

©Copyright 2004
Shawn A. Phillips

Automating Layout of Reconfigurable Subsystems for

Systems-on-a-Chip

Shawn A. Phillips

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

2004

Program Authorized to Offer Degree: Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Shawn A. Phillips

and have found that it is complete and satisfactory in all respects, and that any and all

revisions required by the final examining committee have been made.

Chair of the Supervisory Committee:

__
Scott Hauck

Reading Committee:

__
Scott Hauck

__
Carl Ebeling

__
Larry McMurchie

Date: _______________________________

In presenting this dissertation in partial fulfillment of the requirements for the doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation is

allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred

to Bell and Howell Information and Learning, 300 North Zeeb Road, Ann Arbor, MI

48106-1346, to whom the author has granted “the right to reproduce and sell (a) copies of

the manuscript in microform and/or (b) printed copies of the manuscript made from

microform.”

Signature _____________________________

Date _________________________________

University of Washington

Abstract

Automating Layout of Reconfigurable Subsystems for

Systems-on-a-Chip

by Shawn A. Phillips

Chair of the Supervisory Committee:

Professor Scott Hauck
Electrical Engineering

As technology scales, engineers are presented with the ability to integrate many devices

onto a single chip, creating entire systems-on-a-chip. When designing SOCs, a unique

opportunity exists to add custom reconfigurable fabric, which will provide an efficient

compromise between the flexibility of software and the performance of hardware, while

at the same time allowing for post-fabrication modification of circuits. Unfortunately,

manually generating a custom reconfigurable fabric would make it impossible to meet

any reasonable design cycle, while adding considerably to design costs. The goal of the

Totem Project is to reduce the design time and effort in the creation of a custom

reconfigurable architecture.

This thesis is focused on automating the layout generation of custom reconfigurable

devices for systems-on-a-chip. Towards this end, we present three methods, namely the

Template Reduction, Circuit Generator, and Standard Cell Methods. The Template

Reduction Method begins with a full-custom layout as a template that is a superset of the

required resources, and removes those resources that are not needed by a given

application domain. The Circuit Generator Method takes advantage of the regularity that

exists in FPGAs using circuit generators to create the custom reconfigurable devices.

Finally, the Standard Cell Method automates the creation of circuits by using a standard

cell library that has been optimized for reconfigurable devices.

 i

Table of Contents

List of Figures iv

List of Graphs ix

List of Tables xi

Chapter 1 Introduction 1

Chapter 2 7Reconfigurable Hardware

2.1 Architectural Overview... 7

2.2 Field Programmable Gate Array (FPGA)... 9

2.3 Case Study: The Altera Cyclone II FPGA.. 11

2.4 Case Study: Reconfigurable-Pipelined Datapath (RaPiD) 21

2.5 Developing for Reconfigurable Devices... 24

Chapter 3 Reconfiguable Hardware in SOCs 27

3.1 Reconfigurable Subsystems.. 28

3.2 Systems-on-a-Programmable-Chip (SOPCs) ... 30

Chapter 4 33Totem

4.1 Architecture Generation.. 34

4.2 VLSI Layout Generation .. 43

4.3 Place-and-Route Tool Generation .. 44

Chapter 5 Research Framework 47

 ii

5.1 Testing Framework ... 48

Chapter 6 Template Reduction 61

6.1 Feature Rich Template.. 64

6.2 Reduction List Generation .. 65

6.3 Reduction and Compaction... 67

6.4 Results... 70

6.5 Summary... 79

Chapter 7 Circuit Generators 80

7.1 Approach... 82

7.2 Generators... 89

7.3 Results... 97

7.4 Summary... 106

Chapter 8 Standard Cell Method 108

8.1 Experimental Setup and Procedure... 110

8.2 Results... 114

8.3 Summary... 124

Chapter 9 Comparison and Contrast of the Methods 126

9.1 Area Comparison: FC, TR, SC, and CG... 127

9.2 Performance Comparison: FC, TR, SC, and CG .. 131

Chapter 10 Conclusions and Future Work 134

10.1 Contributions .. 134

 iii

10.2 Conclusions and Future Work .. 136

Bibliography 141

 iv

List of Figures

Figure 2-1: Xilinx style FPGA architecture. It contains an array of CLBs, switchboxes,
and vertical and horizontal routing channels. ... 9

Figure 2-2: A basic configurable logic block (CLB) containing a three input LUT and a
D-type flip-flop with bypass. .. 10

Figure 2-3: A block diagram of the Cyclone II EP2C20 Device [46]. 12

Figure 2-4: Block Diagram of the Cyclone II logic element (LE) [46]. The LE is the
smallest functional unit on the Cyclone II device. Each LE contains the following: a
four-input LUT, a programmable register, a carry chain connection, and a register
chain connection. .. 13

Figure 2-5: LAB Structure [46], which provides local interconnect for LEs in the same
LAB as well as direct connections between adjacent LE’s within an LAB. 15

Figure 2-6: An embedded multiplier and its corresponding LAB row interface [46]. 16

Figure 2-7: An embedded four Kb memory block (M4K), and its corresponding LAB row
interface [46]. .. 17

Figure 2-8: R4 row interconnect connections. R4 interconnects span four LABs, three
LABs and one M4K memory block, or three LABs and one embedded multiplier to
the right or left of a source LAB [46]. .. 18

Figure 2-9: C4 interconnect, which traverses four blocks in the vertical direction [46]. 20

Figure 2-10: A block diagram of a basic RaPiD-I cell. The functional units in this cell
are located at the top of the diagram, with the routing resources located at the
bottom. The black boxes represent bus connectors, which are bidirectional switches
that enable the creation of long lines. Multiple cells are tiled along a one-
dimensional horizontal axis. ... 23

Figure 2-11: High-level view of a possible FPGA design flow. The steps in the process
are: design entry, physical synthesis from RTL to gate level, and physical design.
Place and route of the design is done using the FPGA vendor proprietary tools,
which take into account the devices architecture and logic block structure. Back
arrows represent possible improvement paths [57]. ... 26

 v

Figure 4-1: Totem tool flow.. 34

Figure 4-2: Netlist 0, the top and light netlist, and Netlist 1, the dark and bottom netlist,
are two netlists that the custom architecture is required to support. Netlist 0 is a
multiply-accumulate, while Netlist 1 is a two tap FIR filter [51]. 35

Figure 4-3: An initial placement of both the physical units and netlist bindings of the two
netlists shown in Figure 4-2. When Netlist 0 is in operation only the light wires and
components are used. When Netlist 1 is in operation only the dark wires and
components are used. Any components that are both light and dark are shared [51].
... 37

Figure 4-4: Both (a) netlist binding and (b) physical placement are shown. During netlist
binding, netlist instances are assigned to a physical unit. During physical placement,
the physical units are reordered [51]... 38

Figure 4-5: A possible final placement of Netlist 0 and Netlist 1 from Figure 4-2. The
light colored wires are Netlist 0’s signals, while the dark colored wires are Netlist
1’s signals. Instance names from Figure 4-2 are inside the boxes in italics. The light
colored components are Netlist 0’s, while the dark colored components are Netlist
1’s. Components that are both light and dark are shared between the two netlists.
Since routing has not yet occurred, physical wires have not been created [51]. 39

Figure 4-6: Configurable ASIC routing created for the two netlists from Figure 4-2. The
light components and wires are used by Netlist 0, while the dark components and
wires are used by Netlist 1. Components that are both light and dark are shared
between the two netlists. Black wires and black muxes are used by both netlists
[51]. ... 40

Figure 4-7: Flexible routing created for the two netlists from Figure 4-2. The vertical
lines to the left and the right of a functional unit are muxes and demuxes on the
input and output ports of the functional unit. The white boxes are bus connectors as
seen in the RaPiD section of Chapter 2. The light functional units are used by
Netlist 0, and the dark functional units are used by Netlist 1. Black lines are shared
resources, as are functional units that are both light and dark. 41

Figure 5-1: The thirteen application domains ordered along the horizontal axis by percent
utilization. Application domains with higher percent utilizations are to the right,
while application domains with lower percent utilizations are to the left. 52

 vi

Figure 5-2: Block diagram of one feature rich RaPiD II cell. Up to thirty of these cells
are placed along the horizontal axis.. 56

Figure 5-3: The floorplan of one feature rich RaPiD II cell. Up to thirty of these cells are
placed along the horizontal axis. Notice how the memory and the multiplier are
place above the datapath. .. 57

Figure 6-1: Template reduction in action. The block diagram of a feature rich macro cell
is shown in (a). In figure (b), the macro cell has been reduced by the removal of
routing resources and functional units that are not needed to support the application
domain. Figure (c) is the final compacted cell... 62

Figure 6-2: The tool flow of the Template Reduction Method. In the first step, the Place-
and-Route Generator receives as input the application domain, in the form of
netlists, and a verilog representation of the RaPiD II array. The P&R Tool then
generates the reduction list, which is sent to the SKILL code generator. The SKILL
code, generated by the SKILL code generator, is then sent to the Cadence Layout
tool. The Cadence Layout tool automatically runs the SKILL code, which instructs it
to perform all of the reductions on the RaPiD II tile. Next, Cadence Layout sends
the reduced template to the Cadence Compactor, where the design is compacted and
area results are collected. Finally, the P&R tool generates the performance numbers
for the newly compacted template. ... 63

Figure 6-3: This figure is SKILL code that instructs Cadence to delete all of the visible
shapes or polygons that are within a particular bounding box (Bbox). This function
is used extensively in Template Reduction to delete polygons, and is used in
conjunction with functions that enable you to toggle the visibility of layers. 68

Figure 6-4: A comparison of the number of functional units used by zero, one, two, and
three or more netlists... 72

Figure 6-5: A comparison of the number of routing resources used by zero, one, two, and
three or more netlists... 72

Figure 7-1: The top figure shows the initial generation of circuits by three generators.
Once the circuits have been generated, they are abutted together to create the
functioning reconfigurable array, which is shown in the bottom figure................... 81

Figure 7-2: The tool flow of the Circuit Generator Method. The first step is receiving the
Verilog representation of the reconfigurable circuit from the Architecture Generator
[7]. The next step is to parse the Verilog. The parsed Verilog is then sent to the

 vii

various generators, which create Cadence SKILL code [39] that will generate the
circuits. The Cadence SKILL code is then sent into Cadence, which will do the
actual circuit creation. The final step involves using the P&R tool [6] to generate
performance numbers.. 86

Figure 7-3: One tristate inverter laid out in a horizontal fashion, which is the smallest
building block of both the muxes and demuxes, has enough length in the vertical
direction to support up to three horizontal routing tracks. Three routing tracks are
able to support up to five bits. The metal lines pictured in the figure are on the
fourth and sixth metal layers, of the six metal layer TSMC .18µm process. The fifth
metal layer is reserved for vertical jogs between metal layers four and six. 87

Figure 7-4: Full Custom 24-to-1 mux used in the Template Reduction Method............. 91

Figure 7-5: Generated 24-to-1 mux used in the Circuit Generater Method..................... 91

Figure 7-6: Various configurations of muxes based upon the number of bits, and the
number of routing tracks. The top figure is a 4 bit mux, followed by 8, 12, 16, and
20. All of the figures are to scale. Notice the increase in the width of the control
routing channel as the number of tristate rows increase, and the wasted space in the
16 bit mux. .. 93

Figure 7-7: Bus Connectors. The BC on the left is capable of three delays, while the BC
on the right is capable of one delay. ... 94

Figure 7-8: Pipeline Registers. The PR on the left is capable of three delays, while the
PR on the right is capable or one delay... 95

Figure 7-9: This shows a modular 16 bit carry look ahead ALU. 96

Figure 7-10: Three different generated ALUs. Black boxes represent wasted area. The
version on the left has 20 tracks. The version in the middle has 24 tracks. The
version on the right has 28 tracks. The most wasteful version is the ALU on the left
with 20 tracks. This is verified when all of the wasted space is combined into a
single block, as seen below the ALUs. ... 97

Figure 7-11: The thirteen application domains ordered along the horizontal axis by
percent utilization. Application domains with higher percent utilizations are to the
right, while application domains with lower percent utilizations are to the left. The
fft16_2nd and the matmult_unr netlists dominate ten of the thirteen application
domains, which is indicated by the red and blue circles... 99

 viii

Figure 8-1: From previous work, the generic Tanner standard cell library (top left), FPGA
optimized Tanner standard cell library (top right), and a full-custom RaPiD (bottom)
that does not contain any multipliers or memories [5]. The relative size of the
various layouts has been preserved... 110

Figure 8-2: Tool flow for Standard Cell Method of architecture layout generation....... 113

 ix

List of Graphs

Graph 6-1: This graph shows the average percent of each cell remaining for each
application group. The x-axis is the position in the array, with origin set at the left
end of the array. The y-axis is the percent of the cell remaining............................. 75

Graph 6-2: This graph shows the normalized area of each benchmark set. The x-axis is
the percentage of the resources of the fixed tile needed to support the benchmark set.
The y-axis is the area of each benchmark set normalized to the RaPiD II fixed tile.
The lower bound on the best possible reductions. Three points on the line are (100,
1), (50, .5), and (0, 0). ... 76

Graph 6-3: This graph shows the normalized performance of each benchmark set. The x-
axis is the percentage of the resources of the fixed tile needed to support the
benchmark set. The y-axis is the performance of each benchmark set normalized to
the performance of the benchmark set running on the RaPiD II fixed tile. 78

Graph 7-1: This graph, which was generated from the data presented in Table 7-3, shows
the normalized area of each benchmark set. The x-axis is the percentage of the
resources of the fixed RaPiD II tile needed to support the benchmark set. The y-axis
is the area of each benchmark set normalized to the RaPiD II fixed tile.................. 98

Graph 7-2: This graph, which was generated from the data presented in Table 7-4, shows
the normalized performance of each benchmark set. The x-axis is the percentage of
the resources of the fixed RaPiD II tile needed to support the benchmark set. The y-
axis is the performance of each benchmark set normalized to the RaPiD II fixed tile.
... 101

Graph 8-1: This graph, which was generated from the data presented in Table 8-1, shows
the normalized area of each benchmark set when using the VTVT standard cell
library. A lower value on the y-axis is preferable. The x-axis is the percentage of
the resources of the fixed RaPiD II tile needed to support the application domain.
The y-axis is the area of each application domain normalized to the RaPiD II fixed
tile. The AMO, AML, and GH Architecture Generators were used to create the
Verilog. ... 115

Graph 8-2: This graph, which was generated from the data presented in Table 8-2, shows
the normalized area of each benchmark set when using the fitted lines representing
the FPGA optimized VTVT standard cell library. A lower value on the y-axis is
preferable. The x-axis is the percentage of the resources of the fixed RaPiD II tile
needed to support the benchmark set. The y-axis is the area of each benchmark set

 x

normalized to the RaPiD II fixed tile. The AMO, AML, and GH Architecture
Generators were used to create the Verilog. ... 117

Graph 8-3: This graph shows the normalized area of each benchmark set, where a lower
value on the y-axis is preferable. The x-axis is the percentage of the resources of the
fixed RaPiD II tile needed to support the benchmark set. The y-axis is the area of
each benchmark set normalized to the RaPiD II fixed tile. The SC AVG line
represents the average of AMO, AML, and GH using the generic unaltered VTVT
standard cell library, while SC FPGA AVG represents the average of AMO, AML,
and GH using the fitted line representing the FPGA optimized VTVT standard cell
library.. 118

Graph 8-4: This graph shows the normalized performance of each benchmark set, where
a lower value on the y-axis is preferable. The x-axis is the percentage of the
resources of the fixed RaPiD II tile needed to support the benchmark set. The y-axis
is the performance of each benchmark set normalized to the RaPiD II fixed tile. All
three methods of Architecture Generation are present, namely AML, AMO, and GH.
... 119

Graph 9-1: Area comparison of the circuits created to support the benchmark sets, using
the Template Reduction Method, the Circuit Generator Method, and the Standard
Cell Method. The y-axis is the area of the circuits normalized to the area of the full
custom RaPiD II template, while the x-axis is the percent utilization. Lower values
represent circuits that are more desirable. The SC AVG, SC FPGA AVG, and the
CG AVG are lines generated by taking the average of the circuits generated by the
AML, AMO, and GH versions of the Architecture Generator. 127

Graph 9-2: This graph shows the results of the Template Reduction Method on the
original five application domains. The x-axis is the percent of the functional units
removed, while the y-axis is the percent of the template area remaining after
compaction. The fitted points are the other eight application domains, all of which
were run through the Template Reduction Method, but not compacted. Performing
the Template Reduction Method without compaction still yields the percentage of
functional units removed, enabling these points to be fitted. 130

Graph 9-3: Performance comparison of the benchmarks run on the full-custom RaPiD II
tile, and the Template Reduced, the Circuit Generator, and the Standard Cell
Methods. The y-axis is the performance normalized to the RaPiD II cell, while the
x-axis is the percent utilization. Lower y-values are preferable. The CG AVG and
the SC AVG are lines generated by taking the average of the circuits generated by
the AML, AMO, and GH versions of the Architecture Generator. 132

 xi

List of Tables

Table 5-1: The benchmark application domains and their corresponding member netlists
used to evaluate the Template Reduction, the Circuit Generator, and the Standard
Cell Method, along with the full custom RaPiD II tile. The applications are ordered
in the table by their percent utilization, from lower to higher values. 49

Table 5-2: The benchmark application domains and the number of RaPiD II cells needed
to implement them. The type and number of functional units needed for each
application domain is also listed. The applications are ordered in the table by their
percent utilization, from lower to higher values. .. 49

Table 5-3: The various netlists from the application domains, and the number and type of
RaPiD II functional units needed to support them.. 50

Table 5-4: This table is a combination of Tables 5-1 and 5-3. It lists the application
domain, followed by the percent utilization, and a breakdown of the usage of the
ALUs, multipliers, RAMs, and data-registers for the netlists in each application
domain... 50

Table 5-4: Continued. .. 51

Table 6-1: This table shows the number of cells used by each application group, followed
by the RaPiD Array length before compaction, the percent functional units and
routing resources remaining, the RaPiD Array length after compaction, and the
percent of the array that remains... 73

Table 6-2: This table shows the percentage of the area of each cell that remains after
compaction. The final column shows the average across application domains. The
application domains do not all require the same number of cells, hence the empty
cells in the table. ... 74

Table 6-3: This table shows the number of cells used by each application group, followed
by the performance of each application group during the initial run, during pre-
reduction, and during post-reduction. The performance increase is measured from
the initial runs and the post-reduction runs... 77

Table 7-1: The metal layers and their corresponding purpose.. 88

 xii

Table 7-2: Various configurations of muxes or demuxes based upon the number of bits.
The formula for establishing the number of rows is floor((n+1)/5), where n is the
number of bits in the mux or demux. The most efficient structures are of bit size p,
where p mod 5 is equal to zero. The most inefficient structures are of bit size q,
where q mod 5 is equal to one. ... 92

Table 7-3: The application domains and their respective percent utilization are shown.
The area normalized to the RaPiD II tile of the circuit generated architectures are
shown. The architectures were generated from Verilog that was generated by the
AMO, AML, and the GH Architecture Generators. ... 100

Table 7-4: The normalized average performance of the circuits generated using the
AML, AMO, and GH architecture generators for each application group. 102

Table 7-4: Continued ... 103

Table 7-4: Continued ... 104

Table 7-4: Continued ... 105

Table 7-4: Continued ... 106

Table 8-1: The application domains and their respective percent utilization are shown.
The area normalized to the RaPiD II tile of the VTVT standard cell architectures are
shown. The architectures were created from Verilog that was generated by the
AMO, AML, and the GH Architecture Generators. ... 114

Table 8-2: The application domains and their respective percent utilization are shown.
The area normalized to the RaPiD II tile of the FPGA optimized VTVT standard cell
architectures are shown. The architectures were created from Verilog that was
generated by the AMO, AML, and the GH Architecture Generators. 116

Table 8-3: The normalized average performance of the circuits generated using the
AML, AMO, and GH architecture generators for each application group. 119

Table 8-3: Continued. ... 120

Table 8-3: Continued. ... 121

Table 8-3: Continued. .. 122

Table 8-3: Continued. .. 123

 xiii

Table 9-1: This table shows the percent functional units removed for all thirteen
application domains, which were found by the Template Reduction Method. For
five of the application domains the area remaining was found by running the
Cadence compactor on the reduced layouts. The area remaining was found for the
other eight application groups, whose values are in the gray cells, by using a fitted
linear line to the original five data points. .. 129

 xiv

Acknowledgements

This dissertation would not have been possible if not for all of the people that have

contributed to this work. First, I would like to thank the RaPiD group, especially Carl

Ebeling, Chris Fisher, Larry McMurchie, and Darren Cronquist for their work on the

RaPiD project, which was an essential starting point for this research. More specifically,

Chris Fisher provided the RaPiD I layouts and much needed guidance on their function

and purpose.

Larry McMurchie was a lifesaver many times over when the “tools broke again”. Larry

also provided guidance and was always willing to help me use and optimize the tools and

my tool flows. The sleepless nights would have been more frequent without all of his

help.

Many graduate students also contributed to this work. Katherine Compton provided the

Architecture Generator along with invaluable insight on the structure of the RaPiD II

template. Akshay Sharma not only supplied the place and route tool, but also provided

the reduction list generator for the Template Reduction Method. Kim Montonaga and

Ken Eguro both provided the area and performance numbers for some of the standard cell

functional units.

 xv

Other graduate students provided personal support during my graduate career. In the

early years, Zhiyuan Li and Chandra Mulpuri were always willing to patiently listen as I

ranted and raved about one topic after another. They were eventually replaced by Mark

Chang, Akshay Sharma, Ken Eguro, and Mark Holland. Thanks guys.

Graduate school is tough, but financial support can take the edge off. This work was

funded in part from grants from the National Science Foundation, the Defense Advanced

Research Projects Agency, and the National Aeronautics and Space Administration. This

work was also supported in part by an MIT Lincoln Laboratory Fellowship and the

Northwestern University Walter P. Murphy Fellowship.

Additionally, I am forever indebted to my advisor Scott Hauck, who not only guided me

through my graduate studies, but also helped me deal with all of the ups-and-downs that

occurred in my life. No other advisor would have had the patience to stick with me, and I

would not have gotten this Ph.D. without him.

Finally, my friends and family have been the driving force in my life. I would like to

thank my mom for not only pushing me to pursue this Ph.D., but for being available to

me for both emotional and financial support. I would have gotten nowhere without my

sisters, Shannon and Shayne, who filled out my college application for me when I applied

to undergraduate school, and the financial aid forms every year after. I would also like to

thank my mother-in-law and Caryn Park for taking time out of their busy lives to help

 xvi

watch Ella so that I could “get to work”. Finally, I would like to thank my beautiful wife,

Joanie, and daughter, Ella, without whom none of this would have been worth it.

 xvii

Dedications

To my mother for setting high standards, to my sisters for showing me the way, to my

wife, Joanie, for getting me through, and to my daughter, Ella, for being my inspiration.

 1

Chapter 1

Introduction

With the advent of new fabrication technologies, designers now have the ability to create

integrated circuits utilizing over one hundred million gates, with operating frequencies in

the GHz range. This large increase in transistor count has increased the complexity of

devices, but it is also enabling designers to move away from the well known system-on-

a-board to a heterogeneous system-on-a-chip (SOC) [1]. This evolution in integration is

driven by the need to reduce the overall cost of the design, increase inter-device

communication bandwidth, reduce power consumption, and remove pin limitations.

Unfortunately, there are a number of drawbacks to the SOC design methodology.

Designers of SOCs have a larger design space to consider, an increase in prototype cost, a

more difficult job of interfacing components, more complex design verification, and a

longer time-to-market. There is also a loss in post-fabrication flexibility. In the system-

on-a-board approach, designers have the ability to customize the system by careful

selection of components, with easy component modification or replacement in late stages

of the design cycle. However, in the current SOC design methodology framework, in

which only application specific integrated circuit (ASIC) type components are used, very

 2

tight integration is the goal. Therefore, component changes late in the design cycle are

not feasible.

This loss of post-fabrication flexibility can be alleviated with the inclusion of general-

purpose reconfigurable hardware into the SOC. However, general-purpose

reconfigurable hardware is often several times slower, larger, and less energy efficient

than ASICs, making them a less ideal choice for high performance, low power designs.

Domain-specific reconfigurable hardware can be utilized to bridge the gap that exists

between flexible general-purpose reconfigurable hardware and high performance ASICs.

Domain-specific reconfigurable hardware consists of a reconfigurable array that is

targeted at specific application domain(s), instead of the multiple and often times wide

ranging domains targeted by general-purpose reconfigurable hardware. Creating custom

domain-specific reconfigurable hardware is possible when designing an SOC, since early

in the design stage designers are aware of the computational domain in which the device

will operate.

Possible application domains could include signal processing, cryptography, image

analysis, or any set of algorithms that a design needs to support. In essence, the more that

is known about the target applications, the more inflexible and ASIC-like the custom

reconfigurable hardware can be. On the other end of the spectrum, if the domain space is

only vaguely known, or the design calls for increased flexibility, then the custom

reconfigurable hardware would need to provide the ability to run a wide range of

 3

applications, and thus be required to look and perform more like a standard general-

purpose reconfigurable device.

If the designer has knowledge of the specific application domain at which the device is

targeted, designers could then remove from the reconfigurable array hardware and

programming points that are not needed and would otherwise reduce system performance

and increase the design area. Architectures such as RaPiD [2], PipeRench [3], and

Pleiades [4], have followed this design methodology in the digital signal processor (DSP)

computational domain, and have shown improvements over general-purpose

reconfigurable hardware within this space. This ability to utilize custom reconfigurable

hardware instead of ASICs in high performance SOC designs will provide the post-

fabrication flexibility that general-purpose reconfigurable hardware provides, while also

meeting stringent performance requirements that until now could only be met through the

use of ASICs.

In the traditional system-on-a-board design methodology, the total cost of fabricating

custom reconfigurable hardware devices would inherently be subject to high nonrecurring

engineering (NRE) costs, and thus be infeasible in most circumstances. However, since

all of the components in an SOC need to be fabricated after integration, the SOC design

methodology provides designers with a unique opportunity to insert application specific

reconfigurable hardware into their devices, without accruing additional NRE cost.

Unfortunately, if designers were forced to create custom logic for each application

domain, it would be difficult if not impossible to meet any reasonable design cycle.

 4

However, by automating the generation of the application specific reconfigurable

hardware, designers would avoid this increased time-to-market and would also decrease

the overall design cost, moving the creation and integration of these types of devices

from an expensive proposition to a worthwhile endeavor.

These factors have led us to start the Totem Project [5, 6, 7, 8, 9, 10], which has the

ultimate goal of reducing the design time and effort in the creation of custom

reconfigurable architectures. The architectures that are created by Totem are based upon

the applications and constraints specified by the designer. Since the custom

reconfigurable architecture is optimized for a particular set of applications and

constraints, the designs that are created by the Totem Project are smaller in area and

perform better than a standard general-purpose reconfigurable processor, while retaining

enough flexibility to support the specified application set.

The work presented here describes my research in methodologies, practices, and tools for

the effective automatic generation of VLSI layouts of domain specific reconfigurable

hardware. This dissertation is organized as follows:

• Chapter 2: Reconfigurable Computing provides a technical background

discussion of the technologies involved, which includes an introduction to general

purpose reconfigurable devices and, in particular, the RaPiD architecture.

• Chapter 3: Reconfigurable Hardware in SOCs highlights similar research efforts

by both academia and industry in embedding reconfigurable logic into SOCs.

 5

• Chapter 4: Totem provides an overall view of the Totem Project and, more

specifically, how this thesis fits into the tool flow of the Totem Project.

• Chapter 5: Research Framework provides the structural basis for the work

presented here, including the common benchmark sets and an introduction to the

metrics used to evaluate the various methods of automating the VLSI layout of

application specific reconfigurable devices.

• Chapter 6: Template Reduction Method presents a method of automating the

VLSI layout generation of reconfigurable devices, which begins with a full-

custom layout as a template that is a superset of the required resources, and

removes those resources that are not needed by a given application domain.

• Chapter 7: Circuit Generator Method presents a method of automating the VLSI

layout of reconfigurable devices by taking advantage of the regularity that exists

in FPGAs through the use of circuit generators to create the custom

reconfigurable devices.

• Chapter 8: Standard Cell Method presents a flexible method of automating the

VLSI layout of reconfigurable devices by using a standard cell library that has

been optimized for reconfigurable devices, to fill the gaps that exist between the

templates and to alleviate the need for a wide range of generators.

 6

• Chapter 9: Conclusions and Future Work concludes this dissertation with a

comparison of the three methods and a brief discussion of future research

directions.

 7

Chapter 2

Reconfigurable Hardware

With increasing adaptability and performance, and a trend toward lower cost devices,

reconfigurable hardware is being used in a wider range of applications than ever before

[47]. This chapter presents a technical background on reconfigurable hardware,

beginning with an architectural overview. The next two sections are in-depth case studies

of particular reconfigurable devices. The final section is a brief outline of the software

used to implement algorithms onto reconfigurable hardware.

2.1 Architectural Overview

Hardware logic devices can be divided into two broad categories, namely fixed logic

devices and reconfigurable devices. Fixed logic devices, be they application specific

integrated circuits (ASICs) or a board-level solution containing multiple components, are

optimized at design time to perform a specific task or group of tasks efficiently. On the

other hand, reconfigurable hardware is designed with the ability to handle multiple tasks

and can be changed, or reconfigured, at any time.

Fixed logic is customarily the preferred device type when the application domain is well

known in advance, the design is targeted at a high volume application domain, and high

 8

performance, low power, or small device size are important design goals. However,

while fixed logic devices are used in a wide range of application domains, there are

several drawbacks associated with these types of devices. One of the main drawbacks of

fixed hardware is the fact that once the device is manufactured it is, as the name implies,

fixed, and therefore cannot be modified. Consequently, if the device does not work as

expected or there is a change in the design requirements, the device must be redesigned,

which, as we will see, can be an extremely costly proposition. Another drawback to the

use of fixed logic devices is the long and costly time-to-market. It can take several

months to years to design and verify a fixed logic device, depending upon the size and

complexity of the device. And, depending upon the size and complexity of the design,

the upfront, or nonrecurring engineering (NRE), costs can range from hundreds of

thousands to several millions of dollars.

Reconfigurable logic devices are typically standard off-the-shelf components that offer a

wide range of logic capacity, I/O capabilities, performance, and power characteristics.

With the device specific software tools provided by the logic vendor, designers are able

to quickly prototype and test their designs on a working circuit, with the knowledge that

the reconfigurable logic device that they are testing their design on is the same device

that will be embedded into the final system. In addition, if there is any modification to

the design, even after the final system has been shipped, the reconfigurable logic can be

modified to reflect these changes. This removes almost all of the NRE cost, and allows

for designs that have an extremely short time-to-market and a bug fix or upgrade path. In

 9

the next sections, two different types of reconfigurable hardware are detailed: the field

programmable gate array (FPGA) and the reconfigurable pipelined datapath (RaPiD).

2.2 Field Programmable Gate Array (FPGA)

Logic
Block

Switch
Block

Connect
Block

Connect
Block

Switch
Block

Switch
Block

Connect
Block

Connect
Block

Switch
Block

Logic
Block

Switch
Block

Connect
Block

Connect
Block

Connect
Block

Switch
Block

Logic
Block

Switch
Block

Connect
Block

Connect
Block

Switch
Block

Connect
Block

Logic
Block

Switch
Block

Connect
Block

Connect
Block

Figure 2-1: Xilinx style FPGA architecture. It contains an array of CLBs, switchboxes,
and vertical and horizontal routing channels.

An FPGA is a multi-level logic device that can be reconfigured to support a wide variety

of application domains. Conceptually, an island-style FPGA (which is the most common

type of FPGA manufactured today) is an array of configurable logic blocks (CLBs).

CLBs comprise the computational fabric within the FPGA and are embedded within

horizontal and vertical channels of routing [11]. The routing channels, like CLBs, have

the capability to be personalized to interconnect any one CLB with any other CLB within

 10

the array by the use of connection boxes and switch boxes. The configuration of the

FPGA is commonly held in static RAM (SRAM) cells that are distributed across the chip.

By placing the configuration bits in SRAM cells, the FPGA can be reprogrammed many

times over the life of the device. Thus, the FPGA has the ability to run many different

configurations, akin to how a general-purpose processor can run many different

programs. The ability of an FPGA to run such a wide range of programs is only limited

by the number CLBs that are in the array and by the richness of the routing fabric. Figure

2-1 shows an island-style FPGA, which was first popularized by Xilinx in 1984 [6].

P2
P1

P4
P3

P6
P5

P8
P7

In A

In B

In C

LUT

OUT

DFF
CLK

P9

Figure 2-2: A basic configurable logic block (CLB) containing a three input LUT and a
D-type flip-flop with bypass.

In an island-style FPGA, a CLB (an example of which is shown in Figure 2-2) typically

consists of a lookup table (LUT), a state holding element such as a flip-flop, and

multiplexers. LUTs are small memories to which the truth table for the desired function

can be written when the FPGA is configured. Multiplexers within the CLB, an example

of which is shown in Figure 2-2 in the form of the bypassing multiplexer, are controlled

by programming bits that enable different functional blocks within the CLB to be chosen,

 11

depending on the application that is being mapped onto the FPGA. By using LUTs, flip-

flops, and multiplexers, island-style FPGAs are capable of implementing arbitrary logic

functions, with each CLB capable of handling functions that typically have no more than

three or four inputs.

The routing structure shown in Figure 2-1 enables point-to-point connections between

CLBs, which is achieved by using connection blocks and switch blocks. Connection

blocks, which utilize programmable switch points, enable input and output signals to

travel from logic blocks into the routing channel and vice versa. Once signals are in the

routing channels, switch boxes carry them throughout the FPGA by enabling corner

turning and in some cases switching between routing tracks. Switch boxes, like

connection boxes, are made up of user programmable switch points.

2.3 Case Study: The Altera Cyclone II FPGA

The island-style FPGA presented thus far is a simplified version of a modern FPGA, and

therefore does not adequately characterize the complexity and functionality present in

state-of-the-art devices. Modern devices available from vendors such as Xilinx and

Altera have begun to blur the line between the fine-grained island-style device described

above, and a more medium-grained device. This change in the granularity has been

brought about by the inclusion of coarse-grained components into the reconfigurable

fabric like word width multipliers and, more recently, embedded general-purpose

processors. An understanding of how these medium-grained devices compare to both

fine-grained island-style devices and coarse-grained devices like RaPiD will help the

 12

reader understand the types of reconfigurable devices that the Totem Project will

produce. Therefore, an evaluation of the Cyclone II FPGA family of devices, which has

been developed by the Altera Corporation [46], is presented.

IOEs

IOEs

IOEsIOEs

PLL

PLL

PLL

PLL

Logic
Array

Logic
Array

Logic
Array

Logic
Array

Embedded
Multipliers

M4K Blocks

Figure 2-3: A block diagram of the Cyclone II EP2C20 Device [46].

The Cyclone II FPGA is an island-style device that contains logic array blocks (LABs),

embedded memories, embedded floating-point multipliers, multi-function I/O elements

(IOEs), and up to 4 phase-locked loops (PLLs). All of these functional elements are

connected to one another by a two-dimensional multi-track interconnect fabric. A block

diagram highlighting all of the functional elements of the Cyclone II device is shown in

Figure 2-3.

 13

Figure 2-4: Block Diagram of the Cyclone II logic element (LE) [46]. The LE is the
smallest functional unit on the Cyclone II device. Each LE contains the following: a
four-input LUT, a programmable register, a carry chain connection, and a register
chain connection.

2.3.1 Cyclone II Logic Elements

LABs in the Cyclone II are made up of sixteen individual logic elements (LEs). The LE

is the smallest functional unit in the Cyclone II, and a block diagram is shown in Figure

2-4. LEs contain the following: a four-input LUT, a programmable register that can be

configured for D, T, JK, or SR operation, a carry chain connection, and a register chain

connection. Each LE is capable of register packing. Register packing occurs when the

LUT drives one output while the register drives another output. This means that the LUT

and the register can be used for unrelated functions, thus enabling the device to more

 14

efficiently utilize its resources. Each LE is also capable of register feedback. The

register feedback mode enables the register to receive as input its own LUT’s output,

providing both registered and unregistered LUT outputs. The register chain output

enables registers within the same LAB to be daisy-chained together, and when coupled

with register packing enables the LAB to perform one combinational function with its

LUTs while also allowing for an unrelated shift register function. LEs can operate in

either normal or arithmetic mode, depending upon what type of function the LEs

implement.

2.3.3 Logic Array Block (LAB)

The LAB, shown in Figure 2-5, consist of sixteen LEs, as well as control signals, LE

carry chains, register chains, and local interconnect. The control signals that are present

in each LAB consists of two clocks, two clock enables, two asynchronous clears, and one

synchronous clear. This provides the LAB with seven independent control signals, along

with a chip wide register clear that overrides all other control signals. The register chain

enables one LE to transfer its register output to the input of an adjacent LE register, with

the carry chain operating in a similar manner. The LAB local interconnect consists of

local connections within the LAB, and direct connections between adjacent LABs, PLLs,

M4K RAM blocks, and embedded multipliers. Local and direct link connections also

enable each LE to drive up to 48 LEs.

 15

Figure 2-5: LAB Structure [46], which provides local interconnect for LEs in the same
LAB as well as direct connections between adjacent LE’s within an LAB.

2.3.4 Embedded Multipliers

The Cyclone II device contains embedded multiplier blocks that are capable of operating

as one 18-bit multiplier or as two independent 9-bit multipliers. The maximum operating

frequency for the multiplier blocks is 250 MHz, and is independent of the multiplier

operation mode. Each multiplier block is the height of one LAB, and each device can

contain one to three multiplier blocks, depending upon the size of the Cyclone II device.

The inputs and the outputs of the multiplier block can be registered or unregistered, and

can be either signed or unsigned values. The multiplier block can be connected to the

 16

LABs on its left and right with either column or row resources, as shown in Figure 2-6.

By using direct link resources instead of column or row resources, the multiplier can have

up to 16 input connections to the LAB on the right, and up to 16 input connections to the

LAB on the left. In addition, by using direct link, the multiplier block can drive up to 18

output connections to the LAB on the left and to the LAB on the right.

Figure 2-6: An embedded multiplier and its corresponding LAB row interface [46].

 17

Figure 2-7: An embedded four Kb memory block (M4K), and its corresponding LAB
row interface [46].

2.3.5 Embedded Memory

The Cyclone II family of devices also contains embedded memory blocks (M4K), with

each block containing 4,608 total memory bits that are broken into 4,096 functional bits

and 512 parity bits, as shown in Figure 2-7. The memories can operate at 250 MHz, and

can be configured as a true dual-port memory, simple dual-port memory, single-port

memory, byte enable, shift register, first-in first-out (FIFO) buffer, and read only memory

(ROM). Like the embedded multiplier, the M4K blocks can be feed data from LABs on

the left or on the right with either column and row resources, or with a direct link

 18

connection. When using direct link connections, 16 bits from the LAB directly to the left

of the M4K block and 16 bits from the LAB directly to the right of the M4K block can be

feed directly into the memory block. The M4K block can drive outputs to the column

and row resources or it can utilize up to 16 direct link connections.

2.3.6 MultiTrack Interconnect

Figure 2-8: R4 row interconnect connections. R4 interconnects span four LABs, three
LABs and one M4K memory block, or three LABs and one embedded multiplier to the
right or left of a source LAB [46].

All of the functional units mentioned thus far are embedded within a two dimensional

routing fabric that has been dubbed MultiTrack by Altera. The MultiTrack routing fabric

is comprised of row and column interconnects, as well as row direct link and register

chain connections.

The row interconnect consists of both R4 and R24 connections, as well as direct link

connections. R4 connections, as shown in Figure 2-8, span four functional units in the

 19

horizontal direction, namely four LABs, three LABs and one embedded multiplier, or

three LABs and one embedded memory block. R24 connections span 24 LABs, but can

only be driven by R4 or column interconnects, not directly by LABs. Direct link

connections, as mentioned above, allow direct connections to the left or right of LABs,

embedded multipliers, or embedded memories within the same row.

The column interconnect consists of both C4 and C16 connections, as well as register

chain connections. C4 connections span four functional units in the vertical direction, as

shown in Figure 2-9. The functional units that are connected in this way are four LABs,

four embedded multipliers, or four embedded memory blocks. The C16 interconnect

spans sixteen functional units in the vertical direction, but can only be driven by R4, R24,

C4, and other C16 interconnects. The final column interconnect consist of the register

chain connections. Register chain connections allow for fast and efficient

communication between LEs in the same LAB, as discussed previously in the LAB

section.

In this brief outline of the Cyclone II family of devices, several features and details have

been left out, since they are beyond the scope of this dissertation. Please see [47] for

more information.

 20

Figure 2-9: C4 interconnect, which traverses four blocks in the vertical direction [46].

 21

2.4 Case Study: Reconfigurable-Pipelined Datapath (RaPiD)

We are using the reconfigurable-pipelined datapath (RaPiD) architectural style as a

starting point for the circuits that we will be generating [49]. Therefore, it is important

that we have a thorough understanding of what distinguishes RaPiD devices from more

general-purpose reconfigurable devices like FPGAs.

RaPiD does not refer to any particular architecture, but instead refers to an architectural

style that is targeted at highly repetitive, computationally intensive applications with

large data sets [2], like digital signal processing, graphics, scientific computing, and

communications. Towards this end, RaPiD architectures are composed of coarse-grained

components, a one-dimensional routing interconnect, and static configuration with

dynamic control. This mix of components enables RaPiD architectures to create very

deep computational pipelines.

The computational units in a RaPiD device are specialized for the particular application

domain at which the device is targeted, and can include word width ALUs, multipliers,

and memories. The computational units in RaPiD are arranged along the horizontal axis,

and connected to each other via a one-dimensional word width routing interconnect. One

of the advantages of a one-dimensional structure is a reduction in the complexity,

especially in the communications network. Another advantage is the ability to map

systolic arrays very efficiently. Finally, while a two dimensional RaPiD is possible, most

two-dimensional algorithms can be mapped onto a one-dimensional array by using

 22

memory elements. There are several versions of RaPiD devices, which include the

original RaPiD-I architecture [2], a more recent version, RaPiD-Benchmark [49], and

RaPiD-II [63], a version that was created specifically for this work.

2.4.1 RaPiD Datapath

The original version of RaPiD, RaPiD-I [2], which is shown in Figure 2-10, consists of

16 bit wide memories and general purpose registers, 16 bit ALUs, and 16x16 multipliers.

Each functional unit has 16 bit multiplexers on each of its inputs, and 16 bit

demultiplexers on each of its outputs. This enables functional units to choose between

different tracks for input and output signals. Data flows into functional units on the left,

and flows out of functional units on the right. Figure 2-10 shows an example of one

RaPiD-I cell. Multiple cells are tiled along the horizontal axis to create longer, more

capable arrays.

Functional units are connected by a one-dimensional segmented routing structure. Data

flows through the array along the horizontal axis, with the vertical axis only being used to

provide connections between functional units. Each track in RaPiD-I is 16 bits wide,

which corresponds to the bit width of the functional units. There are 14 routing tracks in

RaPiD-I, made up of four local, and ten long-distance tracks. The local tracks allow fast,

short-distance communication between functional units. The ten long tracks allow for

long-distance communications. The long tracks are broken by bus connectors, which are

represented by the black boxes in Figure 2-10. Bus connectors are bidirectional switches

that enable either a break in the track or a connection. In RaPiD-I, bus connectors also

 23

contain three delay registers, which help with the pipelining of signals. Along with the

14 routing tracks, there is a feedback track that enables functional units to route their

output signals into their input. Finally, each of the input multiplexers is capable of

providing a logical zero to functional units. While we have detailed the RaPiD-I datapath

in this section, the ideas can be generalized to other versions of RaPiD.

G
PR

M
U

L
T

A
L

U

R
A

M

A
L

U

A
L

U

R
A

M

R
A

M

G
PR

G
PR

G
PR

G
PR

G
PR

16
16

16
16
16

16
16
16
16
16
16

16
16
16

Figure 2-10: A block diagram of a basic RaPiD-I cell. The functional units in this cell
are located at the top of the diagram, with the routing resources located at the bottom.
The black boxes represent bus connectors, which are bidirectional switches that enable
the creation of long lines. Multiple cells are tiled along a one-dimensional horizontal
axis.

2.4.1 RaPiD Control Architecture

The control architecture of RaPiD consists of both static and dynamic parts. The static

configuration is held in SRAM cells, which are initialized when the application is first

mapped onto the RaPiD array. The static configuration, referred to as hard control, is

fixed for the duration of the application, and is similar to how an FPGA operates. The

 24

dynamic control, or soft control, is capable of changing every cycle, unlike the fixed hard

control. To implement the soft control RaPiD utilizes small parallel instruction

generators, which execute a series of simple instructions. These simple instructions are

decoded at various points throughout the RaPiD array to create the soft control signals.

The ratio between hard and soft control is approximately 75% and 25% respectively. By

utilizing both hard and soft control, the RaPiD architecture is able to implement very

complex control.

2.5 Developing for Reconfigurable Devices

To take advantage of reconfigurable devices, application developers require a software

design environment that is capable of creating configurations for the reconfigurable

hardware in a straightforward manner. If the creation of designs for reconfigurable

devices is too complex, designers may overlook them in lieu of other types of devices

like ASICs or general-purpose processors. Design software for reconfigurable devices

can range from very basic software that helps in the manual creation of circuits, to

software that is capable of handling algorithms written in a high-level language, such as

C++, MATLAB, or Java.

As the complexity of reconfigurable devices has increased, the manual creation of

circuits is falling out of favor. However, if a design has very tight timing and area

constraints, manual circuit creation may be the only method capable of creating designs

that can meet these constraints. The drawbacks associated with this method of circuit

creation are the need for an extensive knowledge of the underlying reconfigurable

 25

architecture and an increase in the design time. As an alternative to manual circuit

creation, the automatic generation of circuits from high-level descriptions provides

designers with a fast and easy way to create programs that can utilize reconfigurable

devices, at a loss of quality. These types of tools have the potential to broaden the appeal

of reconfigurable devices to a wider audience of users. One possible design flow is

shown in Figure 2-11.

The design steps in the design flow depicted in Figure 2-11 are design entry using either

schematic capture or through a hardware description language (HDL), synthesis from

Register-Transfer Level (RTL) or behavioral HDL to gate level, and finally physical

design. Place and route of the design is done using the FPGA vendor proprietary tools,

which take into account the devices architecture and logic block structure. Back arrows

represent possible improvement paths, depending upon whether a design has met

specified timing or area constraints.

This brief introduction to FPGAs and to FPGA and the RaPiD architecture is sufficient to

understand the context of the work in this dissertation. However, a more general and

thorough survey of FPGAs and reconfigurable computing can be found in [62].

 26

Verilog, VHDL, or Schematic Capture

Design Capture

Physical Synthesis

RTL simulation

Vendor Place and Route

Achieved timing?
No

Yes

Modify design

Done!

Figure 2-11: High-level view of a possible FPGA design flow. The steps in the process
are: design entry, physical synthesis from RTL to gate level, and physical design. Place
and route of the design is done using the FPGA vendor proprietary tools, which take
into account the devices architecture and logic block structure. Back arrows represent
possible improvement paths [57].

 27

Chapter 3

Reconfigurable Hardware in SOCs

The integration of reconfigurable logic onto SOCs is currently being addressed by two

different architectural approaches. The first architectural approach, discussed further in

section 3.1, involves either embedding current “off-the-shelf” FPGA designs onto the

SOC as one of the many individual SOC components, or creating domain specific SOCs

that have reconfigurable components. The second architectural approach, discussed in

section 3.2, is the creation of FPGAs that are powerful enough to support all of the

functionality of an SOC. In essence, these devices, called systems-on-a-programmable-

chip (SOPCs), have the potential to blur the line between reconfigurable devices and

SOCs.

The two architectural methods have their advantages and disadvantages. SOCs that are

targeted at a particular domain that also contain embedded reconfigurable subsystems

have better performance, power, and area potential, since fixed IP blocks tend to be more

efficient than generic reconfigurable logic that has been configured to perform the same

function. Nevertheless, the performance, power, and area potential that targeted SOCs

with embedded reconfigurable subsystems have, come at a loss of flexibility. On the

other hand, SOPCs are highly flexible, and the same device can be targeted at many

 28

different application domains, which removes the need to design and implement multiple

SOCs for multiple application domains. The drawback to such flexibility is reduced

performance, increased power consumption, and increased area. The following sections

are a sampling of the projects that are currently being pursued.

3.1 Reconfigurable Subsystems

Embedding current “off-the-shelf” FPGA cores onto SOCs is driven by the desire of

companies to leverage the massive amounts of time and resources that have been devoted

to initially creating the cores, with the effect of creating new revenue streams. By

opening up their IP libraries, companies are able to reuse designs without incurring large

overhead costs. Xilinx, for example, provides some versions of their higher end FPGA

cores to other companies such as IBM, though few specific details have been released. A

cross-licensing agreement between the two companies has led to Xilinx embedding IBM

PowerPC processors into its high-end parts, while IBM has embedded Xilinx

reconfigurable blocks in some of its ASIC designs [53, 54].

Two other companies that are pursuing the idea of embedded FPGA cores are Actel and

LSI. Actel has created a generic FPGA fabric that can be embedded into a SOC. They

call it an embedded programmable gate array (EPGA), and it is part of their VariCore

project [33]. The ASIC equivalent gate densities of VariCore EPGAs range from 5K to

40K, in 2.5K gate increments. LSI’s approach is similar to Actel’s, and is called

LiquidLogic [34]. LiquidLogic consists of reconfigurable macro cells that have been

 29

designed to be embedded into SOCs. The LiquidLogic core consists of reconfigurable

logic in the form of a Multi-Scale Array (MSA) and the input-output bank that interfaces

with other ASIC circuitry on the SOC. The smallest reconfigurable unit in a MSA is the

Configurable Arithmetic Logic Units (CALU). The CALU is logically a 4-bit ALU that

is created by four function cells and an ALU controller. To create an MSA, CALUs are

tiled in 16x16 arrays called hex blocks, with the maximum size being a 4x4 array of hex

blocks. Once the reconfigurable logic is in place, various softcores can be downloaded to

it.

While the offerings from Xilinx, Actel, and LSI are programmable using SRAM bits,

other companies are pursuing cores that are either mask or fuse programmable. Elixent

and eASIC fall into this category, both offering devices that are designed for high-

performance applications. Elixent is offering their D-Fabrix, which is based on a sea-of-

ALUs [31]. A D-Fabrix array consists of up to several thousand 4-bit ALUs with

registers. eASIC is capable of producing circuits that have a gate density that is as high

as twenty times that of a conventional FPGA [36, 37]. To achieve this density, eASIC

has shifted all routing from the bottom layers of diffusion to the top four layers. In effect,

eASIC has removed most of the programmable interconnect while leaving the CLBs

intact. As a result, eASIC eliminates most of the area overhead associated with FPGAs,

creating a reconfigurable device that is similar to an anti-fuse based design. To route the

FPGA, vias are inserted on the sixth layer of metal in the eight-metal-layer design. This

means that post-fabrication modification of the interconnect in the circuit is not possible.

 30

Reducing the interconnect enables designers to create very fast and efficient structures,

but at the considerable loss of reconfigurability. Even though the interconnect of the

circuit is set after fabrication, the reconfigurable cells can still be mapped to as needed.

The cases listed above in this section were concerned with providing reconfigurable

subsystems to designers as a separate SOC component. However, there is another class

of SOCs that already incorporate reconfigurable subsystems. These types of SOCs are

designed with reconfigurable subsystems as an important, but not the central component.

(Unlike the devices presented in the next section.) Atmel has created their Field

Programmable System Level Integrated Circuit (FPSLIC™) [30] family of devices,

which utilize a version of their configurable 8-bit microcontroller. This family of devices

combines all the basic system building blocks, which include custom logic, memories,

reconfigurable logic, and a RISC processor. Atmel enables designers to plug-in very

specific custom logic into their device. Triscend offers a very similar device to that of

Atmel, which is also a configurable 8-bit microcontroller [55, 56]. It contains a 32-bit

ARM processor core, as well as a reconfigurable fabric and some hardwired peripherals.

3.2 Systems-on-a-Programmable-Chip (SOPCs)

Companies, including Altera [16], Lattice Semiconductor [17], and Xilinx [19], are trying

to move the emphasis away from SOCs by providing systems-on-a-programmable-chip

(SOPCs). The devices that are being created are capable of supporting the functionality

 31

that was typically the province of SOCs. In essence, the reconfigurable device is the

SOC.

The increase in the transistor count in devices has not only made SOCs possible, but has

also enabled FPGA designers to create reconfigurable devices that are SOCs in their own

right. One such part is the Virtex II Pro X [24] from Xilinx. This FPGA contains a

multitude of features, including up to four PowerPCs [25], 24 embedded Rocket IO

multi-gigabit transceivers, 12 digital clock managers, 556 18x18 multipliers, and ten

megabits of block RAM. This is an expensive and large part, but it is fully capable of

handling a wide range of applications that have previously been exclusively the domain

of SOCs or systems-on-a-board.

Altera, like Xilinx, has a device that is capable of emulating a multitude of SOCs,

specifically its Stratix APEX II™ [26]. Unlike Xilinx, Altera also offers what it brands

as HardCopy devices [27]. HardCopy is a tool that enables designers to remove

unwanted hardware from a feature rich reconfigurable device. To achieve this, a designer

places and routes their design on an existing Altera device, and HardCopy creates a

corresponding mask layout. This will fix the device to the desired application set, with

the effect of removing any additional flexibility. The final HardCopy devices that are

created are smaller in area by an average of 70%, and consume less power and perform

better than the design mapped onto the original Altera Stratix device.

Lattice Semiconductor has decided to differentiate their product by enabling designers to

pick specific ASIC cores that will be embedded with the reconfigurable fabric. Lattice

 32

has termed these devices as Field Programmable System Chips (FPSC) [28]. While the

reconfigurable fabric is generic in nature, the ASIC macrocells range from bus interfaces,

high-speed line interfaces, and high-speed transceiver cores. The macrocells that are

currently provided all fall within the networking domain, with the possibility for Lattice

to create more macrocells in the future if designer demand is high enough. QuickLogic,

with their QuickMIPS [29] part, provides a device that is very similar to what Lattice

Semiconductor is offering with their FPSCs, but with the addition of an embedded 32-bit

RISC core.

Xilinx is introducing a new family of devices, called Virtex-4 [45]. The Virtex-4 family

is based upon an architectural approach that Xilinx has created to reduce the cost of

developing multiple FPGA platforms, each with different combinations of feature sets.

Xilinx has dubbed this new architectural approach as the Advanced Silicon Modular

Block (ASMBL) architecture, though no details are currently available. The initial

release of the Virtex-4 family will include devices that are targeted at four application

domains, which include a Logic Domain, a DSP Domain, a Connectivity Domain, and an

Embedded Processing Domain. These devices mark a shift for Xilinx in the creation of

targeted reconfigurable devices, but they still fall into the family of powerful FPGAs that

remove the need for a SOC. It is too early to ascertain how often and how quickly Xilinx

will be able to create new devices targeting new application domains.

 33

Chapter 4

Totem

Reconfigurable hardware is a very efficient bridge that fills the gap between software

implementations running on general-purpose processors and ASIC implementations.

However, standard reconfigurable hardware targets the general case, and therefore must

contain a very generic mix of logic elements and routing resources that are capable of

supporting all types of applications. This creates a device that is very flexible. Yet, if the

application domain is known in advance, optimizations can be made to make a compact

design that is more efficient than commercial FPGAs.

While the benefits of creating a unique FPGA for each application domain are apparent,

in practice the design of a new FPGA architecture for every application space would

require an increase in design time and create significant additional design costs. The goal

of the Totem Project is the automatic generation of domain-specific FPGAs, giving

designers a tool that will enable them to benefit from a unique FPGA architecture without

high cost and a lengthy design cycle. The automatic generation of FPGAs can be broken

into three major parts: high-level architecture generation, VLSI layout generation, and

place-and-route tool creation, all of which will be discussed in this section. Figure 4-1

shows the tool flow between the major parts of Totem.

 34

Architecture
Generator

Architecture
Description

*

+ LUT

VLSI
Layout

Generator

P&R Tool
Generator

Place

Route

Circuit

10010110...

Constraints
Domain

Description

Figure 4-1: Totem tool flow.

4.1 Architecture Generation

The high-level architecture generator is the first phase of creating a custom

reconfigurable device, and was developed by Katherine Compton of Northwestern

University [7, 8, 51]. The generator will receive, as input from the designer, the target

algorithms and any associated constraints, such as area or performance. The high-level

architecture generator will then create a Verilog representation of the architecture that

meets the designer’s requirements. The architecture generator creates a range of different

architectures, from FPGA-like to ASIC-like, depending upon how much flexibility is

needed. If the specified design consists of many diverse algorithms, the final architecture

will contain more flexibility, resembling a traditional FPGA. Conversely, if the design

only needs to support a few very similar algorithms, the final architecture will have

limited flexibility, resembling an ASIC.

 35

Figure 4-2: Netlist 0, the top and light netlist, and Netlist 1, the dark and bottom netlist,
are two netlists that the custom architecture is required to support. Netlist 0 is a
multiply-accumulate, while Netlist 1 is a two tap FIR filter [51].

4.1.1 Logic Generation

The architecture generator creates a range of custom reconfigurable devices, ranging

from devices that have limited flexibility and devices that are RaPiD-like in nature with

more flexibility. The method used to generate the logical units for both of these types of

devices is basically the same, while the generation of the routing fabric is different.

Therefore, the methodologies discussed in this section on logic generation can be applied

to the creation of either type of device.

The first step in generating custom reconfigurable hardware is the creation of the set of

target netlists. Towards this end, the netlists are synthesized by the RaPiD compiler from

a C-like Hardware Design Language (HDL), namely RaPiD-C [40]. Figure 4-2 is a block

 36

diagram representation of two netlists, which will be used as an example throughout this

section.

Once the netlists are created, they are fed into the architecture generator, which is able to

establish the number and type of functional units that are needed to support the specified

application domain. One of the main goals in this step of architectural generation is the

maximization of resource sharing, which in turn minimizes the number of functional

units and routing resources needed to represent the application domain. Designers still

have the option of adding more flexibility to devices by increasing the number and type

of functional units instead of using the minimum number needed to support the

application domain.

Currently all of the netlists in the application domain must be able to run in their entirety

without any type of rescheduling. This is a big drawback with the current version of the

Totem Project, since it can lead to larger and slower architectures, however, this will be

addressed in future versions. In essence, the current version of the Totem Project does

not optimize for any particular netlist in the application. Therefore, it is possible for one

netlist to dominate all of the other netlists in an application domain. This is a potential

problem, and the ability to reschedule netlists and optimize for a particular netlist may

offer a viable solution.

The absence of rescheduling implies that the minimum number of a particular type of

functional unit needed in silicon is the maximum number needed by any netlist in the

application domain. For example, if an application domain is represented by two netlists

 37

A and B, and netlist A needs 10 multipliers and 15 data-registers, and netlist B needs 5

multipliers and 30 data-registers, then the generated architecture will consist of 10

multipliers and 30 data-registers. Once the type and number of functional units is

established, they then must be placed.

Figure 4-3: An initial placement of both the physical units and netlist bindings of the
two netlists shown in Figure 4-2. When Netlist 0 is in operation only the light wires and
components are used. When Netlist 1 is in operation only the dark wires and
components are used. Any components that are both light and dark are shared [51].

The final step in the logic generation is the placement and ordering of the functional units

along the x-axis. The placement of the components needed to support the application

domain is performed by simulated annealing [12]. Simulated annealing is an algorithm

that is commonly used in the placement of cells in the creation of standard cell designs,

and when binding a netlist to the physical components of an FPGA (the placement half of

FPGA place-and-route). The simulated annealing algorithm is analogous to how a metal

cools and freezes into a minimum energy crystalline structure. Thus, the algorithm starts

with a random initial placement and a high temperature. As the temperature cools, the

algorithm swaps the locations of a large number of randomly selected elements,

accepting moves if they improve the overall cost of the placement, which is shown in

 38

Figure 4-3 and Figure 4-5. The algorithm will also occasionally accept a “bad” move that

results in a higher overall placement cost, with the intention of avoiding being trapped in

local minima. The temperature of the annealing algorithm determines the probability of

accepting these bad moves, with higher temperatures having a higher probability of

accepting a bad move. As the algorithm progresses the probability of accepting a bad

move is gradually reduced until no bad moves are accepted.

Figure 4-4: Both (a) netlist binding and (b) physical placement are shown. During
netlist binding, netlist instances are assigned to a physical unit. During physical
placement, the physical units are reordered [51].

The simulated annealing algorithm that is used by the architecture generator has a move

set of both physical units, similar to standard cell placement, and also netlist rebinding,

similar to FPGA netlist mapping. An example of each is shown in Figure 4-4. It should

be noted that the simulated annealing algorithm needs to be able to perform both netlist

binding and physical placement simultaneously. This is because the locations of the

 39

physical units must be known in order to find the best netlist binding, and the netlist

binding must be known in order to find the best physical placement.

Figure 4-5: A possible final placement of Netlist 0 and Netlist 1 from Figure 4-2. The
light colored wires are Netlist 0’s signals, while the dark colored wires are Netlist 1’s
signals. Instance names from Figure 4-2 are inside the boxes in italics. The light colored
components are Netlist 0’s, while the dark colored components are Netlist 1’s.
Components that are both light and dark are shared between the two netlists. Since
routing has not yet occurred, physical wires have not been created [51].

4.1.2 Configurable ASICs and Flexible Architectures

The Totem Project is capable of creating a range of architectures, depending upon how

much flexibility is needed to support the application domain. This range of architectures

can be covered by two different types of generated architectures, namely configurable

ASICs and flexible architectures. Several heuristics have been explored to generate the

routing structure for both of these types of architectures. The main difference between

the configurable ASICs and the flexible architectures is how much additional flexibility is

provided. Configurable ASICs have the minimal amount of resources needed to support

the application domain. By reducing as much overhead as possible, configurable ASICs

will be smaller and perform better than devices with more flexibility. This also implies

that configurable ASICs are not well suited to handle additional netlists in the future. In

 40

these types of circumstances, where the application domain may grow in the future,

flexible architectures are better suited. As mentioned above, the logic generation is the

same for both methods, with the caveat that designers are able to add additional

functional units when creating flexible architectures.

Figure 4-6: Configurable ASIC routing created for the two netlists from Figure 4-2.
The light components and wires are used by Netlist 0, while the dark components and
wires are used by Netlist 1. Components that are both light and dark are shared
between the two netlists. Black wires and black muxes are used by both netlists [51].

The creation of the routing structure for configurable ASICs is performed by three

different heuristics, with the common goal of maximizing wire sharing. The first

heuristic is based upon a greedy approach, the second heuristic is based upon a recursive

form of maximum weight bipartite matching, and the third heuristic is based upon a

graph-based algorithm called clique partitioning. A configurable ASIC routing fabric for

the netlists from Figure 4-2 is shown in Figure 4-6. All three methods allow the designer

to add an additional level of flexibility above the bare minimum needed to support the

application domain. The level of additional flexibility can be used for such things as bug-

fixes or modifications to the number and types of algorithms in the application domain.

The designer can also add even more flexibility if the application domain requires it.

 41

Figure 4-7: Flexible routing created for the two netlists from Figure 4-2. The vertical
lines to the left and the right of a functional unit are muxes and demuxes on the input
and output ports of the functional unit. The white boxes are bus connectors as seen in
the RaPiD section of Chapter 2. The light functional units are used by Netlist 0, and the
dark functional units are used by Netlist 1. Black lines are shared resources, as are
functional units that are both light and dark.

The first heuristic that is used to create the routing for flexible architectures is called

Greedy Histogram, and its goal is the reduction in the overall number of routing tracks. It

also tries to use local tracks over long tracks, thus reducing the number of bus connectors

needed. The connectivity of the routing structures created by this heuristic may be non-

uniform along the x-axis, with regions of high connectivity interspersed with regions of

low connectivity, characterized by an abundance or minimal amount of bus connectors

respectively. This effect occurs because the wire length for a “new” track is chosen

independently of other tracks, which leads to an uneven distribution of wire breaks and

bus connectors. This characteristic may reduce the overall flexibility of the architectures

that are created by this heuristic.

The second and third heuristics that create the routing structures for flexible architectures,

namely Add Max Once (AMO) and Add Min Loop (AML), both try to provide more

regular routing structures than the Greedy Histogram algorithm. The routing fabric

 42

created by these algorithms is very uniform, and the level of connectivity at any point

along the x-axis is very similar to all other points. To create structures that have regular

routing, both of these algorithms try to evenly distribute breaks and bus connectors within

each track and across all tracks. This is performed by choosing track offsets that provide

a somewhat consistent level of connectivity regardless of the location within the array.

To help facilitate regularity in the routing structures created, these algorithms restrict the

length of wires to a power of two. Thus, local tracks can be 0, 2, or 4 units in length,

while long tracks can be 8 or 16 units in length. By providing regularity in the routing,

AMO and AML can increase the overall flexibility of the reconfigurable device, as

compared to the Greedy Histogram method.

The difference between the AMO and AML algorithms lies in their emphasis on the use

of either long distance or local routing tracks. The AMO algorithm tends to weight

towards the use of distance routing tracks. This is because AMO only considers each

routing length and type once, in the following order: length 0 feedback tracks, length 2

local tracks, length 4 local tracks, and length 8 distance tracks. The AML algorithm, by

contrast, tends to weight towards local tracks over distance tracks. This occurs because

the AML algorithm cycles through all types and lengths of tracks each time a signal is

routed. It cycles through tracks in the following order: length 0 feedback tracks, length 2

local tracks, length 4 local tracks, length 16 distance tracks, and length 8 distance tracks.

(Length 8 distance tracks are considered more expensive than length 16 distance tracks

 43

because bus-connectors are expensive, and length 8 distance tracks require more bus-

connectors.)

The final step involved in architecture generation is the creation of a Verilog

representation of the final circuit. This Verilog is then sent to both the VLSI layout

generator and the place-and-route tool generator, as is shown in Figure 4-1. Both of these

generators are detailed in the next sections of this chapter. In this brief outline of the

architecture generator, several features and details have been left out, since they are

beyond the scope of this dissertation. Please see [51] for further information.

4.2 VLSI Layout Generation

The VLSI Layout Generator automates the creation of mask ready layouts from the

circuits provided by the Architecture Generator. The layout generator must be able to

create layouts for any conceivable circuit that the high-level architecture generator is

capable of producing, without squandering any gains that have been achieved thus far.

We have investigated three possible methods of automating the layout process: the

Template Reduction Method, the Circuit Generator Method, and the Standard Cell

Method [5, 9]. This thesis is concerned with this aspect of the Totem Project, and each of

these methods will be discussed in Chapters 6, 7, and 8 respectively.

 44

4.3 Place-and-Route Tool Generation

The Place-and-Route (P&R) Tool Generator creates tools that will enable the designer to

utilize the new architecture, and was developed by Akshay Sharma of the University of

Washington [6, 10]. The P&R Tool Generator must not only be flexible enough to

support a wide array of possible architectures, but it also must be efficient enough to take

advantage of diverse architectural features. This is due to the fact that Totem is able to

generate very ASIC like to very RaPiD-like structures. The P&R Tool Generator creates

mapping tools by using the Verilog provided by the high-level architecture generator, a

description of the RaPiD netlists that need to be placed and routed onto the architecture,

and the configuration bit-stream format provided by the layout generator.

Placement and routing, as referred to in this section, are the binding of netlist components

onto the physical structure that has been created by the architecture generator. In

essence, this type of P&R is a version of the typical FPGA placement and routing, and is

referred to as netlist binding in section 4.1. As the name suggests, P&R tool generation

can be broken into two distinct phases, namely the placement and the routing of netlists

onto the physical architecture.

4.3.1 Placement

Simulated annealing [12], described in more detail in section 4.1, is used to determine a

high-quality placement. The cooling schedule used is based upon the cooling schedule

devised for the VPR tool-suite [13].

 45

The choice of the placement cost-function is based upon the fact that the number of

routing tracks in RaPiD is fixed. Therefore, the cost-function is based upon the number

of signals that need to be routed across a vertical partition of the datapath for a given

placement of datapath elements, which is referred to as the cutsize. The cost-function

used is

 cost = w*max_cutsize + (1-w)*avg_cutsize,

where 0 ≤ w ≤ 1, max_cutsize is the maximum cutsize for any vertical partition, and

avg_cutsize is the average cutsize across all vertical partitions. Through empirical

analysis, it was shown that setting w = 0.3 yielded the best placements [6], leading to the

following cost function:

cost = 0.3 * max_cutsize + 0.7*avg_cutsize.

4.3.2 Routing

Once placement of the functional units of a netlist has been performed, the next step is to

route all of the signals between the functional units. A version of the Pathfinder [14]

algorithm is used to route signals after the completion of the placement phase. There are

two main parts to the routing algorithm, a signal router and a global router. The signal

router is used to route individual signals, using Prim’s algorithm [15]. The global router

is used to adjust the cost of using each routing resource at the end of a routing iteration.

 46

The cost of using a routing resource is based upon the number of signals that share that

resource. The cost function used by the router for a particular node n is,

 Cn = (Bn + Hn) * Pn,

Where Bn is the initial cost of using the node, Hn is a cost term that is related to the

historical use of the resource, and Pn is the number of signals that are sharing that node

during the current iteration [6]. To facilitate initial sharing of resources, Hn is initially

set to zero and Pn is initially set to one. As the algorithm progresses, the value of Pn is

slowly increased each iteration, depending upon the use of the node. The value of Hn is

also slowly increased, depending upon the past use of the node. In essence, the initial

cost of routing resources is low, which has the effect of encouraging signals to share

units. But during subsequent iterations the cost steadily climbs, which has the effect of

forcing signals to competitively negotiate for routing resources. This insures that

resources are used by signals that have no other low-cost alternative. For a more detailed

explanation of the Pathfinder algorithm, please refer to [14]. In this brief outline of the

P&R tool generator, several features and details have been left out, since they are beyond

the scope of this dissertation. Please refer to [6] for further information.

 47

Chapter 5

Research Framework

In this initial version of the Totem Project, we are using the reconfigurable-pipelined

datapath (RaPiD) architectural style as a starting point for the circuits that we will be

generating [49], as mentioned in Chapter 2. RaPiD affords us with a ready source of full

custom layouts that have been created by Carl Ebeling’s group at the University of

Washington. It also enables us to leverage the RaPiD compiler and all of the netlists that

have been created for use on RaPiD architectures. For more information on the RaPiD

architectural style please refer to Chapter 2 of this work, or [49].

The VLSI Layout Generator automates the creation of mask ready layouts from the

circuits provided by the Architecture Generator. The layout generator must be able to

create layouts for any conceivable circuit that the high-level architecture generator is

capable of producing, without squandering any possible area gains that have been

achieved thus far. We have investigated three possible methods of automating the layout

process: standard cell generation [5, 9], circuit generators, and template reduction [63],

which will be detailed in later chapters. This chapter is concerned with the methodology

used to compare all three methods to each other and to the corresponding full custom

RaPiD circuits.

 48

5.1 Testing Framework

To evaluate the automatic generation of domain specific reconfigurable circuits we are

using thirteen different application domains. All of the netlist sets that make up each

application domain have been compiled using the RaPiD compiler [40]. Two of the

netlist sets, RADAR and Image, are actual application domains. The RADAR

application is used to observe the atmosphere using FM signals, while the Image

application is a minimal image processing library. The other eleven applications

represent the cross product of two domains, like the Image and RADAR application,

domains of similar netlists, like FIR, Matrix Multiply, and Sorters, or reduced domains,

like Reduced Image 1 through 4 and Reduced RADAR 4 through 6.

All of the application domains and their member netlists are shown in Table 5-1. In

addition, Tables 5-2 and 5-3 break down the functional unit utilization for each

application domain or each netlist respectively. Also, Table 5-4 is a combination of

Tables 5-1 and 5-3. It is important to note hat an application domain is any set of netlists

that a designer needs to support. Therefore, there is no compelling reason why the

netlists within an application domain must be similar in type or function. For example,

the functional unit utilization of each netlist in the FIR and Sorter application domains are

very similar to each other within their respective domains, but dissimilar to each other

across domains. (As seen in Table 5-2, none of the FIR netlists utilizes any embedded

memories, while none of the Sorter netlists utilizes any multipliers) However, this fact

 49

should not stop a designer from specifying a new domain that contains netlists from both

the FIR and Sorter application domains.

Table 5-1: The benchmark application domains and their corresponding member
netlists used to evaluate the Template Reduction, the Circuit Generator, and the
Standard Cell Method, along with the full custom RaPiD II tile. The applications are
ordered in the table by their percent utilization, from lower to higher values.

Application
Domain

Member Netlist Percent
Utilization

Reduced RADAR 6 decnsr, psd 20.92
FIR firsm2_unr, firsm3_unr, firsm4_unr, firsymeven 28.90
Reduced Image 1 firtm_2nd, matmult_unr 29.07
Reduced Image 2 1d_dct40, fft16_2nd, matmult_unr 29.15
Sorters sort_g, sort_rb, sort_2d_g, sort_2d_rb 32.12
Image 1d_dct40, firtm_2nd, fft16_2nd, matmult_unr 37.05
Matrix Multiply limited_unr, matmult_unr, matmult4_unr, vector_unr 37.43
Image and RADAR 1d_dct40, fft16_2nd, firtm_2nd, matmult_unr 41.21
Reduced RADAR 4 decnsr, fft16_2nd 50.88
RADAR decnsr, fft16_2nd , psd 52.79
Reduced Image 4 1d_dct40, fft16_2nd 52.82
Reduced RADAR 5 fft16_2nd, psd 53.54
Reduced Image 3 1d_dct40, fft16_2nd, firtm_2nd 60.18

Table 5-2: The benchmark application domains and the number of RaPiD II cells
needed to implement them. The type and number of functional units needed for each
application domain is also listed. The applications are ordered in the table by their
percent utilization, from lower to higher values.

Application Domain Number
of Cells ALUs Mults RAMs Data

Registers
Percent

Utilization
Reduced RADAR 6 5 18 5 0 5 20.92
FIR 20 35 18 0 85 28.90
Reduced Image 1 30 53 18 53 66 29.07
Reduced Image 2 30 53 18 53 66 29.15
Sorters 15 32 0 18 75 32.12
Image 30 53 18 53 66 37.05
Matrix Multiply 30 53 18 53 84 37.43
Image and RADAR 30 53 18 53 66 41.21
Reduced RADAR 4 7 25 14 14 28 50.88
RADAR 7 25 14 14 28 52.79
Reduced Image 4 7 25 14 14 28 52.82
Reduced RADAR 5 7 25 14 14 28 53.54
Reduced Image 3 7 25 14 14 28 60.18

 50

Table 5-3: The various netlists from the application domains, and the number and type
of RaPiD II functional units needed to support them.

Netlist ALUs Mults RAMs Data Registers
1d_dct40 4 3 0 4
decnsr 6 0 0 4
fft16_2nd 22 12 12 25
firsm2_unr 15 16 0 45
firsm3_unr 16 16 0 60
firsm4_unr 15 16 0 45
firsymeven 31 16 0 77
firtm_2nd 7 4 8 19
limited_unr 4 4 4 10
matmult4_unr 32 16 48 76
matmult_unr 48 16 48 60
psd 16 4 0 4
sort_g 29 0 16 62
sort_rb 29 0 9 68
sort_2d_g 22 0 12 45
sort_2d_rb 22 0 8 47
vector_unr 1 1 1 1

Table 5-4: This table is a combination of Tables 5-1 and 5-3. It lists the application
domain, followed by the percent utilization, and a breakdown of the usage of the ALUs,
multipliers, RAMs, and data-registers for the netlists in each application domain.

Application Domain Percent
Utilization Member Netlist ALUs Mults RAMs Data

Registers

decnsr 6 0 0 4
Reduced RADAR 6 20.92

psd 16 4 0 4
firsm2_unr, 15 16 0 45

firsm3_unr, 16 16 0 60

firsm4_unr, 15 16 0 45
FIR 28.9

firsymeven 31 16 0 77

firtm_2nd, 7 4 8 19
Reduced Image 1 29.07

matmult_unr 48 16 48 60

1d_dct40, 4 3 0 4

fft16_2nd, 22 12 12 25 Reduced Image 2 29.15

matmult_unr 48 16 48 60

 51

Table 5-4: Continued.

Application Percent
Utilization Member Netlist ALUs Mults RAMs Data

Registers

sort_g, 29 0 16 62
sort_rb, 29 0 9 68

sort_2d_g, 22 0 12 45
Sorters 32.12

sort_2d_rb 22 0 8 47

1d_dct40, 4 3 0 4

firtm_2nd, 7 4 8 19

fft16_2nd, 22 12 12 25
Image 37.05

matmult_unr 48 16 48 60

limited_unr, , 4 4 4 10

matmult_unr, 48 16 48 60

matmult4_unr 32 16 48 76
Matrix Multiply 37.43

vector_unr 1 1 1 1

1d_dct40, 4 3 0 4

fft16_2nd, 22 12 12 25

firtm_2nd, 7 4 8 19
Image and RADAR 41.21

matmult_unr 48 16 48 60

decnsr, 6 0 0 4
Reduced RADAR 4 50.88

fft16_2nd 22 12 12 25

decnsr, 6 0 0 4

fft16_2nd , 22 12 12 25 RADAR 52.79

psd 16 4 0 4

1d_dct40, 4 3 0 4
Reduced Image 4 52.82

fft16_2nd 22 12 12 25

fft16_2nd, 22 12 12 25
Reduced RADAR 5 53.54

psd 16 4 0 4

1d_dct40, 4 3 0 4

fft16_2nd, 22 12 12 25 Reduced Image 3 60.18

firtm_2nd 7 4 8 19

 52

5.1.1 Percent Utilization

The netlist in Table 5-1 are ordered by their percent utilization, which can be more

clearly seen in Figure 5-1. Percent utilization is a measure of the resources that an array

of full custom fixed tiles would need to support a particular application domain.

Resources include multipliers, ALUs, wires, bus connectors, routing muxes and demuxes,

data and pipeline registers, and memories. For example, an application domain that

requires half of the resources provided by the full custom fixed tile would fall at 50%

utilization. The percent utilization calculated in Table 5-1 was generated using the

RaPiD II fixed tile, which will be discussed in more detail below.

Figure 5-1: The thirteen application domains ordered along the horizontal axis by
percent utilization. Application domains with higher percent utilizations are to the left,
while application domains with lower percent utilizations are to the right.

 53

To actually calculate the percent utilization we use the place-and-route tool to map the

application domain onto an array of RaPiD II tiles. The length of the RaPiD II array is

determined by iteratively adding another fixed RaPiD II tile to the array until the

mapping is successful. If the size of the array becomes very large and the application

domain still fails to map, we determine that the application domain fails, and will not

map onto the resource mixed provided by the fixed tile. At this point, if possible, a

different fixed tile with a different routing and functional unit mix should be tried.

Once the array length is set, we look at all of the resources that are used by the

application domain mapping. In essence, if only one of the netlists in an application

domain uses any resource in the array, then that resource is part of the percent utilization

for that application domain. We divide the sum of the area of all of the resources needed

to support an application domain by the total area of the RaPiD II array to arrive at the

value of the percent utilization for an application on a particular array of fixed tiles. It

should be noted that the percent utilization is entirely dependent on the particular fixed

tile that is used, and if the fixed tile were to change then the percent utilization for a set of

applications could vary wildly. It is conceivable that application domains could move

from very high percent utilization to very low percent utilization and vice versa, based

solely on the choice of fixed tiles.

In essence, the percent utilization metric is a measure of how well a fixed tile is tuned to

a particular application domain. If the percent utilization of an application domain is

very high, then the resource mix of the fixed tile is well suited for that application

 54

domain. The converse is also true, with a low percent utilization indicating that a fixed

tile has many resources that are not needed by a particular application domain. This

metric can help designers to tune fixed tiles to particular application domains. However,

at the time when the composition of the RaPiD II fixed tile was determined, we did not

have this metric available to us. Therefore, the only design consideration that we pursued

was the ability of the RaPiD II tile to support as many application domains as possible.

Therefore, we did not optimize the RaPiD II tile for one application domain over another,

or even try to make sure that median value of all application domains had a high percent

utilization.

Finally, the percent utilization metric enables us to evaluate how all three methods

perform compared with each other and with the full custom fixed tile. By comparing

each method to the fixed tile, we are then able to relate all three methods to each other,

using percent utilization. It should be noted that the percent utilization metric is biased

towards the Template Reduction Method. This is because to find the percent utilization

we use the reduction lists that were created by the Template Reduction Method for each

application set. The reduction lists were evaluated to find the total area removed from the

template. In essence, the percent utilization metric is a measure of the Template

Reduction Method with perfect compaction. While the percent utilization metric is not

perfect, we feel that it is adequate for our purposes.

 55

5.1.2 RaPiD II Tile

The RaPiD I tile, shown in Figure 2-10, was used as a starting point for the creation of

the RaPiD II tile. While the RaPiD I tile is a template in its own right, the new RaPiD II

template was required, since we found that the original RaPiD-I tile does not have

enough interconnect resources to handle some of the benchmarks intended for the

architecture [38].

The RaPiD II tile, shown in Figure 5-2 and Figure 5-3, was created to support as many

application domains as possible. Various application domains, including those detailed

above, were run on the RaPiD I architecture, with some of the domains failing.

Resources were then slowly added to the RaPiD I tile until most of the domains could be

placed and routed. The following is a comparison of the RaPiD I and RaPiD II tiles:

• RaPiD I has 14 busses, RaPiD II has 24 busses

• In RaPiD I, all BC, pipeline registers, and data registers have up to three delays,

in RaPiD II all of these units only have one delay

• In RaPiD I, each functional unit has up to three delays at the output of the unit, in

RaPiD II there are none

• In one RaPiD I cell, there are 3 ALUs, 1 Mult, 3 RAMs, and 6 data registers,

along with 10 long lines with one BC

• RaPiD II has 5 ALUs, 3 Mults, 2 RAMs, and 6 data registers, along with 8 long

lines with four BCs, and 8 long lines with 2 BCs

By using a large number of domains to create the RaPiD II tile, it was hoped that the final

template would be able to support similar, but unknown domains in the future. This

method of producing a tile that is capable of handling a wide range of application

 56

domains is not unique to this work. Designers of fixed reconfigurable hardware must go

through this same process when finalizing a tile design.

Figure 5-2: Block diagram of one feature rich RaPiD II cell. Up to thirty of these cells
are placed along the horizontal axis.

While every effort was made to create a tile that supports a wide range of application

domains, there are still some drawbacks associated with the RaPiD II tile. The first major

drawback is the fact that the bus connectors, pipeline registers, and data registers only

contain one register, while these same resources in the RaPiD I tile contain three

registers. In addition, the functional units in the RaPiD II tile do not have registers on

their outputs, while functional units in RaPiD I have three registers on their outputs. This

severely limits the ability of the place and route tool to produce retimed mappings.

Therefore, none of the mappings was retimed, leading to mappings with extremely long

critical paths. The reduction of the number of registers was motivated by the fact that, at

 57

the time when the RaPiD II tile was finalized, the Architecture Generator and the Place-

and-Route Tool Generator were not able to handle more than one register.

Figure 5-3: The floorplan of one feature-rich RaPiD II cell. Up to thirty of these cells
are placed along the horizontal axis. Notice how the memory and the multiplier are
place above the datapath.

The second drawback associated with the RaPiD II tile is a lack of routing resources.

While the RaPiD II tile has 24 tracks, where the RaPiD I tile has 14 tracks, this is still not

enough routing resources for certain application domains. This is borne out by the fact

that the Camera and the Transforms applications still fail on the RaPiD II template. We

chose 24 routing tracks for the RaPiD II tile, since this was the maximum number of

routing tracks we were able to fit without increasing the height of the array when

compared to the RaPiD I tile. This limitation was due to the fact that the functional units

in both the RaPiD I and RaPiD II tiles were unchanged, therefore setting the height of

both arrays to the same value.

5.1.3 Area and Performance Evaluation

To evaluate the three methods, we are concerned with two metrics, namely the overall

area of the generated circuits, and the performance of the circuit when each of the

application domains are mapped, as evaluated by the static timing analyzer contained in

the place and route tool.

 58

The area of the generated circuits is evaluated by measuring the area of the layout that is

generated by each of the methods. This is a straightforward process, since all three

methods generate circuits using the NCSU CDK [60] for the TSMC .18µm process. The

benefit of having all three methods use the same layout process is the removal of any

differences that can occur from the use of a different layout process, including differences

in transistor size and layout rules.

The performance of each circuit is evaluated by using the Totem place and route tool to

map, or bind, each of the netlists in the application domain onto the generated circuit.

The place and route tool is then able to determine the performance of the mapped netlists

on the circuit by performing static timing analysis of the critical path. The place and

route tool is aware of the critical path of the netlist since it places and routes all of

components and the signals that constitute a netlist. The types of delays present on the

critical path can be broken into two different components, one type consisting of the

various functional units and routing resources and one type consisting of the interconnect.

It should be noted that the place and route tool is unable to retime signals, as mentioned

in the previous section. Therefore, any performance numbers generated by the place and

route tool should only be used for relative comparisons of the three methods.

To generate the performance models for all of the functional units and routing resources

generated by the Standard Cell Method, we created a placement of each individual unit.

We then performed spice [61] simulations on the small units like the mux, demux, and

 59

the data and pipeline registers and Pathmill [44] simulations on the larger units like the

multiplier, the ALU, and the embedded memory.

The functional units used in the Template Reduction and Circuit Generator Methods are

the same, while the functional units used in the Standard Cell Method are different. It

should be pointed out that we were unable to simulate the full custom layouts of the

multiplier and the memory unit that were created by Carl Ebeling’s RaPiD group, even

though both units passed the design rule checks. In addition, the ALU also had many

problems, though we were able to simulate a limited number of operations with it. We

believe that these issues arose when we ported the original RaPiD I layouts from the HP

.50µm process to the NCSU TSMC .18µm process. Therefore, to generate the models for

these units, spice simulations were performed on the schematics, instead of the actual

layouts.

The muxes and the demuxes used by both the Template Reduction and the Circuit

Generator Methods are different, as is the width of each of the functional units (This is

due to the differences in how each method provides input and output connections to the

functional units, and this difference is accounted for in the interconnect delays). To find

the mux and the demux models we ran spice simulations of these units from the extracted

view of the layouts.

The interconnect delay was modeled by running spice simulations on various lengths of

metal wires, with varying numbers of drivers and loads. The place and route tool is

aware of how many drivers there are on a wire and how much load. It also knows the

 60

length of each of wire, since it knows the length of each of the functional units, and it

knows the path the wire takes. Therefore, the place and route tool is able to accurately

model the interconnect delay of each segment between functional units on the critical

path. Modeling the interconnect delay in this fashion is made much easier because we

only have a one-dimensional interconnect.

 61

Chapter 6

Template Reduction

The idea behind template reduction is to start with a full-custom layout that provides a

superset of the required resources, and remove those resources that are not needed by a

given domain, as shown in Figure 6-1. This is done by actually editing the layout in an

automated fashion to eliminate the transistors and wires that form the unused resources,

as well as replacing programmable connections with fixed connections or breaks for

flexibility that is not needed. In this way, we can get most of the advantage of a full

custom layout, while still optimizing towards the actual intended usage of the array. By

using these techniques, the Template Reduction Method stands to obtain the benefits that

full custom designs afford, while retaining the ability to remove unneeded flexibility to

create further gains in both area and performance.

 62

Figure 6-1: Template reduction in action. The block diagram of a feature rich macro
cell is shown in (a). In figure (b), the macro cell has been reduced by the removal of
routing resources and functional units that are not needed to support the application
domain. Figure (c) is the final compacted cell.

 63

Place and Route
Tool Generator

Reduction List

SKILL Code
Generator

Cadence Layout

Template
Reduction

Method

Area
Results

Cadence
Compactor

Cadence SKILL Code

RaPiD II
Verilog

Application
Domain

RaPiD II
Tile

Place and Route
Tool

Performance
Results

Reduced Template

Figure 6-2: The tool flow of the Template Reduction Method. In the first step, the
Place-and-Route Generator receives as input the application domain, in the form of
netlists, and a verilog representation of the RaPiD II array. The P&R Tool then
generates the reduction list, which is sent to the SKILL code generator. The SKILL
code, generated by the SKILL code generator, is then sent to the Cadence Layout tool.
The Cadence Layout tool automatically runs the SKILL code, which instructs it to
perform all of the reductions on the RaPiD II tile. Next, Cadence Layout sends the
reduced template to the Cadence Compactor, where the design is compacted and area
results are collected. Finally, the P&R tool generates the performance numbers for the
newly compacted template.

Template reduction has been broken into three main tasks. The first is the creation of a

feature rich macro cell, which is used as an initial template that will be reduced and

compacted to form the final circuit. The second is the creation of the reduction list that

identifies the resources that should be removed. This is generated by Akshay Sharma’s

 64

place and route tool, which seeks to increase the commonality of resource usage between

all of the mappings to the reconfigurable logic, and thus increase the amount of resources

that can be eliminated. The final task is the implementation of the reductions on the

template, followed by the compaction of the resultant circuit. This involves automated

layout restructurings to edit the actual design files based upon the reduction list. Each of

these tasks will be outlined in the following sections of this chapter. See Figure 6-2 for a

detailed tool-flow.

6.1 Feature Rich Template

The creation of the feature rich template is the most critical aspect related to the Template

Reduction Method. A poor template will not be able to support a wide range of

applications, which in turn weakens the effectiveness of the method. Therefore, as

discussed in Chapter 5, extensive profiling has been performed to create the RaPiD II tile,

which was the feature rich template used by this iteration of the Template Reduction

Method.

As discussed in Chapter 5, the RaPiD II template is not perfect, and it fails on some

application domains. The failure of the RaPiD II template on these application domains

highlights the difficulty in generating a template, and reinforces the idea that there is no

perfect template. It also leads us to conclude that if a designer needs support for a set of

application domains that diverge from the template considerably, then the Template

Reduction Method has a high chance of performing poorly or failing altogether. If this

 65

situation arises, then the designer can use a different template, if one is available, or use

the Standard Cell or Circuit Generator Methods instead.

6.2 Reduction List Generation

The next task in template reduction is the creation of the reduction list, which is produced

by an algorithm developed by Akshay Sharma at the University of Washington [6]. The

creation of the reduction list is performed by a subtractive scheme that eliminates as

many functional units and routing resources (functional units and routing resources are

collectively called “resources”) as possible while placing and routing a set of netlists onto

the template architecture. Individual netlists are placed using a simulated annealing

approach [6], and routed using the Pathfinder algorithm [14]. Initially, all netlists in the

set are individually placed and routed on the template architecture. At the end of this first

run, the fraction of netlists that used each resource in the template is recorded, and a cost

(referred to as usage_cost) is assigned to each resource based on the fraction of netlists

that used the resource during the previous run. The usage_cost of a resource is inversely

proportional to the fraction of netlists that used the resource. Thus, the usage_cost of a

resource that was used by none of the netlists is highest, while the usage_cost of a

resource that was used by all netlists in the set is zero.

After completion of the first run on all netlists, a second run is commenced during which

the netlists in the set are individually placed and routed again on the template

architecture. However, for any given netlist, the cost of using a resource during the

 66

second run is influenced by the usage_cost of that resource. During placement, assigning

a logic block to a functional unit penalizes the cost of the placement by a factor

proportional to the usage_cost of the functional unit. The cost of assigning a logic block

to a functional unit with high usage_cost is higher than the cost of assigning the logic

block to a functional unit that has a relatively lower usage_cost. Similarly, while routing

a netlist, the base cost of using a routing resource is proportional to the usage_cost of that

resource. In general, if the usage_cost of a resource is high (i.e. the fraction of netlists

that used this resource in the previous run was low), the place-and-route tool is

influenced to select another resource with a lower usage_cost (i.e. a resource that was

used by a large fraction of netlists during the previous run). Thus, during the second run,

we try to direct the placement and routing of individual netlists toward using resources

that were used heavily during the previous run. At the same time, we also attempt to drive

down the fraction of netlists that use a resource to zero, so that we can eliminate that

resource eventually. At the end of the second run, the usage_cost of each resource is

again adjusted in a manner identical to that at the end of the first run, and a third run is

begun. We are only performing three runs, because the third run only deviates slightly

from the second run in increasing the amount of resources that can be eliminated. Thus,

any gains from subsequent runs are negligible, and therefore are not performed. Once the

three runs are completed, we have a list of the resources that can be eliminated from the

template architecture.

 67

Equation (1) describes the variation in the usage_cost of a functional unit with the

fraction of netlists that used that functional unit during the previous run.

usage_cost = k1*(1 – f) 2 ……………………………………………………… (1)

The fraction of netlists that used the functional unit in the previous run is given by f. The

usage_cost of all functional units that were used by more than 20% of the netlists during

the previous run decreases quadratically with f. The value of k1 is chosen in a manner

that ensures that the total usage_cost of a placement never exceeds 20% of the total cost

of a placement.

The usage_cost of routing resources also has a negative quadratic dependence on f

(Equation (2)). If none of the netlists in the set used a routing resource during the

previous run (f = 0), then its usage_cost is maximum and is equal to k2. On the other

hand, if all the netlists in the set used a routing resource during the previous run (f = 1),

then its usage_cost is zero. The value of k2 is selected so as to ensure that the usage_cost

of a routing resource never exceeds 10% of the base cost of the routing resource.

usage_cost = k2*(1 – f) 2 ………………………………………………...….(2)

6.3 Reduction and Compaction

Once the reduction list is generated, the final task is to actually edit the template in an

automated fashion, followed by a compaction step to reduce the template size. To reduce

the template, the layouts were automatically edited within the Cadence CAD tools. To

 68

achieve the required automation, Cadence SKILL code [39] is created by a SKILL code

generator written in Perl. The SKILL code generator parses the reduction list and

automatically creates a list of SKILL code reductions. Cadence SKILL Code enables

interaction with the Cadence tools at a very low level. Therefore, each reduction that the

subtractive method is able to perform has a corresponding SKILL routine that will

implement the reduction on the template. In Figure 6-3 we see SKILL code that deletes

all of the visible shapes contained within a specified bounding box. This type of SKILL

procedure, when coupled with methods that toggle the visibility of layers, enable the

Template Reduction Method to delete any shape in any of the layouts that represent the

template.

; You need to pass in the Bbox and the windowId
procedure(TRdelete_Bbox(Bbox windowId)
 printf(
 " TRdelete_Bbox(Bbox: %B)\n"
 Bbox
);end printf

 unless(geGetInstHier(windowId);makes sure inst exists
 println(geGetInstHier(windowId))
 error("Something is wrong in TRdelete_Bbox!\n")
);end unless

 if(geSelectArea(windowId Bbox)
 then
 geDeleteSelSet(windowId); performs the deletion
 else
 warn("In TRdelete_Bbox, geSelectArea is empty!\n")
);end if
);procedure TRdelete_Bbox

Figure 6-3: This figure is SKILL code that instructs Cadence to delete all of the visible
shapes or polygons that are within a particular bounding box (Bbox). This function is
used extensively in Template Reduction to delete polygons, and is used in conjunction
with functions that enable you to toggle the visibility of layers.

To remove as much overhead as possible we have implemented a wide range of

reductions. First among them is the elimination of any unused cells (that is, complete

RaPiD II tiles). The next reduction is the elimination of any functional units in any cell

 69

that are not needed. Next, we remove any of the bidirectional bus-connectors that are not

needed in the interconnect. The final reduction is the removal of any unused wires.

When an unused wire is removed, the corresponding transistors and programming bits in

any muxes and drivers that the wire interacts with are also removed. The removal of

wires and their corresponding transistors in muxes and drivers may seem unnecessary,

especially since the current compactor is unable to take advantage of these area gains (see

below). We do this reduction with the hope that a better compactor will be able to utilize

this reduction and make additional area gains. Once all of the reductions have been

preformed on the RaPiD II array, the final design is compacted.

The arrays were compacted by the Cadence compactor along the horizontal axis only.

The reason why the compactor was limited to only compacting along the horizontal axis

was that we had difficulty in compacting along the vertical axis. In addition, the

functional units themselves were not modified by the compactor. In essence, the

compactor only reclaimed empty space in the array by sliding functional units together

along the horizontal axis. Finally, the height of the array does not change from

application group to application group during compaction. This is because we did not

vary the bit width of the functional units, and because RaPiD utilizes a one-dimensional

routing interconnect. It also does not vary because we only compact in the horizontal,

and not the vertical direction.

 70

6.4 Results

We used five application domains to evaluate the Template Reduction Method. We did

not use all of the thirteen application domains discussed in Chapter 5. When this work

was performed the additional eight application domains, which are reductions or

combinations of the original five domains, did not exist. These eight domains were later

created to better understand how individual netlists could dominate within an application

domain. Unfortunately, after the eight additional domains were created, the Cadence

Compactor was updated and was unable to work within our tool-flow. Therefore, results

obtained from the additional application domains could not be produced.

All of the netlists in each application domain were compiled using the RaPiD compiler

[40]. The five application domains are:

• • Radar – used to observe the atmosphere using FM signals

• • Image Processing – a minimal image processing library

• • FIR – six different FIR filters, two of which time-multiplex use of multipliers

• • Matrix Multiply – five different matrix multipliers

• • Sorters – two 1D sorting netlists and two 2D sorting netlists

Refer to Chapter 5 for a more detailed discussion of these application domains.

6.4.1 Reduction List Generation

To generate the reduction list, a subtractive method was used, as explained above. To

maximize the number of possible reductions, netlists were forced to share resources as

much as possible. The results of the forced sharing after each of the three runs are shown

 71

in Figure 6-4 and Figure 6-5. Figure 6-4 shows functional unit sharing, while Figure 6-5

shows routing resource sharing. During the initial run, resource sharing is not considered

since we do not yet know which resources the individual mappings will prefer to use.

During the 2nd and 3rd runs, the cost to use sparsely utilized resources is made more

expensive. This has the effect of forcing netlists to share units as much as possible.

As can be seen, the subtractive approach is effective in increasing the proportion of

resources that can be eliminated. While on average 38% of the functional units and 60%

of the routing resources are unused in the initial run, this increases to 43% of functional

units and 73% of routing resources by the third run. Note that the changes from the

second to third run are relatively small, indicating that further iterations are unlikely to

make much improvement. Also note, the number of functional units that are shared by 2

or 3 netlists seems to stay static as we perform successive runs. Two things explain this

effect. First, it appears that the initial placement seems to capture most of these units.

Secondly, since the pie graph is only showing 0, 1, 2, or 3 or more netlists, we are not

seeing the increase in sharing by 4, 5 etc netlists. The important thing to note is not

necessarily the increase of sharing by 2, 3, 4, 5, etc. netlists, but the increase in the

functional units that have 0 sharing, since these functional units are the only ones that

will be eliminated by the Template Reduction Method and should be maximized as much

as possible.

 72

 Functional Unit Usage - Initial Run

0 1 2 3+

Functional Unit Usage - 2nd Run

0 1 2 3+

Functional Unit Usage - 3rd Run

0 1 2 3+

Figure 6-4: A comparison of the number of functional units used by zero, one, two, and
three or more netlists.

 Routing Resource Usage - Initial Run

0 1 2 3+

Routing Resource Usage - 2nd Run

0 1 2 3+

Routing Resource Usage - 3rd Run

0 1 2 3+

Figure 6-5: A comparison of the number of routing resources used by zero, one, two,
and three or more netlists.

6.4.2 Area

In Table 6-1 we see the 5 application groups, along with the number of RaPiD II cells

needed to support them. We also see the RaPiD II array length. This is followed by the

percent remaining of the functional units and routing resources. The functional units

include the ALUs, data registers, embedded memories, and multipliers present in the

array. The routing resources include all of the long and short lines, as well as the bus-

connectors that are in the array. The muxes and demuxes are not included in the table,

 73

because they are deleted if their associated functional unit is deleted. The length of the

array after compaction is then shown for each application group is shown. As stated

above, this is only compaction along the horizontal axis. Finally, from Table 6-1 we see

that the average percent of the template that remains is 47.6%.

Table 6-1: This table shows the number of cells used by each application group, followed
by the RaPiD Array length before compaction, the percent functional units and routing
resources remaining, the RaPiD Array length after compaction, and the percent of the
array that remains.

Application Group Number
of Cells

Array
Length

Percent FUs
Remaining

Percent
Routing

Remaining

Compacted
Array

Length

Percent of
Array

Remaining
FIR 20 50804.0 38 28 26663.7 52.5
Image Processing 30 76206.0 56 23 30207.9 39.6
Matrix Multiply 30 76206.0 51 28 34987.0 45.9
RADAR 7 17781.4 31 24 9968.8 56.1
Sorters 15 38103.0 46 29 16926.6 44.4
Average 47.6

While Table 6-1 shows overall trends, Graph 6-1, which was generated from the data

presented in Table 6-2, shows the average reduction of each cell in the array based upon

its position along the horizontal axis. The general trend that can be observed is the fact

that the majority of the reduction takes place at the ends of the array. This is to be

expected, since the middle of the array needs to support more communication than the

ends of the array. This also leads us to the possibility of creating specific templates for

the end of the arrays that do not have as much routing resources as the templates used for

the middle of the array. Having different templates that more accurately reflect

application domains will reduce any inefficiencies that occur when performing template

reduction.

 74

Table 6-2: This table shows the percentage of the area of each cell that remains after
compaction. The final column shows the average across application domains. The
application domains do not all require the same number of cells, hence the empty cells in
the table.

Percent Remaining Position in Array
Matrix Multiply RADAR Sorters FIR Image Average

Left End of Array 16.5 37.2 4.66 3.50 33.9 19.2
 10.9 12.6 38.6 20.7
 44.7 4.66 45.2 31.5
 44.6 59.4 50.2 51.4
 43.7 31.1 60.9 69.2 51.2
 35.2 75.7 48.6 53.1
 47.6 55.3 81.4 11.9 49.0
 56.2 65.0 39.7 53.6
 47.9 32.0 10.3 30.1
 61.2 78.8 37.0 59.0
 52.4 40.8 54.2 73.4 49.7 54.1
 57.5 47.1 52.3
 64.7 55.9 69.3 42.3 58.1
 50.4 48.5 55.3 51.4

Middle of Array 44.6 77.9 61.2
 44.7 71.4 52.8 52.7 26.1 49.5
 44.3 74.3 47.5 55.4
 35.5 70.3 17.7 41.1
 50.7 71.0 45.2 55.6
 60.8 39.7 64.3 83.1 36.4 56.9
 36.6 37.0 36.8
 19.4 58.5 53.8 47.8 44.9
 67.8 70.5 58.1 65.5
 34.9 63.1 46.2 48.1
 50.9 81.4 27.8 38.0 49.5
 55.3 52.0 38.1 12.6 39.5
 46.2 43.4 44.8
 37.0 40.4 23.9 33.7
 40.8 21.2 16.8 26.3

Right End of Array 35.0 46.3 27.1 4.53 35.9 29.8

 75

Graph 6-1: This graph shows the average percent of each cell remaining for each
application group. The x-axis is the position in the array, with origin set at the left end
of the array. The y-axis is the percent of the cell remaining.

Graph 6-2 shows the area of each benchmark set normalized to the area of the unaltered

template. The y-axis is the area of each benchmark set normalized to the RaPiD II fixed

tile, with lower values representing smaller, and therefore more desirable, circuits. The

x-axis represents the percent utilization, which is the percentage of the fixed tile

resources needed to support the application domain. The RaPiD II fixed array is

represented by the red line. We have decided to represent this array as a line because it

reinforces the idea that regardless of the percent utilization needed to support an

application domain, if this array is chosen, all of the resources are available whether or

not they are used. We have also included a line representing the lower bound for the

Template Reduction Method. It represents the best possible results, assuming perfect

reduction and compaction.

 76

0

0.2

0.4

0.6

0.8

1

1.2

25303540455055

Percent Utilization

No
rm

al
iz

ed
 A

re
a

RaPiD II

TR

Low er Bound

RADAR
Matrix

Multiply

Image

Sorters

FIR

Graph 6-2: This graph shows the normalized area of each benchmark set. The x-axis is
the percentage of the resources of the fixed tile needed to support the benchmark set.
The y-axis is the area of each benchmark set normalized to the RaPiD II fixed tile. The
lower bound on the best possible reductions. Three points on the line are (100, 1), (50,
.5), and (0, 0).

From Graph 6-2 we see that the five benchmark sets fall in a narrow 25-point range that

starts at approximately 25 percent and ends at approximately 55 percent. Various

synthetic netlists have been created with the intention of breaking out of this range, but

we have not been successful in this endeavor. All of the synthetic netlists that have been

created thus far seem to fall into the low end of percent utilization, with numbers in the

range of 35%. While it is not entirely clear why we have yet to encounter any netlists

that are outside of this range, this effect could likely be caused by the method we are

using to generate the template reduction list.

 77

Table 6-3: This table shows the number of cells used by each application group, followed
by the performance of each application group during the initial run, during pre-
reduction, and during post-reduction. The performance increase is measured from the
initial runs and the post-reduction runs.

Application
Group

Number
of Cells

Initial Run
(ns)

Pre-
Reduction

(ns)

Post-
Reduction

(ns)

Performance
Increase (%)

FIR 20 48.76 55.87 48.45 0.64
Image Processing 30 76.52 91.82 74.81 2.23
Matrix Multiply 30 78.82 87.07 71.67 9.07

RADAR 7 28.69 30.47 26.72 6.87
Sorters 15 37.93 35.43 28.47 24.94

Average 8.75

6.4.3 Performance

The performance of the mapped netlists was evaluated at three stages by the place-and-

route tool, as shown in Table 6-3 and Graph 6-3. The first stage was the initial run. The

initial run is an average of the performance of each netlist in the application domain, with

the condition that each netlist is unaware of the other netlists in the application domain.

Therefore, each netlist in the application group is able to use all of the resources without

any constraints. The pre-reduction performance numbers come from the third run, and

are an average of the performance of each netlist in the application group with constraints

placed upon which functional units and routing resources are available to a particular

netlist. As compared to the initial run, the netlists are aware of each other, and thus are

unable to use all resources unfettered. Finally, the post-reduction performance numbers

are an average of the performance of each netlist in the application group after template

reduction has been performed on the layout.

 78

While the gains in area are substantial, the performance results are not. This can be

attributed to the fact that the only real gains in performance generated by the Template

Reduction Method are in the interconnect. In essence, this method is moving functional

units closer together without changing the functional units themselves. The overall

performance of the circuit appears to be dominated by the functional unit delays and not

the interconnect delays. Therefore, this method has a minimal impact on performance. It

should be noted that the place and route tool is unable to retime signals, as mentioned in

Chapter 5. Therefore, any performance numbers generated by the place and route tool

should only be used for relative comparisons of the three methods.

0

0.2

0.4

0.6

0.8

1

1.2

25354555

Percent Utilization

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

RaPiD II

TR

RADAR Matrix
Multiply

Sorters

FIRImage

Graph 6-3: This graph shows the normalized performance of each benchmark set. The
x-axis is the percentage of the resources of the fixed tile needed to support the
benchmark set. The y-axis is the performance of each benchmark set normalized to the
performance of the benchmark set running on the RaPiD II fixed tile.

 79

6.5 Summary

In this chapter, we have presented the Template Reduction Method for automating the

layout of custom domain specific reconfigurable devices for SOC. The Template

Reduction Method is able to leverage full custom designs, while still removing any

unneeded resources that are not required to support the targeted application domain. This

method is able to create circuits that perform at or better than that of the initial full

custom template. If the template is a superset of the application domain, then this method

produces circuits that are approximately 47.6% smaller and 8.75% faster than the original

feature rich template. However, if the initial template is not a superset of the targeted

application domain, then the Template Reduction Method will not be able to produce a

solution. If this occurs, the designer would be forced to either use a different template

that contains a different resource mix, or the Circuit Generator Method or the Standard

Cell Method.

It should be noted that the generation of a quality template tile is not only a critical aspect

of the Template Reduction Method, but to any method that seeks to create reconfigurable

hardware that is targeted at a wide range of application domains. When creating such a

tile, many tradeoffs occur. For instance, should the template be able to handle the widest

range of domains possible, or should it be targeted at a couple of highly used domains

with minimal support for others? Deciding one over the other has a big impact on the

overall area of the circuits and on how, and if, mappings of different application domains

perform on the circuit.

 80

Chapter 7

Circuit Generator Method

The Standard Cell Method, which will be discussed in Chapter 8, is very flexible, and it

gives designers the ability to implement almost any circuit. However, one drawback

associated with the flexibility of this design method is its inability to leverage the

regularity that exists in FPGAs. By taking advantage of this regularity, a method of

automatically generating circuits may produce designs that are of higher quality than

standard cell based designs, without the need for feature-rich template cells.

One way of creating very regular circuits is by using generators. Circuit generators are

used to great effect when creating memory arrays, and since FPGA components, and

RaPiD components by extension, have well-known constrained structures like memory

arrays, they are well positioned as viable candidates for circuit generators. The Circuit

Generator Method will be able to handle a wider variety of possible architectures than the

Template Reduction Method, since the Circuit Generator Method will not be limited to a

particular set of templates. Thus, circuit generators are positioned to fill the gap between

the inflexible, but powerful Template Reduction Method and the very flexible, but less

efficient, Standard Cell Method.

 81

Figure 7-1: The top figure shows the initial generation of circuits by three generators.
Once the circuits have been generated, they are abutted together to create the
functioning reconfigurable array, which is shown in the bottom figure.

We have implemented circuit generators to automatically create the parts of the domain-

specific reconfigurable device that inherently have regularity. This includes generators

for the routing channels, DFFs, functional units, muxes, demuxes, and bus connectors.

We have also implemented generators to create the parts of the reconfigurable device that

do not have regularity, like the ALU, the multiplier, and the embedded memories.

However, these generators are not able to vary the structures they create in any

significant way. To create an entire reconfigurable subsystem out of blocks of logic that

the circuit generators have generated, one would only need to abut the blocks together,

 82

which is shown is Figure 7-1. Therefore, all of these generators have been combined to

create a method that is capable of generating a complete reconfigurable subsystem.

7.1 Approach

One reason why memory generators are so efficient at creating memory arrays is their

flexibility in tailoring the array to meet the design specifications, while at the same time

minimizing area and maximizing performance. The Circuit Generator Method performs

in much the same way (see Figure 7-1). This method does have a weakness, which is the

availability and flexibility of a wide range of generators. Therefore, to truly take

advantage of the Circuit Generator Method, the creation of generators that enable the

designer to modify all or most of the components in RaPiD II is an important goal of this

method.

The current approach for the Circuit Generator Method is a mix of two types of

generators. One type of generator enables the designer to modify certain parameters for

units like the mux, demux, pipeline register, and bus connector. The other type of

generator does not allow the designer to modify any parameters for units like memory

blocks, the ALU, and the multiplier. This last type of generator is just placing the

original full custom circuits into the array, with modified interconnect for the inputs and

outputs of the units that enable the unit to be tied into the overall array. This mix of

approaches is necessary, since it is not currently feasible to create true generators that

extract regularity from all units.

 83

In the current implementation of the method, it was necessary to fix some of the degrees

of freedom. This enabled the generation of preliminary results, which can be used as a

guide to relax some of the fixed variables to further improve the quality of the generated

circuits in future versions of this method. With this in mind, the generated circuits are

loosely fixed in the vertical direction based upon the number of buses and the number of

bits on each bus needed to support the specified architecture. In essence, the minimum

number of tracks is ascertained from the architecture description, which in turn enables us

to, with the TSMC .18µm rules as a guide, establish the height of the array using the

width of each track and the minimum metal spacing rules. Once the height of the array is

set, the other generators use this as an initial input parameter.

7.1.1 Silicon Compilers

The idea of using generators to create circuits is not unique. As mentioned, memory

generators are quite popular and are capable of automatically generating very efficient

memory arrays based upon a set of design parameters. However, memory generators are

not the only type of parameter-based generators. Silicon compilers of the early 1980s

were created with the notion of directly producing a mask layout from a behavioral or

functional description of a circuit. This was, and still is an ambitious design goal, and

with the advent of logic synthesis technology and industry-standard hardware description

languages, silicon compilers have fallen out of favor.

 84

The Bristle Block design system was the first version of a silicon compiler [64]. The

goal of the Bristle Block system was the production of an entire LSI mask set from a

single page high-level description of an integrated circuit. Bristle Blocks utilizes a three-

pass compiler, consisting of a core pass, a control pass, and a pad pass to create a layout

targeting one specific type of chip architecture. The circuits created by the Bristle Block

design system were approximately +/- 10% of the area of comparable circuits created by

hand.

The OASIS silicon compiler was introduced in 1990 as an open architectural system for

semi-custom design [65]. It consists of a variety of public domain tools in addition to

tools written specifically for OASIS. The full system consisted of four major parts,

namely the compiler and logic synthesizer, the simulator, the automatic test pattern

generator, and the automatic layout generator. A design control language (DECOL) was

created to manage and tie together all of the tools within OASIS. Since OASIS is not

confined to one specific type of chip architecture with limited control, it is a more

capable system than Bristle Blocks.

Bristle Blocks and OASIS are just two of the many different versions of silicon compilers

that have been created, but they both highlight the common approaches used in silicon

compilation. Silicon compilers were successful at creating efficient circuits when the

circuit size remained small and the targeted domain was limited and well known in

advance. However, after the advent of flexible HDLs like VHDL and powerful synthesis

tools such as Synopsys [41], silicon compliers fell out of favor. The Circuit Generator

 85

Method will be using a similar approach to the original Bristle Blocks silicon compiler,

since the circuits that will be created by the Circuit Generator Method are very regular

and have very specific design constraints. In addition, the Circuit Generator Method is

also similar in function to OASIS, because it uses Perl to parse the Verilog input and to

create the SKILL code that drives the Cadence tool to create the mask layouts.

7.1.2 Tool Flow

The entire tool flow for the Circuit Generator Method is shown in Figure 7-2. The first

step in the generation of circuits is to receive, as input from the AML, AMO, or GH

versions of the Architecture Generator [7], a Verilog representation of the custom

reconfigurable architecture. The next step in the circuit generation involves parsing the

Verilog that was generated by the Architecture Generator. The Verilog is parsed into

separate generator calls, including any required parameters. For example, the following

Verilog code:

bus_mux16_28 data_reg_0_In(.In0(ZERO),….,Out(WIRE_data_reg_0_In));

would be parsed so that the MUX generator would create a structure that contains sixteen

28-to-1 muxes that are stacked on top of each other with their control tied together.

After the Verilog has been parsed, the next step involves generating the Cadence SKILL

[39] code needed to implement the specified circuit. This is done by using Perl Cadence

SKILL code generators, which are similar in scope to the Cadence SKILL code generator

used in the Template Reduction Method. However, unlike in the Template Reduction

 86

Method, the Circuit Generator Method creates circuits in an additive, not a subtractive

fashion. The code generators call primitive Cadence SKILL functions that are able to do

simple tasks in Cadence, including opening, saving and closing files, drawing polygons

in the layout, and instantiating cells. The code generators create circuits for all of the

units needed to create the reconfigurable circuits, including muxes, demuxes, pipelined

registers, bus-connectors, ALUs, multipliers, and SRAM blocks.

Architecture
Generator

Verilog

Circuit Generator
Verilog Parser

Parameter Lists

Cadence SKILL Code

Generator Generator Generator......

Cadence

Circuit
Generator

Method

Area
Results

Place and Route
Tool

Performance
Results

Figure 7-2: The tool flow of the Circuit Generator Method. The first step is receiving
the Verilog representation of the reconfigurable circuit from the Architecture
Generator [7]. The next step is to parse the Verilog. The parsed Verilog is then sent to
the various generators, which create Cadence SKILL code [39] that will generate the
circuits. The Cadence SKILL code is then sent into Cadence, which will do the actual
circuit creation. The final step involves using the P&R tool [6] to generate performance
numbers.

 87

1

2 3

4 5

Figure 7-3: One tristate inverter laid out in a horizontal fashion, which is the smallest
building block of both the muxes and demuxes, has enough length in the vertical
direction to support up to three horizontal routing tracks. Three routing tracks are able
to support up to five bits. The metal lines pictured in the figure are on the fourth and
sixth metal layers, of the six metal layer TSMC .18µm process. The fifth metal layer is
reserved for vertical jogs between metal layers four and six.

The generated circuits are targeted at the TSMC .18µm process. The height of the

generated circuits is set by the number of routing tracks needed to support the number of

bits per bus specified by the architectural description. In the TSMC .18µ process, a

minimum size tristate inverter, laid out in a horizontal fashion, is equivalent in height to

three routing tracks, as shown in Figure 7-3. In essence, using metal four and metal six

for routing, three routing tracks are able to support a maximum of five bits, which is also

shown in Figure 7-3.

Table 7-1 lists the different metal layers and their purpose. We were restricted in our use

of metal layers, since the bulk of the layouts that we were working with were laid out in

an HP .50µm 3 metal layer process. We were thus only able to route over cells with

metal 4, metal 5, and metal 6.

 88

Table 7-1: The metal layers and their corresponding purpose.

Metal Layer Purpose
Metal 1 Local Cell Routing, Control
Metal 2 Power and Ground
Metal 3 Local Cell Routing
Metal 4 Horizontal Routing
Metal 5 Vertical Routing
Metal 6 Horizontal Routing

Once the circuits have been produced, the next phase of circuit generation involves the

creation of SKILL code that will abut the generated circuits together. This glue logic

involves ensuring that the routing between the circuits is maintained, as well as ensuring

that a minimum amount of space is wasted between generated circuits. Careful planning

of any “edge effects”, which includes problems with wells, active-area, or implant, is

critical to help mitigate any problems that can lead to wasted space.

The last step is to run Cadence to create the circuits and to place the generated circuits

together along the horizontal axis with glue logic establishing connections between the

various generated circuits. The runtime of the code is on the order of ten minutes, unlike

the Template Reduction Method, which is on the order of hours. The reason why the

runtimes varies so much between the methods is the fact that the Circuit Generator

Method is essentially creating flat circuits with only a few layers of hierarchy, while the

Template Reduction Method reduces circuits that contain many levels of unique

hierarchy. Dealing with a large structure of unique cells takes hours due to opening and

closing of so many different files. This fact lead us to make sure that the Circuit

Generator Method operated on flat circuits with only a few levels of hierarchy.

 89

Once the circuits are generated, wire lengths are extracted which are used by the Place

and Route tool generator to determine performance characteristics for the specified

architecture. The Place and Route tool maps the various netlists from the application

domains onto the architecture to determine the performance numbers, using its detailed

wire and functional unit models to attain these numbers. The next sections will go over

the various generators in more detail.

7.2 Generators

We have created a generator for each of the components present in the RaPiD II template.

The generators can be grouped according to the similarity of their generated structures, or

according to the similarity of the circuit generation methodology. Therefore, the

generators are grouped as follows: the mux and demux generators, the pipeline register

and bus connector generators, and the ALU, multiplier, and embedded memory

generators. The following sections discuss how each group of generators automatically

generates circuits.

7.2.1 MUX and Demux Generators

The mux and demux generators are used to set the initial height of the reconfigurable

arrays that the Circuit Generator Method creates. One goal of the circuit generators is to

ensure that the capacitance and the delay of the muxes and the demuxes that are

generated are as small as possible. Towards this end, we use the full custom muxes and

demuxes used in the Template Reduction Method (Figure 7-4) as a starting point.

 90

Therefore, all muxes and demuxes that are generated use the same full custom tristate

inverters that are used in the Template Reduction Method, as can be seen in Figure 7-5,

but in a horizontal instead of a vertical arrangement to help reduce the complexity of the

generation of the control lines.

Another difference between the RaPiD I mux and the generated mux is the use of

polyslicon lines instead of metal one to route the control wires. The move to use metal

one wires instead of polysilicon wires was based upon the fact that under the TSMC .18µ

design rules, a tremendous amount of polysilicon wire jogs would be needed to fit

contacts into the control routing channels. In addition, since the number of buses that the

Circuit Generator Method needs to support can be quite large, the length of the control

wires has the potential to grow quite long. The long potential length of control wires

makes metal one a better potential candidate than polysilicon. Metal 2 and metal 3 wires

were considered, but the cells make use of both of these metals, as shown in Table 7-1,

and they would not provide any additional benefit over metal 1.

One final point that should be made about the creation of these structures is the fact that

the tristate inverters used for both the muxes and the demuxes are sized the same. This

can compromise performance, since the demux drivers may need to drive much more

capacitance than the mux drivers do. We have chosen not to size the demux tristate

inverters in this version of the Circuit Generator Method to reduce the complexity of the

problem. In future versions, the demux generators should be able to create tristate

inverters that are sized more appropriately, which will address this shortcoming.

 91

Figure 7-4: Full Custom 24-to-1 mux used in the Template Reduction Method.

Bit 16

Bit 21

Bit 6

Bit 11

Bit 1

Bit 17

Bit 22

Bit 7

Bit 12

Bit 2

Bit 18

Bit 23

Bit 8

Bit 13

Bit 3

Bit 19

Bit 24

Bit 9

Bit 14

Bit 4

Bit 20

Bit 10

Bit 15

Bit 5

Figure 7-5: Generated 24-to-1 mux used in the Circuit Generater Method.

The process used in the generation of muxes and demuxes is fashioned after the process

used to create the full custom muxes and demuxes in the full custom RaPiD II tile, only

our approach is automated. The decision to create a new row of tristate inverters is based

upon the number of metal tracks that can fit in the vertical area of one horizontally placed

tristate inverter, which happens to be three. In essence, if six tracks are needed, you

would use two rows or tristate inverters, but if nine tracks are needed you would use three

tracks. The formula to determine the number of tristate inverter rows is floor((n+1)/5),

 92

which is borne out by Table 7-2. Figure 7-6 shows the configurations of muxes from 4

bits in size to 20 bits in size, in 4 bit increments. When minimizing wasted area, the most

efficient structures are muxes or demuxes of bit size p, where p mod 5 is equal to zero,

since each horizontal tristate inverter is three tracks, or 5 bits, high. Structures with size

q, where q mod 5 is equal to one, are the most inefficient.

Table 7-2: Various configurations of muxes or demuxes based upon the number of bits.
The formula for establishing the number of rows is floor((n+1)/5), where n is the
number of bits in the mux or demux. The most efficient structures are of bit size p,
where p mod 5 is equal to zero. The most inefficient structures are of bit size q, where q
mod 5 is equal to one.

Number of
Bits

Number of
Tracks

Number of
Rows

Number of Tristate
Inverters Per Row

4 3 1 4
5 3 1 5
6 4 1 6
7 5 1 7
8 5 1 8
9 6 2 5, 4

10 6 2 5, 5
11 7 2 5, 6
12 8 2 6, 6
13 8 2 6, 7
14 9 3 5, 5, 4
15 9 3 5, 5, 5
16 10 3 5, 5, 6
17 11 3 5, 5, 6
18 11 3 6, 6, 6
19 12 4 5, 5, 5, 4
20 12 4 5, 5, 5, 5
21 13 4 5, 5, 5, 6
22 14 4 5, 5, 6, 6
23 14 4 5, 6, 6, 6
24 15 5 5, 5, 5, 5, 4
25 15 5 5, 5, 5, 5, 5
26 16 5 5, 5, 5, 5, 6
27 17 5 5, 5, 5, 6, 6
28 17 5 5, 5, 6, 6, 6

 93

Bit 1 Bit 2 Bit 3 Bit 4

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

Bit 6 Bit 7 Bit 8 Bit 9 Bit 10

Bit 16Bit 11 Bit 12 Bit 13 Bit 14 Bit 15

Bit 1

Bit 6

Bit 11

Bit 16

Bit 2

Bit 7

Bit 12

Bit 17

Bit 3

Bit 8

Bit 13

Bit 18

Bit 4

Bit 9

Bit 14

Bit 19

Bit 5

Bit 10

Bit 15

Bit 20

Figure 7-6: Various configurations of muxes based upon the number of bits, and the
number of routing tracks. The top figure is a 4 bit mux, followed by 8, 12, 16, and 20.
All of the figures are to scale. Notice the increase in the width of the control routing
channel as the number of tristate rows increase, and the wasted space in the 16 bit mux.

 94

7.2.2 Pipeline Register and Bus Connector Generators

The approach to the generation of bus connectors and pipeline registers is more

constrained than the approach used to generate muxes and demuxes. Only two types of

bus connectors (BC) or pipeline registers (PR) are generated, either one or three delay

versions. Figure 7-7 and Figure 7-8 are the mask layouts for both types of BC’s and

PR’s. It can also be seen in Figures 7-7 and 7-8 that the BC and PR are very similar in

size and structure. Therefore, based upon these similarities, the generated structure of

BC’s and PR’s for a particular circuit will follow the same pattern, depending on whether

the specified architecture requires units that have one or three delays. The full custom

RaPiD II tile consists of only one delay PR’s and BC’s, while the original RaPiD I

template consist of three delay PR’s and BC’s.

Figure 7-7: Bus Connectors. The BC on the left is capable of three delays, while the BC
on the right is capable of one delay.

7.2.3 ALU, Multiplier, and SRAM Generators

True generation of ALUs, Multipliers, and memories is a more complicated proposition,

when compared to the generation of muxes, demuxes, PRs, or BCs. That is why in this

 95

version of circuit generation we do not generate these functional units, we only generate

the input and output interconnect needed to tie them into the routing fabric.

Figure 7-8: Pipeline Registers. The PR on the left is capable of three delays, while the
PR on the right is capable or one delay.

The full-custom ALU used in RaPiD I, shown in Figure 7-9, is a carry-look-ahead adder

design. The ALU was built in a very modular fashion, shown in Figure 7-7, but there are

still very significant issues related to modularizing the carry-look-ahead portions. One

drawback to the implementation of a CLA is the fact that to create an efficient structure,

the circuit should be laid out in a linear fashion. This limitation fixes possible

implementations of a CLA in either the horizontal or the vertical linear direction. In our

case, the ALU is laid out in the vertical direction, so an increase or decrease in the bit

width of the ALU would lead to an increase or a decrease, respectively, of the overall

height of the RaPiD array. Because of these limitations and the fact that all of the

application sets we have at our disposal currently only call for a 16 bit ALU, the only

generation that occurs when an ALU is specified is the instantiation of the existing full

custom ALU. The real work of the generator is ensuring that the I/Os of the ALU

correctly match up with the routing fabric.

 96

Figure 7-9: This shows a modular 16 bit carry look ahead ALU.

The multiplier and embedded memory elements are even less modular and more tightly

coupled than the ALU. Therefore, a similar methodology to that used to generate the

ALU is used when generating these units. Once again, the main work of the generators

consists of coupling the I/Os of these units with the routing fabric.

 97

16 Bit ALU

Mux Demux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

16 Bit ALU

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

16 Bit ALU

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Demux

Figure 7-10: Three different generated ALUs. Black boxes represent wasted area. The
version on the left has 20 tracks. The version in the middle has 24 tracks. The version
on the right has 28 tracks. The most wasteful version is the ALU on the left with 20
tracks. This is verified when all of the wasted space is combined into a single block, as
seen below the ALUs.

It is limiting and sometimes wasteful (as shown in Figure 7-10), not to be able to vary the

bit width of these functional units, but for our purposes, it suffices. This is because the

application sets that we have available to us only require functional units that are 16 bits

wide. In the future, it would significantly increase the flexibility of this method if the bit

width of all of the functional units could be varied. However, the creation of these types

of generators at this time is beyond the scope of this work.

7.3 Results

We are using all of the 13 application sets of netlists, which were explained in detail in

chapter 5, to evaluate the Circuit Generator Method. As described earlier, the first step in

 98

the generation of circuits is to receive as input from the Architecture Generator a Verilog

representation of the specified architecture. The Architecture Generator, as previously

discussed in Chapter 4, uses three different methods to create the routing for the

architectures that it generates. The three methods are Greedy Histogram (GH), Add Max

Once (AMO), and Add Min Loop (AML). Therefore, all of the results in this section will

reflect each of these three methods of architecture generation. When bypassing the

Architecture Generator and using the Verilog representation of the RaPiD II tile, the

layout of the circuit generated version of the RaPiD II tile is 6% larger than the full-

custom RaPiD II tile layout.

0

0.2

0.4

0.6

0.8

1

1.2

1520253035404550556065

Percent Utilization

N
or

m
al

iz
ed

 A
re

aRaPiD II
CG AML
CG AMO
CG GH

Graph 7-1: This graph, which was generated from the data presented in Table 7-3,
shows the normalized area of each benchmark set. The x-axis is the percentage of the
resources of the fixed RaPiD II tile needed to support the benchmark set. The y-axis is
the area of each benchmark set normalized to the RaPiD II fixed tile.

 99

7.3.1 Area

The first metric we can use to evaluate the quality of the circuits that are generated by the

Circuit Generator Method is the area of each circuit. Graph 7-1 shows the area of each

benchmark set, normalized to the area of the unaltered template. The y-axis is the area of

each benchmark set normalized to the RaPiD II fixed tile, with lower values representing

smaller, and therefore more desirable, circuits. The x-axis represents the percentage of

the fixed tile resources needed to support the benchmark set.

Figure 7-11: The thirteen application domains ordered along the horizontal axis by
percent utilization. Application domains with higher percent utilizations are to the left,
while application domains with lower percent utilizations are to the right. The
fft16_2nd and the matmult_unr netlists dominate ten of the thirteen application
domains, which is indicated by the red and blue circles.

From Graph 7-1, the most noticeable feature is the fact that the Circuit Generator Method

is consistently able to create circuits that have a smaller area than the fixed RaPiD II tile

 100

throughout the 60% to 20% utilization range. Another feature of Graph 7-1 is the fact

that the benchmarks seem to cluster into two groups, one group that has a high percent

utilization, and another that has a low percent utilization. This is due to the domination

of certain netlists in each application group, which can be seen more clearly in Figure 7-

11, and can also be seen in Table 5-4. The first cluster is dominated by the fft16_2nd

netlist, and the second cluster is dominated by the matmult_unr netlist. Finally, when

comparing the three types of Architecture Generation algorithms, it is apparent that GH

outperforms AML and AMO when percent utilization is high, but as the application

domain narrows and the percent utilization is reduced, the three algorithms perform

similarly.

Table 7-3: The application domains and their respective percent utilization are shown.
The area normalized to the RaPiD II tile of the circuit generated architectures are
shown. The architectures were generated from Verilog that was generated by the AMO,
AML, and the GH Architecture Generators.

Normalized Area
Application Domain Percent Utilization

AML AMO GH Average

Reduced RADAR 6 20.92 0.229 0.204 0.223 0.219
FIR 28.90 0.248 0.269 0.253 0.257
Reduced IMAGE 1 29.07 0.391 0.392 0.446 0.410
Reduced IMAGE 2 29.15 0.389 0.400 0.340 0.377
Sorters 32.12 0.357 0.288 0.344 0.330
Image 37.05 0.317 0.429 0.459 0.402
Matrix Multiply 37.43 0.407 0.418 0.394 0.406
Image and RADAR 41.21 0.391 0.322 0.376 0.363
Reduced RADAR 4 50.88 0.610 0.620 0.592 0.607
RADAR 52.79 0.737 0.625 0.601 0.654
Reduced IMAGE 4 52.82 0.739 0.616 0.601 0.652
Reduced RADAR 5 53.45 0.741 0.757 0.593 0.697
Reduced IMAGE 3 60.18 0.741 0.629 0.597 0.656
Average --- 0.484 0.459 0.448 0.464

 101

7.3.2 Performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

152535455565

Percent Utilization

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

RaPiD II

CG AML

CG AMO

CG GH

Graph 7-2: This graph, which was generated from the data presented in Table 7-4,
shows the normalized performance of each benchmark set. The x-axis is the percentage
of the resources of the fixed RaPiD II tile needed to support the benchmark set. The y-
axis is the performance of each benchmark set normalized to the RaPiD II fixed tile.

Graph 7-2 shows the performance of each benchmark set after it has been normalized to

the performance of the fixed RaPiD II tile, where lower performance indicates a higher

quality circuit. Once again, as seen on Graph 7-1, the benchmarks are clustered into two

groups, depending upon which netlists are dominating within the application domains.

Another feature that can be seen on the graph is the fact that the performance of the

benchmarks increases, represented by lower values on the graph, as percent utilization

decreases. This is an overall trend with some outliers, and these results are highly

dependent on the efficiency of the place and route tool. The most noticeable outlier is the

 102

FIR application domain. As can be seen in Table 7-4, two netlists dominate the

performance of this application group, namely the firsm3_unr and the firsymenven_unr,

causing it to perform poorly. It should be noted that the place and route tool is unable to

retime signals, as mentioned in Chapter 5. Therefore, any performance numbers

generated by the place and route tool should only be used for relative comparisons of the

three methods.

Table 7-4: The normalized average performance of the circuits generated using the
AML, AMO, and GH architecture generators for each application group.

Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average

AML_decnsr 9.5
AML_psd 13.7

11.6 19.8 0.59

AMO_decnsr 10.2
AMO_psd 16.3

13.3 19.8 0.67

GH_decnsr 8.7

Reduce RADAR 6

GH_psd 14.9
11.8 19.8 0.60

0.62

AML_firsm2_unr 23.3

AML_firsm3_unr 52.4

AML_firsm4_unr 23.3

AML_firsymeven_unr 42.8

35.5 33.3 1.06

AMO_firsm2_unr 24.3

AMO_firsm3_unr 67.5

AMO_firsm4_unr 24.3

AMO_firsymeven_unr 54.1

42.5 33.3 1.28

GH_firsm2_unr 24.3

GH_firsm3_unr 54.3

GH_firsm4_unr 24.3

FIR

GH_firsymeven_unr 48.7

37.9 33.3 1.14

1.16

 103

Table 7-4: Continued.

Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average

AML_firtm_2nd 22.5

AML_matmult_unr 45.7
34.1 67.4 0.51

AMO_firtm_2nd 21.4

AMO_matmult_unr 39.8
30.6 67.4 0.45

GH_firtm_2nd 21.4

Reduce Image 1

GH_matmult_unr 58.3
39.9 67.4 0.59

0.52

AML_1d_dct40 58.8
AML_fft16_2nd 73.0

AML_matmult_unr 39.8
57.2 88.0 0.65

AMO_1d_dct40 53.2
AMO_fft16_2nd 81.9

AMO_matmult_unr 40.4
58.5 88.0 0.67

GH_1d_dct40 44.6
GH_fft16_2nd 82.9

Reduce Image 2

GH_matmult_unr 46.0
57.9 88.0 0.66

0.66

AML_sort_2d_g 18.9

AML_sort_2d_rb 17.5

AML_sort_g 18.0

AML_sort_rb 18.3

18.2 34.2 0.53

AMO_sort_2d_g 23.4

AMO_sort_2d_rb 18.7

AMO_sort_g 20.5

AMO_sort_rb 18.8

20.4 34.2 0.60

GH_sort_2d_g 21.8

GH_sort_2d_rb 19.1

GH_sort_g 18.6

Sorters

GH_sort_rb 18.0

19.4 34.2 0.57

0.56

 104

Table 7-4: Continued.

Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average

AML_1d_dct40 68.6

AML_fft16_2nd 85.4

AML_firtm_2nd 16.3

AML_matmult_unr 42.0

53.1 79.9 0.66

AMO_1d_dct40 46.5

AMO_fft16_2nd 68.5

AMO_firtm_2nd 21.2

AMO_matmult_unr 43.7

45.0 79.9 0.56

GH_1d_dct40 47.0

GH_fft16_2nd 79.7

GH_firtm_2nd 22.2

Image

GH_matmult_unr 55.0

51.0 79.9 0.64

0.62

AML_limited_unr 41.9

AML_matmult4_unr 41.8

AML_matmult_unr 42.8

AML_vector_unr 40.5

41.7 78.6 0.53

AMO_limited_unr 43.4

AMO_matmult4_unr 46.4

AMO_matmult_unr 46.8

AMO_vector_unr 42.2

44.7 78.6 0.57

GH_limited_unr 42.5

GH_matmult4_unr 43.9

GH_matmult_unr 40.7

Matmult

GH_vector_unr 39.9

41.8 78.6 0.53

0.54

 105

Table 7-4: Continued.

Application Netlists Performance (ns) Average (ns) RaPiD II Normalized Normalized
Average

AML_decnsr 46.5
AML_psd 52.9

AML_1d_dct40 52.9
AML_fft16_2nd 79.7
AML_firtm_2nd 15.8

AML_matmult_unr 42.3

48.4 80.1 0.60

AMO_decnsr 37.8
AMO_psd 44.9

AMO_1d_dct40 44.1
AMO_fft16_2nd 86.2
AMO_firtm_2nd 20.0

AMO_matmult_unr 39.5

45.4 80.1 0.57

GH_decnsr 38.8
GH_psd 46.1

GH_1d_dct40 46.3
GH_fft16_2nd 61.3
GH_firtm_2nd 23.8

Image and
RADAR

GH_matmult_unr 40.5

42.8 80.1 0.53

0.57

AML_decnsr 19.5

AML_fft16_2nd 42.0
30.7 30.2 1.02

AMO_decnsr 18.8

AMO_fft16_2nd 43.4
31.1 30.2 1.03

GH_1d_dct40 23.6

Reduce
RADAR 4

GH_fft16_2nd 48.9
36.3 30.2 1.20

1.08

AML_decnsr 25.3

AML_fft16_2nd 56.1

AML_psd 25.5

35.6 29.0 1.23

AMO_decnsr 19.2

AMO_fft16_2nd 47.9

AMO_psd 25.2

30.8 29.0 1.06

GH_decnsr 18.0

GH_fft16_2nd 39.5

RADAR

GH_psd 24.8

27.4 29.0 0.95

1.08

 106

Table 7-4: Continued.

Application Netlists Performance (ns) Average (ns) RaPiD II Normalized Normalized
Average

AML_1d_dct40 34.1
AML_fft16_2nd 59.8

47.0 33.1 1.42

AMO_1d_dct40 25.1
AMO_fft16_2nd 39.8

32.4 33.1 0.98

GH_decnsr 18.0

Reduce
Image 4

GH_fft16_2nd 47.7
32.8 33.1 0.99

1.13

AML_fft16_2nd 56.4
AML_psd 25.0

40.7 32.9 1.24

AMO_fft16_2nd 60.6
AMO_psd 25.6

43.1 32.9 1.31

GH_fft16_2nd 39.5

Reduce
RADAR 5

GH_psd 22.9
31.2 32.9 0.95

1.16

AML_1d_dct40 27.0

AML_fft16_2nd 58.9

AML_firtm_2nd 13.4

33.1 26.8 1.24

AMO_1d_dct40 31.2

AMO_fft16_2nd 55.0

AMO_firtm_2nd 11.8

32.7 26.8 1.22

GH_1d_dct40 25.9

GH_fft16_2nd 41.1

Reduce
Image 3

GH_firtm_2nd 16.0

27.7 26.8 1.03

1.16

Average 0.836

7.4 Summary

In this chapter, we have presented the Circuit Generator Method for automating the

layout of custom domain specific reconfigurable devices for SOC. The Circuit Generator

Method is able to leverage the regularity that exists in FPGA designs in a method very

similar to the creation of memory arrays by memory generators. This method is able to

 107

create circuits that perform better than that of the RaPiD II full custom fixed tile, as long

as the specified architecture does not require functional units or routing resources that do

not have a corresponding generator. If this condition is met, then the Circuit Generator

Method produces circuits that are approximately 46% smaller and 16% faster than the

full custom RaPiD II fixed tile, as shown in Tables 7-3 and 7-4, respectively. However,

if the specified architectures require units or routing resources for which a generator does

not exists, then the Circuit Generator Method will not be able to produce a solution,

forcing the designer to try either the Template Reduction Method or the Standard Cell

Method.

 108

Chapter 8

Standard Cell Method

The Template Reduction Method produces very efficient implementations, but it only

functions if the proposed architecture does not deviate significantly from the provided

macro cells. The Circuit Generator Method does not rely on a set macro cell like the

Template Reduction Method, but it does rely upon the existence of a wide range of

flexible generators, which must exist in order to create viable circuits. Therefore, to fill

the gaps that exist between the templates, and to alleviate the need for a wide range of

generators, we have implemented a Standard Cell Method of layout generation. This

method will provide Totem with the ability to create a reconfigurable subsystem for any

application domain, even for application domains in which the Template Reduction and

Circuit Generator Methods have failed.

The use of standard cells provides an opportunity to more aggressively optimize the

architecture than if templates or generators were used. This opportunity arises because

the circuits created by this method are built from the ground up, and thus do not inherit

any design tradeoffs that were implemented when the full custom template or circuit

generators were created. For example, if a designer requires a low power design, then it

is possible to use a low power library instead of a library that is optimized for area or

 109

performance. Template Reduction and Circuit Generators can only compete with this

level of flexibility by the creation of multiple templates or generators, each of which is

targeted at different design goals, like lower power, smaller area, or higher performance.

In addition, the use of the Standard Cell Method allows the designer to easily integrate

the structures created by Totem into the typical SOC design flow, since standard cell

flows are widely used throughout industry.

Unfortunately, the Standard Cell Method inherits all of the drawbacks introduced into a

design when using standard cells instead of full custom layouts, including increased

circuit size and reduced performance. Another drawback associated with the Standard

Cell Method is the fact that generic standard cell libraries are not able to take advantage

of the regularity that exists in FPGAs. In previous work [5], we explored the possibility

of creating an FPGA optimized standard cell library. This was done by creating

optimized cells, which included LUTs, SRAM bits, muxes, and demuxes, which are

typical FPGA components. Since these types of resources are used extensively in

FPGAs, an improvement of approximately 20% can be attained by the optimization of

these cells, when compared to an unoptimized generic standard cell library [5]. In Figure

8-1, we show a full-custom layout of a version of RaPiD that does not include multipliers

or memories. We also show the same RaPiD created by using our standard cell tool flow

with both a generic standard cell library created by Tanner [42], and an FPGA optimized

version of the Tanner library that had optimized muxes, demuxes, and flip-flops. The

relative sizes of the layouts have been preserved and, as shown, the FPGA optimized

 110

Tanner standard cell layout is approximately 20% smaller then the generic Tanner

standard cell layout.

Figure 8-1: From previous work, the generic Tanner standard cell library (top left),
FPGA optimized Tanner standard cell library (top right), and a full-custom RaPiD
(bottom) that does not contain any multipliers or memories [5]. The relative size of the
various layouts has been preserved.

8.1 Experimental Setup and Procedure

8.1.1 Setup

To retain as much flexibility as possible in our standard cell implementation, behavioral

Verilog representations were created for all of the RaPiD components. The Architecture

Generator used these behavioral components as leaf cells when it generated Verilog

 111

versions of RaPiD that support a particular application domain. Synopsys was used to

synthesize the behavioral Verilog to produce structural Verilog that has been mapped to

our standard cell library [7]. This gives us the ability to swap out standard cell libraries,

since we would only need to re-synthesize the behavioral Verilog with a new library file

generated for the new standard cell library. The ability to easily and efficiently use

different libraries is a very powerful feature of the Standard Cell Method. It enables

designers to choose different libraries that provide different capabilities like lower power,

smaller area, or higher performance.

Silicon Ensemble was used to place and route the cells. Silicon Ensemble is part of the

Cadence Envisia Tool Suite, and is capable of routing multiple layers of metal, including

routing over the cells. One powerful feature of Silicon Ensemble is its ability to run from

macro files, minimizing the amount of user intervention.

Cadence was chosen as our schematic and layout editor because it is a very robust tool set

that is widely used in industry [39]. Cadence also has tools for every aspect of the design

flow. We are currently using the NCSU TSMC 0.18µm design rules for all layouts

created in Cadence. As technology scales, we will be able to scale our layouts down with

hopefully only minimal loss of quality in our results.

The full custom RaPiD components that were used in benchmarking were laid out by

Carl Ebeling’s group at the University of Washington for the RaPiD powertest, which is a

version of RaPiD that does not contain any multipliers or memories. All circuits were

laid out using the Magic Layout Editor for the HP 0.50µm process. The designs were

 112

ported over to Cadence and the NCSU rules for the TSMC 0.25µm process, and then

ported to the NCSU rules for the TSMC 0.18µm process. The port from the HP 0.50µm

process did create many DRC errors that needed to be addressed, with the loss of some

quality. Fortunately, the port from the NCSU rules for the TSMC 0.25µm process to the

NCSU rules for the TSMC 0.18µm process required no changes to the layouts.

The choice of a standard cell library was based upon the need to find an industrial

strength library that has been laid-out for the TSMC 0.18µm process. Unfortunately, we

were not able to find a library targeted at the TSMC 0.18µm process, but we were able to

find a library targeted at the TSMC 0.25µm process. This led us to the VTVT standard

cell library, which was available from the Virginia Tech VLSI for Telecommunications

group [58, 59]. This library has thirty-six basic blocks at its core. It also includes

Synopsys synthesis files, VHDL simulation libraries, and LEF files for Silicon Ensemble.

8.1.2 Procedure

The tool flow shown in Figure 8-2 was used by the Standard Cell Method. The first step

in the flow is the creation of behavioral Verilog architectures by the AML, AMO, and

GH Architecture Generators that support the application domains. Synopsys was then

used to synthesize this Verilog file to create a structural Verilog file that used the VTVT

standard cells as modules. With this structural Verilog, Silicon Ensemble was able to

then place and route the entire design. The utilization level of Silicon Ensemble, which is

an indication of how dense cells are packed in the placement array, was increased until

the design could not be routed. For most designs, this level was set to 90%. The aspect

 113

ratio of the chip was also adjusted from 1, which is a square, to 2, which is a rectangle

that is twice as long as it is high, to find the smallest layout. For all designs, an aspect

ratio of 1 yielded the smallest layout. Once Silicon Ensemble was done creating the

layout, the P&R tool was used to evaluate the quality of the circuits that were created, as

discussed in Chapter 5.

Architecture
Generator

Verilog

Synopsys

Structural Verilog

DEF File

Cadence

Standard
Cell

Method

Area
Results

Place and Route
Tool

Performance
Results

Silicon
Ensemble

Standard
Cell

Library

Standard
Cell

Library
LEF File

Figure 8-2: Tool flow for Standard Cell Method of architecture layout generation.

 114

Table 8-1: The application domains and their respective percent utilization are shown.
The area normalized to the RaPiD II tile of the VTVT standard cell architectures are
shown. The architectures were created from Verilog that was generated by the AMO,
AML, and the GH Architecture Generators.

Normalized Area
Application Domain Percent Utilization

AML AMO GH Average

Reduced RADAR 6 20.92 0.812 0.698 0.779 0.763
FIR 28.90 0.928 1.04 0.949 0.971

Reduced IMAGE 1 29.07 1.34 1.35 1.44 1.38
Reduced IMAGE 2 29.15 1.34 1.39 1.22 1.32

Sorters 32.12 1.26 1.15 1.20 1.20
Image 37.05 1.20 1.47 1.49 1.39

Matrix Multiply 37.43 1.40 1.46 1.34 1.40
Image and RADAR 41.21 1.34 1.23 1.27 1.28
Reduced RADAR 4 50.88 2.27 2.33 2.18 2.26

RADAR 52.79 2.52 2.36 2.23 2.37
Reduced IMAGE 4 52.82 2.53 2.31 2.23 2.36
Reduced RADAR 5 53.45 2.54 2.62 2.18 2.45
Reduced IMAGE 3 60.18 2.54 2.38 2.21 2.38

Average --- 1.70 1.68 1.59 1.65

8.2 Results

The runtime of the entire tool flow to generate each template was on the order of hours to

days. We generated results for the thirteen application domains, which were explained in

detail in chapter 5, to evaluate the Standard Cell Method.

8.2.1 Area

The first metric we can use to evaluate the quality of the circuits that are generated by the

Standard Cell Method is the area of each circuit. Table 8-1 and Graph 8-1 show the area

of each benchmark set normalized to the area of the RaPiD II tile when using the generic

VTVT standard cell library. In Graph 8-1, we also use data generated from all three

 115

methods of the Architecture Generator. The y-axis is the area of each benchmark set

normalized to the RaPiD II fixed tile, with lower values representing smaller, and

therefore more desirable, circuits. The x-axis represents the percentage of the fixed tile

resources needed to support the benchmark set.

0

0.5

1

1.5

2

2.5

3

152535455565

Percent Utilization

N
or

m
al

iz
ed

 A
re

a

RaPiD II

SC AML

SC AMO

SC GH

Graph 8-1: This graph, which was generated from the data presented in Table 8-1,
shows the normalized area of each benchmark set when using the VTVT standard cell
library. A lower value on the y-axis is preferable. The x-axis is the percentage of the
resources of the fixed RaPiD II tile needed to support the application domain. The y-
axis is the area of each application domain normalized to the RaPiD II fixed tile. The
AMO, AML, and GH Architecture Generators were used to create the Verilog.

As mentioned above, in previous work [5], we have observed that when optimizing a

standard cell library for FPGAs, gains of approximately 20% can be made when

compared to a generic unaltered standard cell library. The optimizations included muxes,

demuxes, and flip-flops. Therefore, the data in Table 8-1 has been reduced by 20%, and

is presented in Table 8-2. Graph 8-2, was generated from the data in Table 8-2. This was

 116

done in an attempt to estimate the possible area gains that may be made if the VTVT

were optimized for use in generating FPGAs. Finally, in Graph 8-3, we see the average

of the Standard Cell Methods using both the generic VTVT standard cell library and the

estimated FPGA optimized VTVT standard cell library.

Table 8-2: The application domains and their respective percent utilization are shown.
The area normalized to the RaPiD II tile of the FPGA optimized VTVT standard cell
architectures are shown. The architectures were created from Verilog that was
generated by the AMO, AML, and the GH Architecture Generators.

Normalized Area
Application Domain Percent Utilization

AML AMO GH Average

Reduced RADAR 6 20.92 0.677 0.582 0.650 0.636
FIR 28.90 0.773 0.864 0.791 0.809

Reduced IMAGE 1 29.07 1.12 1.13 1.20 1.15
Reduced IMAGE 2 29.15 1.12 1.16 1.02 1.10

Sorters 32.12 1.05 0.96 1.00 1.00
Image 37.05 1.00 1.22 1.25 1.16

Matrix Multiply 37.43 1.17 1.22 1.11 1.17
Image and RADAR 41.21 1.12 1.02 1.06 1.07
Reduced RADAR 4 50.88 1.90 1.94 1.81 1.88

RADAR 52.79 2.10 1.96 1.86 1.97
Reduced IMAGE 4 52.82 2.11 1.92 1.86 1.96
Reduced RADAR 5 53.45 2.12 2.19 1.82 2.04
Reduced IMAGE 3 60.18 2.12 1.98 1.84 1.98

Average --- 1.41 1.40 1.33 1.38

When comparing the three different methods used by the Architecture Generator, namely

AML, AMO, and GH, we can see that the generated circuits are comparable, with almost

identical results when percent utilization is low, as seen in Graph 8-1 and Graph 8-2. As

percent utilization increase, it appears that GH performs better, followed by AMO and

AML. These results do not reflect how much flexibility each of the different

 117

Architecture Generator methods produces. A flexibility analysis was performed in other

work done for the Totem Project, and can be found at [8].

0

0.5

1

1.5

2

2.5

152535455565

Percent Utilization

N
or

m
al

iz
ed

 A
re

a

RaPiD II

SC FPGA AML

SC FPGA AMO

SC FPGA GH

Graph 8-2: This graph, which was generated from the data presented in Table 8-2,
shows the normalized area of each benchmark set when using the fitted lines
representing the FPGA optimized VTVT standard cell library. A lower value on the y-
axis is preferable. The x-axis is the percentage of the resources of the fixed RaPiD II tile
needed to support the benchmark set. The y-axis is the area of each benchmark set
normalized to the RaPiD II fixed tile. The AMO, AML, and GH Architecture
Generators were used to create the Verilog.

It can be observed from Graph 8-3 that circuits generated using the generic library are

competitive with the full custom circuit when the percent utilization is at approximately

27%, and circuits generated using the FPGA optimized standard cell library when percent

utilization is at approximately 33%. Therefore, the Standard Cell Method is able to

 118

surpass the area of the full custom template when resources are reduced to about one

third.

0

0.5

1

1.5

2

2.5

3

1520253035404550556065

Percent Utilization

N
or

m
al

iz
ed

 A
re

a

RaPiD II
SC AVG
SC FPGA AVG

Graph 8-3: This graph shows the normalized area of each benchmark set, where a lower
value on the y-axis is preferable. The x-axis is the percentage of the resources of the
fixed RaPiD II tile needed to support the benchmark set. The y-axis is the area of each
benchmark set normalized to the RaPiD II fixed tile. The SC AVG line represents the
average of AMO, AML, and GH using the generic unaltered VTVT standard cell
library, while SC FPGA AVG represents the average of AMO, AML, and GH using the
fitted line representing the FPGA optimized VTVT standard cell library.

8.2.2 Performance

Graph 8-4 is very similar to Graph 8-1, but it shows the normalized performance of the

various circuits that were generated by the Architecture Generator, as opposed to

normalized area. All three methods of Architecture Generation are present in the graph,

namely AML, AMO, and GH. The same clustering that occurs in Graph 8-1 is present,

which is to be expected since the percent utilization metric is unchanged.

 119

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

152535455565

Percent Utilization

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

RaPiD II

SC AML

SC AMO

SC GH

Graph 8-4: This graph shows the normalized performance of each benchmark set,
where a lower value on the y-axis is preferable. The x-axis is the percentage of the
resources of the fixed RaPiD II tile needed to support the benchmark set. The y-axis is
the performance of each benchmark set normalized to the RaPiD II fixed tile. All three
methods of Architecture Generation are present, namely AML, AMO, and GH.

Table 8-3: The normalized average performance of the circuits generated using the
AML, AMO, and GH architecture generators for each application group.

 Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average

AML_decnsr 22.9
AML_psd 30.4

26.6 19.8 1.35

AMO_decnsr 24.7
AMO_psd 34.7

29.7 19.8 1.50

GH_decnsr 21.1

Reduce RADAR 6

GH_psd 32.6
26.9 19.8 1.36

1.40

 120

Table 8-3: Continued.

 Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average
AML_firsm2_unr 59.4
AML_firsm3_unr 114.6
AML_firsm4_unr 59.4
AML_firsymeven_unr 93.3

81.7 33.3 2.45

AMO_firsm2_unr 59.8
AMO_firsm3_unr 154.0
AMO_firsm4_unr 59.8
AMO_firsymeven_unr 121.8

98.8 33.3 2.96

GH_firsm2_unr 57.9
GH_firsm3_unr 119.9
GH_firsm4_unr 57.9

FIR

GH_firsymeven_unr 98.8

83.6 33.3 2.51

2.64

AML_firtm_2nd 58.6
AML_matmult_unr 118.5

88.6 67.4 1.31

AMO_firtm_2nd 60.8
AMO_matmult_unr 111.2

86.0 67.4 1.28

GH_firtm_2nd 57.6

Reduce Image 1

GH_matmult_unr 161.6
109.6 67.4 1.63

1.40

AML_1d_dct40 162.6
AML_fft16_2nd 192.3
AML_matmult_unr 112.1

155.7 88.0 1.77

AMO_1d_dct40 141.6
AMO_fft16_2nd 216.3
AMO_matmult_unr 114.3

157.4 88.0 1.79

GH_1d_dct40 119.0
GH_fft16_2nd 222.5

Reduce Image 2

GH_matmult_unr 115.5
152.3 88.0 1.73

1.76

AML_sort_2d_g 52.9
AML_sort_2d_rb 51.8
AML_sort_g 48.4
AML_sort_rb 49.5

50.7 34.2 1.48

AMO_sort_2d_g 63.1
AMO_sort_2d_rb 53.3
AMO_sort_g 52.4
AMO_sort_rb 49.3

54.5 34.2 1.59

GH_sort_2d_g 59.3
GH_sort_2d_rb 52.6
GH_sort_g 49.4

Sorters

GH_sort_rb 49.4

52.7 34.2 1.54

1.54

 121

Table 8-3: Continued.

 Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average
AML_1d_dct40 157.5
AML_fft16_2nd 217.7
AML_firtm_2nd 68.6
AML_matmult_unr 130.2

143.5 79.9 1.79

AMO_1d_dct40 109.5
AMO_fft16_2nd 242.3
AMO_firtm_2nd 75.5
AMO_matmult_unr 135.4

140.7 79.9 1.76

GH_1d_dct40 135.4
GH_fft16_2nd 178.5
GH_firtm_2nd 73.6

Image

GH_matmult_unr 117.8

126.3 79.9 1.58

1.71

AML_limited_unr 116.1
AML_matmult4_unr 114.2
AML_matmult_unr 116.6
AML_vector_unr 112.2

114.8 78.6 1.46

AMO_limited_unr 121.9
AMO_matmult4_unr 131.5
AMO_matmult_unr 129.6
AMO_vector_unr 118.6

125.4 78.6 1.60

GH_limited_unr 121.9
GH_matmult4_unr 127.5
GH_matmult_unr 116.1

Matmult

GH_vector_unr 113.8

119.8 78.6 1.53

1.53

 122

Table 8-3: Continued.

Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average
AML_decnsr 129.8
AML_psd 144.0
AML_1d_dct40 146.4
AML_fft16_2nd 205.7
AML_firtm_2nd 42.6
AML_matmult_unr 115.4

130.6 80.1 1.63

AMO_decnsr 103.5
AMO_psd 114.7
AMO_1d_dct40 113.7
AMO_fft16_2nd 219.6
AMO_firtm_2nd 54.9
AMO_matmult_unr 106.1

118.8 80.1 1.48

GH_decnsr 106.9
GH_psd 124.8
GH_1d_dct40 123.5
GH_fft16_2nd 160.3
GH_firtm_2nd 62.8

Image and
RADAR

GH_matmult_unr 113.3

115.3 80.1 1.44

1.52

AML_decnsr 86.9
AML_fft16_2nd 152.1

119.5 30.2 3.95

AMO_decnsr 59.8
AMO_fft16_2nd 89.2

74.5 30.2 2.46

GH_1d_dct40 57.3

Reduce
RADAR 4

GH_fft16_2nd 118.0
87.7 30.2 2.90

3.10

AML_decnsr 69.0

AML_fft16_2nd 142.3

AML_psd 65.2

92.2 29.0 3.18

AMO_decnsr 51.0

AMO_fft16_2nd 116.2

AMO_psd 63.2

76.8 29.0 2.65

GH_decnsr 47.0

GH_fft16_2nd 94.2

RADAR

GH_psd 60.2

67.1 29.0 2.31

2.71

 123

Table 8-3: Continued.

 Application Netlists Performance
(ns)

Average
(ns)

RaPiD
II Normalized Normalized

Average
AML_1d_dct40 86.9
AML_fft16_2nd 152.1

119.5 33.1 3.61

AMO_1d_dct40 59.8
AMO_fft16_2nd 89.2

74.5 33.1 2.25

GH_decnsr 57.3

Reduce Image 4

GH_fft16_2nd 118.0
87.7 33.1 2.65

2.84

AML_fft16_2nd 141.7
AML_psd 62.2

101.9 32.9 3.10

AMO_fft16_2nd 154.4
AMO_psd 64.2

109.3 32.9 3.32

GH_fft16_2nd 91.7

Reduce RADAR 5

GH_psd 56.4
74.0 32.9 2.25

2.89

AML_1d_dct40 66.9

AML_fft16_2nd 149.0

AML_firtm_2nd 31.3

82.4 26.8 3.07

AMO_1d_dct40 77.5

AMO_fft16_2nd 138.4

AMO_firtm_2nd 27.8

81.2 26.8 3.03

GH_1d_dct40 63.0

GH_fft16_2nd 95.3

Reduce Image 3

GH_firtm_2nd 36.4

64.9 26.8 2.42

2.84

The most obvious result that can be seen from Graph 8-4 is the fact that none of the

netlists mapped onto circuits that are generated by the Standard Cell Method perform

better than the same netlists mapped onto the RaPiD II template. Generating circuits

using the Standard Cell Method introduces too much overhead, which cannot be

overcome even when the percent utilization is at the lowest possible value for the

benchmarks that we have. One possible solution to this problem is to try to use other

types of standard cell libraries. A standard cell library that is targeted at high

performance may produce better quality results. It should be noted that we did not it

 124

performance numbers for the an FPGA optimized version of the VTVT standard cell

library, since we have found in previous work [5] that there is no benefit to performance

when using FPGA optimized standard cell libraries instead of generic standard cell

libraries. It should be noted that the place and route tool is unable to retime signals, as

mentioned in Chapter 5. Therefore, any performance numbers generated by the place and

route tool should only be used for relative comparisons of the three methods.

8.3 Summary

In this chapter, we have shown that automation of layout generation for domain specific

FPGAs is possible using a Standard Cell Method. We have further shown that as a target

application domain narrows (requiring less resources), the savings gained from removing

unused logic from a design enables the Standard Cell Method of layout generation to

approach that of a full custom layout in area, and in some cases surpass it. With respect

to performance, circuits created by the Standard Cell Method perform close to full

custom circuits, but do not surpass them. The Standard Cell Method is capable of

producing circuits with areas ranging from 2.45 times larger to 0.76 times smaller than

comparable full custom circuits, as shown in Table 8-1. The Standard Cell Method can

produce circuits with performances raging from 3.10 times to 1.40 times slower than

comparable full custom circuits, as shown in Table 8-3. In addition, by adding to a

standard cell library a few key cells that are used extensively in FPGAs, improvements of

approximately 20% can be achieved with regard to area, as shown in Table 8-2, while the

impact to performance is negligible. It should be noted that the greatest strength of this

 125

method is its high level of flexibility. This method is always capable of producing a

result, even when the other methods fail. Finally, with a wider range of libraries,

including libraries optimized for power, performance, and area, this method has a lot of

potential for improvement.

 126

Chapter 9

Comparison and Contrast of the Methods

It is evident that no single method is able to produce architectures that meet a designer’s

constraints in all cases. Template Reduction works well when a specified architecture is

a subset of an existing full-custom template, and thus is able to leverage the benefits of

full-custom design. However, the Template Reduction Method fails completely if the

specified architecture is not a subset of the available templates. The Standard Cell

Method, on the other hand, can support any arbitrary FPGA design, even though circuits

created by this method have decreased performance and an area penalty when compared

to full-custom designs. Thus, the Standard Cell Method is able to support architectures

that require more resources than any available template, which can occur with fixed

templates, as was shown in Chapter 6 with regard to the RaPiD-I architecture and the

image processing application group. The Circuit Generator Method is able to

complement the Template Reduction and Standard Cell Methods by creating more

efficient circuits than the Standard Cell Method is capable of producing, while possessing

more flexibility than the Template Reduction Method.

 127

9.1 Area Comparison: FC, TR, SC, and CG

0

0.5

1

1.5

2

2.5

3

1520253035404550556065

Percent Utilization

N
or

m
al

iz
ed

 A
re

a

RaPiD II
SC AVG
SC FPGA AVG
CG AVG
TR

Graph 9-1: Area comparison of the circuits created to support the benchmark sets,
using the Template Reduction Method, the Circuit Generator Method, and the
Standard Cell Method. The y-axis is the area of the circuits normalized to the area of
the full custom RaPiD II template, while the x-axis is the percent utilization. Lower
values represent circuits that are more desirable. The SC AVG, SC FPGA AVG, and
the CG AVG are lines generated by taking the average of the circuits generated by the
AML, AMO, and GH versions of the Architecture Generator.

The area of the circuits created varies greatly depending on both the specified application

domain, and the proposed method. The graph shown in Graph 9-1 presents the three

methods along with the original full custom RaPiD II tile. As we have seen in Chapters

6, 7, and 8, the x-axis is percent utilization, which is an indication of the amount of

resources that an application domain would require to run on the full custom RaPiD II

template. The y-axis is the area normalized to the full custom RaPiD II template. The

 128

points for the Circuit Generator and the Standard Cell Methods are an average of the

AML, AMO, and GH Architecture Generators.

As mentioned in Chapter 5, the RaPiD II template does fail on the Camera, Transforms,

and the OFDM application domains, which is a slight improvement over the RaPiD I

template, which fails on the Camera, Image Processing, Transforms, and the OFDM

application domains. Therefore, the Camera, Transforms, and OFDM application

domains have been removed form the application domains used to compare the various

methods. Both templates are failing on these application domains because they are

routing constrained, which is a fundamental architectural limitation that was inherited

with the full custom layouts that were provided by the RaPiD group. This inherited

limitation was because the height of the RaPiD array was fixed by the functional units.

When using the HP .50µm 3 metal layer process, this constrained the number of routing

tracks at 14. Moving to the TSMC .18µm 6 metal layer process allowed us to change the

number of routing tracks to 24. Unfortunately, 24 routing tracks is still not enough

routing for the Camera, Transforms, and the OFDM application domains.

It is evident from Graph 9-1 that the Template Reduction and the Circuit Generator

Methods create circuits that are comparable to each other in area. The Template

Reduction Method is more efficient when the percent utilization is high, while the Circuit

Generator Method is more efficient when the percent utilization is lower. This is a strong

showing for the Circuit Generator Method, since it is creating circuits from scratch that

can compete with reduced full custom circuits. These results may be an indication that

 129

the compaction of circuits is less efficient as the percent utilization drops. This is

because the circuits created by the Template Reduction Method are becoming less and

less regular. The Circuit Generator Method is not affected by this, since it is creating

circuits from the ground up, as opposed to reducing existing structures.

Table 9-1: This table shows the percent functional units removed for all thirteen
application domains, which were found by the Template Reduction Method. For five of
the application domains the area remaining was found by running the Cadence
compactor on the reduced layouts. The area remaining was found for the other eight
application groups, whose values are in the gray cells, by using a fitted linear line to the
original five data points.

Application Domain Percent Functional Units
Removed

Area Remaining
(y = -0.0063x + 0.7573) Percent Utilization

Reduced RADAR 6 66.25 0.340 20.92
FIR 38.00 0.525 28.90

Reduced Image 1 67.50 0.332 29.07
Reduced Image 2 60.62 0.375 29.15

Sorters 46.00 0.444 32.12
Image 56.00 0.396 37.05

Matrix Multiply 51.00 0.459 37.43
Image and RADAR 53.33 0.421 41.21
Reduced RADAR 4 36.61 0.527 50.88

RADAR 31.00 0.561 52.79
Reduced Image 4 33.93 0.544 52.82

Reduced RADAR 5 33.93 0.544 53.45
Reduced Image 3 29.46 0.572 60.18

It should also be noted that, as mentioned in Chapter 6, only five of the thirteen

application domains were run on the Template Reduction Method namely: FIR, image,

matrix multiply, RADAR, and sorters. The other eight application domains were fit, by

using the relation of remaining functional units to remaining area, which is strongly

correlated, with a correlation constant of 0.931. This relationship is shown in Table 9-1

and Graph 9-2. The reason why we did not run the Template Reduction Method on the

 130

additional eight application domains was that the new version of the Cadence compactor

failed to run on the additional eight application domains. However, this did not preclude

us from running the first stage of the Template Reduction Method on these application

domains, which was able to obtain the percent of the functional units that were removed

from the RaPiD II tile in support of these application domains. We then used this data

and the fitted line, shown in Graph 9-2, to find the percent area remaining for the

additional eight application domains.

y = -0.0063x + 0.7573
R2 = 0.9307

0

0.1

0.2

0.3

0.4

0.5

0.6

30 35 40 45 50 55 60 65 70 75

Percent Functional Units Removed

Pe
rc

en
t A

re
a

R
em

ai
ni

ng

Percent Functional Units Removed

Fitted Points

Linear Fit of Percent Funtional Units Removed

Graph 9-2: This graph shows the results of the Template Reduction Method on the
original five application domains. The x-axis is the percent of the functional units
removed, while the y-axis is the percent of the template area remaining after
compaction. The fitted points are the other eight application domains, all of which were
run through the Template Reduction Method, but not compacted. Performing the
Template Reduction Method without compaction still yields the percentage of functional
units removed, enabling these points to be fitted.

 131

The Standard Cell Method suffers from a large amount of inherent overhead that leads to

the creation of circuits that are approximately 2 times larger than those created by the

Template Reduction and Circuit Generator Methods. These results do not show the

flexibility that the Standard Cell Method has at its disposal. If either, or both, of the other

methods fail, the Standard Cell Method is positioned to handle any of these circuits. It

should also be noted that the current library we have is not an industrial strength library

that is targeted at low area designs. By using a low area industrial strength library,

circuits created by the Standard Cell Method would probably be of much better quality.

In essence, the Standard Cell Method is poised for gains if industrial libraries are used.

9.2 Performance Comparison: FC, TR, SC, and CG

The performance of the application domains on the circuits created by the various

methods, shown in Graph 9-3, are more scattered and do not show the same level of

improvement as the area improvements. The Standard Cell Method cannot overcome the

overhead associated with this method. Therefore, the circuits created by the Standard

Cell Method never perform better than the full-custom RaPiD II tile, and are

approximately 3.10 times to 1.40 times slower than the other three methods. The

shortcomings of the Standard Cell Method are even more magnified when it is pointed

out that the full-custom RaPiD II tile is unaltered, and therefore capable of handling

application domains that require 100% utilization, while the circuits generated by the

Standard Cell Method have been reduced, and are therefore less capable.

 132

0

0.5

1

1.5

2

2.5

3

3.5

152535455565

Percent Utilization

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

RaPiD II

SC AVG

CG AVG

TR

Graph 9-3: Performance comparison of the benchmarks run on the full-custom RaPiD
II tile, and the Template Reduced, the Circuit Generator, and the Standard Cell
Methods. The y-axis is the performance normalized to the RaPiD II cell, while the x-
axis is the percent utilization. Lower y-values are preferable. The CG AVG and the SC
AVG are lines generated by taking the average of the circuits generated by the AML,
AMO, and GH versions of the Architecture Generator.

The Circuit Generator and the Template Reduction Methods produce circuits that have an

average improvement of approximately 16% to 9% in performance over the benchmarks

run on the full custom RaPiD II tile. When the percent utilization is high, the Template

Reduction Method appears able to produce higher performing circuits than the Circuit

Generator Method. When the percent utilization is low, the Circuit Generator Method is

able to produce circuits that perform better than the Template Reduction Method. It

should be noted that, as mentioned in Chapter 6, only five of the thirteen application

domains are run on the circuits created by the Template Reduction Method. The

application domains are the FIR, image, matrix multiply, RADAR, and sorters. This lack

 133

of data points with regard to the Template Reduction Method makes these conclusions

weak, which may change if more data is collected for the Template Reduction Method. It

should be noted that the place and route tool is unable to retime signals, as mentioned in

Chapter 5. Therefore, any performance numbers generated by the place and route tool

should only be used for relative comparisons of the three methods.

 134

Chapter 10

Conclusions and Future Work

When designing SOCs, a unique opportunity exists to add custom reconfigurable devices,

which will provide an efficient compromise between the flexibility of software and the

performance of hardware, while at the same time allowing for post-fabrication

modification of circuits. Unfortunately, the high cost in both time and design effort of

creating unique reconfigurable devices for each and every possible application domain

would outweigh any benefit gained. Therefore, automation of the design flow is required

if these new custom architectures are to be designed in a timely fashion. The goal of the

Totem Project is to provide an automated design flow for the creation of application

specific reconfigurable devices for SOCs.

10.1 Contributions

The focus of this work has been the automation of the layout portion of the Totem design

flow. Towards this end, we have implemented the VLSI layout generator, which

automates the creation of mask ready layouts from the circuit descriptions provided by

the Architecture generator. The VLSI layout generator consists of three methods of

automating the layout process: Template Reduction, Circuit Generators, and Standard

Cell generation.

 135

The Template Reduction Method was introduced in Chapter 6. This method is able to

leverage full custom designs, while still removing any resources that are not needed to

support the specified application domain. This enables the Template Reduction Method

to create circuits that perform at or better than that of the initial full-custom template,

with an average area decrease of approximately 48% and an average performance

increase of approximately 9%.

One of the drawbacks associated with the Template Reduction Method is its reliance on

the existence of a feature-rich macro cell that is a superset of the specified application

domain. The Circuit Generator Method, detailed in Chapter 7, is able to produce efficient

circuits in both area and performance in an additive fashion, while removing the need for

feature-rich templates. Circuits created by the Circuit Generator Method are

approximately 46% smaller and 16% faster than the full custom RaPiD II tile.

The Standard Cell Method, presented in Chapter 8, while extremely flexible, was able to

produce competitive circuits with regard to area, only when the resources were reduced to

approximately 25% of the full-custom template. Unfortunately, the Standard Cell

Method was never able to produce a circuit that performed better than the full-custom

RaPiD II template. The Standard Cell Method is capable of producing circuits with areas

ranging from 2.45 times larger to 0.76 times smaller than comparable full-custom

circuits. The Standard Cell Method can also produce circuits with performances ranging

from 3.10 times to 1.40 times slower than comparable full-custom circuits. These

numbers do not highlight the fact that the strength of the Standard Cell Method lies in its

 136

ability to produce a circuit for any application domain, even when the Template

Reduction and Circuit Generator Methods fail.

10.2 Conclusions and Future Work

Choosing an appropriate method is based on many factors. If a robust template along

with suitable reductions exists, then the Template Reduction Method is quite capable of

producing competitive circuits. While this suggests that the Template Reduction Method

should be competitive with the other methods, we feel that it is the weakest method. The

Template Reduction Method is too inflexible. Its reliance on templates is its biggest

liability, since the generation of even one template is a costly endeavor. In future

versions of the Totem Project, the designer will be able to specify certain design

constraints, like low power, small area, and high performance. This implies that a single

template will not be able to cover all of these design areas, forcing the Totem Project to

have at its disposal multiple templates that have been laid out with different design goals

in mind. This would entail considerable effort, thus defeating the purpose of the Totem

Project to automatically provide custom reconfigurable circuits in a timely fashion.

Another problem with the Template Reduction Method is its propensity for causing errors

in circuits. Of the three methods, the Template Reduction Method was the most error

prone method, and was the most complicated method to implement and debug. In

essence, the Template Reduction Method is manipulating full-custom circuits at the

lowest level. This can lead to numerous DRC errors, including n-implant, p-implant, and

well errors. In addition, when manipulating full-custom designs in this manner, the

 137

Template Reduction Method is changing the dynamics of the circuits in potentially

unforeseen ways. For example, the transistors in a full-custom circuit are sized to ensure

that they are capable of driving their load in an efficient manner. By cutting out

transistors, wires, etc, the Template Reduction Method is altering those loads, which can

lead to a poorly performing circuit.

The Circuit Generator Method is able to leverage the regularity that exists in FPGAs

when creating RaPiD-like structures. It can create structures that are more efficient than

the Template Reduction Method, while not being bound to a particular template. In

addition, the Circuit Generator Method is an additive method. Therefore, this method is

less error prone than the Template Reduction Method since we are not cutting low-level

components out of full-custom circuits.

However, the Circuit Generator Method has problems of its own. The creation of a wide

range of generators can be as costly a proposition as creating a wide range of templates.

But, to improve the Circuit Generator Method, providing a wide range of different types

of generators is critical. To increase the quality of the circuits that the method creates, all

of the generators should be able to handle a wide range of parameters. For example, in

the current implementation of the Circuit Generator Method, the generators that create

the functional units are unable to change the bit width of units that they create. However,

it has been shown in previous work [5] that the largest impact on area is achieved through

reducing the overall bit-width of the device that is created. Therefore, the creation of

generators that are able to modify the bit width of the functional units could drastically

 138

increase the ability of the Circuit Generator Method to create higher quality circuits.

Finally, if the Circuit Generator Method needs to create circuits that are targeted at low

power, high performance, or small area, even more types of generators will be needed.

This leads us to the Standard Cell Method. As anticipated, the Standard Cell Method has

inherent inefficiencies that it must overcome to become competitive with the other two

methods. However, it is extremely flexible and is able to create a circuit in any

circumstance. This is important because the overall goal of the Totem Project is to

support any designer defined application domain. To build upon this flexibility, the

ability to utilize a wide range of industrial strength standard cell libraries is needed. With

a wide range of libraries, the designer could select the library most suited to the

specifications of their design. Specifications could include higher performance, lower

power, or smaller area, and if there was a corresponding library, the Standard Cell

Method has the potential to create high quality circuits with a minimal amount of effort.

Although the results presented in this work indicate that the Standard Cell Method

performed poorly when compared to the other two methods, many gains can be made by

optimizing this method. There are numerous ways that this method can be optimized.

Not only is an industrial strength standard cell library essential, but, to ensure efficient

designs, a high quality P&R tool is also a necessity. Additionally, macro blocks of

functional units including the multiplier, ALU, bus interconnect, etc can be created with

standard cells. To ensure high quality macro blocks, a synthesis tool can be used that has

been tuned to the standard cell library. Finally, floorplanning and routing of the macro

 139

blocks can be performed to yield high quality circuits. In essence, by tuning the Standard

Cell Method, we feel that it is capable of producing circuits that perform at the level of

the other two methods, while requiring less effort to implement. Therefore, this method

should be pursued over the other two methods.

The initial version of the Totem Project creates reconfigurable devices that are based

upon the RaPiD family of architectures. RaPiD arrays are coarse grained in nature and

only utilize a one-dimensional routing interconnect. While there are benefits to these

types of coarse-grained devices as detailed in the RaPiD section of Chapter 2, industry is

dominated by medium-grained island-style devices that utilize a two-dimensional routing

interconnect. Therefore, future versions of the Totem Project should be capable of

creating medium-grained island-style devices that have a two-dimensional routing

interconnect. This will enable accurate comparisons between structures created by the

Totem Project and their more generic multipurpose FPGA counterparts present in

industry. In addition, it will enable the Totem Project to create a wider range of devices

that are capable of supporting a larger design space.

The automatic generation of medium-grained island-style devices is more difficult due to

the two-dimensional routing interconnect. However, by using an optimized version of

the Standard Cell Method, these difficulties should be alleviated. By creating two-

dimensional standard cell macro blocks of all of the main components, and floorplanning

and routing them, the Standard Cell Method is capable of producing high quality circuits.

Therefore, the only difference between generating the current version of RaPiD-like

 140

devices and two-dimensional island-style devices involves the creation of their

constituent macro blocks. The floorplanner should be able to efficiently handle either

type of circuit, once these blocks have been created. In effect, by optimizing the

Standard Cell Method, including the synthesis of the verilog, the P&R tool, and by using

macro blocks, the Standard Cell Method should be able to efficiently handle either type

of architecture.

 141

Bibliography

[1] Glökler, Tilman. “System-on-a-Chip Case Study: ADSL-Receiver.”

<http://www.ert.rwth-aachen.de/Projekte/VLSI/soc.html> (30 January 2004).

[2] C. Ebeling, D. C. Cronquist, and P. Franklin. “RaPiD - reconfigurable pipelined

datapath.” In Proc. 6th Int. Workshop on Field Programmable Logic and

Applications (FPL), volume 1142 of Lecture Notes in Computer Science, pages

126-135. Springer-Verlag, 1996.

[3] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor.

“PipeRench: A Reconfigurable Architecture and Compiler”, IEEE Computer,

33(4):70-77, April 2000.

[4] A. Abnous and J. Rabaey. “Ultra-low-power domain-specific multimedia

processors.” In VLSI Signal Processing, IX, pages 461-470. IEEE Signal

Processing Society, 1996.

[5] S. Phillips, “Automatic Layout of Domain-Specific Reconfigurable Subsystems

for System-on-a-Chip.” M.S. Thesis, Northwestern University, Dept. of ECE, July

2001.

[6] A. Sharma, “Development of a Place and Route Tool for the RaPiD

Architecture.” M.S. Thesis, University of Washington, Dept. of EE, 2001.

[7] K. Compton and S. Hauck, "Totem: Custom Reconfigurable Array Generation."

IEEE Symposium on FPGAs for Custom Computing Machines Conference, 2001.

 142

[8] K. Compton, A. Sharma, S. Phillips, and S. Hauck, "Flexible Routing

Architecture Generation for Domain-Specific Reconfigurable Subsystems",

International Conference on Field Programmable Logic and Applications, pp. 59-

68, 2002.

[9] S. Phillips and S. Hauck, "Automatic Layout of Domain-Specific Reconfigurable

Subsystems for System-on-a-Chip", ACM/SIGDA Symposium on Field-

Programmable Gate Arrays, pp. 165-173, 2002.

[10] A. Sharma, C. Ebeling, and S. Hauck, “PipeRoute: A Pipelining-Aware Router

for FPGAs”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp.

68-77, 2003.

[11] Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design: A

Systems Perspective, Addison-Wesely Publishing Company, 1993.

[12] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing,

Kluwer Academic Publishers, Boston, MA: 1988.

[13] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for

FPGA Research,” Seventh International Workshop on Field-Programmable Logic

and Applications, pp 213-222, 1997.

[14] Larry McMurchie and Carl Ebeling, “PathFinder: A Negotiation-Based

Performance-Driven Router for FPGAs”, ACM Third International Symposium on

Field-Programmable Gate Arrays, pp 111-117, 1995

[15] Thomas H.Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to

Algorithms, The MIT Press, Cambridge, MA, Prim’s algorithm, pp 505-510,

1990.

 143

[16] Altera Corporation, “Corporate Overview”,

<http://www.altera.com/corporate/overview/ovr-index.html> (30 January 2004).

[17] Lattice Semiconductor, “Lattice Corporate Information”,

<http://www.latticesemi.com/corporate/index.cfm> (30 January 2004).

[18] QuickLogic, “Corporate Information”,

<http://www.quicklogic.com/home.asp?PageID=191&sMenuID=88> (30 January

2004).

[19] Xilinx Inc., “About Xilinx”, <http://www.xilinx.com/company/about.htm> (30

January 2004).

[20] Atmel, “Corporate Overview”,

<http://www.atmel.com/corporate/corporate_profile.asp> (30 January 2004).

[21] Elixent, “About Elixent”, <http://www.elixent.com/corporate/proposition.htm>

(30 January 2004).

[23] Triscend, “Triscend Company Info Overview”,

<http://www.triscend.com/companyinfo/> (30 January 2004).

[24] Xilinx, “DS110: Virtex-II Pro X Platform FPGAs Complete Data Sheet”, version

1.0, November 17, 2003.

[25] IBM, “PowerNP Npe405H Embedded Processor”, October 2002.

[26] Altera Corporation, “APEX II Programmable Logic Device Family Data Sheet”,

version 3.0, August 2002.

[27] Altera Corporation, “HardCopy Device Handbook, Volume 1”, version 1.1,

August 2003.

[28] Lattice Semiconductor, “ORCA ORLI10G Data Sheet”, November 2003.

 144

[29] QuickLogic, “QuickMIPS: Enabling System Flexibility, Performance and

Customization in a Single Piece of Silicon”, revision Rev. A, April 2003.

[30] Atmel, “AT94K Series FPSLIC Data Sheet”, Rev. 1138F-FPSLI-06/02, June

2002.

[31] Elixent, “Applications of D-Fabrix”, 2003.

[33] Actel Corporation, “VariCore™ Embedded Programmability - Flexible by

Design”, <http://varicore.actel.com/cgi-bin/varicore.cgi?page=overview> (30

January 2004).

[34] Advanced Products: Introducing LiquidLogic Embedded Programmable Logic

Core, <http://www.lsilogic.com/products/asic/advanced_products.html> (30

January 2004).

[35] P. Hallschmid, S.J.E. Wilton, “Detailed Routing Architectures for Embedded

Programmable Logic IP Cores”, ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2001.

[36] Anthony Cataldo, “Startup stakes out ground between FPGAs and ASICs”

<http://www.eetimes.com/story/OEG20010709S0075>, 2001. (30 January 2004).

[37] eASIC, <http://www.easic.com/products/easicore018.html> (30 January 2004).

[38] K. Compton, Programming Architectures for Run-Time Reconfigurable Systems,

M.S. Thesis, Northwestern University, Dept. of ECE, December, 1999.

[39] Cadence Design Systems, Inc., “Openbook”, version 4.1, release IC 4.4.5, 1999.

[40] D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, "Specifying and Compiling

Applications for RaPiD", IEEE Symposium on FPGAs for Custom Computing

Machines, 1998.

 145

[41] Synopsys, Inc., “Synopsys Online Documentation”, version 2000.05, 2000.

[42] Tanner Research, Inc., “Tanner CES Products”,

<http://www.tanner.com/CES/products/files_now/dit_std_cell.htm> (30 January

2004).

 [43] Synopsys, Inc, “Epic Tools User Manual”

[44] Synopsys, Inc., “Pathmill User Guide”, release 5.4, 2000.

[45] Xilinx Virtex-4 Family Overview, DS112 (v1.1) September 10, 2004

[46] Altera Inc., San Jose California. Cyclone™ II Device Handbook, Volume 1, June

2004.

[47] Kerry A. Dolan. Forbes. New York: Jan 12, 2004. Vol. 173, Issue. 1; p. 156a

[48] D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, “Specifying and Compiling

Applications for RaPiD”, IEEE Symposium on FPGAs for Custom Computing

Machines, 1998.

[49] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, “Architecture

Design of Reconfigurable Pipelined Datapaths”, Twentieth Anniversary

Conference on Advanced Re-search in VLSI, 1999.

[50] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, C. Ebeling, "Architecture

Design of Reconfigurable Pipelined Datapaths", Presentation at Twentieth

Anniversary Conference on Advanced Research in VLSI, 1999.

[51] Kathrine Compton, “Architecture Generation of Customized Reconfigurable

Hardware”, Ph.D. Thesis, Northwestern University, Dept. of ECE, 2003.

[52] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing.

Kluwer Academic Publishers, Boston, MA, 1988.

 146

[53] “IBM, Xilinx shake up art of chip design with new custom product”,

<http://www-3.ibm.com/chips/news/2002/0624_xilinx.html>, (15 August 2004).

[54] Company Fact Sheet, <http://www.xilinx.com/company/press/fctsheet.htm>, (15

August 2004)

[55] Triscend Corporation, Triscend A7S Configurable System-on-Chip Platform:

Product Description. Triscend Corporation, Mountain View, CA, 2002.

[56] Triscend Corporation, Triscend E5 Customizable Microcontroller Platform:

Product Description. Triscend Corporation, Mountain View, CA, 2002.

[57] David Maliniak, “Basics of FPGA Design”, Mentor Graphics White Paper, April

1, 2004

[58] J. B. Sulistyo, J. Perry, and D. S. Ha, "Developing Standard Cells for TSMC

0.25um Technology under MOSIS DEEP Rules", Department of Electrical and

Computer Engineering, Virginia Tech, Technical Report VISC-2003-01,

November 2003.

[59] Jos. B. Sulistyo and Dong S. Ha, "A New Characterization Method for Delay and

Power Dissipation of Standard Library Cells", VLSI Design 15 (3), pp. 667-678,

2002.

[60] Shaffer, Stanaski, Glaser, and Franzon, “The NCSU Design Kit for IC Fabrication

through MOSIS'', 1998 International Cadence User Group Conference in Austin,

Texas.

[61] Avant! Star-Hspice Manual, Release 1998.2, July 1998

[62] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of

systems and software. ACM Computing Surveys, 34(2):171–210, June 2002.

 147

[63] Shawn Phillips, Akshay Sharma, and Scott Hauck. “Automating the Layout of

Reconfigurable Subsystems Via Template Reduction”. International Symposium

on Field-Programmable Logic and Applications, pp. 857-861, 2004.

[64] D. Johannsen, “Bristle Blocks: A silicon compiler”, Proc. 16th Design

Automation Conf., 1979.

[65] G. Kedem, F. Brglez, K. Kozminski, “OASIS: A silicon compiler for semi-

custom design”, Euro ASIC ’90, pp. 118-123, 1990.

 148

Vita

Education

Ph.D., Electrical Engineering, University of Washington, Seattle, WA. 2004.

Advisor: Scott Hauck, GPA 3.96.

Thesis: “Automatic Layout of Reconfigurable Subsystems for Systems-

on-a Chip”

M.S., Electrical and Computer Engineering, Northwestern University, Evanston,

IL, 2000.

Advisor: Scott Hauck, GPA 3.63.

Thesis: “Automatic Layout of Domain-Specific Reconfigurable

Subsystem for Systems-on-Chip”

B.S., Magna Cum Laude, Physics and Math, Youngstown State University

(YSU), Youngstown, OH, 1998.

Minors: Computer Science and Chemistry, GPA 3.51.

Research Interests/Skills

FPGA Architectures, Applications, and Tools; Computer Architecture; VLSI

Design; Reconfigurable Computing; Operating System Integration of

Reconfigurable Computing.

Use of Cadence Tool Suite; fluent in various programming languages (Cadence

SKILL, Perl, Perl-Tk, C and Unix Script); extensive use of Synopsys Design

Analyzer; use of Silicon Ensemble (including the ability to create custom

automation scripts).

Awards

MIT Lincoln Laboratories Fellowship, University of Washington.

Walter P. Murphy Fellowship, Northwestern University.

 149

Myron C. Wick Jr. Scholarship for academic excellence in the physical sciences,

YSU.

Albert Gurrieri Scholarship for academic achievement in Physics, YSU.

Vice President of the Society of Physics Students, YSU Chapter.

Employment

Annapolis Micro Systems, Inc., Annapolis, MD.

10/2004 – present DSP Applications Design Engineer.

University of Washington, Seattle, WA.

09/1999 – 09/2004 Research Assistant. Developed systems for the

automatic layout of reconfigurable subsystems for SOC as part of ACME

Labs Totem Project. System administrator for ACME Labs during the

critical transition from Illinois to Washington.

Northwestern University, Evanston, IL.

09/1998 – 09/1999 Research Assistant. Floating Point Arithmetic on

Field Programmable Gate Arrays (FPGAs). Developed a system for the

automatic layout of reconfigurable subsystems for SOC as part of ACME

Labs Totem Project.

Picker International, Cleveland, OH.

05/1996 – 09/1998 Software Integration Tester/Field Service Engineer.

Regression testing and programming for the PQ2000 CT Scan System.

Repaired and maintained x-ray processors in the medical industry.

Youngstown State University, Youngstown, OH.

09/1993 – 06/1998 Research Assistant. Project: Fast beam studies of

Rydberg H2. Built a high energy CO2 laser. Built a high voltage power

supply for an ion source. Machined and built a vacuum system for an ion

beam source.

 150

Publications/Presentations

S. Phillips, A. Sharma, S. Hauck. “Automating the Layout of Reconfigurable

Subsystems Via Template Reduction”. International Symposium on Field-

Programmable Logic and Applications, pp. 857-861, 2004.

S. Phillips, A. Sharma, S. Hauck, "Automating the Layout of Reconfigurable

Subsystems Via Template Reduction", poster at IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa, CA; April 2004.

S. Phillips, A. Sharma, K. Compton, S. Hauck, “Automatic Layout for the Totem

Project,” invited oral presentation, MIT Lincoln Laboratory; Boston, MA; July

2003.

K. Compton, A. Sharma, S. Phillips, S. Hauck, "Flexible Routing Architecture

Generation for Domain-Specific Reconfigurable Subsystems", International

Symposium on Field Programmable Logic and Applications, pp. 59-68,

Montpellier, France; September 2002.

S. Phillips, S. Hauck, "Automatic Layout of Domain-Specific Reconfigurable

Subsystems for System-on-a-Chip", ACM/SIGDA Symposium on Field-

Programmable Gate Arrays, pp. 165-173, Monterey, CA; February 2002.

S. Phillips, Automatic Layout of Domain-Specific Reconfigurable Subsystems for

System-on-a-Chip, M.S. Thesis, Northwestern University, Dept. of ECE,

Chicago, IL; July 2001.

Personal

Born January 31, 1975. US citizen.

Actively train and compete in Brazilian Ju Jitsu form of martial arts, May 2001-

present.

Volunteer as a science fair judge, seasonal.

 151

Volunteered as a counselor and lifeguard for orthopedically handicapped children,

seasonal.

	List of Graphs
	Chapter 1
	Chapter 2
	2.1 Architectural Overview
	2.2 Field Programmable Gate Array (FPGA)
	2.3 Case Study: The Altera Cyclone II FPGA
	2.3.1 Cyclone II Logic Elements
	2.3.3 Logic Array Block (LAB)
	2.3.4 Embedded Multipliers
	2.3.5 Embedded Memory
	2.3.6 MultiTrack Interconnect

	2.4 Case Study: Reconfigurable-Pipelined Datapath (RaPiD)
	2.4.1 RaPiD Datapath
	2.4.1 RaPiD Control Architecture

	2.5 Developing for Reconfigurable Devices

	Chapter 3
	3.1 Reconfigurable Subsystems
	3.2 Systems-on-a-Programmable-Chip (SOPCs)

	Chapter 4
	4.1 Architecture Generation
	4.1.1 Logic Generation
	4.1.2 Configurable ASICs and Flexible Architectures

	4.2 VLSI Layout Generation
	4.3 Place-and-Route Tool Generation
	4.3.1 Placement
	4.3.2 Routing

	Chapter 5
	5.1 Testing Framework
	5.1.1 Percent Utilization
	5.1.2 RaPiD II Tile
	5.1.3 Area and Performance Evaluation

	Chapter 6
	6.1 Feature Rich Template
	6.2 Reduction List Generation
	6.3 Reduction and Compaction
	6.4 Results
	6.4.1 Reduction List Generation
	6.4.2 Area
	6.4.3 Performance

	6.5 Summary

	Chapter 7
	7.1 Approach
	7.1.1 Silicon Compilers
	7.1.2 Tool Flow

	7.2 Generators
	7.2.1 MUX and Demux Generators
	7.2.2 Pipeline Register and Bus Connector Generators
	7.2.3 ALU, Multiplier, and SRAM Generators

	7.3 Results
	7.3.1 Area
	7.3.2 Performance

	7.4 Summary

	Chapter 8
	8.1 Experimental Setup and Procedure
	8.1.1 Setup
	8.1.2 Procedure

	8.2 Results
	8.2.1 Area
	8.2.2 Performance

	8.3 Summary

	Chapter 9
	9.1 Area Comparison: FC, TR, SC, and CG
	9.2 Performance Comparison: FC, TR, SC, and CG

	Chapter 10
	10.1 Contributions
	10.2 Conclusions and Future Work

	Bibliography

