
 

 

Accelerating ncRNA Homology Search with FPGAs 
  

 
 
 
 
 
 

 

 

 

ABSTRACT 

Over the last decade, the number of known biologically important 

non-coding RNA (ncRNA) has increased by orders of magnitude. 

The function performed by a specific ncRNA is partially 

determined by its structure, defined by which nucleotides of the 

molecule form pairs. These correlations may span large and 

variable distances in the linear RNA molecule. Because of these 

characteristics, algorithms that search for ncRNAs belonging to 

known families are computationally expensive, often taking many 

CPU weeks to run. To improve the speed of this search, multiple 

search algorithms arranged into a series of progressively more 

stringent filters can be used. In this paper, we present an FPGA 

based implementation of some of these algorithms. This is the first 

FPGA based approach to attempt to accelerate multiple filters 

used in ncRNA search. The FPGA is reconfigured for each filter, 

resulting in a total speedup of over 25x when compared with a 

single CPU. 

Categories and Subject Descriptors 

B.7.1 [Integrated Circuits]: Types and Design Styles– 

Algorithms implemented in hardware; J.3 [Life and Medical 

Sciences]: Biology and genetics 

General Terms 

Performance 
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1. INTRODUCTION 
Proteins are well known as the workhorse molecules for living 

organisms. The traditional view of ribonucleic acid (RNA) held 

that its main role was to encode proteins. It was a temporary 

product transcribed from deoxyribonucleic acid (DNA) and then 

translated into protein. In contrast with this role are functional 

non-coding RNA molecules. These ncRNAs fill a variety of 

biological roles, performing protein-like functions as diverse as 

catalyzing reactions and regulating gene expression or metabolism 

[3][4][13]. Recent discoveries include specific links between 

ncRNA and human diseases, including cancer and Alzheimer’s 

[9]. 

One key problem in ncRNA bioinformatics is homology search: 

finding additional instances of a known ncRNA family across 

multiple genomes. The current algorithms to perform this task in 

software can have very long runtimes, on the order of days, weeks 

or even longer depending on the problem size. Faster 

implementations would also allow for searches to be run routinely 

that are currently impossible due to their complexity, opening up 

entirely new avenues of research. For these reasons, we have 

developed a field programmable gate array (FPGA) based 

implementation to reduce the runtime of the ncRNA search 

problem. 

2. BACKGROUND 
Like DNA, ncRNA is made up of a chain of nucleotides. From an 

abstract viewpoint, each of these nucleotides can be represented 

by a single base selected from an alphabet of A, C, G or U. The 

string of bases that make up the ncRNA molecule are called the 

sequence or primary structure. Much like DNA, the bases in 

ncRNAs can bond, or pair, with one another. The strongest bonds 

form between adenine (A) and uracil (U), and between guanine 

(G) and cytosine (C). In addition to these Watson-Crick pairs, 

ncRNAs also form weaker G-U wobble pairs, as well as other 

interactions. After being transcribed, some of the bases in the 

ncRNA molecule will bond with their complements, creating 

various two-dimensional features. This shape, known as the 

secondary structure, depends on both the sequence and on which 

bases ultimately end up paired. The actual location of each 

nucleotide in three-dimensional space inside the cell is referred to 

as the tertiary structure. 

The Rfam database is an attempt to classify all known ncRNAs 

into families based on their functions [11]. Much like proteins, 

these functions strongly depend on the three-dimensional 

structure of the ncRNA molecule, but, also like in the case of 

proteins, this information is intensely difficult to compute. For 

RNA, the secondary structure provides a partial proxy and allows 

for the use of much more efficient algorithms for determining if a 

given ncRNA is a member of a functional family [8]. The use of 

the secondary structure, instead of the primary structure, is 

necessary because ncRNA of the same family (in the same or 

different species) may have very different sequences while sharing 

the same secondary structure. 

Rfam seeks to maximize the accuracy of its ncRNA homology 

searches by modeling each family [6]. This is a particularly 

challenging problem for Rfam because traditional sequence 

alignment techniques are not appropriate. Tools like BLAST, 

Smith-Waterman and profile HMMs are designed for matching 
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sequences. They make no use of secondary structure information, 

so it would be very hard for a single model to match two ncRNAs 

with the same secondary structure but radically different primary 

sequences without a huge sacrifice of specificity. To get around 

this limitation, Rfam uses covariance models (CMs) to represent 

families [8]. Covariance refers to the fact that for the secondary 

structure to be preserved, paired bases must remain 

complementary across different members of the family even if the 

bases themselves change. 

Figure 1 shows the sequence for an Iron response element (IRE) 

ncRNA in four different species. The IRE plays an important role 

in iron metabolism and has over 3,000 alignments in Rfam. The 

blue and red sections of the sequence represent two helixes, as 

illustrated by the secondary structure shown in Figure 2. Note that 

each species has a different sequence for positions 3, 4 and 5 from 

the left, but the bases in the 5th, 4th and 3rd positions from the right 

change accordingly (covary) to preserve Watson-Crick (or G-U 

wobble) pairs. The gaps in the sequences, represented by dots in 

Figure 1, mean that these pairs are not at a fixed spacing. The 

color coding in Figure 2 represents another important concept 

captured by the CM. Warmer colors represent highly conserved 

bases, the ones that rarely change between species. Cooler colors 

represent bases that are more likely to vary. Highly conserved 

regions of ncRNAs reflect regions that are critical to the 

molecule’s function [16]. For example, the highly conserved loop 

on the end of the IRE binds with important iron response proteins 

to help regulate iron metabolism [2]. Notice that the base-paired 

regions are also highly conserved, but in the more subtle sense 

that pairing is preserved, rather than specific nucleotides. CMs are 

especially useful for ncRNA homology search because they are 

capable of capturing these features, specifically variably spaced 

conserved sequences and pairs embedded in less well-conserved 

regions. 

 

Figure 1. The sequence for an IRE ncRNA in four species 

 

Figure 2. The secondary structure of the IRE, based on IRE_I 

summary [11] 

Using CMs, it is possible to perform ncRNA homology searches 

relatively efficiently, but the computation is still very time-

consuming. A typical search for a single family against a large 

sequence database can take days of CPU time [19]. The work 

presented in this paper is focused on accelerating the CM search 

pipeline in the Infernal 1.0 software package [15]. In addition to 

many other features, Infernal provides a very fast CM-based 

ncRNA homology search component. The speed of the search is 

due to three main features: 1) The use of efficient CM algorithms; 

2) Highly optimized code; 3) Prefiltering the sequences using 

hidden Markov models (HMMs). This use of HMM filters is 

especially important for speedup, since the algorithmic 

complexity of an efficient HMM algorithm is O(N2) compared 

with O(N3) for a CM. 

Infernal 1.0’s search pipeline is made up of two filters followed 

by a final CM search. The first filter is HMM-based, and so it is 

asymptotically more efficient than a CM. This filter typically 

eliminates 98% or more of the dataset from consideration. The 

second filter is CM-based, and uses a slower but more sensitive 

search algorithm. This filter eliminates a large portion of the 

remaining input sequences, and the final most sensitive CM 

search algorithm, known as Inside, is run against what remains to 

find potential ncRNA family members. 

3. PREVIOUS WORK 
Infernal uses the Viterbi dynamic programming algorithm for 

scoring sequences against HMMs and CYK for CM scoring [15]. 

Both of these algorithms have a number of FPGA 

implementations [17][1][18][5]. However, to our knowledge there 

have been no previous efforts to accelerate Infernal’s entire 

ncRNA homology search pipeline. Given the massive 

performance gains from prefiltering, any approach that only 

attacks a single stage of the Infernal pipeline is severely limited in 

terms of the speedup it can realize. Infernal without any filters is 

orders of magnitude slower, and with all pipeline stages enabled 

each of the three main stages is roughly equal in runtime. 

Significant work has been done on using hardware to improve the 

runtime of the CYK portion of Infernal. The approach used by 

[14] is one more geared to an application-specific integrated 

circuit (ASIC) than an FPGA, due to the shared memory and very 

large switches it requires to handle CMs with many states. On a 

large Virtex-5 FPGA from Xilinx, this work is limited by the 

available logic and maxes out at around 20 processing elements 

(PEs). By way of contrast, the approach is designed to scale well 

to over 300 PEs on an ASIC. Although this is reasonable given 

that ASICs are the stated focus of the design, the FPGA 

performance is not optimized. 

The Infernal CYK accelerator presented in [21] is much more 

FPGA centric. This design makes use of an array of processors 

that require minimal access to data that is not stored in the PE or 

available from one of its neighbors. This approach requires much 

less memory bandwidth and yields 32 PEs on a Virtex-5. 

Ultimately, it ends up being block RAM (BRAM) limited and it is 

most similar to the CYK acceleration approach presented in this 

paper. The significant differences are discussed below. Note that 

[21] does not address HMM filtering, so its speedup is limited to 

only the CYK stage of the pipeline. 

Of the FPGA Viterbi implementations, the most relevant are those 

that implement HMMER HMMs. HMMER is a software package 

that makes use of Plan 7 HMMs to perform protein homology 

search [7]. This protein search, using families found in Pfam, is 

very similar to ncRNA homology search. Significantly however, 

given their size and structural restrictions, the primary structure 

alone provides sufficient sensitivity for finding protein family 

members. Of the efforts to accelerate HMMER on FPGAs, [18] is 

the most relevant. It presents a very fast FPGA implementation of 

Plan 7, with the ability to fit over 50 PEs on a Virtex-4. Plan 7 

HMMs form the basis for the Plan 9 HMMs used in Infernal 1.0 

[16], but Plan 9 is significantly different from Plan 7, and so is the 

FPGA implementation. The next section covers these differences 

in detail. 



 

 

4. VITERBI 
This section provides an overview of the Viterbi algorithm, as 

well as details and results for the Viterbi FPGA implementation. 

4.1 Viterbi Algorithm and Plan 9 HMMs 
The Viterbi algorithm is a two-dimensional dynamic 

programming algorithm [10]. Given an observed sequence and an 

HMM featuring a set of states with emission and transition 

probabilities for those states, the algorithm produces the highest 

scoring path through the states. This is the most likely path to 

have emitted the particular input sequence. Although the Viterbi 

algorithm itself is general and can be used with any HMM, the 

implementations used in HMMER and Infernal are limited to 

supporting only Plan 7 and Plan 9 HMMs respectively. Although 

they are very similar, there are some significant differences that 

affect the CM Plan 9 (CP9) FPGA design. The states of CP9 

HMMs are shown in Figure 3. 

 

Figure 3. CM Plan 9 HMM States 

In CP9, each node consists of three states: Insert, Match and 

Delete. The Match state emits a base that matches the one 

expected by the model. The Insert state emits an unexpected base 

without advancing to the next node. Finally, the Delete state 

advances to the next node without emitting. Note that every node 

is the same except for the first and last. For the first node, there is 

no Delete state and M0 is equivalent to a Begin state, which 

represents the start of the model. For the final node there is no 

Insert or Delete and Mi represents an End state. The CP9 HMMs 

are built by Infernal from each family’s CM. This process is based 

on the techniques described in [20] and creates a filter with a 

much faster runtime than the CM due to the better asymptotic 

efficiency of the Viterbi algorithm. 

The first key difference between Plan 7 and CP9, and therefore 

between the FPGA Viterbi accelerator presented here and the 

previous work, is which state transitions are available. In Plan 7, 

there are no transitions from Insert to Delete or vice versa. 

Supporting these edges requires slightly more complex PEs in 

CP9. There are two more significant differences, but these require 

a discussion of the CP9 Viterbi algorithm first. 

The Viterbi algorithm makes use of a two-dimensional dynamic 

programming table to store the probability scores computed for 

each state. The work for each node involves computing the 

probability of each transition into that node given the current 

sequence element and the scores of previous nodes. For example, 

to compute the Insert score for some node requires taking the sum 

of the Insert emission probability for that state, given the current 

base in the sequence, and the maximum of the scores of the three 

states that could transition into an Insert. Each of these scores 

must have the correct transition probability added to it before the 

max is computed. The final equation for an Insert score is as 

follows: 

 

During the Viterbi run, the table cell j,i contains a score 

representing the probability of the sequence up to some element i 

matching up with the model up to some state j, and by the end of 

the run the entire table will be filled in this manner. The equations 

for the remaining transitions are very similar to those used in Plan 

7 and can be found in the previous work [17]. Notice that the 

Insert equation above has the additional Delete to Insert 

transition. The others must be similarly modified. 

 

Figure 4. CP9 DP Table Data Flow 

One dimension of the dynamic programing table is the model, so 

moving one cell to the right in Figure 4 is equivalent to moving to 

the next state in the model. The other dimension represents the 

sequence being scored, so moving down the table represents 

emitting one base. Each cell in Figure 4 represent an entire node, 

meaning that they each contain a Match, Insert and Delete state. 

The Delete state does not emit a base, instead it represents a state 

in the model that is not found in the sequence. For this reason, 

Delete is a transition from one node to its right hand neighbor in 

the table. Similarly, Insert emits a base that does not match any 

model state, so it moves down the table. The Match state is used 

when a base fits the model’s expectations. In this case it both 

emits the base and moves on to the next model state, moving right 

and down one node in the table. 

These data dependencies are such that the CP9 HMM has no 

backwards paths. This means that a computation can be performed 

along a wavefront starting with node (0, 0) (which depends on no 

other nodes) followed by computing (1, 0) and (0, 1) in parallel, 

then (2, 0), (1, 1) and (0, 2) also in parallel and so on. In other 

words, the lack of backwards data flow means that there is a huge 

amount of parallelism available in the computation. Note that 

communication is not all local from one node to the next. Not 

shown here are the Begin and End state transitions. These provide 

some (typically very low) probabilities to jump from the Begin 

state to any position in the model, and similarly from any state to 

End. Although these transitions are not local like the transitions in 

Figure 4, they are still entirely feedforward, so no parallelism is 

lost. 

The fact that there are no feedback paths in CP9 HMMs is the 

second critical difference between CP9 and Plan 7 HMMs. The 

feedback path in Plan 7 allows for the model to match multiple 



 

 

copies of itself in succession [18]. This feedback requires special 

consideration for an FPGA implementation, and so the lack of it 

in CP9 gives us greater design freedom. 

Among the changes from Plan 7, the third and most significant is 

the introduction of another state type. This End Local (EL) state 

only exists for some nodes along the model, and allows for large 

portions of the model to be bypassed. Because EL states also have 

a self-loop, like Inserts, they allow for a number of bases to be 

emitted while skipping over a potentially large portion of the 

model. More specifically, when the CP9 HMM is built from the 

CM, some nodes will contain an EL state and a probability to 

transition from Match to this state. The only other way to reach 

the EL state is through a self-loop which emits a base and stays in 

the same state. The only transition from the EL state is to some 

subsequent Match state. This transition is unique in CP9 in that it 

is the only transition other than from Match to End that can jump 

forward many states. It is also different from other states in that 

not every Match has an associated EL state. In addition, a single 

Match can have multiple incoming EL transitions. See Figure 5 

for an example of some of these properties. Because of these 

properties a more flexible design is required to handle EL states. 

 

Figure 5. Example of a CP9 HMM Featuring EL States 

4.2 FPGA Implementation 
Figure 6 shows a block diagram of the CP9 Viterbi 

implementation developed in this work. For all of the results 

presented in this and subsequent sections, our FPGA designs 

targeted a Pico Computing system featuring an EX-500 backplane 

equipment with an M-503 module. This module features a Xilinx 

Virtex-6 LX240T as well as 8GB of DRAM and 27MB of SRAM. 

The design operates on a streaming paradigm. This is appropriate 

because a single, relatively small HMM may be run against a very 

long sequence or set of sequences. The sequence is streamed in 

from offchip and scores are streamed out on a similar channel. No 

other external memory or offchip communication is used. 

 

Figure 6. CP9 Viterbi FPGA Block Diagram 

The CP9 Viterbi FPGA design is based on a linear array of PEs. 

Once the processor pipeline has filled, this allows all PEs to 

operate in parallel along the wavefront described in the previous 

section. Given the dynamic program table in Figure 4, it makes 

the most sense for a single PE to either move down a column, 

computing scores for many bases from the sequence for a single 

state, or across a row, handling all states for a single base. Either 

of these arrangements allows for neighbors to communicate model 

and score values. Because CP9 does not have a feedback state, but 

it does have EL states, it is most feasible for a single PE to handle 

all states for a given base, for the next PE to handle the next base, 

and so on down the sequence as shown in Figure 7. Every PE will 

be computing at all times except for the beginning and end of the 

sequence. There are some cases that break this parallelism, for 

example, a very short model with fewer states than there are PEs. 

However, this situation can be handled by replicating the model 

multiple times and shifting in the next base after reaching the end 

of the first copy of the model. 

 

Figure 7. CP9 Viterbi PE Allocation and Wavefront 

The Sequence Shifter itself is simply a set of shift registers. The 

first shifts bases in from the input stream and loads them into a 

second shift register when required. After a PE has completed 

work on a base, a new base is loaded from the second shift 

register for that PE. The Score Shifter works on similar principles 

and also filters output scores to avoid saturating output 

bandwidth. 



 

 

The Model BRAM stores the CP9 HMM paramaters, which 

include emission scores for Insert and Match states and transition 

scores for all possible state transmissions. These scores are stored 

in log-odds form, which converts multiplications to addition of 

precomputed logs. Viterbi also requires maximum operations, 

which can use the same hardware in log and regular integer 

format. In addition, the precision of the calculations can be 

adjusted by changing the number of bits used to store the scores 

throughout the system. The amount of BRAM required to store 

the models depends on this width. Every state requires an 

emission probability for each possible base for Match and Insert, 

or 8 emission probabilities per state. There are transmission 

probabilities between every possible combination of the three 

states in the nodes for a total of 9 different values. In addition, 

there are transition probabilities for Begin, End and EL for each 

state, bringing the total up to 20. Letting ws represent the number 

of bits per score, this requires 20 × ws bits per state. Setting the 

maximum model length to 2k, which can handle all of the current 

Rfam models, and given that the Virtex-6 series features 36 Kb 

BRAMs, this means that the total model BRAM requirement is 2k 

× 20 × ws / 36k = 1.25 × ws. For our current system, a ws value of 

around 18 bits is sufficient, requiring about 24 of our FPGA’s 416 

BRAMs for model tables, due to padding. 

The Processing Elements themselves are fairly simple. The first 

PE receives model information from the BRAM. Since the 

computation wavefront, shown in Figure 7, is such that each PE is 

always one node in the HMM behind the previous PE, this model 

information can be passed from one PE to the next as well. Dark 

grey cells represent current computation while light grey cells 

have already been scored. The alternative approach, where each 

PE handles many sequence bases for the same state, requires that 

each PE have access to its own portions of the table, potentially 

reducing efficiency of BRAM use or introducing additional 

multiplexers. 

In addition to the transition and emission probability and 

sequence data discussed above, the PEs need some way to access 

and update the DP score table. Because all communication is 

either between adjacent bases or across many states but within the 

same base, there is no need to actually store the entire table in 

memory. Instead, the values that are required at any given time are 

only those immediately surrounding the computation wavefront. 

Furthermore, values that do require longer communications, such 

as Begin and End scores (with an End score for each base being 

the ultimate output of the FPGA accelerator) can be stored in the 

local PE. The only exception to this local communication is the 

EL state, which we will discuss in detail. Since the input sequence 

proceeds down the PEs in order, the next base after PE N has to 

be handled by PE 0. At this point, all score information must be 

transferred back to PE 0. For models much longer than the 

number of PEs, PE 0 will still be busy computing its current base, 

so this score information must be stored in the Roll FIFO shown 

in Figure 6. The total amount of score information required for 

each base is one score each from the Match, Insert, Delete and EL 

states, or 4 × ws. There is also an EL BRAM (not shown) for PE 0 

located after the FIFO. 

The PEs themselves are simple pipelined arithmetic units. They 

perform the addition and max operations required to calculate the 

scores for the DP table cells they are processing before moving on 

to the next cell in the next cycle. It is worth noting that although 

the current version with a two stage pipeline can run at slightly 

over 100 MHz, it is challenging to add more pipeline stages. This 

is due to the various local dependencies for individual HMM 

states like EL and End. In addition to computing table values for 

the current cell, the PE stores the running best scores for the 

current base for long transitions. These include scores for EL, 

Begin and End. 

EL states are a special case for a number of reasons introduced 

earlier. To summarize, EL states introduce a data dependence 

between cells more than one cell apart. EL states also have a self-

loop with a score penalty that transitions to the next base like the 

self-loop for an Insert state. In order to handle these irregularities, 

we introduce the concept of the EL memory. This memory is 

necessary because unlike the End state, storage for many EL 

scores could be required simultaneously. See Figure 5 for an 

example of how this could happen. In this case, a PE computing 

M4 requires data from both EL1 and EL2. More complex models 

require storage for many more ELs. Furthermore, there are some 

situations with much greater EL fan-in than in this example. 

Although these situations are handled with a simple loop over the 

EL input states when computing a Match score in the Infernal 

software, that luxury is not available for an FPGA 

implementation. Instead, our design handles this problem by 

combining ELs in a tree-like structure while running along the 

model. The shape of this combination tree is computed in 

software and stored with the model information prior to a Viterbi 

run. This is possible because EL states are typically generated 

from states that pair in the CM, and physical limitations on the 

molecule shape prevent overly complex EL patterns. In fact, for 

many CP9 HMMs a stack would be sufficient for EL storage. The 

algorithm for EL combination is presented in Figure 8. 

  

The EL combination algorithm above is capable of giving all 

states a maximum of one EL write and two EL reads, in addition 

to the use of an EL register inside the PE. In the FPGA, this 

translates to a pair of mirrored BRAMs for a total of one write 

Figure 8. EL Combination Algorithm for CP9 HMMs 

combineELs(ELMap) 

Input: ELMap, containing list of all EL transitions 

Output: ELCmd, containing EL memory and register 

  commands for each CP9 HMM state 

 

Convert ELMap to ELCmd equivalent (EL memory ops) 

foreach link l in ELMap 

 if l has only one destination state and 

 if next l has only the same destination state 

  remove l’s EL memory ops from ELCmd 

  add equivalent EL register op to ELCmd 

foreach command c in ELCmd 

 while c has reads from > 2 EL memory locations 

  let wl be the origin state of data for reads in c 

  sort wl by state 

  foreach HMM state s starting at second state in wl 

   if s has no EL memory ops (register ops are OK) 

    add two reads (based on order in wl) to s 

    remove those reads from ELCmd for c 

    add write of combined data to ELCmd for s 

    add a read of combined data to ELCmd for c 

    terminate foreach 

   if s = state of c 

    insert dummy state after second state in wl 

    terminate foreach 



 

 

port and two read ports. For an example of the algorithm’s 

operation, see Figure 9. A represents the initial state after software 

EL states are converted into EL memory commands. States 4 and 

7 both require three reads, so this is not a legal set of commands 

for our hardware. In B, after the EL register conversion has taken 

place, the extra reads on state 4 have been resolved. The register 

operations automatically combine EL scores and are represented 

with a dotted line. Finally, in part C, the first two EL reads in state 

7 are reduced to a single read by doing an EL combination in state 

5. Now no state has more than two reads and one write, resulting 

in a legal set of EL commands. 

 

Figure 9. EL Combination Algorithm Example 

Currently, two BRAMs per PE is not a limiting factor, as can be 

seen in the next section, but if it becomes an issue in the future it 

would be possible to double-pump the BRAM ports and use a 

single BRAM for each PE. Finally, although it is possible to 

conceive of a scenario where the dummy states inserted by the 

combination algorithm could have a substantial impact on 

runtime, or even make an HMM too long to fit in the Model 

BRAM, we have not yet encountered any Rfam families that 

require even a single dummy state. 

4.3 Viterbi Results 
Running at 100 MHz, the CP9 Viterbi implementation is limited 

by the available logic resources on our Virtex-6, as seen in Table 

1. This is the expected result, given that each PE has many adders 

and max units. The current PEs make use of parallel maxes, a 

poison bit for overflow and other frequency optimizations that 

result in larger PEs. Determining the optimal tradeoff between 

frequency and quantity of PEs on an FPGA remains in the domain 

of future work.  

Table 1. Post-map Logic Utilization of Viterbi Design 

PEs Slices LUTs BRAMs 

4 14% 9% 13% 

16 27% 15% 19% 

64 67% 43% 42% 

128 97% 77% 73% 

The performance of the FPGA-based solution is very good when 

compared with Infernal. Figure 10 shows the speedup vs. Infernal 

1.0 software running on a single Intel Xeon E5520 core. Adding 

PEs to the system results in nearly linear speedup, and this is to be 

expected given that there is no significant overhead. Speedup over 

Infernal 1.0 decreases as model size (shown in parentheses) 

increases, leveling out at around 230x. This is most likely due to 

inefficiencies in the software Viterbi implementation for very 

small models. Note that the median HMM model length in Rfam 

is under 100 states. This chart compares only the runtime of the 

Viterbi algorithm itself, not the entire FPGA and software 

systems. 

 

Figure 10. Speedup of FPGA Viterbi vs. Single CPU Infernal 

5. CYK 
This section provides an overview of the CYK algorithm, as well 

as details and results for the CYK FPGA implementation. 

5.1 CYK Algorithm 
To achieve high performance, Infernal's HMM filter stage 

removes the non-local dependencies in the ncRNA structure and 

simply looks at features detectable in a linear search. While this 

ignores important elements of the structure, the filter runs quickly 

and can eliminate most of the input data.  However, the HMM 

will accept many regions that do not actually include the target 

ncRNA. Further filtering requires looking at the secondary 

structure of the ncRNA model for which we are searching, and is 

performed by the Cocke-Younger-Kasami (CYK) algorithm [22]. 

CYK is a dynamic programing algorithm, in some ways analogous 

to a three-dimensional version of Viterbi. Also like Viterbi, CYK 

is a general algorithm that can be used to parse any probabilistic 

context-free grammar in Chomsky normal form. CMs fit this 

description, as they are constructed using only a few rules of the 

appropriate form [8]. The CM directly represents the pairings and 

branchings found in the secondary structure of an ncRNA. This is 

done through Match Pair and Bifurcate nodes respectively. As can 

be seen in Figure 11, Match Pair nodes represent pairings of 

potentially distant bases in the ncRNA sequence, something the 

HMM model cannot support. In Hammerhead_3, the second and 

second-to-last bases are emitted by the same Match Pair node. 

Bifurcation nodes represent branches in the ncRNA secondary 

structure. Handling Bifurcations will require breaking the problem 

up into two smaller subproblems (one for the left branch and one 

for the right branch). Unfortunately, since each subproblem can 

use varying lengths of the target RNA, given that biological 

evolution can change the length of individual branches, we cannot 

know ahead of time where the split point occurs in the candidate 

sequence. This is solved by simply trying every possible split-

point and picking the highest scoring match, a fairly time-

consuming process. In Figure 11, the Bifurcate node takes place 

before the sets of Match Pairs that make up Hammerhead_3’s two 



 

 

arms. This requires a Bifurcation state, because without one there 

would be no way to express two separate sets of paired bases. 

 

Figure 11. Secondary Structure of a Hammerhead_3 ncRNA 

The CYK algorithm starts with a sequence of length N and a CM, 

and scores that sequence against the model with a better match 

resulting in a higher score. It converts this into a three-

dimensional dynamic programming problem by creating layers of 

triangular DP matrixes, one for each state in the CM as in Figure 

12. These matrixes are triangular because position j, i in state S 

represents the best matching of states S…SEnd to region i…j of the 

target sequence. It does not make sense to match to a region 

whose start is after its end, so entries j, i where j > i are useless. 

Emissions of single bases are achieved through Match Left and 

Right states, where Left states move up one cell in the DP matrix 

by subtracting one from i as shown in Figure 12. Similarly, Right 

states move right one cell by adding one to j. The final dimension, 

k, refers to the state. 

 

Figure 12. CM CYK Three-dimensional DP Table 

As the CYK algorithm proceeds, it works from the last CM state 

SEnd back to the starting state SRoot, and processes from small 

sequences of length 1 (i.e. squares i, i+1) towards longer 

sequences. The probability score for each subsequence is stored in 

the DP table to be reused without being recomputed. This process 

handles most parts of the model (including Match Pair) very 

efficiently, with only local communication. The one exception is 

the Bifurcation state. In this state, processing a sequence from j to 

i requires finding the best split point, mid, where j < mid < i. 

Since we don't know where the bifurcation point is in the target 

sequence, CYK must compute the highest score for all possible 

mids by maximizing the score(j, mid, branch1) + score(mid, i, 

branch2) where branch1 and branch2 are the states containing the 

total scores for the subtrees. The first two cells of this calculation 

are shown in Figure 12 and the equation can be found in [8]. This 

computation is very similar to matrix multiplication and requires 

O(n3) arithmetic operations for each Bifurcation resulting in a 

total CYK runtime on the order of O(kn2 + bn3). Because of the 

expense of this operation, it can dominate the computation time 

for very large models as seen in Figure 13. In practice, the impact 

of Bifurcation states is not always as extreme as this chart makes 

it appear because over half of all Rfam CMs are under 100 nodes 

long. 

 

Figure 13. Computation in Bif State Assuming 0.9% Bifs 

5.2 FPGA Implementation 
Our implementation of CYK for CMs, diagramed in Figure 14, is 

based around a linear array of PEs, similar to the one used for 

Viterbi. The most significant difference in the design is the use of 

off-chip memories. Because it has a three-dimensional DP table, 

CYK requires substantial more storage. By dividing the entire 

matrix up into stripes and letting each PE handle a single column 

of the DP table as in Figure 16, most of this memory can be made 

local to the PE in the form of BRAM [21]. This method of 

striping the model is possible because, much like Viterbi, there 

are no non-local or backwards data dependencies for non-

Bifurcation states. The calculations for a given cell in a non-

Bifurcation state only require data from the same cell and its 

immediate neighbors from layers in the previous node. This 

means the computation wavefront is similar to Viterbi, and a 

similar arraignment of PEs inside the stripes is most effective. 

After completing one state for a given stripe, the PEs can begin 

work on the next layer. After completing all layers, the PEs begin 

work on the next stripe until computation is complete. Each PE 

contains many simple arithmetic units to update all states in the 

node simultaneously. This requires striping the state data across 

many local BRAMs.  



 

 

 

Figure 14. CM CYK FPGA Implementation Block Diagram 

All of the DP cells for the current stripe can be stored in the local 

BRAM associated with each PE. Values from cells to the left can 

be passed from the previous PE. The values computed at the end 

of a stripe are written out to DRAM, to be reloaded when the 

same layer is reached during the next stripe. The only other time 

that DRAM storage is required is for one of the Begin layers prior 

to a Bifurcation state. Because the Bifurcation computation uses 

non-local data, it requires substantially more cells from DRAM. 

Figure 16 shows that PE operation is substantially different for 

Bifurcations and this requirement explains why. The row data 

used in the Bifurcation computation discussed in the previous 

section is streamed in from DRAM and passed from one PE to the 

next. Column data is loaded from BRAM as with other states. 

Every PE is equipped with multiple Bifurcation arithmetic units 

allowing for the use of multiple DRAM rows simultaneously, 

improving use of memory bandwidth for Bifurcation states. This 

can be seen in Figure 15. 

 

Figure 15.CM CYK PE Block Diagram 

 

Figure 16. Striping for Normal (left) and Bif (right) states 

In addition, the CM model itself can be much larger than the 

Viterbi model, and BRAM is the limiting resource for this design, 

so the model is stored off-chip. BRAM becomes the limiting 

factor because it would be impossible to achieve high 

performance if the data required by all stripes was loaded from 

DRAM. Our M-503 platform offers two 64-bit DDR interfaces 

running at 400MHz for a total of 12.8 GB/s of DRAM bandwidth. 

Ignoring the bandwidth required to load the data along the first 

row, each PE requires as many as four DP table values each cycle 

for Match Pair, Match Left, Match Right and Delete states. This 

means that again assuming a score width of ws the bandwidth 

required for a single PE is 4 × FPGA speed × ws. Using ws of 21 

bits [14], slightly more than Viterbi, and a speed of 100 MHz, this 

gives a requirement of  about 1 GB/s of bandwidth for each PE. 

This result would limit our design to 12 PEs on the M-503. 

When using the striped approach with BRAM there is sufficient 

DRAM bandwidth available and BRAM capacity becomes the 

limiting factor. Assuming a maximum sequence length of 6144 

bases, reasonable given the length of CMs in Rfam, the BRAM 

requirement for the largest stripe becomes 4 × 4096 × ws. Again 

using 21 bits, this yields a storage requirement of 504 Kb. Given 

the Virtex-6’s 36 Kb BRAMs, this would require 14 BRAMs for 

each PE, allowing 24 PEs per FPGA after accounting for other 

BRAM usage. This solution is clearly superior, with over twice as 

many PEs on-chip compared to a design that stores the entire 

table in DRAM. Another advantage is that as the PE clock speed 

increases the DRAM bandwidth would be able to support even 

fewer PEs. 

Another way the CYK design differs from Viterbi is in the input 

sequence handling. For Viterbi, the sequence can be streamed in, 

sent to the PEs and then discarded. Unfortunately, this is not the 

case for CYK. Because the use of stripes results in each stripe 

requiring the same parts of the sequence, the entire sequence must 

be stored for reuse after being streamed in. The sequence BRAM, 

shown on the block diagram, serves this purpose. 

The last significant CYK module is the Controller. This module 

contains the Finite State Machine (FSM) responsible for the CYK 

algorithm operation. The Controller also contains BRAM that 

stores model-specific instructions. These consist of a number of 

fields generated by software and written to the FPGA prior to 

accepting sequence input. Entries in this table include DRAM and 

SRAM addresses and lengths for each stripe as well as state and 

other model information for the stripe. The CM itself can be large 

and is stored in off-chip SRAM. The FSM currently follows a 

simple schedule of loading the stripe information from the 

controller BRAM, loading appropriate DRAM values and then 

executing to completion while writing values back to DRAM. 

Future versions of the design could feature a more complex 

controller that performs some of these operations in parallel. 

5.3 CYK Results 
Running at 100 MHz, we estimate that the FPGA CYK 

implementation is limited by BRAMs available on chip, as seen in 

Table 2. This is the expected result given the discussion of BRAM 

utilization in the previous section. Future designs may contain 

additional parallel logic in an attempt to achieve better 

performance with the same memory utilization. Note that all 

results in this section are estimated based on functional Verilog 

simulation and synthesis. 

 

 



 

 

Table 2. Estimated Logic Utilization of CYK Design 

PEs Slices LUTs BRAMs 

6 35% 25% 35% 

12 42% 32% 56% 

24 51% 39% 96% 

CYK performance shows much more unpredictable variation 

between different CMs than Viterbi, as seen in Figure 17. This is 

because the CYK algorithm’s runtime depends on a number of 

factors other than model size, including the prevalence of 

Bifurcation states. In addition, the speedup from adding PEs is 

sublinear for small models due to the overhead of switching 

between stripes and computing scores for cells in the stripe that 

are not actually part of the DP triangle. This effect is substantially 

more pronounced in smaller models because the average height of 

a stripe is much less. Overall speedup is still very good, with a 

geometric mean speedup of over 70x for 24 PEs. 

 

Figure 17. Estimated FPGA CYK Speedup vs. Infernal 

To get an estimate of the performance of Infernal’s final search 

algorithm, Inside, it is necessary to determine the number of 

Inside PEs that would fit on our FPGA. The large increase in size 

from a CYK PE to an Inside PE is due to the use of floating point 

(FP) addition. The CYK and Viterbi implementations avoid FP 

arithmetic by using log-odds scores. However, Inside requires 

addition of scores, instead of only multiplication, which is 

expensive in the logarithmic representation. For FPGAs, single 

precision FP addition requires approximately 20x more area than 

log multiplication (integer addition), which is still only half as 

expensive as log addition [12]. Based on these numbers, and our 

calculations showing that the CYK design becomes FPGA area 

limited at around 80 PEs, a very conservative estimate for Inside 

would allow for 4 PEs and one sixth the speedup of CYK. This 

estimate is very likely excessively pessimistic because the Infernal 

1.0 implementation of Inside is also slower than CYK. 

6. FPGA BASED SYSTEM 
Although the performance of the individual FPGA 

implementations of Viterbi and CYK is important, the ultimate 

goal of this work is to accelerate Infernal 1.0 in a way that is 

useful to biologists and others in the field. To measure progress 

towards this goal, it is valuable to look at the performance of 

Infernal 1.0 as a whole. Infernal performance using the FPGA 

runtimes for Viterbi and CYK are shown in Figure 18. One 

advantage of a system that uses FPGA implementation to 

accelerate Viterbi and CYK, such as the one modeled here, is the 

possibility to reconfigure a single FPGA to run both filters. A 

multi-FPGA system could divide FPGAs between Viterbi and 

CYK as required given that some ncRNA families spend more 

time in one algorithm or the other, as seen in Figure 18. This is 

due to a number of factors, including the filtering fraction 

achieved by each filter and the asymptotically worse runtime of 

CYK, which begins to dominate for larger models. The ability to 

reconfigure the same hardware and allocate resources as required 

on a per-model basis gives the FPGA implementation an 

advantage over potential ASIC designs like [14]. 

 

Figure 18. Estimated Infernal 1.0 FPGA System Speedup 

The speedup here is less than that of the individual accelerators ˗ 

particularly without Inside acceleration ˗ for two major reasons. 

First, without an accelerated version of the Inside algorithm 

sequences that make it past both the Viterbi and CM filters must 

still run in software. Although a very small percentage of the 

sequence passes both filters, the Inside algorithm is much slower 

than CYK, so a substantial amount of time is still spent running 

Inside. This time is less than 10% of the total prior to acceleration, 

but dominates afterwards. The other reason for the reduction in 

speedup is that these results include all software tasks performed 

by the system, not just Inside and the two filters. Although for 

large enough sequences the time spent in these tasks becomes 

very small, averaging less than 1% of the total runtime for a 60 

million base sequence, they cannot be ignored. It is also worth 

noting that the ncRNA families selected for this experiment tend 

to be among the more frequently occurring, so speedup would 

likely be better for a more typical family because Inside would 

have fewer possible matches to score. With estimated Inside 

acceleration, the expected overall system speedup is much better 

in the worst case. For tRNA (RF00005), a particularly unusual 

ncRNA, speedup improves from 8x to 29x with Infernal 

acceleration. 

7. CONCLUSION 
This work presented an FPGA accelerator for the biologically 

important ncRNA homology search problem. The accelerator 

features FPGA implementations of the two filtering algorithms 

used by the Infernal 1.0 software package. The FPGA version of 

the first of these algorithms, Viterbi, gets a speedup of over 200x. 

The second, CYK, achieves a speedup of 70x over the software 

version. When combined into an Infernal-like system, we 

anticipate that these accelerators alone can run 25x faster than 

pure software. This speedup is limited by the fact that our current 

system has no accelerator for the Inside algorithm used as the final 

stage in Infernal’s search pipeline. Given the results of our other 

accelerators, we anticipate that an Infernal 1.0 system featuring an 

FPGA implementation of the Inside algorithm could achieve a 

total system speedup of over 47x. To our knowledge, this is the 



 

 

first system to accelerate multiple stages of an ncRNA homology 

search pipeline, which we achieved using FPGA reconfiguration. 
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