

Accelerating ncRNA Homology Search with FPGAs

ABSTRACT

Over the last decade, the number of known biologically important

non-coding RNA (ncRNA) has increased by orders of magnitude.

The function performed by a specific ncRNA is partially

determined by its structure, defined by which nucleotides of the

molecule form pairs. These correlations may span large and

variable distances in the linear RNA molecule. Because of these

characteristics, algorithms that search for ncRNAs belonging to

known families are computationally expensive, often taking many

CPU weeks to run. To improve the speed of this search, multiple

search algorithms arranged into a series of progressively more

stringent filters can be used. In this paper, we present an FPGA

based implementation of some of these algorithms. This is the first

FPGA based approach to attempt to accelerate multiple filters

used in ncRNA search. The FPGA is reconfigured for each filter,

resulting in a total speedup of over 25x when compared with a

single CPU.

Categories and Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles–

Algorithms implemented in hardware; J.3 [Life and Medical

Sciences]: Biology and genetics

General Terms

Performance

Keywords

FPGA, ncRNA, reconfigurable computing, Viterbi, CYK

1. INTRODUCTION
Proteins are well known as the workhorse molecules for living

organisms. The traditional view of ribonucleic acid (RNA) held

that its main role was to encode proteins. It was a temporary

product transcribed from deoxyribonucleic acid (DNA) and then

translated into protein. In contrast with this role are functional

non-coding RNA molecules. These ncRNAs fill a variety of

biological roles, performing protein-like functions as diverse as

catalyzing reactions and regulating gene expression or metabolism

[3][4][13]. Recent discoveries include specific links between

ncRNA and human diseases, including cancer and Alzheimer’s

[9].

One key problem in ncRNA bioinformatics is homology search:

finding additional instances of a known ncRNA family across

multiple genomes. The current algorithms to perform this task in

software can have very long runtimes, on the order of days, weeks

or even longer depending on the problem size. Faster

implementations would also allow for searches to be run routinely

that are currently impossible due to their complexity, opening up

entirely new avenues of research. For these reasons, we have

developed a field programmable gate array (FPGA) based

implementation to reduce the runtime of the ncRNA search

problem.

2. BACKGROUND
Like DNA, ncRNA is made up of a chain of nucleotides. From an

abstract viewpoint, each of these nucleotides can be represented

by a single base selected from an alphabet of A, C, G or U. The

string of bases that make up the ncRNA molecule are called the

sequence or primary structure. Much like DNA, the bases in

ncRNAs can bond, or pair, with one another. The strongest bonds

form between adenine (A) and uracil (U), and between guanine

(G) and cytosine (C). In addition to these Watson-Crick pairs,

ncRNAs also form weaker G-U wobble pairs, as well as other

interactions. After being transcribed, some of the bases in the

ncRNA molecule will bond with their complements, creating

various two-dimensional features. This shape, known as the

secondary structure, depends on both the sequence and on which

bases ultimately end up paired. The actual location of each

nucleotide in three-dimensional space inside the cell is referred to

as the tertiary structure.

The Rfam database is an attempt to classify all known ncRNAs

into families based on their functions [11]. Much like proteins,

these functions strongly depend on the three-dimensional

structure of the ncRNA molecule, but, also like in the case of

proteins, this information is intensely difficult to compute. For

RNA, the secondary structure provides a partial proxy and allows

for the use of much more efficient algorithms for determining if a

given ncRNA is a member of a functional family [8]. The use of

the secondary structure, instead of the primary structure, is

necessary because ncRNA of the same family (in the same or

different species) may have very different sequences while sharing

the same secondary structure.

Rfam seeks to maximize the accuracy of its ncRNA homology

searches by modeling each family [6]. This is a particularly

challenging problem for Rfam because traditional sequence

alignment techniques are not appropriate. Tools like BLAST,

Smith-Waterman and profile HMMs are designed for matching

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’13, Month 1–2, 2013, City, State, Country.

Copyright 2013 ACM 1-58113-000-0/00/0010 …$15.00.

sequences. They make no use of secondary structure information,

so it would be very hard for a single model to match two ncRNAs

with the same secondary structure but radically different primary

sequences without a huge sacrifice of specificity. To get around

this limitation, Rfam uses covariance models (CMs) to represent

families [8]. Covariance refers to the fact that for the secondary

structure to be preserved, paired bases must remain

complementary across different members of the family even if the

bases themselves change.

Figure 1 shows the sequence for an Iron response element (IRE)

ncRNA in four different species. The IRE plays an important role

in iron metabolism and has over 3,000 alignments in Rfam. The

blue and red sections of the sequence represent two helixes, as

illustrated by the secondary structure shown in Figure 2. Note that

each species has a different sequence for positions 3, 4 and 5 from

the left, but the bases in the 5th, 4th and 3rd positions from the right

change accordingly (covary) to preserve Watson-Crick (or G-U

wobble) pairs. The gaps in the sequences, represented by dots in

Figure 1, mean that these pairs are not at a fixed spacing. The

color coding in Figure 2 represents another important concept

captured by the CM. Warmer colors represent highly conserved

bases, the ones that rarely change between species. Cooler colors

represent bases that are more likely to vary. Highly conserved

regions of ncRNAs reflect regions that are critical to the

molecule’s function [16]. For example, the highly conserved loop

on the end of the IRE binds with important iron response proteins

to help regulate iron metabolism [2]. Notice that the base-paired

regions are also highly conserved, but in the more subtle sense

that pairing is preserved, rather than specific nucleotides. CMs are

especially useful for ncRNA homology search because they are

capable of capturing these features, specifically variably spaced

conserved sequences and pairs embedded in less well-conserved

regions.

Figure 1. The sequence for an IRE ncRNA in four species

Figure 2. The secondary structure of the IRE, based on IRE_I

summary [11]

Using CMs, it is possible to perform ncRNA homology searches

relatively efficiently, but the computation is still very time-

consuming. A typical search for a single family against a large

sequence database can take days of CPU time [19]. The work

presented in this paper is focused on accelerating the CM search

pipeline in the Infernal 1.0 software package [15]. In addition to

many other features, Infernal provides a very fast CM-based

ncRNA homology search component. The speed of the search is

due to three main features: 1) The use of efficient CM algorithms;

2) Highly optimized code; 3) Prefiltering the sequences using

hidden Markov models (HMMs). This use of HMM filters is

especially important for speedup, since the algorithmic

complexity of an efficient HMM algorithm is O(N2) compared

with O(N3) for a CM.

Infernal 1.0’s search pipeline is made up of two filters followed

by a final CM search. The first filter is HMM-based, and so it is

asymptotically more efficient than a CM. This filter typically

eliminates 98% or more of the dataset from consideration. The

second filter is CM-based, and uses a slower but more sensitive

search algorithm. This filter eliminates a large portion of the

remaining input sequences, and the final most sensitive CM

search algorithm, known as Inside, is run against what remains to

find potential ncRNA family members.

3. PREVIOUS WORK
Infernal uses the Viterbi dynamic programming algorithm for

scoring sequences against HMMs and CYK for CM scoring [15].

Both of these algorithms have a number of FPGA

implementations [17][1][18][5]. However, to our knowledge there

have been no previous efforts to accelerate Infernal’s entire

ncRNA homology search pipeline. Given the massive

performance gains from prefiltering, any approach that only

attacks a single stage of the Infernal pipeline is severely limited in

terms of the speedup it can realize. Infernal without any filters is

orders of magnitude slower, and with all pipeline stages enabled

each of the three main stages is roughly equal in runtime.

Significant work has been done on using hardware to improve the

runtime of the CYK portion of Infernal. The approach used by

[14] is one more geared to an application-specific integrated

circuit (ASIC) than an FPGA, due to the shared memory and very

large switches it requires to handle CMs with many states. On a

large Virtex-5 FPGA from Xilinx, this work is limited by the

available logic and maxes out at around 20 processing elements

(PEs). By way of contrast, the approach is designed to scale well

to over 300 PEs on an ASIC. Although this is reasonable given

that ASICs are the stated focus of the design, the FPGA

performance is not optimized.

The Infernal CYK accelerator presented in [21] is much more

FPGA centric. This design makes use of an array of processors

that require minimal access to data that is not stored in the PE or

available from one of its neighbors. This approach requires much

less memory bandwidth and yields 32 PEs on a Virtex-5.

Ultimately, it ends up being block RAM (BRAM) limited and it is

most similar to the CYK acceleration approach presented in this

paper. The significant differences are discussed below. Note that

[21] does not address HMM filtering, so its speedup is limited to

only the CYK stage of the pipeline.

Of the FPGA Viterbi implementations, the most relevant are those

that implement HMMER HMMs. HMMER is a software package

that makes use of Plan 7 HMMs to perform protein homology

search [7]. This protein search, using families found in Pfam, is

very similar to ncRNA homology search. Significantly however,

given their size and structural restrictions, the primary structure

alone provides sufficient sensitivity for finding protein family

members. Of the efforts to accelerate HMMER on FPGAs, [18] is

the most relevant. It presents a very fast FPGA implementation of

Plan 7, with the ability to fit over 50 PEs on a Virtex-4. Plan 7

HMMs form the basis for the Plan 9 HMMs used in Infernal 1.0

[16], but Plan 9 is significantly different from Plan 7, and so is the

FPGA implementation. The next section covers these differences

in detail.

4. VITERBI
This section provides an overview of the Viterbi algorithm, as

well as details and results for the Viterbi FPGA implementation.

4.1 Viterbi Algorithm and Plan 9 HMMs
The Viterbi algorithm is a two-dimensional dynamic

programming algorithm [10]. Given an observed sequence and an

HMM featuring a set of states with emission and transition

probabilities for those states, the algorithm produces the highest

scoring path through the states. This is the most likely path to

have emitted the particular input sequence. Although the Viterbi

algorithm itself is general and can be used with any HMM, the

implementations used in HMMER and Infernal are limited to

supporting only Plan 7 and Plan 9 HMMs respectively. Although

they are very similar, there are some significant differences that

affect the CM Plan 9 (CP9) FPGA design. The states of CP9

HMMs are shown in Figure 3.

Figure 3. CM Plan 9 HMM States

In CP9, each node consists of three states: Insert, Match and

Delete. The Match state emits a base that matches the one

expected by the model. The Insert state emits an unexpected base

without advancing to the next node. Finally, the Delete state

advances to the next node without emitting. Note that every node

is the same except for the first and last. For the first node, there is

no Delete state and M0 is equivalent to a Begin state, which

represents the start of the model. For the final node there is no

Insert or Delete and Mi represents an End state. The CP9 HMMs

are built by Infernal from each family’s CM. This process is based

on the techniques described in [20] and creates a filter with a

much faster runtime than the CM due to the better asymptotic

efficiency of the Viterbi algorithm.

The first key difference between Plan 7 and CP9, and therefore

between the FPGA Viterbi accelerator presented here and the

previous work, is which state transitions are available. In Plan 7,

there are no transitions from Insert to Delete or vice versa.

Supporting these edges requires slightly more complex PEs in

CP9. There are two more significant differences, but these require

a discussion of the CP9 Viterbi algorithm first.

The Viterbi algorithm makes use of a two-dimensional dynamic

programming table to store the probability scores computed for

each state. The work for each node involves computing the

probability of each transition into that node given the current

sequence element and the scores of previous nodes. For example,

to compute the Insert score for some node requires taking the sum

of the Insert emission probability for that state, given the current

base in the sequence, and the maximum of the scores of the three

states that could transition into an Insert. Each of these scores

must have the correct transition probability added to it before the

max is computed. The final equation for an Insert score is as

follows:

During the Viterbi run, the table cell j,i contains a score

representing the probability of the sequence up to some element i

matching up with the model up to some state j, and by the end of

the run the entire table will be filled in this manner. The equations

for the remaining transitions are very similar to those used in Plan

7 and can be found in the previous work [17]. Notice that the

Insert equation above has the additional Delete to Insert

transition. The others must be similarly modified.

Figure 4. CP9 DP Table Data Flow

One dimension of the dynamic programing table is the model, so

moving one cell to the right in Figure 4 is equivalent to moving to

the next state in the model. The other dimension represents the

sequence being scored, so moving down the table represents

emitting one base. Each cell in Figure 4 represent an entire node,

meaning that they each contain a Match, Insert and Delete state.

The Delete state does not emit a base, instead it represents a state

in the model that is not found in the sequence. For this reason,

Delete is a transition from one node to its right hand neighbor in

the table. Similarly, Insert emits a base that does not match any

model state, so it moves down the table. The Match state is used

when a base fits the model’s expectations. In this case it both

emits the base and moves on to the next model state, moving right

and down one node in the table.

These data dependencies are such that the CP9 HMM has no

backwards paths. This means that a computation can be performed

along a wavefront starting with node (0, 0) (which depends on no

other nodes) followed by computing (1, 0) and (0, 1) in parallel,

then (2, 0), (1, 1) and (0, 2) also in parallel and so on. In other

words, the lack of backwards data flow means that there is a huge

amount of parallelism available in the computation. Note that

communication is not all local from one node to the next. Not

shown here are the Begin and End state transitions. These provide

some (typically very low) probabilities to jump from the Begin

state to any position in the model, and similarly from any state to

End. Although these transitions are not local like the transitions in

Figure 4, they are still entirely feedforward, so no parallelism is

lost.

The fact that there are no feedback paths in CP9 HMMs is the

second critical difference between CP9 and Plan 7 HMMs. The

feedback path in Plan 7 allows for the model to match multiple

copies of itself in succession [18]. This feedback requires special

consideration for an FPGA implementation, and so the lack of it

in CP9 gives us greater design freedom.

Among the changes from Plan 7, the third and most significant is

the introduction of another state type. This End Local (EL) state

only exists for some nodes along the model, and allows for large

portions of the model to be bypassed. Because EL states also have

a self-loop, like Inserts, they allow for a number of bases to be

emitted while skipping over a potentially large portion of the

model. More specifically, when the CP9 HMM is built from the

CM, some nodes will contain an EL state and a probability to

transition from Match to this state. The only other way to reach

the EL state is through a self-loop which emits a base and stays in

the same state. The only transition from the EL state is to some

subsequent Match state. This transition is unique in CP9 in that it

is the only transition other than from Match to End that can jump

forward many states. It is also different from other states in that

not every Match has an associated EL state. In addition, a single

Match can have multiple incoming EL transitions. See Figure 5

for an example of some of these properties. Because of these

properties a more flexible design is required to handle EL states.

Figure 5. Example of a CP9 HMM Featuring EL States

4.2 FPGA Implementation
Figure 6 shows a block diagram of the CP9 Viterbi

implementation developed in this work. For all of the results

presented in this and subsequent sections, our FPGA designs

targeted a Pico Computing system featuring an EX-500 backplane

equipment with an M-503 module. This module features a Xilinx

Virtex-6 LX240T as well as 8GB of DRAM and 27MB of SRAM.

The design operates on a streaming paradigm. This is appropriate

because a single, relatively small HMM may be run against a very

long sequence or set of sequences. The sequence is streamed in

from offchip and scores are streamed out on a similar channel. No

other external memory or offchip communication is used.

Figure 6. CP9 Viterbi FPGA Block Diagram

The CP9 Viterbi FPGA design is based on a linear array of PEs.

Once the processor pipeline has filled, this allows all PEs to

operate in parallel along the wavefront described in the previous

section. Given the dynamic program table in Figure 4, it makes

the most sense for a single PE to either move down a column,

computing scores for many bases from the sequence for a single

state, or across a row, handling all states for a single base. Either

of these arrangements allows for neighbors to communicate model

and score values. Because CP9 does not have a feedback state, but

it does have EL states, it is most feasible for a single PE to handle

all states for a given base, for the next PE to handle the next base,

and so on down the sequence as shown in Figure 7. Every PE will

be computing at all times except for the beginning and end of the

sequence. There are some cases that break this parallelism, for

example, a very short model with fewer states than there are PEs.

However, this situation can be handled by replicating the model

multiple times and shifting in the next base after reaching the end

of the first copy of the model.

Figure 7. CP9 Viterbi PE Allocation and Wavefront

The Sequence Shifter itself is simply a set of shift registers. The

first shifts bases in from the input stream and loads them into a

second shift register when required. After a PE has completed

work on a base, a new base is loaded from the second shift

register for that PE. The Score Shifter works on similar principles

and also filters output scores to avoid saturating output

bandwidth.

The Model BRAM stores the CP9 HMM paramaters, which

include emission scores for Insert and Match states and transition

scores for all possible state transmissions. These scores are stored

in log-odds form, which converts multiplications to addition of

precomputed logs. Viterbi also requires maximum operations,

which can use the same hardware in log and regular integer

format. In addition, the precision of the calculations can be

adjusted by changing the number of bits used to store the scores

throughout the system. The amount of BRAM required to store

the models depends on this width. Every state requires an

emission probability for each possible base for Match and Insert,

or 8 emission probabilities per state. There are transmission

probabilities between every possible combination of the three

states in the nodes for a total of 9 different values. In addition,

there are transition probabilities for Begin, End and EL for each

state, bringing the total up to 20. Letting ws represent the number

of bits per score, this requires 20 × ws bits per state. Setting the

maximum model length to 2k, which can handle all of the current

Rfam models, and given that the Virtex-6 series features 36 Kb

BRAMs, this means that the total model BRAM requirement is 2k

× 20 × ws / 36k = 1.25 × ws. For our current system, a ws value of

around 18 bits is sufficient, requiring about 24 of our FPGA’s 416

BRAMs for model tables, due to padding.

The Processing Elements themselves are fairly simple. The first

PE receives model information from the BRAM. Since the

computation wavefront, shown in Figure 7, is such that each PE is

always one node in the HMM behind the previous PE, this model

information can be passed from one PE to the next as well. Dark

grey cells represent current computation while light grey cells

have already been scored. The alternative approach, where each

PE handles many sequence bases for the same state, requires that

each PE have access to its own portions of the table, potentially

reducing efficiency of BRAM use or introducing additional

multiplexers.

In addition to the transition and emission probability and

sequence data discussed above, the PEs need some way to access

and update the DP score table. Because all communication is

either between adjacent bases or across many states but within the

same base, there is no need to actually store the entire table in

memory. Instead, the values that are required at any given time are

only those immediately surrounding the computation wavefront.

Furthermore, values that do require longer communications, such

as Begin and End scores (with an End score for each base being

the ultimate output of the FPGA accelerator) can be stored in the

local PE. The only exception to this local communication is the

EL state, which we will discuss in detail. Since the input sequence

proceeds down the PEs in order, the next base after PE N has to

be handled by PE 0. At this point, all score information must be

transferred back to PE 0. For models much longer than the

number of PEs, PE 0 will still be busy computing its current base,

so this score information must be stored in the Roll FIFO shown

in Figure 6. The total amount of score information required for

each base is one score each from the Match, Insert, Delete and EL

states, or 4 × ws. There is also an EL BRAM (not shown) for PE 0

located after the FIFO.

The PEs themselves are simple pipelined arithmetic units. They

perform the addition and max operations required to calculate the

scores for the DP table cells they are processing before moving on

to the next cell in the next cycle. It is worth noting that although

the current version with a two stage pipeline can run at slightly

over 100 MHz, it is challenging to add more pipeline stages. This

is due to the various local dependencies for individual HMM

states like EL and End. In addition to computing table values for

the current cell, the PE stores the running best scores for the

current base for long transitions. These include scores for EL,

Begin and End.

EL states are a special case for a number of reasons introduced

earlier. To summarize, EL states introduce a data dependence

between cells more than one cell apart. EL states also have a self-

loop with a score penalty that transitions to the next base like the

self-loop for an Insert state. In order to handle these irregularities,

we introduce the concept of the EL memory. This memory is

necessary because unlike the End state, storage for many EL

scores could be required simultaneously. See Figure 5 for an

example of how this could happen. In this case, a PE computing

M4 requires data from both EL1 and EL2. More complex models

require storage for many more ELs. Furthermore, there are some

situations with much greater EL fan-in than in this example.

Although these situations are handled with a simple loop over the

EL input states when computing a Match score in the Infernal

software, that luxury is not available for an FPGA

implementation. Instead, our design handles this problem by

combining ELs in a tree-like structure while running along the

model. The shape of this combination tree is computed in

software and stored with the model information prior to a Viterbi

run. This is possible because EL states are typically generated

from states that pair in the CM, and physical limitations on the

molecule shape prevent overly complex EL patterns. In fact, for

many CP9 HMMs a stack would be sufficient for EL storage. The

algorithm for EL combination is presented in Figure 8.

The EL combination algorithm above is capable of giving all

states a maximum of one EL write and two EL reads, in addition

to the use of an EL register inside the PE. In the FPGA, this

translates to a pair of mirrored BRAMs for a total of one write

Figure 8. EL Combination Algorithm for CP9 HMMs

combineELs(ELMap)

Input: ELMap, containing list of all EL transitions

Output: ELCmd, containing EL memory and register

 commands for each CP9 HMM state

Convert ELMap to ELCmd equivalent (EL memory ops)

foreach link l in ELMap

 if l has only one destination state and

 if next l has only the same destination state

 remove l’s EL memory ops from ELCmd

 add equivalent EL register op to ELCmd

foreach command c in ELCmd

 while c has reads from > 2 EL memory locations

 let wl be the origin state of data for reads in c

 sort wl by state

 foreach HMM state s starting at second state in wl

 if s has no EL memory ops (register ops are OK)

 add two reads (based on order in wl) to s

 remove those reads from ELCmd for c

 add write of combined data to ELCmd for s

 add a read of combined data to ELCmd for c

 terminate foreach

 if s = state of c

 insert dummy state after second state in wl

 terminate foreach

port and two read ports. For an example of the algorithm’s

operation, see Figure 9. A represents the initial state after software

EL states are converted into EL memory commands. States 4 and

7 both require three reads, so this is not a legal set of commands

for our hardware. In B, after the EL register conversion has taken

place, the extra reads on state 4 have been resolved. The register

operations automatically combine EL scores and are represented

with a dotted line. Finally, in part C, the first two EL reads in state

7 are reduced to a single read by doing an EL combination in state

5. Now no state has more than two reads and one write, resulting

in a legal set of EL commands.

Figure 9. EL Combination Algorithm Example

Currently, two BRAMs per PE is not a limiting factor, as can be

seen in the next section, but if it becomes an issue in the future it

would be possible to double-pump the BRAM ports and use a

single BRAM for each PE. Finally, although it is possible to

conceive of a scenario where the dummy states inserted by the

combination algorithm could have a substantial impact on

runtime, or even make an HMM too long to fit in the Model

BRAM, we have not yet encountered any Rfam families that

require even a single dummy state.

4.3 Viterbi Results
Running at 100 MHz, the CP9 Viterbi implementation is limited

by the available logic resources on our Virtex-6, as seen in Table

1. This is the expected result, given that each PE has many adders

and max units. The current PEs make use of parallel maxes, a

poison bit for overflow and other frequency optimizations that

result in larger PEs. Determining the optimal tradeoff between

frequency and quantity of PEs on an FPGA remains in the domain

of future work.

Table 1. Post-map Logic Utilization of Viterbi Design

PEs Slices LUTs BRAMs

4 14% 9% 13%

16 27% 15% 19%

64 67% 43% 42%

128 97% 77% 73%

The performance of the FPGA-based solution is very good when

compared with Infernal. Figure 10 shows the speedup vs. Infernal

1.0 software running on a single Intel Xeon E5520 core. Adding

PEs to the system results in nearly linear speedup, and this is to be

expected given that there is no significant overhead. Speedup over

Infernal 1.0 decreases as model size (shown in parentheses)

increases, leveling out at around 230x. This is most likely due to

inefficiencies in the software Viterbi implementation for very

small models. Note that the median HMM model length in Rfam

is under 100 states. This chart compares only the runtime of the

Viterbi algorithm itself, not the entire FPGA and software

systems.

Figure 10. Speedup of FPGA Viterbi vs. Single CPU Infernal

5. CYK
This section provides an overview of the CYK algorithm, as well

as details and results for the CYK FPGA implementation.

5.1 CYK Algorithm
To achieve high performance, Infernal's HMM filter stage

removes the non-local dependencies in the ncRNA structure and

simply looks at features detectable in a linear search. While this

ignores important elements of the structure, the filter runs quickly

and can eliminate most of the input data. However, the HMM

will accept many regions that do not actually include the target

ncRNA. Further filtering requires looking at the secondary

structure of the ncRNA model for which we are searching, and is

performed by the Cocke-Younger-Kasami (CYK) algorithm [22].

CYK is a dynamic programing algorithm, in some ways analogous

to a three-dimensional version of Viterbi. Also like Viterbi, CYK

is a general algorithm that can be used to parse any probabilistic

context-free grammar in Chomsky normal form. CMs fit this

description, as they are constructed using only a few rules of the

appropriate form [8]. The CM directly represents the pairings and

branchings found in the secondary structure of an ncRNA. This is

done through Match Pair and Bifurcate nodes respectively. As can

be seen in Figure 11, Match Pair nodes represent pairings of

potentially distant bases in the ncRNA sequence, something the

HMM model cannot support. In Hammerhead_3, the second and

second-to-last bases are emitted by the same Match Pair node.

Bifurcation nodes represent branches in the ncRNA secondary

structure. Handling Bifurcations will require breaking the problem

up into two smaller subproblems (one for the left branch and one

for the right branch). Unfortunately, since each subproblem can

use varying lengths of the target RNA, given that biological

evolution can change the length of individual branches, we cannot

know ahead of time where the split point occurs in the candidate

sequence. This is solved by simply trying every possible split-

point and picking the highest scoring match, a fairly time-

consuming process. In Figure 11, the Bifurcate node takes place

before the sets of Match Pairs that make up Hammerhead_3’s two

arms. This requires a Bifurcation state, because without one there

would be no way to express two separate sets of paired bases.

Figure 11. Secondary Structure of a Hammerhead_3 ncRNA

The CYK algorithm starts with a sequence of length N and a CM,

and scores that sequence against the model with a better match

resulting in a higher score. It converts this into a three-

dimensional dynamic programming problem by creating layers of

triangular DP matrixes, one for each state in the CM as in Figure

12. These matrixes are triangular because position j, i in state S

represents the best matching of states S…SEnd to region i…j of the

target sequence. It does not make sense to match to a region

whose start is after its end, so entries j, i where j > i are useless.

Emissions of single bases are achieved through Match Left and

Right states, where Left states move up one cell in the DP matrix

by subtracting one from i as shown in Figure 12. Similarly, Right

states move right one cell by adding one to j. The final dimension,

k, refers to the state.

Figure 12. CM CYK Three-dimensional DP Table

As the CYK algorithm proceeds, it works from the last CM state

SEnd back to the starting state SRoot, and processes from small

sequences of length 1 (i.e. squares i, i+1) towards longer

sequences. The probability score for each subsequence is stored in

the DP table to be reused without being recomputed. This process

handles most parts of the model (including Match Pair) very

efficiently, with only local communication. The one exception is

the Bifurcation state. In this state, processing a sequence from j to

i requires finding the best split point, mid, where j < mid < i.

Since we don't know where the bifurcation point is in the target

sequence, CYK must compute the highest score for all possible

mids by maximizing the score(j, mid, branch1) + score(mid, i,

branch2) where branch1 and branch2 are the states containing the

total scores for the subtrees. The first two cells of this calculation

are shown in Figure 12 and the equation can be found in [8]. This

computation is very similar to matrix multiplication and requires

O(n3) arithmetic operations for each Bifurcation resulting in a

total CYK runtime on the order of O(kn2 + bn3). Because of the

expense of this operation, it can dominate the computation time

for very large models as seen in Figure 13. In practice, the impact

of Bifurcation states is not always as extreme as this chart makes

it appear because over half of all Rfam CMs are under 100 nodes

long.

Figure 13. Computation in Bif State Assuming 0.9% Bifs

5.2 FPGA Implementation
Our implementation of CYK for CMs, diagramed in Figure 14, is

based around a linear array of PEs, similar to the one used for

Viterbi. The most significant difference in the design is the use of

off-chip memories. Because it has a three-dimensional DP table,

CYK requires substantial more storage. By dividing the entire

matrix up into stripes and letting each PE handle a single column

of the DP table as in Figure 16, most of this memory can be made

local to the PE in the form of BRAM [21]. This method of

striping the model is possible because, much like Viterbi, there

are no non-local or backwards data dependencies for non-

Bifurcation states. The calculations for a given cell in a non-

Bifurcation state only require data from the same cell and its

immediate neighbors from layers in the previous node. This

means the computation wavefront is similar to Viterbi, and a

similar arraignment of PEs inside the stripes is most effective.

After completing one state for a given stripe, the PEs can begin

work on the next layer. After completing all layers, the PEs begin

work on the next stripe until computation is complete. Each PE

contains many simple arithmetic units to update all states in the

node simultaneously. This requires striping the state data across

many local BRAMs.

Figure 14. CM CYK FPGA Implementation Block Diagram

All of the DP cells for the current stripe can be stored in the local

BRAM associated with each PE. Values from cells to the left can

be passed from the previous PE. The values computed at the end

of a stripe are written out to DRAM, to be reloaded when the

same layer is reached during the next stripe. The only other time

that DRAM storage is required is for one of the Begin layers prior

to a Bifurcation state. Because the Bifurcation computation uses

non-local data, it requires substantially more cells from DRAM.

Figure 16 shows that PE operation is substantially different for

Bifurcations and this requirement explains why. The row data

used in the Bifurcation computation discussed in the previous

section is streamed in from DRAM and passed from one PE to the

next. Column data is loaded from BRAM as with other states.

Every PE is equipped with multiple Bifurcation arithmetic units

allowing for the use of multiple DRAM rows simultaneously,

improving use of memory bandwidth for Bifurcation states. This

can be seen in Figure 15.

Figure 15.CM CYK PE Block Diagram

Figure 16. Striping for Normal (left) and Bif (right) states

In addition, the CM model itself can be much larger than the

Viterbi model, and BRAM is the limiting resource for this design,

so the model is stored off-chip. BRAM becomes the limiting

factor because it would be impossible to achieve high

performance if the data required by all stripes was loaded from

DRAM. Our M-503 platform offers two 64-bit DDR interfaces

running at 400MHz for a total of 12.8 GB/s of DRAM bandwidth.

Ignoring the bandwidth required to load the data along the first

row, each PE requires as many as four DP table values each cycle

for Match Pair, Match Left, Match Right and Delete states. This

means that again assuming a score width of ws the bandwidth

required for a single PE is 4 × FPGA speed × ws. Using ws of 21

bits [14], slightly more than Viterbi, and a speed of 100 MHz, this

gives a requirement of about 1 GB/s of bandwidth for each PE.

This result would limit our design to 12 PEs on the M-503.

When using the striped approach with BRAM there is sufficient

DRAM bandwidth available and BRAM capacity becomes the

limiting factor. Assuming a maximum sequence length of 6144

bases, reasonable given the length of CMs in Rfam, the BRAM

requirement for the largest stripe becomes 4 × 4096 × ws. Again

using 21 bits, this yields a storage requirement of 504 Kb. Given

the Virtex-6’s 36 Kb BRAMs, this would require 14 BRAMs for

each PE, allowing 24 PEs per FPGA after accounting for other

BRAM usage. This solution is clearly superior, with over twice as

many PEs on-chip compared to a design that stores the entire

table in DRAM. Another advantage is that as the PE clock speed

increases the DRAM bandwidth would be able to support even

fewer PEs.

Another way the CYK design differs from Viterbi is in the input

sequence handling. For Viterbi, the sequence can be streamed in,

sent to the PEs and then discarded. Unfortunately, this is not the

case for CYK. Because the use of stripes results in each stripe

requiring the same parts of the sequence, the entire sequence must

be stored for reuse after being streamed in. The sequence BRAM,

shown on the block diagram, serves this purpose.

The last significant CYK module is the Controller. This module

contains the Finite State Machine (FSM) responsible for the CYK

algorithm operation. The Controller also contains BRAM that

stores model-specific instructions. These consist of a number of

fields generated by software and written to the FPGA prior to

accepting sequence input. Entries in this table include DRAM and

SRAM addresses and lengths for each stripe as well as state and

other model information for the stripe. The CM itself can be large

and is stored in off-chip SRAM. The FSM currently follows a

simple schedule of loading the stripe information from the

controller BRAM, loading appropriate DRAM values and then

executing to completion while writing values back to DRAM.

Future versions of the design could feature a more complex

controller that performs some of these operations in parallel.

5.3 CYK Results
Running at 100 MHz, we estimate that the FPGA CYK

implementation is limited by BRAMs available on chip, as seen in

Table 2. This is the expected result given the discussion of BRAM

utilization in the previous section. Future designs may contain

additional parallel logic in an attempt to achieve better

performance with the same memory utilization. Note that all

results in this section are estimated based on functional Verilog

simulation and synthesis.

Table 2. Estimated Logic Utilization of CYK Design

PEs Slices LUTs BRAMs

6 35% 25% 35%

12 42% 32% 56%

24 51% 39% 96%

CYK performance shows much more unpredictable variation

between different CMs than Viterbi, as seen in Figure 17. This is

because the CYK algorithm’s runtime depends on a number of

factors other than model size, including the prevalence of

Bifurcation states. In addition, the speedup from adding PEs is

sublinear for small models due to the overhead of switching

between stripes and computing scores for cells in the stripe that

are not actually part of the DP triangle. This effect is substantially

more pronounced in smaller models because the average height of

a stripe is much less. Overall speedup is still very good, with a

geometric mean speedup of over 70x for 24 PEs.

Figure 17. Estimated FPGA CYK Speedup vs. Infernal

To get an estimate of the performance of Infernal’s final search

algorithm, Inside, it is necessary to determine the number of

Inside PEs that would fit on our FPGA. The large increase in size

from a CYK PE to an Inside PE is due to the use of floating point

(FP) addition. The CYK and Viterbi implementations avoid FP

arithmetic by using log-odds scores. However, Inside requires

addition of scores, instead of only multiplication, which is

expensive in the logarithmic representation. For FPGAs, single

precision FP addition requires approximately 20x more area than

log multiplication (integer addition), which is still only half as

expensive as log addition [12]. Based on these numbers, and our

calculations showing that the CYK design becomes FPGA area

limited at around 80 PEs, a very conservative estimate for Inside

would allow for 4 PEs and one sixth the speedup of CYK. This

estimate is very likely excessively pessimistic because the Infernal

1.0 implementation of Inside is also slower than CYK.

6. FPGA BASED SYSTEM
Although the performance of the individual FPGA

implementations of Viterbi and CYK is important, the ultimate

goal of this work is to accelerate Infernal 1.0 in a way that is

useful to biologists and others in the field. To measure progress

towards this goal, it is valuable to look at the performance of

Infernal 1.0 as a whole. Infernal performance using the FPGA

runtimes for Viterbi and CYK are shown in Figure 18. One

advantage of a system that uses FPGA implementation to

accelerate Viterbi and CYK, such as the one modeled here, is the

possibility to reconfigure a single FPGA to run both filters. A

multi-FPGA system could divide FPGAs between Viterbi and

CYK as required given that some ncRNA families spend more

time in one algorithm or the other, as seen in Figure 18. This is

due to a number of factors, including the filtering fraction

achieved by each filter and the asymptotically worse runtime of

CYK, which begins to dominate for larger models. The ability to

reconfigure the same hardware and allocate resources as required

on a per-model basis gives the FPGA implementation an

advantage over potential ASIC designs like [14].

Figure 18. Estimated Infernal 1.0 FPGA System Speedup

The speedup here is less than that of the individual accelerators ˗

particularly without Inside acceleration ˗ for two major reasons.

First, without an accelerated version of the Inside algorithm

sequences that make it past both the Viterbi and CM filters must

still run in software. Although a very small percentage of the

sequence passes both filters, the Inside algorithm is much slower

than CYK, so a substantial amount of time is still spent running

Inside. This time is less than 10% of the total prior to acceleration,

but dominates afterwards. The other reason for the reduction in

speedup is that these results include all software tasks performed

by the system, not just Inside and the two filters. Although for

large enough sequences the time spent in these tasks becomes

very small, averaging less than 1% of the total runtime for a 60

million base sequence, they cannot be ignored. It is also worth

noting that the ncRNA families selected for this experiment tend

to be among the more frequently occurring, so speedup would

likely be better for a more typical family because Inside would

have fewer possible matches to score. With estimated Inside

acceleration, the expected overall system speedup is much better

in the worst case. For tRNA (RF00005), a particularly unusual

ncRNA, speedup improves from 8x to 29x with Infernal

acceleration.

7. CONCLUSION
This work presented an FPGA accelerator for the biologically

important ncRNA homology search problem. The accelerator

features FPGA implementations of the two filtering algorithms

used by the Infernal 1.0 software package. The FPGA version of

the first of these algorithms, Viterbi, gets a speedup of over 200x.

The second, CYK, achieves a speedup of 70x over the software

version. When combined into an Infernal-like system, we

anticipate that these accelerators alone can run 25x faster than

pure software. This speedup is limited by the fact that our current

system has no accelerator for the Inside algorithm used as the final

stage in Infernal’s search pipeline. Given the results of our other

accelerators, we anticipate that an Infernal 1.0 system featuring an

FPGA implementation of the Inside algorithm could achieve a

total system speedup of over 47x. To our knowledge, this is the

first system to accelerate multiple stages of an ncRNA homology

search pipeline, which we achieved using FPGA reconfiguration.

8. ACKNOWLEDGMENTS
This work was supported in part by Pico Computing.

This material is based upon work supported by the National

Science Foundation Graduate Research Fellowship under Grant

No. DGE-0718124.

9. REFERENCES
[1] Abbas, N. et al. 2010. Accelerating HMMER on FPGA

using Parallel Prefixes and Reductions. (2010).

[2] Addess, K.J. et al. 1997. Structure and dynamics of the

iron responsive element RNA: implications for binding of

the RNA by iron regulatory binding proteins1. Journal of

molecular biology. 274, 1 (1997), 72–83.

[3] Bachellerie, J.P. et al. 2002. The expanding snoRNA

world. Biochimie. 84, 8 (2002), 775–790.

[4] Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis,

mechanism, and function. Cell. 116, 2 (2004), 281–297.

[5] Ciressan, C. et al. 2000. An FPGA-based coprocessor for

the parsing of context-free grammars. Field-

Programmable Custom Computing Machines, 2000 IEEE

Symposium on. (2000), 236–245.

[6] Eddy, S.R. 2002. Computational genomics of noncoding

RNA genes. Cell. 109, 2 (2002), 137–140.

[7] Eddy, S.R. 1998. Profile hidden Markov models.

Bioinformatics. 14, 9 (1998), 755.

[8] Eddy, S.R. and Durbin, R. 1994. RNA sequence analysis

using covariance models. Nucleic acids research. 22, 11

(1994), 2079–2088.

[9] Esteller, M. 2011. Non-coding RNAs in human disease.

Nature Reviews Genetics. 12, 12 (2011), 861–874.

[10] Forney Jr, G.D. 1973. The Viterbi algorithm. Proceedings

of the IEEE. 61, 3 (1973), 268–278.

[11] Griffiths-Jones, S. et al. 2005. Rfam: annotating non-

coding RNAs in complete genomes. Nucleic acids

research. 33, suppl 1 (2005), D121–D124.

[12] Haselman, M. et al. 2005. A comparison of floating point

and logarithmic number systems for FPGAs. Field-

Programmable Custom Computing Machines, 2005.

FCCM 2005. 13th Annual IEEE Symposium on. (2005),

181–190.

[13] Mattick, J.S. 2009. The genetic signatures of noncoding

RNAs. PLoS genetics. 5, 4 (2009), e1000459.

[14] Moscola, J. et al. 2010. Hardware-accelerated RNA

secondary-structure alignment. ACM Transactions on

Reconfigurable Technology and Systems (TRETS). 3, 3

(2010), 1–44.

[15] Nawrocki, E.P. et al. 2009. Infernal 1.0: inference of RNA

alignments. Bioinformatics. 25, 10 (2009), 1335–1337.

[16] Nawrocki, E.P. and Adviser-Eddy, S.R. 2009. Structural

RNA homology search and alignment using covariance

models. (2009).

[17] Oliver, T. et al. 2008. Integrating FPGA acceleration into

HMMer. Parallel Computing. 34, 11 (2008), 681–691.

[18] Takagi, T. and Maruyama, T. 2009. Accelerating HMMER

search using FPGA. Field Programmable Logic and

Applications, 2009. FPL 2009. International Conference

on. (2009), 332–337.

[19] Weinberg, Z. and Ruzzo, W.L. 2004. Faster genome

annotation of non-coding RNA families without loss of

accuracy. Proceedings of the eighth annual international

conference on Resaerch in computational molecular

biology. (2004), 243–251.

[20] Weinberg, Z. and Ruzzo, W.L. 2006. Sequence-based

heuristics for faster annotation of non-coding RNA

families. Bioinformatics. 22, 1 (2006), 35–39.

[21] Xia, F. et al. 2010. Fine-grained parallel RNA secondary

structure prediction using SCFGs on FPGA. Parallel

Computing. 36, 9 (2010), 516–530.

[22] Younger, D.H. 1967. Recognition and parsing of context-

free languages in time n^3. Information and control. 10, 2

(1967), 189–208.

