
High Performance Carry Chains for FPGAs

Matthew M. Hosler

Department of Electrical and Computer Engineering

Northwestern University

Abstract

Carry chains are an important consideration for most computations, including FPGAs,

because they are often on the critical path. Current FPGAs dedicate a portion of their logic

to support these demands via a simple ripple carry scheme. This thesis demonstrates how

more advanced carry constructs can be integrated into FPGAs, thus providing significantly

higher performance carry chains. The standard ripple carry chain is redesigned to reduce

the number of logic levels in each cell. Additionally, entirely new carry structures are

developed based on high performance adders such as Carry Select, Carry Lookahead, and

Brent-Kung. Overall, these optimizations achieve a speedup of 3.8 times over current

architectures.

Introduction

A Field-Programmable Gate Array (FPGA) is a device which can be programmed to implement

almost any digital logic circuit. It is different in structure than other traditional logic circuits such

as Full Custom Integrated Circuits (IC), Programmable Logic Devices (PLDs), Standard Cells,

and Gate Arrays. An FPGA implements any combinational logic function by connecting many

logic blocks. These logic blocks are normally arranged on the chip in a regular structure (such as

a square matrix) as shown in Figure 1. Each logic block usually contains look-up tables (LUTs),

flip-flops, and wires which can connect to other logic blocks. An n-input LUT can implement any

function of n inputs. The output of the LUT may then connect to another logic function, to the

input of a flip-flop or to the I/O devices. The configuration of each logic block is determined by

SRAM bits which are connected to the circuit elements. The values of the SRAM bits are

determined when the configuration data is loaded into the FPGA’s internal memory cells. This

2

configuration data is loaded into the FPGA from some external device such as a Read-Only

Memory (ROM). Therefore, the FPGA can be reconfigured an unlimited number of times just by

reloading a new set of values from the external device. Additionally, the newest FPGAs allow a

user to reprogram one subsection of the FPGA dynamically without changing the remaining

sections of the FPGA. Thus, the FPGA can be used in systems where the hardware is changed

dynamically to adapt to different user applications.

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

SWITCH
MATRIX

SWITCH
MATRIX

SWITCH
MATRIX

SWITCH
MATRIX

Figure 1: The logic and routing structure of a typical FPGA.

The primary difference between an FPGA and other traditional logic circuits is that the FPGA is

completely fabricated before it has been customized with a design. This is different from a Full

Custom design in that the Full Custom design is not fabricated until the design in complete.

Standard cell designs speed up the process of designing a circuit, but also require the chip to be

fabricated from a blank silicon wafer after the design is finished. Gate Arrays have a pattern of

transistors and contacts that are pre-defined. Therefore, the patterns of transistors can be

fabricated before the design process begins. However, the routing portion of the design, which

3

shows how the transistors are connected to one another, must still be configured after the design

process is complete. A PLD device is completely fabricated before the design process begins, but

requires programming by the user after the design phase. Since the process of programming the

PLD can be done by the user, it does not have to be sent to a foundry for further fabrication.

Therefore, both the FPGA and PLD have an advantage over other logic circuits because their

design time is short and their chips do not have to be shipped to a foundry and be fabricated after

the design process is completed.

A second advantage of an FPGA over other traditional circuits is that it is reprogrammable. A

Full Custom integrated circuit can not be reprogrammed. A new design requires a completely

new fabrication process with a large amount of additional cost and time. Standard Cell and Gate

Array designs would also require a new fabrication process. However, a PLD could be changed

simply by having the user reprogram the chip. This change could not be performed while the chip

is in use, however, and would have to take place before using the chip. An FPGA, on the other

hand, allows quick and simple reprogrammability. To reprogram an FPGA, one only has to send

different values to the SRAM bits. Thus, the FPGA can even be reprogrammed while the chip is

in use. Furthermore, some FPGAs even allow for partial reconfiguration of the chip. Thus, the

FPGA gives a user the simplest and most efficient way of dynamically reprogramming a chip.

The third advantage of an FPGA is cost. The cost of a Full Custom integrated circuit is very high

for the first chip, but can be amortized if millions of chips are produced. The cost of an FPGA is

much smaller for the first chip. Therefore, if a small number of chips are being produced, the

FPGA can be a cheaper alternative to the Full Custom design. However, if millions of chips are

being produced, the Full Custom design will be the more cost effective method.

Yet the FPGA does have a disadvantage. The FPGA is fabricated before the design process has

started in order to have the logic already available on the FPGA, so that the FPGA can be quickly

configured to the user’s specifications. Since the FPGA is pre-fabricated, the logic contained

within the FPGA is not optimized for a particular design, and therefore the FPGA has a lower

logic density than a Full Custom, Standard Cell, or Gate Array design. Thus, the chip area needed

4

to implement a design in an FPGA is greater than the chip area required for a Full Custom design.

Additionally, the Full Custom design will have a higher clock speed than its FPGA counterpart,

due to the fact that timing and routing issues for the Full Custom design are user optimized.

Thus, while Full Custom circuits have the advantage of having a faster clock speed, the FPGA is

both cheaper for small quantities and has a shorter design time. For example, a custom fabricated

circuit typically takes weeks to be fabricated, whereas an FPGA design can be customized in

milliseconds. Therefore, a logic design implemented in an FPGA can reach the market more

quickly. So if the speed of the logic circuit is not an issue, the FPGA may be a more desirable

option.

The FPGA would be an even better logic implementation option if its logic density could be

improved and its clock speed could be increased. The key to achieving high performance in any

circuit, and thus improving the clock speed, is to optimize the circuit’s critical path. For most

datapath circuits this critical path goes through the carry chain for arithmetic and logic operations.

A carry chain is a logical structure that allows one cell to pass information about a calculation to

another cell. A classic example of a carry chain’s use is in addition. When one adds the numbers

6 and 7 together in the decimal system, the result is 13. However, since a digit in the decimal

system can only range from 0 to 9, the value 13 can not be used as the result for that column.

The next column, though, is the “tens” column where each value is equivalent to ten times the

first column. Therefore, the result can be recorded by placing a result of 3 in the first decimal

position, and then “carrying” the remaining 10 units over to the “tens” column as 1 “tens” unit.

The value of 1 that is carried to the second decimal position is then added to the calculation of

that decimal position. Since values must be able to be passed or carried from one bit position to

another, a logic structure known as a carry chain (see Figure 2) must be created in order to

facilitate the carry.

In an arithmetic circuit such as an adder or subtractor, this carry chain represents the carries from

bit position to bit position. For logical operations such as parity or comparison, the chain

communicates the cumulative information needed to perform these computations. Optimizing

5

such carry chains is a significant area of VLSI design and is a major focus of high-performance

arithmetic circuit design.

A3 B3 A2 B2 A1 B1

CinC1,2C2,3

R1R3 R2

Cout

Figure 2: A simple carry chain.

In order to support datapath computations, most FPGAs include special resources specifically

optimized for implementing carry computations. These resources significantly improve circuit

performance with a relatively insignificant increase in chip area. However, because these

resources use a relatively simple Ripple Carry scheme, carry computations can still be a major

performance bottleneck. This thesis discusses methods for significantly improving the

performance of carry computations in FPGAs. Thus, the clock speed of the FPGA could be

increased, and the FPGA would be an even more desirable option for logic implementation.

Basic Ripple Carry Cell

A basic ripple carry cell, similar to that found in the Altera 8000 series FPGAs [Altera95], is

shown in Figure 3a. Mux 1, combined with the two 2-LUTs feeding into it, creates a 3-LUT.

This element can produce any Boolean function of its three inputs. Two of its inputs (X and Y)

form the primary inputs to the carry chain. The operands to the arithmetic or logic function being

computed are sent in on these inputs, with each cell computing one bit position’s result. The third

input can be either another primary input (Z), or the carry from the neighboring cell, depending on

the programming of mux 2’s control bit. The potential to have Z replace the carry input is

provided so that an initial carry input can be provided to the overall carry chain (useful for

incrementers, combined adder/subtractors, and other functions). Alternatively the logic can be

6

used as a standard 3-LUT for functions that do not need a carry chain. An additional 3-LUT is

contained in each cell, which can be used to compute the sum for addition or other functions.

Cout1 Cout0
2 LUT2 LUT

Cout

Cin
F

1 2

X Y Z

P

(a) (b) (c)
P = Programming Bit

Select

I1 I0

Out

Select

I1 I0

Out

Figure 3: Carry computation element for FPGAs (a), a simple 2:1 mux implementation

(b), and a slightly more complex version (c).

It is important to understand the role of the “Cout1” and “Cout0” signals in the carry chain.

During carry computations the Cin input controls mux 1, which chooses which of these two

signals will be the Cin for the next stage in the carry chain. If Cin is true, Cout = Cout1, while if

Cin is false Cout = Cout0. Thus, Cout1 is the output whenever Cin = 1, while Cout0 is the

output whenever Cin = 0. There are four possible combinations of values that Cout1 and Cout0

can assume, three of which correspond to concepts from standard adders (Table 1). If both

Cout0 and Cout1 are true, Cout is true no matter what Cin is, which is the same as the “generate”

state in a standard adder. Likewise, when both Cout0 and Cout1 are false, Cout is false

regardless of the state of Cin, and this combination of Cout1 and Cout0 signals is the “kill” state

for this carry chain. If Cout0 and Cout1 are different, the Cout output will depend on the Cin

input. When Cout0 = 0 and Cout1 =1, the Cout output will be identical to the Cin input, which is

the normal “propagate” state for this carry chain. The last state, with Cout0 = 1 and Cout1 = 0, is

not found in normal adders. In this state, the output still depends on the input, but in this case the

Cout output is the inverse of the Cin input. This state will be referred to as “inverse propagate”.

For a normal adder, the inverse propagate state is never encountered. Thus, it might be tempting

to disallow this state. However, for other computations this state is essential. For example,

consider implementing a parity circuit with this carry chain, where each cell takes the XOR of the

two inputs, X and Y, and the parity of the neighboring cell. If X and Y are both zero, the Cout of

the cell will be identical to the parity of the neighboring cell which is brought in on the Cin signal.

Thus, the cell is in normal propagate mode. However, if X is true and Y is false, then the Cout

7

will be the opposite of Cin, since 1⊕ 0 ⊕ Cin() = Cin . Thus, the inverse propagate state is important

for implementing circuits such as parity-checkers, and therefore supporting this state in the carry

chain increases the types of circuits that can be efficiently implemented.

Cout0 Cout1 Cout Name

0 0 0 Kill

0 1 Cin Propagate

1 0 Cin Inverse Propagate

1 1 1 Generate

Table 1: Combinations of Cout0 and Cout1 values, and the resulting carry output. The

final column lists the name for that combination.

One last issue must be considered in this carry chain structure. In an FPGA, the cells represent

resources that can be used to compute arbitrary functions. However, the location of functions

within this structure is completely up to the user. Thus, a user may decide to start or end a carry

computation at any place in the array. In order to start a carry chain, the first cell in the carry

chain must be programmed to ignore the Cin signal. One easy way to do this is to program mux 2

in the cell to route input Z to mux 1 instead of Cin. For situations where one wishes to have a

carry input to the first stage of an adder (which is useful for implementing combined

adder/subtractors as well as other circuits) this is the right solution. However, in other cases this

may not be possible. The first stage in many carry computations is only a 2-input function, and

forcing the carry chain to wait for the arrival of an additional, unnecessary input will only

needlessly slow down the circuit’s computation. This is not necessary. In these circuits, the first

stage is only a 2-input function. Thus, either 2-LUT in the cell could compute this value. If both

2-LUTs are programmed with the same function, the output will be forced to the proper value

regardless of the input, and thus either the Cin or the Z signal can be routed to mux 1 without

changing the computation. However, this is only true if mux 1 is implemented such that if the two

inputs to the mux are the same, the output of the mux is identical to the inputs regardless of the

state of the select line. Figure 3b shows an implementation of a mux that does not obey this

requirement. If the select signal to this mux is stuck midway between true and false (2.5V for 5V

CMOS) it will not be able to pass a true value from the input to the output, and thus will not

8

function properly for this application. However, a mux built like that in Figure 3c, with both n-

transistor and p-transistor pass gates, will operate properly for this case. Thus, it is assumed

throughout this thesis that all muxes in the carry chain are built with the circuit shown in Figure

3c, though any other mux implementation with the same property could be used (including tri-

state driver based muxes which can restore signal drive and cut series R-C chains).

Delay Model

To initially quantify the performance of the carry chains developed in this thesis, a simple unit gate

delay model will be used: all simple gates of two or three inputs that are directly implementable in

one logic level in CMOS are considered to have a delay of one. All other gates must be

implemented in such gates and have the delay of the underlying circuit. Thus, inverters and 2 to 3

input NAND and NOR gates have a delay of one. A 2:1 mux has a delay of one from the I0 or I1

inputs to the output, but has a delay of two from the select input to the output due to the inverter

delay (see Figure 3c). The delay of the 2-LUTs, and any routing leading to them, is ignored since

this will be a constant delay for all the carry chains developed in this thesis. This delay model will

be used to initially discuss different carry chain alternatives and their advantages and

disadvantages. Precise circuit timings were also generated using Spice on the VLSI layouts of the

carry chains, as discussed later in this thesis.

Optimized Ripple Carry Cell

As discussed in an earlier section, the ripple carry design of Figure 3a is capable of implementing

most carry computations. However, it turns out that this structure is significantly slower than it

needs to be, since there are two muxes on the carry chain in each cell (mux 1 and mux 2).

Specifically, the delay of this circuit is 1 for the first cell plus 3 for each additional cell in the carry

chain (1 delay for mux 2 and 2 delays for mux 1), yielding an overall delay of 3n-2 for an n-cell

carry chain. Note that it is assumed that the longest path through the carry chain comes from the

2-LUTs and not input Z since the delay through the 2-LUTs will be larger than the delay through

mux 2 in the first cell.

The delay of the ripple carry chain can be reduced by removing mux 2 from the carry path. As

shown in Figure 4a, instead of choosing between Cin or Z for the select line to the output mux,

9

there are now two separate muxes labeled 1 and 2 which are controlled by Cin and Z,

respectively. The circuit then chooses between the outputs of muxes 1 and 2 with mux 3. In this

design, there is a delay of 1 in the first cell of a carry chain, a delay of 3 in the last cell (2 for mux

1 and 1 for mux 3), and a delay of only 2 for all intermediate cells. Thus, the delay of this design

is only 2n for an n-bit ripple carry chain, yielding up to a 50% faster circuit than the original

design.

Cout1 Cout0
2 LUT2 LUT

Cin

F

Cout

1

X Y Z

2

3 P 2

2 LUT2 LUT

1

X Y Z

3

4

Cout1 Cout0

P

Cout F
Cin

(a) (b) (c)

2

2 LUT2 LUT

1

X Y Z

3

5

Cout1 Cout0

P

Fast Carry Logic
C0C1

Cout

F
P

Figure 4: Carry computation elements with faster carry propagation.

Unfortunately, the circuit in Figure 4a is not logically equivalent to the original design. The

problem is that the design can no longer use the Z input in the first cell of a carry chain as an

initial carry input, since Z is only attached to mux 2, and mux 2 does not lead to the carry path.

The solution to this problem is the circuit shown in Figure 4b. For cells in the middle of a carry

chain mux 2 is configured to pass Cout1 and mux 3 is configured to pass Cout0. Thus, mux 4

receives Cout1 and Cout0 and provides a standard ripple carry path. However, when a carry

chain begins with a carry input (provided by input Z), mux 2 and mux 3 are then configured so

they both pass the value from mux 1. Since this means that the two main inputs to mux 4 are

identical, the output of mux 4 (Cout) will automatically be the same as the output of mux 1,

ignoring Cin. Mux 1’s main inputs are driven by two 2-LUTs controlled by X and Y, and thus

mux 1 forms a 3-LUT with the other 2-LUTs. When mux 2 and mux 3 pass the value from mux 1

the circuit is configured as a 3-LUT starting a carry chain, while when mux 2 and mux 3 choose

their other input from Cout1 and Cout2, respectively, the circuit is configured to continue the

carry chain. This design is therefore functionally equivalent to the design in Figure 3a. However,

carry chains built from this design have a delay of 3 in the first cell (1 in mux 1, 1 in mux 2 or mux

10

3, and 1 in mux 4) and 2 in all other cells in the carry chain, yielding an overall delay of 2*n+1 for

an n-bit carry chain. Thus, although this design is 1 gate delay slower than that of Figure 4a, it

provides the ability to have a carry input to the first cell in a carry chain, something that is

important in many computations. Also, for carry computations that do not need this feature, the

first cell in a carry chain built from Figure 4b can be configured to bypass mux 1, reducing the

overall delay to 2*n, which is identical to that of Figure 4a. On the other hand, in order to

implement a n-bit carry chain with a carry input, the design of Figure 4b requires an additional cell

at the beginning of the chain to bring in this input, resulting in a delay of 2*(n+1) = 2*n+2, which

is slower than that of the design in Figure 4a. Thus, the design of Figure 4b is the preferred ripple

carry design among those presented so far.

Dual-Rail Optimization

In all of the carry chains discussed in this thesis the primary computation element is a mux. The

carry flows from previous stages in the logic to the control input of a mux, where it computes the

cell’s Cout value. It is important to realize that although this mux looks like a single element,

there is in fact an inverter embedded inside the mux (see Figure 3c). Thus, according to the

simple delay model, there is only one gate delay for a signal to go from one of the normal inputs

of the 2:1 mux to the output, but there are two gate delays to go from the select input to the

output. Thus, it seems possible that the carry chain delay could be decreased by moving the

inverter off of the carry chain path, so that each mux has only one gate delay instead of two.

The inverter computes the inverse of the select input, which is used to select which normal input

should be connected to the output. Thus, if the inverse of the control input was already available,

this inverter would no longer be needed. The inverse can be generated by essentially duplicating

the ripple carry chain in each cell. Instead of just computing the normal value of the Cout signal

in each cell, its inverse is also computed. This is done by inverting the inputs to this mux, as

shown in Figure 5. Mux 4a computes Cout , while mux 4b computes Cout . Note that while this

should speed up the propagation through intermediate cells on a carry chain, it does add an extra

initial delay to the first stage. Overall, this yields a delay of n+3 for an n-bit carry chain, which is

approximately twice as fast as the carry chain of Figure 4b and three times faster than the basic

11

ripple carry scheme. However, when the Dual Rail optimization was actually implemented in

VLSI layout, the resultant Spice timing values did not produce the savings that was anticipated by

this analysis. The results of the Dual Rail optimization technique will be discussed in more detail

later in this thesis.

Select

I1 I0

Out

Select
=

2 3 P

F

2 3 P

F

4a 4b 4a 4b

Figure 5: Dual rail optimization of the ripple carry structure. A possible implementation

of the special 2:1 mux used in this mapping is shown at right. The circuit shown at left

represents the carry structure for two adjacent cells, and replaces mux 4 in Figure 4b.

High-Performance Carry Logic for FPGAs

In the previous sections, methods to optimize a ripple carry chain structure for use in FPGAs

were presented. While this provides some performance gain over the basic ripple carry scheme

found in many current FPGAs, it is still much slower than what is done in custom logic. There

has been tremendous amounts of work on developing alternative carry chain schemes which

overcome the linear delay growth of ripple-carry adders. Although these techniques have not yet

been applied to FPGAs, this thesis will demonstrate how these advanced adder techniques can be

integrated into FPGAs.

The basis for all of the high-performance carry chains developed in this thesis will be the carry cell

of Figure 4c. This cell is very similar to that of Figure 4b, except that the actual carry chain (mux

4) has been abstracted into a generic “Fast Carry Logic” unit and mux 5 has been added. This

extra mux is present because although some of our faster carry chains will have much quicker

carry propagation for long carry chains, they do add significant delay to non-carry computations.

Thus, when the cell is used as just a normal 3-LUT, using inputs X, Y, and Z, mux 5 allows us to

bypass the carry chain by selecting the output of mux 1.

12

The important thing to realize about the logic of Figure 4c is that any logic that can compute the

value Couti = Couti −1 * C1i()+ (Cout i−1 * C0i) , where i is the position of the cell within the carry chain,

can provide the functionality necessary to support the needs of reconfigurable carry computations.

Thus, the fast carry logic unit can contain any logic structure implementing this computation.

This thesis looks at four different types of carry logic: Carry Select, Carry Lookahead (including

Brent-Kung), Variable Bit, and Ripple Carry (discussed previously). Note that because of the

needs and requirements of carry chains for reconfigurable logic, new circuits will have to be

developed, inspired by the standard adder structures, but which are more appropriate for FPGAs.

The main difference is that the carry chains must support not only the Generate, Propagate, and

Kill states of an adder, but also the Inverse Propagate state. These four states are encoded on

signals C1 and C0 as shown in Table 1. Also, while standard adders are concerned only with the

maximum delay through an entire N-bit adder structure, for FPGAs the delay concerns are more

complicated. Specifically, when an N-bit carry chain is built into the architecture of an FPGA it

does not represent an actual computation, but only the potential for a computation. A carry chain

resource may span the entire height of a column in the FPGA, but a mapping to the logic may use

only a small portion of this chain, with the carry logic in the mapping starting and ending at

arbitrary points in the column. Thus, the carry chain not only must support the carry delay from

the first to the last position, but must also consider the delay for carry computations beginning and

ending at any point within this column. For example, even though the FPGA architecture may

provide support for carry chains of up to 32 bits, it must also efficiently support 8 bit carry

computations placed at any point within this carry chain resource.

Carry Select Carry Chain

The problem with a ripple carry structure is that the computation of the Cout for a bit position i

cannot begin until after the computation has been completed in bit positions 0..i-1. A Carry

Select structure overcomes this limitation. The main observation is that for any bit position, the

only information it receives from the previous bit positions is its Cin signal, which can be either

true or false. In a Carry Select adder the carry chain is broken at a specific column, and two

separate additions occur: One assuming the Cin signal is true, the other assuming it is false.

These computations can take place before the previous columns complete their operation since

13

they do not depend on the actual value of the Cin signal. This Cin signal is instead used to

determine which adder’s outputs should be used. If the Cin signal is true, the output of the

following stages comes from the adder that assumed that the Cin would be true. Likewise, a false

Cin chooses the other adder’s output. This splitting of the carry chain can be done multiple times,

breaking the computation into several pairs of short adders with output muxes choosing which

adder’s output to select. The length of the adders and the breakpoints are carefully chosen such

that the small adders finish computation just as their Cin signals become available. Short adders

handle the low-order bits, and the adder length is increased further along the carry chain, since

later computations have more time until their Cin signal is available.

A Carry Select carry chain structure for use in FPGAs is shown in Figure 6. The carry

computation for the first two cells is performed with the simple ripple-carry structure

implemented by mux 1. For cells 2 and 3, two ripple carry adders are used, with one adder

(implemented by mux 2) assuming the Cin is true, and the other (mux 3) assuming the Cin is false.

Then, muxes 4 and 5 pick between these two adders’ outputs based on the actual Cin coming

from mux 1. Similarly, cells 4-6 have two ripple carry adders (mux 6 & 7 for a Cin of 1, mux 8 &

9 for a Cin of 0), with output muxes (muxes 10-12) deciding between the two ripple carry adders

based upon the actual Cin (from mux 5). Subsequent stages continue to grow in length by one,

with cells 7-10 in one block, cells 11-15 in another, and so on. Delay values showing the delay of

the Carry Select carry chain relative to other carry chains will be presented later in this thesis.

1

C0
1

C1
1

Cell 1
C0

0
C1

0

Cell 0
C0

3
C1

3

Cell 3
C0

2
C1

2

Cell 2

2
3

5 4

Cout
3

Cout
2

Cout
1

Cout
0

C0
5

C1
5

Cell 5
C0

4
C1

4

Cell 4

6
8

11 10

Cout
5

Cout
4

C0
6

C1
6

Cell 6

7
9

12

Cout
6

Figure 6: Carry Select structure.

Variable Block Carry Chain

Like the Carry Select carry chain, a Variable Block structure [Oklobdzija88] consists of blocks of

ripple carry elements. However, instead of precomputing the Cout value for each possible Cin

14

value, it instead provides a way for the carry signal to skip over intermediate cells where

appropriate. Contiguous blocks of the computation are grouped together to form a unit with a

standard ripple carry chain. As part of this block, logic is included to determine if all of the cells

are in their propagate state. If so, the Cout for this block is immediately set to the value of the

block’s Cin, allowing the carry chain to bypass this block’s normal carry chain on its way to later

blocks. The Cin still ripples through the block itself, since the intermediate carry values must also

be computed. If any of the cells in the carry chain are not in propagate mode, the Cout output is

generated normally by the ripple carry chain. While this carry chain does start at the block’s Cin

signal, and leads to the block’s Cout, this long path is a false path. That is, since there is some

cell in the block that is not in propagate mode, it must be in generate or kill mode, and thus the

block’s Cout output does not depend on the block’s Cin input.

A major difficulty in developing a version of the Variable Block carry chain (see Figure 7) for

inclusion in an FPGA’s architecture is the need to support both the propagate and inverse

propagate state of the cells. Unfortunately, this required that significant changes to the Variable

Block adder structure be made. The new structure requires two new values to be computed: a

propagate signal and an invert signal. First, the cells are checked to see if they are in some form

of propagate mode (either normal propagate or inverse propagate), by ANDing together the XOR

of each stage’s C1 and C0 signals. If so, the Cout function will be equal to either Cin or Cin . To

decide whether to invert the signal or not, the number of cells that are in inverse propagate mode

must be determined. If the number is even (including zero) the output is not inverted, while if the

number is odd the output is inverted. The inversion check can be done by looking for inverse

propagate mode in each cell and XORing the results. To check for inverse propagate, only the C0

signal from each cell is considered. If this signal is true, the cell is in either generate or inverse

propagate mode. If it is in generate mode the inversion signal will be ignored anyway, since the

Cin signal is only inverted if all cells are in some form of propagate mode. Note that for both of

these tests a tree of gates can be used to compute the result. Also, since the inversion signal is

ignored when the carry chain is not bypassed, C1 can be used as the inverse of C0 for the

inversion signal’s computation, which avoids the added inverter in the XOR gate.

15

The organization of the blocks in the Variable Block carry structure bears some similarity to the

Carry Select structure. The early stages of the structure grow in length, with short blocks for the

low order bits, building in length further in the chain in order to equalize the arrival time of the

carry from the block with that of the previous block. However, unlike the Carry Select structure,

the Variable Block adder must also worry about the delay from the Cin input through the block’s

ripple chain. Thus, after the carry chain passes the midpoint of the logic, the blocks begin

decreasing in length. This balances the path delays in the system and improves performance. The

division of the overall structure into blocks depends on the details of the logic structure and the

length of the entire computation. Block lengths (from low order to high order cells) of 2, 2, 4, 5,

7, 5, 4, 2, 1 for a 32 bit structure was used. The first and last block in each adder is a simple

Ripple Carry chain, while all other blocks use the Variable Block structure. Delay values of the

Variable Block carry chain relative to other carry chains will be presented later in this thesis.

Cin
4 Cout

1

3

1

C0
1

C1
1

Cell 1
C0

0
C1

0

Cell 0
C0

3
C1

3

Cell 3
C0

2
C1

2

Cell 2

2

Cout
3

Cout
2

Cout
0

4

5

Invert

Propagate

Figure 7: The Variable Block carry structure. Mux 1 performs an initial two stage ripple

carry. Muxes 2 through 5 form a 2-bit Variable Block block. Mux 5 decides whether the

Cin signal should be sent directly to Cout, while mux 4 decides whether to invert the Cin

signal or not.

Carry Lookahead and Brent-Kung Carry Chains

There are two inputs to the fast carry logic in Figure 4c: C1i and C0i. The values of C1i have

already been generated by the LUTs. If Cini is 1, the output of the mux, Couti is C1i. If Cini is 0,

the output of the mux, is C0i. The information represented by C1i and C0i can be combined

together to determine what the Cout of two stages will be if the Cin of the first stage is given.

For example, C1i,i −1 = C1i −1 * C1i()+ C1i−1 * C0i() and C0 i,i −1 = C0i −1 * C1i()+ C0 i −1 * C0i(), where C1 x, y

16

is the value of Coutx assuming that Ciny = 1. The length of the carry chain can now be halved,

since once these new values are computed, a single mux can compute Couti given Cini-1. In fact,

similar rules can be used recursively, halving the length of the carry chain with each application.

Specifically, C1i, k = C1 j −1,k * C1i, j()+ C1j −1, k * C0 i, j() and C0 i,k = C0 j −1, k * C1i, j()+ C0 j −1, k * C0 i, j(),
assuming i > j > k . The digital logic computing both of these functions will be called a

concatenation box. The Brent-Kung carry chain [Brent82] consists of a hierarchy of these

concatenation boxes, where each level in the hierarchy halves the length of the carry chain, until

C1i,0 and C0 i,0 has been computed for each cell i. A string of muxes at the bottom of the Brent-

Kung carry chain can then use the values precomputed by the concatenation boxes to compute the

Cout for each cell when its Cin is given. The Brent-Kung carry chain is shown in Figure 8.

=

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 8: The 16 bit Brent-Kung structure. At right is the details of the concatenation

block. Note that once the Cin has been computed for a given stage, a simple mux can be

used in place of a concatenation block.

The Brent-Kung adder is a specific case of the more general Carry Lookahead adder. In a Carry

Lookahead adder a single level of concatenation combines together the carry information from

multiple sources. A typical Carry Lookahead adder will combine 4 cells together in one level

(computing C1i,i-3 and C0i,i-3), combine four of these new values together in the next level, and so

on. However, while a combining factor of 4 is considered optimal for a standard adder, in a

reconfigurable system combining more than two values in a level is not advantageous. The

problem is that although the logic to concatenate N values together grows linearly for a normal

adder, it grows exponentially for a reconfigurable carry chain. For example, to concatenate three

values together the following equation is used:

C1w, z = C1y−1,z * C1x −1,y()+ C1y−1, z * C0 x −1,y()()* C1w, x + C1 y−1,z * C1x−1, y()+ C1y−1,z * C0 x −1, y()()* C0w, x .

17

Since this computation is more than twice as complex as the computation needed to concatenate

two cells together, one can conclude that concatenating pairs is preferable over concatenating 3

cells together. However, it is not immediately clear whether the concatenation of cells in groups

of 4 would be a better approach.

b) A1 A0 B1 B0 C1 C0 D1 D0

Cout1 Cout0Cout0

A1A0 B1 B0 C1 C0 D1D0a)

Cout1

Figure 9: Concatenation boxes. (a) a 4-cell concatenation box, and (b) its equivalent

made up of only 2-cell concatenation boxes.

Figure 9a shows a concatenation box that takes its input from 4 different cells. Figure 9b then

shows how a 4-cell concatenation box can be built using three 2-cell concatenation boxes. This

second method of creating a 4-cell concatenation box is really the equivalent of a 2-Level Carry

Lookahead adder using 2-cell concatenation boxes. Using the simple delay model discussed

earlier, the delay for the 4-cell concatenation box in Figure 9a is 3 units since the signal must

travel through 3 muxes. The delay for the 4-cell concatenation box equivalent found in Figure 9b,

however, is only 2 units since the signal must travel through only 2 muxes. Thus, a 4-cell

concatenation box is never used since it can always be implemented with a smaller delay using 2-

cell concatenation boxes in a 2-Level Carry Lookahead structure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 10: A 2-Level, 16 bit Carry Lookahead structure.

Another option in Carry Lookahead adders is the possibility of using less levels of concatenation

than in a Brent-Kung structure. Specifically, a Brent-Kung structure for a 32 bit adder would

require 4 levels of concatenation. While this allows Cin0 to quickly reach Cout31, there is a

18

significant amount of delay in the logic that computes the individual C1i,o and C0i,0 values. Fewer

levels than the complete hierarchy of the Brent-Kung adder can be used, if one simply ripples

together the top-level carry computations of smaller carry-Lookahead adders. Specifically, a N-

level Carry Lookahead adder would be the name for N levels of 2-input concatenation units. A 2-

Level Carry Lookahead adder is shown in Figure 10. Delay values showing the delay of the

Brent-Kung and Carry Lookahead carry chains relative to other carry chains will be presented

next.

Carry Chain Performance

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Carry Length

M
ax

 D
el

ay

Basic Ripple Optimized Ripple

Variable Block

Carry Select

Brent-Kung

Figure 11: A comparison of the various carry chain structures.

In order to compare the carry chains developed in this thesis, the performance of the carry chains

of different lengths is computed. The delay is computed from the output of the 2-LUTs in one

cell to the final output (F) in another. One important issue to consider is what delay to measure.

While the carry chain structure is dependent on the length of the carry computation supported by

the FPGA (such as the Variable Block segmentation), the user may decide to use any contiguous

subsequence of the carry chain’s length for their mapping. To deal with this, it is assumed that the

19

FPGAs are built to support up to a 32 bit carry chain, and the maximum carry chain delay for any

length L carry computation within this structure is then recorded. That is, since it is not known

where the user will begin their carry computation within the FPGA architecture, the worst case

delay for a length L carry computation starting at any point in the FPGA is measured instead.

Note that this delay is the critical path within the L-bit computation, which means carries starting

and ending anywhere within this computation are considered.

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Carry Length

M
ax

 D
el

ay

CLA(1)

CLA(2)

CLA(3)

Brent-Kung

Figure 12: A comparison of Carry Lookahead structures.

Figure 11 shows the maximum carry delays for each of the carry structures discussed in this

thesis, as well as the basic ripple carry chain found in current FPGAs. These delays are based on

the simple delay model that was discussed earlier. More precise delay timings from VLSI

implementations of the carry chains will be discussed later. As can be seen, the best carry chain

structure for short distances is different from the best chain for longer computations, with the

basic ripple carry structure providing the best delay for length 2 carry computations, while the

Brent-Kung structure provides the best delay for computations of six bits or more. In fact, the

ripple carry structure is more than twice as fast as the Brent-Kung structure for 2-bit carry

computations, yet is approximately eight times slower for 32 bit computations. However, short

carries are not as critical, since they can usually be supported by the FPGA’s normal routing

20

structure. Thus, the short carries are less likely than the 32 bit carries to dominate the

performance of the overall system. Therefore, the Brent-Kung structure is the preferred structure

for FPGA carry computations, since it is capable of providing significant performance

improvement over current FPGA carry chains.

This thesis also considers other types of Carry Lookahead adder designs which do not use as

many levels of concatenation boxes as a full Brent-Kung adder. However, as can be seen from

Figure 12, the other carry structures provide only modest improvements over the Brent-Kung

structure for short distances, and perform significantly worse than the Brent-Kung structure for

longer carry chains.

0

500

1000

1500

2000

2500

Ripple
Carry

Optimized
Ripple

Carry
Select

Variable
Block

Brent-
Kung

N
um

be
r

of
 T

ra
ns

is
to

rs

Figure 13: The Transistor counts of the Ripple Carry, Optimized Ripple, Carry Select,

Variable Bit, and Brent-Kung carry chains.

Another consideration when choosing a carry chain structure is the size of the circuit. Figure 13

shows the number of transistors that are used in the design of the simple Ripple Carry,

Optimized Ripple Carry, Carry Select, Variable Block, and Brent-Kung carry chains. The

transistor counts here are based on a CMOS implementation of the tri-state mux, which has 8

transistors, and is shown in Appendix B. One concern with the Brent-Kung structure is that it

requires four times more transistors to implement than the basic ripple carry. However, in typical

FPGAs the ripple carry structure occupies only a tiny fraction of the chip area, since the

programming bits, LUTs, and programmable routing structures dominate the chip area.

Therefore, the increase in chip area required by the higher performance carry chains developed in

this thesis is relatively insignificant, yet the performance improvements can greatly accelerate

21

many types of applications. The area and performance of the high performance carry chains with

respect to those of the simple Ripple Carry chains will be discussed further in the next section of

this thesis.

Layout Results

Carry Chain 32-bit delay (ns) 3-LUT delay (ns)

Ripple Carry (Mux) 23.4 1.6

Ripple Carry (Complex Logic) 25.4 1.9

Optimized Ripple 18.7 2.5

Dual Rail Optimized Ripple 21.2 2.7

Brent-Kung 6.1 2.1

Dual Rail Brent-Kung 6.1 2.1

Table 2: A comparison of the delays of different structures for (a) a 32-bit carry, and (b) a

non-carry computation of a function, f(X,Y,Z).

The results of the simple delay model described earlier suggest that the Brent-Kung carry chain

has the best performance of any of the carry chains. However, the performance results used to

make this decision are based only on the simple delay model, which may not accurately reflect the

true delays. The simple delay model does not take into account transistor sizes or routing delays.

Therefore, in order to get more accurate comparisons the carry chains were sized using Logical

Effort [Sutherland90], layouts were created, and timing numbers were obtained from Spice for a

0.6 micron process. Only the most promising carry chains were chosen for implementation.

These include the simple Ripple Carry, which can be found in current FPGAs, as well as the new

Optimized Ripple and Brent-Kung carry chains. Additionally, Dual Rail Brent-Kung and Dual

Rail Optimized Ripple carry chains were also implemented in VLSI to determine whether the dual

rail optimization can increase performance. Diagrams showing the VLSI layouts can be found in

Appendix C.

22

Table 2 shows the delays of a 32-bit carry for the carry chains that were implemented. Notice

that the delay for simple Ripple Carry chain is 23.4ns, and the delay for the Brent-Kung carry

chain is 6.1ns. Thus, the best carry chain developed here has a delay 3.8 times faster than the

basic ripple carry chain used in industry. One item to note is that two versions of the simple

Ripple Carry chain were created. The first version used muxes to implement the design, while the

second version used complex gates (see Appendix B for the transistor diagram). The delay of the

Mux version was 23.4ns while the delay for the Complex Logic version was 25.4ns. Thus it

appears that the Mux implementation is somewhat faster than the Complex Logic version of the

design.

Another item to note is that the delay of the Dual Rail Ripple carry chain is 21.2ns while the delay

for the Optimized Ripple carry chain is only 18.7ns. Thus, the application of the Dual Rail

signaling protocol actually increased the delay of the Optimized Ripple carry chain by 13.4%. For

the Brent-Kung design, the delay was 6.1ns, and for the Dual Rail Brent-Kung design, the delay

was also 6.1ns. Thus, the Dual Rail signaling protocol did not reduced the delay of the Brent-

Kung carry chain. Therefore, the timing results seem to indicate that the dual rail optimization

yields little or no improvement. Appendix D contains timing numbers for variable length carries

of the various carry chains.

Table 2 also shows the delays of the FPGA cell assuming that the cell is programmed to compute

a function of 3 variables and avoid the carry chain (as shown by Mux 5 in Figure 4c). The delay

for the simple Ripple Carry chain in this case is 1.6ns, while the delay for the Brent-Kung carry

chain is 2.1ns. Thus, the Brent-Kung implementation does slow down non-carry operations, but

only by a small amount.

Table 3 shows the area of these carry chains as measured from the layouts. One item to note is

the size of the Brent-Kung carry chain. Its size is shown as 9.47 times larger than the simple

Ripple carry chain. This number should be viewed purely as an upper bound, since the layout of

the simple Ripple Carry was optimized much more than the Brent-Kung layout. We believe that

23

further optimization of the Brent-Kung design could reduce its area by 600,000 square lambda,

yielding only a factor of 5 size increase over the Basic Ripple Carry scheme.

Carry Chain Area % Increase for

 Chimaera FPGA

% Increase for General-

Purpose FPGA

Ripple Carry (Mux) 171,368 0 0

Ripple Carry (Complex Logic) 226,859 0.3 0.04

Optimized Ripple 394,953 1.3 0.18

Dual Rail Optimized Ripple 484,640 1.8 0.25

Brent-Kung 1,622,070 8.5 1.18

Dual Rail Brent-Kung 1,256,044 6.3 0.88

Table 3: Areas of different carry chain implementations.

A more accurate comparison of the size implications of the improved carry chains is to consider

the area impact of including these carry chains in an actual FPGA. We have conducted such

experiments with the Chimaera FPGA [Hauck97], a special-purpose FPGA which has been

carefully optimized to reduce the amount of chip area devoted to routing. As shown in Table 3,

replacing the simple Ripple Carry structure in the Chimaera FPGA with the Brent-Kung structure

results in an area increase of 8.5%. Our estimates of the area increase on a general-purpose

FPGA such as the Xilinx 4000 [Xilinx96] or Altera 8000 FPGAs, where the more complex

routing structure consumes a much greater portion of the chip area, is that the Brent-Kung

structure would only increase the total chip area by 1.2%. This is based upon increasing the

portion of Chimaera’s chip area devoted to routing up to the 90% of chip area typical in general-

purpose FPGAs.

Conclusions

One of the critical performance bottlenecks in most systems is the carry chains contained in many

arithmetic and logical operations. Current FPGAs optimize for these elements by providing some

support specifically for carry computations. However, these systems rely on relatively simple

24

Ripple Carry structures which provide much slower performance than current high-performance

carry chain designs. With the advent of reconfigurable computing, and the demands of

implementing complex algorithms in FPGAs, the slowdown of carry computations in FPGAs is an

even more crucial concern.

In order to speed up the ripple carry structure found in current FPGAs several innovative

techniques were developed. A novel cell design is used to reduce the delay through the cell to a

single mux by moving the decision of whether to use the carry chain off of the critical path. This

results in approximately a factor of 1.25 speedup over current FPGA delays. Also, a Dual Rail

signaling protocol was investigated.

High performance adders are not limited to simple Ripple Carry schemes, and in fact rely on more

advanced formulations to speed up their computation. However, as demonstrated in this thesis,

the demands of FPGA-based carry chains are different than standard adders, especially because of

variable length carries and the “inverse propagate” cell state. Thus, standard high performance

adder carry chains can not be directly taken and embedded into current FPGA architectures.

In this thesis, novel high performance carry chain structures appropriate to reconfigurable systems

were developed. These include implementations of the Carry Select, Variable Block, and Carry

Lookahead (including Brent-Kung) adders. A carry chain was produced that is up to a factor of

3.8 times faster than current FPGA structures while maintaining the flexibility of current systems.

This provides a significant performance boost for the implementation of future FPGA-based

systems.

Future Work

Future work in this area could include a study of the dual rail signaling protocol. On paper, this

technique appears to halve the delay of the carry chains it was applied to. However, Spice timings

of the VLSI layouts show virtually no advantage to using the dual rail techniques. A study which

explains this discrepancy would be interesting. Additional optimization of the VLSI layouts

25

would also be helpful in providing a more accurate comparison of the areas of the new carry

chains and the simple Ripple Carry chain.

Acknowledgments

Special thanks to my advisor Scott Hauck for his assistance with this thesis and to Thomas Fry for

his preliminary work in this area. This research was funded in part by the Defense Advanced

Research Projects Agency and the National Science Foundation.

26

References

[Altera95] Data Book. San Jose, CA: Altera Corp., 1995.

[Brent82] R. P. Brent, H. T. Kung, "A Regular Layout for Parallel Adders”, IEEE

Transactions on Computers, Vol. C-31, No. 3, March 1982.

[Hauck97] S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, " The Chimaera Reconfigurable

Functional Unit", IEEE Symposium on FPGAs for Custom Computing

Machines, 1997.

[Oklobdzija88] V. G. Oklobdzija, E. R. Barnes, “On Implementing Addition in VLSI

Technology”, Journal of Parallel and Distributed Computing, Vol. 5, No. 6, pp.

716-728, December 1988.

[Sutherland90] I. E. Sutherland, R. F. Sproull, Logical Effort: Designing Fast MOS Circuits.

Palo Alto, CA: Sutherland, Sproull, and Associates, 1990.

[Woo95] N.-S. Woo, "Revisiting the Cascade Circuit in Logic Cells of Lookup Table

Based FPGAs”, IEEE Symposium on FPGAs for Custom Computing Machines,

pg 90-96, 1995.

[Xilinx96] The Programmable Logic Data Book. San Jose, CA: Xilinx Corp., 1996.

27

Appendix A: Carry Logic and the FPGA Cell Structure

When carry chains are designed for an FPGA, inverters can be added within the design in various

places in order to optimize the design. While adding inverters to a typical logical circuit might

cause problems with the logical correctness of the design, inverters can be added to the FPGA

without out causing this problem. The reason why an FPGA can support the addition of inverters

when a typical circuit cannot is because the FPGA contains LUTs. Recall that an n-input LUT

can produce any function of n variables. Thus, if inverters are added to the structure of the

FPGA, one can just reprogram the LUT to produce an inverted function of the input variables

instead. Thus, inverters can be added to the FPGA without a problem.

Mux 1

Result

Carry Chain

Cell i+1Cell i

Cout1 Cout1 Cout0Cout0

Figure 14: Logical incorrectness caused by adding inverters before a simple carry chain

Unfortunately, the addition of extra inverters in a FPGA cell could cause logical problems for the

carry chains within that cell. Figure 14 shows a simple carry ripple scheme in which inverters

were placed before all of the inputs to the carry chain. Unfortunately, the carry chain will not just

produce an inverted output. Instead, the inversion of the Cout0 signal of the left LUT will cause

the select line of Mux 1 to be inverted. The inversion of Mux 1’s select line will cause Mux 1 to

choose the wrong input, and therefore the output of Mux 1 will be incorrect. Thus, the inverters

28

in this example cause the carry chain to function incorrectly, instead of just inverting the outputs

of the carry chain.

However, it is possible to fix this problem so that inverters can be added to the FPGA and so that

the carry chain will still function properly. First, the problem must be simplified slightly. The

problem assumes that there are chains of inverters that are placed within an FPGA cell either

before of after the carry chain. Because two inverters in series produce a logical result equivalent

to 0 inverters, any chain of inverters can be reduced to the logical equivalent of 0 inverters or 1

inverter. If there are the equivalent of 0 inverters in the FPGA cell, then there is no problem.

Thus, there are only 2 cases to consider. Case 1 is that there is the equivalent of 1 inverter before

the carry chain. Case 2 is that there is the equivalent of 1 inverter after the carry chain. Both

cases will be discussed. Note that the solutions to these two cases can also be combined, allowing

inverters to appear both before and after the carry chain.

First, Case 1 will be considered. As was discussed above, an inverted signal entering the carry

chain will cause the select lines of a mux to choose the wrong input. Therefore, inverted inputs

can not be allowed to enter the carry chain. However, the problem can still be solved. As you

will recall, the two 2-LUTs in Figure 4c produce signals labeled Cout1 and Cout0. These

outputs are generated by the 2-LUTs based on a user-programmable function of X and Y.

Therefore, the LUTs can just be reprogrammed by the user to produce Cout1 and Cout0 instead

of Cout1 and Cout0 , respectively. Then when the logical inversion takes place before the carry

chain, the inputs to the carry chain will still be equivalent to Cout1 and Cout0.

Now Case 2 will be considered. In this case, 1 inverter is added to the output of the carry chain.

One initial solution might be to just reprogram the LUTs to output Cout1 and Cout0 so that the

inversions cancel out. Unfortunately, this solution does not work, because if the inputs to the

carry chain are inverted (as the result of changing the LUT outputs), then the select inputs of the

muxes would again be inverted, causing the muxes to choose the wrong inputs and causing logical

incorrectness. The solution to this problem however is to just reprogram the LUTs in a different

manner. Instead of having the LUTs output Cout1 and Cout0, they are instead programmed to

29

output Cout0 and Cout1, respectively. Note that the outputs of the LUTs are both inverted and

exchanged. The LUT that was previously outputting Cout1 is now generating the inversion of

Cout0, and vice versa. Now, the carry chain works properly again. Inverting the inputs to the

carry chain causes the select lines of the muxes to choose the wrong inputs. However, by

switching the inputs also, the muxes end up choosing the correct input after all. Therefore, all of

the outputs of the carry chain are now inverted. However, since there is one logical inverter after

the carry chain, the final solution is equivalent to the original solution.

The rules in Case 1 and Case 2 can then be applied together to handle any structure of inverters.

For example, if there are inverters both before and after the carry chains, then first Case 1 is

applied to the cells to negate the inverters before the carry chain. Thus, Cout1 and Cout0 are

inverted. Then Case 2 is applied to the cells so that the outputs of the LUT, Cout1 and Cout0

(as produced by Case 1), are inverted and switched. Thus, the final output of the LUTs for the

case of inverters before and after the carry chain is Cout0 and Cout1, respectively. Therefore, any

number of inversions may be placed before or after the carry chain without affecting its logical

correctness.

30

Appendix B: Transistor diagrams

S

S S

S

A B

OUT

Figure 15: The transistor diagram of the inverting tri-state mux that was used in this

thesis. A and B are the two inputs to the mux, and S and S are the select lines.

31

OUTPUT

P P

P P

Cout0 Cout0

Cout1 Cout1

Cout0

Cout1

Cin

Cin

Cin

Cin

Z

Z

Z

Z

Figure 16: The transistor diagram of the simple Ripple Carry adder that was implemented

using complex logic. Cout1 and Cout0 are the outputs of the two 2-LUTs. Cin is the

carry input, Z is the third input, and P is the programming bit which determines whether a

carry or 3-LUT function occurs.

32

Appendix C: Printouts of VLSI Layouts

altmux.cif scale: 0.007487 (190X) Size: 1389 x 128 microns
test

Figure 17: The VLSI layout of the simple Ripple Carry adder implemented using muxes.

33

altgate.cif scale: 0.002793 (71X) Size: 3724 x 65 microns
test

Figure 18: The VLSI layout of the simple Ripple Carry adder implemented using

complex logic.

34

opt.cif scale: 0.003232 (82X) Size: 3218 x 127 microns
test

Figure 19: The VLSI of the Optimized Ripple carry chain.

35

drr.cif scale: 0.004456 (113X) Size: 2334 x 211 microns
test

Figure 20: The VLSI layout of the Dual Rail Optimized Ripple carry chain.

36

bk.cif scale: 0.006428 (163X) Size: 1618 x 1008 microns
test

Figure 21: The VLSI layout of the Brent-Kung carry chain. The top and bottom sections

are the implementation of the muxes shown Figure 4c. The middle section is the actual

Brent-Kung carry chain and corresponds to the Fast Carry Logic section shown in Figure

4c.

37

drbk.cif scale: 0.006384 (162X) Size: 1629 x 775 microns
test

Figure 22: The VLSI layout of the Dual-Rail Brent-Kung carry chain.

38

Appendix D: Timing Values for Variable Length Carries

X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 1 |

 2 | 4

 3 | 7 4

 4 | 10 7 4

 5 | 13 10 7 4

 6 | 16 13 10 7 4

Y 7 | 19 16 13 10 7 4

 8 | 22 19 16 13 10 7 4

 9 | 25 22 19 16 13 10 7 4

 10 | 28 25 22 19 16 13 10 7 4

 11 | 31 28 25 22 19 16 13 10 7 4

 12 | 34 31 28 25 22 19 16 13 10 7 4

 13 | 37 34 31 28 25 22 19 16 13 10 7 4

 14 | 40 37 34 31 28 25 22 19 16 13 10 7 4

 15 | 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 16 | 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 17 | 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 18 | 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 19 | 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 20 | 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 21 | 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 22 | 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 23 | 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 24 | 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 25 | 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 26 | 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 27 | 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 28 | 82 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 29 | 85 82 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 30 | 88 85 82 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 31 | 91 88 85 82 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

 32 | 94 91 88 85 82 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4

Figure 23: The delays of a Basic Ripple carry chain which starts at Cell X and ends at Cell

Y using the theoretical delay model.

39

 X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 1 |

 2 | 5

 3 | 6 6

 4 | 8 8 7

 5 | 8 8 7 6

 6 | 8 8 8 8 7

Y 7 | 10 10 10 10 9 7

 8 | 10 10 10 10 9 7 6

 9 | 10 10 10 10 9 8 8 7

 10 | 10 10 10 10 10 10 10 9 7

 11 | 12 12 12 12 12 12 12 11 9 7

 12 | 12 12 12 12 12 12 12 11 9 7 6

 13 | 12 12 12 12 12 12 12 11 9 8 8 7

 14 | 12 12 12 12 12 12 12 11 10 10 10 9 7

 15 | 12 12 12 12 12 12 12 12 12 12 12 11 9 7

 16 | 14 14 14 14 14 14 14 14 14 14 14 13 11 9 7

 17 | 14 14 14 14 14 14 14 14 14 14 14 13 11 9 7 6

 18 | 14 14 14 14 14 14 14 14 14 14 14 13 11 9 8 8 7

 19 | 14 14 14 14 14 14 14 14 14 14 14 13 11 10 10 10 9 7

 20 | 14 14 14 14 14 14 14 14 14 14 14 13 12 12 12 12 11 9 7

 21 | 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 11 9 7

 22 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 13 11 9 7

 23 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 13 11 9 7 6

 24 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 13 11 9 8 8 7

 25 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 13 11 10 10 10 9 7

 26 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 13 12 12 12 12 11 9 7

 27 | 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 14 14 14 14 14 13 11 9 7

 28 | 16 15 13 11 9 7

 29 | 18 17 15 13 11 9 7

 30 | 18 17 15 13 11 9 7 6

 31 | 18 17 15 13 11 9 8 8 7

 32 | 18 17 15 13 11 10 10 10 9 7

Figure 24: The delays of a Carry Select carry chain which starts at Cell X and ends at Cell Y

using the theoretical delay model.

40

X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 1 |

 2 | 5

 3 | 7 6

 4 | 9 8 6

 5 | 10 10 10 10

 6 | 12 12 12 12 6

Y 7 | 14 14 14 14 8 6

 8 | 16 16 16 16 10 8 6

 9 | 16 16 16 16 13 11 11 11

 10 | 16 16 16 16 15 13 13 13 6

 11 | 17 17 17 17 17 15 15 15 8 6

 12 | 19 19 19 19 19 17 17 17 10 8 6

 13 | 21 21 21 21 21 19 19 19 12 10 8 6

 14 | 21 21 21 21 21 19 19 19 15 13 11 11 11

 15 | 21 21 21 21 21 19 19 19 17 15 13 13 13 6

 16 | 21 21 21 21 21 19 19 19 19 17 15 15 15 8 6

 17 | 22 22 22 22 22 21 21 21 21 19 17 17 17 10 8 6

 18 | 24 24 24 24 24 23 23 23 23 21 19 19 19 12 10 8 6

 19 | 26 26 26 26 26 25 25 25 25 23 21 21 21 14 12 10 8 6

 20 | 28 28 28 28 28 27 27 27 27 25 23 23 23 16 14 12 10 8 6

 21 | 28 28 28 28 28 27 27 27 27 25 23 23 23 19 17 15 13 11 11 11

 22 | 28 28 28 28 28 27 27 27 27 25 23 23 23 21 19 17 15 13 13 13 6

 23 | 28 28 28 28 28 27 27 27 27 25 23 23 23 23 21 19 17 15 15 15 8 6

 24 | 28 28 28 28 28 27 27 27 27 25 25 25 25 25 23 21 19 17 17 17 10 8 6

 25 | 28 28 28 28 28 27 27 27 27 27 27 27 27 27 25 23 21 19 19 19 12 10 8 6

 26 | 28 28 28 28 28 27 27 27 27 27 27 27 27 27 25 23 21 19 19 19 15 13 11 11 11

 27 | 28 28 28 28 28 27 27 27 27 27 27 27 27 27 25 23 21 19 19 19 17 15 13 13 13 6

 28 | 28 28 28 28 28 27 27 27 27 27 27 27 27 27 25 23 21 19 19 19 19 17 15 15 15 8 6

 29 | 28 28 28 28 28 28 28 28 28 28 28 28 28 28 26 24 22 21 21 21 21 19 17 17 17 10 8 6

 30 | 28 28 28 28 28 28 28 28 28 28 28 28 28 28 26 24 22 21 21 21 18 19 17 17 17 13 11 11 11

 31 | 28 28 28 28 28 28 28 28 28 28 28 28 28 28 26 24 22 21 21 21 20 19 17 17 17 15 13 13 13 6

 32 | 28 28 28 28 28 28 28 28 28 28 28 28 28 28 26 24 22 21 21 21 21 19 17 17 17 16 14 14 14 10 10

Figure 25: The delays of a Variable Block carry chain which starts at Cell X and ends at Cell

Y using the theoretical delay model.

41

X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 1 |

 2 | 5

 3 | 7 6

 4 | 7 6 6

 5 | 9 8 8 7

 6 | 9 8 8 7 6

Y 7 | 11 10 10 9 8 7

 8 | 11 10 10 9 8 7 6

 9 | 13 12 12 11 10 9 8 7

 10 | 13 12 12 11 10 9 8 7 6

 11 | 15 14 14 13 12 11 10 9 8 7

 12 | 15 14 14 13 12 11 10 9 8 7 6

 13 | 17 16 16 15 14 13 12 11 10 9 8 7

 14 | 17 16 16 15 14 12 13 11 10 9 8 7 6

 15 | 19 18 18 17 16 15 14 13 12 11 10 9 8 7

 16 | 19 18 18 17 16 15 14 13 12 11 10 9 8 7 6

 17 | 21 20 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 18 | 21 20 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 19 | 23 22 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 20 | 23 22 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 21 | 25 24 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 22 | 25 24 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 23 | 27 26 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 24 | 27 26 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 25 | 29 28 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 26 | 29 28 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 27 | 31 30 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 28 | 31 30 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 29 | 33 32 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 30 | 33 32 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

 31 | 35 34 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

 32 | 35 34 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

Figure 26: The delays of a 1-Level Carry Lookahead carry chain which starts at Cell X and

ends at Cell Y using the theoretical delay model.

42

X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 1 |

 2 | 6

 3 | 7 6

 4 | 7 6 6

 5 | 9 8 8 7

 6 | 9 8 8 7 6

Y 7 | 9 8 8 8 8 7

 8 | 9 8 8 8 8 7 7

 9 | 11 10 10 10 10 9 9 8

 10 | 11 10 10 10 10 9 9 8 6

 11 | 11 10 10 10 10 9 9 8 8 7

 12 | 11 10 10 10 10 9 9 8 8 7 7

 13 | 13 12 12 12 12 11 11 10 10 9 9 8

 14 | 13 12 12 12 12 11 11 10 10 9 9 8 6

 15 | 13 12 12 12 12 11 11 10 10 9 9 8 8 7

 16 | 13 12 12 12 12 11 11 10 10 9 9 8 8 7 7

 17 | 15 14 14 14 14 13 13 12 12 11 11 10 10 9 9 8

 18 | 15 14 14 14 14 13 13 12 12 11 11 10 10 9 9 8 6

 19 | 15 14 14 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7

 20 | 15 14 14 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7

 21 | 17 16 16 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8

 22 | 17 16 16 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 6

 23 | 17 16 16 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7

 24 | 17 16 16 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7

 25 | 19 18 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8

 26 | 19 18 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 6

 27 | 19 18 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7

 28 | 19 18 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7

 29 | 21 20 20 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8

 30 | 21 20 20 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 6

 31 | 21 20 20 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7

 32 | 21 20 20 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7

Figure 27: The delays of a 2-Level Carry Lookahead carry chain which starts at Cell X and

ends at Cell Y using the theoretical delay model.

43

 X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 1 |

 2 | 5

 3 | 7 6

 4 | 7 6 6

 5 | 9 8 8 8

 6 | 9 8 8 8 6

Y 7 | 9 8 8 8 8 7

 8 | 9 8 8 8 8 7 7

 9 | 11 10 10 10 10 9 9 8

 10 | 11 10 10 10 10 9 9 8 6

 11 | 11 10 10 10 10 9 9 8 8 7

 12 | 11 10 10 10 10 9 9 8 8 7 7

 13 | 11 10 10 10 10 10 10 10 10 9 9 8

 14 | 11 10 10 10 10 10 10 10 10 9 9 8 7

 15 | 11 10 10 10 10 10 10 10 10 9 9 9 9 8

 16 | 11 10 10 10 10 10 10 10 10 9 9 9 9 8 8

 17 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9

 18 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 6

 19 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 8 7

 20 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 8 7 7

 21 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 8

 22 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 8 7

 23 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 9 9 8

 24 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 9 9 8 8

 25 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 9

 26 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 9 6

 27 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 9 8 7

 28 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 9 8 7 7

 29 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 10 9 9 8

 30 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 10 9 9 8 7

 31 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 10 9 9 9 9 8

 32 | 15 14 14 14 14 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 10 9 9 9 9 8 8

Figure 28: The delays of a 3-Level Carry Lookahead carry chain which starts at Cell X and

ends at Cell Y using the theoretical delay model.

44

X

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 1 |

 2 | 5

 3 | 7 6

 4 | 7 6 6

 5 | 9 8 8 7

 6 | 9 8 8 7 6

Y 7 | 9 8 8 8 8 7

 8 | 9 8 8 8 8 7 7

 9 | 11 10 10 10 10 9 9 8

 10 | 11 10 10 10 10 9 9 8 5

 11 | 11 10 10 10 10 9 9 8 8 7

 12 | 11 10 10 10 10 9 9 8 8 7 7

 13 | 11 10 10 10 10 10 10 10 10 9 9 8

 14 | 11 10 10 10 10 10 10 10 10 9 9 8 7

 15 | 11 10 10 10 10 10 10 10 10 9 9 9 9 8

 16 | 11 10 10 10 10 10 10 10 10 9 9 9 9 8 8

 17 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9

 18 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 6

 19 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 8 7

 20 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 8 7 7

 21 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 8

 22 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 5 7

 23 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 9 9 8

 24 | 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 9 9 9 9 8 8

 25 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9

 26 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 7

 27 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 9 8

 28 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 10 10 9 9 8 8

 29 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 10 10 9

 30 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 10 10 9 8

 31 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 9

 32 | 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 9 9

Figure 29: The delays of a Brent-Kung carry chain which starts at Cell X and ends at Cell Y

using the theoretical delay model.

45

X

 1 4 8 12 16 20 24 28 32

 1 | 2.4

 2 | 3.3

 3 | 3.4

 4 | 3.4 2.8

 5 | 3.9 3.6

 6 | 3.9 3.6

 7 | 3.9 3.6

Y 8 | 4.2 3.8 3.5

 9 | 4.5 4.2 3.8

 10 | 4.5 4.2 3.8

 11 | 4.5 4.2 3.8

 12 | 4.6 4.2 4.0 3.8

 13 | 4.6 4.2 4.0 3.9

 14 | 4.6 4.3 4.3 4.3

 15 | 4.6 4.3 4.3 4.3

 16 | 5.0 4.5 4.5 4.5 4.2

 17 | 5.8 5.5 5.4 5.4 4.8

 18 | 6.0 5.6 5.5 5.5 5.3

 19 | 6.0 5.6 5.5 5.5 5.3

 20 | 6.0 5.6 5.5 5.5 5.3 4.0

 21 | 6.0 5.6 5.5 5.5 5.3 4.0

 22 | 6.0 5.6 5.5 5.5 5.3 4.1

 23 | 6.0 5.6 5.5 5.5 5.3 4.1

 24 | 6.0 5.6 5.5 5.5 5.3 5.1 4.3

 25 | 6.0 5.6 5.5 5.5 5.3 5.3 4.7

 26 | 6.0 5.6 5.6 5.6 5.3 5.3 4.7

 27 | 6.0 5.6 5.6 5.6 5.3 5.3 4.7

 28 | 6.0 5.6 5.6 5.6 5.3 5.3 4.7 4.2

 29 | 6.0 5.6 5.6 5.6 5.3 5.3 4.7 4.6

 30 | 6.0 5.6 5.6 5.6 5.3 5.3 4.7 4.7

 31 | 6.0 5.6 5.6 5.6 5.3 5.3 4.7 4.7

 32 | 6.1 5.7 5.6 5.6 5.3 5.3 4.7 4.7 3.8

Figure 30: The delays in nanoseconds of a Brent-Kung carry chain which starts at Cell X and

ends at Cell Y. The delays are generated using Spice on a VLSI layout.

