

Architecture and Compiler Support for a VLIW Execution Model

on a Coarse-Grained Reconfigurable Array

Nathaniel McVicar

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2011

Program Authorized to Offer Degree:

Department of Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Nathaniel McVicar

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

 Committee Members:

Scott A. Hauck

Carl Ebeling

Date:_________________________________

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at

the University of Washington, I agree that the Library shall make its copies freely

available for inspection. I further agree that extensive copying of this thesis is allowable

only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright

Law. Any other reproduction for any purposes or by any means shall not be allowed

without my written permission.

Signature ________________________

Date ____________________________

University of Washington

Abstract

Architecture and Compiler Support for a VLIW Execution Model on a Coarse-Grained

Reconfigurable Array

Nathaniel McVicar

Chair of the Supervisory Committee:

Professor Scott A. Hauck

Electrical Engineering

Architectures that expose parallelism to the user or the tools, such as Massively Parallel

Processor Arrays (MPPAs), Coarse-grained Reconfigurable Arrays (CGRAs), and Field-

programmable Gate Arrays (FPGAs), are popular, in part, due to their efficiency for

solving highly data-parallel problems. Unfortunately, the more parallelism these

architectures expose, the less efficient they tend to be for control heavy or serial

workloads. This work proposes an alternative architecture and tool flow for the Mosaic

CGRA. This flow, based on the Trimaran compiler, introduces minor hardware

modifications that allow CGRA clusters to act as simple single-issue in-order processors.

In processor mode, the performance per issue slot of a control-heavy kernel can be

improved by as much as 4.7 times.

i

Table of Contents

List of Figures ... ii

List of Tables ... iii
1. Background ... 1

1.1 Highly Parallel Architectures ... 1
1.1.1 CGRA and MPPA Execution Models .. 3

1.2 Mosaic 1.0 Architecture ... 6

1.3 Mosaic 1.0 Toolchain ... 8
1.3.1 Macah .. 9
1.3.2 SPR ... 11

1.4 Mosaic 2.0 .. 11
1.5 Trimaran ... 13

2. Software Design .. 16
2.1 Macah Modifications and Scripting ... 16

2.2 Trimaran Modifications.. 19
3. Architecture Design .. 23

3.1 Custom Trimaran Processor ... 23
3.2 Custom Trimaran Processor and Mosaic 1.0 Comparison 25
3.3 Consensus Architecture Design ... 27

3.3.1 PC and Modulo Counter ... 28
3.3.2 Branches .. 31

3.3.3 ALUs, General Purpose Register Files and Constant Generation 35
3.4 Consensus Architecture Analysis ... 39

4. Modeling and Methodology .. 42

4.1 Testing Methodology ... 42

4.2 Consensus Architecture Performance Estimation .. 43
5. Benchmarks... 46

5.1 2D Convolution .. 46

5.2 Bayer Filter ... 47
5.3 Discrete Wavelet Transform .. 47

6. Results ... 49

6.1 Optimized Mosaic 1.0 Performance ... 49
6.2 Custom Trimaran Processor Performance.. 51

6.2.1 Bayer Kernel Optimization ... 52
6.3 Consensus Architecture Performance .. 53
6.4 Analysis of Results ... 53

7. Conclusion and Future Work .. 60

References ... 62

Appendix A ... 65
2D Convolution Macah Source Code ... 65
Bayer Filter Macah Source Code .. 65
Discrete Wavelet Transform Macah Source Code .. 66
Bayer Filter Optimized Trimaran Source Code .. 67

ii

List of Figures

Figure 1. Generic CGRA architecture with a mesh interconnect 2
Figure 2. MPPA architecture ... 3
Figure 3. A simple example program ... 3
Figure 4. Example of pipelining for two FUs with an II of 2Error! Bookmark not

defined.
Figure 5. Mosaic 1.0 architecture. [Van Essen10] .. 7
Figure 6. Mosaic 1.0 Cluster. [Van Essen10] ... 8
Figure 7. Mosaic 1.0 Toolchain .. 9
Figure 8. Example Mosaic 2.0 Application .. 12

Figure 9. Potential multi-kernel deadlock situation .. 13
Figure 10.Trimaran System Organization ... 14

Figure 11. Pseudocode For Trimaran and Macah Tasks ... 17
Figure 12. Macah / Trimaran Hybrid Tool Flow .. 18
Figure 13. Simu Architecture [Trimaran 07] .. 21
Figure 14. Simple custom Trimaran processor design.. 24

Figure 15. Optimized Mosaic 1.0 PE with Universal FU. Gray components are control

path. [Van Essen10] .. 25
Figure 16. Mosaic 1.0 modulo counter ... 28

Figure 17. Proposed Trimaran PC (new components in blue) .. 29
Figure 18. Optimized Mosaic 1.0 PE with S-ALU [Van Essen10] 30

Figure 19. Mosaic 1.0 modulo counter combined with a PE to form a PC 31
Figure 20. Diagram of BRF operation [Kathail00] ... 33
Figure 21. Branch operations mapped to a single PE and coupled to PC 34

Figure 22. Hybrid PE with U-FU and connecting register file for VLIW execution 39

Figure 23. 2D convolution example.. 46
Figure 24. The first two stages of the 2D DWT used in JPEG image compression 48
Figure 25. II vs. clusters. Convolution was not routable on less than 4 clusters 51

Figure 26. Execution cycles until kernel is completed vs. number of clusters used in

CGRA mode.. 55

Figure 27. Total issue slots summed across all clusters executing a given CGRA mode

kernel... 56

iii

List of Tables

Table 1. Macah stream operators .. 10
Table 2. Comparison of Trimaran and Mosaic components ... 26
Table 3. Word and single bit Mosaic cluster components .. 27
Table 4. Operation of BRF and BRW instructions ... 32

Table 5. Execution cycles of Trimaran instruction classes on consensus architecture 45
Table 6. Optimized Mosaic 1.0 cluster count independent performance results 49
Table 7. Single-cycle custom Trimaran processor benchmark results 51
Table 8. Consensus architecture Trimaran performance .. 53
Table 9. Trimaran performance loss in going from single-cycle execution to consensus

architecture .. 54
Table 10. Absolute Trimaran and CGRA performance, for the fewest number of cycles

and clusters.. 57
Table 11. Performance of Trimaran and CGRA execution scaled to the number of clusters

used ... 58

1

1. Background

1.1 Highly Parallel Architectures

Field Programmable Gate Arrays (FPGAs) are currently among the most widely adopted

programmable logic devices, comprising an estimated market of $4 billion in 2010

[Manners10] and $5.6 billion by 2014 [Infiniti Research Limited11]. Part of the

popularity of FPGAs stems from the fact that they are powerful devices that can often

come within an order of magnitude of ASIC performance, without the high initial cost.

However, FPGAs perform logical operations using reconfigurable LookUp Tables

(LUTs) with single bit outputs. In other words, they perform all operations at the bit-level

despite the fact that most applications do their heavy lifting using 32 or 64-bit word data-

paths. This mismatch leads to an inherent inefficiency in FPGAs, particularly in terms of

power consumed [Liang08].

Modern FPGAs make use of dedicated word-wide arithmetic units (Altera’s Variable-

Precision DSP Blocks [Altera11] and Xilinx’s DSP48E1 slices [Xilinx11]) to alleviate

this problem to a degree, but the number of these units is very small compared to the total

size of the FPGA. Instead, a number of other highly parallel architectures that perform

primarily word-wide operations have gained significant popularity in recent years. These

include Coarse Grained Reconfigurable Arrays (CGRAs), Massively Parallel Processor

Arrays (MPPAs) and even General Purpose Graphics Processing Units (GPGPUs).

CGRAs are typically made up of a large number of word based functional units (FUs),

each capable of performing basic ALU operations [Singh00]. Functional units will often

contain small local memories (such as register files) and larger distributed memories may

also be available, as in FPGAs. The interconnect network that allows CGRA components

to communicate is also word based. CGRAs may contain some one-bit structures, such as

those required to support predicated operations, but the fact that they make use of

dedicated word-level hardware throughout generally makes them more power efficient

than FPGAs [Barat03].

2

Figure 1. Generic CGRA architecture with a mesh interconnect

Although CGRAs do not suffer from the bit-level inefficiency of FPGAs, their

performance is still limited in some cases by the scheduling techniques they use. Instead

of employing the flexible schedule of a processor, CGRA architectures frequently use

scheduling techniques where a resource has a fixed function for a given time slice

independent of the input data. In contrast with this, MPPAs are constructed from a large

number of simple general purpose processor cores, sometimes called processing elements

(PEs). The PEs typically communicate using a routing network over which they can send

data to each other. This makes it very easy to map individual components of an

application to each processor on the MPPA, but it can also make it more difficult to

exploit the application’s inherent parallelism across the many cores.

3

Figure 2. MPPA architecture

1.1.1 CGRA and MPPA Execution Models

As shown by Figure 1 and Figure 2, the architecture of CGRAs and MPPAs are fairly

similar at a macro level. The most significant difference between the two lies in the

execution models that they employ. CGRA configuration is somewhat similar to that of

an FPGA, in that each functional unit and interconnect contains a configuration memory.

However, unlike FPGAs, CGRAs are frequently time multiplexed. This means that each

FU can be configured to perform different operations at different times. To prevent the

FUs from becoming excessively complex, a fixed schedule is typically used. One

example of this technique is a modulo schedule in which the same sequence of operations

is executed in the same order repeatedly until the CGRA is reprogrammed. The length of

the schedule, before it repeats, is called the Initiation Interval (II).

Figure 3. A simple example program

4

The simple program in Figure 3, which consists of a loop that adds, subtracts and

multiplies, could be mapped to a single functional unit. The arrows in this figure

represent data flow, and indirectly dependencies. The subtraction operation makes use of

the result of the add, so it must be run after the add. The discussion of pipelining below

will make the significance of this clearer. Ignoring I/O, this graph would result in an II of

3, where the functional unit adds on the first cycle, subtracts on the second cycle and

multiplies on the third cycle. Through this use of time multiplexing, a single resource is

able to perform three different operations without any control logic.

Since the modulo schedule doesn’t allow for any data-dependent changes to the

operations performed during runtime, CGRAs often support predication. When an

operation is predicated, it will only execute if the predicate operand is true. Otherwise,

the operation will behave like a no-op. Operations are also provided to set predicate bits

based on comparisons. In this way, operations can be conditionally executed despite the

compile-time fixed schedule, as in the following example:

need_jump <= !condition

jump to loop_end: if need_jump

add a, b

loop_end:

becomes:

predicate <= condition

(if predicate) add a, b

(if ~predicate) nop

Notice that the predicated execution example doesn’t require any expensive branch

operations, and the same set of instructions are executed whether or not the condition is

true.

5

Figure 4. Example of pipelining for two FUs with an II of 2

Because the schedule of every functional unit is known at compile time, it is relatively

easy for CGRA tools to exploit the parallelism in an application by spreading it across

many FUs. The tools can pipeline execution across many FUs as well. Figure 4 is an

example of pipelined execution. Here, some data must be read and then used for an add

and xor operations before being written back. Assuming no dependencies between

iterations of the loop, and two available functional units, the first one can perform the

read and the add. At this point, the result of the add is ready for the xor operation. If this

operation and the subsequent write are performed on the second functional unit, the first

can begin a new read at the same time, as in cycle 2. Notice that the latency to complete

an entire loop is still four cycles, but once the pipeline is full, a new read can be

performed every two cycles. Through pipelining, in this example, double the performance

of a single FU was achieved using double the hardware. Unfortunately, for workloads

such as those with many branches or long sections of code that run infrequently,

predication can lead to very slow execution and pipelining will may not be able to hide

the delay. In these cases, the number of no-ops can outnumber the useful instructions.

In contrast to CGRA functional units, the processing elements of MPPAs typically share

many of the characteristics of general purpose processors. This includes the ability to

execute sequential code, stored in an instruction memory, that may contain branches.

This execution model requires a program counter (PC) to store the address of the

instruction currently executing. Although this model is very powerful, it does have some

limitations. First, branches tend to be costly both in terms of the time they take to execute

and the hardware resources required to help them execute more efficiently.

Phase FU 1 FU 2 Iteration

0 read [0] 0

1 add [0]

0 read [1] xor [0] 1

1 add [1] write [0]

0 read [2] xor [1] 2

1 add [2] write [1]

6

More importantly, it is much more difficult for a compiler to create code to execute in

parallel on many MPPA cores. In the CGRA, many FUs running on a modulo schedule of

the same length can work together to execute a large number of arithmetic or other

operations, as described above. Through pipelining these operations can easily make use

of data from a different FU, and the temporal relationship can be statically determined by

the compiler. Unfortunately, MPPA cores cannot be as tightly coupled. Since data-

dependent branches make it difficult for the compiler to predict the relationship between

the program counters of two separate PEs, MPPAs have to rely on more heavyweight

inter-core communication mechanisms such as message passing.

For a concrete example of this issue, consider the small loop from Figure 4. On a CGRA

using modulo scheduling it was possible to achieve a speedup of 2x by using two FUs.

However, due to communication penalties this would not be possible on a basic MPPA,

since a send operation would be required to move data from one PE to the other. A

receive operation would then be required at the second PE to get the data. This would

result in the ability to accept new data every three cycles once pipelined, instead of every

two cycles as was possible on the CGRA. Additionally, the MPPA implementation would

be slowed down further by the time required for the branch operation at the end of each

loop iteration. Some more advanced MPPA architectures, such as Ambric [Butts07],

provide features to get around these limitations. Ambric provides zero overhead loop

operations, and is able to send results out to the communication fabric as part of a regular

ALU operation. In the case of an MPPA with those capabilities, the performance

advantage will go to the architecture whose tools can extract the most parallelism. In

these situations the simpler CGRA schedule becomes a significant advantage.

1.2 Mosaic 1.0 Architecture

Mosaic 1.0 is a CGRA developed by the labs of Scott Hauck and Carl Ebeling at the

University of Washington [UW Embedded Research Group, 2006]. Mosaic is made up of

a heterogeneous array of Functional Units connected by a configurable interconnect

network (Figure 5). Each group of FUs and surrounding logic is called a cluster, and

cluster elements are connected with a crossbar. This allows each functional unit within a

cluster to communicate with any other without significant restriction, although only a

7

limited set of signals in the FUs are connected to the crossbar. The FUs in a cluster share

a single connection to the routing network through a switchbox. This switchbox is also

connected to the intra-cluster crossbar, and the routing network between Mosaic 1.0

clusters is made up of a combination of statically and dynamically scheduled channels

[Van Essen09].

Figure 5. Mosaic 1.0 architecture. [Van Essen10]

The configuration for each component of a Mosaic cluster is stored in SRAM, in a

manner similar to an FPGA. However, unlike an FPGA, there are II configurations for

each element, instead of just a single one. This SRAM requirement puts a limit on the

maximum II the architecture supports, probably 128 in the case of Mosaic 1.0.

In addition to the Functional Units, each cluster contains local memory, one or more large

rotating register files or retiming chains, as well as some additional small register

resources. As mentioned, these resources are connected by a 32-bit corssbar. The Mosaic

Functional Unit itself can perform basic ALU operations as well as shifts. Some

Functional Units are capable of multiplication, but only integer arithmetic is supported. In

addition to these 32-bit resources, there is a 1-bit interconnect to the FUs. This resource is

used for predicate bits and also includes LUTs and register files. The specific architecture

design that will be used in this document, going forward, features four FUs per cluster

8

and large rotating register files. This architecture is summarized in Figure 6 and described

in detail in [Van Essen10].

Figure 6. Mosaic 1.0 Cluster. [Van Essen10]

One limitation of Mosaic 1.0 is that it only supports execution of a single kernel at a time.

This will be described in more detail in the next section, but most importantly all clusters

operate in lockstep. Additionally, every cluster shares the same logical modulo counter,

so each is loading from the same slot in configuration SRAM. One consequence of this

mode of execution is that when a blocking operation that can’t be completed occurs, such

as a read from an empty stream or a write to a full one, all clusters must stall their

execution.

1.3 Mosaic 1.0 Toolchain

To understand the motivation for the work presented in this Thesis, as well as Mosaic 2.0,

it is important to understand the Mosaic 1.0 toolchain. An overview of this toolchain is

provided in Figure 7. The user provides an application, written in the C-like Macah

language, and an architecture specification. The Macah compiler compiles the application

to a Verilog description, and the Electric architecture generation tool translates the

architecture specification into an input that Schedule, Place and Route (SPR) can process.

Using these two inputs, SPR spreads the program across the architecture, creating a

configuration for Mosaic. This specifies the II of the kernel and the state of each

9

component during every cycle in the schedule. This configuration can be simulated in the

PostSim tool, where correctness can be verified and power modeled. The configuration

could also serve other purposes, including programming a physical CGRA device.

Figure 7. Mosaic 1.0 Toolchain

1.3.1 Macah

Macah is a programming language with syntax and features very similar to C

[Ylvisaker08]. However, Macah also contains additional features that make it well suited

to streaming applications targeting a CGRA like Mosaic. The properties of the CGRA

also place restrictions on the language features used in the portions of the Macah code

that is intended to run on the CGRA.

A top level Macah 2.0 function is substantially different than the main function of a C

program. Instead of containing sequential program code, it consists of a configuration

block that wraps one or more task blocks. The configuration can use loops and other

control logic to construct tasks, but this configuration logic cannot be evaluated at

runtime. All tasks are constructed at the beginning of the run of Macah program, referred

to as configuration time.

A Macah task is where all of the code executed at runtime is contained. There can be

many tasks in a configuration block, and they are all executed in parallel. The primary

restriction on general tasks is that no task can access the same variables or memory as

Electric
Architecture
Generator

Macah Compiler

SPR: Schedule,
Place & Route

Mosaic

Configuration

Architecture

Application

Electric
Architecture
Generator

PostSim

10

another task. This eliminates a lot of the programming challenges faced by traditional

concurrent applications.

Tasks communicate using a streaming paradigm. Streams are written in one task and read

in a different task, so they provide the only way to pass data from one task to another.

Macah streams can be created using any data type, although, as mentioned above, Mosaic

doesn’t support floating point arithmetic. Both input and output streams provide blocking

and non-blocking operations. The blocking read or write will stall the task until its

operation can be completed. This will happen in the case of a full stream buffer on a

write, or an empty stream buffer on a read. In the case of a non-blocking stream

operation, the operation will complete regardless and return a Boolean value indicating if

the operation succeeded or not. Macah stream reads and writes are performed using

special receive and send operators respectively (Table 1). For the non-blocking case, op

is a Boolean value, which will be set to true if a value was read or written, and false if a

blocking operation would have stalled.

Operation Receive Send Non-block Receive Non-block Send

Operator var <? strm strm <! var op :: var <? strm op :: var <? strm

Table 1. Macah stream operators

Not all Macah tasks can be run on the CGRA. Instead, only tasks containing a kernel

block can be accelerated. These tasks must meet additional restrictions to make them

suitable for CGRA execution. First, although normal tasks can only communicate

through streams, they can access external memory as long as no other tasks access that

memory. Kernel tasks may only access memories declared inside the task. In practice

these memories must be small enough to get mapped to memory blocks or registers inside

the CGRA. All memory allocation in a kernel task must also be static. In addition to

memory restrictions, kernels can’t make calls to functions. The exception to this is the

case where the function can be inlined.

Finally, Macah has a few language features to make it easier to write deeply pipelined

kernels with a low II. The first of these is the FOR loop. The use of an uppercase FOR

loop instructs Macah to unroll the loop. This allows separate loop iterations to be

executed in parallel, assuming that they don’t have any dependencies from one iteration

11

to the next. Macah also allows the declaration of shiftable arrays. These arrays function

just like regular C arrays, but they introduce array shift operators. The array right and left

shift operators adjust the array indices by the amount shifted. For example, if an array is

right shifted by two, the value originally accessed by array[3] is now located at

array[5]. Values that are shifted in from outside the bounds of the array are

undefined. Shiftable arrays are very useful for accelerator applications, due to their ability

to make programs more regular by allowing a given instruction to always access the same

array index. They also map well to rotating register files where the array shift can be

implemented as a register file rotation.

1.3.2 SPR

Schedule, Place and Route (SPR) is the tool that maps a compiled Macah program to a

specific Mosaic architecture [Friedman09]. A detailed discussion of SPR is outside of the

scope of this thesis. It is sufficient to note that SPR is the tool which is primarily

responsible for mapping the parallelism available in the program onto the CGRA. This

includes assigning operations to resources both in space (selecting hardware to perform

the operation) and time (choosing an issue slot). The current version of SPR is designed

for Mosaic 1.0, and can only perform these tasks for a single kernel.

1.4 Mosaic 2.0

Mosaic 2.0 is the next evolution in the Mosaic CGRA architecture. It is designed to

address one of the most significant shortcomings of Mosaic 1.0, the fact that all clusters

operate in lock-step on a single kernel. This is a significant limitation for two reasons.

First, the II of the entire kernel is limited to the longest recurrence path anywhere in the

kernel. Second, all stalls are global, so any stream that is full or empty will bring the

entire CGRA to a halt.

Mosaic 2.0 addresses these issues by supporting multiple kernels executing on the CGRA

simultaneously. To get an idea of how useful this can be, consider an application such as

the one in Figure 8. This application consists of a filter kernel followed by a computation

kernel. Each kernel has a single input stream and a single output stream. The filter kernel

has a recurrence II of 3, and although it can accept a new input every iteration it filters

12

most of them out, producing a new output only every tenth iteration on average. The

computation kernel performs a complex computation which can’t be pipelined as

effectively. It has an II of 5 and in the steady state can accept one input and produce one

output every iteration.

Figure 8. Example Mosaic 2.0 Application

For Mosaic 1.0, this entire application would share a single modulo counter, which would

be forced to conform to the longer II of 5. This means that the filter portion of the kernel

would only be able to accept a new input every five cycles, since it requires at least three

cycles to process a single input. This will reduce performance by almost half. In the case

where there was a temporary shortage of data on the input stream or an output FIFO was

full, both parts of the application would be forced to stall. In some cases this is not

efficient. For example, without this constraint in the situation where the computation

kernel has a full output FIFO, the filter would be able to continue accepting new input

until its own output buffer was full. Supporting simultaneous execution of multiple

kernels, as in Mosaic 2.0, resolves both of these problems.

The primary feature of Mosaic 2.0 is allowing each of many kernels on the CGRA to

have their own modulo counter. Each of these modulo counters is be able to stall

independently. Additionally, Mosaic 2.0 could potentially support configuration of fabric

resources based on predicates, allowing for more jump-like behavior and alleviating some

of the restrictions of the CGRA execution model [Friedman11]. There are other minor

complications as well. Neighboring clusters in the same kernel can also receive delayed

versions of their neighbors’ modulo counters, and the clusters are connected using the

interconnect described in [Panda11].

Output:

10,000

words / sec

10,000

words / sec

Input:

100,000

words / sec

Computation

Kernel

Filter

Kernel

II: 3 II: 5

13

With more kernels come more challenges for the programmer. Although infinite buffers

on streams can be modeled in a simulator, real buffers are finite. This introduces the

potential for kernels that are well behaved in the average case to deadlock under some

loads. For instance, kernel A sorts incoming values into two streams, which both go to

kernel B, and approximately half of the values go to each output stream. Kernel B reads

one value from each stream and does some processing. This situation is illustrated in

Figure 9.

Figure 9. Potential multi-kernel deadlock situation

Typically, this will work perfectly. However, in the case where many values above the

threshold arrive sequentially, strm_1 could fill up at the same time kernel B empties

strm_2. At this point the kernels will become deadlocked, with A stalling on the write

to strm_1 and B stalling on the read from strm_2. In Mosaic 2.0 avoiding these

deadlocks is the programmer’s responsibility, as the tools place no restrictions on the data

rates between kernels.

1.5 Trimaran

The Mosaic 2.0 design described above is very tightly coupled to the modulo counter

execution model. Trimaran, on the other hand, makes use of the program counter model.

Trimaran is a research Very Long Instruction Word (VLIW) compiler that was developed

as a collaboration between many academic and industry laboratories [Chakrapani05].

Trimaran supports a number of architectures in addition to VLIW, and most of the

Kernel A:
kernel {

 …

 {

 val <? in_strm;

 if (val > threshold)

 strm_1 <! val;

 else

 strm_2 <! val;

 }

}

Kernel B:
kernel {

 …

 {

 val_1 <? strm_1;

 val_2 <? strm_2;

 work(val_1, val_2);

 }

}

14

properties of the target architecture can be defined using an MDES machine description

file. Trimaran also includes a cycle accurate simulator for application profiling.

Figure 10 shows an overview of the Trimaran toolchain. Trimaran begins with a standard

C input file, and initial parsing and standard compiler optimization are performed by

OpenIMPACT. Next, the Elcor stage takes in the MDES file and the intermediate

representation (IR) produced by OpenIMPACT and performs various architecture

specific optimizations and compilation tasks. The output of the Elcor stage is Rebel IR.

Finally, the SIMU simulator can run simulations and performance modeling on the

application. The first stage of SIMU, called Codegen, takes in the Rebel IR and the

MDES, and produces, among other output, a list of operations somewhat similar to an

assembly file. It is important to note that this file is more abstract than a typical assembly

file, and it doesn’t contain important information like branch address and complete

register assignments. More detailed information on any of these stages can be found in

[Trimaran 07].

Figure 10.Trimaran System Organization

Because of its reasonable performance [Chobe01] and flexibility, the Trimaran compiler

has been used in projects involving various VLIW and more traditional superscalar

architecture, include IA-64 and ARM [Chakrapani01]. In addition to these more

15

traditional processor architectures, researchers have occasionally used Trimaran to target

CGRAs [Yan11] or other similar collections of functional units [Middha02]. The

modifications to Trimaran required for the Mosiac project are discussed in the next

section.

16

2. Software Design

The engineering effort involved in this project can be divided into two components,

software design being the first of these. As discussed in 1.1.1, the modulo schedule

execution model has significant limitations. In cases where substantial code is executed

conditionally, all of this code must still be executed on the CGRA, prior to the outputs of

these code sections being ignored due to predication. This introduces inefficiencies both

in power and area. Large quantities of work may be performed and not used, and the

logic to do this work could consume many clusters on the CGRA. Sufficiently complex

control may even be difficult for SPR to route.

All of this leads to the conclusion that it would be desirable to have some way to execute

sequential code with complex control on the CGRA, even at a substantial loss in parallel

performance for that specific kernel. This could be necessary in cases where a complex

but low throughput kernel is part of the critical path in an operation, preventing moving

the kernel’s logic off-chip. In a standalone Mosaic situation, there may not even be a

general purpose processor on which to run these kernels.

This software engineering effort was motivated by a desire to get a sense of the

performance that could be achieved by targeting Mosaic 2.0 hardware components as a

VLIW processor using Trimaran. The first step in this effort is to add support for some

kernels in a Macah program to be compiled by Trimaran, instead of Macah. Next,

Trimaran must produce output that is in a form able to configure Mosaic functional units

instead of running through SIMU. It’s important to note that, as mentioned briefly in 1.4,

this is just one of multiple concurrent efforts to support less restricted code on Mosaic 2.0

in some manner.

2.1 Macah Modifications and Scripting

The first stage in compiling Macah kernels with Trimaran is designating these kernels for

Trimaran compilation and getting their code to Trimaran in a usable form (standard C).

This required a series of minor modifications to Macah, and some scripting.

17

Conveniently, Macah is capable of generating C versions of compiled Macah programs.

This code is normally used for rapid correctness simulation of the Macah application. It

makes use of a runtime library, containing C implementations of unique Macah features

such as shiftable arrays and streams. Other Macah features, such as unrolling FOR loops,

are handled prior to emitting the C code.

To add Macah support for Trimaran kernels, additional functions to mark the beginning

and end of Trimaran kernels were added to this library and the Macah compiler. These

functions do nothing in Macah simulation, but are preserved by the compiler and remain

in the final C code. There, they provide hooks for the scripts that convert Macah C output

to Trimaran C input.

Figure 11. Pseudocode For Trimaran and Macah Tasks

Figure 11 shows the usage of functions marking the beginning and end of a Trimaran

kernel. When these functions are placed around the kernel as seen in the figure, the

configure_tasks {

 …

 task first {

 … // no kernel

 }

 task second {

 …

 kernel second {

 …

 }

 }

 task third {

 …

 trimaranKernelStart();

 kernel third {

 …

 }

 trimaranKernelEnd();

 }

}

18

macahtotri Perl script can parse the Macah output C file and create a Trimaran C file

containing a standard main() function. The body of this function will be the contents of

the kernel, including any relevant variables declared in the task, even if these variables

are declared prior to the call to trimaranKernelStart(). No other variables are

available, with the exception of streams. This isn’t a significant additional limitation

because kernel tasks don’t have access to external variables in the Macah language.

Aside from the scope of variables, the script currently has some additional limitations.

Most significantly, only a single kernel in a given Macah file can be designated as a

Trimaran kernel. This is due to the fact that this kernel becomes the main() function for

an entire Trimaran run. Under this system, multiple communicating Trimaran kernels can

only be implemented by compiling them separately and combining them at configuration

time. No tool that supports this sort of configuration currently exists. Similarly, the

current Macah flow will still compile kernels tagged for Trimaran and run them through

SPR in the same manner as any other kernel. Figure 12 shows the completed tool-chain

given support for arbitrary kernel combinations. Note that the architecture specifications

used are limited to the subset of architectures that support Trimaran’s execution model.

These will be discussed in much more depth in subsequent chapters.

Figure 12. Macah / Trimaran Hybrid Tool Flow

Trimaran
Compiler

Macah Compiler

SPR: Schedule,
Place & Route

Mosaic

Configuration

Trimaran
Specific

Architecture

Application

Electric
Architecture
Generator

19

In addition to this limitation, the Trimaran flow does not support any of the Macah

features provided by the runtime library mentioned above, other than streams. Streams

are supported through conversion to volatile variables, where reads and writes are normal

assignments. After this conversion, the output of the macahtotri script is standard C,

perfect for Trimaran compilation.

2.2 Trimaran Modifications

The Mosiac configuration shown in Figure 12 is a Verilog file, describing the state of the

configuration SRAM for every architecture component at each cycle of the modulo

schedule. The information in any given set of configuration bits varies based on what is

being configured. It could be the operation an ALU should perform during the cycle,

which input a multiplexer should select or the enable bit on a register. If a component is

not doing any useful work in a given cycle, for example if the ALU output is not

multiplexed to any storage location, it’s value can be left unwritten for correct simulation

or written to the same value as in the previous cycle to conserve power. It is important to

note that the configuration slots and cycles here are the same as those used by SPR for

modulo scheduling, as discussed in 1.1.1. When SPR produces a configuration, it will

include the II and some value for each component in every cycle within that II. For

example, if the II of the application, as mapped to the available hardware, was 3 there

would be state for each architecture component for cycles 0, 1 and 2.

In the case of Trimaran compiling for a CGRA, the modulo counter acts as a more

traditional PC and Trimaran must produce the correct configuration to carry out an

operation for each architecture component. This is very different than the output of a

traditional compiler. Normally, a compiler will produce simple instructions that are then

expanded to control each architectural component during the decode stage of execution.

In this case, Trimaran must produce what is essentially all of the post-decode state.

Because of this, Trimaran requires much more extensive knowledge of architecture

specifics than is typically required by a compiler. This issue will be discussed in more

detail in the architecture sections below.

20

No changes are required to the initial two stages of Trimaran, OpenIMPACT and Elcor,

from what was discussed in 1.5. All significant Trimaran modifications are in the final

Simu stage, shown in Figure 13. Here, Trimaran provides two main mechanisms for

producing output. The first is the Simu cycle accurate simulator which executes the

program on the machine running Trimaran. This simulator loads and converts the

program from the Rebel IR produced by Elcor. Each operation, or in some cases class of

operations, is implemented in the simulator as a function taking the inputs to the

operation and storing the output. These functions are implemented as a simulation library

called Emulib. During this process, many detailed statistics are collected. Unfortunately,

this mechanism is poorly suited to producing Verilog output. At no point during this

execution in the simulator is there a time when all of the information about an operation

is available. For example, the function that represents an operation accepts a value of an

input register instead of which register that value came from. Similarly, register values

are sometimes stored directly in variables or memory, and the mapping back to a register

is not preserved.

21

Figure 13. Simu Architecture [Trimaran 07]

The second output mechanism is much more useful for producing the required Verilog

configuration files. During the Codegen stage seen in Figure 13, Trimaran can write a

number of files. In addition to the native C code, that uses Emulib to execute the program

being simulated, Codegen also produces a number of table files similar to the memory

tables in a traditional executable. These tables map variables and functions to memory

locations, and additionally in this case, include register accesses and other information for

each operation. A file similar to a very high level assembly output is also produced,

although this file alone is incomplete and has insufficient information about each

instruction to produce the required Verilog output.

22

This stage of Codegen is perfect to produce the Verilog configuration file because the

Rebel IR has been parsed and all of the required information is available and being

written to the files described above. This information includes all of the register and

constant operands required by each operation as well as the mapping of these operations

to the multiple ALUs and other compute resources in the VLIW case. One of these

additional resources is a rotating register file, which could rotate at the same time as an

ALU operation executes during a single cycle.

The configuration generation performed in this stage is conceptually simple. Verilog

configuration for each component is written based on what it might be required to do

during the cycle. For example, if the operation is an add, the source register files are

configured to read the source registers, the crossbar is configured to route those registers

to the ALU, the ALU is configured to add and the crossbar writes the ALU output back to

the register file. The configurations currently produced by Trimaran assume that all

instructions can execute in a single cycle. Streams are handled as a special case, in which

the load and store operations (which are always present because streams are declared as

volatile variables) are replaced by accesses to dedicated stream hardware.

23

3. Architecture Design

A variety of architectures, designed with different goals, were produced during the course

of this project. They are described in this section.

3.1 Custom Trimaran Processor

As discussed in 2.2, the Triamaran modifications that allowed for the production of

Verilog output require detailed architectural knowledge to operate correctly. As a proof

of concept for this aspect of the compiler, a custom architecture was produced out of the

same Architecture Generator components used in [Van Essen10]. Just like these

Architecture Generator components, which are used to construct the CGRA architectures

processed by SPR, this architecture was specified in the Electric CAD tool [Rubin10].

Electric is an open source CAD program written in the Java language with many

properties that make it well suited for the Mosaic project. Electric supports a number of

levels of circuit abstraction, ranging from schematic and HDL description down to

physical circuit layout. For Mosaic, individual architecture components are specified at

the HDL level and then connected as schematics. Electric allows the user to write plugins

that can perform complex tasks, such as connecting components in a design to a crossbar

or generating an entire architecture from a simple specification. Finally, Electric can

output the entire design as a Verilog architecture description that is read in by SPR.

The custom Trimaran architecture was a very simple Electric design, consisting of a large

crossbar connecting each component (Figure 14). The Trimaran control registers,

including the PC and counters used for low overhead loops, are implemented using

simple registers in Electric. The adder, for incrementing the PC, and the other ALUs,

used for loops and ALU operations, make use of the same arithmetic components that lie

at the heart of a Mosaic functional unit. In the standard Trimaran architecture branch

targets must always be stored in a branch target register file before the branch. This

register file, along with the general purpose and predicate files, use the same Cydra

rotating register file [Dehnert89] as in Mosaic. Finally, the constant generation and

Stream I/O are performed by custom components designed for this processor. This was

necessary because constants in Mosaic enter through register files at the beginning of

24

execution, and this approach would require significant compiler modification to use with

Trimaran. Memory mapped stream I/O operations are performed using custom Verilog

stubs that allow for test data to be sourced from and written to files during simulation.

Figure 14. Simple custom Trimaran processor design

This design is clearly very different from a traditional simple single-cycle processor

architecture. Connecting through a large cross-bar is extremely inefficient, given that

many of the possible connections don’t make sense. For example, the compiler would

never generate an instruction where the output of the stream I/O goes directly to the PC

or the memory writes to an ALU input. The more natural architecture would feature

dedicated connections between related components, with multiplexing where necessary.

The components used are also not a perfect fit. For example, some Trimaran logical and

arithmetic operations require two of the Mosaic FU ALUs chained together. This would

likely not be the preferred structure for a real single-cycle processor.

Both of these design decisions stem from the fact that this Trimaran-only processor is a

proof of concept for compiling C code to Mosaic hardware using Trimaran. This model

provides much more useful information, for example potential integration with Mosaic

power and timing models, than it would if it was written in custom Verilog. The use of

the crossbar is based on the fact that this more closely resembles the flexibility of the

actual Mosaic architecture, so even though most of this flexibility is wasted in the

25

Trimaran processor, it requires a Verilog emitter much closer to what would be required

to configure the Mosaic architecture.

3.2 Custom Trimaran Processor and Mosaic 1.0 Comparison

The custom Trimaran processor from the previous section includes the baseline

components required for execution of Trimaran programs. A comparison between the

custom processor and the current Mosaic architecture can help to determine what Mosaic

components will require modification to reach a consensus architecture. As discussed

above, some portions of the current Trimaran toolchain, particularly SPR, can only

handle a single kernel at a time. Because of this, the comparison in this chapter will focus

on the final optimized Mosaic 1.0 architecture presented in [Van Essen10]. Despite this,

some features required by the consensus architecture, such as a more flexible modulo

counter, will be shared with Mosaic 2.0. The most relevant architectural details from the

Mosaic 1.0 design can be seen in Figure 6 and Figure 15. The FU here is a “Universal

FU” featuring a MADD unit in addition to standard ALU operations, which explains the

four input ports.

Figure 15. Optimized Mosaic 1.0 PE with Universal FU. Gray components are control path. [Van Essen10]

26

Table 2 compares the components required by the simple Trimaran processor to those

available in Mosaic 1.0 and points out any significant challenges. At a very high level,

there is a straightforward one-to-one mapping of Trimaran architectural components to

Mosaic ones. For example, a functional unit performs similar operations in both cases,

and both architectures uses rotating register files. However, as the table suggests, at a

deeper level there are significant architectural challenges. Most of these involve

connectivity in some way. The fixed connections between resources in Mosaic, unlike the

highly configurable interconnect of an FPGA, are heavily optimized for low power high

frequency CGRA operation. In many cases the connections required for the use of the

various resources in a processor configuration are simply not present.

Trimaran Component Mosaic Mapping Challenges

Functional Unit 2 ALU+2 MADD for VLIW Marshaling data

GP register file Local rotating register file Limited read ports

Branch target register file Local rotating register file Connectivity to PC

Predicate registers Predicate register file

Constant generation Register slots Constants burn registers

Memory Cluster memory

Control registers Modulo counter, registers Significant changes

Control logic S-ALUs near PC Data to control registers

Interconnect Crossbar and PE muxes Limited connection in PE

Table 2. Comparison of Trimaran and Mosaic components

Before addressing these issues in more detail it is important to understand the Mosaic

architecture and the design decisions made more thoroughly. The resources available in

the Mosaic cluster of Figure 6 break down into 32-bit word width resources (shown in

black) and 1-bit predicate resources (shown in gray). The breakdown of these resources

can be seen in Table 3. Note that all of the PEs feature 32-bit registers and 8-entry

rotating register files as shown in Figure 15. Some of these registers have bypass muxes,

but some do not for timing closure reasons. The PE also includes 1-bit input and output

registers and a 1-bit 16-entry rotating register file.

27

32-bit data path (words) 1-bit control path (predicates)

Two 32-bit PEs with ALU and MADD Two 1-bit PEs with 3-LUT

Two 32-bit PEs with S-ALU only

32-bit 16-entry rotating register file 1-bit 16-entry rotating register file

Two 1K-word local memory

32-bit wide crossbar 1-bit wide crossbar

Table 3. Word and single bit Mosaic cluster components

Each of these resources was chosen specifically to give Mosaic good performance at the

lowest energy. For example, a rotating register file was chosen over distributed registers,

a retiming chain or shift registers because of its high energy efficiency. Unfortunately,

the limited read ports on this register file make it difficult to map some Trimaran

instructions. Resources for storing short lived CGRA values were pushed close to the

ALU, as can be seen in Figure 15. Although some of these registers help break up critical

paths that would otherwise reduce the operating frequency of the CGRA, this was also

done to reduce the total number of crossbar ports in a cluster. The crossbar is a high

energy structure, and anything that reduces its utilization can have a significant effect on

energy. For example, simply adding the local feedback register to the functional unit,

without the local register file, reduces dynamic energy by 7% [Van Essen10].

Again, this sort of optimization is very important for efficient CGRA execution, but

costly in terms of flexibility. For Trimaran mode, resources that are directly connected to

the crossbar are much easier to map to their processor equivalents. Going through extra

registers is difficult and the placement of some of these registers in Mosaic can lead to

uneven delays between various operations, beyond what the Trimaran compiler currently

supports. This conflict between CGRA energy usage and the ability to execute Trimaran

operations is at the heart of the next section.

3.3 Consensus Architecture Design

The consensus architecture is one that combines the high performance and low power of

the Mosaic 1.0 CGRA execution mode with the ability to execute Trimaran kernels like

the Trimaran custom processor described in section 3.2. Because the performance critical

components of most applications are expected to run in CGRA execution mode, the

28

consensus design approach attempts to preserve CGRA mode speed and energy whenever

possible. In addition, Trimaran structures are kept simple and existing hardware or

Mosaic components are used whenever possible. This should help to minimize additional

design and verification time required for the Trimaran components. Ultimately, each

aspect of this design is focused on reconciling the needs of the two execution models

(discussed in 1.1.1), with preference being given to CGRA mode when required. With

this in mind, the design of the hybrid modulo counter / PC is a logical starting point for

looking at the consensus architecture.

3.3.1 PC and Modulo Counter

The basic architecture of a Mosaic 1.0 modulo counter can be seen in Figure 16. Under

this design, the modulo counter counts down, using the subtract one hardware on the

right, until reaching zero, at which point the comparator will configure the mux to select

the II – 1 input instead. This design is simple for selecting the correct phase in Mosaic

1.0, and the modulo counter output can simply be routed to configuration memory to

configure the various CGRA components. It can also be used in more complex designs,

for example the predicate aware sharing described in [Friedman11]. As that work

mentions, there will be many identical modulo counters distributed throughout the array.

Aside from stalling, distributed modulo counters are not an issue because all of the

modulo counters will be operating in lockstep.

Figure 16. Mosaic 1.0 modulo counter

As discussed earlier, the Trimaran program would be stored in configuration memory in

the hybrid architecture. Although this imposes significant restrictions on program length,

given a maximum II on the order of 128, it is essential to maintaining as close to single-

1 0

-1

Modulo
Counter

Initiation
Interval - 1

== 0

29

cycle execution as possible. If the program was stored in a memory in the encoded

operation form produced by a traditional linker, that would necessitate a decode stage.

Storing the program in configuration memory means that the post-decode version of the

instructions, as produced by the Verilog emitter, is already in hardware. Given this

advantage, the limited storage of the configuration memory seems like an acceptable

price to pay in the hybrid architecture. If this proved to be too limiting in the future, the

maximum II could be increased or a decode stage and hardware could be considered.

With the program stored in configuration memory, one simple hybrid architecture

approach would be to replace the Mosaic 1.0 modulo counter with a more complex

version, capable of also accepting a branch input. This counter would effectively become

a PC. This PC design can be seen in Figure 17. First, note that this version uses an up-

counter, instead of a down-counter as in the Mosaic 1.0 modulo counter. This allows the

same plus one logic to be used for the PC and the modulo counter. An additional mux

selects the branch target, as read from a branch target register file, instead of the 0 value

when in Trimaran mode. The mux which selects either the PC + 1 or the branch target

value now detects II – 1 in CGRA mode or a branch instruction in Trimaran mode.

Figure 17. Proposed Trimaran PC (new components in blue)

Although this approach seems simple, it does require substantial additional hardware.

First, the II – 1 comparator requires more logic than the Mosaic 1.0 modulo counter

comparator which only had to test for zero. This approach also requires an additional

mux. Most importantly however, the branch target and the predicate bits that specify if a

branch should be taken on a given instruction must be routed to the PC logic. This

1 0

1 0

+1

PC

0 BT

== (II – 1)
| Branch?

Trimaran
Mode?

30

introduces additional load on the outputs of the branch target register file, which is a

standard register file during CGRA execution. Finally, an extra input from the control

network and some logic is required to select from between the PC + 1 (branch not taken

or regular instruction) and the branch target (branch instruction and branch taken) for the

new value of the PC.

Figure 18. Optimized Mosaic 1.0 PE with S-ALU [Van Essen10]

As an alternate approach, one of the optimized PEs from Figure 18 could be used to

augment the PC logic. The S-ALU in these PEs is similar to the one available in the

Universal FU, but it lacks support for multiplication operations. In this case, the modulo

counter could count down as normal in CGRA mode, and the S-ALU could be used to

implement the PC increment logic in Trimaran mode, eliminating the need for dedicated

hardware to compare to an arbitrary value (II – 1). The rotating register file local to this

PE could be used as the branch target register file, and only a few additional muxes

would be required on top of the Mosiac 1.0 modulo counter logic. This implementation is

shown in Figure 19. Notice that the feedback register can be used as PC storage. It is also

important to note that this implementation is only possible if the predicate aware sharing

hardware presented in [Friedman11] is available. Otherwise, the S-ALU is incapable of

performing a branch operation, since this would require selecting the PC + 1 or the

31

branch target without any hardware to generate PC + 1. With predicate aware sharing this

could be done in the mux shown in navy on the figure.

Figure 19. Mosaic 1.0 modulo counter combined with a PE to form a PC

Although this design would save on comparator logic and muxing, the fact that it is not

possible on the optimized Mosaic 1.0 hardware that only allows predicate input to the S-

ALU, and not the proceeding multiplexers, is a major strike against it given the design

goals. Additionally, the hardware savings are not overly large. For these reasons, the

most reasonable PC design to use is the first one described in this section. This design,

where the modulo counter hardware is augmented directly to support Trimaran execution,

also has a significant advantage in that it leaves another PE free for VLIW execution.

Finally, some instructions, such as branch and link, require storing the PC back into the

branch target register file. This would be difficult if the same S-ALU output wrote the

branch target register file and the new PC. Many other decisions stem from the design of

the PC, starting with the implementation of branch instructions.

3.3.2 Branches

Although the resource constraints discussed in 3.2 are significant, the most difficult

Trimaran instructions to execute are some of the complex branches. The way that these

32

instructions can best be handled impacts the choice of resources used for other Trimaran

components significantly. Two instructions are particularly troubling. These are the BRF

and BRW instructions, designed to be used when software pipelining loops.

BRF operations are used with loops that run a known number of times, such as a typical

for loop. This instruction decrements a special control register called the loop counter

(LC), which specifies the remaining number of times to execute the loop. After LC

iterations another control register (ESC) is used to specify the number of further

iterations required to drain the pipeline. A predicate output is produced, which specifies if

the execution has reached the epilog stage (LC = 0) or not. The BRF instruction also

rotates the rotating register file.

The BRW instruction is just like the BRF instruction, except that it takes two predicates

as inputs and doesn’t use the LC. BRW is designed to be used in the case of loops that

terminate on a condition (like while loops), and the first of these predicates specifies if

the loop should continue (termination condition not met). The second predicate tells the

loop to enter the ramp down phase. This is required because, unlike the LC which, upon

reaching zero, will retain the zero value until the loop is complete, the first source

predicate could potentially change after the loop has entered the ramp down phase. It’s

important to note that in reality if either of these predicates are false the loop will be in

the ramp down phase. It’s not important which is the loop condition and which is the

ramp down marker. The operation of both loops is summarized in Table 4. Finally, both

of these instructions have versions supporting any combination of branching or falling

through on true conditions for each phase (loop, ramp down and stop).

Operation Inputs Outputs Results

BRF BTR 1 Pred Rotates, Branches, Dec LC or ESC

BRW BTR, 2 Preds 1 Pred Rotates, Branches, Dec ESC

Table 4. Operation of BRF and BRW instructions

Of these two instructions BRF is the most difficult. BRW can be viewed as a subset of

BRF in the sense that it doesn’t use the LC and the AND of its two input predicates serve

exactly the same role as LC > 0 in BRF. For this reason, any consensus architecture

33

designed to execute BRF operations can also execute BRWs, assuming the LUT on the

control path can be used to combine the two predicates. There is also a branch on zero

loop count (BRLC) instruction, but it is also a subset of the BRF instructions and can be

implemented as such.

The BRF instruction (Figure 20) fundamentally requires a few operations. First, the LC

must be compared to zero. Second, if the loop counter is zero, the ESC counter must be

compared to zero. Third, the correct side effects must be performed depending on which

of these first conditions was true, including setting the output predicate, decrementing

one of the counters and rotating the register file. Finally, the branch must be taken or not

as specified by the specific instruction. Each of these elements requires some hardware,

but ideally it would all execute in a single cycle on a single PE.

Figure 20. Diagram of BRF operation [Kathail00]

The resources used to do the two comparisons against zero depend on the storage used

for the counters and vice versa. To do both comparisons at the same time, two

comparators are required, but this is not unreasonable since the PE handling branches will

be tightly coupled with the PC out of necessity. This means that the II – 1 comparator,

34

otherwise unused in Trimaran mode, can perform one of these operations if the LC or

ESC is provided to it with a single additional mux. The other comparison will be

performed by the S-ALU. In order to be close to these comparisons the ESC and LC

counters can be stored in the A input register and feedback register respectively. It makes

sense to put the LC in the feedback register since it is used by more instructions, and the

path to the input register is both more expensive and slower due to having to traverse the

crossbar. This delay in writing the escape register could be removed by adding a bypass

mux to the PE output register (shown in red in Figure 21), but this might increase the

length of the logic’s critical path. In addition, it is probably not terribly significant since

two BRF instructions in a row would not be particularly useful.

Figure 21. Branch operations mapped to a single PE and coupled to PC

Even with ESC and LC handled as described above, and shown in Figure 21, it would be

nearly impossible to handle the entire loop in a single cycle. After performing both

comparisons, the results have to be serialized (ESC = 0 will not end the loop if LC ≠ 0)

and one of the counters must be decremented. The next PC must also be updated

correctly. The first part of this is not difficult because, as seen in Figure 21, the control

network output port from the S-ALU is not registered (port F). This allows the result of

both comparisons to reach the 3-LUT in the control network through one additional mux

and a connection to the output from the PC comparator logic. The LC or ESC can then be

35

decremented on the next cycle, as appropriate, although in the case of the ESC this

introduces an additional cycle of delay to travel across the crossbar as discussed above.

The output predicate bit can also be written to the predicate register file during this cycle.

The branch itself must also be taken or not taken correctly. To achieve this the PC must

have either the PC + 1 or branch target address values muxed in correctly. On the second

cycle, the predicate bit generated by the 3-LUT can be used for this purpose, although

this does require the introduction of a potentially long delay path from the LUT output

register to the PC. The relevant control bit is Branch in Figure 21 and S in Figure 18.

All other branch operations, ranging from the unconditional branch to the predicated

branches, can be performed using subsets of the BRF logic. These simpler branches

should also be performed in two cycles, even when not strictly necessary, to avoid

introducing variable delay branches. Trimaran can schedule instructions in branch delay

slots, but the MDES does not easily allow for branches of various lengths. One advantage

of using two-cycle branches is that any register file can be used as the branch target

registers with no issue. The only other branch that introduces other considerations is the

branch and link (BRL). BRL must store the pre-branch PC back into the BTR file. This

can easily be achieved by adding a connection from the PC register to the crossbar or the

PE that stores the BTR file. This path will also be used for prepare to branch PC-relative

instructions, among others. Legally, the PC is available as a control register which can be

used as an operand for most classes of instructions. Although the PC may not be written

as a general control register, LC and ESC can be. Given the architecture described in this

section, writing the LC would occupy the ALU in the branch PE for one cycle. For this

reason, the LC cannot be written in the cycle immediately preceding a branch instruction.

3.3.3 ALUs, General Purpose Register Files and Constant Generation

Although the branch target register file has some degree of freedom regarding its

location, and the predicate register file and local memory also map trivially, the general

purpose register file presents a significant challenge for multiple reasons. Some

instructions, such as load and increment, have two register operands and produce two

outputs. Some instructions, such as moving a GPR to a CR with a mask have two general

36

register or constant operands and a control register operand. These operations begin to

run up against some of the basic port limitations of the optimized Mosaic 1.0 design.

The most straightforward solution to the GPR would be to place it in the large rotating

register file on the crossbar. This approach has two major drawbacks. First, every register

operation would go over the crossbar, burning significantly more power. Second, a

simple string of instructions such as:

r3 <= add r1, r2

r4 <= or r1, r3

would run into significant issues. Even if only one PE was in use, given that the output of

each PE is registered before returning to the crossbar, the updated value of r3 could not

be stored in time to be used by the or operation unless the compiler was made aware of

the feedback register. In the case of multiple PEs, this scenario would imply some sort of

forwarding network before the crossbar, which would be both complicated and

expensive. Alternatively, a bypass could be introduced on the output register of the PE, as

discussed in 3.3.2, but this introduces timing issues. A dedicated output from the two PEs

featuring MADD units to the large register file could allow for writing without a bypass,

but it would introduce some loading of its own in addition to an extra mux.

Another option is to use the rotating register file inside the PE as the Trimaran’s GPR.

This approach gets around the issues mentioned above since there is a single cycle path

from the rotating register files, through the MADD (when used for single-cycle

operations) and back to the register file. However, this would create significant VLIW

issues. It would be challenging for the values in one PE to get to another in a timely

fashion, as at least one extra cycle would be required to get values from the output of one

PE to the inputs of another. Register file to register file transfers would be even worse,

requiring another additional cycle. Unless large amounts of parallel work on independent

data was available, this would significantly reduce the benefits of having a VLIW

execution mode. Some of the options discussed above, including bypassing output

37

registers, would be an option here, but if those solutions were being considered, the larger

register file seems like a more natural fit.

There is also an issue regarding constant values. In Mosaic 1.0, constants are preloaded

into local register files before execution begins, and read from there. SPR could

potentially schedule multiple runtime constants into the same phase, so the unoptimized

PEs featuring U-FUs have four read ports on the register files [Van Essen10]. The

optimized version of the U-FU PE drops two of these read ports, suggesting that SPR

should limit the maximum number of constant inputs to the same U-FU in a cycle to two.

This constant mechanism is awkward for Trimaran. If it was used, register files would

lose capacity for every constant operand used in the program. Not only is this a feature

the Trimaran compiler doesn’t support, but even if it did, register file capacity is a much

bigger issue for a Trimaran program than an SPR one. On the other hand, constant

generators would require large amounts of configuration memory. At 32-bits wide, and

given that two constant generators would be required, this would introduce 1 Kbyte of

additional SRAM in addition to extra muxes and connections to the configuration control

network.

It is clear from this discussion that for any consensus solution with a functional VLIW

mode, even just 2-wide, the changes required to the GPR and constant generation will be

among the most costly. Despite this, adding bypass registers to the PE output appears to

be the best solution. None of the other proposed solution would allow for single cycle

VLIW operation, without adding significant additional scheduling burdens to Trimaran.

Instead, adding output register bypass will allow the large register file attached to the

crossbar to function as the GPR, and values can easily be shared among FUs operating in

VLIW mode. This solution also has the advantage of providing a single location where

more ports could be added as necessary to support wider VLIW, instead of having to

potentially add ports to register files in each PE.

One additional property of this solution is that it leaves the local rotating register files in

each PE unused. This could provide a good location to store constants, although it would

place an arbitrary constant limit on programs. The fact that the ALUs can generate

38

constant values of 0 and 1, along with the limited number of instruction slots available to

a Trimaran mode program make it unlikely that the local register file would be filled with

constants. If it was, the compiler could be modified to store additional constants in some

of the many other registers available in the fabric and generate any additional constants

required through runtime arithmetic. These solutions should eliminate the need to add

constant generators to the crossbar or the global register file. Adding ports to the crossbar

itself is costly, as is the configuration memory requirement of constant generators, so any

solution that does not require them is extremely beneficial.

Mosaic 1.0 predication implements mutually exclusive operations, both of which are

performed, and the predicate bits are used to select the correct output (see 1.1.1). Most

Trimaran operations can be predicated, but the semantics are different. A Trimaran

operation that has a sense that doesn’t match the predicate (for example the predicate bit

is false, and the operation is predicated to execute on true) is simply treated as a nop: it

should have no effects. This form of predication is also called guarded execution. The

method for implementing this in the case of branches is discussed in the previous section,

but for other operations such as arithmetic Mosaic 1.0 hardware is insufficient. Instead, a

predicate enable will have to be added to state-holding elements such as the register files.

This could use existing logic in the case that predicate aware scheduling hardware is

present, but in its absence new hardware would be required. Given that the predicate bits

are already available on the control crossbar, the worst case scenario would be an extra

gate prior to the enable and an extra crossbar read port. Note that structures other than the

register files, such as the local memory, might require enables in this case.

A summary of the hardware changes proposed in this section can be found in Figure 22.

39

Figure 22. Hybrid PE with U-FU and connecting register file for VLIW execution

3.4 Consensus Architecture Analysis

Section 3.3 describes the design of each hybrid component in detail. The result of all of

these changes to the optimized Mosaic 1.0 design is the “hybrid” architecture. This

architecture can be divided into four major components: execution support (modulo

counter / PC), branch support, predicate network and data network. The design of each of

these components will have a significant impact on the performance of one or more

classes of Trimaran instruction.

The changes to the modulo counter are the most extensive, since its purpose is shifted

dramatically from a simple counter to a full-fledged PC surrounded by additional branch

logic. However, the amount of additional hardware is not excessive. All that must be

added is four muxes and a few additional connections from the branch PE and the

predicate network. The most expensive new component is the comparator, which must be

modified to compare against an input value instead of 0.

40

The data network also avoids significant modification, although adding a crossbar port to

support more register file read or write ports should they be required, would be costly.

The PEs themselves require only very minor modification; now both U-FU and S-ALU

PEs must have a mux on the output path. Additionally, in the case of Mosaic hardware

without predicate aware sharing, a connection from the predicate network to the write

enables of various storage elements would be required to implement Trimaran style

predication.

In general, the changes described above meet the goals set out for the consensus

architecture. Specifically, the modifications should not have significant impact on the

area or operating frequency of the Mosaic hardware. Most of the additions were a few

muxes and extra communication channels. Although these components are not

insignificant, especially considering the extra configuration memory required, the total

percentage impact should be small. Frequency will likely be slightly reduced due to the

additional load of this extra logic, but since no paths were introduced that require

multiple operations or traversals of the crossbar in a single cycle, both CGRA and

Trimaran modes should continue to operate at a reasonable clock frequency.

Most importantly, the energy and performance of kernels executing in CGRA mode

should not be significantly affected by any of the changes introduced to allow execution

of Trimaran kernels. All of the additional logic discussed can be configured to a fixed

state during CGRA execution, essentially eliminating dynamic power consumption.

Other techniques, such as power gating the constant generators or other Trimaran only

components, can even reduce the leakage of these components and help CGRA mode in

the consensus architecture operate very close to Mosaic 1.0 levels.

One area where the results are less positive is the consensus architecture’s execution of

Trimaran kernels. Although most Trimaran instructions will remain single-cycle, this was

not possible in all cases. Branches will require two cycles as discussed in 3.3.2, and

Trimaran can fill the branch delay slot with other instructions. For most ALU operations

single-cycle execution will be possible, as seen in 3.3.3, but the Mosaic MADD unit

requires two-cycle multiplication. Since Trimaran will be relying on the MADD located

41

inside the Universal FU for all multiplication operations, the speed of these operations

will be limited to the execution speed of the MADD. Although it would be possible for

Trimaran to take advantage of pipelined multiply instructions, given the Mosaic 1.0

multiplication hardware, the actual amount of performance that can be regained in this

manner depends on the scheduling ability of the Trimaran compiler and the inherent

pipelineability of the program being compiled.

Memory access also presents some minor challenges to the single-cycle assumption.

Trimaran only supports memory operations to addresses already stored in a GPR, so

support for address calculations prior to reading from the local memory was not required.

However, there are post-increment memory operations in Trimaran. These instructions

load or store to an address read from a register, and also compute a new address that is at

an offset from the original one. This computed address is stored back into the register file

along with the result of the memory operation, in the case of a load. The register file

write port pressure of instructions with two destination registers has already been

discussed. Since the computation of the new address can occur in an ALU that is

otherwise unused during a memory load or store operation, there is no reason that both of

these things can’t occur in the same single-cycle. Because of this, the single-cycle

assumption is intact for memory operations, even post-increment load and store.

Finally, VLIW execution could present issues for the majority single-cycle model.

Although there is currently an unused S-ALU in the consensus design, VLIW beyond 2-

wide could be challenging within a single cluster due to resource constraints, the most

significant being register file ports. Any attempt to add inter-cluster communication to

the execution of a single Trimaran kernel in VLIW mode would incur many cycle delays.

The cost of traversing the inter-cluster interconnect would be great, and tremendous

compiler modifications would be required to add scheduling support for this scenario to

Trimaran. It is difficult to imagine that the performance gain of 3 or 4-wide VLIW

execution could overcome the penalty of the added delay.

42

4. Modeling and Methodology

A working system, at the level of Verilog simulation, was constructed only for the

custom Trimaran processor. This required that the performance of the consensus

architecture be estimated based on the analysis in 3.4.

4.1 Testing Methodology

Performance testing was straightforward on the single-cycle Trimaran processor. First,

the HPL-PD machine description file was set to match the architecture of the custom

Trimaran processor. Next, the desired kernel was tagged with marker functions and run

through the scripts described in 2.1. These scripts produced Trimaran-ready C code,

which was then compiled using Trimaran, producing both Verilog output and all of the

support files required to run Simu. This entire flow can be seen in the Trimaran path of

Figure 12.

Verilog simulation, being very slow, was only used to verify correctness. Performance

for longer simulation runs of the Trimaran only architecture was measured using Simu.

Because Simu is fully aware of the architecture, as specified in the HPL-PD description,

and there are no uncertainties such as those introduced by a complex memory hierarchy,

its simulations are cycle accurate just like the Verilog runs. Also note that read streams

were treated as always having data, and write streams as always having space. In other

words, no stalls were permitted to occur during these simulations.

Testing SPR performance was similarly straightforward. Using the current Macah to SPR

tool flow, as shown in Figure 7, the benchmark application was run through Macah. Next

the desired kernel was selected and run through the fsim Macah simulator. This

simulation provides an iteration count for the design. Next, the SPRanalyze tool runs SPR

with no resource constraints. This determines the minimum recurrence II of the kernel.

This is the lowest possible II that the kernel can have in its current form, due to

dependencies in its dataflow graph. Note that the minimum II found by SPRanalyze is not

necessarily something fundamental to the application. Instead it is simply based on the

Macah output from the current implementation. Improvements to the code can frequently

be used to improve this II lower than its current point. Lastly, SPR itself is run against the

43

kernel, given an architecture very similar to Mosaic 1.0 as described in this thesis and in

[Van Essen10]. SPR will determine the actual II of the kernel for some number of

clusters, based on the resources available. SPR uses heuristic algorithms, so the II found

in this stage is not an absolute minimum for the given kernel on the given hardware.

Instead, it is a best effort attempt by SPR in a reasonable runtime.

Once all of this data is collected from the simulated execution of the kernel, relative

performance can be gauged. For the single-cycle Trimaran processor model, cycles of

simulated execution time are equivalent to clock cycles in the final design. Things are a

little more complicated for the SPR kernels. Ignoring stalls, since we’ve already

established there won’t be any, the cycles of execution for those kernels running in

CGRA mode is essentially the iterations multiplied by the II. This makes sense because

each iteration requires II cycles to complete, so:

II * iterations = cycles / iteration * iterations = cycles

In reality, even without stalls this calculation is off by a small amount. This is due to the

time required to fill the pipeline at the beginning of execution and drain the pipeline at

the end of execution. However, given a sufficiently large number of iterations, this small

discrepancy can safely be ignored. The final result of these calculations is a simple

comparison between the execution cycles of Mosaic 1.0 CGRA mode and the single-

cycle Trimaran custom processor.

4.2 Consensus Architecture Performance Estimation

The execution cycle comparison method should also provide the performance of SPR on

the consensus architecture. Great care went into the design to preserve CGRA

performance, and from the design analysis it appears that it does not, in fact, reduce

performance in any significant way. Because of this, the cycle counts from the previous

section should still be applicable.

Unfortunately, determining the performance of Trimaran execution on the consensus

architecture is not nearly as simple. The consensus implementation will not be able to

execute all instructions in a single cycle as the Trimaran custom processor did. Instead, it

44

has some multi-cycle instructions, some of which can be pipelined easily and some of

which cannot. To complicate things further, some of the restrictions introduced by this

pipelining would require substantial changes to the compilation and optimization phases

of Trimaran to implement. For this reason, consensus architecture Trimaran performance

is estimated, as described below, using the worst case assumption of no pipelining. The

Trimaran consensus results must then be considered as a lower bound, where the

performance of an actual implementation could be somewhat closer to that of the single-

cycle Trimaran custom processor.

The branch class of instructions is an example of these challenges. Section 3.3.2 states

that all branches are two cycle instructions and, as in many architectures, two branches

can’t be issued in adjacent slots. However, since unrelated functional units can operate in

parallel in Trimaran, instead of a branch delay slot other instructions that don’t affect the

branch values could be issued in both slots. To make things even more complicated, for

branches that use LC and ESC, these values must be written the cycle before the branch

begins. However, since there is no path to the feedback register in the PE (used to store

LC, Figure 21) that doesn’t first travel through the S-ALU, this value must be written

some time before the branch begins, without overlapping with any other branch

instructions or writes to the other control registers. It is additional constraints like these

that make developing an efficient schedule for Trimaran on the consensus architecture

more difficult than simple HPL-PD description modifications. The execution of each

instruction type is summarized in Table 5. Note that this thesis frequently groups the

details of the HPL-PD instruction set that Trimaran implements under the term

“Trimaran”, although it can actually support many other ISAs as well. Details of the

HPL-PD instructions can be found in [Kathail00].

Besides instruction classes that have inherent difficulties requiring design changes, there

are some complex instructions that require two cycles to execute. For example, Trimaran

features fixed shift and add instructions as well as logical operations that compliment one

of the inputs. Without ALU modifications, these instructions can be trivially mapped to a

single PE, but they are not pipelineable. This could present a scenario where all integer

instructions must be modeled as two cycle operations for the consensus architecture, but

45

since these instructions are not observed in any of the benchmarks used this situation was

avoided. Instead of creating various execution lengths for different integer operations, it

may be better to remove these instructions entirely. The only cost to removing these

instructions and forcing the compiler to output two different instructions is code size

(important given Mosaic’s 128 configuration slots), register file pressure and possibly

crossbar energy. The alternative is potentially costly ALU modifications that SPR doesn’t

take advantage of. Removal is then a particularly good solution if these instructions are

used infrequently, as appears to be the case.

Class Cycles Pipelineable Notes

Integer 1, 2 No Some instructions require two ALU ops

Multiplication 2 Yes

MADD 2 Yes Not currently implemented in Trimaran

Floating Point - - Not supported on Mosaic hardware

Conversion 1 Yes

Move 1 Yes All moves must go through a PE

Compare 1 Yes

Memory 1 Yes No speculative or reference hierarchy

Pre-branch 1 Yes

Branch 2 Yes See 3.3.2

Table 5. Execution cycles of Trimaran instruction classes on consensus architecture

46

5. Benchmarks

Three benchmarks with very different properties help to expose the relative performance

of a kernel executed using Trimaran instead of CGRA mode. The code for these

benchmarks can be found in Appendix A.

5.1 2D Convolution

In the case of a very simple 2D Convolution implementation in Macah, the convolution

operation is performed on an input stream representing a 2D matrix. The same

convolution mask is applied to each area of the input Matrix, to produce the output matrix

as shown in Figure 23. The mask values are multiplied against each cell in the input

matrix, and the cells surrounding it. Although a 3x3 mask is used in the example, a larger

mask is also possible. The results of the multiplication are then summed, producing the

final output value for the center cell. Note that there are additional complexities, such as

handling cells on the edge of the input matrix and scaling the output by a constant factor,

but these are not part of the kernel being benchmarked here, since they will be

implemented in other kernels.

Figure 23. 2D convolution example

The convolution kernel considered here, conv, performs the multiplication and addition

stages described above, using two for loops. This is a very simple kernel without much

complex control flow. In addition, when written correctly there are few dependencies

from one output value to the next, so the II should be low and the CGRA performance

should be high. On this kernel, Trimaran results are expected to be much worse.

47

5.2 Bayer Filter

The Bayer filter is a critical part of the typical digital camera pipeline [Bayer76]. Images

will often be captured by separate arrays of red, green and blue sensors (or shared sensors

time multiplexed between colors). The purpose of the filter is to combine these separate

color pixels into a single full color image. Depending on the exact makeup of the sensors,

many variations on the filter exist, but the fundamental operation is always to combine

the various sensor values into a single image.

When implementing the Bayer filter for a stream based CGRA like Mosaic, the two

dimensional input matrix must be streamed into the kernel as a one dimensional input.

This presents a problem along the edges of the input sensor data similar to the 2D

convolution, and part of the solution to this problem is a kernel that mirrors the pixels

along the edges, called fillHorz. In addition to the two for loops, this kernel

contains an if-else block made up of five different conditions. This complex control

logic can be expected to show significant benefit under Trimaran, since the Macah

version of the kernel will be executing significant amounts of predicated logic in parallel

before throwing most of those results away.

5.3 Discrete Wavelet Transform

In a discrete wavelet transform (DWT) an input matrix has a set of high and low-pass

filters applied to it recursively [Daubechies90]. This operation is useful in many

applications, including imagine compression algorithms such as JPEG. In the case of the

DWT used in JPEG, the two dimensional input matrix has a high and low pass filter

applied to it in the horizontal direction, followed by both filters being applied in the

vertical direction. The result of this first set of transforms can be seen on the left hand

side of Figure 24. The bottom right section has the high portion from both the horizontal

and vertical filters (essentially a diagonal). The top right and bottom left section of the

image now contains the horizontal high pass and the vertical high pass respectively.

These high pass filters highlight the noise, or sharp changes, in the image. Similarly, the

top left has both low pass filters. After scaling, this essentially creates a smaller version

of the original image in the top left. Finally, the same sequencing of filtering is applied

repeatedly to the top left. The first application produces the results on the right hand side

48

of the figure, and each subsequent application operates on an image a quarter the size of

the previous one. For more details about the operation of the DWT, see [Fry01].

LL HL

LLLL LLHL

HL

LLLH LLHH

LH HH LH HH

Figure 24. The first two stages of the 2D DWT used in JPEG image compression

One important aspect of the streaming Macah implementation of the DWT is that the

image must be divided into strips on which to perform the filter, but the horizontal and

vertical passes require these strips in different directions. Because of this, between the

application of the filters, the matrix must be mirrored. The kernel we use as a benchmark,

leftVerMirror, performs one of these reflection operations prior to the low-pass

filter. To do this, the kernel must read in an entire strip of data and store it, write out the

mirrored version of this data, and then write out the un-mirrored values to complete the

strip. This requires a series of for loops, including nested loops for the mirrored data.

This kernel has interesting control flow because each of these loops makes use of the

same set of streams.

A final note about these benchmark applications is that they all appear to be similar at

some level. Each of the three performs some operations on a stream representing a two

dimensional matrix to be filtered. Despite these similarities, these are actually very

different benchmarks because each kernel comes from a different part of the process and,

most importantly, has a separate variety of control flow.

49

6. Results

This section presents the results of the benchmarks discussed in section 0 on the

architectures from section 0 followed by a comparison of the architectures.

6.1 Optimized Mosaic 1.0 Performance

The first area to examine is the performance of the Macah / SPR flow on the optimized

Mosaic 1.0 architecture. The architecture used to run these benchmarks is similar, but not

identical to that described in [Van Essen10]. The discrepancy is due to the rotating

register files and some of the distributed registers in the PEs being replaced with retiming

chains. Although no performance numbers are provided directly, the energy difference

between these approaches is between 5 and 10 percent. These results are close enough,

that as long as the reader bears them in mind, the overall conclusions should not be

skewed by the lack of a rotating register file.

These results are based on running each benchmark with multiple seeds on Mosaic 1.0

clusters ranging in size from 1 to 16. These clusters use only core tiles, not edge tiles. In

the case where different seeds produce different results, only the best result is used. As

described in 4.1, C-based Macah simulations are first used to determine the iteration

count for each benchmark followed by determining the final II using SPR. These initial

results can be seen in Table 6, assuming no particular cluster constraints.

Benchmark Input Size Iterations
Minimum

Recurrence II
Minimum

Resource II

Convolution 128 x 128 17,689 3 4

Bayer
Horizontal

128 x 128 17,161 7 5

DWT Left
Vertical Mirror

256 entries,
64 per stripe

35,029 2 1

Table 6. Optimized Mosaic 1.0 cluster count independent performance results

These results alone, without resource constrained IIs, don’t provide very much useful

information. It is worth noting that the iterations are very similar to the expected results

(128 x 128 = 16384) and all of the minimum IIs are reasonably small. The true minimum

II is the larger of the recurrence and resource minimums. The recurrence minimum II, as

50

discussed, is essentially the length of the longest dependence loop in the program’s DAG.

The minimum resource II is determined by shared resources that must be time

multiplexed, in situations where more resources could not improve performance due to

communication time or limited routing resources.

Figure 25 shows the II vs. cluster count for each benchmark. Note that as expected, the II

decrease as the number of available clusters increases, approaching a minimum at around

8 clusters for most of the benchmarks. For more than 8 clusters, the II actually increase,

perhaps as routing the more spread out placement becomes difficult. For more clusters,

many more runs are required to overcome random noise as well. It’s worth noting that the

II is consistently somewhat high for 16 clusters (except in the DWT case) across many

SPR runs with different seeds, so this probably is not just a case of randomly selecting a

worse mapping of the program to the resources leading to a higher II. In the case of the

convolution benchmark, the FOR loops imply a large amount of parallel computation.

The inability to sufficiently serialize this arithmetic and memory access may be

responsible for the failure to route on 1 or 2 clusters. The Bayer filter kernel very quickly

approaches its minimum recurrence II when running on 2 or more clusters. This is not

surprising because although it has a large number of conditional statements, all of them

are very small and some perform similar work. Finally, the DWT mirror kernel follows

the expected pattern of reaching an II close to its minimum at 4 clusters. It is worth

noting here that there is likely another constraint, since the minimum achieved II of 5 is

more than double the theoretical minimum of 2.

51

Figure 25. II vs. clusters. Convolution was not routable on less than 4 clusters

6.2 Custom Trimaran Processor Performance

The single-cycle custom Trimaran processor is much more of a proof of concept for

Verilog code emission than an architectural benchmark. In fact, since it is specifically

designed to perform all Trimaran instructions in one cycle, performance is identical to the

Trimaran baseline for any given benchmark. The results of the benchmarks in Trimaran,

after running the Macah to Trimaran C script, are provided in Table 7.

Benchmark Input Size Cycles Optimized

Convolution 128 x 128 6,238,595

Bayer
Horizontal

128 x 128 402,240 67,220

DWT Left
Vertical Mirror

256 entries,
64 per stripe

143,693

Table 7. Single-cycle custom Trimaran processor benchmark results

Although these results are most interesting when compared to Mosaic below, there are

some points that stand out. The Convolution kernel is clearly extremely expensive in

Trimaran, which is not surprising since this processor is single issue and the kernel

involves a large amount of arithmetic that can easily be parallelized. The results for the

DWT kernel are much better, as is expected. Although there are many loops in this

0

5

10

15

20

25

30

1 2 4 8 16

In
it

ia
ti

o
n

 In
te

rv
al

of Clusters

Convolution

Bayer

DWT

52

kernel, they are not nested, producing a very serial kernel. There is also very little

computation inside each loop. The Bayer kernel performs very badly in Trimaran.

6.2.1 Bayer Kernel Optimization

Given that the Bayer kernel is made up of a single large conditional it should perform

reasonably well as a C program, but it does not do so. This is because the conversion

from highly optimized Macah code to Macah simulation C and finally to Trimaran C

does not always result in the most efficient Trimaran implementation of a program. This

leads to the valuable insight that when implementing the same kernel in Trimaran and

Macah, it may be worth writing each version separately in the manner best suited to the

execution model.

The optimized Bayer code is available in Appendix A. In the Macah version, the two

outer loops iterate over all columns for each row. Inside the column calculation, special

conditional logic handles the first three and final three columns. The essence of the

optimization is to remove these conditionals, and simply perform the special operations

from inside the row loop prior to entering the column loop. The serial nature of this

implementation makes it very well suited to Trimaran. Removing the many conditional

checks of the large if-else statement greatly improves Trimaran performance, since

now only the two for loops require branches. This sort of optimization could be

performed by a more advanced compiler that fully analyses the code inside the loop. All

optimizations that Trimaran supports are performed on the converted Macah code, but

this particular optimization appears to be beyond the scope of the current compiler.

For the Bayer kernel, the functionally identical version written specifically for Trimaran

performs 6x better (the optimized column in Table 7). Furthermore, given that automatic

conversion of Macah kernels to Trimaran ones does not always produce good results, it

may be that a designer should implement most kernels in the language best suited to the

application initially and only use the automatic conversion scripts sparingly. Obviously,

this advice does not apply in cases where the performance of the Trimaran kernel is

completely irrelevant.

53

6.3 Consensus Architecture Performance

Although there is no implementation to benchmark, the results from the single-cycle

Trimaran processor and Mosaic 1.0 can be extrapolated to the consensus architecture. In

the case of CGRA execution mode performance, this is very easy. As discussed in 3.4,

the CGRA performance of the consensus architecture should be identical to the optimized

Mosaic 1.0, with the exception of power, not analyzed here. This only leaves Trimaran

mode.

The consensus architecture executes most Trimaran instructions in a single cycle. The

exceptions modeled here are branch instructions, which require two cycles, and multiply

instructions, which occupy a U-FU for two cycles. For more information see 3.4. When

accounting for this extra execution time, the results in Table 7 change slightly to those

seen in Table 8. The impact of these changes will be examined in more detail in the

following section.

Benchmark Input Size Branch Multiply Total

Convolution 128 x 128 540,282 435,600 7,214,477

Bayer
Horizontal

128 x 128 117,280 0 519,520

DWT Left
Vertical Mirror

256 entries,
64 per stripe

34,988 0 178,681

Table 8. Consensus architecture Trimaran performance

6.4 Analysis of Results

When looking at the consensus architecture performance there are two important aspects

to examine. First, it is possible that some kernels will perform better overall in Trimaran

mode. These kernels have a minimum II (either resource or recurrence) such that they

will always be slower in CGRA mode, no matter how many clusters they are executed

on. The second class of kernels may be able to perform faster on the consensus

architecture when run as CGRA kernels, but this may require many clusters. In this case,

analysis of performance criticality, free clusters on the array and energy usage would be

required to determine which execution mode is best for that kernel.

54

For this second class of applications, it is useful to look at performance per cluster as a

way to compare Trimaran and Macah / SPR execution resources. This measure is simply

the execution cycles of the kernel multiplied by the number clusters it is executed on.

Another way to think of this is as the total number of issues slots across all clusters used

during execution. This metric can be considered for any number of clusters, but it will be

most useful to use the best case for Mosaic here. Finally, it’s important to observe that

even if Trimaran is best for this metric that does not always mean a kernel should be

executed in Trimaran mode. There could be cases where a kernel is the critical path in a

multi-kernel application, in which case it should be executed as fast as possible regardless

of the number of clusters required. Similarly, for non-performance critical kernels

Trimaran execution on a single kernel may be desirable even if it is much slower in order

to save energy and array resources.

Before examining CGRA execution mode, it is worth looking at the performance penalty

of going from single-cycle instructions to some multi-cycle instructions. This data is

available in Table 9. Of these benchmarks, only the convolution features multiplication.

Surprisingly, despite the multiplication, it loses the least performance of all the kernels,

with the consensus architecture performing at 86.5% percent the speed of the custom

processor. This is due to the fact that the convolution has far fewer branch instructions,

about 9% instead of 25% or 30%, when compared to the other kernels. For the Bayer and

DWT kernels, the performance is reasonable close, ranging from 77.4 to 80.5%. Some of

this performance loss could be mitigated by VLIW execution.

Benchmark Single-cycle Multi-cycle Performance

Convolution 6,238,595 7,214,477 86.5%

Bayer
Horizontal

402,240 519,520 77.4%

Optimized
Bayer

67,220 83,474 80.5%

DWT Left
Vertical Mirror

143,693 178,681 80.4%

Table 9. Trimaran performance loss in going from single-cycle execution to consensus architecture

55

Before these Trimaran results can be compared to CGRA mode results, the total number

of issues slots used across all clusters must be compared as described above. Figure 26

shows the number of issue slots used for each case and these results multiplied across all

clusters in use can be seen in Figure 27. Note that for every kernel the total time to

completion is lowest for 8 or 16 clusters. This is not surprising as all of these tasks have

sufficient parallelism available that performance can improve with more resources, and

only the Bayer filter task ever reaches its minimum II. However, the last 4 or 8 clusters

added only produce increment gains as the second chart shows. The total number of issue

slots used across all clusters increases significantly after 2 or 4 clusters. This suggests

that if the CGRA can be filled, only dedicating 2 to 8 clusters to any of these kernels

might result in the best total performance per watt.

Figure 26. Execution cycles until kernel is completed vs. number of clusters used in CGRA mode

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 2 4 8 16

C
G

R
A

 C
yc

le
s

of Clusters

Convolution

Bayer

DWT

56

Figure 27. Total issue slots summed across all clusters executing a given CGRA mode kernel

Table 10 compares Trimaran performance on the consensus architecture to the best

CGRA performance from Figure 26 for each benchmark. In the case of the convolution,

the CGRA implementation is about 82 times faster. This is not surprising given the

complete lack of control flow and large quantity of parallelizable ALU operation in the

benchmark. In other words, this is an ideal case for CGRA execution. The Bayer filter is

a much more interesting case. On 8 clusters, CGRA execution is 4.3 times faster for the

direct Macah to Trimaran Bayer horizontal mirror kernel. However, the hand written

Trimaran C kernel is actually faster than the CGRA version, executing in about ⁄ of

the time. This highlights the significant issues encountered when running a heavily

optimized Macah kernel directly in Trimaran. However, this hand tuning will only work

for kernels with significant amounts of control and serial work. No hand tuning of the C

code is going to improve the performance of the convolution kernel by a factor of two in

Trimaran, let alone make it better than the SPR results. Finally, the DWT kernel is only

about 2% faster in on the CGRA, but it requires 16 clusters to reach this level of near-

parity.

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 4 8 16

To
ta

l I
ss

u
e

 S
lo

ts
 A

cr
o

ss
 A

ll
C

lu
se

te
rs

of Clusters

Convolution

Bayer

DWT

57

Benchmark Trimaran Clusters CGRA Cycles Runtime

Convolution 7,214,477 8 88,445 81.6 x

 4 159,201 45.3 x

Bayer
Horizontal

519,520 8 120,127 4.32 x

 1 377,542 1.38 x

Optimized
Bayer

83,474 8 120,127 0.695 x

 1 377,542 0.221 x

DWT Left
Vertical Mirror

178,681 16 175,145 1.02 x

 1 945,783 0.189 x

Table 10. Absolute Trimaran and CGRA performance, for the fewest number of cycles and clusters

It should be noted here that these results are in no way intended to suggest that in most,

or even many, cases Trimaran can perform on par with Macah and SPR. Both the Bayer

and DWT mirroring kernels used here are not the main computation kernels for these

applications. Instead, they are kernels selected particularly for their control-heavy

properties. The Bayer kernel makes use of a conditional block with many mutually

exclusive options, and the DWT kernel has a series of loops that are fundamentally serial.

Both of these attributes are unusual, and it is reasonable to expect that for most

application targeting a CGRA, the convolution kernel is much more typical. This kernel

represents the computation heavy kernel that will frequently be the performance

bottleneck for applications on Mosaic. Clearly these kernels are not well suited to

Trimaran, but most multi-kernel applications will also have some kernels like the other

two, where Trimaran could provide significant improvement. Generally, the control

heavy kernels can be run with Trimaran, while SPR should be used for the primary

computation task with a high degree of data-parallelism. If the application does not have

any data-parallel kernels that perform significantly better in SPR, a CGRA may not be

the correct target platform.

58

Given that some kernels do run well in Trimaran, and other kernels may not perform as

well but may not be performance critical, it is appropriate to examine the performance

per cluster of a Trimaran kernel. Significant energy and area savings can be achieved due

to Trimaran using only one cluster for each kernel, and as Table 10 shows the

performance loss is not always significant. This data can be found in Table 11. For this

table, the number of clusters that consumes the fewest total issue slots from Figure 27 is

used. The best performance per cluster tends to occur with fewer clusters than the best

overall performance. One possible explanation is that there are diminishing returns from

adding more hardware resources to a problem if there is no more parallelism available for

SPR to exploit. Alternatively, the increased communication delay between more distant

clusters may limit the benefits of using their resources at all.

Benchmark Trimaran Clusters CGRA Total Runtime

Convolution 7,214,477 4 636,804 11.3 x

Bayer
Horizontal

519,520 2 274,576 1.89 x

Optimized
Bayer

83,474 2 274,576 0.304 x

DWT Left
Vertical Mirror

178,681 4 840,696 0.213 x

Table 11. Performance of Trimaran and CGRA execution scaled to the number of clusters used

Weighing the CGRA results by the number of clusters used paints a much better picture

for Trimaran. These numbers are only meaningful if CGRA resources are scarce, in

which case this comparison can give some idea of performance per cluster dedicated to

the kernel. For the convolution, Macah and SPR on 4 clusters are still much faster than

Trimaran (about 45.3 times) but this is only 11.3 times faster per cluster. Obviously, for

parallel computation heavy kernels like this, the CGRA execution model is more efficient

no matter what metric is used. The picture changes a little with the Bayer filter kernel,

where the direct execution of the Macah-to-Trimaran C is only 1.89 times more efficient

on a per cluster basis, and the optimized version runs much faster on Trimaran. This

result would be even more skewed towards Trimaran, but the CGRA version only

requires twice the hardware resources. The result is even more extreme in the DWT case,

where CGRA execution is most efficient on 4 clusters. In this case, Trimaran is 4.7 times

59

more efficient per cluster. This result is probably due to the very high level of wasted

parallel work that the DWT mirroring kernel requires under Macah and SPR.

Overall, these results show that in cases where Trimaran is well-suited for the kernel’s

control-heavy work load, the work done by a Trimaran cluster compared to one running

part of a CGRA kernel is greater than the speedup number might indicate. It is important

not to confuse these numbers with the actual performance relationship when the kernel is

run on many clusters. It is simply a way of measuring the potential cluster utilization

advantage of Trimaran execution. However, in the case where many independent data

streams are being processed these numbers could be translated into performance gains

simply by instantiating the Trimaran kernel many times.

60

7. Conclusion and Future Work

The CGRA execution model, as implemented in Mosaic 1.0, has been shown to provide

very energy efficient execution for a large number of parallel applications. However, its

strict modulo schedule and lack of control flow, other than predication, create a class of

control-heavy applications where performance suffers significantly. This work suggests

an alternative C compilation flow based on the Trimaran compiler to address these cases.

A tool flow that maps Trimaran programs to a single-cycle custom Trimaran processor,

built out of Mosaic components, demonstrates the feasibility of emitting Verilog

configuration code from Trimaran.

This work also proposes a consensus architecture capable of executing both CGRA and

Trimaran mode kernels. This architecture is designed to have reasonable Trimaran

performance without incurring any performance penalty in CGRA mode. Additionally,

the area and energy overhead was minimized as much as possible during the design. This

resulted in a feasible architecture that was capable of single-cycle performance for most

Trimaran instructions and required no more than two cycles to execute any instruction.

Although the consensus architecture was found to take more than 80 times as long to

execute a highly parallel kernel in Trimaran mode, when compared to CGRA mode, other

more control-heavy kernels run as fast or faster using Trimaran. Furthermore, Trimaran is

significantly more efficient when it comes to Mosaic clusters consumed, since all kernels

execute on a single cluster. Given the metric of total issue slots spent computing across

all clusters, Trimaran is as much as 4.7 times as efficient for a control-heavy serial kernel.

This suggests that a consensus architecture which provides a best of both worlds scenario

in which each kernel runs under the execution model best suited for it could provide

significant performance and energy gains over the current CGRA mode only Mosaic

architecture and tool flow.

Given these results, users of Mosaic may find Trimaran compilation advantageous in any

control-heavy scenario. Code that has large conditional blocks will tend to fall into this

category. Applications with many small conditional blocks will also fit this model,

whether these blocks are formed by a case statement, a standard if statement, or many

61

nested loops. In addition to these cases, code with less control that is not performance

critical can also benefit from Trimaran execution. This is illustrated to some degree by

the issue slots metric, but could be extended further to any kernel off the critical path.

These kernels can all be executed on a single cluster in Trimaran mode, which will leave

more clusters free for parallel execution of other kernels as well as potentially consuming

less energy. Depending on the sophistication of the Mosaic floor planner, this may prove

to be a better solution than relying on it to limit these kernels to a single cluster when

compiled using Macah and SPR.

Future work on this project could include implementations of the consensus architecture

and optimizations to Trimaran’s scheduling algorithms to take advantage of execution on

that architecture. Furthermore, the consensus architecture could be made more efficient if

the Trimaran compiler was able to make use of the additional registers available in the

fabric. This work sufficiently demonstrates the feasibility and performance benefits of the

hybrid approach, as well as providing a design outline; however, further characterization

of the energy and area overhead of the consensus architecture would be required before a

specific implementation can be settled on.

62

References

[1] David Manners. (2010, May) FPGA Market Soaring To $4bn In 2010, says

Gavrielov. Article. [Online].

http://www.electronicsweekly.com/Articles/19/05/2010/48677/FPGA-Market-

Soaring-To-4bn-In-2010-says-Gavrielov.htm

[2] Infiniti Research Limited. (2011, March) Business Wire. [Online].

http://www.businesswire.com/news/home/20110401005410/en/Research-Markets-

Global-Field-Programmable-Gate-Array-FPGA

[3] Cao Liang and Xinming Huang, "SmartCell: A power-efficient reconfigurable

architecture for data streaming applications," in IEEE Workshop on Signal

Processing Systems, 2008, Washington, DC, 2008, pp. 257-262.

[4] Altera. (2011, April) Accelerating DSP Designs with the Total 28-nm DSP

Portfolio. White Paper. [Online]. www.altera.com/literature/wp/wp-01136-stxv-

dsp-portfolio.pdf

[5] Xilinx. (2011, October) 7 Series DSP48E1 Slice. User Guide. [Online].

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48

E1.pdf

[6] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J. Kurdahi, Nader Bagherzadeh,

and Eliseu M. C. Filho, "MorphoSys: An Integrated Reconfigurable System for

Data-Parallel Computation-Intensive Applications," IEEE Transactions on

Computers, vol. 49, no. 5, pp. 465-481, 2000.

[7] Francisco Barat, Murali Jayapala, Tom Vander Aa, Rudy Lauwereins, Geert

Deconinck, and Henk Corporaal, "Low Power Coarse-Grained Reconfigurable

Instruction Set Processor," Field Programmable Logic and Application, vol. 2778,

pp. 230-239, 2003.

[8] Mike Butts, "Synchronization through Communication in a Massively Parallel

Processor Array," IEEE Micro, vol. 27, no. 5, pp. 32-40, Sept.-Oct. 2007.

[9] UW Embedded Research Group. (2006, June) Mosaic. [Online].

http://www.cs.washington.edu/research/lis/mosaic/index.shtml

[10] B. Van Essen et al., "Static versus scheduled interconnect in Coarse-Grained

Reconfigurable Arrays," in International Conference on Field Programmable

Logic and Applications, 2009, Prague, 2009, pp. 268-275.

[11] Brian Van Essen, "Improving the Energy Efficiency of Coarse-Grained

http://www.electronicsweekly.com/Articles/19/05/2010/48677/FPGA-Market-Soaring-To-4bn-In-2010-says-Gavrielov.htm
http://www.electronicsweekly.com/Articles/19/05/2010/48677/FPGA-Market-Soaring-To-4bn-In-2010-says-Gavrielov.htm
http://www.businesswire.com/news/home/20110401005410/en/Research-Markets-Global-Field-Programmable-Gate-Array-FPGA
http://www.businesswire.com/news/home/20110401005410/en/Research-Markets-Global-Field-Programmable-Gate-Array-FPGA
www.altera.com/literature/wp/wp-01136-stxv-dsp-portfolio.pdf
www.altera.com/literature/wp/wp-01136-stxv-dsp-portfolio.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.cs.washington.edu/research/lis/mosaic/index.shtml

63

Reconfigurable Arrays," University of Washington, Seattle, Ph.D. Thesis 2010.

[12] B. Ylvisaker et al., "Macah: A "C-Level" Language for Programming Kernels on

Coprocessor Accelerators," University of Washington, Seattle, Technical Report

2008.

[13] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and S. Hauck,

"SPR: An Architecture-Adaptive CGRA Mapping Tool," in ACM/SIGDA

Symposium on Field-Programmable Gate Arrays, 2009, pp. 191-200.

[14] Stephen Friedman, "Resource Sharing in Modulo-Scheduled Reconfigurable

Architectures," University of Washington, Seattle, PhD Thesis 2011.

[15] Robin Panda and Scott Hauck, "Scheduled and Dynamic Communication in a

Coarse Grained Reconfigurable Array," in IEEE Symposium on Field-

Programmable Custom Computing Machines, 2011.

[16] Lakshmi N. Chakrapani, John Gyllenhaal, Wen-mei W. Hwu, Scott A. Mahlke,

Krishna V. Palem, and Rodric M. Rabbah, "Trimaran: An Infrastructure for

Research in Instruction-Level Parallelism," Lecture Notes in Computer Science,

vol. 3602, pp. 32-41, 2005.

[17] Trimaran. (2007, December) Trimaran: A Compiler and Simulator for Research on

Embedded and EPIC Architectures. PDF. [Online].

http://www.trimaran.org/docs/trimaran4_manual.pdf

[18] Yogesh Chobe, Bhagi Narahari, Rahul Simha, and Weng-Fai Wong, "Tritanium:

Augmenting the Trimaran Compiler Infrastructure To Support IA-64 Code

Generation," The George Washington University, Washington DC, EPIC-1

Workshop 2001.

[19] L.N. Chakrapani, W.F. Wong, and K.V. Palem, "TRICEPS: Enhancing the

Trimaran Compiler Infrastructure To Support StrongARM Code Generation,"

Georgia Institute of Technology, Atlanta, Technical Report 2001.

[20] Ming Yan, Ziyu Yang, Liu Yang, Lei Liu, and Sikun Li, "Practical and Effective

Domain-Specific Function Unit Design for CGRA," Lecture Notes in Computer

Science, vol. 6786, pp. 577-592, 2011.

[21] Bhuvan Middha, Anup Gangwar, Anshul Kumar, M. Balakrishnan, and Paolo

Ienne, "A Trimaran based framework for exploring the design space of VLIW

ASIPs with coarse grain functional units," in Proceedings of the 15th international

symposium on System Synthesis, Kyoto, 2002, pp. 2-7.

http://www.trimaran.org/docs/trimaran4_manual.pdf

64

[22] Steven M. Rubin. (2010, December) Electric User's Manual. [Online].

http://www.staticfreesoft.com/jmanual/

[23] James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt, "Overlapped loop support

in the Cydra 5," in ASPLOS-III Proceedings of the third international conference

on Architectural support for programming languages and operating systems, New

York, 1989, pp. 26-38.

[24] Vinod Kathail, Michael S. Schlansker, and B. Ramakrishna Rau, "HPL-PD

Architecture Specification: Version 1.1," Hewlet-Packard Compiler and

Architecture Research, Technical Report HPL-93-80, 2000.

[25] Bryce E Bayer, "Color imaging array," 3971065, July 20, 1976.

[26] Ingrid Daubechies, "The Wavelet Transform, Time-Frequency Localization and

Signal Analysis," IEEE Transactions on Information Theory, vol. 36, no. 5, pp.

961-1005, September 1990.

[27] Tom Fry, "Hyperspectral Image Compression on Reconfigurable Platforms,"

University of Washington, Seattle, Master's Thesis 2001.

http://www.staticfreesoft.com/jmanual/

65

Appendix A

2D Convolution Macah Source Code

 task filler (in_port inStrm, out_port midStrm) {

 int i,j,k,l;

 int strip[K_S+1][Z_W];

 int result;

 int conv_kern[K_S][K_S];

 int sliding_win[K_S][K_S+1];

 for(i=0;i<K_S;i++){

 for(j=0;j<K_S;j++){

 conv_kern[i][j]=i+j;

 }

 }

 trimaranKernelStart();

 kernel fillk {

 for(i=0;i<Z_H;i++){

 for(j=0;j<Z_W;j++){

 strip[K_S][j] <? inStrm;

 result=0;

 FOR(k=0;k<K_S;k++){

 sliding_win[k][K_S]=strip[k+1][j];

 FOR(l=0;l<K_S;l++){

 result+=sliding_win[k][l+1]*conv_kern[k][l];

 sliding_win[k][l]=sliding_win[k][l+1];

 }

 strip[k][j]=strip[k+1][j];

 }

 midStrm <! result;

 }

 }

 trimaranKernelEnd();

 }

Bayer Filter Macah Source Code

 task filler (in_port inStrm, out_port midStrm) {

 int tmpRow[2];

 int col, row;

 int tmp;

 trimaranKernelStart();

 kernel fillk {

 for (row = -1; row <= HEIGHT; row++) {

 for (col = -1; col <= WIDTH; col++) {

 //remember first two collumns

 if (col == -1) {

 tmpRow[0] <? inStrm;

 tmpRow[1] <? inStrm;

 midStrm <! tmpRow[1];

 //don't skip col 0 and last

66

 } else if (col == 0 || col == WIDTH) {

 midStrm <! tmpRow[0];

 //repeat col 1 and second to last

 } else if (col == 1 || col == (WIDTH - 1)) {

 midStrm <! tmpRow[1];

 //remember last two collumns

 } else if (col == (WIDTH - 2)) {

 tmpRow[0] <? inStrm;

 tmpRow[1] <? inStrm;

 midStrm <! tmpRow[0];

 //normal collumns

 } else {

 tmp <? inStrm;

 midStrm <! tmp;

 }

 }

 }

 }

 trimaranKernelEnd();

 }

Discrete Wavelet Transform Macah Source Code

 task filler (in_port inStrm, out_port midStrm) {

 int h;

 int i;

 int j;

 int offset;

 int data[MAX_COEF_COUNT * HALF_STRIPE_WIDTH];

 trimaranKernelStart();

 kernel fillk {

 for (h = 0; h < SIZE / STRIPE_WIDTH; h++)

 {

 //read in necessary mirror data

 for (i = 0; i < (MAX_COEF_COUNT * HALF_STRIPE_WIDTH); i++)

 {

 data[i] <? inStrm;

 }

 //write mirrored data [3 2 | 1 2 3...]

 for (i = MAX_COEF_COUNT - 1; i > 0; i--)

 {

 offset = i * HALF_STRIPE_WIDTH;

 for (j = 0; j < HALF_STRIPE_WIDTH; j++)

 {

 midStrm <! data[offset + j];

 }

 }

 for (i = 0; i < (MAX_COEF_COUNT * HALF_STRIPE_WIDTH); i++)

 {

 midStrm <! data[i];

 }

67

 //write standard data

 for (i = 0; i < (SIZE - MAX_COEF_COUNT) * HALF_STRIPE_WIDTH;

i++)

 {

 data[0] <? inStrm;

 midStrm <! data[0];

 }

 }

 }

 trimaranKernelEnd();

 }

Bayer Filter Optimized Trimaran Source Code

int main (int argc, char *argv[])

{

 volatile int inStrm ;

 volatile int midStrm ;

 int tmpRow[2] ;

 int col ;

 int row ;

 int tmp ;

 for (row = -1; row <= HEIGHT; row++) {

 tmpRow[0] = inStrm;

 tmpRow[1] = inStrm;

 midStrm = tmpRow[1];

 midStrm = tmpRow[0];

 midStrm = tmpRow[1];

 for (col = 2; col < (WIDTH - 2); col++) {

 tmp = inStrm;

 midStrm = tmp;

 }

 tmpRow[0] = inStrm;

 tmpRow[1] = inStrm;

 midStrm = tmpRow[0];

 midStrm = tmpRow[1];

 midStrm = tmpRow[0];

 }

}

	List of Figures
	List of Tables
	1. Background
	1.1 Highly Parallel Architectures
	1.1.1 CGRA and MPPA Execution Models

	1.2 Mosaic 1.0 Architecture
	1.3 Mosaic 1.0 Toolchain
	1.3.1 Macah
	1.3.2 SPR

	1.4 Mosaic 2.0
	1.5 Trimaran

	2. Software Design
	2.1 Macah Modifications and Scripting
	2.2 Trimaran Modifications

	3. Architecture Design
	3.1 Custom Trimaran Processor
	3.2 Custom Trimaran Processor and Mosaic 1.0 Comparison
	3.3 Consensus Architecture Design
	3.3.1 PC and Modulo Counter
	3.3.2 Branches
	3.3.3 ALUs, General Purpose Register Files and Constant Generation

	3.4 Consensus Architecture Analysis

	4. Modeling and Methodology
	4.1 Testing Methodology
	4.2 Consensus Architecture Performance Estimation

	5. Benchmarks
	5.1 2D Convolution
	5.2 Bayer Filter
	5.3 Discrete Wavelet Transform

	6. Results
	6.1 Optimized Mosaic 1.0 Performance
	6.2 Custom Trimaran Processor Performance
	6.2.1 Bayer Kernel Optimization

	6.3 Consensus Architecture Performance
	6.4 Analysis of Results

	7. Conclusion and Future Work
	References
	Appendix A
	2D Convolution Macah Source Code
	Bayer Filter Macah Source Code
	Discrete Wavelet Transform Macah Source Code
	Bayer Filter Optimized Trimaran Source Code

