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Abstract 
 

Set Partitioning in Hierarchical Trees (SPIHT) is a wavelet based compression algorithm that 
offers good compression ratios, a fully progressive bit-stream, and good image quality.  This paper 
presents the results of adding arithmetic compression to the SPIHT images in the hopes of further 
reducing the image size.  Both the original SPIHT algorithm and a version optimized for FPGAs were 
used.  Our tests used a model-0 adaptable arithmetic coder and show that SPIHT images can be 
reduced another 0-5%.  Further, the compression ratio was dependent on the bits/pixel encoding level 
of the SPIHT image and slightly dependent on the symbol length used.        

 
 
1   Introduction 
 
Set Partitioning in Hierarchical Trees (SPIHT) is a wavelet-based image compression coder that 
offers a variety of good characteristics.  These characteristics include: 
 

• Good image quality with a high PSNR 
• Fast coding and decoding 
• A fully progressive bit-stream 
• Can be used for lossless compression 
• Ability to code for exact bit rate or PSNR 

 
The main advantage of SPIHT is that it is fully progressive, meaning that we do not need the 

whole file to see the image.  The image’s PSNR will be directly related to the amount of the file 
received from the transmitter. This means that our image quality will only increase with the 
percentage of the file received.  After the SPIHT transformation some regularities will exist in the 
file.  These regularities may allow us to further compress the file.  With this in mind we investigated 
the addition of arithmetic compression to a SPIHT encoded image.  A few different code 
implementations are presented here and the compression results are compared. 
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2 Overview of Arithmetic Coding 
 
Arithmetic coding is a well-known method for lossless data compression [1, 2].  The idea can be 
traced back to the work of Shannon [3], but it was first explicitly described by Elias, and described 
in a footnote in reference [4]. 

Arithmetic coding is a compression technique that can give compression levels at or very 
near entropy.  What this means is that if we have a message composed of symbols over some finite 
alphabet, we can generate the exact number of bits that corresponds to a symbol (e.g. 1.6 
bits/symbol).  This is opposed to Huffman encoding which must output an integer number of bits 
per symbol (e.g. 2 bits/symbol).  Arithmetic coding achieves entropy (or very near it) by grouping 
symbols together until an integer value of bits can be outputted for a sequence of symbols (e.g. 
ABC may correspond to 1011). 

Arithmetic coding works by using a probability interval defined with variables L and R, 
which are initially set to 0 and 1 respectively.  The value of L represents the smallest binary value 
consistent with a code representing the symbols processed so far.  The value of R represents the 
product of the probabilities of those symbols.  To encode the next symbol, which is the jth of the 
alphabet, both L and R must be recomputed.  L and R get the following values: 
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This preserves the relationship between L, R, and the symbols that have been previously 

processed.  At the end of the message, any binary value between L and L + R will unambiguously 
specify the input message.  The interval will continue to be redefined until an end-of-sequence 
marker is coded.  An example of a coding sequence can be found below in Figure 1.  Figure 1 
details the coding of the sequence of symbols IUI where each symbol has a predefined probability.   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Arithmetic coding of the sequence IUI.  The top line is a scale.  Each 
succeeding line represents a stage of the coding process.  The first stage is the initial 
state [0,1), which is followed by succeeding intervals.  At each stage the current 
interval is the shaded rectangle.  The value of L is the left hand side of the interval 
and the value of R is the length of the interval. 
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3 The Addition of Statistical Modeling 
 
In theory, statistical modeling can be added to an arithmetic coder to achieve better compression 
levels.  Our tests indicated that SPIHT images do not benefit from advanced statistical modeling, 
but for the purpose of understanding arithmetic coding, this topic will be briefly covered.   

Statistical modeling is generally referred to as model-0, model-1, model-2, model-3, etc, 
where the model number indicates the level of probabilities generated.  In a model-0 coder, each 
symbol is given a probability.  In a model-1 coder, each symbol is given a probability and the 
probability of the next symbol based upon that symbol occurring is also calculated. In a model-2 
coder, the probability of a 1st symbol is generated along with the probabilities of the next two 
symbols based upon that symbol occurring.  The problem with high order models is that they 
require a large amount of memory to run and are considerably slower than a zero order model.      

Our data will only show results from order-0 encoders as they gave us the best compression 
results. 
 

4 Arithmetic Models Tested 
 
For our tests we used two arithmetic coders.  The first coder tested was written by Alistair Moffat, 
Radford M. Neal, and Ian H. Witten [5].  This character-based coder is an implementation of the 
CACM coder [1].  This coder uses no statistical modeling in combination with the arithmetic coder.  
Further research was done on the character model by changing the code so the symbol length could 
be varied between 2 and 16 bits in 1 bit intervals. 

The second coder comes from work done by Mark Nelson [6].  Mark Nelson’s code uses 
statistical modeling in combination with an arithmetic coder.  Mark Nelson’s coder is also an 
implementation of the CACM coder.   
 

5 Arithmetic Coding Results 
 
The arithmetic compressors were tested on two versions of the SPIHT algorithm.  The first version 
was the original version of the algorithm [9] and the second was a modified version optimized for 
FPGAs developed in our prior work[7].   

Our results were obtained from two libraries of images.  The first library consisted of seven 
images that Tom Fry worked with for his hardware implementation of a SPIHT encoder [7].  The 
second library of images consisted of ten overhead views of the earth obtained from NASA 
satellites.  The NASA images are freely available from a variety of NASA websites [8].  All images 
were grayscale PGM (8 bits/pixel) at 512x512 pixels.  The intention was to get an idea of the 
performance on a specific type of data verses a random set.  Overall, the compression rate was 
better on the random set of images.  This may be due to the fact that the random images generally 
had more contrast to them. 

Compression rates were measured using both coders and both SPIHT algorithms. The coder 
from Mark Nelson gave better compression than the implementation from Moffat, Neal, and Witten.  
For the both SPIHT algorithms, the Nelson encoder compressed the image an extra 0.5-1%.  To 
measure the compression rate at variable symbol lengths, the code from Alistair Moffat, Radford M. 
Neal, and Ian H. Witten was modified so that symbol length could be varied from 2 to 16 bits.  This 
code was modified because it was easier to modify than the code from Mark Nelson.  Modifying the 
symbol length had little effect at improving the compression ratio.  Compression results can be 
found in figures 2 and 3. 
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Compression vs. Bits/pixel Encode (Original SPIHT)
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Figure 2. Compression vs. bits/pixel SPIHT encoding for the original SPIHT 
algorithm.  Rand refers to the random set and NASA refers to the NASA 
image set. 

 

Compression vs. Bits/pixel Encode (Modified SPIHT)
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Figure 3. Compression vs. bits/pixel SPIHT encoding for the modified SPIHT 
algorithm.  Rand refers to the random set and NASA refers to the NASA 
image set. 
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The compression rate from the arithmetic coders was not dependent on the SPIHT algorithm 
used, but was dependent on the bits/pixel rate of encoding. Both the standard SPIHT and modified 
SPIHT algorithms gave poor compression results.  At best, a rate of around 4-5% was achieved at 
low bit rates while a rate between 0-1% was achieved at high bit rates.   

When varying the symbol length, different symbol lengths were optimal at different bit 
rates.  In general, symbol lengths with a multiple of two did best.  However, a few bits/pixel 
encoding levels did best with a symbol length of three.  Table 1 below gives the best symbol length 
for a given bits/pixel encoding rate.  
 

Table 1.  Best Symbol Length for a given bits/pixel SPIHT encoding rate. 
 

Bits/pixel 0.125 0.25 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Rand (Modified SPIHT) 4 4 8 8 8 8 2 2 2 2 3 2 2 2 2 2 2 3 3 
NASA (Modified SPIHT) 4 4 8 8 8 8 8 2 2 2 3 2 2 2 2 2 3 3 3 
Rand (Orig. SPIHT) 4 4 4 8 8 8 8 2 2 2 2 2 2 2 2 2 2 3 3 
NASA (Orig. SPIHT) 4 4 8 8 8 8 8 2 2 2 3 2 2 2 2 2 3 3 3 

 
The output from the hardware implementation gave similar compression results to our study 

of the original and modified SPIHT algorithm.   
When statistical modeling was used in combination with the arithmetic coder, the output file 

was larger than the input file for both the original and modified SPIHT algorithms.  This was only 
the case with SPIHT encoded images.  When an uncompressed PGM image was compressed using 
both statistical modeling and arithmetic coding, a better compression rate was achieved than with 
just the arithmetic coder.  It is still a little unclear as to why this is.  This may be due to the fact that 
SPIHT images have little to no inter-symbol correlation. 
 

6 Conclusion 
 
The added compression of SPIHT encoded images using arithmetic compression was generally poor 
using the original and modified SPIHT algorithm.  Low SPIHT bit rates got the best compression 
results with arithmetic compression.  If low bit rates are going to be used for the transmission of 
images, then a hardware version of an arithmetic coder may prove useful.  However, if high bit rates 
are going to be used, then a hardware implementation of an arithmetic coder will be of little benefit.  
Future work might involve looking at symbol lengths above 16 bits and how further modifications 
to the SPIHT algorithm effect arithmetic compression levels.  Also, the results of compressing each 
bit-plane individually could give some insight to the differing compression rate between low and 
high bits/pixel encoding rates. 
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