Each AIE core can only accept 2 

words of 32-bit data each cycle from its data switch, and the remaining bandwidth is forwarded to 

other AIEs by the interconnection network of the AIE array. The mismatch of bandwidth is because 

we have only one row of AIE Interface tiles but there are multiple rows of AIE cores, one AIE 

Interface's bandwidth has to accommodate the needs of multiple AIE cores. 

4 AI Engine Characteristics 
Before we start to discuss the actual neural network mapping on AI Engine, let's first take a look 

at the AI Engine characteristics, which shows helpful features that AI Engine offers. First we 

discuss details of data access methods available in the AIE array, then we discuss two fundamental 

ways of managing the dataflow, and finally, selected characteristics of the AIE core are introduced. 

4.1 Window Data Access 
Window data access is a high-throughput way (256-bit per cycle) of moving data but with an 

overhead of lock acquisition/release. For two adjacent AIEs, the window data transfer happens in 

a shared local memory that is between those two AIEs. When one AIE is interacting with the 

memory, it acquires the lock and prevents the other AIE from working with the memory until it 

releases the lock. To prevent performance degradation, the AMD AIE tool implements a double-

buffer (ping-pong buffer) in the memory by default, allowing each AIE to work on different 

memories concurrently. 
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Figure 9. Window data access: local memory to adjacent AIE 

 

Figure 10. Window data access: double buffer 

However, the overhead of lock acquisition/release still hasn't been solved and is caused by the 

repeated AIE program loading(see section 4.6). As long as we use the window data access method, 

the lock mechanism is always introduced and will need the compiler-inserted code to conduct the 

lock. This piece of code is placed outside of the user-defined function for AIE, thus requiring the 

user function to finish first, then execute the lock code. This behavior is repeated during AIE's 

execution, and each time the user-defined function needs time to be loaded. The way the AIE 

compiler inserts the lock conduct code also limits our user function: it cannot be an endless loop, 

it has to finish and return, to allow the code to be executed afterwards. 

4.2 Stream Data Access 
In contrast to window data access, stream data access involves reading and writing data from the 

switch between AIE tiles. It is lock-free and does not require buffer coordination, allowing it to 
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operate in free-running mode (endless loop). The drawback is that the bandwidth is limited to only 

32 bits/cycle per port and each AIE tile has 2 read and 2 write ports. In total we have a 64 bits/cycle 

bandwidth of either write or read, in contrast to 256 bits/cycle for window data access. 

Nevertheless, we will rely heavily on this type of access for our models later, because in this way 

we can avoid the program load overhead and it improves the performance of our models. 

 

Figure 11. AIE stream data access (top-level) 

4.3 Cascade Data Access 
The cascade port is another stream-based data access method available, and it is also lock-free, 

with a width of 384 bits. However, there are some limitations that prevent us from building high-

throughput designs using it. First, there is only one cascade read and one cascade write port per 

AIE, which means we cannot build a reduction tree from it. Second, the cascade port needs to 

access a special register file called accumulator register instead of the register file used for window 

and stream access (vector register). To transfer vector register data via the cascade port, we have 

to perform a data conversion that takes 6 cycles in the data path. Thus, the cascade data access is 

more beneficial if the computation across multiple AIEs continues to involve the accumulator 

registers. 
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MAC MAC MAC 
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Figure 12. AIE cascade data access 

4.4 Broadcast 
The output of each AIE tile can be broadcast to multiple receivers. This is particularly useful when 

there are multiple kernels in a convolutional layer, as it allows multicasting the input to any AIE 

performing the corresponding kernel's computation, instead of multiple one-to-one data feeders. 

However, the broadcast happens only if all receivers are ready. If one receiver is not ready, other 

receivers are stalled to wait until the broadcast condition is met. This creates a pitfall if we try to 

implement the broadcast while the receivers have data dependencies. In the example shown below, 

all AIEs share the same input (broadcast to stream port), and take previous AIE's output as the 

other input (with cascade port). 

 
Cascade 

Figure 13. AIE deadlock due to broadcast 

Here, each AIE is waiting until both cascade port and stream port's data are ready except the left-

most one. Take a closer look at the second AIE from the left, it waits for the cascade port, and the 

data comes after the left-most AIE takes the broadcast input first, does the computation and puts 

the output on its cascade port. However, the broadcast cannot execute, because it is still waiting 

 

 

  

 

 

   AIE   AIE   AIE 

  AIE   AIE   AIE 

MAC MAC MAC 

MAC MAC MAC 

 

Input Broadcast 

AIE AIE AIE AIE 



 15 

for the second AIE from the left, which is waiting for the cascade input. This forms a circular 

dependency and thus a deadlock. 

We can still make this AIE arrangement run, by manually specifying FIFO between the broadcast 

and the AIE. The FIFO is supported by the AIE hardware and is either implemented in the stream 

interconnection or in the data memory, according to the user's specification. In this way the 

broadcast does not have to wait for the AIE, since the FIFO is always ready and will take care of 

the input. 

4.5 Reduction 
In contrast to broadcast, there is no direct way to construct a multi-sender to single receiver 

connection. However, it is a typical operation in parallel processing and neural network 

inferencing: For a computation-heavy workload, it could be broken down to multiple lightweight 

parts that are done by different AIEs, but then we still need to merge these partial results back 

together. Sometimes the partial results need to be concatenated to a unified vector, at other times 

the partial results need to be summed together to form a single value. We will refer to those kinds 

of operations as reduction. To perform the reduction, there are two approaches: 

● packet switch 

● reduction tree 

Packet switch is primarily used for sharing a single physical channel with multiple data streams. 

Each packet is bundled with an ID, and the switch has to inspect and redirect the packet using its 

ID. This adds a layer of complexity to our reduction scenario: the receiver cannot determine which 

packet should come first without knowing its ID. Checking packet ID and reordering them adds 

significant overhead, making this method less ideal for our purposes. 
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AIE 

 

Figure 14. Packet switch 

In order to still perform the reduction, we can use some of AIEs as 2-to-1 mergers to assemble a 

reduction tree. Each AIE has two read stream ports available, allowing it to concatenate and stream 

out data, functioning as a reducer. The drawback from this approach is the increased latency and 

resource usage, as the data will flow through multiple layers of AIEs (log2 of n-input) compared 

to a direct merge. 

 

Figure 15. Reduction tree 

4.6 Program Loading and Free-running 
The AI Engine program loading includes three stages: initialization, the main function, and the 

computation kernel itself. The AIE user could only implement the computation kernel, but not the 

init or main function. There is a significant overhead during initialization, but it occurs only once. 

The overhead of the main function is recurring: each time the computation kernel finishes, the 

main function has to start, do some buffer synchronization for window data access and then reload 
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the kernel. This is particularly detrimental if the kernel itself is fast. Free-running mitigates this 

problem by adding an endless loop around the computation kernel, allowing the kernel to run 

forever and without overhead (pseudo code shown below). However, as we discussed in section 

4.1, window memory access is coordinated by the main function, making it unusable if the kernel 

is free-running. We still can use stream and cascade data transfer, which is sufficient for most 

cases. 

init(); 
main() { 
  lock_and_buffer_init(); 

while(true) { 
  lock_acquire(); //overhead 
  userKernel() { 
      //user code 
      ... 

          ... 
      } 
      lock_release(); //overhead 
      manage_buffer();//overhead 
  } 
} 

Default program load sequence 

init(); 
main() { 
  lock_and_buffer_init(); 

while(true) { 
  lock_acquire(); 

userKernel() { 
        while(true) { 

... //user code 
} 

} //never reach below 
lock_release(); 
manage_buffer(); 

} 
} 

Free-running sequence 
 

4.7 Vector MAC 
Inside each AIE, there is a dedicated vector data path for Multiply-and-Accumulation (MAC) 

operations. It can perform 128 8-bit MAC operations per cycle, or 32 16-bit MAC operations per 

cycle, or other precisions. This is the heart of the AI Engine, and understanding the architecture of 

the data path and its capabilities is crucial for model deployment. The data path includes: 

● Two input buffers with 1024 bits and 256 bits 

● A shuffle network to retrieve arbitrary data from the respective buffer and feed it to the 

MAC computation unit 

● An output buffer, to store the result and perform partial result accumulation 
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Figure 16. AIE MAC data path 

The way we feed those input buffers, and the way we map computations to this vector data path 

really affects the performance and efficiency. There are two stages of mapping: First determine the 

chunk of data that we want to operate on (for example a small portion of a large matrix 

multiplication, or part of the input image for convolution), store them in the buffer, then determine 

the shuffle network configuration to feed the MAC unit with a specific data layout pattern. 

 

Figure 17. Shuffle network data placement to MAC unit (scaled) 

However, the shuffle network has limitations that prevent it from supporting an arbitrary data 

layout. It fetches data and places them to the MAC unit in a pattern, specified by configuration bits 

including start, step and offset. A shuffle configuration for B buffer with start=3, step=2 and 

offset=0,1,1,2 shown in figure below. The top-left element is the first to be settled, with the start 

parameter. From there, the remaining elements could be filled with the help of offset and step. 

With lower bit precision there is an additional square parameter that helps further specifying the 

placement pattern, but there are still patterns which cannot be achieved. 
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Figure 18. AIE shuffle network pattern for buffer B 

5 Metrics for Evaluation 
Evaluation of a device could include a broad set of metrics depending on the focus of different 

users. In this work, we propose the major type of users that represents a specific case in order to 

have a defined scope: “FPGA user selecting next generation device for ML usage”. The evaluation 

consists of deploying multiple ML models to the AIE device, along with the same set of models 

deployed to the FPGA device to form a comparison. Several metrics are applied to this evaluation: 

Initiation Interval (II), latency, power, price, on-chip resource utilization and silicon area 

utilization. Those together help evaluate how good the AIE (versus the FPGA) is, with aspects of 

performance, power, cost and ability of replication. 

5.1 Initiation Interval 
An initiation interval (II) is the time period that must elapse between processing consecutive inputs 

(two different inputs for inference in our case) of the system. It is inversely proportional to 

throughput and both characterize the input data consuming speed of a system. It is one of the key 

performance indicators of the device. Specifically, for a machine-learning data post-processing 

system of high-energy particle collider, the II, or throughput, determines the minimum time 

interval between two successive collisions, in order to perform the data analysis in real time. 

The reason we are using II instead of throughput is that the AIE operations that we used in our 

benchmarks are all deterministic, thus II better describes the regularity of the system. Another 
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reason is, for the remaining metrics, smaller values mean better efficiency. The adoption of II 

aligns with this pattern and helps us better visualize the data in the analysis section. 

5.2 Latency 
Latency is the other performance-related metric, describing the time period that elapses between 

when the data is consumed by the system and the corresponding result is produced by the system. 

It does not have correlation to II, a system can have both small II and large latency, such as a deep 

pipelined CPU. Take our example of a particle collider again, its input data cannot be discarded 

until data post-processing is done, thus the latency matters because it affects the amount of data 

we have to store or hold. For example if we have two post-processing setups with the same II but 

different latency; the setup with larger latency would have more input data that is in the process of 

computation, meaning that more data has to be stored. 

5.3 Energy Consumption 
Energy is another dimension for evaluating efficiency. The energy consumption of machine 

learning models is receiving increasing attention, driven by the widespread deployment of AI and 

the trend toward more complex machine learning models. For mobile use cases, limiting energy 

consumption is essential due to battery capacity constraints and the heat generated during 

operation. On the other hand, for data center applications, higher energy consumption can scale 

significantly, increasing energy costs and potentially exceeding local power limitations. In this 

work, both the static power and the dynamic power of the chip should be considered, to gain a 

better understanding of the contributing factors. 

5.4 Cost 
Cost is referenced when considering the purchase of a device, and it plays an important role when 

other metrics are worse but the cost is low: For example if the performance of the device is not 
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competitive but the price is reasonably low, we can buy multiple copies of the device and deploy 

replicated ML models to have better throughput to compensate the performance. 

5.5 Resource Utilization 
Resource utilization is the percentage of the on-chip resource usage of our neural network models. 

It is a direct indicator of the ability to replicate logic. Similar to the example of the cost, if resource 

utilization of a given model is low, multiple replications could fit to a single chip and compensate 

for the performance. On the other hand, resource utilization indicates the total capacity of the 

device. Lower utilization means larger models could be mapped to the chip. 

5.6 Area Utilization 
Area utilization is the percentage of the silicon area usage of the chip, it unifies the resource 

utilization result to a common and more comparable level. Other than the resource utilization, we 

still want to know the “resource efficiency”: is this architecture suited for ML workloads and can 

support the functionality in a reasonably small silicon area? The area utilization metric will help 

us answer the question. 

5.7 Core-Time 
Core-Time is a metric that we propose for characterizing the overall model implementation's 

efficiency on AIE. It is the product of initiation interval and the hardware resource amount, 

showing the compute resource occupied for processing single input. It is also the inverse of 

throughput per AIE. The definition of core-time is shown below: 

𝐶𝑜𝑟𝑒 − 𝑇𝑖𝑚𝑒 = 𝐼𝐼 ∗ 𝑁)*+ = 1/
𝑇𝑜𝑡𝑎𝑙	𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑁)*+
	

II is the initiation interval of the implementation, and the N_AIE is the number of AIE cores 

involved in the design. The idea is to show the efficiency of the design and indicate if an 
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optimization really helped. It also reveals the correlation between II and AIE amount: If we spent 

5 AIEs and got II of 100 cycles, then spending double the amount of AIEs (10) for the design 

should get half the II (50 cycles) theoretically. In the following section the core-time helps us to 

understand the potential difference between our iterations of attempts at optimization. If the core-

time decreases, it means we use AIE cores more efficiently in terms of computation and vice versa. 

6 Benchmark Implementations 

For our targeting user group “FPGA user selecting next generation device for ML usage”, using 

some example machine learning models is a direct way to demonstrate and benchmark the 

effectiveness. Here we selected models from our group's previous work[Johnson23]. These models 

are simple machine learning models that represent generic building blocks of larger deep learning 

models. We deploy those models on both the FPGA portion and the AIE portion of the same device 

to have a comparison. The following paragraphs focus on the deployment on the AIE, as the 

deployment on the FPGA was already done in the previous work. 

In this work the model is quantized to 8-bit and 16-bit fixed-point during the deployment, as 

floating point and higher bit width of fixed-point implementation lead to much more hardware 

resource usage but bring little performance improvement. According to [Han15], an AlexNet could 

be quantized to 8-bit without any loss of accuracy. Our implementation flow is, explore the AIE's 

capabilities and have performance considerations during the 1-D 8-bit model implementation, then 

complete the 2-D and 2-D stride model 8-bit precision construction, and then finally extend the 

model to 16-bit precision. 
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6.1 1-D Model 
The 1-D model is the first model of our benchmark, it is trained on the UCI Human Activity 

Recognition dataset[Reyes-Ortiz13] and consists of 4 layers: dense1, relu, dense2, sigmoid. It 

serves as a simple starting point for exploring the AIE's basic operations, architectural features and 

potential pitfalls, while still representing a key machine learning workload. 

Taking a closer look at the model, its input count is 10, dense1 has 32 different sets of weights to 

make 32 outputs. Dense2 has a single 32-element weight to produce 1 output. Dense1 requires 320 

MACs and dense2 requires 32 MACs. 

 

Figure 19. The 1-D model structure 

6.1.1 Initial Version 

We began mapping the 1-D model by implementing each layer with a dedicated AI Engine and 

managing the data flow in a streaming manner. For the AI Engine programming model, we need 

to address two separate parts: the computation kernel and the dataflow graph. This approach allows 

us to define the scope of each computation kernel intuitively and ensures that the data streaming 

matches the sequential execution of the model. The overall structure of the AI Engine design is 

shown below: 

 

Figure 20. Initial version of AI Engine design 

   dense1   relu   dense2   sigmoid 

input, size: 10 

size: 32 size: 32 

size: 1 output, size: 1 
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There are three types of layers, and we will discuss the AI Engine mapping of each one 

individually, with code examples. The dense layer handles most of the computation, and is 

inherently supported by the AI Engine MAC data path. It is capable of doing 128 int8 MAC 

operations in one clock cycle, managed by MAC intrinsic functions. We have to first fill the two 

input buffers of the MAC data path and then call the intrinsic to execute the actual computation. 

Here we have 10 elements as input but we have to zero pad it to 16 elements to adapt to the 

limitations of the vector data path, thus the total MAC operations are 16*32 = 512 and we need 4 

MAC cycles to finish it. 

void dense1_k(input_stream_int8* in, output_stream_int8* out) {  
while(1) {  

for(int i=0; i<4; i++) { //tile the computation  
     aie::vector<int8,128> weight = 
aie::load_v<128>(weight_table_ptr+i*128); //load weight buffer 

aie::vector<int8,16> data_in = readincr_v16(in); 
aie::vector<int8,32> data_in_pad = aie::concat(data_in, data_in); //get 
data input buffer ready 
aie::accum<acc48,8> acc_partial = mac8(bias[i], weight, 0, 0x1110, 
16, 0x3120, data_in_pad, 0, 0x0000, 2, 0x3210); //the intrinsic, with 
shuffle network configurations 
writeincr(out, acc_partial.to_vector<int8>()); //convert data type 

back and stream out 
} 

} 
} 

For the relu layer, there is a vector API available, specifically vector comparison (aie::max()) and 

this accepts 16 int8 inputs. We implement the ReLU function by comparing input numbers with 

zero and keeping the maximum value. 

void relu_k(input_stream_int8* in, output_stream_int8* out) { 
  while(1) { 

aie::vector<int8,16> read_in = readincr_v16(in); 
aie::vector<int8,16> out_data = aie::max(read_in, (int8)0); 
writeincr(out, out_data); 
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} 
} 

The sigmoid layer computation includes division and exponentiation, neither of which are directly 

supported by the AI Engine. Fortunately, with only 1 input and 1 output, we can implement this 

function using a look-up table. We precompute a table of input-output mappings with 256 entries, 

store the entire table in the AI Engine memory (maximum 32KB, allowing a 32K-entry table with 

8-bit data), and return the result by using the input as an index to reference the corresponding value. 

This approach avoids heavy computation by using memory resources. 

void sigmoid_k(input_stream_int8 * in, output_stream_int8 * out) { 
while (1) { 

int8 data_in = readincr(in); 
writeincr(out, LUT[data_in+128]); //index should be positive 

} 
} 

On top of these layers, we have to specify the dataflow graph to manage the entire process. This 

leads to two separate topics: AI Engine communication with the outside world and AI Engine 

communications with each other. 

We limit  data coming from the fabric to an  int8 data type, to have a fair comparison to our FPGA 

approach. The only way that AI Engine supports this is to stream the data in. The output follows 

the same approach. For data transfer between layers, we initially use streaming, as it is relatively 

easy to implement and keeps the consistency with the interface I/O. 

class graph_1D : public adf::graph { 
private: 

kernel dense1; 
kernel relu; 
kernel dense2; 
kernel sigmoid; 

public: 
input_plio in; //interface to the FPGA logic 
output_plio out; 
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graph_1D() { 
connect<stream>(in.out[0], dense1.in[0]); 
connect<stream>(dense1.out[0], relu.in[0]); 
connect<stream>(relu.out[0], dense2.in[0]); 
connect<stream>(dense2.out[0], sigmoid.in[0]); 
connect<stream>(sigmoid.out[0], out.in[0]); 

} 
}; 

Before conducting the actual simulation and measurement, we perform a theoretical estimation of 

the II and latency. The II of 1-D implementation should correspond to the cycles required for the 

slowest AI Engine computation kernel, as they work sequentially and the data is streamed; Other 

faster kernels have to stall and wait for data to be streamed in or to be consumed. The required 

cycle depends on the number of lines of assembly executed by the AIE. 

II =Nassembly executed 

The II can be either I/O bound or computation bound. For the 1-D model, the I/O involves 

streaming in 10 int8 data elements and streaming out 1 int8 data element. Since the data path 

operates on 16 int8 elements, and there is no efficient API for gathering non-power of two amounts 

of elements and fitting them to the vector that AIE accepts, we have to pad the input to 16 on the 

data sender side. An AI Engine can do 32 bits per cycle per stream-in port, so it takes 16*8/32=4 

cycles to stream in data per inference. Output requires only 1 cycle since there is only 1 element. 

The compute bound II of the 1-D model depends on each kernel's operations. The dense1 kernel 

requires 4 cycles because it has to do 4 128-MACs and each MAC costs 1 cycle. The relu kernel 

requires 2 cycles because it can perform a 16-element vector comparison and there are 32 elements 

per inference. The dense2 kernel is only doing 1 128-MAC and thus requires 1 cycle. Finally the 

sigmoid kernel also requires 1 cycle because it is only doing a table look-up. To summarize, both 

the I/O and compute bound II are 4 cycles based on our estimation. 
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The latency of this 1-D implementation should be proportional to the number of AI Engines and 

the slowest AI Engine computation time, which is II. It is not the sum of each AIE's specific II, 

because the slowest AIE would stall the stream data port of the incoming AIE, and propagate to 

the beginning AIE. For the worst case, the slowest AIE is at the end of the sequential execution, 

and every AIE involved is stalled. (Note that this rule may no longer hold for more complex 

implementations, since there could be a large overhead before the while(1) loop starts, thus making 

the latency even larger. Also, the compiler scheduling of loop unrolling could make latency 

unstable. For example, it could schedule all of the read operations at the top of the loop and make 

all of the write operations at the bottom.) 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦,-" ≤ 𝑁)*+ ∗ 𝐼𝐼	
Among all these four computation kernels, the heaviest computation is happening in the first 

layer/kernel, since 512 (padded from 320) MACs should be done per inference. An AI Engine is 

capable of doing 128 MACs per cycle so computation needs 4 cycles as well. For Latency, there 

are 4 AIEs working so the pessimistic latency should be 4*4=16 cycles. 

However, after running the simulation and obtaining the trace, the metrics were not as expected: 

the II is 24 cycles, the latency is 261 cycles, and core-time is 4∗24=96 cycles. To have detailed 

information of the AIE execution, we dumped the report and inspected it with Vitis Analyzer. One 

helpful part of the report is the trace, it keeps track of every involved AIE's status throughout the 

entire simulation timeline, for example what function it is executing, whether it is stalled, etc. The 

following graph shows a segment of the trace of two AIEs executing dense1 and relu layers 

respectively. We can observe that the upper row is for dense1 kernel, sometimes it is stalled by the 

stream, meaning that it is waiting for the data consumer to be ready. In contrast, the second row is 

for the relu layer, it is always executing the relu computation kernel without any interrupt. From 
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this we can infer that the relu layer is a potential performance bottleneck, as other layers have to 

wait for it. 

 
Figure 21. Trace of AIE kernels 

Next, we narrowed down our focus to one AIE that we can inspect closely with the help of the 

assembly profile. The figure below is the original code of the relu kernel and its corresponding 

assembly. To the best of our knowledge, the VMOV0 and VMOV1 are the stream read and write 

along with the VLDA.SPIL and VST pair to interface with the stream, and the VCMP is the actual 

comparison (max function). Other than these we can observe the VST.PACK, VLDA.UNPACK 

pair, which is doing vector data pack/unpack with the help of data memory but our written code 

did not ask for it. 

while(1) { 
aie::vector<int8,16> read_in = 
readincr_v16(in); 
aie::vector<int8,16> out_data = 
aie::max(read_in, (int8)0); 
writeincr(out, out_data); 

} 
Figure 22. Assembly of the relu kernel 

This  identifies the root cause of the discrepancy: Although the vector comparison API supports 16 

lanes of 8-bit vector comparison, the actual hardware only supports 8 lanes of 16-bit comparisons. 

Consequently, the compiler inserts vector unpack operations (conversion to 16-bit) when reading 

from memory and vector pack operations (conversion back to 8-bit) when writing to memory. The 

last four NOPs (no operation) are introduced because of the branch delay slot and the compiler. As 
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a result, the originally expected 1 cycle per computation becomes 2 (two executions for one 

inference) *12 (lines of assembly) = 24 cycles. 

6.1.2 Relu Enhance 

Since we have identified that the relu layer significantly impacts our performance, our goal for this 

version is to optimize this specific layer. A straightforward approach is to replicate the relu 

computation across multiple AIEs, assigning workloads to subsequent AIEs in a round-robin 

fashion while previous ones are still running. Then outputs from those AIEs are gathered in the 

order of issuing. 

 

Figure 23. Round-Robin method V.1 

However, this approach is not desirable because the kernel performing the reduction constantly 

checks the packet ID, introducing branch instructions that harms the pipeline. Additionally, the 

packet-switching method leads to a non-deterministic data path, resulting in different packet 

sequences between inferences. This necessitates an alternative round-robin approach with a 

deterministic path, albeit with some overhead: 

 

 

ReLU0 

ReLU1 

ReLU2 

ReLU3 

dense2 sigmoid dense1 in in out 
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 - - 

Figure 24. Round-Robin method V.2 

The idea of this implementation is that each relu kernel processes its designated data position and 

passes the remaining data without processing. For example, in the figure above, relu_k_1 passes 

the first two elements and processes the third one; relu_k_2 passes the first one, takes the second 

one and passes the last one; relu_k_3 takes the first one and passes the next two. 

In this version, the II is 17 cycles, the latency is 322 cycles and the core-time is 6∗17=102 cycles. 

As observed, to achieve a better II, we added many AI Engine kernels sequentially, which 

significantly increased the model's latency. Our next step is to balance good II and latency. Some 

sequential replication is still allowed, but we aim for more parallel replication. We also intend to 

eliminate some kernels by merging two fast kernels to one without affecting the original II. 

6.1.3 Dense Enhance 

After enhancing the ReLU layer, we noticed that the next bottleneck is the dense layer. In our 

previous analysis, we mentioned that each AIE can perform 128 MAC operations per cycle and 

the dense1 layer requires 512 operations per inference (after padding). However, actual execution 

shows that it took 17 cycles to finish the dense task instead of 4. This discrepancy is due to the 

need to load the weights into the vector register file before each MAC operation: The buffer of the 

MAC data path has a maximum capacity of 1024 bits (128 of 8-bit), the MAC operation of the 

dense1 layer has to load corresponding part of the weight for partial result computation. With 512 

of 8-bit weights and a load bandwidth of 256 bits per cycle, a minimum of 512×8÷256=16 cycles 

required. To mitigate this problem, we distributed the dense layer workload to two AIEs. 

Originally, one AIE handled 32 outputs each iteration, now each AIE handles 16 outputs. 
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Figure 25. Dense enhance implementation 

With this adjustment, the II is now 12 cycles, the latency is 236 cycles and the core-time is 7∗12=84 

cycles. Once we doubled the throughput of the dense layer, the entire model's II is again limited 

by the relu layer. Note that for stream data transfer, each AIE can only accept input data streams if 

its computation kernel is not stalled, and it can only output data streams if the next stage is not 

stalled. If the load is not balanced between each stage, upstream faster stages remain idle, waiting 

for slower stages. 

6.1.4 Dense Sigmoid Merge 

As we observed in the trace of the sigmoid and the dense2 executions, there were large stalls 

between each execution. These layers are relatively fast and stalled nearly half of the time. By 

implementing both layers on a single AIE, we can better utilize the hardware resources and hide 

the stream stalls. This is the final version of our 1-D model, its II is still 12 cycles but the latency 

has improved to 216 cycles, and the core-time has improved to 6∗12=72 cycles. 

 

Figure 26. Stalled sigmoid and dense2 

 

Figure 27. Dense2 sigmoid merge implementation 
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6.1.5 16-bit Extension 

Based on the experience we gained from 8-bit implementation, the 16-bit version of 1-D model is 

designed with proper performance consideration: To avoid the dense1 layer performance 

bottleneck, we now use 4 AIEs for the dense1 layer, as the MAC unit could only do 32 of 16-bit 

MAC per cycle, in contrast to 128 of 8-bit MAC per cycle. Note that we did not use the round-

robin method for the 16-bit relu layer, as there is no more pack and unpack involved under this bit 

precision. The II is 8 cycles and the latency is 156 cycles for this design. 

 

Figure 28. 16-bit implementation of 1-D model 

6.2 2-D Model 
The 2-D model is our second benchmark, it consists of 4 layers: convolution (conv), relu, dense 

and softmax. It was trained on the MNIST handwritten digit dataset[Deng12]. The model is still a 

4-layer model but consists of a new pattern of heavy computation (conv) and a more complex 

activation layer (softmax). The conv is a challenge for AIE because the sliding window pattern is 

not so friendly to the vector datapath, and the softmax is difficult to accommodate because its 

output elements are relevant to each other and might limit parallelism. 

Take a closer look at the size of each layer, the input count is 8x8, and the conv has two 3x3 kernels 

to make an output of 2x8x8 (with padding). Later, the dense uses10 sets of 2x8x8 weights to 
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produce 10 outputs. Finally the softmax layer performs its computation and keeps the 10 output 

elements. For this model, we will primarily focus on the implementation of the convolution layer, 

as we have already gained substantial knowledge from our experience with the relu and the dense 

layer. 

 

Figure 29. The 2-D model structure 

6.2.1 Initial Version 

To begin, we initially map each layer to one AI Engine. However, due to the nature of the 

convolution kernel, it is intuitive to implement separate convolution kernel workload on different 

AI Engines. Based on our estimation, we expect the conv layer's II to be around 24 cycles per 

image (to be introduced later). However, if we implement the subsequent dense layer on a single 

AIE, its II would be at least 1280∗8/256=40 cycles, as it needs to load corresponding 1280 8-bit 

weight elements for each MAC operation using its 256-bit data path. From this quick estimation, 

we decided to split the workload of the dense layer across two AIEs, and the relu layer is also split 

on two AIEs to avoid unnecessary broadcast and reduction. 

 

 
  conv   relu   dense   softmax 

input, size: 
x 8 8 

size: 128 size: 128 

size: 10 output, size: 10 

flattened from 
8*8*(2  channels ) 

 3x3 kernels 2 
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Figure 30. Initial version of 2-D AI Engine mapping 

Apart from the relu and dense layer introduced in the 1-D model, the implementation of remaining 

layers is as follows: 

For the conv layer, inspired by [Chatarasi20] and [Ho23], we utilized the vector data path by 

calculating an entire row of partial results each time. As shown in the figure below, consider the 

3x3 convolution of the dashed line-highlighted range in a 8x8 (zero padded to 10x10) input image. 

The conv kernel performs 8 times of convolution in total and results in a row of 8 elements in the 

output image. 

 
Figure 31. Convolution on a specific row of input image 

From there, the computation could be split into three iterations as shown below. The first iteration 

computes the convolution across the first row of the input image and the first row of the kernel 

weight, and stores the partial result in the output buffer. Then the second iteration works on the 

second row, accumulating the result with the previous iterations. Finally the third iteration gets the 

partial result of the third row and accumulates it with the previous result to get the overall output. 
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Figure 32. 3 iterations of the convolution of a specific row 

For each iteration, the computation could finish in only one cycle with the help of the MAC engine, 

as long as the input data has already been written to the buffer. The rearrangement of the data from 

MAC buffer to the MAC computation of the 1st iteration is shown below. Note that we are only 

using less than half (24 of 128) of the MAC engine capability for this implementation due to the 

limitation of the shuffle network. 

            
Figure 34. MAC Detailed mapping 

Figure 33. Convolution on a specific row with numbered elements 

Finally, the conv layer's code could be written as a nested loop, the outer loop gets one row of 

convolution output data per iteration, and the inner loop works on one row of the partial 

convolution (one row out of entire rows of the conv kernel) per iteration. In this way, with a 3x3 

kernel and a 8x8 padded to 10x10 input, we are expecting a total of 8*3=24 cycles of vector MAC 

operations. 

for(int i=0; i<data_row; i++) { 
aie::accum<acc48,16> acc = 0; 
for(int j=0; j<wgt_row; j++) { 

aie::vector<int8,32> row_buf = data[i+j]; 
aie::vector<int8,32> wgt_buf = weight[i+j]; 

W00 W01 W02 
W10 W11 W12 
W20 W21 W22 

 

acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 
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acc = mac16(acc, wgt_buf, row_buf, SHUFFLE_PARAMS(i, j)); 
} 
writeincr(out, acc); 

} 
For the softmax layer, we cannot use an easy look-up table as we did for the Sigmoid layer. For 

each output we have: 

𝜎(𝑧#) =
𝑒$!

∑%&'( 𝑒$"
	𝑓𝑜𝑟	𝑖 = 1,… , 𝑘	

Due to the nature of this computation, we cannot obtain the output until we have the sum. Our 

implementation uses a look-up table to translate each input element to its exponent, then adds them 

together and divides each exponent by the sum. 

for (int i=0; i<10; i++) { 
int8 res = readincr(in); 
exp[i] = LUT[res+128]; 
sum += exp[i]; 

} //first have the sum 
int8 sum_inv = inv(sum); //using inverse and mul to avoid div 
for (int i=0; i<10; i++) { 

writeincr(out, exp[i]*sum_inv); 
} 

From the simulation, we found that the II is 127 cycles, the latency is 510 cycles and the core-time 

is 7∗127=889 cycles. This is far from our estimation, mainly due to the softmax layer. We will 

apply round-robin optimization to address this issue. 

6.2.2 Softmax Optimization 

To estimate the number of replications needed for the softmax round-robin optimization, we have 

to identify the bottleneck among the remaining layers, which is the dense layer with an II of 60 

cycles. Therefore, there should be at least 2 AIEs for the softmax layer. However, 2 AIEs won't be 

sufficient because if we want to use the round-robin method, each original kernel has to help with 
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accepting and forwarding the extra traffic introduced by this optimization, thus introducing 

overhead and thus cannot reach the target II of 60. It is preferable to use 3 AIEs to mitigate this 

issue, and they will function similarly to our 1-D ReLU round-robin implementation. With this 

setup, the II is now 60 cycles as expected, the latency is 596 cycles and the core-time is 9∗60=540 

cycles. 

 

Figure 35. 2D model with softmax round-robin 

6.2.3 16-bit Extension 

The 16-bit extension of the 2-D model has an identical graph layout as the 8-bit version of the 2-D 

model. The relu layer implementation remains the same because of the unnecessary pack-unpack, 

and the softmax layer is still implemented by look up table. 

We focus on the convolution layer first: the 8-bit implementation only uses 24 out of 128 MACs 

per cycle due to the limitation of the shuffle network. For the 16-bit MAC, we can still do 24 MACs 

because the MAC unit can do 32 MACs per cycle. Thus, the convolution layer's performance will 

not be downgraded if we keep the same implementation. 

As for the dense layer, we still use two AIEs for it, but with different internal designs. As mentioned 

in section 6.1.3, the 8-bit implementation of dense suffers from long vector data loading time. 

However, for the 16-bit implementation this problem is alleviated: The length of the operand is 

reduced from 1024 bits to 512 bits and now loading the operand costs only two cycles. In this way 
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we could map multiple vector MAC operations to a single MAC unit in a sequential manner 

without a large overhead. The II is 88 cycles and the latency is 681 cycles for this design. 

 

Figure 36. 2D model 16-bit implementation 

6.3 2-D Stride Model 

The 2-D stride model is our third benchmark. It consists of 4 layers. Convolution (conv), relu, 

dense and relu. This benchmark is the encoder portion of the Econ-T Autoencoder[Weng23] and 

it was trained on the data produced by the Compact Muon Solenoid (CMS) Endcap Calorimeter at 

CERN[CERN17]. The key difference between this model and the 2-D model is the conv layer, the 

stride parameter of conv is set to two in this model. This new requirement is a potential challenge 

to the AIE as we have already known that the AIE has limitations on its shuffle network. 

Taking a closer look at the size of each layer, the input count is 8x8, and the conv has eight 3x3 

kernels to make an output of 4x4x8 (with padding). Later after flatten and relu activation, the dense 

has 16 sets of 4x4x8 weights to produce 16 outputs and will be activated by relu again. For this 

model, we still primarily focus on the implementation of the convolution layer with stride, as the 

remaining layers are already implemented in the 2D model. 
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Figure 37. The 2-D stride model structure 

6.3.1 8-bit Implementation 

As expected, the implementation of conv layer encounters multiple times of the data handling 

problems. After a moderate amount of design space exploration, we were unable to find a more 

efficient implementation than the original 2D conv layer's. Now with the row-based convolution, 

we are only using 12 MACs out of the entire 128 MACs per cycle because of the stride of 2. 

The total amount of conv kernel is 8, thus we spent 8 AIEs in parallel for the conv layer. However, 

the output should be reduced to only one stream. Thus the remaining layers also serve as a 

reduction tree, accepting two inputs, maintaining the order and producing only one output stream. 

The II is 44 cycles and the latency is 354 cycles for this design. 
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Figure 38. 2D stride model 8-bit implementation 

6.3.2 16-bit Extension 

The 16-bit extension of the 2D stride model also keeps the original graph layout, for the same 

reason mentioned in section 6.2.3. The II is 64 cycles and the latency is 271 cycles for this 

implementation. 

    

Figure 39. 2D stride model 16-bit implementation 

7 Analysis 
7.1 1-D Model AIE Roadmap 
First from the optimization roadmap of the 1-D AIE 8-bit implementation, we can create a graph 

showing the relationship between the II and the number of AIE cores. From the graph, we can 

observe that increasing the number of AIEs results in a better II for the model. 
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Figure 40. 1-D II vs. hardware resource 

Next, we present the latency versus AIE cores graph. Interestingly, the relu round-robin 

optimization actually made the latency worse than the initial version. This is due to the overhead 

of data streaming introduced by this mechanism. Another observation is that the sigmoid merge 

resulted in better latency than the dense split version. This improvement is because the workloads 

of two AIEs were merged into a single AIE, eliminating idle periods during the execution of those 

two separate AIEs. 
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Figure 41. 1-D latency vs. hardware resource 

The final part of the 1-D 8-bit optimization roadmap is the graph of core-time versus latency. We 

can observe that the round-robin method introduced both higher core-time and higher latency while 

we are trying to get better II. This is because the next performance bottleneck (Dense) falls way 

behind after the round-robin optimization and limits the entire system, making the core-time 

inefficient. 

 

Figure 42. 1-D core-time vs. latency 

7.2 1-D Model AIE Bitwidth 

From the 8-bit implementation, the 16-bit precision model mapping is also implemented. The 

comparison of 8-bit last result and 16-bit implementation result is shown below. 

 

 Figure 43. 1-D II vs. cores Figure 44. 1-D latency vs. cores Figure 45. 1-D core-time vs. latency 
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The II of 16b model became better because it got rid of the Relu layer pack-unpack problem such 

that the II bottleneck could be further resolved. The latency of the 16b model is also better, as there 

is no more sequentially connected AIE introduced, and the II has been better. The core-time of the 

16b model is more than the 8b model, since the computation amount increases with the bit 

precision. 

7.3 2-D Model AIE Roadmap 

The 2-D 8-bit implementation roadmap is simpler than the 1-D, since we have already got lessons 

learned from our 1-D implementation. Results are shown below. 

 

 Figure 46. 2-D II vs. cores Figure 47. 2-D latency vs. cores Figure 48. 2-D core-time vs. latency 

The pattern is similar to 1-D as well, spending more AIE cores results in better II, but adding AIEs 

sequentially harms latency. There is a difference in the core-time vs. latency graph, the 2-D core-

time goes down after the round-robin optimization. This is because the next bottleneck of the 

system in terms of II is close to the round-robin's goal and not stalling other kernels excessively. 

7.4 2-D Model AIE Bitwidth 

The 16-bit extension of the 2-D model from 8-bit has an interesting difference. It uses the same 

amount of AIEs for 8-b and 16-b implementations. 
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 Figure 49. 2-D II vs. cores Figure 50. 2-D latency vs. cores Figure 51. 2-D core-time vs. latency 

We can observe that the II of 16b implementation grows about 1.5 times larger and the latency is 

still close to the 8b implementation while using the same amount of AIEs. This is because the 8b 

implementation has an inefficient usage of AIE computation resources due to data arrangement 

limitations. When migrated to 16b precision, the increased computation amount was handled by 

the remaining hardware resource. This could be also observed from the core-time. 

7.5 2-D Stride Model AIE Bitwidth 

The 16-bit extension of the 2-D stride model shares almost the same characteristics as the 2-D 

model. The major difference here is that the 16-bit version has less latency than the 8-bit 

implementation. This is because of the Relu layer performance again. In this model the relu layer 

also serves as a 2-to-1 reduction tree and the 8-bit pack-unpack affects the overall latency. 

 

 Figure 52. 2-D S II vs. cores Figure 53. 2-D S latency vs. cores Figure 54. 2-D S core-time vs. latency 
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7.6 Methodology for AIE vs FPGA 

So far, we have mapped our 1-D and 2-D model to AIEs and explored some optimization 

techniques. It's time to make a comparison with the FPGA implementation. Here, we revisit the 

major type of users that represents a specific case:“FPGA user selecting next generation device for 

ML usage”. 

For this type of user, the Versal product family from AMD/Xilinx is a reasonable choice. It offers 

a wide range of capacities and different combinations of functional areas. The primary question 

explored in this thesis is whether to purchase a device with AIE functionality. This consideration 

leads us to consider the pricing of Versal devices. Furthermore, for a device containing both fabric 

and AIE, the user has to decide whether to use the FPGA or the AIE portion of the chip to meet 

their needs. The following measurements are useful for this decision: 

● Initiation interval 

● Latency 

● Cost 

● Energy consumption 

● Resource utilization 

● Silicon area utilization 

For comparison and benchmarking purposes, we selected the VCK190 evaluation board (Versal 

AI Core chip XCVC1902) as the primary device. This AI Core chip contains both FPGA and AI 

Engine, providing users with the choice of implementing the ML workload on either portion. Also, 

there is another chip that contains no AIE but has identical remaining FPGA fabric resources: The 

Versal Prime chip XCVM1802 from the VMK180 evaluation board. We will use the data from 
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VMK180 to help calculate the AIE price. Below, we continue to introduce the methodology for 

comparison of each metric. We will refer to the AIE mapping of the ML model as “AIE”, and refer 

to the FPGA mapping as the ‘Verilog Neural Network’ (VNN). 

7.6.1 Initiation Interval 

The II of the AIE is measured using the AI Engine emulator provided by AMD. The process 

involves compiling and loading the design into the AIE emulator, which is cycle-accurate and can 

dump timed output data from each AIE core. We then calculate the II with the equation below: 

𝐼𝐼 = (𝑇.-/0 − 𝑇1#2/0)/(𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑐𝑜𝑢𝑛𝑡 − 1)	
Where Tlast is the time stamp of the last output element of the entire test sequence, and Tfirst is the 

timestamp of the first output element of the test sequence. The inference count is the total number 

of inferences performed during the test sequence. Note that for this section the II's unit is changed 

from cycle to ns, in order to make comparison with the VNN. 

The II of the VNN is measured in a more straightforward way. For our 1-D model, it consumes an 

entire 10 input per clock cycle, so the II is the clock cycle. We obtained the clock cycles from the 

Vivado implementation report. 

For the 2-D model, the original VNN design of the conv layer consumes one pixel per clock cycle, 

meaning that II=input pixels∗clock cycle=64∗clock cycle. This design focuses on resource saving, 

thus having less competitive performance. To make the VNN more comparable, we replicated the 

conv layer design for a factor of three, each conv component is responsible for partial input image 

workload (top conv for row 0~3, middle conv for row 2~5, bottom conv for row 4~7), the overlap 

is required because each conv operation needs 3 consecutive rows of data to operate on. However, 

we didn't modify the VNN implementation of the 2-D stride model to make it more comparable, 
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as the entire design focuses on resource saving with detailed hardware scheduling with regard to 

the stride, and modifying the implementation requires extensive amounts of work. 

 

Figure 55. VNN 2-D model modification 

7.6.2 Latency 

For the latency data of the AIE, we did not use the output data time stamp directly, as there is a 

one-time overhead of AIE boot and program load, which should not be included in the latency 

measurement. Instead, we extracted the latency from the trace data dumped by the AIE emulator. 

The latency is the timestamp of the first output minus the timestamp of the first computation kernel 

that has been loaded by the main function. The latency of the VNN is measured by Verilog 

simulation. It is the first output's timestamp minus the time that the first input was consumed. 

7.6.3 Cost 

Device pricing is a complex process, with details that are trade secrets of the vendors. In this section 

we do a comparison based on available information but acknowledge there are unavoidable 

distortions due to hidden pricing information. 

When buying a device, the total price is an important consideration. However, for a fair price 

comparison, we need to consider the corresponding price for specific resource utilization. Although 

there is no device that contains only AIEs, we can reference the pure AIE price as the price 
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difference between the FPGA-AIE combined chip (VCK190) and the pure-FPGA chip with the 

same resource amount (VMK180). 

CostAllAIE=CostChipw/AIE-CostChipw/oAIE 

As of June 2024, the price of each part (from DigiKey) is: 

● VCK190 chip (XCVC1902-2MSEVSVA2197): $29748 

● VMK180 chip (XCVM1802-2MSEVSVA2197): $11477 

The cost of a model (AIE implementation) can then be obtained by multiplying the percentage of 

used AIEs, with total cost of AIE: 

CostAIE-impl=%AIE∗CostAllAIE 

The total cost of FPGA resources can be obtained directly from the VMK180: 

CostAllFPGA=CostChipw/oAIE 

Finally the cost of a model (VNN implementation) is defined as shown below: 

CostVNN-impl=max(%LUT,%FF,%DSP)∗CostAllFPGA 

Here in the formula we adopted maximum utilization rate among the FPGA fabric components, 

since from a replication perspective, if one type of the fabric is exhausted, remaining types cannot 

be used anyway but the user still has to pay for them. 

7.6.4 Energy Consumption 

We obtained the power data from the Xilinx Power Estimator (XPE). To ensure a fair and 

straightforward comparison, we left the ambient temperature and the junction temperature as the 
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default for both of the devices (25 Celsius ambient temperature, 100 Celsius junction temperature). 

Then the energy consumption of one neural network inference is calculated as the formula below: 

Energy consumption=power∗II 

The II here is the initiation interval, the time it takes to consume one inference input and ready for 

another input. The time interval times the power of the device would be the total energy 

consumption. 

7.6.5 Resource Utilization 

The AIE resource utilization is obtained directly from the design, as the AIE code determines how 

many AIEs are used and which function an AIE executes. The FPGA fabric utilization is derived 

from the resource utilization report, generated after synthesizing the Verilog code to the Versal 

device in Vivado. 

7.6.6 Area Utilization 

Area utilization is related to resource utilization and the resource silicon area. However, we cannot 

access the real-world layout of the VCK190 chip to get the unit area. Instead, we use the layout 

demonstration from Vivado for our area analysis. It is possible that this layout differs from the 

actual layout, but we base our analysis on the best available information. 

The figure below is the layout of the VCK190 chip from Vivado, where we measured the area of 

AIE and FPGA fabric. The purple area contains all of the fabric resources (FF, LUT, DSP) and the 

gray area at the top is for the AIE. We find that the AIE resources occupy 18% of the die size and 

the fabric occupies 67%. The remaining portions are I/O, CPU, etc. The formula we use to get the 
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silicon area utilization is shown below, the FPGA area utilization also adopted the maximum 

utilization among all resources, for the same reason as section 7.6.3. 

%AreaAIE-impl=%AreatotalAIE∗%AIEused 

%AreaFPGA-impl=%AreatotalFPGA∗max(%LUTused,%FFused,%DSPused) 

 
 Figure 56. VCK190 layout from Vivado Figure 57. LUT and FF layout (closer look) 

7.7 AIE and VNN Results 

7.7.1 1-D Model 

 II ns Latency ns Energy nJ Cost FF LUT DSP AIE Resource% Area% 

8-bit Implementation  

AIE-init 19.2 208.8 113.74 183 / / / 4 1 0.18 
AIE-relu 13.6 257.6 84.32 274 / / / 6 1.5 0.27 

AIE-dense 9.6 188.8 61.36 320 / / / 7 1.75 0.315 
AIE-nal 9.6 172.8 59.55 274 / / / 6 1.5 0.27 

VNN 1.6 25.6 12.5 52 3191 4045 0 / 0.45 0.301 
16-bit Implementation  

AIE 6.4 125.2 48.07 685 / / / 15 3.75 0.675 
VNN 2.3 36.8 19.13 200 8838 15660 9 / 1.74 1.17 

Table 3. 1-D model metrics data 
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Figure 58. Key metrics of 1-D AIE and VNN comparison 

From the data shown above, we can observe three aspects: 

The 8-bit AIE design exploration shows an overall characteristic of AIEs: lowering II could also 

lower latency (as long as there is no large portion of sequential AIEs introduced) and with a cost 

of power and resource utilization. This correlation between II and latency is introduced by the 

synchronization mechanism of the AIE, as each AIE has to wait for previous AIE's data and would 

also be stalled if the subsequent AIE is not ready to receive its output. This is a key difference 

between AIE and FPGA, as FPGA can have a fine-grained pipeline and manually specify the 

synchronization to distribute the workload. 

The AIE implementation versus VNN implementation shows that, for this specific model, the AIE's 

II is 6x worse than VNN, AIE's latency is 7x worse than VNN, AIE's energy consumption is 2x 

worse than VNN, AIE's price is 5x worse than VNN, while AIE has slightly better area utilization 

over VNN. This inefficiency is because the AIE cannot handle ultra-fast (<10 FPGA cycles) and 

tiny workload (<5% resource utilization): The AIE has a limitation of lowest II and spending more 

AIEs cannot help getting it better (detailed discussion in section 8.1. Another possible factor is 
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that, the VNN binds every operation to a specific fine-grained logic but the AIE is core-based 

architecture and the designer tends to map multiple operations to one AIE in a mixed (sequential 

and parallel) manner. 

Comparing the 8-bit implementation against the 16-bit implementation also reveals that, for the 1D 

model, the VNN resource utilization grows 4x as the bit precision doubles. This is because the 

DSP is not heavily inferred and the multiplication uses 4x resources and it is the dominating 

operation. The AIE implementation also shows a counterintuitive result. As bit precision doubles, 

II and latency of the 1D model gets even smaller. One contributing factor is that we spent more 

AIE cores than in the 8-bit version, but another interesting factor is, the AIE core does not support 

specific 8-bit operations and using 16-bit operations could avoid data conversion overhead. 

7.7.2 2-D Model 

 II ns Latency ns Energy nJ Cost FF LUT DSP AIE Resource% Area% 

 8-bit Implementation  

AIE-init 101.6 408 648.31 320 / / / 7 1.75 0.315 
AIE-final 48 476.8 320.54 411 / / / 9 2.25 0.405 

VNN 48.32 83.05 387.96 143 8154 11204 0 / 1.25 0.83 
 16-bit Implementation  

AIE 70.5 544.8 470.80 411 / / / 9 2.25 0.405 
VNN 69.76 119.9 634.12 563 24662 44141 89 / 4.91 3.287 

Table 4. 2-D model metrics data 
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Figure 59. Key metrics of 2-D AIE and VNN comparison 

From the plots of the 2D model AIE versus VNN data, we see that for this model, even though the 

AIE can reach the same II as VNN, the latency is still a gap between AIE and VNN. This is because 

the parallelization on the AIE side is limited by the data transfer method. If we want to map the 

workload to AIEs in parallel to reduce the latency, there is always an overhead of joining the data 

stream back together (detailed discussion in section 8.2). 

As bit precision grows from 8-bit to 16-bit, the VNN resource utilization percentage exceeds the 

AIE percentage. This means AIE is desirable for lowering resource utilization for larger bit width 

by sacrificing the latency. The gain is from sequentially (time-multiplex) utilizing the AIE core 

resources instead of using the FPGA fabric in parallel. The area utilization difference between AIE 

and VNN also grew larger in this case and it is because the AIE has a dedicated and condensed 

unit for mathematical operation. It does not matter if the operation on the VNN side is mapped as 

LUT or DSP, the AIE's hardware is more resource efficient when the operation contains massive 

parallel computation and could be mapped to the MAC unit (for example dense layer). 

7.7.3 2-D Stride Model 
 II ns Latency ns Energy nJ Cost FF LUT DSP AIE Resource% Area% 

8-bit Implementation 
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AIE 35.2 283.2 265.37 685 / / / 15 3.75 0.675 
VNN 224 420 1717.60 95 1044 7469 0 / 0.83 0.556 

16-bit Implementation 
AIE 51.2 216.8 385.99 685 / / / 15 3.75 0.675 
VNN 252.16 472.8 1957.01 420 3307 5982 72 / 3.66 2.45 

Table 5. 2-D-Stride model metrics data 

 

Figure 60. Key metrics of 2-D stride AIE and VNN comparison 

For the 2D stride model, since the VNN implementation targets resource saving and sacrifices the 

II/latency, which is different from the AIE implementation design goal (minimum II and latency 

with moderate resource utilization), the comparison is less straightforward than previous 

benchmarks. 

From the AIE 8-bit to AIE 16-bit implementation, we can observe that the latency decreased while 

using the same amount of AIEs. This is because of the avoidance of the pack-unpack conversion. 

Secondly, in the AIE 16-bit and VNN 16-bit implementation, spending much more silicon area and 

using the same power results in worse II/latency on the VNN side. This supports the conclusion 

that AIE is more resource efficient if there are more parallel computations in the model. 

8 Discussion 
8.1 Initiation Interval 
The initiation interval of the AI Engine implementation is worse than the VNN in our 1-D and 2-

D designs. The major reasons are the bottleneck of stream data transfer and thus the nature of reuse 
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of AIEs. As mentioned in section 4.1, 4.3 and 4.5, other data transfer methods do not meet our 

need, leaving streaming as the only option (cascade data transfer cannot merge data because each 

AIE has only 1 cascade port, window data transfer adds at least 12ns per inference because of 

program loading overhead). There is a maximum of two 32-bit stream ports for read or write 

accordingly, giving the AIE a total capability of 64 bits per cycle for data transfer. 

To achieve a small initiation interval, a highly pipelined design is desirable. This means each AIE 

performs a small amount of computation (e.g. 128-MAC8) quickly and passes the data to another 

AIE. However, this idea faces the multi-join problem mentioned in section 4.5 if we try to break 

down a specific layer and thus leads to a high latency overhead. 

Another consideration is resource utilization. Take as an example our 2-D model. If we force each 

AIE to complete its computation in one cycle, then we would need 24 AIEs for the Conv layer, at 

least 32*4 AIEs for Relu layer (unavoidable pack-unpack), 8 AIEs for Dense layer and 10 AIEs 

for Softmax layer. This would require 170 out of 400 AIEs, resulting in a utilization percentage of 

42.5% compared to 0.4% for the VNN. 

Additionally, consider the minimum II, some operations naturally require more than one cycle in 

the AIE, as shown in the table below: 

operation load vector of x bits data stream of x bits data type conversion loop 
cycles x/256 x/64 6 6 

Table 6. multi-cycle operations 

The load operation requires the use of the 256-bit read port of the AIE, loading any vector longer 

than 256-bit would require more than one cycle. The streaming data transfer is also limited by the 

port width as we only have two 32-bit ports per AIE. The data type conversion from accumulator 

to vector requires going through the MAC or shift-round-saturate data path, and they are six-stage 
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pipelined. The looping in the AIE requires at least 6 cycles because from the assembly observation 

we found it has a branch delay slot of 5. Any loop body that compiles to less than 6 lines of 

assembly would still require 6 cycles for one iteration. Those set a narrow limitation to AIEs if we 

still want to achieve minimum II. 

8.2 Latency 

The latency of the AIE is also not competitive among the 1-D and 2-D models. This is primarily 

because data transfer across AIEs introduces extra overhead, whereas the FPGA transfers the data 

with programmable interconnection that completes the transfer within one cycle and can be 

configured to any arbitrary bit width. 

The second factor is the synchronization across AIE cores. In our streaming approach, if an AIE 

does not receive the stream input, it will stall and wait. This stall then propagates to the next stage 

and continues to the last stage. If a particular AIE performs slow computations, the entire design 

incurs a cumulative latency penalty. 

To resolve the slow AIE core issue, we use multiple AIEs to perform the original work. This can 

result in either a reduction tree that adds latency, or a sequential round-robin pattern that adds 

latency. The VNN does not have this problem because it has a versatile interconnect network and 

versatile logic to perform the reduction or accumulation of the partial result. 

8.3 Resource Utilization 

The resource use percentage of AIE is surprisingly higher than expected, and here are several 

possible reasons: First, the vector data path bit width is set to power of two. If our data falls between 

two values, we have to take the upper bound. This includes our data element bit width. For example 

if we had a 9-bit number then we will have to use the 16-bit data type for AIE. Our data element 
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count is also included in this scenario, as we use a 10-element 8-bit input for our 1-D model, then 

when we do the vector programming it is converted to a 16-element 8-bit vector. 

Second, sometimes the mapping of arbitrary computation to the vector MAC operation is 

inefficient. Our 2-D conv has 2 kernels, it cannot be vectorized channel-wise because the channel 

count is too small. The remaining row-based mapping is only doing 24 MAC operations using a 

128-MAC unit, wasting 81% of the computation unit. 

Finally, most of the AIE in our design are only partly used. An AIE consists of a scalar unit, vector 

unit, floating point unit, data transfer interconnection and memory. Below is a table showing our 

kernels' detailed usage of these resources. Though there is possibility to merge the usage of 

standalone units onto single AIE with the help of VLIW, it is not as flexible as the FPGA fabric, 

as we have to make sure the data I/O throughput is still sufficient, there are no resource conflicts, 

and the compiler can still schedule the workload in the correct way. 

 

 Table7. Kernel AIE resource usage  

The resource analysis also helped to explain the high usage of die area, high power usage and large 

cost of the AIE implementation, since they are all proportional to the AIE amounts used. 
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8.4 Limitations 

The result of our evaluation is valid for our 1-D and 2-D model, and the limitation is introduced 

by some special characteristics of them. First, our Conv layer and the Dense layer have specific 

shapes and are lightweight, the two-kernel conv prevents us from channel-wise vectorization, and 

the 32-element narrow vector-vector MAC cannot be fed to the MAC data path directly. This leads 

to a low utilization of the MAC unit resource. If there are at least 8-kernel conv, or a 8*8 shape 

dense input, then we can use the entire MAC unit and the AIE's performance could be better. 

Second, the AIE's performance could also be worse if we choose to quantize the workload to a 

non-power of 2 bit width. For bit widths in the range of 1~8 we use int8, and for bit widths in range 

of 9~16 we use int16. The FPGA can use the exact resources required by a particular bit width. 

Thus, in this scenario, the FPGA resource utilization and power efficiency can be better. 

8.5 Adapting MLPerf Tiny Metrics 

The MLPerf Tiny Benchmark [Banbury21] is a benchmark suite for low-power tiny machine 

learning systems. It serves as a unified comparison of various machine learning systems' efficiency. 

The performance metrics previously presented in this thesis include the data from three 

benchmarks and are adapted to align with the MLPerf Tiny Benchmark. While this adaption 

facilitates comparison and supports researchers interested in this standard, the measurement 

procedures in this work do not adhere strictly to the MLPerf Tiny methodology. This section aims 

to provide a complementary perspective, offering results in a familiar framework for easier 

interpretation. 

 1-D 2-D 2-D stride 

Data type 8b 16b 8b 16b 8b 16b 
Latency (us) 0.173 0.125 0.476 0.545 0.283 0.217 
Energy (uJ) 0.060 0.048 0.321 0.471 0.265 0.386 
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Table 8. AIE MLPerf Tiny Metrics 

8.6 Possible Enhancement 

Currently, the next generation of AIE is available, called the AIE-ML. There are some architectural 

enhancements that could possibly make the AIE-ML more competitive than the fabric. One direct 

upgrade is the MAC operation capability gets doubled, for example 256 of int8 MAC per cycle is 

now 512-MAC. 

To help with the reduction scenario, AIE-ML introduced a deterministic merge. If the II/Latency 

of the merge is better than the current reduction tree solution, the entire II, latency and utilization 

of the model could be better. Furthermore, even if the deterministic merge is unavailable, the AIE-

ML also introduced one more cascade port (in contrast to only one port per AIE). This will help 

the original reduction tree have better bandwidth (32-bit stream port to 512-bit cascade port). 

Specifically with the non-linear layer, we use a lookup table (LUT) to avoid complex computation, 

and we have to iterate sequentially for 10 times to complete one softmax layer. The parallel lookup 

introduced by the AIE-ML supports getting data from the LUT in parallel, by storing multiple 

copies of the LUT in different banks of the AIE-ML local memory. This will directly boost the 

performance of our 2-D softmax layer. 

9 Conclusion 
In this thesis, the efficiency of Versal AI Engine with respect to machine learning workload is 

evaluated. With the design space exploration performed in the first benchmark, the AI Engine 

characteristics are summarized to help consider model performance. We concluded the window 

data transfer and cascade data transfer cannot meet certain requirements for mapping machine 
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learning models and the AIE has a limitation of data arrangement internally that prevents the user 

from implementing high-performance convolution layers in certain shapes. 

Furthermore, with the comparison of AIE and FPGA implementation of our three benchmarks, we 

concluded that AI Engine is less desirable in terms of II and latency for small (<5% resource 

utilization) neural networks with ultra-fast requirement (<10 FPGA cycles). The AIE silicon area 

efficiency for higher bit width and parallel computations is also demonstrated. Finally, the 

limitation of AIE and possibility of having better efficiency with next-generation AIE (AIE-ML) 

is discussed. 
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