
IEEE Transactions on VLSI Systems, Vol. 6, No. 3, pp. 400-408, Sept. 1998. 1999 IEEE Circuits and Systems Society TVLSI Best Paper.

Mesh Routing Topologies for Multi-FPGA Systems
Scott Hauck Gaetano Borriello Carl Ebeling

Department of ECE Department of CSE Department of CSE
Northwestern University University of Washington University of Washington

Evanston, IL 60208 USA Seattle, WA 98195 USA Seattle, WA 98195 USA
hauck@ece.nwu.edu gaetano@cs.washington.edu ebeling@cs.washington.edu

Abstract

There is currently great interest in using fixed arrays of
FPGAs for logic emulators, custom computing devices, and
software accelerators. An important part of designing such
a system is determining the proper routing topology to use
to interconnect the FPGAs. This topology can have a great
effect on the area and delay of the resulting system.
Crossbar, Hierarchical Crossbar, and Mesh interconnection
schemes have all been proposed for use in FPGA-based
systems. In this paper we examine Mesh interconnection
schemes, and propose several constructs for more efficient
topologies. These reduce inter-chip delays by more than
60% over the basic 4-way Mesh.

Introduction

Field-programmable gate arrays (FPGAs) are devices that
can be programmed and reprogrammed to implement
complex digital logic. They have much greater capacity
than other programmable logic devices (PLDs), but unlike
mask-programmable gate arrays and other high-density
components they are in-circuit reprogrammable, allowing
their configurations to be changed by a completely
electrical process.

Figure 1. Basic mesh topology.

There is currently tremendous interest in the development
of computing platforms from standard FPGAs. These
multi-FPGA systems harness multiple FPGAs, connected in
a fixed pattern, to implement complex logic structures. The

circuit mapped onto the FPGAs need not be standard
hardware equations, but can even be operations from
algorithms and general computations. While these FPGA-
based custom-computing machines may not challenge the
performance of microprocessors for all applications, for
computations of the right form a multi-FPGA system can
offer extremely high performance, surpassing any other
programmable solution. Although a custom hardware
implementation will be able to beat the power of any
generic programmable system, and thus there must always
be a faster solution than a multi-FPGA system, the fact is
that few applications will ever merit the expense of creating
application-specific solutions. An FPGA-based computing
machine, which can be reprogrammed like a standard
workstation, offers the highest realizable performance for
many different applications. In a sense it is a hardware
supercomputer, surpassing traditional machine architectures
for certain applications. This potential has been realized by
many different research machines. The Splash system [6]
has provided performance on genetic string matching that is
almost 200 times greater than all other supercomputer
implementations. The DECPeRLe-1 system [21] has
demonstrated world-record performance for many other
applications, including RSA cryptography. Many other
truly world-class implementations have been created [4, 5,
9 - 11, 13, 15 - 18].

N

N/2

N/2

Figure 2. 4-way (top left), 8-way (bottom left), and
1-hop (right) mesh routing topologies.

One of the applications of multi-FPGA systems with the
greatest potential is logic emulation. The designers of a

2

custom chip need to verify that the circuit they have
designed actually behaves as desired. Software simulation
and prototyping have been the traditional solutions to this
problem. However, as chip designs become more complex,
software simulation is only able to test an ever decreasing
portion of the chip’s functionality, and it is quite expensive
in time and money to debug by repeated prototype
fabrications. The solution is logic emulation, the mapping
of the circuit under test onto a multi-FPGA system. Since
the logic is implemented in the FPGAs in the system, the
emulation can run at near real-time, yielding test cycles
several orders of magnitude faster than software simulation,
yet with none of the time delays and inflexibility of
prototype fabrications. These benefits have led many of the
advanced microprocessor manufacturers to include logic
emulation in their validation methodologies.

Multi-FPGA systems have great potential for logic
emulation and reconfigurable computing tasks. An
important aspect shared by all of these systems is that they
use multiple FPGAs, preconnected in a fixed routing
structure, to perform their tasks. While FPGAs can be
routed and rerouted in their target systems, the pins moving
signals between FPGAs are fixed by the routing structure
on the implementation board. Some of the topology
concerns in small arrays can be removed by FPICs [1, 12].
FPICs are devices similar to FPGAs but without any logic
functions, and are able to produce nearly arbitrary routing
between their I/O pins. However, large FPGA systems with
FPICs for routing will still need to fix the topology for
inter-FPIC routing.

There are many different possible multi-FPGA system
topologies [7]. The routing structure used in a multi-FPGA
system has a large impact not only on system speed, but
also on capacity and system extendibility. Crossbar
topologies provide a predictable routing delay, but they
sacrifice scalability and chip utilization. Hierarchical
crossbar structures [20] have less predictable routing
delays, since signals may have to pass through many
FPGAs, but have improved scalability. Mesh connections
are scaleable, and may have better utilization than the other
structures, but have even worse routing predictability.
Although mesh topologies have been criticized due to

perceived pin limitations, new techniques such as Virtual
Wires [2, 19] and future high-I/O FPGA packages make
meshes a very viable alternative.

Determining the proper routing topology for a multi-FPGA
system is a complex problem. The necessary first step is to
determine the best way to use a given routing topology, so
that an honest comparison between different topologies can
be performed. In this paper, we examine mesh topologies,
and present several constructs for more efficient structures.
We then provide a quantitative study of the effects of these
constructs, and examine their impact on automatic mapping
software. Architectural studies of multi-FPGA systems
based on crossbars [3] and hierarchical crossbars [20] can
be found elsewhere.

3

* 0 1 1 2 2 3

0 -1 0 0 1 1 2

1 0 0 0 1 1 2

1 0 0 -1 0 0 1

2 1 1 0 0 0 1

2 1 1 0 0 -1 0

2 2 1 1 0 0

Figure 4. Distances of routes in 1-hop minus
distance in 8-way topologies. The number is the
number of extra connections necessary to route in
an 8-way instead of a 1-hop topology.

Mesh Routing Structures

The obvious structure to use for a mesh topology is a 4-way
interconnection (Figure 1), with an FPGA connected to its
direct neighbors to the north, south, east and west. All the
pins on the north side of an FPGA are connected to the
south edge of the FPGA directly to the north, and the east
edge is connected similarly. In this way the individual
FPGAs are stitched together into a single, larger structure,
with the Manhattan distance measure that is representative
of most FPGAs carried over to the complete array structure.
In this and other topologies an inter-FPGA route incurs a
cost in I/O pin and internal FPGA routing resources. The

3

* 1 1 2 2 3 3

1 2 2 3 3 4 4

1 2 2 3 3 4 4

2 3 3 4 4 5 5

2 3 3 4 4 5 5

3 4 4 5 5 6 6

4 4 5 5 6 66

* 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 3 4 5 6

3 3 3 3 4 5 6

4 4 4 4 4 5 6

5 5 5 5 5 5 6

6 6 6 6 6 66

* 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

7 8 9 10 11 12

Figure 3. Distance to reach FPGAs in 4-way (left), 8-way (center), and 1-hop (right) topologies. Distances are from
the FPGA in the lower-left corner, and represent the number of chip-to-chip connections needed to reach that chip.

3

rest of this paper will attempt to reduce usage of each of
these resources. In this way, we not only optimize the
delay in the system by shortening routes, but we also reduce
the area needed to map a circuit.

I/O Pin Usage Optimization

In order to reduce the average number of I/O pins needed to
route signals, we can increase the number of neighbors
connected to an FPGA. Instead of the simple 4-way
connection pattern (Figure 2 top left), we can adopt an 8-
way topology. In the 8-way topology (Figure 2 bottom left)
an FPGA is not only connected to those FPGAs
horizontally and vertically adjacent, but also to those
FPGAs diagonally adjacent. A second alternative is to go
to a 1-hop topology (Figure 2 right), where an FPGA is
connected to the two closest FPGAs directly above, below,
to the right, and to the left. One could also consider 2-hop,
3-hop, and longer connection patterns. However, these
topologies greatly increase PCB routing complexity, and
wiring delays become significant.

We assume here that all connected FPGAs within a specific
topology have the same number of wires connecting them,
though a topology could easily bias for or against specific
connections. Since the 8-way and 1-hop topologies have
twice as many neighbors as the 4-way topology, and
FPGAs have a fixed number of pins, each pair of connected
FPGAs in these topologies have half as many wires
connecting them as in the 4-way case.

Switching from a 4-way to an 8-way or 1-hop topology has
an impact on two major factors: average I/O pin usage, and
bandwidth. Figure 3 shows one quadrant of a mesh under
the three different topologies, with each box corresponding
to an FPGA. The number indicates how many I/O
connections are required to reach that FPGA from the
source FPGA at the lower-left corner (shown with an
asterisk). A connection is a pair of pins on different FPGAs
interconnected by a single board trace. As we can see, both
the 8-way and 1-hop topologies can reach more FPGAs
within a given number of I/O connections than can the 4-
way topology. In fact, if we consider an entire mesh
instead of a single quadrant, the 8-way can reach twice as
many FPGAs as the 4-way within a given number of I/O

connections, and the 1-hop topology can reach three times
as many FPGAs as a 4-way topology (although within a
single I/O connection there are only twice as many
neighbors in the 1-hop as in the 4-way, at longer distances it
reaches three times as many). On average a route in a 1-
hop topology requires about 40% less I/O pins than a route
in a 4-way topology. Another interesting observation is that
the 1-hop topology can reach almost all the same FPGAs as
the 8-way topology can in the same number of I/O
connections (see Figure 4). The only exceptions to this are
the odd numbered FPGAs along the diagonals from the
source in the 8-way topology. What this means is that there
is little benefit in using a combined 8-way & 1-hop
topology, since the 1-hop topology gives almost all the
benefit of the 8-way topology.

One would expect the I/O pin usage optimization to come at
the price of lower bandwidth in the mesh. However, this
turns out not to be the case. The standard method for
measuring bandwidth in a network is to determine the
minimum bisection bandwidth. The minimum bisection
bandwidth is computed by measuring the bandwidth
between all possible splittings of the network into two
equal-sized halves, and determining the minimum such
bandwidth. This number is important, since if routes are
randomly scattered throughout a topology half of the routes
will have to use part of this bandwidth, and thus twice the
bisection bandwidth is an upper bound on the bandwidth in
the system for random routes. In the mesh topologies we
have presented, the minimum bisection bandwidth can be
found by splitting the mesh vertically or horizontally into
two halves. As shown in Figure 5, cutting each row or
column in a 4-way mesh splits one pair of connected
neighbors, while in an 8-way and 1-hop topology it splits 3
pairs. Since there are three times as many neighbor pairs
split, though each pair has half the bandwidth (remember
that the 4-way topology has half the number of neighbors,
so each pair of neighbors is connected by twice the wires),
the 8-way and 1-hop topologies thus have 50% more
bisection bandwidth than the 4-way mesh.

An alternative way to view bandwidth is point-to-point
bandwidth, the total amount of bandwidth between any two
chips in the system. If we simply ask how much bandwidth

Figure 5. Bisection bandwidth in 4-way (left), 8-way (center), and 1-hop (right) topologies. Three times as many
connections cross the bisecting line in the 8-way and 1-hop topologies than in the 4-way topology, though each
connection contains half as many wires. This results in a 50% increase in bisection bandwidth.

4

is available from one specific FPGA to another, then
(barring missing connections at mesh edges) all meshes
have exactly the same point-to-point bandwidth. This is
because there are independent paths (“independent”
implying two routes don’t share individual I/O connections,
though they may move through the same FPGAs) from
every wire leaving any source FPGA to any destination
FPGA. A more interesting issue is that of fast bandwidth,
bandwidth that does not require excessively long routing.
Specifically, we realize that since a 4-way mesh has twice
as many connections to each of its neighbors than an 8-way
or 1-hop topology, the 4-way topology can send twice as
many signals to that destination using a single I/O
connection as can the other topologies. By extrapolation,
we would expect that the 4-way topology has more
bandwidth to those FPGAs two or more I/O connections
away than the other topologies. However, if we allow each
topology to use the same number of I/O connections
(specifically, the minimum number of I/O connections
necessary to reach that FPGA in a 4-way topology), the 8-
way and 1-hop topologies actually have greater fast
bandwidth. As shown in Figure 6 left, if we route to an
FPGA two steps north and one step east, it requires three
I/O connections in the 4-way topology, and there are two
independent paths between the FPGAs. If we allow the 8-
way topology to use three I/O connections, it actually has
five independent paths between the two FPGAs (Figure 6
bottom left). Since each path in an 8-way topology has half
the bandwidth as a path in a 4-way topology, the 8-way has
25% more fast bandwidth between these FPGAs. Figure 6
shows a complete comparison for a quadrant of the mesh,
with the numbers given representing the ratio of 8-way vs.
4-way fast bandwidth (center), and 1-hop vs. 4-way fast
bandwidth (right). The ratio numbers are for bandwidth

between each FPGA and the FPGA at lower left. As can be
seen, in all cases except the FPGAs directly adjacent
vertically, horizontally, or diagonally, the 8-way and 1-hop
topologies have greater fast bandwidth than the 4-way
topology, up to a factor of three.

Thus, as we have shown, the 1-hop topology reduces
average I/O pin usage by 40%, increases minimum
bisection bandwidth by 50%, and has greater point-to-point
fast bandwidth than the 4-way topology to almost all other
FPGAs, up to three times as great.

Internal Routing Resource Usage Optimization

In this section we describe FPGA pin interconnection
patterns that minimize FPGA internal routing resource
usage. While most of the optimizations described here
apply equally well to 4-way, 8-way, and 1-hop topologies,
we’ll concentrate on 4-way topologies for simplicity. Also,
we’ll abstract the individual FPGAs into a grid of internal
routing resources, with the grid width equal to the distance
between adjacent FPGA pins. Finally, we optimize for
random-logic applications such as logic emulators and
software accelerators. Mappings of systolic or otherwise
highly regular and structured circuits may require different
topologies.

As described earlier, the obvious way to build a 4-way
topology is to connect all the pins on the east side of an
FPGA to the pins on the west side of the FPGA directly to
the east (the north edge is connected similarly). The
problem with this construct is demonstrated in Figure 7 top.
The figure shows the amount of internal routing resources
needed to route from the top center of the FPGA at right to
the other locations in that FPGA, and the FPGAs one and
two steps to the right. Chip-to-chip resource costs are not

Dst

Src

4-way

Dst

Src

8-way

0.5

0.5 0.75

*

2.0 2.01.25 2.01.5

1.75 2.01.25 1.751.5

1.75 2.01.25 1.51.5

1.25 1.251.25

1.5 1.51.5

8-way vs. 4-way

*

1.0

1.0

0.50.5

0.5

2.0 2.02.0 2.03.0

2.0 2.02.0 2.01.5

2.0 2.01.25 2.0

2.0 2.01.25

1.5 3.0

1-hop vs. 4-way

Figure 6. Example of the point-to-point fast bandwidth calculation in 4-way (top left) and 8-way (bottom left)
meshes. The 8-way routes are only allowed to use three I/O connections, the number of I/O connections necessary to
reach the destination in the 4-way topology. Also included is a complete relative bandwidth summary of 8-way vs. 4-
way (center) and 1-hop vs. 4-way (right) topologies.

5

included, since all routes use the minimum number of chip-
to-chip connections, and thus the chip-to-chip costs are
fixed. Because the pins connecting an FPGA to its
neighbor to the east are on the opposite side of the chip
from the pins connected to the neighbor to the west, and
pins connected to the south are opposite to pins connected
to the north, a signal moving through several FPGAs must
traverse the length or width of the intervening FPGAs.
Thus, as shown in Figure 7 top, moving from the FPGA at
left to the FPGA at right requires a large amount of internal
routing resources.

An alternative is to scatter the pins connecting pairs of
FPGAs around the edges of the FPGAs. We form groups
called Superpins, and within a Superpin is one pin
connected to each of that FPGA’s neighbors. Thus, a
Superpin in a 4-way topology has four pins, and a Superpin
in an 8-way or 1-hop topology has eight pins. Within a
Superpin, pins that are likely to be routed together in a
mapping are grouped together. Specifically, long-distance
signals will usually require pins going in opposite directions
to be connected together in intermediate FPGAs. Signals
which move between directly connected FPGAs will not be
affected by any ordering of pins within a Superpin, since
they never use more than one pin on the same FPGA. Thus,

around the edge of an FPGA in a 4-way topology we order
the pins N, S, E, W, N, S, E, W…, and in a 1-hop the pins
are ordered NN, SS, EE, WW, N, S, E, W, NN, SS, EE,
WW…, where the pin NN is connected to an FPGA two
steps north of the source FPGA. In an 8-way topology a
long-distance route that doesn’t connect together pins going
in opposite directions will instead probably connect signals
45 degrees off of opposite (e.g. S and NW or NE). Thus,
the connection pattern N, S, SW, NE, E, W, NW, SE, S, N,
NE, SW, W, E, SE, NW, N, S… is used, since it puts
opposite pins together, and pins 45 degrees off of opposite
are at most 2 pins distant.

As shown in Figure 7 bottom, if we connect the Superpins
together in the obvious manner, with Superpins in one
FPGA connected to the corresponding Superpins in
neighboring FPGAs, we get significant routing resource
usage improvements. The Superpin topology almost
removes incremental routing resource usage in intermediate
FPGAs.

We can do better than the Superpin strategy just presented
by realizing that not only can we scatter the connections
between neighboring FPGAs around their edges, but we can
also scatter the connections to specific sides of these
FPGAs around its neighbor’s edges. Put differently, instead

Scale:

A

P

B C D

O

N

M

E

F

G

H

L K J I

A

P

B C D

O

N

M

E

F

G

H

L K J I

A

P

B C D

O

N

M

E

F

G

H

L K J I

Figure 7. Distances from the X in leftmost FPGA in normal (top) and Superpin (bottom) connection pattern, on a scale
from white (shortest) to black (longest). Superpin connections are given by letters, with Superpins with the same letter
connected together in adjacent FPGAs. Distances represent internal routing resources, since all routes use the minimum
number of chip-to-chip connections, and thus the chip-to-chip connection cost is fixed.

6

of connecting Superpins in one FPGA to corresponding
Superpins in adjacent FPGAs, we can instead permute these
connections to improve routing resource usage. As shown
in Figure 8 top, simply making the connection labeled “B”
gives most of the benefit of the complete unpermuted
Superpin pattern given in Figure 7. Thus, connecting “C”
as we did in Figure 7 will give little extra benefit, since the
short routes the “C” connection creates will lead to
locations that already have short routes due to the “B”
connection. If we instead connect “C” in the first FPGA to

a location on the lower right edge of the adjacent FPGA
(Figure 8 middle), we create short routes to locations that
only had long routes through “B”. By continuing this
approach, we route Superpin connections so that not only
are there short routes from one location in one FPGA to its
direct neighbors, but we permute the Superpins such that all
locations in the source FPGA have short routes to all
locations in all other FPGAs (Figure 8 bottom).

B I

C

B C B

I

Scale:

BB B

O

J

B I E

P

L

D

K

N

G

C

A H F M

A

P

B C D

O

N

M

E

F

G

H

L K J I

P

P

B M K

J

A

E

H

L

G

I

O C N D

Figure 8. Intuition behind permuted Superpins. A single connection (at top) gives most of the benefit of full
unpermuted Superpins. By changing connection C to the lower-right corner (middle), more short routes are achieved.
Note that connection I is simply connection C for the middle FPGA. Bottom shows full permuted Superpins, with
even shorter routes in further FPGAs. The scale ranges from white (shortest) to black (longest).

7

An interesting observation is that by having two (identical)
permutations in series in Figure 8 bottom, we in fact use
fewer internal routing resources to reach locations in
FPGAs two steps away (the rightmost FPGA) than we need
for locations in adjacent FPGAs (middle FPGA in Figure 8
bottom). This effect does diminish with more permutations
in series, so that average internal routing resource usage
begins to increase again further away from the source, as
the incremental cost of routing resources in intermediate
FPGAs dominates the gain of additional permutations.

We have presented elsewhere [7] a lower bound on the
quality of permutations. Unfortunately, we do not have a
simple, deterministic construction method for finding
optimum permutations. However, it is fairly easy to write a
simple simulated annealing program for permutations
which gives very good results. Our admittedly inefficient
and unoptimized annealer is less than 500 lines of C code,
and has consistently found permutations within a few
percent of the lower bounds. Although the runtimes are up

to a few days on a Sparc 10, these times are very reasonable
for the design of a fixed multi-FPGA system, something
that will be done infrequently, and which takes weeks or
months to complete.

A quantitative comparison of the internal routing resource
usage under the Superpin and Permuted Superpin
constructs, all within a 1-hop topology, is presented in
Figure 9. These graphs represent the average and
maximum resource usage from every point in a source
FPGA to every point in the nearest N neighbor FPGAs in
the system (FPGAs are represented by grids as described
earlier, with 36 pins on a side). An interesting observation
is that while the Superpins have a great impact, almost
totally removing incremental resource usage in intermediate
FPGAs, the Permutations only decrease resource usage by
about 28%. One explanation for this is the theoretic lower
bound (“Baseline”) shown above. This lower bound comes
from the observation that in any 1-hop topology, a route
must use at least enough routing resources to go from the

0

50

100

150
In

te
rn

al
 R

ou
tin

g
R

es
ou

rc
es

0 50

10
0

15
0

N Nearest FPGAs

Average

Baseline

Permuted
 Superpins

Superpins

Normal

0

50

100

150

200

250

In
te

rn
al

 R
ou

tin
g

R
es

ou
rc

es

0

50

10
0

15
0

N Nearest FPGAs

Maximum

Figure 9. Average (left) and maximum (right) internal routing resource usage from each location in the source FPGA
to all locations in the N nearest destination FPGAs in a 1-hop topology.

0

50

100

150

200

250

300

D
el

ay

0 50

10
0

15
0

N Nearest FPGAs

Average

1-hop Baseline

1-hop Permuted

1-hop Superpins

1-hop

8-way

4-way

0

100

200

300

400

500

D
el

ay

0 50

10
0

15
0

N Nearest FPGAs

Maximum

Figure 10. Graphs of average (left) and maximum (right) delay from each location in the source FPGA to all
locations in the N nearest destination FPGAs.

8

route starting point to the nearest pin on the source FPGA,
plus at least one routing resource in each intermediate
FPGA, plus enough resources to go between the route
ending point and the closest pin on the destination FPGA.
As shown, the greatest conceivable improvement over the
standard Superpin pattern (assuming we stay within a 1-hop
topology) is approximately 60%, and the permutations
achieve almost half of this potential. However, when
designing a multi-FPGA system, the benefits of
permutations must be carefully weighed against the
increased board layout complexity.

Overall Comparisons

We can make an overall comparison of all the topological
improvements, both I/O pin and internal routing resource
optimization, by examining the inter-FPGA routing delays.
As shown in Figure 10, we present the average and
maximum delay from every point in a source FPGA to
every point in the nearest N neighbor FPGAs in the system.
The FPGAs are represented as grids with 36 pins on a side,
and the delay incurred in using an FPGA’s I/O pin is 30
times greater than a single internal routing resource. These
numbers are similar to delays found in the Xilinx 3000
series [22]. Note that this approximates possibly quadratic
delays in internal routing resources as a linear function. As
shown, an 8-way topology decreases delays by 22% over
the standard 4-way topology, while a 1-hop topology
decreases delays by 38%. By using the permuted Superpin
pattern, the delays are decreased by an additional 25%,
reducing overall delays by a total of 63%.

While the above numbers give an idea of how the features
decrease routing costs at different distances, they ignore the
fact that we do not just route a single signal, but in fact have
many signals fighting for the same resources. To measure
these conflicts, we have used the router developed for the
Triptych FPGA project [14], which can be retargeted to

different domains by altering a routing resource template.
This router optimizes both area utilization and delay,
making it a good experimental platform for this domain.
As before, we abstracted the individual FPGAs to a
Manhattan grid, and allowed signals to share edges in this
grid. Thus, this model ignores internal routing conflicts.
However, these conflicts would have the greatest impact on
those topologies that use the most routing resources,
especially resources nearest the FPGA center. Thus,
ignoring these conflicts will in general decrease the benefit
of better topologies, since they use less resources, and the
resources they use are primarily at the chip edge. We also
do not include signals that begin and end on the same
FPGA, because these are unaffected by the inter-chip
topologies.

The first two graphs (Figure 11) show the average and
maximum cost for signals in each of the routing topologies,
assuming a random distribution of sources and sinks of
signals across a 5 by 5 array of FPGAs. Note that the same
random data sets are used for all topologies at a given size,
since this means that all topologies will be subjected to
similar routing conditions. Again, moving between chips
costs 30 times as much as a single step inside an FPGA, and
the FPGAs have 36 pins on a side. The horizontal axis for
both graphs is the total number of signals routed in a given
trial, and eight trials are averaged together to generate each
point. Trials were run at 50 signal increments until the
router failed to route all signals.

There is a question of how well some of the topologies
handle multi-signal buses and other situations where several
signals move between the same sources and sinks.
Specifically, one might expect the permutation topologies
to have trouble with buses, since while there is a short path
between most sources and sinks, there are few if any
parallel paths. To determine if this is true, the second set of

0

50

100

150

200

250
D

el
ay

0

10
0

20
0

30
0

40
0

Number of Signals

Average

1-hop Permuted

1-hop Superpins

1-hop

8-way

4-way

0

100

200

300

400

500

600

D
el

ay

0

10
0

20
0

30
0

40
0

Number of Signals

Maximum

Figure 11. Average and maximum distance of signals under several topologies in a 5x5 array. The maximum values
increase with the number of signals routed because we get more random variation with larger sample sizes from a
random distribution.

9

graphs (Figure 12) is for a population of 5 signal bundles
with random sources and sinks, though signals within a
bundle share the same source and sink.

The most striking aspect of the previous graphs is how little
congestion seems to affect routing distance. Although
samples were taken in 50-signal increments until the router
failed, there seems to be little resulting extra routing
necessary. Although the graphs of maximum lengths do
show increases, this is mostly due to the fact that a larger
number of elements from a random distribution will tend to
include greater extremes. The graphs for buses are less flat
than the other trials, but this is due to the fact that each bus
data set has one fifth as many random points, increasing the
variance. More importantly, the benefits shown in our
original graphs (Figure 10) are demonstrated in actual
routing experiments. The 8-way topology is approximately
21% better than the 4-way topology, and the 1-hop is 36%
better. Superpins improve the 1-hop topology by about
31%, with permutations saving an additional 5%. Also, in
the first set of graphs the 8-way and 1-hop topologies
successfully route 40% more signals than the 4-way
topology, demonstrating the increase in minimum bisection
bandwidth.

Automatic Mapping Tools

Since many multi-FPGA systems will not be used for hand
mappings, but instead depend on automatic mapping tools,
it is important that a routing topology not only decrease
routing costs, but do so in a way that automatic tools can
exploit. Since our previous comparisons involved using an
automatic routing tool in the congestion examples, and
since these experiments yielded distances equivalent to our
previous average distance measurements, it is fairly clear
that routing tools can exploit our improved topologies. As

described in [8], we have developed a pin assignment tool
(similar to a detailed router) for inter-FPGA routing, and
the only impact of the improved topologies on this tool is
the loss of a slight speed optimization opportunity.
Partitioning tools are also easily adapted, since the locality
needed for meshes is still the primary concern, though the
number of closest neighbors is increased. Thus, automatic
mappings tools for standard 4-way meshes should be able
to be easily extended to the topologies presented here.
More details on multi-FPGA system software can be found
elsewhere [7].

Conclusions

We have presented several techniques for decreasing
routing costs in mesh interconnection schemes: 1-hop
interconnections, Superpins, and Permutations. Through
the retargeting of an automatic routing tool, we have
demonstrated an overall improvement of more than a factor
of 2. While better mesh topologies may be feasible,
especially if we allow permutations to operate on individual
signals instead of Superpins, theoretical lower bounds (the
baseline in Figure 9) prove that there is little room for
improvement. Real improvements might come from
increasing the direct neighbors of an FPGA from 8 to 12 (a
3-D, 1-hop mesh) or more, but the Superpin and
Permutation techniques would still be applicable.

The major open question is whether any mesh system
makes sense, or if trees, hypercubes, crossbars, or some
other general topology is a better choice. However, if this
paper is any indication, the best implementation of a given
topology may not be obvious, requiring a close look at
individual candidate topologies before overall topological
comparisons can be completed.

0

50

100

150

200

250
D

el
ay

0

50

10
0

15
0

20
0

25
0

30
0

35
0

Number of Signals

Average

1-hop Permuted

1-hop Superpins

1-hop

8-way

4-way

0

100

200

300

400

500

D
el

ay

0

50

10
0

15
0

20
0

25
0

30
0

35
0

Number of Signals

Maximum

Figure 12. Average and maximum distance of signals under several topologies in a 5x5 array, with all signals in 5-
signal buses. The maximum values increase with the number of signals routed because we get more random variation
with larger sample sizes from a random distribution. The dip in the average values is from greater random variation
due to the smaller number of random points in these examples, since with 5 signal bundles only one-fifth the number
of random points are chosen.

10

Acknowledgments

The authors are grateful for significant help from Larry
McMurchie, without whom the routing trials conducted in
this paper would not have been possible. This paper has
benefited from the patience of several people, most
particularly Elizabeth Walkup, Donald Chinn, and Ross
Ortega. This research was funded in part by the Defense
Advanced Research Projects Agency under Contract
N00014-J-91-4041. Gaetano Borriello and Carl Ebeling
were supported in part by NSF Presidential Young
Investigator Awards.

List of References

[1] Aptix Corporation, Data Book, San Jose, CA,
February 1993.

[2] J. Babb, R. Tessier, A. Agarwal, “Virtual Wires:
Overcoming Pin Limitations in FPGA-based Logic
Emulators”, IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 142-151, 1993.

[3] P. K. Chan, M. D. F. Schlag, “Architectural Tradeoffs
in Field-Programmable-Device-Based Computing
Systems”, IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 152-161, 1993.

[4] C. P. Cowen, S. Monaghan, “A Reconfigurable
Monte-Carlo Clustering Processor (MCCP)”, IEEE
Workshop on FPGAs for Custom Computing
Machines, pp. 59-65, 1994.

[5] S. A. Cuccaro, C. F. Reese, “The CM-2X: A Hybrid
CM-2 / Xilinx Prototype”, IEEE Workshop on FPGAs
for Custom Computing Machines, pp. 121-130, 1993.

[6] M. Gokhale, B. Holmes, A. Kopser, D. Kunze, D.
Lopresti, S. Lucas, R. Minnich, P. Olsen, “Splash: A
Reconfigurable Linear Logic Array”, International
Conference on Parallel Processing, pp. 526-532,
1990.

[7] S. Hauck, Multi-FPGA Systems, Ph.D. Thesis,
University of Washington, Department of Computer
Science & Engineering, 1995.

[8] S. Hauck, G. Borriello, “Pin Assignment for Multi-
FPGA Systems”, University of Washington, Dept. of
Computer Science & Engineering Technical Report
#94-04-01, April 1994.

[9] D. T. Hoang, “Searching Genetic Databases on Splash
2”, IEEE Workshop on FPGAs for Custom Computing
Machines, pp. 185-191, 1993.

[10] H. Högl, A. Kugel, J. Ludvig, R. Männer, K. H.
Noffz, R. Zoz, “Enable++: A Second Generation
FPGA Processor”, IEEE Symposium on FPGAs for
Custom Computing Machines, 1995.

[11] N. Howard, A. Tyrrell, N. Allinson, “FPGA
Acceleration of Electronic Design Automation
Tasks”, in W. R. Moore, W. Luk, Eds., More FPGAs,
Oxford, England: Abingdon EE&CS Books, pp. 337-
344, 1994.

[12] I-Cube, Inc., “The FPID Family Data Sheet”, Santa
Clara, CA, February 1994.

[13] E. Lemoine, D. Merceron, “Run Time
Reconfiguration of FPGA for Scanning Genomic
DataBases”, IEEE Symposium on FPGAs for Custom
Computing Machines, 1995.

[14] L. E. McMurchie, C. Ebeling, “PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs”, ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 111-117, 1995.

[15] L. Moll, J. Vuillemin, P. Boucard, “High-Energy
Physics on DECPeRLe-1 Programmable Active
Memory”, ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 47-52, 1995.

[16] S. Monaghan, C. P. Cowen, “Reconfigurable Multi-
Bit Processor for DSP Applications in Statistical
Physics”, IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 103-110, 1993.

[17] H. Schmit, D. Thomas, “Implementing Hidden
Markov Modelling and Fuzzy Controllers in FPGAs”,
IEEE Symposium on FPGAs for Custom Computing
Machines, 1995.

[18] S. D. Scott, A. Samal, S. Seth, “HGA: A Hardware-
Based Genetic Algorithm”, ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, pp. 53-59, 1995.

[19] C. Selvidge, A. Agarwal, M. Dahl, J. Babb, “TIERS:
Topology IndependEnt Pipelined Routing and
Scheduling for VirtualWire™ Compilation”,
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 25-31, 1995.

[20] J. Varghese, M. Butts, J. Batcheller, “An Efficient
Logic Emulation System”, IEEE Transactions on
VLSI Systems, Vol. 1, No. 2, pp. 171-174, June 1993.

[21] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.
Touati, P. Boucard, “Programmable Active
Memories: Reconfigurable Systems Come of Age”,
IEEE Transactions on VLSI Systems, 1995.

[22] The Programmable Gate Array Data Book, San Jose,
CA: Xilinx, Inc., 1992.

