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ABSTRACT

The time it takes to reconfigure FPGAs can be a
significant overhead for reconfigurable computing.
In this paper we develop new compression
algorithms for FPGA configurations that can
significantly reduce this overhead.  By using
runlength and other compression techniques, files
can be compressed by a factor of 3.6 times.  Bus
transfer mechanisms and decompression hardware
are also discussed.  This results in a single
compression methodology which achieves higher
compression ratios than existing algorithms in an
off-line version, as well as a somewhat lower
quality compression approach which is suitable for
on-line use in dynamic circuit generation and other
mapping-time critical situations.

CONFIGURATION COMPRESSION

Reconfigurable computing is an exciting new area that
harnesses the programmable power of FPGAs.  In the past,
FPGAs were used in applications that required them to be
configured only once or a few times.  The infrequency in
which the FPGAs were programmed meant that these
applications were not limited by the device's slow
configuration time [1].  However, as reconfigurable
computing is becoming more popular, the configuration
overhead is becoming a true burden to the useful
computation time.  For example, applications on the DISC
and DISC II systems have spent 25% [6] to 71% [5] of their
execution time performing reconfiguration.

Reconfigurable computing demands an efficient
configuration method.  In order for reconfigurable
computing to be effective, there must be a method to
quickly configure the device with a minimal amount of data
transfer.  However, the amount of information needed to
configure an entire FPGA can be quite large.  Sending this
large amount of information to the FPGA can be quite time
consuming, in addition to power consuming.

A logical solution would be to compress the data stream
sent to the FPGA.  This would reduce the amount of

external storage needed to hold the configuration, reduce
the amount of time needed to send the configuration
information to the device, and reduce the amount of
communication through the power-hungry off-chip I/O of
the FPGA.  Once the configuration information arrives to
the decompression hardware in the FPGA, it can be written
to the configuration memory at a faster rate than would
have been possible through the slow I/O of the device.

In previous work [2, 3] we developed a technique using the
wildcard feature of the Xilinx XC6200 series FPGA [7].
While this algorithm provided good compression results, it
also requires a very complex compression algorithm, and
may not achieve the best possible compression results.

In this paper we explore the configuration information of
the Xilinx XC6200 series.  Based on the nature of the data,
several compression techniques will be proposed.  Using
these compression techniques, algorithms and support
hardware structures are developed to compress the
address/data pairs sent to the device.  Next, these
compression strategies are performed on a group of Xilinx
XC6216 configurations to determine their performance.
Finally, conclusions will be drawn on the capabilities of
these techniques.

CONFIGURATION INFORMATION

The Xilinx XC6200 FPGA is an SRAM based, high
performance Sea-Of-Gates FPGA optimized for
reconfigurable computing.  All configuration resources are
accessed by addressing the SRAM through a standard
memory interface.  The Xilinx XC6200 series are partially
reconfigurable devices.  The configuration file consists of a
set of address/data pairs.  Since the device is partially
reconfigurable, the target addresses written to may not be
contiguous.  Therefore, if the data is compressed the
addresses must be compressed as well.

The configuration data falls into four major areas: cell
function, routing, input/output buffers, and control.  The
addresses which configure the cell function, routing, and
the input/output buffers will normally never be written to
more than once in a configuration.  The control data may be
written to multiple times in a configuration, but this data
represents a very small fraction of the total configuration.
In addition, the addresses that are accessed usually fall in
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sequential order, or into a series with a certain offset.  The
compression technique chosen for the addresses should take
advantage of the consistent offsets, in addition to not
requiring the repetition of identical data.

FPGAs configurations often exhibit a great deal of
regularity, which is reflected in the configuration data.
Upon examining a XC6200 configuration file, it is clear
that many structures are duplicated by the repetitive
sequences of data.  For this reason, the compression
technique chosen for the data should take advantage of the
repetitive sequences.

Ordering Restrictions

The ability of the XC6200 series to perform partial
reconfiguration allows for almost arbitrary reordering of the
configuration data.  Reordering the data may facilitate some
additional compression techniques.  However, a few
restrictions do apply.  These restrictions logically divide the
data into three sections.  These sections will be
programmed to the device in order.

The first section contains part of the control configuration
that must be written before any of the cell and routing
configuration.  This configuration data defines how the
remaining cell, routing, and IOB configuration data will be
interpreted.  This data can be reordered.

The second section contains cell, routing, and IOB
configuration data which is not bound to any control
configuration data.  There are no restrictions as to how this
data can be reordered.

The third section contains control information that is bound
to cell, routing, and IOB configuration data.  This data
cannot be reordered without affecting the result of the
configuration.  In addition, this section will contain control
information that must be written at the very end of the
entire configuration.

Note that although the address/data pairs can be reordered,
each pair must be kept together, since if the addresses and
data moved independently the data will be assigned to the
wrong location in the chip.  This can lead to conflicting
optimization goals, since an ordering that may maximize
address compression may hurt data compression and vice-
versa.

Compression Considerations

The data compression for FPGA configurations must
normally be lossless.  Although the use of don’t cares,
based on research by Li and Hauck [3], may allow for lossy
compression, this is an area of future work and will not be
investigated in this paper.  The chosen compression strategy
must be able to completely recover the exact data that was
compressed.

The compression technique chosen must allow for online
decompression.  Although compression will normally occur

offline, where the entire configuration sequence is
available, the entire compressed configuration sequence
will not be available upon decompression.  If off-line
decompression were implemented, it would greatly increase
the configuration time, in addition to requiring significant
amounts of on chip memory.  The chosen compression
strategy must be able to decompress the data as it is
received with a limited amount of special-purpose
hardware.  Finally, the compression technique may reorder
the data, but it must stay within the guidelines previously
described.

Run-Length Compression

A variation of Run-Length encoding perfectly meets the
requirements for the address compression.  A series of
addresses with a common offset can be compressed into a
codeword of the form: base, offset, length.  Base is the base
address, offset is the offset between addresses, and length is
the number of addresses beyond the base with the given
offset.  For example, the following sequence of addresses:
100, 103, 106, 109, 112 can be compressed into the
codeword: base = 100, offset = 3, and length = 4.  This
compression technique does not require repetitive data, and
will take advantage of the sequences of addresses sharing a
common offset.

The configuration data sometimes repeats data values many
times.  For this reason, we will attempt to compress the data
streams with Run-Length encoding as well, although the
compression may not be as great as that achieved with the
addresses.

Lempel-Ziv Compression

Lempel-Ziv takes advantage of repetitive series of data.  A
series of data that is repeated can be replaced with a single
compressed codeword.  This codeword will tell when the
series previously occurred, how long it is, and will give a
new piece of data that is not part of the series.  The
codeword will consist of the form: pointer, length, and
lastSymbol.  The pointer will represent where the start of
the series previously occurred within a window of time [4].

For example, assume the window size is eight data items,
and the window currently contains: C, B, A, D, A, F, A, L.
These would be the last 8 values decompressed, with the
most recent in the first position (the C in position 1).  If the
next four pieces of data are A, B, M, then we can send the
codeword: pointer = 3, length = 2, and lastSymbol = M.
This indicates that we start with the value decompressed 3
cycles ago (pointer = 3), take 2 values (A & B), and append
M (lastSymbol = M).  The new window, after this
codeword is received, will be: M, B, A, C, B, A, D, A.

We have made a variation to the basic Lempel-Ziv
algorithm that will allow for the length to exceed the
window size.  Therefore if a particular piece of data or a
particular series of data is repeated many times, this
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hardware will be able to handle it.  For example, assume the
same window size and contents as before: C, B, A, D, A, F,
A, L.  If the next 13 pieces of data are: B, C, B, C, B, C, B,
C, B, C, B, C, D, then we can send the codeword: pointer =
2, length = 12, and lastSymbol = D to represent this entire
series.  Since the number of characters copied (length = 12)
exceeds the pointer value, some of the characters duplicated
will be recycled and duplicated multiple times.

This will meet the requirements for the data compression.
This cannot be used for the address compression since the
address stream has almost no repetition.

COMPRESSION STRATEGIES FOR
ADDR/DATA PAIRS

There are several options as to how to compress the address
and data pairs.

1) Basic Run-Length

This strategy begins by ordering the address data pairs
within series one and two (described under Ordering
Restrictions above) in numerical order by address.  The
three address series and three data series are
compressed using Run-Length compression.  This
software compression requires a very minimal amount
of time to run, and could even be done on-line.

2) Lempel-Ziv

This strategy begins by ordering the address data pairs
within series one and two (described under Ordering
Restrictions above) in numerical order by address.  The
three address series are then compressed using Run-
Length compression and the three data series are
compressed using Lempel-Ziv compression.  Although
this software compression is slightly slower than the
Run-Length/Run-Length strategy, it is still very fast.

3) Run-Length with Reordering

This strategy uses a more intensive compression
algorithm.  It attempts to reorder the address data pairs
in a more optimal manner.  The algorithm performs the
following reordering:

1) Sort the address/data list such that all alike data
occurs together.
NOTE: This logically separates the addresses into
lists that belong to a certain data value.

2) Within each list of identical data values, order the
addresses according to the following scheme:

a) find the longest possible address series which
can be compressed into a single runlength
statement.

b) create a codeword from that series and remove
those addresses from the list.

c) repeat a) and b) until no more addresses
remain uncompressed.

NOTE: At this point, each address list
corresponding to a certain data value has been
formed into codewords.

3) Attempt to order the data series groups such that
address lists within them may cross boundaries
(i.e. the last runlength of one series and the first of
another can be fused into a single runlength
statement).

4) Compress the data lists according to a Run-Length
variation in which all codewords have a zero offset
(i.e. the data must be identical, and no bits are
wasted on sending the increment).

This algorithm runs at least an order of magnitude
slower than the previous two strategies.

BUS TRANSACTIONS

In order to implement these compression algorithms, we
must determine a method for sending address and data
codewords across the configuration bus to the FPGA.  In
order to make a fair comparison with other approaches we
must guarantee that these transactions use only as many
wires as the standard communication method.

Multiplexing of the Address Bus

Since the addresses must be compressed and sent in
addition to the data, our compression strategies use both the
address and data buses to send the compressed codewords.
In other words, once the decompression sequence is
initiated, there is no longer a concept of address, but instead
all available address and data bits are used to send the data
of the compressed codewords (be it compressed address or
data).  To initiate the decompression sequence one would
either write the number of address/data pairs to the
compression hardware, signaling it to take control of the
address and data bus, or turn on and off compression by
writing to a specific known address.  Upon completion of
the decompression, the decompression hardware would
relinquish control of the two buses.

The XC6200 series has the ability to be configured with an
8 bit, 16 bit, or 32 bit data bus.  The compression strategies
will be tested on 8 bit configuration data, since we have
benchmarks readily available with 8 bit configuration data.
In addition, the benchmarks are designed for the Xilinx
XC6216, whose address bus is 16 bits.  Therefore, between
the address and data bus there are a total of 24 available bits
to send the compressed codewords.

Variation in Codeword Parameter Sizes

There is a great amount of freedom in the choice of the
codeword parameter sizes.  Within a codeword different
parameters are not required to be represented by an
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identical number of bits.  Depending on the number of bits
devoted to each parameter, the codeword size may change
as well.  However, to simplify the hardware the codeword
sizes will be restricted to a few values, namely 12 bits, 16
bits, and 24 bits.  Independent of the compression technique
and codeword size, the codewords will be packed to use all
available bits for every transaction.  By limiting the
codewords to a few key sizes, the hardware which must
unpack the codewords will be simplified.

Run-Length Bus Formats

In Run-Length, the size of the base is fixed by the width of
the items being sent (addresses are 16 bit, data is 8 bit).
However, the size of the length and offset can be varied
within the limits of the codeword length.

Since the base must be 16 bits for address Run-Length
codewords, address codewords must be 24 bits, thereby
completely filling one bus transaction.  This leaves 8
available bits for offset and length.  In our experiments, we
try several variations in an attempt to find the optimal
combination.

Since the base must be 8 bits for data Run-Length
codewords, there are several codeword size options.  In
fact, the data can take advantage of all three combinations,
12, 16, or 24 bits.  In our experiments, we try several
variations of assigning the remaining bits to the offset and
length within each codeword size.

Lempel-Ziv Bus Formats

In Lempel-Ziv the lastSymbol size is fixed for the same
reason the base size was fixed in Run-Length.  This
represents a piece of data, and therefore must be 8 bits.  The
pointer must represent the size of the data buffer in the
decompression hardware.  In addition, the length should be
at least as big as the buffer, so that it can utilize the entire
buffer.  Due to the variation we added, the length can
actually be longer than the buffer.

However, the question still arises as to what size to make
the buffer.  Since the lastSymbol is 8 bits, the Lempel-Ziv
codeword can take all three codeword sizes.  These
codeword sizes, in addition to the pointer and length
variations (with the length greater than or equal to the
pointer), will be explored in the experiment section.

Codeword Buffering or Dynamic Wait State Generation

Generally, internal accesses can occur at a much faster rate
than external accesses.  This is due to the slow off-chip I/O
in which external accesses must traverse.  However, even
with this faster rate it is likely that the decompression
hardware will not completely service a codeword before
another codeword arrives.  This leaves two options: either
buffer the codewords, or provide an external wait state
signal to notify external devices that the decompression
hardware is not ready to receive an additional codeword.

If the choice is made to buffer the codewords, the question
becomes how big to make the buffer.  Given a reasonable
size buffer it will always be possible to overflow the buffer
with codewords that offer tremendous compression.
Therefore, there must exist a method to handle overflow.
Since the software performing the compression is aware of
the hardware’s configuration, it can insert the equivalent of
“nop” writes until it knows that the hardware will be able to
handle an additional codeword.

If the choice is made to provide an external wait state
signal, overflow is no longer a concern.  However, this will
provide further restrictions on what external hardware is
needed to program the device.  There remains a need for a
small buffer, such that the decompression hardware will
have a steady supply of codewords, and never stall.  This
will allow for faster configuration.

Distinguishing Address and Data Transactions

The compression algorithms contained in this paper require
two different types of communications: Address and Data.
Since the same bus signals are used in both address and
data transactions, there must be some mechanism to
distinguish between these communications.  While it is
possible to include a single signal which specifies the
transaction type, this will waste bandwidth.  Instead, we can
use the following rule: if fewer data values have been
received (in encoded form) than address values, the next
transaction is a data value.  Otherwise, the next transaction
is an address value.  Since the number of values encoded in
each transaction is easy to determine (since the length is
explicitly encoded in the transaction), accumulators can
record the number of each type of value received.  A simple
comparison between these accumulated values can thus
determine the type of transaction received.

HARDWARE SUPPORT

Along with compression algorithms and communication
protocols, the compression of configuration streams also
requires that their be fast, efficient, and small
decompression hardware built into the FPGA architecture
itself.  In this section we discuss the hardware constructs
necessary to support each of the compression methods
discussed in this paper.

Run-Length Hardware

The Run-Length hardware is shown in Figure 1.  It consists
of a register to hold the current address to output; a down
counter to count the length; an adder, to add the offsets to
the previous value; and a mux to choose between a previous
valued added to the offset and the new base value.

The mux chooses the output of the base register when the
down-counter equals zero.  When a new code word arrives,
the base value is written into the address register at the
same time that the length is written into the down-counter.
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The down-counter then counts down until zero, while the
address register captures its previous value plus the offset.

This continues until the down-counter reaches zero.

Address
Register

Down
Counter

Output
Address

Length

Adder
Offset

Base

Figure 1:  Run-Length hardware support.

Lempel-Ziv Hardware

The Lempel-Ziv hardware is shown in Figure 2.  It consists
of a set of registers that buffer the current window, one big
mux whose select line is the pointer, and a down counter to
count the length.  If the down-counter is zero, the source of
D0 is the LastSymbol.  Otherwise, the source of the down-
counter is the output of the mux which selects among the

registers in the buffer.  The number of registers is up to the
designer, and is shown as n in this diagram.

When a codeword is processed the length is initially written
into the down-counter.  As the down-counter counts down,
the data registers shift the data to the right, bringing in new
data from the register selected by the pointer.  When the
down-counter reaches zero, the lastSymbol is written into
D0.

D0 D1 D2 Dn-1 Dn

Pointer
Last

Symbol

Down
Counter

Length
Output
Data

Figure 2:  Lempel - Ziv hardware support.

Codeword Unpacking

The hardware that must unpack the codewords will largely
depend on the codeword sizes chosen.  The address
codeword will always be 24 bits.  However, if the data
codeword is chosen to be 12 bits, the hardware will appear
as in Figure 3. Control Hardware will control the
multiplexers, the write enables of the data codeword

register, and the write enables of the upper and lower half
of the address codeword register.

Control hardware will monitor the lengths in the address
and data decompression hardware, and will expect the next
codeword to be provided for the decompression hardware
with the shortest length.
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Data
Codeword
Register

Address
Codeword
Register

A[15:4]

A[3:0], D[7:0]

Figure 3:  Unpacking hardware support

EXPERIMENTS

The algorithms described above were implemented in C++,
and were run on a set of benchmarks collected from current
XC6200 users.  These benchmarks include files whose
layouts and routing were optimized carefully at a low-level
by Gordon Brebner and Virtual Computer Corp., as well as
files whose routing was determined by the Xilinx
XACT6000 software’s routing tool.

The benchmarks were compressed using the three
compression strategies, Basic Run-Length, Lempel-Ziv, and
Reordering Run-Length.  Within each type of strategy the
address codeword parameter sizes, and the data codeword
and codeword parameter sizes were varied to find the best
parameter settings.

Parameter Setting Experiments

For each of the compression algorithms presented in this
paper the overall set of address/data pairs are ordered
(numerically by address for Lempel-Ziv and basic
Runlength, by data value & some address information in
Reordered Runlength), and then the address and data
codewords are generated on the two streams independently.
These compression methods allow for the codeword and
parameter sizing variations to be studied in isolation
between the address and data values.  Therefore, each
compression technique will be isolated below to determine
the optimal parameter and codeword sizing.

In the results tables that follow the two leftmost columns
list the benchmark name and initial length, indicating the
number of words needed to achieve that configuration with

no compression.  Along the top of the table are the
parameter settings tested in a given run.

For Runlength the parameters include: "Length Bits", the
number of bits used to represent the number of values
represented in a single codeword; "Offset Bits", which is
the number of bits used to represent the value change
between successive items; "Codeword Length", which is
the total number of bits required for the entire codeword
(including 8 or 16 bits for the base data or address
respectively).

For Lempel-Ziv compression the parameters include:
"Pointer Bits", the number of bits used to index into the
Lempel Ziv history buffer; "Length Bits", the number of
bits used to hold the number of values copied from the
buffer; "Codeword Length", the total number of bits
required for the entire codeword (including 8 bits for the
"next character" data value).  Note that for Lempel - Ziv the
"Pointer Bits" also dictates the length of the history buffer
(N pointer bits requires 2N registers in the history buffer).
Thus, using a large number of pointer bits will significantly
increase the hardware costs of this technique.

In the column beneath each parameter setting is the number
of bus cycles required to transfer the benchmark's
information within that compression algorithm and settings.
For example, if a given parameter setting is using 16 bit
codewords (2/3 of a bus transaction), and 9 codewords are
needed to transfer a benchmark, then 6 bus transactions are
reported.  All totals are rounded up to the nearest whole
transaction amount.  The best value for a given benchmark
amongst all parameter settings is highlighted in gray, as is
the best overall parameter settings.
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Length Bits 7 6 5 4 3 2 1
Offset Bits 1 2 3 4 5 6 7

Codeword Length 24 24 24 24 24 24 24

CalFile Length
counter 198 71 56 56 57 63 67 84
parity 208 7 7 7 13 26 46 72
adder4 213 67 52 53 55 61 64 86
zero32 238 22 22 22 28 41 61 88
adder32 384 12 12 12 24 48 84 132
smear 695 198 143 135 150 169 205 270

adder4rm 907 440 342 331 328 342 339 390
gray 1200 480 392 371 355 370 424 502
top 1366 761 634 597 565 564 575 625

demo 2233 349 332 337 371 448 601 818
ccitt 2684 290 274 295 344 461 666 956

t 5819 1022 967 972 1065 1249 1608 2165
correlator 11001 3986 2734 2513 2548 2769 3371 4234

Sum 27146 7705 5967 5701 5903 6611 8111 10422

Table 1.  Effects of parameter selection on the address transactions in Basic Runlength  and Lemple-Ziv

In these tables we have attempted to test most reasonable
combinations of parameter settings.  For the addresses, we
always require a codeword of 24 bits (since the address is
16 bits, leaving no space for other compression information
in 16 bit codewords), and thus the Length and Offset bits
will share 8 bits.  For data we can use 12, 16, or 24 bit
codewords, and since the data item is only 8 bits, there are
4, 8, or 16 bits respectively available for other compression
information.

In Table 1 we give the results of runlength compression on
addresses when the files are reordered (within the
reordering restrictions) to have the addresses numerically
increasing.  This is the address compression method used
for both basic Runlength and Lempel - Ziv compression
(remember that Lempel - Ziv only works on data values,
since it requires exact duplication of values, which will not
normally happen in the address streams).  This reordering
for runlength compression should give the highest address
compression possible, though the compression of the data
items may suffer.  As can be seen, giving 5 bits to length
and 3 bits to offset gives the best overall results, although
(6,2) and (4,4) also perform well. Table 2 reports the data
compression results for Basic Runlength.  Similar to
address compression, it can be seen that the best results
occur when more bits are given to the length (dictating the
maximum number of data items that can be combined
together) than offset.  Also, although giving the most
number of bits to both Length and Offset will compress the
most values together into a single codeword, this requires
more bits per codeword, and can in fact hurt overall
compression.  In fact, using only 12 bits per codeword by

assigning 3 bits to length and 1 to offset gives the best
results overall. Table 3 contains the results of Lempel - Ziv
compression on the data values.  Recall that because of the
extensions we made to the algorithm, it is beneficial if the
length of the duplication (length bits) is at least as long as
the buffer length (pointer bits).  Also, large sizes of pointer
bits increases the history buffer size, radically increasing
hardware complexity.  As can be seen, having pointer bits
and length bits both equal to 8 gives the best results,
although pointer bits and length bits of 4 each is close in
quality.  However, the 256 registers necessary for the 8-bit
pointers imposes a fairly high hardware penalty, both in
buffer size as well as support hardware.  For this reason, we
believe the (4,4) case is a more realistic balance between
hardware complexity and compression performance. Table
4 presents the address compression results when the
address/data pairs are reordered to maximize data
compression.  Although some efforts are taken within this
algorithm to also improve address compression, it cannot
achieve nearly the same quality of address compression as
our previous algorithm. For example, the best results for
this algorithm (where length bits and offset bits are both 4)
gives an overall size of 7,463 bus transactions, where the
previous approaches result in only 5,701 bus transactions
for the addresses.  However, as we will see, this
degradation in address compression is more than balanced
by the improvement in data compression. One other
important consideration is the variability of the optimum
amongst parameter settings.  For example, in only one case
does the (4,4) setting give the best results for any specific
benchmark, but for the overall suite it yields the best
results.
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Length Bits 8 7 6 5 4 3 2 1 3 2 1
Offset Bits 8 1 2 3 4 5 6 7 1 2 3

Codeword Length 24 16 16 16 16 16 16 16 12 12 12

CalFile Length
counter 198 50 43 42 42 42 46 52 60 37 42 50
parity 208 19 15 14 14 18 26 36 52 21 28 40
adder4 213 50 39 38 38 39 43 48 62 34 39 51
zero32 238 29 23 22 22 26 34 45 62 27 36 48
adder32 384 136 172 161 162 154 130 136 128 135 132 141
smear 695 272 234 226 224 221 224 228 239 183 190 205

adder4rm 907 379 344 339 332 327 320 315 316 264 273 292
gray 1200 578 512 498 489 478 461 454 452 388 391 405
top 1366 714 648 638 632 609 593 556 536 489 490 504

demo 2233 345 278 272 276 302 341 443 591 277 353 473
ccitt 2684 330 268 263 282 314 362 492 684 297 398 550

t 5819 994 792 745 764 808 935 1180 1553 769 938 1231
correlator 11001 5889 5506 5399 5188 5019 4743 4693 4556 4162 4150 4098

Sum 27146 9785 8874 8657 8465 8357 8258 8678 9291 7083 7460 8088

Table 2.  Effects of parameter selection on the data transactions in Basic Runlength compression.

Pointer Bits 8 7 6 4 3 2 2 1
Length Bits 8 9 10 4 5 6 2 3

Codeword Length 24 24 24 16 16 16 12 12

CalFile Length
counter 198 51 54 55 42 40 42 40 35
parity 208 19 19 19 18 14 14 25 19
adder4 213 48 50 50 36 38 38 36 33
zero32 238 25 25 25 22 18 19 30 25
adder32 384 23 23 24 29 17 16 52 34
smear 695 168 176 185 136 153 166 142 152

adder4rm 907 269 284 297 233 244 268 219 222
gray 1200 362 402 440 353 380 415 325 342
top 1366 438 471 502 408 469 530 408 435

demo 2233 166 188 243 224 210 231 296 242
ccitt 2684 153 219 234 222 200 212 326 256

t 5819 353 492 731 602 598 602 762 718
correlator 11001 1804 1945 2069 1761 2347 4380 3406 3895

Sum 27146 3879 4348 4874 4086 4728 6933 6067 6408

Table 3.  Effects of parameter selection on the data transactions in Lempel - Ziv compression.
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Length Bits 7 6 5 4 3 2 1
Offset Bits 1 2 3 4 5 6 7

Codeword Length 24 24 24 24 24 24 24

CalFile Length
counter 198 72 57 57 58 64 71 88
parity 208 8 8 8 14 27 46 72
adder4 213 71 56 57 59 65 67 87
zero32 238 22 22 22 28 41 61 88
adder32 384 26 26 26 29 55 87 135
smear 695 354 261 214 210 222 243 283

adder4rm 907 567 436 422 419 422 417 456
gray 1200 767 648 631 592 588 587 616
top 1366 1034 895 845 810 787 772 789

demo 2233 522 494 498 527 588 694 902
ccitt 2684 457 430 441 484 597 751 1044

t 5819 1799 1541 1534 1568 1654 1840 2298
correlator 11001 9620 7775 3849 2665 2621 3368 4480

Sum 27146 15319 12649 8604 7463 7731 9004 11338

Table 4.  Effects of parameter selection on the address transactions in Reordering Runlength compression.

Table 5 shows the compression results for the data values
within reordering runlength compression.  As expected, the
data values compress much better in this algorithm than the
other approaches, since the data items have been perfectly
aligned for runlength encoding (barring those alignments
not allowed by the reordering restrictions).  Note that since
identical data values are aligned together, all of the
runlength transactions should represent multiple instances

of a single data value.  Thus, there is no need for an offset
within these runlengths, and thus 0 bits are used for offset.
In this approach using 8 bits for the length provides the best
overall results.  However, note again that the optimum for
any given run is just as likely to use 4 bits of length as 8,
though the overall optimum is 8 bits.

Length Bits 16 8 4
Offset Bits 0 0 0

Codeword Length 24 16 12

CalFile Length
counter 198 46 31 25
parity 208 20 14 14
adder4 213 46 31 25
zero32 238 32 22 20
adder32 384 14 10 13
smear 695 102 68 61

adder4rm 907 105 70 67
gray 1200 119 80 79
top 1366 188 126 118

demo 2233 46 34 83
ccitt 2684 45 35 95

t 5819 65 55 193
correlator 11001 198 144 389

Sum 27146 1026 720 1182

Table 5.  Effects of parameter selection on the data transactions in Reordering Runlength compression.
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OVERALL ALGORITHM COMPARISONS

From the data given in the previous section, we can now
construct the best parameter settings for Basic Runlength,
Lempel - Ziv, and Reordering Runlength algorithms.
These results are given in the left portion of Table 6,
which lists the number of bus transactions required for
address and data compression.  Also listed is the overall
compression ratio, which is the ratio of original file size
to compressed file size.  Given these results it is clear that
Reordering Runlength is the preferred approach, since it
achieves better compression results than the other
approaches while requiring much simpler hardware
decompressors than Lempel - Ziv.  Note also that the
hardware that supports Reordering Runlength is identical
to Basic Runlength, it is just the compression algorithm
that differs.  This is useful, since the Basic Runlength
compression algorithm is extremely simple, and could
even be executed on-line to support dynamic circuit
creation and other advanced techniques, while Reordering
Runlength would be available for higher quality when the
compression can be performed off-line.

The data for Reordering Runlength also suggests a
modification to the basic algorithm.  Recall that for both
address and data compression in Reordering Runlength,
the best compression results for a given benchmark often
used different parameter settings than the best overall
compression approach for the entire suite.  It is actually
quite easy to take advantage of this feature.  It would be
simple to provide runlength hardware which allows the
user to determine on a file by file basis what the best
allocation of bus signals to length and offset values.
When a configuration was being sent to the chip, it would

first set the bus format when it is turning on the
compression features of the chip.  This is similar to the
setting of bus width and other masking data which must
be done for the Xilinx XC6200 series currently.  Then,
each file can be decompressed with the optimal parameter
settings, resulting in potentially higher compression
results.  This algorithm is shown in the "Adaptive
Reorder" section of Table 6.

For comparison with the algorithms proposed here, we
present the results of our previous Wildcard-based
compression algorithm [2].  This algorithm makes use of
the decompression hardware already built into the
XC6200 series architecture, and can achieve good
compression results.  These numbers are given in the
rightmost column of Table 6.  As can be seen, the
Reordering Runlength approach beats the Wildcard
algorithm by about 2%, while the Adaptive Runlength
achieves about 9% better results.  Just as important, the
Runlength hardware also supports an extremely fast, on-
line compression algorithm (Basic Runlength), which still
achieves good compression results.  This on-line option
may be very useful for techniques in partial run-time
reconfiguration and dynamic circuit creation, where the
time to create the circuit may be a critical concern.  In the
Wildcard approach the complexity of efficiently using the
Wildcard hardware makes it unlikely that an efficient on-
line compression algorithm could be produced.  By
having a single hardware structure which can provide
better compression results than the existing algorithm, as
well as an option for on-line compression, a more flexible
compression approach can be achieved.

Basic Runlength Lempel - Ziv Reorder Runlength Adaptive Reorder Wild
CalFile Length Addr Data Comp Addr Data Comp Addr Data Comp Addr Data Comp Comp

counter 198 56 37 2.13 56 42 2.02 58 31 2.22 57 25 2.41 1.88
parity 208 7 21 7.43 7 18 8.32 14 14 7.43 8 14 9.45 7.43
adder4 213 53 34 2.45 53 36 2.39 59 31 2.37 56 25 2.63 2.21
zero32 238 22 27 4.86 22 22 5.41 28 22 4.76 22 20 5.67 4.18
adder32 384 12 135 2.61 12 29 9.37 29 10 9.85 26 10 10.67 5.26
smear 695 135 183 2.19 135 136 2.56 210 68 2.50 210 61 2.56 2.28

adder4rm 907 331 264 1.52 331 233 1.61 419 70 1.85 417 67 1.87 1.61
gray 1200 371 388 1.58 371 353 1.66 592 80 1.79 587 79 1.80 1.85
top 1366 597 489 1.26 597 408 1.36 810 126 1.46 772 118 1.53 1.41

demo 2233 337 277 3.64 337 224 3.98 527 34 3.98 494 34 4.23 4.1
ccitt 2684 295 297 4.53 295 222 5.19 484 35 5.17 430 35 5.77 5.82

t 5819 972 769 3.34 972 602 3.70 1568 55 3.59 1534 55 3.66 5.51
correlator 11001 2513 4162 1.65 2513 1761 2.57 2665 144 3.92 2621 144 3.98 5.86

Sum 27146 5701 7083 5701 4086 7463 720 7234 687
Geometric Mean 2.64 3.20 3.34 3.60 3.28

Table 6.  Overall comparison of complete compression algorithms.
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CONCLUSIONS

In this paper we have presented algorithms, communication
methodologies, and hardware support for accelerating
reconfiguration via compressing datastreams.  The
algorithms include techniques for harnessing runlength
encoding and Lempel - Ziv approaches to the unique
features of FPGA configurations.  The bus formats and
parameter settings provide efficient communications of
these items, allowing for relatively simple hardware,
embedded in the FPGA architecture, to perform the
decompression.  This results in a compression algorithm
superior to the previously existing Wildcard approach.  Our
Adaptive Runlength algorithm provides significant
compression results, reducing configuration size (and thus
bandwidth requirements) by a factor of 3.60.  Faster on-line
algorithms can also use this hardware to achieve a
compression ratio of 2.64.  Such an on-line algorithm can
be used for dynamic circuit creation and other situations
where configuration compile time is a significant concern,
including many applications of reconfigurable computing.
Combined, this provides a complete and efficient
compression suite for FPGA configuration management.

ACKNOWLEDGEMENTS

Thanks to Gordon Brebner for providing CAL files for use
as benchmarks. This research was funded in part by
DARPA contract DABT63-97-C-0035 and NSF grants
CDA-9703228 and MIP-9616572.

REFERENCES
[1] S. Hauck, “The Roles of FPGAs in

Reprogrammable Systems”, Proceedings of
the IEEE, Vol. 86, No. 4, pp. 615-639, April
1998.

[2] S. Hauck, Z. Li, E. J. Schwabe,
“Configuration Compression for the Xilinx
XC6200 FPGA”, IEEE Symposium on
FPGAs for Custom Computing Machines, pp.
138-146, 1998.

[3] Z. Li, S. Hauck, “Don’t Care Discovery for
FPGA Configuration Compression”, to
appear in ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, 1999.

[4] N. Ranganathan, S. Henriques, “High-Speed
VLSI Designs for Lempel-Ziv-Based Data
Compression.” Trans. on Circuits &
Systems- Analog and Digital DSP, Vol. 40,
No. 2, Feb. 1993

[5] M. J. Wirthlin, B. L. Hutchings, “A Dynamic
Instruction Set Computer”, IEEE Symposium
on FPGAs for Custom Computing Machines,
pp. 99-107, 1995.

[6] M. J. Wirthlin, B. L. Hutchings, “Sequencing
Run-Time Reconfigured Hardware with
Software”, ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays, pp. 122-128, 1996.

[7] Xilinx, Inc., “XC6200 Field Programmable
Gate Arrays Product Description”, April
1997.


