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Abstract 

 

Architecture and Compiler Support for a VLIW Execution Model on a Coarse-Grained 

Reconfigurable Array 

 

Nathaniel McVicar 

 

Chair of the Supervisory Committee: 

Professor Scott A. Hauck 

Electrical Engineering 

 

Architectures that expose parallelism to the user or the tools, such as Massively Parallel 

Processor Arrays (MPPAs), Coarse-grained Reconfigurable Arrays (CGRAs), and Field-

programmable Gate Arrays (FPGAs), are popular, in part, due to their efficiency for 

solving highly data-parallel problems. Unfortunately, the more parallelism these 

architectures expose, the less efficient they tend to be for control heavy or serial 

workloads. This work proposes an alternative architecture and tool flow for the Mosaic 

CGRA. This flow, based on the Trimaran compiler, introduces minor hardware 

modifications that allow CGRA clusters to act as simple single-issue in-order processors. 

In processor mode, the performance per issue slot of a control-heavy kernel can be 

improved by as much as 4.7 times. 
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1. Background 

1.1 Highly Parallel Architectures 

Field Programmable Gate Arrays (FPGAs) are currently among the most widely adopted 

programmable logic devices, comprising an estimated market of $4 billion in 2010 

[Manners10] and $5.6 billion by 2014 [Infiniti Research Limited11]. Part of the 

popularity of FPGAs stems from the fact that they are powerful devices that can often 

come within an order of magnitude of ASIC performance, without the high initial cost. 

However, FPGAs perform logical operations using reconfigurable LookUp Tables 

(LUTs) with single bit outputs. In other words, they perform all operations at the bit-level 

despite the fact that most applications do their heavy lifting using 32 or 64-bit word data-

paths. This mismatch leads to an inherent inefficiency in FPGAs, particularly in terms of 

power consumed [Liang08]. 

Modern FPGAs make use of dedicated word-wide arithmetic units (Altera’s Variable-

Precision DSP Blocks [Altera11] and Xilinx’s DSP48E1 slices [Xilinx11]) to alleviate 

this problem to a degree, but the number of these units is very small compared to the total 

size of the FPGA. Instead, a number of other highly parallel architectures that perform 

primarily word-wide operations have gained significant popularity in recent years. These 

include Coarse Grained Reconfigurable Arrays (CGRAs), Massively Parallel Processor 

Arrays (MPPAs) and even General Purpose Graphics Processing Units (GPGPUs). 

CGRAs are typically made up of a large number of word based functional units (FUs), 

each capable of performing basic ALU operations [Singh00]. Functional units will often 

contain small local memories (such as register files) and larger distributed memories may 

also be available, as in FPGAs. The interconnect network that allows CGRA components 

to communicate is also word based. CGRAs may contain some one-bit structures, such as 

those required to support predicated operations, but the fact that they make use of 

dedicated word-level hardware throughout generally makes them more power efficient 

than FPGAs  [Barat03].  
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Figure 1. Generic CGRA architecture with a mesh interconnect 

Although CGRAs do not suffer from the bit-level inefficiency of FPGAs, their 

performance is still limited in some cases by the scheduling techniques they use. Instead 

of employing the flexible schedule of a processor, CGRA architectures frequently use 

scheduling techniques where a resource has a fixed function for a given time slice 

independent of the input data. In contrast with this, MPPAs are constructed from a large 

number of simple general purpose processor cores, sometimes called processing elements 

(PEs). The PEs typically communicate using a routing network over which they can send 

data to each other. This makes it very easy to map individual components of an 

application to each processor on the MPPA, but it can also make it more difficult to 

exploit the application’s inherent parallelism across the many cores. 
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Figure 2.  MPPA architecture 

1.1.1 CGRA and MPPA Execution Models 

As shown by Figure 1 and Figure 2, the architecture of CGRAs and MPPAs are fairly 

similar at a macro level. The most significant difference between the two lies in the 

execution models that they employ. CGRA configuration is somewhat similar to that of 

an FPGA, in that each functional unit and interconnect contains a configuration memory. 

However, unlike FPGAs, CGRAs are frequently time multiplexed. This means that each 

FU can be configured to perform different operations at different times. To prevent the 

FUs from becoming excessively complex, a fixed schedule is typically used. One 

example of this technique is a modulo schedule in which the same sequence of operations 

is executed in the same order repeatedly until the CGRA is reprogrammed. The length of 

the schedule, before it repeats, is called the Initiation Interval (II). 

 

Figure 3. A simple example program 
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The simple program in Figure 3, which consists of a loop that adds, subtracts and 

multiplies, could be mapped to a single functional unit. The arrows in this figure 

represent data flow, and indirectly dependencies. The subtraction operation makes use of 

the result of the add, so it must be run after the add. The discussion of pipelining below 

will make the significance of this clearer. Ignoring I/O, this graph would result in an II of 

3, where the functional unit adds on the first cycle, subtracts on the second cycle and 

multiplies on the third cycle. Through this use of time multiplexing, a single resource is 

able to perform three different operations without any control logic. 

Since the modulo schedule doesn’t allow for any data-dependent changes to the 

operations performed during runtime, CGRAs often support predication. When an 

operation is predicated, it will only execute if the predicate operand is true. Otherwise, 

the operation will behave like a no-op. Operations are also provided to set predicate bits 

based on comparisons. In this way, operations can be conditionally executed despite the 

compile-time fixed schedule, as in the following example: 

need_jump <= !condition 

jump to loop_end: if need_jump 

add a, b 

loop_end: 

becomes: 

predicate <= condition 

(if predicate) add a, b 

(if ~predicate) nop 

Notice that the predicated execution example doesn’t require any expensive branch 

operations, and the same set of instructions are executed whether or not the condition is 

true. 
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Figure 4. Example of pipelining for two FUs with an II of 2 

Because the schedule of every functional unit is known at compile time, it is relatively 

easy for CGRA tools to exploit the parallelism in an application by spreading it across 

many FUs. The tools can pipeline execution across many FUs as well. Figure 4 is an 

example of pipelined execution. Here, some data must be read and then used for an add 

and xor operations before being written back. Assuming no dependencies between 

iterations of the loop, and two available functional units, the first one can perform the 

read and the add. At this point, the result of the add is ready for the xor operation. If this 

operation and the subsequent write are performed on the second functional unit, the first 

can begin a new read at the same time, as in cycle 2. Notice that the latency to complete 

an entire loop is still four cycles, but once the pipeline is full, a new read can be 

performed every two cycles. Through pipelining, in this example, double the performance 

of a single FU was achieved using double the hardware. Unfortunately, for workloads 

such as those with many branches or long sections of code that run infrequently, 

predication can lead to very slow execution and pipelining will may not be able to hide 

the delay. In these cases, the number of no-ops can outnumber the useful instructions. 

In contrast to CGRA functional units, the processing elements of MPPAs typically share 

many of the characteristics of general purpose processors. This includes the ability to 

execute sequential code, stored in an instruction memory, that may contain branches. 

This execution model requires a program counter (PC) to store the address of the 

instruction currently executing. Although this model is very powerful, it does have some 

limitations. First, branches tend to be costly both in terms of the time they take to execute 

and the hardware resources required to help them execute more efficiently. 

Phase FU 1 FU 2 Iteration 

0 read [0]  0 

1 add [0]   

0 read [1] xor [0] 1 

1 add [1] write [0]  

0 read [2] xor [1] 2 

1 add [2] write [1]  
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More importantly, it is much more difficult for a compiler to create code to execute in 

parallel on many MPPA cores. In the CGRA, many FUs running on a modulo schedule of 

the same length can work together to execute a large number of arithmetic or other 

operations, as described above. Through pipelining these operations can easily make use 

of data from a different FU, and the temporal relationship can be statically determined by 

the compiler. Unfortunately, MPPA cores cannot be as tightly coupled. Since data-

dependent branches make it difficult for the compiler to predict the relationship between 

the program counters of two separate PEs, MPPAs have to rely on more heavyweight 

inter-core communication mechanisms such as message passing. 

For a concrete example of this issue, consider the small loop from Figure 4. On a CGRA 

using modulo scheduling it was possible to achieve a speedup of 2x by using two FUs. 

However, due to communication penalties this would not be possible on a basic MPPA, 

since a send operation would be required to move data from one PE to the other. A 

receive operation would then be required at the second PE to get the data. This would 

result in the ability to accept new data every three cycles once pipelined, instead of every 

two cycles as was possible on the CGRA. Additionally, the MPPA implementation would 

be slowed down further by the time required for the branch operation at the end of each 

loop iteration. Some more advanced MPPA architectures, such as Ambric [Butts07], 

provide features to get around these limitations. Ambric provides zero overhead loop 

operations, and is able to send results out to the communication fabric as part of a regular 

ALU operation. In the case of an MPPA with those capabilities, the performance 

advantage will go to the architecture whose tools can extract the most parallelism. In 

these situations the simpler CGRA schedule becomes a significant advantage. 

1.2 Mosaic 1.0 Architecture 

Mosaic 1.0 is a CGRA developed by the labs of Scott Hauck and Carl Ebeling at the 

University of Washington [UW Embedded Research Group, 2006]. Mosaic is made up of 

a heterogeneous array of Functional Units connected by a configurable interconnect 

network (Figure 5). Each group of FUs and surrounding logic is called a cluster, and 

cluster elements are connected with a crossbar. This allows each functional unit within a 

cluster to communicate with any other without significant restriction, although only a 
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limited set of signals in the FUs are connected to the crossbar. The FUs in a cluster share 

a single connection to the routing network through a switchbox. This switchbox is also 

connected to the intra-cluster crossbar, and the routing network between Mosaic 1.0 

clusters is made up of a combination of statically and dynamically scheduled channels 

[Van Essen09]. 

 

Figure 5. Mosaic 1.0 architecture. [Van Essen10] 

The configuration for each component of a Mosaic cluster is stored in SRAM, in a 

manner similar to an FPGA. However, unlike an FPGA, there are II configurations for 

each element, instead of just a single one. This SRAM requirement puts a limit on the 

maximum II the architecture supports, probably 128 in the case of Mosaic 1.0. 

In addition to the Functional Units, each cluster contains local memory, one or more large 

rotating register files or retiming chains, as well as some additional small register 

resources. As mentioned, these resources are connected by a 32-bit corssbar. The Mosaic 

Functional Unit itself can perform basic ALU operations as well as shifts. Some 

Functional Units are capable of multiplication, but only integer arithmetic is supported. In 

addition to these 32-bit resources, there is a 1-bit interconnect to the FUs. This resource is 

used for predicate bits and also includes LUTs and register files. The specific architecture 

design that will be used in this document, going forward, features four FUs per cluster 
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and large rotating register files. This architecture is summarized in Figure 6 and described 

in detail in [Van Essen10]. 

 

Figure 6. Mosaic 1.0 Cluster. [Van Essen10] 

One limitation of Mosaic 1.0 is that it only supports execution of a single kernel at a time. 

This will be described in more detail in the next section, but most importantly all clusters 

operate in lockstep. Additionally, every cluster shares the same logical modulo counter, 

so each is loading from the same slot in configuration SRAM. One consequence of this 

mode of execution is that when a blocking operation that can’t be completed occurs, such 

as a read from an empty stream or a write to a full one, all clusters must stall their 

execution. 

1.3 Mosaic 1.0 Toolchain 

To understand the motivation for the work presented in this Thesis, as well as Mosaic 2.0, 

it is important to understand the Mosaic 1.0 toolchain. An overview of this toolchain is 

provided in Figure 7. The user provides an application, written in the C-like Macah 

language, and an architecture specification. The Macah compiler compiles the application 

to a Verilog description, and the Electric architecture generation tool translates the 

architecture specification into an input that Schedule, Place and Route (SPR) can process. 

Using these two inputs, SPR spreads the program across the architecture, creating a 

configuration for Mosaic. This specifies the II of the kernel and the state of each 
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component during every cycle in the schedule. This configuration can be simulated in the 

PostSim tool, where correctness can be verified and power modeled. The configuration 

could also serve other purposes, including programming a physical CGRA device. 

 

Figure 7. Mosaic 1.0 Toolchain 

1.3.1 Macah 

Macah is a programming language with syntax and features very similar to C 

[Ylvisaker08]. However, Macah also contains additional features that make it well suited 

to streaming applications targeting a CGRA like Mosaic. The properties of the CGRA 

also place restrictions on the language features used in the portions of the Macah code 

that is intended to run on the CGRA. 

A top level Macah 2.0 function is substantially different than the main function of a C 

program. Instead of containing sequential program code, it consists of a configuration 

block that wraps one or more task blocks. The configuration can use loops and other 

control logic to construct tasks, but this configuration logic cannot be evaluated at 

runtime. All tasks are constructed at the beginning of the run of Macah program, referred 

to as configuration time.  

A Macah task is where all of the code executed at runtime is contained. There can be 

many tasks in a configuration block, and they are all executed in parallel. The primary 

restriction on general tasks is that no task can access the same variables or memory as 

Electric 
Architecture 
Generator 

Macah Compiler 

SPR: Schedule, 
Place & Route 

Mosaic 

Configuration 

Architecture 

Application 

Electric 
Architecture 
Generator 

PostSim 
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another task. This eliminates a lot of the programming challenges faced by traditional 

concurrent applications. 

Tasks communicate using a streaming paradigm. Streams are written in one task and read 

in a different task, so they provide the only way to pass data from one task to another. 

Macah streams can be created using any data type, although, as mentioned above, Mosaic 

doesn’t support floating point arithmetic. Both input and output streams provide blocking 

and non-blocking operations. The blocking read or write will stall the task until its 

operation can be completed. This will happen in the case of a full stream buffer on a 

write, or an empty stream buffer on a read. In the case of a non-blocking stream 

operation, the operation will complete regardless and return a Boolean value indicating if 

the operation succeeded or not. Macah stream reads and writes are performed using 

special receive and send operators respectively (Table 1). For the non-blocking case, op 

is a Boolean value, which will be set to true if a value was read or written, and false if a 

blocking operation would have stalled. 

Operation Receive Send Non-block Receive Non-block Send 

Operator var <? strm strm <! var op :: var <? strm op :: var <? strm 

Table 1. Macah stream operators 

Not all Macah tasks can be run on the CGRA. Instead, only tasks containing a kernel 

block can be accelerated. These tasks must meet additional restrictions to make them 

suitable for CGRA execution. First, although normal tasks can only communicate 

through streams, they can access external memory as long as no other tasks access that 

memory. Kernel tasks may only access memories declared inside the task. In practice 

these memories must be small enough to get mapped to memory blocks or registers inside 

the CGRA. All memory allocation in a kernel task must also be static. In addition to 

memory restrictions, kernels can’t make calls to functions. The exception to this is the 

case where the function can be inlined. 

Finally, Macah has a few language features to make it easier to write deeply pipelined 

kernels with a low II. The first of these is the FOR loop. The use of an uppercase FOR 

loop instructs Macah to unroll the loop. This allows separate loop iterations to be 

executed in parallel, assuming that they don’t have any dependencies from one iteration 
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to the next. Macah also allows the declaration of shiftable arrays. These arrays function 

just like regular C arrays, but they introduce array shift operators. The array right and left 

shift operators adjust the array indices by the amount shifted. For example, if an array is 

right shifted by two, the value originally accessed by array[3] is now located at 

array[5]. Values that are shifted in from outside the bounds of the array are 

undefined. Shiftable arrays are very useful for accelerator applications, due to their ability 

to make programs more regular by allowing a given instruction to always access the same 

array index. They also map well to rotating register files where the array shift can be 

implemented as a register file rotation. 

1.3.2 SPR 

Schedule, Place and Route (SPR) is the tool that maps a compiled Macah program to a 

specific Mosaic architecture [Friedman09]. A detailed discussion of SPR is outside of the 

scope of this thesis. It is sufficient to note that SPR is the tool which is primarily 

responsible for mapping the parallelism available in the program onto the CGRA. This 

includes assigning operations to resources both in space (selecting hardware to perform 

the operation) and time (choosing an issue slot). The current version of SPR is designed 

for Mosaic 1.0, and can only perform these tasks for a single kernel. 

1.4 Mosaic 2.0 

Mosaic 2.0 is the next evolution in the Mosaic CGRA architecture. It is designed to 

address one of the most significant shortcomings of Mosaic 1.0, the fact that all clusters 

operate in lock-step on a single kernel. This is a significant limitation for two reasons. 

First, the II of the entire kernel is limited to the longest recurrence path anywhere in the 

kernel. Second, all stalls are global, so any stream that is full or empty will bring the 

entire CGRA to a halt. 

Mosaic 2.0 addresses these issues by supporting multiple kernels executing on the CGRA 

simultaneously. To get an idea of how useful this can be, consider an application such as 

the one in Figure 8. This application consists of a filter kernel followed by a computation 

kernel. Each kernel has a single input stream and a single output stream. The filter kernel 

has a recurrence II of 3, and although it can accept a new input every iteration it filters 
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most of them out, producing a new output only every tenth iteration on average. The 

computation kernel performs a complex computation which can’t be pipelined as 

effectively. It has an II of 5 and in the steady state can accept one input and produce one 

output every iteration. 

 

Figure 8. Example Mosaic 2.0 Application 

For Mosaic 1.0, this entire application would share a single modulo counter, which would 

be forced to conform to the longer II of 5. This means that the filter portion of the kernel 

would only be able to accept a new input every five cycles, since it requires at least three 

cycles to process a single input. This will reduce performance by almost half. In the case 

where there was a temporary shortage of data on the input stream or an output FIFO was 

full, both parts of the application would be forced to stall. In some cases this is not 

efficient. For example, without this constraint in the situation where the computation 

kernel has a full output FIFO, the filter would be able to continue accepting new input 

until its own output buffer was full. Supporting simultaneous execution of multiple 

kernels, as in Mosaic 2.0, resolves both of these problems. 

The primary feature of Mosaic 2.0 is allowing each of many kernels on the CGRA to 

have their own modulo counter. Each of these modulo counters is be able to stall 

independently. Additionally, Mosaic 2.0 could potentially support configuration of fabric 

resources based on predicates, allowing for more jump-like behavior and alleviating some 

of the restrictions of the CGRA execution model  [Friedman11]. There are other minor 

complications as well. Neighboring clusters in the same kernel can also receive delayed 

versions of their neighbors’ modulo counters, and the clusters are connected using the 

interconnect described in [Panda11]. 

Output: 

10,000 

words / sec 

10,000 

words / sec 

Input: 

100,000 

words / sec 

Computation 

Kernel 

Filter 

Kernel 
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With more kernels come more challenges for the programmer. Although infinite buffers 

on streams can be modeled in a simulator, real buffers are finite. This introduces the 

potential for kernels that are well behaved in the average case to deadlock under some 

loads. For instance, kernel A sorts incoming values into two streams, which both go to 

kernel B, and approximately half of the values go to each output stream. Kernel B reads 

one value from each stream and does some processing. This situation is illustrated in 

Figure 9. 

 

Figure 9. Potential multi-kernel deadlock situation 

Typically, this will work perfectly. However, in the case where many values above the 

threshold arrive sequentially, strm_1 could fill up at the same time kernel B empties 

strm_2. At this point the kernels will become deadlocked, with A stalling on the write 

to strm_1 and B stalling on the read from strm_2. In Mosaic 2.0 avoiding these 

deadlocks is the programmer’s responsibility, as the tools place no restrictions on the data 

rates between kernels. 

1.5 Trimaran 

The Mosaic 2.0 design described above is very tightly coupled to the modulo counter 

execution model. Trimaran, on the other hand, makes use of the program counter model. 

Trimaran is a research Very Long Instruction Word (VLIW) compiler that was developed 

as a collaboration between many academic and industry laboratories [Chakrapani05]. 

Trimaran supports a number of architectures in addition to VLIW, and most of the 

Kernel A: 
kernel { 

  … 

  { 

     val <? in_strm; 

     if (val > threshold) 

        strm_1 <! val; 

     else 

        strm_2 <! val; 

  } 

} 

Kernel B: 
kernel { 

  … 

  { 

     val_1 <? strm_1; 

     val_2 <? strm_2; 

     work(val_1, val_2); 

  } 

} 



 

14 

properties of the target architecture can be defined using an MDES machine description 

file. Trimaran also includes a cycle accurate simulator for application profiling. 

Figure 10 shows an overview of the Trimaran toolchain. Trimaran begins with a standard 

C input file, and initial parsing and standard compiler optimization are performed by 

OpenIMPACT. Next, the Elcor stage takes in the MDES file and the intermediate 

representation (IR) produced by OpenIMPACT and performs various architecture 

specific optimizations and compilation tasks. The output of the Elcor stage is Rebel IR. 

Finally, the SIMU simulator can run simulations and performance modeling on the 

application. The first stage of SIMU, called Codegen, takes in the Rebel IR and the 

MDES, and produces, among other output, a list of operations somewhat similar to an 

assembly file. It is important to note that this file is more abstract than a typical assembly 

file, and it doesn’t contain important information like branch address and complete 

register assignments. More detailed information on any of these stages can be found in 

[Trimaran 07]. 

 

Figure 10.Trimaran System Organization 

Because of its reasonable performance [Chobe01] and flexibility, the Trimaran compiler 

has been used in projects involving various VLIW and more traditional superscalar 

architecture, include IA-64 and ARM [Chakrapani01]. In addition to these more 
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traditional processor architectures, researchers have occasionally used Trimaran to target 

CGRAs [Yan11] or other similar collections of functional units [Middha02]. The 

modifications to Trimaran required for the Mosiac project are discussed in the next 

section. 
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2. Software Design 

The engineering effort involved in this project can be divided into two components, 

software design being the first of these. As discussed in 1.1.1, the modulo schedule 

execution model has significant limitations. In cases where substantial code is executed 

conditionally, all of this code must still be executed on the CGRA, prior to the outputs of 

these code sections being ignored due to predication. This introduces inefficiencies both 

in power and area. Large quantities of work may be performed and not used, and the 

logic to do this work could consume many clusters on the CGRA. Sufficiently complex 

control may even be difficult for SPR to route. 

All of this leads to the conclusion that it would be desirable to have some way to execute 

sequential code with complex control on the CGRA, even at a substantial loss in parallel 

performance for that specific kernel. This could be necessary in cases where a complex 

but low throughput kernel is part of the critical path in an operation, preventing moving 

the kernel’s logic off-chip. In a standalone Mosaic situation, there may not even be a 

general purpose processor on which to run these kernels. 

This software engineering effort was motivated by a desire to get a sense of the 

performance that could be achieved by targeting Mosaic 2.0 hardware components as a 

VLIW processor using Trimaran. The first step in this effort is to add support for some 

kernels in a Macah program to be compiled by Trimaran, instead of Macah. Next, 

Trimaran must produce output that is in a form able to configure Mosaic functional units 

instead of running through SIMU. It’s important to note that, as mentioned briefly in 1.4, 

this is just one of multiple concurrent efforts to support less restricted code on Mosaic 2.0 

in some manner. 

2.1 Macah Modifications and Scripting 

The first stage in compiling Macah kernels with Trimaran is designating these kernels for 

Trimaran compilation and getting their code to Trimaran in a usable form (standard C). 

This required a series of minor modifications to Macah, and some scripting. 
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Conveniently, Macah is capable of generating C versions of compiled Macah programs. 

This code is normally used for rapid correctness simulation of the Macah application. It 

makes use of a runtime library, containing C implementations of unique Macah features 

such as shiftable arrays and streams. Other Macah features, such as unrolling FOR loops, 

are handled prior to emitting the C code. 

To add Macah support for Trimaran kernels, additional functions to mark the beginning 

and end of Trimaran kernels were added to this library and the Macah compiler. These 

functions do nothing in Macah simulation, but are preserved by the compiler and remain 

in the final C code. There, they provide hooks for the scripts that convert Macah C output 

to Trimaran C input. 

 

Figure 11. Pseudocode For Trimaran and Macah Tasks 

Figure 11 shows the usage of functions marking the beginning and end of a Trimaran 

kernel. When these functions are placed around the kernel as seen in the figure, the 

configure_tasks { 

  … 

 

  task first { 

    … // no kernel 

  } 

 

  task second { 

    … 

    kernel second { 

      … 

    } 

  } 

 

  task third { 

    … 

    trimaranKernelStart(); 

    kernel third { 

      … 

    } 

    trimaranKernelEnd(); 

  } 

} 
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macahtotri Perl script can parse the Macah output C file and create a Trimaran C file 

containing a standard main() function. The body of this function will be the contents of 

the kernel, including any relevant variables declared in the task, even if these variables 

are declared prior to the call to trimaranKernelStart(). No other variables are 

available, with the exception of streams. This isn’t a significant additional limitation 

because kernel tasks don’t have access to external variables in the Macah language. 

Aside from the scope of variables, the script currently has some additional limitations. 

Most significantly, only a single kernel in a given Macah file can be designated as a 

Trimaran kernel. This is due to the fact that this kernel becomes the main() function for 

an entire Trimaran run. Under this system, multiple communicating Trimaran kernels can 

only be implemented by compiling them separately and combining them at configuration 

time. No tool that supports this sort of configuration currently exists. Similarly, the 

current Macah flow will still compile kernels tagged for Trimaran and run them through 

SPR in the same manner as any other kernel. Figure 12 shows the completed tool-chain 

given support for arbitrary kernel combinations. Note that the architecture specifications 

used are limited to the subset of architectures that support Trimaran’s execution model. 

These will be discussed in much more depth in subsequent chapters. 

 

Figure 12. Macah / Trimaran Hybrid Tool Flow 
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In addition to this limitation, the Trimaran flow does not support any of the Macah 

features provided by the runtime library mentioned above, other than streams. Streams 

are supported through conversion to volatile variables, where reads and writes are normal 

assignments. After this conversion, the output of the macahtotri script is standard C, 

perfect for Trimaran compilation. 

2.2 Trimaran Modifications 

The Mosiac configuration shown in Figure 12 is a Verilog file, describing the state of the 

configuration SRAM for every architecture component at each cycle of the modulo 

schedule. The information in any given set of configuration bits varies based on what is 

being configured. It could be the operation an ALU should perform during the cycle, 

which input a multiplexer should select or the enable bit on a register. If a component is 

not doing any useful work in a given cycle, for example if the ALU output is not 

multiplexed to any storage location, it’s value can be left unwritten for correct simulation 

or written to the same value as in the previous cycle to conserve power. It is important to 

note that the configuration slots and cycles here are the same as those used by SPR for 

modulo scheduling, as discussed in 1.1.1. When SPR produces a configuration, it will 

include the II and some value for each component in every cycle within that II. For 

example, if the II of the application, as mapped to the available hardware, was 3 there 

would be state for each architecture component for cycles 0, 1 and 2. 

In the case of Trimaran compiling for a CGRA, the modulo counter acts as a more 

traditional PC and Trimaran must produce the correct configuration to carry out an 

operation for each architecture component. This is very different than the output of a 

traditional compiler. Normally, a compiler will produce simple instructions that are then 

expanded to control each architectural component during the decode stage of execution. 

In this case, Trimaran must produce what is essentially all of the post-decode state. 

Because of this, Trimaran requires much more extensive knowledge of architecture 

specifics than is typically required by a compiler. This issue will be discussed in more 

detail in the architecture sections below.  
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No changes are required to the initial two stages of Trimaran, OpenIMPACT and Elcor, 

from what was discussed in 1.5. All significant Trimaran modifications are in the final 

Simu stage, shown in Figure 13. Here, Trimaran provides two main mechanisms for 

producing output. The first is the Simu cycle accurate simulator which executes the 

program on the machine running Trimaran. This simulator loads and converts the 

program from the Rebel IR produced by Elcor. Each operation, or in some cases class of 

operations, is implemented in the simulator as a function taking the inputs to the 

operation and storing the output. These functions are implemented as a simulation library 

called Emulib. During this process, many detailed statistics are collected. Unfortunately, 

this mechanism is poorly suited to producing Verilog output. At no point during this 

execution in the simulator is there a time when all of the information about an operation 

is available. For example, the function that represents an operation accepts a value of an 

input register instead of which register that value came from. Similarly, register values 

are sometimes stored directly in variables or memory, and the mapping back to a register 

is not preserved. 
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Figure 13. Simu Architecture [Trimaran 07] 

The second output mechanism is much more useful for producing the required Verilog 

configuration files. During the Codegen stage seen in Figure 13, Trimaran can write a 

number of files. In addition to the native C code, that uses Emulib to execute the program 

being simulated, Codegen also produces a number of table files similar to the memory 

tables in a traditional executable. These tables map variables and functions to memory 

locations, and additionally in this case, include register accesses and other information for 

each operation. A file similar to a very high level assembly output is also produced, 

although this file alone is incomplete and has insufficient information about each 

instruction to produce the required Verilog output. 
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This stage of Codegen is perfect to produce the Verilog configuration file because the 

Rebel IR has been parsed and all of the required information is available and being 

written to the files described above. This information includes all of the register and 

constant operands required by each operation as well as the mapping of these operations 

to the multiple ALUs and other compute resources in the VLIW case. One of these 

additional resources is a rotating register file, which could rotate at the same time as an 

ALU operation executes during a single cycle. 

The configuration generation performed in this stage is conceptually simple. Verilog 

configuration for each component is written based on what it might be required to do 

during the cycle. For example, if the operation is an add, the source register files are 

configured to read the source registers, the crossbar is configured to route those registers 

to the ALU, the ALU is configured to add and the crossbar writes the ALU output back to 

the register file. The configurations currently produced by Trimaran assume that all 

instructions can execute in a single cycle. Streams are handled as a special case, in which 

the load and store operations (which are always present because streams are declared as 

volatile variables) are replaced by accesses to dedicated stream hardware. 
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3. Architecture Design 

A variety of architectures, designed with different goals, were produced during the course 

of this project. They are described in this section. 

3.1 Custom Trimaran Processor 

As discussed in 2.2, the Triamaran modifications that allowed for the production of 

Verilog output require detailed architectural knowledge to operate correctly. As a proof 

of concept for this aspect of the compiler, a custom architecture was produced out of the 

same Architecture Generator components used in [Van Essen10]. Just like these 

Architecture Generator components, which are used to construct the CGRA architectures 

processed by SPR, this architecture was specified in the Electric CAD tool [Rubin10]. 

Electric is an open source CAD program written in the Java language with many 

properties that make it well suited for the Mosaic project. Electric supports a number of 

levels of circuit abstraction, ranging from schematic and HDL description down to 

physical circuit layout. For Mosaic, individual architecture components are specified at 

the HDL level and then connected as schematics. Electric allows the user to write plugins 

that can perform complex tasks, such as connecting components in a design to a crossbar 

or generating an entire architecture from a simple specification. Finally, Electric can 

output the entire design as a Verilog architecture description that is read in by SPR. 

The custom Trimaran architecture was a very simple Electric design, consisting of a large 

crossbar connecting each component (Figure 14). The Trimaran control registers, 

including the PC and counters used for low overhead loops, are implemented using 

simple registers in Electric. The adder, for incrementing the PC, and the other ALUs, 

used for loops and ALU operations, make use of the same arithmetic components that lie 

at the heart of a Mosaic functional unit. In the standard Trimaran architecture branch 

targets must always be stored in a branch target register file before the branch. This 

register file, along with the general purpose and predicate files, use the same Cydra 

rotating register file [Dehnert89] as in Mosaic. Finally, the constant generation and 

Stream I/O are performed by custom components designed for this processor. This was 

necessary because constants in Mosaic enter through register files at the beginning of 
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execution, and this approach would require significant compiler modification to use with 

Trimaran. Memory mapped stream I/O operations are performed using custom Verilog 

stubs that allow for test data to be sourced from and written to files during simulation. 

 

Figure 14. Simple custom Trimaran processor design 

This design is clearly very different from a traditional simple single-cycle processor 

architecture. Connecting through a large cross-bar is extremely inefficient, given that 

many of the possible connections don’t make sense. For example, the compiler would 

never generate an instruction where the output of the stream I/O goes directly to the PC 

or the memory writes to an ALU input. The more natural architecture would feature 

dedicated connections between related components, with multiplexing where necessary. 

The components used are also not a perfect fit. For example, some Trimaran logical and 

arithmetic operations require two of the Mosaic FU ALUs chained together. This would 

likely not be the preferred structure for a real single-cycle processor. 

Both of these design decisions stem from the fact that this Trimaran-only processor is a 

proof of concept for compiling C code to Mosaic hardware using Trimaran. This model 

provides much more useful information, for example potential integration with Mosaic 

power and timing models, than it would if it was written in custom Verilog. The use of 

the crossbar is based on the fact that this more closely resembles the flexibility of the 

actual Mosaic architecture, so even though most of this flexibility is wasted in the 
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Trimaran processor, it requires a Verilog emitter much closer to what would be required 

to configure the Mosaic architecture. 

3.2 Custom Trimaran Processor and Mosaic 1.0 Comparison 

The custom Trimaran processor from the previous section includes the baseline 

components required for execution of Trimaran programs. A comparison between the 

custom processor and the current Mosaic architecture can help to determine what Mosaic 

components will require modification to reach a consensus architecture. As discussed 

above, some portions of the current Trimaran toolchain, particularly SPR, can only 

handle a single kernel at a time. Because of this, the comparison in this chapter will focus 

on the final optimized Mosaic 1.0 architecture presented in [Van Essen10]. Despite this, 

some features required by the consensus architecture, such as a more flexible modulo 

counter, will be shared with Mosaic 2.0. The most relevant architectural details from the 

Mosaic 1.0 design can be seen in Figure 6 and Figure 15. The FU here is a “Universal 

FU” featuring a MADD unit in addition to standard ALU operations, which explains the 

four input ports. 

 

Figure 15. Optimized Mosaic 1.0 PE with Universal FU. Gray components are control path. [Van Essen10]  
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Table 2 compares the components required by the simple Trimaran processor to those 

available in Mosaic 1.0 and points out any significant challenges. At a very high level, 

there is a straightforward one-to-one mapping of Trimaran architectural components to 

Mosaic ones. For example, a functional unit performs similar operations in both cases, 

and both architectures uses rotating register files. However, as the table suggests, at a 

deeper level there are significant architectural challenges. Most of these involve 

connectivity in some way. The fixed connections between resources in Mosaic, unlike the 

highly configurable interconnect of an FPGA, are heavily optimized for low power high 

frequency CGRA operation. In many cases the connections required for the use of the 

various resources in a processor configuration are simply not present. 

Trimaran Component Mosaic Mapping Challenges 

Functional Unit 2 ALU+2 MADD for VLIW Marshaling data 

GP register file Local rotating register file Limited read ports 

Branch target register file Local rotating register file Connectivity to PC 

Predicate registers Predicate register file  

Constant generation Register slots Constants burn registers 

Memory Cluster memory  

Control registers Modulo counter, registers Significant changes 

Control logic S-ALUs near PC Data to control registers 

Interconnect Crossbar and PE muxes Limited connection in PE 

Table 2. Comparison of Trimaran and Mosaic components 

Before addressing these issues in more detail it is important to understand the Mosaic 

architecture and the design decisions made more thoroughly. The resources available in 

the Mosaic cluster of Figure 6 break down into 32-bit word width resources (shown in 

black) and 1-bit predicate resources (shown in gray). The breakdown of these resources 

can be seen in Table 3. Note that all of the PEs feature 32-bit registers and 8-entry 

rotating register files as shown in Figure 15. Some of these registers have bypass muxes, 

but some do not for timing closure reasons. The PE also includes 1-bit input and output 

registers and a 1-bit 16-entry rotating register file. 
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32-bit data path (words) 1-bit control path (predicates) 

Two 32-bit PEs with ALU and MADD Two 1-bit PEs with 3-LUT 

Two 32-bit PEs with S-ALU only  

32-bit 16-entry rotating register file 1-bit 16-entry rotating register file 

Two 1K-word local memory  

32-bit wide crossbar 1-bit wide crossbar 

Table 3. Word and single bit Mosaic cluster components 

Each of these resources was chosen specifically to give Mosaic good performance at the 

lowest energy. For example, a rotating register file was chosen over distributed registers, 

a retiming chain or shift registers because of its high energy efficiency. Unfortunately, 

the limited read ports on this register file make it difficult to map some Trimaran 

instructions. Resources for storing short lived CGRA values were pushed close to the 

ALU, as can be seen in Figure 15. Although some of these registers help break up critical 

paths that would otherwise reduce the operating frequency of the CGRA, this was also 

done to reduce the total number of crossbar ports in a cluster. The crossbar is a high 

energy structure, and anything that reduces its utilization can have a significant effect on 

energy. For example, simply adding the local feedback register to the functional unit, 

without the local register file, reduces dynamic energy by 7% [Van Essen10]. 

Again, this sort of optimization is very important for efficient CGRA execution, but 

costly in terms of flexibility. For Trimaran mode, resources that are directly connected to 

the crossbar are much easier to map to their processor equivalents. Going through extra 

registers is difficult and the placement of some of these registers in Mosaic can lead to 

uneven delays between various operations, beyond what the Trimaran compiler currently 

supports. This conflict between CGRA energy usage and the ability to execute Trimaran 

operations is at the heart of the next section. 

3.3 Consensus Architecture Design 

The consensus architecture is one that combines the high performance and low power of 

the Mosaic 1.0 CGRA execution mode with the ability to execute Trimaran kernels like 

the Trimaran custom processor described in section 3.2. Because the performance critical 

components of most applications are expected to run in CGRA execution mode, the 
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consensus design approach attempts to preserve CGRA mode speed and energy whenever 

possible. In addition, Trimaran structures are kept simple and existing hardware or 

Mosaic components are used whenever possible. This should help to minimize additional 

design and verification time required for the Trimaran components. Ultimately, each 

aspect of this design is focused on reconciling the needs of the two execution models 

(discussed in 1.1.1), with preference being given to CGRA mode when required. With 

this in mind, the design of the hybrid modulo counter / PC is a logical starting point for 

looking at the consensus architecture. 

3.3.1 PC and Modulo Counter 

The basic architecture of a Mosaic 1.0 modulo counter can be seen in Figure 16. Under 

this design, the modulo counter counts down, using the subtract one hardware on the 

right, until reaching zero, at which point the comparator will configure the mux to select 

the II – 1 input instead. This design is simple for selecting the correct phase in Mosaic 

1.0, and the modulo counter output can simply be routed to configuration memory to 

configure the various CGRA components. It can also be used in more complex designs, 

for example the predicate aware sharing described in [Friedman11]. As that work 

mentions, there will be many identical modulo counters distributed throughout the array. 

Aside from stalling, distributed modulo counters are not an issue because all of the 

modulo counters will be operating in lockstep. 

 

Figure 16. Mosaic 1.0 modulo counter 

As discussed earlier, the Trimaran program would be stored in configuration memory in 

the hybrid architecture. Although this imposes significant restrictions on program length, 

given a maximum II on the order of 128, it is essential to maintaining as close to single-
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cycle execution as possible. If the program was stored in a memory in the encoded 

operation form produced by a traditional linker, that would necessitate a decode stage. 

Storing the program in configuration memory means that the post-decode version of the 

instructions, as produced by the Verilog emitter, is already in hardware. Given this 

advantage, the limited storage of the configuration memory seems like an acceptable 

price to pay in the hybrid architecture. If this proved to be too limiting in the future, the 

maximum II could be increased or a decode stage and hardware could be considered. 

With the program stored in configuration memory, one simple hybrid architecture 

approach would be to replace the Mosaic 1.0 modulo counter with a more complex 

version, capable of also accepting a branch input. This counter would effectively become 

a PC. This PC design can be seen in Figure 17. First, note that this version uses an up-

counter, instead of a down-counter as in the Mosaic 1.0 modulo counter. This allows the 

same plus one logic to be used for the PC and the modulo counter. An additional mux 

selects the branch target, as read from a branch target register file, instead of the 0 value 

when in Trimaran mode. The mux which selects either the PC + 1 or the branch target 

value now detects II – 1 in CGRA mode or a branch instruction in Trimaran mode. 

 

Figure 17. Proposed Trimaran PC (new components in blue) 

Although this approach seems simple, it does require substantial additional hardware. 

First, the II – 1 comparator requires more logic than the Mosaic 1.0 modulo counter 

comparator which only had to test for zero. This approach also requires an additional 

mux. Most importantly however, the branch target and the predicate bits that specify if a 

branch should be taken on a given instruction must be routed to the PC logic. This 

1          0 

1              0 

 
+1 

PC 

0 BT 

== (II – 1) 
| Branch? 

Trimaran 
Mode? 



 

30 

introduces additional load on the outputs of the branch target register file, which is a 

standard register file during CGRA execution. Finally, an extra input from the control 

network and some logic is required to select from between the PC + 1 (branch not taken 

or regular instruction) and the branch target (branch instruction and branch taken) for the 

new value of the PC. 

 

Figure 18. Optimized Mosaic 1.0 PE with S-ALU [Van Essen10] 

As an alternate approach, one of the optimized PEs from Figure 18 could be used to 

augment the PC logic. The S-ALU in these PEs is similar to the one available in the 

Universal FU, but it lacks support for multiplication operations. In this case, the modulo 

counter could count down as normal in CGRA mode, and the S-ALU could be used to 

implement the PC increment logic in Trimaran mode, eliminating the need for dedicated 

hardware to compare to an arbitrary value (II – 1). The rotating register file local to this 

PE could be used as the branch target register file, and only a few additional muxes 

would be required on top of the Mosiac 1.0 modulo counter logic. This implementation is 

shown in Figure 19. Notice that the feedback register can be used as PC storage. It is also 

important to note that this implementation is only possible if the predicate aware sharing 

hardware presented in [Friedman11] is available. Otherwise, the S-ALU is incapable of 

performing a branch operation, since this would require selecting the PC + 1 or the 
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branch target without any hardware to generate PC + 1. With predicate aware sharing this 

could be done in the mux shown in navy on the figure. 

 

Figure 19. Mosaic 1.0 modulo counter combined with a PE to form a PC 

Although this design would save on comparator logic and muxing, the fact that it is not 

possible on the optimized Mosaic 1.0 hardware that only allows predicate input to the S-

ALU, and not the proceeding multiplexers, is a major strike against it given the design 

goals. Additionally, the hardware savings are not overly large. For these reasons, the 

most reasonable PC design to use is the first one described in this section. This design, 

where the modulo counter hardware is augmented directly to support Trimaran execution, 

also has a significant advantage in that it leaves another PE free for VLIW execution. 

Finally, some instructions, such as branch and link, require storing the PC back into the 

branch target register file. This would be difficult if the same S-ALU output wrote the 

branch target register file and the new PC. Many other decisions stem from the design of 

the PC, starting with the implementation of branch instructions. 

3.3.2 Branches 

Although the resource constraints discussed in 3.2 are significant, the most difficult 

Trimaran instructions to execute are some of the complex branches. The way that these 
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instructions can best be handled impacts the choice of resources used for other Trimaran 

components significantly. Two instructions are particularly troubling. These are the BRF 

and BRW instructions, designed to be used when software pipelining loops. 

BRF operations are used with loops that run a known number of times, such as a typical 

for loop. This instruction decrements a special control register called the loop counter 

(LC), which specifies the remaining number of times to execute the loop. After LC 

iterations another control register (ESC) is used to specify the number of further 

iterations required to drain the pipeline. A predicate output is produced, which specifies if 

the execution has reached the epilog stage (LC = 0) or not. The BRF instruction also 

rotates the rotating register file. 

The BRW instruction is just like the BRF instruction, except that it takes two predicates 

as inputs and doesn’t use the LC. BRW is designed to be used in the case of loops that 

terminate on a condition (like while loops), and the first of these predicates specifies if 

the loop should continue (termination condition not met). The second predicate tells the 

loop to enter the ramp down phase. This is required because, unlike the LC which, upon 

reaching zero, will retain the zero value until the loop is complete, the first source 

predicate could potentially change after the loop has entered the ramp down phase. It’s 

important to note that in reality if either of these predicates are false the loop will be in 

the ramp down phase. It’s not important which is the loop condition and which is the 

ramp down marker. The operation of both loops is summarized in Table 4. Finally, both 

of these instructions have versions supporting any combination of branching or falling 

through on true conditions for each phase (loop, ramp down and stop). 

Operation Inputs Outputs Results 

BRF BTR 1 Pred Rotates, Branches, Dec LC or ESC 

BRW BTR, 2 Preds 1 Pred Rotates, Branches, Dec ESC 

Table 4. Operation of BRF and BRW instructions 

Of these two instructions BRF is the most difficult. BRW can be viewed as a subset of 

BRF in the sense that it doesn’t use the LC and the AND of its two input predicates serve 

exactly the same role as LC > 0 in BRF. For this reason, any consensus architecture 
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designed to execute BRF operations can also execute BRWs, assuming the LUT on the 

control path can be used to combine the two predicates. There is also a branch on zero 

loop count (BRLC) instruction, but it is also a subset of the BRF instructions and can be 

implemented as such. 

The BRF instruction (Figure 20) fundamentally requires a few operations. First, the LC 

must be compared to zero. Second, if the loop counter is zero, the ESC counter must be 

compared to zero. Third, the correct side effects must be performed depending on which 

of these first conditions was true, including setting the output predicate, decrementing 

one of the counters and rotating the register file. Finally, the branch must be taken or not 

as specified by the specific instruction. Each of these elements requires some hardware, 

but ideally it would all execute in a single cycle on a single PE. 

 

Figure 20. Diagram of BRF operation [Kathail00] 

The resources used to do the two comparisons against zero depend on the storage used 

for the counters and vice versa. To do both comparisons at the same time, two 

comparators are required, but this is not unreasonable since the PE handling branches will 

be tightly coupled with the PC out of necessity. This means that the II – 1 comparator, 
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otherwise unused in Trimaran mode, can perform one of these operations if the LC or 

ESC is provided to it with a single additional mux. The other comparison will be 

performed by the S-ALU. In order to be close to these comparisons the ESC and LC 

counters can be stored in the A input register and feedback register respectively. It makes 

sense to put the LC in the feedback register since it is used by more instructions, and the 

path to the input register is both more expensive and slower due to having to traverse the 

crossbar. This delay in writing the escape register could be removed by adding a bypass 

mux to the PE output register (shown in red in Figure 21), but this might increase the 

length of the logic’s critical path. In addition, it is probably not terribly significant since 

two BRF instructions in a row would not be particularly useful. 

 

Figure 21. Branch operations mapped to a single PE and coupled to PC 

Even with ESC and LC handled as described above, and shown in Figure 21, it would be 

nearly impossible to handle the entire loop in a single cycle. After performing both 

comparisons, the results have to be serialized (ESC = 0 will not end the loop if LC ≠ 0) 

and one of the counters must be decremented. The next PC must also be updated 

correctly. The first part of this is not difficult because, as seen in Figure 21, the control 

network output port from the S-ALU is not registered (port F). This allows the result of 

both comparisons to reach the 3-LUT in the control network through one additional mux 

and a connection to the output from the PC comparator logic. The LC or ESC can then be 
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decremented on the next cycle, as appropriate, although in the case of the ESC this 

introduces an additional cycle of delay to travel across the crossbar as discussed above. 

The output predicate bit can also be written to the predicate register file during this cycle. 

The branch itself must also be taken or not taken correctly. To achieve this the PC must 

have either the PC + 1 or branch target address values muxed in correctly. On the second 

cycle, the predicate bit generated by the 3-LUT can be used for this purpose, although 

this does require the introduction of a potentially long delay path from the LUT output 

register to the PC. The relevant control bit is Branch in Figure 21 and S in Figure 18. 

All other branch operations, ranging from the unconditional branch to the predicated 

branches, can be performed using subsets of the BRF logic. These simpler branches 

should also be performed in two cycles, even when not strictly necessary, to avoid 

introducing variable delay branches. Trimaran can schedule instructions in branch delay 

slots, but the MDES does not easily allow for branches of various lengths. One advantage 

of using two-cycle branches is that any register file can be used as the branch target 

registers with no issue. The only other branch that introduces other considerations is the 

branch and link (BRL). BRL must store the pre-branch PC back into the BTR file. This 

can easily be achieved by adding a connection from the PC register to the crossbar or the 

PE that stores the BTR file. This path will also be used for prepare to branch PC-relative 

instructions, among others. Legally, the PC is available as a control register which can be 

used as an operand for most classes of instructions. Although the PC may not be written 

as a general control register, LC and ESC can be. Given the architecture described in this 

section, writing the LC would occupy the ALU in the branch PE for one cycle. For this 

reason, the LC cannot be written in the cycle immediately preceding a branch instruction. 

3.3.3 ALUs, General Purpose Register Files and Constant Generation 

Although the branch target register file has some degree of freedom regarding its 

location, and the predicate register file and local memory also map trivially, the general 

purpose register file presents a significant challenge for multiple reasons. Some 

instructions, such as load and increment, have two register operands and produce two 

outputs. Some instructions, such as moving a GPR to a CR with a mask have two general 
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register or constant operands and a control register operand. These operations begin to 

run up against some of the basic port limitations of the optimized Mosaic 1.0 design. 

The most straightforward solution to the GPR would be to place it in the large rotating 

register file on the crossbar. This approach has two major drawbacks. First, every register 

operation would go over the crossbar, burning significantly more power. Second, a 

simple string of instructions such as: 

r3 <= add r1, r2 

r4 <= or r1, r3 

would run into significant issues. Even if only one PE was in use, given that the output of 

each PE is registered before returning to the crossbar, the updated value of r3 could not 

be stored in time to be used by the or operation unless the compiler was made aware of 

the feedback register. In the case of multiple PEs, this scenario would imply some sort of 

forwarding network before the crossbar, which would be both complicated and 

expensive. Alternatively, a bypass could be introduced on the output register of the PE, as 

discussed in 3.3.2, but this introduces timing issues. A dedicated output from the two PEs 

featuring MADD units to the large register file could allow for writing without a bypass, 

but it would introduce some loading of its own in addition to an extra mux. 

Another option is to use the rotating register file inside the PE as the Trimaran’s GPR. 

This approach gets around the issues mentioned above since there is a single cycle path 

from the rotating register files, through the MADD (when used for single-cycle 

operations) and back to the register file. However, this would create significant VLIW 

issues. It would be challenging for the values in one PE to get to another in a timely 

fashion, as at least one extra cycle would be required to get values from the output of one 

PE to the inputs of another. Register file to register file transfers would be even worse, 

requiring another additional cycle. Unless large amounts of parallel work on independent 

data was available, this would significantly reduce the benefits of having a VLIW 

execution mode. Some of the options discussed above, including bypassing output 
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registers, would be an option here, but if those solutions were being considered, the larger 

register file seems like a more natural fit. 

There is also an issue regarding constant values. In Mosaic 1.0, constants are preloaded 

into local register files before execution begins, and read from there. SPR could 

potentially schedule multiple runtime constants into the same phase, so the unoptimized 

PEs featuring U-FUs have four read ports on the register files [Van Essen10]. The 

optimized version of the U-FU PE drops two of these read ports, suggesting that SPR 

should limit the maximum number of constant inputs to the same U-FU in a cycle to two. 

This constant mechanism is awkward for Trimaran. If it was used, register files would 

lose capacity for every constant operand used in the program. Not only is this a feature 

the Trimaran compiler doesn’t support, but even if it did, register file capacity is a much 

bigger issue for a Trimaran program than an SPR one. On the other hand, constant 

generators would require large amounts of configuration memory. At 32-bits wide, and 

given that two constant generators would be required, this would introduce 1 Kbyte of 

additional SRAM in addition to extra muxes and connections to the configuration control 

network. 

It is clear from this discussion that for any consensus solution with a functional VLIW 

mode, even just 2-wide, the changes required to the GPR and constant generation will be 

among the most costly. Despite this, adding bypass registers to the PE output appears to 

be the best solution. None of the other proposed solution would allow for single cycle 

VLIW operation, without adding significant additional scheduling burdens to Trimaran. 

Instead, adding output register bypass will allow the large register file attached to the 

crossbar to function as the GPR, and values can easily be shared among FUs operating in 

VLIW mode. This solution also has the advantage of providing a single location where 

more ports could be added as necessary to support wider VLIW, instead of having to 

potentially add ports to register files in each PE. 

One additional property of this solution is that it leaves the local rotating register files in 

each PE unused. This could provide a good location to store constants, although it would 

place an arbitrary constant limit on programs. The fact that the ALUs can generate 
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constant values of 0 and 1, along with the limited number of instruction slots available to 

a Trimaran mode program make it unlikely that the local register file would be filled with 

constants. If it was, the compiler could be modified to store additional constants in some 

of the many other registers available in the fabric and generate any additional constants 

required through runtime arithmetic. These solutions should eliminate the need to add 

constant generators to the crossbar or the global register file. Adding ports to the crossbar 

itself is costly, as is the configuration memory requirement of constant generators, so any 

solution that does not require them is extremely beneficial. 

Mosaic 1.0 predication implements mutually exclusive operations, both of which are 

performed, and the predicate bits are used to select the correct output (see 1.1.1). Most 

Trimaran operations can be predicated, but the semantics are different. A Trimaran 

operation that has a sense that doesn’t match the predicate (for example the predicate bit 

is false, and the operation is predicated to execute on true) is simply treated as a nop: it 

should have no effects. This form of predication is also called guarded execution. The 

method for implementing this in the case of branches is discussed in the previous section, 

but for other operations such as arithmetic Mosaic 1.0 hardware is insufficient. Instead, a 

predicate enable will have to be added to state-holding elements such as the register files. 

This could use existing logic in the case that predicate aware scheduling hardware is 

present, but in its absence new hardware would be required. Given that the predicate bits 

are already available on the control crossbar, the worst case scenario would be an extra 

gate prior to the enable and an extra crossbar read port. Note that structures other than the 

register files, such as the local memory, might require enables in this case. 

A summary of the hardware changes proposed in this section can be found in Figure 22. 
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Figure 22. Hybrid PE with U-FU and connecting register file for VLIW execution 

3.4 Consensus Architecture Analysis 

Section 3.3 describes the design of each hybrid component in detail. The result of all of 

these changes to the optimized Mosaic 1.0 design is the “hybrid” architecture. This 

architecture can be divided into four major components: execution support (modulo 

counter / PC), branch support, predicate network and data network. The design of each of 

these components will have a significant impact on the performance of one or more 

classes of Trimaran instruction. 

The changes to the modulo counter are the most extensive, since its purpose is shifted 

dramatically from a simple counter to a full-fledged PC surrounded by additional branch 

logic. However, the amount of additional hardware is not excessive. All that must be 

added is four muxes and a few additional connections from the branch PE and the 

predicate network. The most expensive new component is the comparator, which must be 

modified to compare against an input value instead of 0. 
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The data network also avoids significant modification, although adding a crossbar port to 

support more register file read or write ports should they be required, would be costly. 

The PEs themselves require only very minor modification; now both U-FU and S-ALU 

PEs must have a mux on the output path. Additionally, in the case of Mosaic hardware 

without predicate aware sharing, a connection from the predicate network to the write 

enables of various storage elements would be required to implement Trimaran style 

predication. 

In general, the changes described above meet the goals set out for the consensus 

architecture. Specifically, the modifications should not have significant impact on the 

area or operating frequency of the Mosaic hardware. Most of the additions were a few 

muxes and extra communication channels. Although these components are not 

insignificant, especially considering the extra configuration memory required, the total 

percentage impact should be small. Frequency will likely be slightly reduced due to the 

additional load of this extra logic, but since no paths were introduced that require 

multiple operations or traversals of the crossbar in a single cycle, both CGRA and 

Trimaran modes should continue to operate at a reasonable clock frequency. 

Most importantly, the energy and performance of kernels executing in CGRA mode 

should not be significantly affected by any of the changes introduced to allow execution 

of Trimaran kernels. All of the additional logic discussed can be configured to a fixed 

state during CGRA execution, essentially eliminating dynamic power consumption. 

Other techniques, such as power gating the constant generators or other Trimaran only 

components, can even reduce the leakage of these components and help CGRA mode in 

the consensus architecture operate very close to Mosaic 1.0 levels. 

One area where the results are less positive is the consensus architecture’s execution of 

Trimaran kernels. Although most Trimaran instructions will remain single-cycle, this was 

not possible in all cases. Branches will require two cycles as discussed in 3.3.2, and 

Trimaran can fill the branch delay slot with other instructions. For most ALU operations 

single-cycle execution will be possible, as seen in 3.3.3, but the Mosaic MADD unit 

requires two-cycle multiplication. Since Trimaran will be relying on the MADD located 
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inside the Universal FU for all multiplication operations, the speed of these operations 

will be limited to the execution speed of the MADD. Although it would be possible for 

Trimaran to take advantage of pipelined multiply instructions, given the Mosaic 1.0 

multiplication hardware, the actual amount of performance that can be regained in this 

manner depends on the scheduling ability of the Trimaran compiler and the inherent 

pipelineability of the program being compiled. 

Memory access also presents some minor challenges to the single-cycle assumption. 

Trimaran only supports memory operations to addresses already stored in a GPR, so 

support for address calculations prior to reading from the local memory was not required. 

However, there are post-increment memory operations in Trimaran. These instructions 

load or store to an address read from a register, and also compute a new address that is at 

an offset from the original one. This computed address is stored back into the register file 

along with the result of the memory operation, in the case of a load. The register file 

write port pressure of instructions with two destination registers has already been 

discussed. Since the computation of the new address can occur in an ALU that is 

otherwise unused during a memory load or store operation, there is no reason that both of 

these things can’t occur in the same single-cycle. Because of this, the single-cycle 

assumption is intact for memory operations, even post-increment load and store. 

Finally, VLIW execution could present issues for the majority single-cycle model. 

Although there is currently an unused S-ALU in the consensus design, VLIW beyond 2-

wide could be challenging within a single cluster due to resource constraints, the most 

significant being register file ports. Any attempt to add inter-cluster communication to 

the execution of a single Trimaran kernel in VLIW mode would incur many cycle delays. 

The cost of traversing the inter-cluster interconnect would be great, and tremendous 

compiler modifications would be required to add scheduling support for this scenario to 

Trimaran. It is difficult to imagine that the performance gain of 3 or 4-wide VLIW 

execution could overcome the penalty of the added delay. 

  



 

42 

4. Modeling and Methodology 

A working system, at the level of Verilog simulation, was constructed only for the 

custom Trimaran processor. This required that the performance of the consensus 

architecture be estimated based on the analysis in 3.4. 

4.1 Testing Methodology 

Performance testing was straightforward on the single-cycle Trimaran processor. First, 

the HPL-PD machine description file was set to match the architecture of the custom 

Trimaran processor. Next, the desired kernel was tagged with marker functions and run 

through the scripts described in 2.1. These scripts produced Trimaran-ready C code, 

which was then compiled using Trimaran, producing both Verilog output and all of the 

support files required to run Simu. This entire flow can be seen in the Trimaran path of 

Figure 12. 

Verilog simulation, being very slow, was only used to verify correctness. Performance 

for longer simulation runs of the Trimaran only architecture was measured using Simu. 

Because Simu is fully aware of the architecture, as specified in the HPL-PD description, 

and there are no uncertainties such as those introduced by a complex memory hierarchy, 

its simulations are cycle accurate just like the Verilog runs. Also note that read streams 

were treated as always having data, and write streams as always having space. In other 

words, no stalls were permitted to occur during these simulations. 

Testing SPR performance was similarly straightforward. Using the current Macah to SPR 

tool flow, as shown in Figure 7, the benchmark application was run through Macah. Next 

the desired kernel was selected and run through the fsim Macah simulator. This 

simulation provides an iteration count for the design. Next, the SPRanalyze tool runs SPR 

with no resource constraints. This determines the minimum recurrence II of the kernel. 

This is the lowest possible II that the kernel can have in its current form, due to 

dependencies in its dataflow graph. Note that the minimum II found by SPRanalyze is not 

necessarily something fundamental to the application. Instead it is simply based on the 

Macah output from the current implementation. Improvements to the code can frequently 

be used to improve this II lower than its current point. Lastly, SPR itself is run against the 
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kernel, given an architecture very similar to Mosaic 1.0 as described in this thesis and in 

[Van Essen10]. SPR will determine the actual II of the kernel for some number of 

clusters, based on the resources available. SPR uses heuristic algorithms, so the II found 

in this stage is not an absolute minimum for the given kernel on the given hardware. 

Instead, it is a best effort attempt by SPR in a reasonable runtime. 

Once all of this data is collected from the simulated execution of the kernel, relative 

performance can be gauged. For the single-cycle Trimaran processor model, cycles of 

simulated execution time are equivalent to clock cycles in the final design. Things are a 

little more complicated for the SPR kernels. Ignoring stalls, since we’ve already 

established there won’t be any, the cycles of execution for those kernels running in 

CGRA mode is essentially the iterations multiplied by the II. This makes sense because 

each iteration requires II cycles to complete, so: 

II * iterations = cycles / iteration * iterations = cycles 

In reality, even without stalls this calculation is off by a small amount. This is due to the 

time required to fill the pipeline at the beginning of execution and drain the pipeline at 

the end of execution. However, given a sufficiently large number of iterations, this small 

discrepancy can safely be ignored. The final result of these calculations is a simple 

comparison between the execution cycles of Mosaic 1.0 CGRA mode and the single-

cycle Trimaran custom processor. 

4.2 Consensus Architecture Performance Estimation 

The execution cycle comparison method should also provide the performance of SPR on 

the consensus architecture. Great care went into the design to preserve CGRA 

performance, and from the design analysis it appears that it does not, in fact, reduce 

performance in any significant way. Because of this, the cycle counts from the previous 

section should still be applicable.  

Unfortunately, determining the performance of Trimaran execution on the consensus 

architecture is not nearly as simple. The consensus implementation will not be able to 

execute all instructions in a single cycle as the Trimaran custom processor did. Instead, it 



 

44 

has some multi-cycle instructions, some of which can be pipelined easily and some of 

which cannot. To complicate things further, some of the restrictions introduced by this 

pipelining would require substantial changes to the compilation and optimization phases 

of Trimaran to implement. For this reason, consensus architecture Trimaran performance 

is estimated, as described below, using the worst case assumption of no pipelining. The 

Trimaran consensus results must then be considered as a lower bound, where the 

performance of an actual implementation could be somewhat closer to that of the single-

cycle Trimaran custom processor. 

The branch class of instructions is an example of these challenges. Section 3.3.2 states 

that all branches are two cycle instructions and, as in many architectures, two branches 

can’t be issued in adjacent slots. However, since unrelated functional units can operate in 

parallel in Trimaran, instead of a branch delay slot other instructions that don’t affect the 

branch values could be issued in both slots. To make things even more complicated, for 

branches that use LC and ESC, these values must be written the cycle before the branch 

begins. However, since there is no path to the feedback register in the PE (used to store 

LC, Figure 21) that doesn’t first travel through the S-ALU, this value must be written 

some time before the branch begins, without overlapping with any other branch 

instructions or writes to the other control registers. It is additional constraints like these 

that make developing an efficient schedule for Trimaran on the consensus architecture 

more difficult than simple HPL-PD description modifications. The execution of each 

instruction type is summarized in Table 5. Note that this thesis frequently groups the 

details of the HPL-PD instruction set that Trimaran implements under the term 

“Trimaran”, although it can actually support many other ISAs as well. Details of the 

HPL-PD instructions can be found in [Kathail00]. 

Besides instruction classes that have inherent difficulties requiring design changes, there 

are some complex instructions that require two cycles to execute. For example, Trimaran 

features fixed shift and add instructions as well as logical operations that compliment one 

of the inputs. Without ALU modifications, these instructions can be trivially mapped to a 

single PE, but they are not pipelineable. This could present a scenario where all integer 

instructions must be modeled as two cycle operations for the consensus architecture, but 
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since these instructions are not observed in any of the benchmarks used this situation was 

avoided. Instead of creating various execution lengths for different integer operations, it 

may be better to remove these instructions entirely. The only cost to removing these 

instructions and forcing the compiler to output two different instructions is code size 

(important given Mosaic’s 128 configuration slots), register file pressure and possibly 

crossbar energy. The alternative is potentially costly ALU modifications that SPR doesn’t 

take advantage of. Removal is then a particularly good solution if these instructions are 

used infrequently, as appears to be the case. 

Class Cycles Pipelineable Notes 

Integer 1, 2 No Some instructions require two ALU ops 

Multiplication 2 Yes  

MADD 2 Yes Not currently implemented in Trimaran 

Floating Point - - Not supported on Mosaic hardware 

Conversion 1 Yes  

Move 1 Yes All moves must go through a PE 

Compare 1 Yes  

Memory 1 Yes No speculative or reference hierarchy 

Pre-branch 1 Yes  

Branch 2 Yes See 3.3.2 

Table 5. Execution cycles of Trimaran instruction classes on consensus architecture 
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5. Benchmarks 

Three benchmarks with very different properties help to expose the relative performance 

of a kernel executed using Trimaran instead of CGRA mode. The code for these 

benchmarks can be found in Appendix A. 

5.1 2D Convolution 

In the case of a very simple 2D Convolution implementation in Macah, the convolution 

operation is performed on an input stream representing a 2D matrix. The same 

convolution mask is applied to each area of the input Matrix, to produce the output matrix 

as shown in Figure 23. The mask values are multiplied against each cell in the input 

matrix, and the cells surrounding it. Although a 3x3 mask is used in the example, a larger 

mask is also possible. The results of the multiplication are then summed, producing the 

final output value for the center cell. Note that there are additional complexities, such as 

handling cells on the edge of the input matrix and scaling the output by a constant factor, 

but these are not part of the kernel being benchmarked here, since they will be 

implemented in other kernels. 

 

Figure 23. 2D convolution example 

The convolution kernel considered here, conv, performs the multiplication and addition 

stages described above, using two for loops. This is a very simple kernel without much 

complex control flow. In addition, when written correctly there are few dependencies 

from one output value to the next, so the II should be low and the CGRA performance 

should be high. On this kernel, Trimaran results are expected to be much worse. 
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5.2 Bayer Filter 

The Bayer filter is a critical part of the typical digital camera pipeline [Bayer76]. Images 

will often be captured by separate arrays of red, green and blue sensors (or shared sensors 

time multiplexed between colors). The purpose of the filter is to combine these separate 

color pixels into a single full color image. Depending on the exact makeup of the sensors, 

many variations on the filter exist, but the fundamental operation is always to combine 

the various sensor values into a single image. 

When implementing the Bayer filter for a stream based CGRA like Mosaic, the two 

dimensional input matrix must be streamed into the kernel as a one dimensional input. 

This presents a problem along the edges of the input sensor data similar to the 2D 

convolution, and part of the solution to this problem is a kernel that mirrors the pixels 

along the edges, called fillHorz. In addition to the two for loops, this kernel 

contains an if-else block made up of five different conditions. This complex control 

logic can be expected to show significant benefit under Trimaran, since the Macah 

version of the kernel will be executing significant amounts of predicated logic in parallel 

before throwing most of those results away. 

5.3 Discrete Wavelet Transform 

In a discrete wavelet transform (DWT) an input matrix has a set of high and low-pass 

filters applied to it recursively [Daubechies90]. This operation is useful in many 

applications, including imagine compression algorithms such as JPEG. In the case of the 

DWT used in JPEG, the two dimensional input matrix has a high and low pass filter 

applied to it in the horizontal direction, followed by both filters being applied in the 

vertical direction. The result of this first set of transforms can be seen on the left hand 

side of Figure 24. The bottom right section has the high portion from both the horizontal 

and vertical filters (essentially a diagonal). The top right and bottom left section of the 

image now contains the horizontal high pass and the vertical high pass respectively. 

These high pass filters highlight the noise, or sharp changes, in the image. Similarly, the 

top left has both low pass filters. After scaling, this essentially creates a smaller version 

of the original image in the top left. Finally, the same sequencing of filtering is applied 

repeatedly to the top left. The first application produces the results on the right hand side 
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of the figure, and each subsequent application operates on an image a quarter the size of 

the previous one. For more details about the operation of the DWT, see [Fry01]. 

LL HL 
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HL 

LLLH LLHH 

LH HH LH HH 

Figure 24. The first two stages of the 2D DWT used in JPEG image compression 

One important aspect of the streaming Macah implementation of the DWT is that the 

image must be divided into strips on which to perform the filter, but the horizontal and 

vertical passes require these strips in different directions. Because of this, between the 

application of the filters, the matrix must be mirrored. The kernel we use as a benchmark, 

leftVerMirror, performs one of these reflection operations prior to the low-pass 

filter. To do this, the kernel must read in an entire strip of data and store it, write out the 

mirrored version of this data, and then write out the un-mirrored values to complete the 

strip. This requires a series of for loops, including nested loops for the mirrored data. 

This kernel has interesting control flow because each of these loops makes use of the 

same set of streams. 

A final note about these benchmark applications is that they all appear to be similar at 

some level. Each of the three performs some operations on a stream representing a two 

dimensional matrix to be filtered. Despite these similarities, these are actually very 

different benchmarks because each kernel comes from a different part of the process and, 

most importantly, has a separate variety of control flow. 
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6. Results 

This section presents the results of the benchmarks discussed in section 0 on the 

architectures from section 0 followed by a comparison of the architectures. 

6.1 Optimized Mosaic 1.0 Performance 

The first area to examine is the performance of the Macah / SPR flow on the optimized 

Mosaic 1.0 architecture. The architecture used to run these benchmarks is similar, but not 

identical to that described in [Van Essen10]. The discrepancy is due to the rotating 

register files and some of the distributed registers in the PEs being replaced with retiming 

chains. Although no performance numbers are provided directly, the energy difference 

between these approaches is between 5 and 10 percent. These results are close enough, 

that as long as the reader bears them in mind, the overall conclusions should not be 

skewed by the lack of a rotating register file. 

These results are based on running each benchmark with multiple seeds on Mosaic 1.0 

clusters ranging in size from 1 to 16. These clusters use only core tiles, not edge tiles. In 

the case where different seeds produce different results, only the best result is used. As 

described in 4.1, C-based Macah simulations are first used to determine the iteration 

count for each benchmark followed by determining the final II using SPR. These initial 

results can be seen in Table 6, assuming no particular cluster constraints. 

Benchmark Input Size Iterations 
Minimum 

Recurrence II 
Minimum 

Resource II 

Convolution 128 x 128 17,689 3 4 

Bayer 
Horizontal 

128 x 128 17,161 7 5 

DWT Left 
Vertical Mirror 

256 entries, 
64 per stripe 

35,029 2 1 

Table 6. Optimized Mosaic 1.0 cluster count independent performance results 

These results alone, without resource constrained IIs, don’t provide very much useful 

information. It is worth noting that the iterations are very similar to the expected results 

(128 x 128 = 16384) and all of the minimum IIs are reasonably small. The true minimum 

II is the larger of the recurrence and resource minimums. The recurrence minimum II, as 
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discussed, is essentially the length of the longest dependence loop in the program’s DAG. 

The minimum resource II is determined by shared resources that must be time 

multiplexed, in situations where more resources could not improve performance due to 

communication time or limited routing resources. 

Figure 25 shows the II vs. cluster count for each benchmark. Note that as expected, the II 

decrease as the number of available clusters increases, approaching a minimum at around 

8 clusters for most of the benchmarks. For more than 8 clusters, the II actually increase, 

perhaps as routing the more spread out placement becomes difficult. For more clusters, 

many more runs are required to overcome random noise as well. It’s worth noting that the 

II is consistently somewhat high for 16 clusters (except in the DWT case) across many 

SPR runs with different seeds, so this probably is not just a case of randomly selecting a 

worse mapping of the program to the resources leading to a higher II. In the case of the 

convolution benchmark, the FOR loops imply a large amount of parallel computation. 

The inability to sufficiently serialize this arithmetic and memory access may be 

responsible for the failure to route on 1 or 2 clusters. The Bayer filter kernel very quickly 

approaches its minimum recurrence II when running on 2 or more clusters. This is not 

surprising because although it has a large number of conditional statements, all of them 

are very small and some perform similar work. Finally, the DWT mirror kernel follows 

the expected pattern of reaching an II close to its minimum at 4 clusters. It is worth 

noting here that there is likely another constraint, since the minimum achieved II of 5 is 

more than double the theoretical minimum of 2. 
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Figure 25. II  vs. clusters. Convolution was not routable on less than 4 clusters 

6.2 Custom Trimaran Processor Performance 

The single-cycle custom Trimaran processor is much more of a proof of concept for 

Verilog code emission than an architectural benchmark. In fact, since it is specifically 

designed to perform all Trimaran instructions in one cycle, performance is identical to the 

Trimaran baseline for any given benchmark. The results of the benchmarks in Trimaran, 

after running the Macah to Trimaran C script, are provided in Table 7. 

Benchmark Input Size Cycles Optimized 

Convolution 128 x 128 6,238,595  

Bayer 
Horizontal 

128 x 128 402,240 67,220 

DWT Left 
Vertical Mirror 

256 entries, 
64 per stripe 

143,693  

Table 7. Single-cycle custom Trimaran processor benchmark results 

Although these results are most interesting when compared to Mosaic below, there are 

some points that stand out. The Convolution kernel is clearly extremely expensive in 

Trimaran, which is not surprising since this processor is single issue and the kernel 

involves a large amount of arithmetic that can easily be parallelized. The results for the 

DWT kernel are much better, as is expected. Although there are many loops in this 

0

5

10

15

20

25

30

1 2 4 8 16

In
it

ia
ti

o
n

 In
te

rv
al

 

# of Clusters 

Convolution

Bayer

DWT



 

52 

kernel, they are not nested, producing a very serial kernel. There is also very little 

computation inside each loop. The Bayer kernel performs very badly in Trimaran. 

6.2.1 Bayer Kernel Optimization 

Given that the Bayer kernel is made up of a single large conditional it should perform 

reasonably well as a C program, but it does not do so. This is because the conversion 

from highly optimized Macah code to Macah simulation C and finally to Trimaran C 

does not always result in the most efficient Trimaran implementation of a program. This 

leads to the valuable insight that when implementing the same kernel in Trimaran and 

Macah, it may be worth writing each version separately in the manner best suited to the 

execution model. 

The optimized Bayer code is available in Appendix A. In the Macah version, the two 

outer loops iterate over all columns for each row. Inside the column calculation, special 

conditional logic handles the first three and final three columns. The essence of the 

optimization is to remove these conditionals, and simply perform the special operations 

from inside the row loop prior to entering the column loop. The serial nature of this 

implementation makes it very well suited to Trimaran. Removing the many conditional 

checks of the large if-else statement greatly improves Trimaran performance, since 

now only the two for loops require branches. This sort of optimization could be 

performed by a more advanced compiler that fully analyses the code inside the loop. All 

optimizations that Trimaran supports are performed on the converted Macah code, but 

this particular optimization appears to be beyond the scope of the current compiler. 

For the Bayer kernel, the functionally identical version written specifically for Trimaran 

performs 6x better (the optimized column in Table 7). Furthermore, given that automatic 

conversion of Macah kernels to Trimaran ones does not always produce good results, it 

may be that a designer should implement most kernels in the language best suited to the 

application initially and only use the automatic conversion scripts sparingly. Obviously, 

this advice does not apply in cases where the performance of the Trimaran kernel is 

completely irrelevant. 
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6.3 Consensus Architecture Performance 

Although there is no implementation to benchmark, the results from the single-cycle 

Trimaran processor and Mosaic 1.0 can be extrapolated to the consensus architecture. In 

the case of CGRA execution mode performance, this is very easy. As discussed in 3.4, 

the CGRA performance of the consensus architecture should be identical to the optimized 

Mosaic 1.0, with the exception of power, not analyzed here. This only leaves Trimaran 

mode. 

The consensus architecture executes most Trimaran instructions in a single cycle. The 

exceptions modeled here are branch instructions, which require two cycles, and multiply 

instructions, which occupy a U-FU for two cycles. For more information see 3.4. When 

accounting for this extra execution time, the results in Table 7 change slightly to those 

seen in Table 8. The impact of these changes will be examined in more detail in the 

following section. 

Benchmark Input Size Branch Multiply Total 

Convolution 128 x 128 540,282 435,600 7,214,477 

Bayer 
Horizontal 

128 x 128 117,280 0 519,520 

DWT Left 
Vertical Mirror 

256 entries, 
64 per stripe 

34,988 0 178,681 

Table 8. Consensus architecture Trimaran performance 

6.4 Analysis of Results 

When looking at the consensus architecture performance there are two important aspects 

to examine. First, it is possible that some kernels will perform better overall in Trimaran 

mode. These kernels have a minimum II (either resource or recurrence) such that they 

will always be slower in CGRA mode, no matter how many clusters they are executed 

on. The second class of kernels may be able to perform faster on the consensus 

architecture when run as CGRA kernels, but this may require many clusters. In this case, 

analysis of performance criticality, free clusters on the array and energy usage would be 

required to determine which execution mode is best for that kernel. 
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For this second class of applications, it is useful to look at performance per cluster as a 

way to compare Trimaran and Macah / SPR execution resources. This measure is simply 

the execution cycles of the kernel multiplied by the number clusters it is executed on. 

Another way to think of this is as the total number of issues slots across all clusters used 

during execution. This metric can be considered for any number of clusters, but it will be 

most useful to use the best case for Mosaic here. Finally, it’s important to observe that 

even if Trimaran is best for this metric that does not always mean a kernel should be 

executed in Trimaran mode. There could be cases where a kernel is the critical path in a 

multi-kernel application, in which case it should be executed as fast as possible regardless 

of the number of clusters required. Similarly, for non-performance critical kernels 

Trimaran execution on a single kernel may be desirable even if it is much slower in order 

to save energy and array resources. 

Before examining CGRA execution mode, it is worth looking at the performance penalty 

of going from single-cycle instructions to some multi-cycle instructions. This data is 

available in Table 9. Of these benchmarks, only the convolution features multiplication. 

Surprisingly, despite the multiplication, it loses the least performance of all the kernels, 

with the consensus architecture performing at 86.5% percent the speed of the custom 

processor. This is due to the fact that the convolution has far fewer branch instructions, 

about 9% instead of 25% or 30%, when compared to the other kernels. For the Bayer and 

DWT kernels, the performance is reasonable close, ranging from 77.4 to 80.5%. Some of 

this performance loss could be mitigated by VLIW execution. 

Benchmark Single-cycle Multi-cycle Performance 

Convolution 6,238,595 7,214,477 86.5% 

Bayer 
Horizontal 

402,240 519,520 77.4% 

Optimized 
Bayer 

67,220 83,474 80.5% 

DWT Left 
Vertical Mirror 

143,693 178,681 80.4% 

Table 9. Trimaran performance loss in going from single-cycle execution to consensus architecture 
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Before these Trimaran results can be compared to CGRA mode results, the total number 

of issues slots used across all clusters must be compared as described above. Figure 26 

shows the number of issue slots used for each case and these results multiplied across all 

clusters in use can be seen in Figure 27. Note that for every kernel the total time to 

completion is lowest for 8 or 16 clusters. This is not surprising as all of these tasks have 

sufficient parallelism available that performance can improve with more resources, and 

only the Bayer filter task ever reaches its minimum II. However, the last 4 or 8 clusters 

added only produce increment gains as the second chart shows. The total number of issue 

slots used across all clusters increases significantly after 2 or 4 clusters. This suggests 

that if the CGRA can be filled, only dedicating 2 to 8 clusters to any of these kernels 

might result in the best total performance per watt. 

 

Figure 26. Execution cycles until kernel is completed vs. number of clusters used in CGRA mode 
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Figure 27. Total issue slots summed across all clusters executing a given CGRA mode kernel 

Table 10 compares Trimaran performance on the consensus architecture to the best 

CGRA performance from Figure 26 for each benchmark. In the case of the convolution, 

the CGRA implementation is about 82 times faster. This is not surprising given the 

complete lack of control flow and large quantity of parallelizable ALU operation in the 

benchmark. In other words, this is an ideal case for CGRA execution. The Bayer filter is 

a much more interesting case. On 8 clusters, CGRA execution is 4.3 times faster for the 

direct Macah to Trimaran Bayer horizontal mirror kernel. However, the hand written 

Trimaran C kernel is actually faster than the CGRA version, executing in about    ⁄  of 

the time. This highlights the significant issues encountered when running a heavily 

optimized Macah kernel directly in Trimaran. However, this hand tuning will only work 

for kernels with significant amounts of control and serial work. No hand tuning of the C 

code is going to improve the performance of the convolution kernel by a factor of two in 

Trimaran, let alone make it better than the SPR results. Finally, the DWT kernel is only 

about 2% faster in on the CGRA, but it requires 16 clusters to reach this level of near-

parity. 
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Benchmark Trimaran Clusters CGRA Cycles Runtime 

Convolution 7,214,477 8 88,445 81.6 x 

  4 159,201 45.3 x 

Bayer 
Horizontal 

519,520 8 120,127 4.32 x 

  1 377,542 1.38 x 

Optimized 
Bayer 

83,474 8 120,127 0.695 x 

  1 377,542 0.221 x 

DWT Left 
Vertical Mirror 

178,681 16 175,145 1.02 x 

  1 945,783 0.189 x 

Table 10. Absolute Trimaran and CGRA performance, for the fewest number of cycles and clusters 

It should be noted here that these results are in no way intended to suggest that in most, 

or even many, cases Trimaran can perform on par with Macah and SPR. Both the Bayer 

and DWT mirroring kernels used here are not the main computation kernels for these 

applications. Instead, they are kernels selected particularly for their control-heavy 

properties. The Bayer kernel makes use of a conditional block with many mutually 

exclusive options, and the DWT kernel has a series of loops that are fundamentally serial. 

Both of these attributes are unusual, and it is reasonable to expect that for most 

application targeting a CGRA, the convolution kernel is much more typical. This kernel 

represents the computation heavy kernel that will frequently be the performance 

bottleneck for applications on Mosaic. Clearly these kernels are not well suited to 

Trimaran, but most multi-kernel applications will also have some kernels like the other 

two, where Trimaran could provide significant improvement. Generally, the control 

heavy kernels can be run with Trimaran, while SPR should be used for the primary 

computation task with a high degree of data-parallelism. If the application does not have 

any data-parallel kernels that perform significantly better in SPR, a CGRA may not be 

the correct target platform. 
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Given that some kernels do run well in Trimaran, and other kernels may not perform as 

well but may not be performance critical, it is appropriate to examine the performance 

per cluster of a Trimaran kernel. Significant energy and area savings can be achieved due 

to Trimaran using only one cluster for each kernel, and as Table 10 shows the 

performance loss is not always significant. This data can be found in Table 11. For this 

table, the number of clusters that consumes the fewest total issue slots from Figure 27 is 

used. The best performance per cluster tends to occur with fewer clusters than the best 

overall performance. One possible explanation is that there are diminishing returns from 

adding more hardware resources to a problem if there is no more parallelism available for 

SPR to exploit. Alternatively, the increased communication delay between more distant 

clusters may limit the benefits of using their resources at all. 

Benchmark Trimaran Clusters CGRA Total Runtime 

Convolution 7,214,477 4 636,804 11.3 x 

Bayer 
Horizontal 

519,520 2 274,576 1.89 x 

Optimized 
Bayer 

83,474 2 274,576 0.304 x 

DWT Left 
Vertical Mirror 

178,681 4 840,696 0.213 x 

Table 11. Performance of Trimaran and CGRA execution scaled to the number of clusters used 

Weighing the CGRA results by the number of clusters used paints a much better picture 

for Trimaran. These numbers are only meaningful if CGRA resources are scarce, in 

which case this comparison can give some idea of performance per cluster dedicated to 

the kernel. For the convolution, Macah and SPR on 4 clusters are still much faster than 

Trimaran (about 45.3 times) but this is only 11.3 times faster per cluster. Obviously, for 

parallel computation heavy kernels like this, the CGRA execution model is more efficient 

no matter what metric is used. The picture changes a little with the Bayer filter kernel, 

where the direct execution of the Macah-to-Trimaran C is only 1.89 times more efficient 

on a per cluster basis, and the optimized version runs much faster on Trimaran. This 

result would be even more skewed towards Trimaran, but the CGRA version only 

requires twice the hardware resources. The result is even more extreme in the DWT case, 

where CGRA execution is most efficient on 4 clusters. In this case, Trimaran is 4.7 times 
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more efficient per cluster. This result is probably due to the very high level of wasted 

parallel work that the DWT mirroring kernel requires under Macah and SPR. 

Overall, these results show that in cases where Trimaran is well-suited for the kernel’s 

control-heavy work load, the work done by a Trimaran cluster compared to one running 

part of a CGRA kernel is greater than the speedup number might indicate. It is important 

not to confuse these numbers with the actual performance relationship when the kernel is 

run on many clusters. It is simply a way of measuring the potential cluster utilization 

advantage of Trimaran execution. However, in the case where many independent data 

streams are being processed these numbers could be translated into performance gains 

simply by instantiating the Trimaran kernel many times. 
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7. Conclusion and Future Work 

The CGRA execution model, as implemented in Mosaic 1.0, has been shown to provide 

very energy efficient execution for a large number of parallel applications. However, its 

strict modulo schedule and lack of control flow, other than predication, create a class of 

control-heavy applications where performance suffers significantly. This work suggests 

an alternative C compilation flow based on the Trimaran compiler to address these cases. 

A tool flow that maps Trimaran programs to a single-cycle custom Trimaran processor, 

built out of Mosaic components, demonstrates the feasibility of emitting Verilog 

configuration code from Trimaran. 

This work also proposes a consensus architecture capable of executing both CGRA and 

Trimaran mode kernels. This architecture is designed to have reasonable Trimaran 

performance without incurring any performance penalty in CGRA mode. Additionally, 

the area and energy overhead was minimized as much as possible during the design. This 

resulted in a feasible architecture that was capable of single-cycle performance for most 

Trimaran instructions and required no more than two cycles to execute any instruction. 

Although the consensus architecture was found to take more than 80 times as long to 

execute a highly parallel kernel in Trimaran mode, when compared to CGRA mode, other 

more control-heavy kernels run as fast or faster using Trimaran. Furthermore, Trimaran is 

significantly more efficient when it comes to Mosaic clusters consumed, since all kernels 

execute on a single cluster. Given the metric of total issue slots spent computing across 

all clusters, Trimaran is as much as 4.7 times as efficient for a control-heavy serial kernel. 

This suggests that a consensus architecture which provides a best of both worlds scenario 

in which each kernel runs under the execution model best suited for it could provide 

significant performance and energy gains over the current CGRA mode only Mosaic 

architecture and tool flow. 

Given these results, users of Mosaic may find Trimaran compilation advantageous in any 

control-heavy scenario. Code that has large conditional blocks will tend to fall into this 

category. Applications with many small conditional blocks will also fit this model, 

whether these blocks are formed by a case statement, a standard if statement, or many 
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nested loops. In addition to these cases, code with less control that is not performance 

critical can also benefit from Trimaran execution. This is illustrated to some degree by 

the issue slots metric, but could be extended further to any kernel off the critical path. 

These kernels can all be executed on a single cluster in Trimaran mode, which will leave 

more clusters free for parallel execution of other kernels as well as potentially consuming 

less energy. Depending on the sophistication of the Mosaic floor planner, this may prove 

to be a better solution than relying on it to limit these kernels to a single cluster when 

compiled using Macah and SPR. 

Future work on this project could include implementations of the consensus architecture 

and optimizations to Trimaran’s scheduling algorithms to take advantage of execution on 

that architecture. Furthermore, the consensus architecture could be made more efficient if 

the Trimaran compiler was able to make use of the additional registers available in the 

fabric. This work sufficiently demonstrates the feasibility and performance benefits of the 

hybrid approach, as well as providing a design outline; however, further characterization 

of the energy and area overhead of the consensus architecture would be required before a 

specific implementation can be settled on. 
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Appendix A 

2D Convolution Macah Source Code 

    task filler (in_port inStrm, out_port midStrm) { 

 

      int i,j,k,l; 

      int strip[K_S+1][Z_W]; 

      int result; 

      int conv_kern[K_S][K_S]; 

      int sliding_win[K_S][K_S+1]; 

 

      for(i=0;i<K_S;i++){ 

 for(j=0;j<K_S;j++){ 

            conv_kern[i][j]=i+j; 

 } 

      } 

 

      trimaranKernelStart(); 

      kernel fillk { 

 for(i=0;i<Z_H;i++){ 

   for(j=0;j<Z_W;j++){ 

     strip[K_S][j] <? inStrm; 

     result=0; 

     FOR(k=0;k<K_S;k++){ 

       sliding_win[k][K_S]=strip[k+1][j]; 

       FOR(l=0;l<K_S;l++){ 

  result+=sliding_win[k][l+1]*conv_kern[k][l]; 

  sliding_win[k][l]=sliding_win[k][l+1]; 

       } 

       strip[k][j]=strip[k+1][j]; 

     } 

     midStrm <! result; 

   } 

 } 

      trimaranKernelEnd(); 

    } 

Bayer Filter Macah Source Code 

    task filler (in_port inStrm, out_port midStrm) { 

 

      int tmpRow[2]; 

      int col, row; 

      int tmp; 

 

      trimaranKernelStart(); 

      kernel fillk { 

        for (row = -1; row <= HEIGHT; row++) { 

          for (col = -1; col <= WIDTH; col++) { 

            //remember first two collumns 

            if (col == -1) { 

              tmpRow[0] <? inStrm; 

              tmpRow[1] <? inStrm; 

              midStrm <! tmpRow[1]; 

            //don't skip col 0 and last 
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            } else if (col == 0 || col == WIDTH) { 

              midStrm <! tmpRow[0]; 

            //repeat col 1 and second to last 

            } else if (col == 1 || col == (WIDTH - 1)) { 

              midStrm <! tmpRow[1]; 

            //remember last two collumns 

            } else if (col == (WIDTH - 2)) { 

              tmpRow[0] <? inStrm; 

              tmpRow[1] <? inStrm; 

              midStrm <! tmpRow[0]; 

            //normal collumns 

            } else { 

              tmp <? inStrm; 

              midStrm <! tmp; 

            } 

          } 

        } 

      } 

      trimaranKernelEnd(); 

    } 

Discrete Wavelet Transform Macah Source Code 

    task filler (in_port inStrm, out_port midStrm) { 

      int h; 

      int i; 

      int j; 

 

      int offset; 

 

      int data[MAX_COEF_COUNT * HALF_STRIPE_WIDTH]; 

 

      trimaranKernelStart(); 

      kernel fillk { 

 for (h = 0; h < SIZE / STRIPE_WIDTH; h++) 

 { 

   //read in necessary mirror data 

   for (i = 0; i < (MAX_COEF_COUNT * HALF_STRIPE_WIDTH); i++) 

   { 

     data[i] <? inStrm; 

   } 

 

   //write mirrored data [3 2 | 1 2 3...] 

   for (i = MAX_COEF_COUNT - 1; i > 0; i--) 

   { 

     offset = i * HALF_STRIPE_WIDTH; 

 

     for (j = 0; j < HALF_STRIPE_WIDTH; j++) 

     { 

       midStrm <! data[offset + j]; 

     } 

   } 

 

   for (i = 0; i < (MAX_COEF_COUNT * HALF_STRIPE_WIDTH); i++) 

   { 

     midStrm <! data[i]; 

   } 
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   //write standard data 

   for (i = 0; i < (SIZE - MAX_COEF_COUNT) * HALF_STRIPE_WIDTH; 

i++) 

   { 

     data[0] <? inStrm; 

 

     midStrm <! data[0]; 

   } 

 } 

      } 

      trimaranKernelEnd(); 

    } 

Bayer Filter Optimized Trimaran Source Code 

int main (int argc, char *argv[]) 

{ 

  volatile int inStrm ; 

  volatile int midStrm ; 

  int tmpRow[2] ; 

  int col ; 

  int row ; 

  int tmp ; 

        for (row = -1; row <= HEIGHT; row++) { 

          tmpRow[0] = inStrm; 

          tmpRow[1] = inStrm; 

          midStrm = tmpRow[1]; 

          midStrm = tmpRow[0]; 

          midStrm = tmpRow[1]; 

          for (col = 2; col < (WIDTH - 2); col++) { 

              tmp = inStrm; 

              midStrm = tmp; 

          } 

          tmpRow[0] = inStrm; 

          tmpRow[1] = inStrm; 

          midStrm = tmpRow[0]; 

 

          midStrm = tmpRow[1]; 

          midStrm = tmpRow[0]; 

        } 

} 
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