
“C-Level” Programming of Parallel Coprocessor Accelerators

Benjamin Ylvisaker

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2010

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Benjamin Ylvisaker

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Co-Chairs of the Supervisory Committee:

William H.c. Ebeling

Scott Hauck

Reading Committee:

William H.c. Ebeling

Scott Hauck

Daniel Grossman

Date:

University of Washington

Abstract

“C-Level” Programming of Parallel Coprocessor Accelerators

Benjamin Ylvisaker

Co-Chairs of the Supervisory Committee:
Professor William H.c. Ebeling

Computer Science and Engineering

Professor Scott Hauck
Electrical Engineering

We believe that FPGA-like parallel coprocessor accelerators can be programmed efficiently

at the “C level” of abstraction. In order to support this claim we define an abstract archi-

tectural model of accelerators that conveys the kind of high-level behavior and performance

characteristics that the von Neumann model conveys to programmers of conventional pro-

cessors. Using the model as a guide we define a programming language and compilation

strategy that:

1. do not impose programming style restrictions that are not inherent in the model,

2. do not introduce serious inefficiencies, and

3. are performance portable across implementations of the model.

In this dissertation I describe C-level programming of accelerators broadly, and make three

particular contributions to the programmability of accelerators.

• Enhanced loop flattening is a new method for translating loop nests with arbitrary

static control flow into a form that can be efficiently pipelined with conventional

algorithms designed for simple loops. This method advances the goal of supporting a

wide set of programming styles with reasonable efficiency.

• Parallel accelerators have statically managed resources–like local memories–that vary

widely in capacity from one implementation to the next. In order to get close to peak

performance, applications must be tuned to the specific resources available in a given

implementation, and empirical auto-tuning is an attractive way to do that. I propose

and evaluate a new probabilistic auto-tuning method that elegantly handles situation

where many possible configurations of the application fail to work at all because they

exceed some architectural resource limit.

• For many applications, achieving good performance on parallel accelerators requires

deep loop pipelining, which requires dramatically reordering the individual operations

in the application. Local dependencies between operations can be respected by com-

pilers relatively easily, but non-local dependencies force implementations to choose be-

tween conservatively not reordering operations (which might kill performance), prov-

ing that reordering preserves the meaning of the program (which is impossible in

the general case), or making unsound transformations (which programmers generally

dislike). I propose a mostly sequential operational semantics for C-level streaming

languages targeted at parallel accelerators that offers enough flexibility to the imple-

mentation to achieve good performance, deviates from conventional program-order

semantics in fairly modest and understandable ways, and provides tools with which

the programmer can control the reordering performed by the implementation.

These innovations are evaluated in the context of Macah, a new C-like language devel-

oped in the Mosaic group at the University of Washington. For validation we use a number

of compute-intensive benchmarks developed by members of the Mosaic group and other

contributors.

TABLE OF CONTENTS

Page

List of Figures . iv

Chapter 1: The Parallel Coprocessor Accelerator Ecosystem 1

1.1 Parallel coprocessor accelerators . 2

1.2 What accelerators are good for . 3

1.3 How engineers program accelerators today . 5

1.4 How researchers think engineers should program accelerators 5

1.5 Contributions of this dissertation . 11

Chapter 2: An Abstract Model for Parallel Coprocessor Accelerators 14

2.1 A proposed model . 16

2.2 Implementations of the HMP model . 21

2.3 Algorithm analysis and design . 23

2.4 Summary . 32

Chapter 3: Macah and the Mosaic Toolchain . 34

3.1 Macah and the HMP model . 34

3.2 Example application: motion estimation . 38

3.3 Motion estimation in Macah . 45

3.4 Implementing Macah: Mosaic toolchain overview 59

3.5 Compiling Macah I: front-end . 62

3.6 Compiling Macah II: back-end . 70

3.7 Applications . 73

3.8 Summary . 75

Chapter 4: Enhanced Loop Flattening . 77

4.1 Background . 79

4.2 Enhanced loop flattening . 89

4.3 Enhanced loop flattening implementation . 91

i

4.4 Evaluation . 108
4.5 Discussion . 113
4.6 Summary . 117

Chapter 5: A Short Survey of Tuning . 119
5.1 Background . 121
5.2 Improving mostly conventional compilers . 124
5.3 The auto-tuner approach . 130
5.4 General purpose auto-tuning . 140
5.5 Tuning for coprocessor accelerators . 145

Chapter 6: Auto-Tuning for Accelerators . 148
6.1 Overview of the tuning knobs method . 151
6.2 An example . 152
6.3 Context for accelerators . 157
6.4 The prominent alternatives . 158
6.5 How it works . 160
6.6 Probabilistic regression analysis . 165
6.7 Derived features . 171
6.8 Complete basic tuning knob algorithm . 172
6.9 Enhancements . 172
6.10 Evaluation . 180
6.11 Summary . 190

Chapter 7: Relaxed Operational Semantics for Dynamic Streaming Languages . . 192
7.1 Summary of Results for Non-Language Semanticists 195
7.2 Basics . 198
7.3 Unbounded stream buffer semantics . 202
7.4 Blocking and polling . 214
7.5 Bounded stream buffers . 215
7.6 Future work . 221
7.7 Summary . 223

Chapter 8: Conclusions and Future Work . 225
8.1 Summary of results . 225
8.2 How far have we come? . 226

ii

8.3 Promising directions for future work . 231
8.4 The last word . 233

Bibliography . 234

Appendix A: Tuning Data . 255

iii

LIST OF FIGURES

Figure Number Page

2.1 An illustration of the components of the von Neumann model. 15
2.2 The HMP model . 18
2.3 Tiled Matrix Multiplication . 24
2.4 Smith-Waterman example with T = 4 . 27
2.5 Communication/workspace tradeoffs . 30

3.1 A simple Macah program . 37
3.2 Motion estimation for video compression . 39
3.3 Generic motion estimation code . 40
3.4 Inner points of the enhanced hexagonal search 41
3.5 The HMP model again . 42
3.6 Top-level of an accelerated motion estimation implementation 45
3.7 A memory accessor function . 49
3.8 Sequential part of the accelerated implementation 50
3.9 Motion vector selection heuristic . 51
3.10 Block comparison kernel in Macah. 52
3.11 Simple pipelining example . 54
3.12 The copy-in copy-out trick for working around data access restrictions in

Macah. 57
3.13 An overview of the Mosaic toolchain. 60
3.14 If-conversion . 64
3.15 Loop flattening . 65
3.16 More complex loop flattening . 66
3.17 Loop fusion . 67
3.18 Streamable expressions . 68
3.19 Unrolling a datapath graph . 72

4.1 Non-pipelined schedule . 79
4.2 Pipelined schedule . 80
4.3 Parallelogram diagrams . 81

iv

4.4 Abbreviations used throughout the chapter. 82

4.5 Terminology of loop pipelining . 84

4.6 Different ways of pipelining a nested loop . 85

4.7 The basics of loop flattening . 88

4.8 Loop flattening and unbalanced diamonds . 90

4.9 Control flow graph with iteration distance annotations 92

4.10 Intra- and inter-iteration flow graph concepts. 93

4.11 Examples of predicate generation . 96

4.12 Complete picture for predicate generation . 98

4.13 Code example for selects . 100

4.14 Examples of select insertion . 101

4.15 Select truth table . 101

4.16 General case for select insertion . 103

4.17 Inter-iteration select control issue . 105

4.18 Benchmarks used in our evaluation of enhanced loop flattening 108

4.19 Static iteration delay heuristics . 109

4.20 Performance results for enhanced loop flattening 110

4.21 Trace scheduling idea . 115

5.1 Simple loop unrolling . 124

5.2 Example compiler heuristic functions . 126

5.3 Empirical optimizing compiler flow . 128

5.4 Empirical feedback compiler results . 129

5.5 Blocked matrix multiplication . 131

5.6 Tuned matrix multiply performance . 132

5.7 Tuning equations for ATLAS . 134

5.8 Architecture of SPIRAL . 136

5.9 Program optimization moves used by SPIRAL. 137

5.10 Performance on single-precision FFT [PMJ+05] 138

5.11 Non-matrix-vector multiplication algorithms in SPIRAL 139

5.12 Complex functions that auto-tuners try to optimize. 141

5.13 Direct search methods . 142

5.14 The Q2 search . 143

5.15 General purpose auto-tuning evaluation . 144

5.16 Tuning of huge, complex software systems . 146

v

6.1 A simple sequential FIR filter. 153
6.2 FIR with an unrolled inner loop. 153
6.3 FIR with explicit local buffering. 154
6.4 Banking the buffers. 155
6.5 Multiple parallel accesses to each bank. 156
6.6 A complex function for auto-tuning . 158
6.7 Setting the cutoff value for proxy metrics . 164
6.8 Local linear averaging and derivative projection 167
6.9 The basic ingredients in our probabilistic regressions analysis 169
6.10 Value distributions produced by our regression analysis 170
6.11 Candidate selection process . 170
6.12 The complete basic tuning knob search algorithm. 173
6.13 Neighborhood definition alternatives . 176
6.14 In between definition . 177
6.15 Normalized performance and failure modes for the FIR filter. Orange/1 is

the highest performance setting; Black/0 is the lowest performance setting.
Small/Large and Few/Many refer to the architecture variants that we exper-
imented with. 182

6.16 Normalized performance and failure modes for dense matrix multiplication.
Orange/1 is the highest performance setting; Black/0 is the lowest perfor-
mance setting. Small/Large and Few/Many refer to the architecture variants
that we experimented with. 183

6.17 Normalized performance and failure modes for Smith-Waterman. Orange/1
is the highest performance setting; Black/0 is the lowest performance set-
ting. Small/Large and Few/Many refer to the architecture variants that we
experimented with. 184

6.18 Normalized performance and failure modes for 2D convolution. Orange/1
is the highest performance setting; Black/0 is the lowest performance set-
ting. Small/Large and Few/Many refer to the architecture variants that we
experimented with. 186

6.19 Quality as a function of the number of configurations tested. 187
6.20 Number of tests required to reach a specific quality level. 188
6.21 Number of tests needed broken up by application. 189

7.1 Program traces to illustrate deadlock issue . 194
7.2 All of the expressions in the core Macah grammar and their intuitive connec-

tions to full Macah statements/expressions. 199
7.3 Program order semantics with unbounded stream buffers. 202

vi

7.4 Each evaluation step in the semantics is labeled with an action name. 203
7.5 The local send buffering semantics with unbounded streams 205
7.6 Program order semantics with bounded buffers 216
7.7 The local send buffering semantics with bounded streams and unbounded

reordering (Part 1/2). 217
7.8 The local send buffering semantics with bounded streams and unbounded

reordering (Part 2/2). 218

A.1 Quality of best configuration found as a function of number of tests for the
FIR filter application. 257

A.2 Quality of best configuration found as a function of number of tests for the
2D convolution filter application. 258

A.3 Quality of best configuration found as a function of number of tests for the
dense matrix multiplication application. 259

A.4 Quality of best configuration found as a function of number of tests for the
Smith-Waterman application. 260

vii

ACKNOWLEDGMENTS

I am grateful to a number of people, without whom I would not have been successful in

graduate school.

My advisors Carl Ebeling and Scott Hauck provided an enormous amount of guidance

over the years. Most of all, I need to thank them for teaching me that research is about

more than coming up with ideas that sound neat. It is also about the careful analysis

and experimentation needed to build strong arguments, and being a persuasive writer and

speaker. I wish I had realized earlier how much I had to learn about these skills.

My other committee members have also made important contributions. Dan Grossman,

in particular, has spent considerable time helping me bring a formal semantics perspective

to programming accelerators. Brad Chamberlain contributed an outside perspective and a

number of useful observations. Eric Klavins, my graduate school representative, has been

diligent in his role ensuring that the process proceeded correctly.

During my time in the Mosaic group, the other members were (in alphabetical order) Al-

lan Carroll, Stephen Friedman, Robin Panda, Brian Van Essen, and Aaron Wood. Without

the systems that we developed together I certainly would not have been able to complete

my own work. More important than the code were the countless impromptu meetings at

the whiteboard to discuss ideas. This dissertation would not be half of what it is without

the rich exchange I had with the members of this group. In particular, Brian and I worked

closely across a startup company and two graduate schools; it has been a stimulating col-

laboration, and I wish Brian the best as we now go our own professional ways. Adam

Knight and Mikey Levine were not official Mosaic group members, but they both made

contributions to the compiler and runtime system that I worked on.

Developing a new language requires benchmark programs, and if the raison d’être of

that language is to make something easier, it is critical to get people other than the core

viii

developers to try it out. In addition to the Mosaic group members, I was fortunate to

work with many undergraduate and masters students at UW on implementing a number

of interesting applications in Macah. The Macah programmers were (again, alphabetical):

Abhishek, Danny Anderson, Guy Bordelon, Elliott Conant, Jesse (Randy) Cork, Richard

Crouch, Milad Hashemi, Robert Horrox, Jordan Hoyt, Lavanya Jandhyala, Patricia Lee,

Brian Mayton, Kristofer Plunkett, Andy Turner, Yuhong Wang, Ben Weintraub, and Ziyuan

(Mo) Zhang. Their code helped enrich the Mosaic system, and their feedback helped me

develop Macah.

Graduate school would not be possible without the help of staff members who keep

an eye on life outside of research, make sure that the administrative gears turn smoothly,

and keep the cluster glowing. I am particularly grateful to Kay Beck-Benton, Lee Damon,

Shannon Gilmore, and Lindsay Michimoto.

I was financially supported by a number of generous funding agencies during graduate

school, including the Department of Energy (grant #DE-FG52-06NA27507), the National

Science Foundation (grants #CCF-0426147 and #CCF-0702621), and Microsoft (by way of

an endowed fellowship from the Computer Science and Engineering department).

Finally, I want to thank the entire Computer Science and Engineering community at

UW; it is special place with a friendly and collaborative atmosphere (in addition to a lot of

really smart people, of course).

ix

1

Chapter 1

THE PARALLEL COPROCESSOR ACCELERATOR ECOSYSTEM

Parallel coprocessor accelerators offer much higher performance and energy efficiency

than conventional uniprocessors on applications that fit certain constraints. Many appli-

cations of great commercial and/or scientific interest have been successfully accelerated

with parallel coprocessors. However, though a variety of parallel coprocessors have been

researched, developed and marketed as general purpose applications accelerators, they are

still not widely used outside of their native niches.

One of the important reasons for the slow adoption of accelerators for “general purpose”

applications is that the programming languages and surrounding tools for them are different

from and significantly harder to use than conventional development environments. In fact,

there is considerable anecdotal evidence that programming accelerators with their native

tools is harder than multithreaded programming with shared memory and locks, which is

itself widely regarded as much harder than conventional sequential programming.

In this dissertation I propose and analyze programming language and compiler tech-

nologies for making accelerators easier to program. Specifically, these technologies enable

“C-level” programming of accelerators. C-level is in quotes because accelerators are suf-

ficiently different from conventional processors that I believe it does not make sense to

program accelerators with conventional languages like C and rely on aggressive compiler

analyses and optimizations to bridge the large gap between language and architecture. The

programming models and technologies proposed in this dissertation make the accelerator

programming experience more like the C programming experience, while explicitly acknowl-

edging that accelerators are different from sequential processors in some important ways.

The conventional tools for programming accelerators are hard to use because they do

not provide enough abstraction. However, there are costs to abstracting too far from the

underlying hardware. This project aims to provide for accelerators the convenience and

2

portability of C-level programming, without requiring unrealistic compiler technology.

1.1 Parallel coprocessor accelerators

For most of this dissertation the term “parallel coprocessor accelerator” is a broad umbrella

that covers field-programmable gate arrays (FPGAs), graphics processing units (GPUs),

coarse-grained reconfigurable arrays (CGRAs) [BBKG07, VWC+09], massively parallel pro-

cessor arrays (MPPAs) [YMA+06, BJW07], systolic arrays and “many-core” processors

[SCS+08]. There are important differences between these families of architectures, but they

have enough similarities that it makes sense to define an abstract model that covers them all

with reasonable fidelity. Such abstract models make it easier for programmers to understand

the essential differences between conventional processors and accelerators.

All accelerators are much more computationally dense than conventional processors.

Modern single core processors have fewer than 10 execution units and have a maximum

instructions per cycle (IPC) of 3 or 4, even when running highly parallelizeable programs.1

In the same silicon area, accelerators have many hundreds of execution units and have a

correspondingly higher peak computational throughput.

Of course, execution units are not free. Compared to conventional processors, accelera-

tors are weak on branch-heavy and unpredictable applications because they lack structures

like branch predictors, reorder buffers and sophisticated global caches.

There are also important differences in the memory hierarchy. Accelerators execute

many more operations per unit time than conventional processors, but the amount of data

that can be moved across a chip boundary is limited by the amount of power it takes to drive

huge off-chip wires. Therefore, algorithms running on accelerators cannot perform as many

input/output operations per computational operation in aggregate. Often sophisticated

buffering schemes are used to get the most out of on-chip memory.

In my work I focused more on FPGA and CGRA style accelerators than GPUs or

MPPAs. I believe that the techniques I developed could be extended to other kinds of

accelerators, but there is work left to do there. The model and language I propose help blur

1SIMD instruction sets, like SSE and AltiVec, allow conventional processors to scale up a bit more. How-
ever, processors with these technologies still have far lower parallel execution capacity than accelerators.

3

the lines between different accelerators, but do not completely eliminate them.

1.2 What accelerators are good for

Researchers have demonstrated that accelerators can achieve much greater performance

and energy efficiency than conventional processors in a wide range of application domains

including image, audio and video processing, digital communications, encryption, scientific

and financial simulations, computer vision, numerical methods, neural networks, and bio-

sequence alignment [BGT07, CLS+08, JTLC09, TCK09, THL09, BNW+10, CSJC10].

Hundreds (perhaps thousands) of papers on using accelerators for particular applications

have been published in a number of different research communities. The small selection cited

here exemplifies a recent trend towards evaluating the same application on more than one

family of accelerator; FPGA versus GPU is the most common comparison, though others

are sometimes included. This trend signifies an emerging consensus that different kinds of

accelerators, which have historically inhabited isolated niches, have quite a lot in common.

Different kinds of accelerators have different strengths and weaknesses, though accelera-

tor comparison studies have not yet painted a complete and consistent picture of what those

differences are. At least FPGAs and GPUs will continue to exist as options for application

acceleration for the foreseeable future, and it is quite likely that other styles of accelerators

will continue to compete for market and mind share. Programming language and compiler

technologies that abstract away from architectural details help make comparisons between

different kinds of accelerators.

The common characteristics shared by all applications that work well on parallel copro-

cessor accelerators are:

1. A large amount of work in a small amount of code (repetitiveness).

2. A large number of parallel primitive operations (fine-grain parallelism).

3. Relatively little dynamic decision making (predictability).

4. Relatively simple data access patterns (regularity).

The easiest applications for accelerators are basic linear algebra operations like dense matrix-

matrix multiplication, 2D convolution and finite impulse response filters, which are often

4

referred to as brute force. Brute force applications have all the characteristics listed above.

There is another collection of applications—like fast Fourier transforms and dynamic

programming—that typically have somewhat more complex control flow and data access

patterns and somewhat less available parallelism than brute force applications. I call these

efficient applications, and they typically work well on accelerators, though supporting them

well is more of a challenge for architects and language/compiler designers.

The most complex kind of applications that work on accelerators usually involve algo-

rithmic techniques that improve algorithmic efficiency at the expense of predictability and

regularity. Such techniques include application-level caches and data-dependent heuristics.

Some applications in this category are heuristic motion estimation for video compression

and molecular dynamics simulations that use heuristics to ignore the interactions of distant

particles. It requires careful analysis to decide whether an application of this kind can ben-

efit from acceleration on a coprocessor at all. Good language and compiler support is also

a greater challenge, compared to the simpler kinds of applications.

Applications whose performance is not dominated by a few small pieces of code are

not currently—and likely never will be—good candidates for acceleration on a coprocessor.

These kinds of applications include operating systems, office productivity applications, and

email or web servers.2 These application domain restrictions mean that accelerators are

useful for a subset of programmers, and the low level of abstraction provided by current

tools restrict this subset further.

Interest in coprocessors for general purpose application acceleration seems to have in-

creased in recent years. The slowing of performance scaling for conventional processors has

certainly contributed to this trend, as has an increasing interest in energy efficient com-

puting. As an example of this increased interest level, on gpgpu.org—a website devoted

to the use of GPUs for “general purpose” applications—there are close to 100 events like

workshops, tutorials and conferences listed for 2009 and the first half of 2010. Sustaining

this level of interest from programmers outside the core accelerator research communities

will require more accessible programming tools.

2There may be pieces of these larger applications that are amenable to acceleration, such as speech
recognition[ZZH+09] or network intrusion detection[GBL10].

5

1.3 How engineers program accelerators today

Most people doing practical application development today with accelerators use the “native

language” of a particular family of accelerators. For FPGAs this means hardware description

languages (HDLs) like Verilog and VHDL3; for GPUs it means systems like NVIDIA’s

CUDA3 and ATI’s CTM.3 HDLs and GPU languages are different in some important ways,

but they both force application designers to spend a relatively large amount of time and

energy thinking about low level implementation issues.

HDLs were designed for digital circuit design, and HDL programmers still need to think

like digital circuit designers. For example, implementation details like pipeline stage bal-

ancing and arbitration for shared physical resources are generally left to the programmer.

Managing these kinds of issues makes developing for FPGAs something that a large majority

of software engineers would never consider doing.

CUDA and CTM are significantly easier to learn than HDLs according to most of the

papers that compare GPU and FPGA development. However, these GPU systems still force

the programmer to organize their application in a certain data parallel style. Also some

implementation details like the exact sizes of the on-chip memories can be issues that the

programmer has to think about explicitly.

Designing a brute force application in an accelerator native language certainly requires

more work than writing the equivalent in C for a conventional processor, but it is doable.

The more complex the application, the more painful the extra implementation detail-level

thinking required by accelerator languages is. Thus, providing better programming tools

not only makes implementing particular applications easier, but it also opens the doors to

applications that are currently considered too complex to accelerate.

1.4 How researchers think engineers should program accelerators

There are many existing programming language and compiler research projects aimed at

making it easier to program accelerators. Table 1.1 has an extensive, but not compre-

3VHDL, CUDA and CTM are acronyms for (Very High Speed Integrated Circuit) Hardware Description
Langauge, Compute Unified Device Architecture, and Close To Metal, respectively.

6

hensive, list of such projects, along with their approximate year of introduction. Though

these projects have made important contributions to language and compiler technology

for accelerators, there are still ways in which they do not provide a convenient model for

programmers.

Language/Compiler Target Company/Organization Intro

Lucid[AW77] U of Waterloo/U of Warwick 1977

Handel C[Cel04] FPGAs Oxford/Celoxica 1996

Napa C[GS98] FPGAs National Semiconductor 1998

RaPiD-C[CFBE98] RaPiD[CFF+99] U of Washington 1998

SystemC[Pan01] Hardware modeling Open SystemC Initiative 1999

SpecC[GZD+00] Hardware modeling UC Irvine 1999

DIL[GSB+00] PipeRench[GSM+99] Carnegie Mellon U 1999

Garp

compiler[CHW00]

Garp[HW97] UC Berkeley 2000

Streams C[GSAK00] FPGAs Los Alamos National Labora-

tory

2000

Cynthesizer FPGAs/ASICs Forte 2000

StreamC/KernelC

[KDK+01, Mat01]

Imagine[ADK+04] Stanford 2001

MATCH[HNC+01] FPGAs Northwestern U 2001

SA-C[BHD+02]4 FPGAs Colorado State U 2002

CASH/Pegasus[BG02,

VBCG04]

ASICs Carnegie Mellon U 2002

Sea Cucumber [TJH02] FPGAs Brigham Young U 2002

StreamIt[GTK+02,

TKA02]

RAW[TKM+02] MIT 2002

Impulse C[PT05] FPGAs Impulse Accelerated Tech-

nologies

2003

7

PICO Express/

Extreme

FPGAs/ASICs Synfora (acquired by Synop-

sis)

2003

Cg[MGAK03] GPUs NVIDIA 2003

Carte[Poz05] FPGAs SRC Computers 2003

Catapult C FPGAs/ASICs Mentor Graphics 2004

DIME-C FPGAs/ASICs Nallatech 2005

Mitrion C FPGAs Mitrionics 2005

Trident[TPA+05] FPGAs Los Alamos (mostly) 2005

Accelerator[TPO05] GPUs Microsoft Research 2006

AutoPilot FPGAs/ASICs AutoESL 2006

CHiMPS[PBD+08] FPGAs Xilinx/U of Washington 2008

A complete survey of all the similarities and differences between these projects is beyond

the scope of this dissertation. What I present here is a more brief description of the cate-

gories they fit in and how my work relates to the most similar ones. The three categories

these projects fit in are: (1) compilers for something close to standard C; (2) very abstract

languages; (3) C-like languages that are specialized for accelerators.

Compiling Standard C. The project that pushed support for compiling standard C

to an accelerator-style target the farthest is CASH/Pegasus. The CASH compiler supports

recursive function calls, arbitrary use of pointers, and dynamic memory allocation. While

this is certainly an interesting challenge, it misses a very important point. One of the

central reasons for the success of C on conventional processors is that it provides a level

of abstraction that is considerably more convenient than assembly language, but retaining

a substantial amount of control over implementation details like memory allocation and

byte-level data structure layout. This is a good level of abstraction for non-accelerator

applications like network stacks, file systems and process schedulers. However, C was not

designed for accelerators and has some important shortcomings when used for that purpose.

The problem with compiling C to hardware is that accelerators are sufficiently different

4Not to be confused with the other Single Assignment C, which is a functional array processing language
for multiprocessors.

8

from conventional processors that it is hard to argue that accelerators are instances of

the standard sequential processor model. The gap between the (sequential) model that C

was designed for and the fine-grained parallel nature of accelerators means that any effort

to get good performance on an accelerator from programs written in standard C requires

radical program transformation. Choosing the best transformations to apply in general

is an extremely hard problem. On top of that, requiring radical transformation ruins the

relatively simple connection between source code and implementation that is one of C’s

greatest strengths.

Work on automatically vectorizing and parallelizing C compilers for supercomputers is

in many ways closely related. Analyses of automatic vectorizing compilers [AJ88, LCD91,

Smi91] illustrate well the strengths and weaknesses of this approach. Though it is certainly

possible to vectorize some programs written in standard C automatically, there are non-

trivial gaps between the kinds of loops that can be automatically vectorized and the kinds

of loops that can be hand vectorized by a human. These gaps seem inevitable and represent

an important software engineering weakness: there are applications that in principle can

be vectorized, but cannot be programmed with an automatic vectorizing compiler, because

they do not fit the recognized patterns. Modern accelerators, like FPGAs and GPUs are

substantially more flexible architectures than conventional vector processors, which makes

it even harder to compile to them from sequential code automatically.

There is a marketing issue that inevitably comes up in the context of “standard C” com-

pilers for accelerators. Some of these compilers—especially the more commercial projects—

claim to accept standard C, but stretch the definition of “standard C” badly. These kinds

of projects generally do not propose any syntactic extensions to the language, but require

programs to be written in a very restricted style with many calls to special intrinsic func-

tions and/or pragma directives. Such restrictions are essentially a separate target-specific

language embedded in C. This is not a bad technical direction, but it is important to rec-

ognize projects in this category (for example, Impulse-C) as C-like languages, rather than

compilers for standard C.

Abstract Languages. A number of research languages for accelerators (and super-

computers) appear to have started with some version of the thought “Programmers like

9

sequential languages like C, but typical C programs have too many implementation deci-

sions coded into them, so let’s define a language in which algorithms can be expressed more

abstractly.” The most common direction in which this thought leads is towards data-parallel

languages like Accelerator and ZPL[CCL+98].

Data-parallel languages have two important problems for compilation to accelerators.

First, though they avoid issues like alias analysis that can be very problematic when com-

piling from standard C, there are still hard implementation choices to make. Automatically

choosing what kind of buffering and loop optimization strategies to use is hard. The second

problem is that not all algorithms can be expressed naturally in a data-parallel style. Com-

plex applications often involve data structures and control flow patterns that dramatically

improve efficiency, but cannot be expressed easily in abstract data-parallel terms. An in-

teresting example of this tension can be seen in the development of Chapel[CCZ07], which

was heavily influenced by the project ZPL. Relative to ZPL, Chapel is a much less purely

data-parallel language, in no small part because the developers found the need for “harder”

data structures like graphs and hash tables.

In the interest of fairness and completeness, the high level of abstraction of languages

in this category can make aggressive automatic optimization significantly easier. Examples

include loop fusion and array contraction in ZPL [LLS98] and dataflow operator fusion in

StreamIt [ATA05].

A related but different approach to programming accelerators is the library method,

where we assume that a small number of “gurus” will write a modest number of core

routines that can then be stitched together by a larger number of less skilled programmers.

This may thus open accelerators to a much larger audience without exposing them to the

internal details of accelerator programming.

The library method can be useful for programming within specific application domains.

However, it does have two important weaknesses. First, the libraries have to be implemented

in some language, and the harder it is to use that language, the smaller the pool of library-

writing gurus will be. Second, for application developers there is an extremely steep learning

curve if they want to implement functionality that is not provided by available libraries.

“C-Like” Languages. Given the significant challenges that remain in the previous two

10

categories, I believe the greatest promise for improving the programmability of accelerators

for the foreseeable future lies with C-like languages. “C-like” means languages that strike

the same kind of balance between abstraction and programmer control as C, but in the

context of accelerators instead of sequential processors. I refer to C here both admiringly

and derisively as a “portable assembly language”; this is exactly the level of abstraction

that I have in mind; just enough that well-written programs can be efficiently compiled to

a range of related architectures.

The majority of the projects listed in Table 1.1, as well as the language that I developed

as a testbed for the contributions described in this dissertation, fit in this category. It is

interesting to examine the similarities among these languages. These commonalities match

nicely the features of the abstract accelerator architecture model described in Chapter 2,

even though we designed the model to be an abstraction of architectures, not to match these

languages.

• Kernels. There is significant overhead involved in configuring an accelerator to run a

piece of code, which means that an application has to spend a large amount of time

in a particular block of code in order to amortize this overhead. These blocks are

typically called kernels, and most C-like languages leave kernel identification to the

programmer. In some cases the semantics are subtly different inside of kernel blocks,

either by definition or implicitly by how kernels are implemented.

• Parallelism. The performance advantages of accelerators come from running hundreds

to thousands of primitive operations simultaneously, so clearly the programmer and/or

compiler have to identify where such parallelism can be found in a program. All C-like

languages for accelerators include either explicit parallel looping constructs or hints

of some kind that indicate where loop optimizations should be applied. Note that

thread-based parallelism is uncommon in languages designed for FPGAs and closely

related architectures. Languages designed for GPUs often include thread-like parallel

constructs, but in highly restricted forms.

• Data handling. C-like languages for accelerators all include special handling of data.

The two main issues that involve data are: (1) Accelerators have large on-chip

11

buffers that are mostly or entirely software-controlled. (2) The large amount of semi-

automatic parallelization that is usually done makes accessing main memory through

unrestricted pointers a major challenge. Many C-like languages for accelerators force

the programmer to choose explicitly what data structures should be allocated into

local memories. Also, non-pointer methods for accessing main memory, like streams,

are common.

• Tuning. Putting implementation decisions like local data buffering and loop opti-

mizations partially or entirely in the programmer’s hands forces the programmer to

make choices like how large buffers should be and how much particular loops should

be unrolled. These tuning decisions depend directly on the resources available in a

particular target architecture, but one of the major goals of C-like language design is

to get away from encoding architecture-specific decisions in source code. This means

that support for automatic or semi-automatic tuning is an important issue.

These are the most important ways in which C-like language for accelerators are different

from C, but there are others, like optimization of the number of bits used to represent

numbers [BSWG00, SBA00] and graceful handling of exceptional conditions [TKS+05]. My

work is focused on improving language and compiler support for the core issues.

1.5 Contributions of this dissertation

To improve the programmability of accelerators I developed an abstract model and a number

of programming language and compiler technologies. I did this work in the context of

the Macah language that my colleagues and I in the Mosaic group at the University of

Washington developed as a testbed for accelerator programming research. This dissertation

makes contributions in four distinct areas of accelerator programmability:

• Abstract architectural models like the von Neumann model give programmers an idea

of the resources and performance characteristics of a family of computers. Unfortu-

nately, the von Neumann model does not faithfully represent accelerator architectures.

In Chapter 2 I define a model that we developed specifically for accelerators. I also

12

demonstrate how the model can be used for high-level performance analysis of algo-

rithms.

The Macah language and the Mosaic toolchain are described in Chapter 3. There I

describe the connections between Macah, the abstract model and the benchmarks we

developed. I also sketch the most important parts of a compilation flow for Macah,

and by extension other C-like languages for accelerators.

• In Chapter 4 I define and analyze enhanced loop flattening, a new loop optimiza-

tion framework that allows conventional loop pipelining algorithms to be applied to

program sections with arbitrary static control flow. Loop pipelining is an impor-

tant transformation for compiling C-like languages to accelerators, because it allows

independent operations from different iterations of a loop to execute concurrently.

Conventional loop pipelining algorithms are applicable only to inner loops, which can

create significant inefficiency in the prologue and epilogue sections of inner loops in

more complex loop nests. Loop flattening allows prologue and epilogues of adjacent

loops to be overlapped, and enhanced loop flattening allows iteration distances be-

tween specific program points to be controlled more precisely, which can improve

performance.

From a software engineering perspective, the important consequence of enhanced loop

flattening is that programmers can get the benefits of pipelining for more complex

applications without manually reorganizing the code in a much less natural style.

• In Chapter 6 I propose a system for programmer-guided tuning of Macah programs

to specific architectures. The system uses “tuning knobs” explicitly declared by the

programmer and typically used for things like buffer sizes and loop bounds. The

system performs an automatic empirical search for good values for the tuning knobs

in a program. The most important novelty in this tuning system is that it simulta-

neously optimizes some quality function and satisfies resource constraints. Previous

approaches to tuning just optimized a quality function and assumed that all possible

configurations of the system actually work.

Incorporating constraint satisfaction into tuning is particularly important for accel-

erators because they have many resources like distributed local memory and on-chip

13

networks for which there are no automatic fallback mechanisms if a program tries to

overuse the resource. A diverse set of approaches to tuning have been proposed; I

present a brief survey in Chapter 5 to help contextualize my own work.

• Several C-like languages have a combination of features that interact in complex and

problematic ways: static reordering of code (for example, by loop pipelining) and

streaming I/O. Static reordering is generally done in a way that respects dependencies

through local variables,5 but not through stream sends and receives. For extremely

simple streaming communication patterns, reordering that respects local dependencies

preserves global program behavior. However, cycles in the stream communication

graph, and especially stream buffers with finite bounds, introduce serious semantic

problems.

In Chapter 7 I develop operational semantics for a core subset of Macah and give

examples of programs for which common practices in C-like language implementation

can cause incorrect behavior. I also prove that these common practices are safe for

specific subsets of programs and suggest how these findings could be used to refine

the definition of C-like streaming languages and debugging tools for such languages.

Finally, in Chapter 8 I summarize my contributions to programming accelerators with

C-like languages and discuss the most important directions for future work.

5Dependencies through pointers and arrays are an important challenge for which partial solutions exist.
I largely work around this issue in Macah by insisting that all global data transfers go through streams.

14

Chapter 2

AN ABSTRACT MODEL FOR PARALLEL COPROCESSOR
ACCELERATORS1

In [Sny86], Snyder argued eloquently for the importance of computing models2 that are a

“region of consensus, . . . explicit about a few salient features [of a family of computers] and

mute on everything else”. Architectural models define, in the most abstract terms possible,

the resources, behavior, and performance characteristics a programmer can rely on from any

conforming computer, and what a compiler writers and architects are obliged to provide

in one form or another. Performance characteristics of the hardware are defined by costs

associated with operations within the model. Successful models can serve as the central

archetype for a variety of computers, languages and algorithms. However, models that do

not paint a realistic picture, such as the PRAM model for multiprocessor computers, can

lead to unrealistic expectations on the part of algorithm designers, and thus theoretically

optimal algorithms that are in no sense optimal on any realistic machine[GMR99]. Models

are contracts between algorithm designers, language designers and architects working within

a broad family of computers in the same way that instruction set architectures (ISAs) are

contracts between programmers, compiler writers and micro-architects for a specific line of

processors.

As background on the meaning and use of models, we will examine the von Neumann

model. Then we delve into the definition of a new model for accelerators, how it connects

to actual families of accelerators and how algorithm designers can use it to get first-order

performance estimates.

1This work was originally published in [YVE06].

2The original paper on the material in this chapter used Snyder’s term “type architecture” for “model of
a family of architectures”. We have stopped using that term because many people found the use of the
word “type” confusing.

15

Main
Memory

 PC

Figure 2.1: An illustration of the components of the von Neumann model.

2.0.1 The von Neumann model

By far the most well-known compute model is the von Neumann machine. The components

of the von Neumann machine are a large, random access memory and a processor consisting

of a functional unit that can compute some set of simple functions, a small amount of

state (often referred to as a program counter or PC) and a controller that orchestrates the

operation of the machine. These components are illustrated in Figure 2.1.

A von Neumann machine runs a simple fetch, execute, and store loop. The only cost in

the von Neumann model is that each instruction execution (or memory reference) carries

unit cost.

Implementations of these kinds of models are necessarily approximations. For example,

implementations of the von Neumann model generally use registers and caches to provide

the appearance of unit-time memory access. Most programmers only pay close attention to

the exact details of a particular computer’s memory system when extreme optimization is

called for.

An implementation of a model is also free to behave in ways that might seem to violate

the model, as long as the essential interfaces are maintained. For example, modern out-of-

order processors maintain the appearance of executing instructions in the conventional “von

Neumann” order, while internally the instruction execution is reordered. Maintaining the

appearance of strictly in-order execution is a constant concern for architects. For example,

16

many clever architectural innovations for speeding up the execution of programs have been

proposed and not implemented because they made it too hard to maintain precise interrupts.

C (and many other sequential languages) reflect perfectly the von Neumann model. The

language assumes one large pool of memory which the programmer is free to manage, and

a sequential one-expression-at-a-time evaluation strategy. This close connection between

language and model means that even for relatively low level systems programming, pro-

grammers can write generic C with a generic processor in mind. Only for a few specific

kinds of programming is it necessary to know specific hardware configuration information.

Compiling plain “dusty deck” C code to parallel accelerators is hard for a number of

technical reasons; the overarching issue, though, is that accelerators are simply not instances

of the von Neumann model. To help visualize the disconnect, imagine a delivery service in a

city. Conventional processors are like small cars that can pick up small loads and maneuver

around the city well. Accelerators are like tractor trailers, potentially much more efficient

for hauling big loads, but not appropriate for other kinds of delivery jobs. Compiling C to

accelerators is like taking a delivery plan designed for a small car and using it with a tractor

trailer instead. In the best case, it might be possible to adjust the plan automatically to

work well for the bigger vehicle, but doing so can be quite hard. And in many cases, such

adjustment is not possible at all.

2.1 A proposed model

In order to define an abstract model for parallel coprocessor accelerators, it is necessary

to analyze the common characteristics of actual accelerators. First, something that is em-

bedded right in the name coprocessor is that accelerators are complementary to general

purpose processors. This means that the model should be a hybrid, with a conventional von

Neumann part for everything except the kernels, and an accelerator part for the kernels.

The defining architectural features of accelerators themselves are:

• a large number of simple, concurrent, densely packed compute units

• a distributed local memory hierarchy

• a scalable local communication mechanism

17

• simple and efficient control

Connections between these abstract features and particular architectures are covered in

more detail in Section 2.2.

There is an important distinction between fine-grained parallelism, which accelerators

can exploit,3 and coarse-grained parallelism (task-, process-, or thread-level). Algorithms

that can be implemented well on an accelerator can, in many cases, be implemented on mul-

tiprocessor systems in a task-parallel style as well. However, when looking at the cost per

operation, in terms of both dollars and energy per operation, multiprocessor architectures

have more overhead than accelerators. Thus, the close, fine-grained communication be-

tween the operations in some computations that work on accelerators precludes an efficient

implementation in a task-parallel architecture like a multiprocessor. Many computations

exhibit both task- and accelerator-parallelism and for those it is reasonable to build a mul-

tiprocessor with accelerator nodes. Examples of such machines include the Cray XD1 [Cra],

SCORE [CCH+00], and Merrimac [DLD+03].

2.1.1 Hybrid accelerator model

I propose the hybrid accelerator model (HMP)4 as a tool to improve the accessibility of

coprocessor accelerators. The HMP model is an extension of the sequential von Neumann

machine and describes a variety of computers, from FPGAs with embedded sequential pro-

cessors, to hybrid reconfigurable computers based on architectures like PipeRench [GSB+00]

and RaPiD [CFF+99], and to some degree SIMD architectures like Imagine [KRD+03] and

vector processors. The components of the HMP model are illustrated in Figure 2.2. Execu-

tion is performed by two distinct components: a sequential, von Neumann style, processor

on the left and an accelerator on the right. The hybrid architecture executes a single pro-

gram with a single thread of control; the locus of execution can switch from the sequential

processor to the accelerator and back, based on the kind of computation currently being

executed. Abstractly, these two execution engines share all memory resources.

3“Accelerator parallelism” includes instruction-level, loop-level, and data-level parallelism.

4HMP was an acronym for “hybrid micro-parallel”, which is also a term from [YVE06] that we do not
generally use anymore. For the sake of consistency we continue to use the HMP acronym.

18

Main
Memory

Sequential Processor

Parallel Accelerator

 PC

Workspace Memory

Processing Elements

Low bandwidth
to main memory

High bandwidth to small
workspace memory

"P" parallel processing
elements

High ratio of compute
power to control

flexibility

Figure 2.2: “HMP” model. The left side is a conventional von Neumann machine and the

right side represents the accelerator proper.

The accelerator contains a “workspace” memory, an array of P functional units, and

control resources of some sort. The specific number, type, and organization of the func-

tional units are unspecified and vary from implementation to implementation. As a rough

guideline, programmers should expect tens to hundreds of functional units. In principle the

number of functional units could be scaled up much higher. In practice architectures with

many thousands of functional units usually have additional levels of hierarchy that make

programming the whole system as a single accelerator challenging.

The workspace memory models all the registers and memories distributed throughout

the accelerator. The size of workspace memory is implementation-dependent, but is much

smaller than the main memory. As a rough guideline, the workspace memory is around

the size of an L1 or L2 cache on an equivalently sized sequential processor. An example of

workspace memory are the embedded RAMs and registers distributed throughout the fabric

of an FPGA. A key aspect of the model is that the workspace memory and the bandwidth

between workspace memory and the functional units should be sufficiently large to keep all

the functional units continuously operating. That is, the internal data bandwidth within the

19

accelerator is high enough to sustain maximum parallelism, while the bandwidth between the

main memory and the accelerator is limited in the same way that this bandwidth is limited

in the sequential processor. The communication between main memory and the workspace

memory is, in many cases, specialized to support high bandwidth for typical memory access

patterns. For example, programmable direct memory access (DMA) channels are a simple

way to support the predictable memory accesses made by many signal and media processing

algorithms.

The workspace memory of the model explicitly exposes one of the major challenges en-

countered in programming an HMP computer: that of scheduling the computation so that

the required data is in the workspace memory when it is needed. Note that automati-

cally managed caches, commonly found in sequential processors, are not present in most

accelerators, and are generally not an efficient way to exploit the simple, predictable access

patterns that exist in most accelerator-friendly algorithms. Caches can handle simple and

predictable memory access patterns well, but manually managed memories can do so as

well, with less circuitry and energy.

In addition to its conventional link to main memory, the sequential processor also has a

link to the workspace memory that is used to maintain shared state. This is the secondary

role of the low bandwidth/high latency link at the top of the figure. Finally, there is a control

link between the sequential processor and the accelerator to indicate that their execution is

coordinated.

Execution model

The rules governing the execution of the HMP model are an extension of the rules governing

the von Neumann machine. When a program begins executing, it runs on the basic von

Neumann machine. At some point during execution, the machine can transition from se-

quential mode to accelerator mode. In accelerator mode, the sequential processor is inactive

and the controller in the accelerator orchestrates execution. While in accelerator mode, any

number of the functional units and the links between the accelerator and the workspace

memory may be active simultaneously in a single execution step. When the accelerator

20

finishes its task, control transfers back to the sequential processor. The accelerator cannot

transfer control back to the sequential processor in any way other than ending its current

task–either normally or as a result of some exceptional condition.

Control resources in accelerators are limited and often optimized for algorithms that

perform the same operation or group of operations many times in some repeating pattern.

This fact limits both the sophistication of the control flow and the data access patterns that

are supported well. Unfortunately, the diversity of real accelerators makes it impossible to

describe precisely the flexibility of the controller in the abstract model. However, a clear

theme is evident: regularity and predictability are important in both data access patterns

and control flow. Predictability is important because high performance accelerators are

deeply pipelined and, as in any computational pipeline, unpredictable changes in control flow

can cause large amounts of work to be discarded in later stages of the pipeline. Furthermore,

accelerators are unlikely to provide resources for techniques such as branch prediction that

help mitigate the impact of unpredictable control flow. Regularity is important because

accelerators have limited means to coordinate and control the independent operation of

large numbers of functional units. An algorithm need not be perfectly predictable and

regular to run on an accelerator, but the more predictable and regular the algorithm, the

more likely it is to fit within the constraints of a given architecture and use the available

resources efficiently.

Performance model

The cost model of the HMP model is more complicated than that of the von Neumann

machine but inherits the standard unit cost of executing an instruction on the sequential

processor. In addition, there are two significant costs for transitioning from sequential to

accelerator mode. The first cost, TC , models the accelerator’s configuration time, and is at

least two orders of magnitude greater than the standard unit cost. The second cost, TI ,

models the startup and initialization time, and can be anywhere from one to two orders

of magnitude greater than the standard unit cost. The reason these costs are separate is

that most accelerators can cache at least one configuration, and therefore the configuration

21

cost–but not the startup cost–can be avoided if a program enters a particular kernel several

times. Both of these costs encourage programmers to make a transition to accelerator mode

only if there is sufficient work to do.

Once in accelerator mode, the cost of executing up to P operations simultaneously, given

an accelerator with P functional units, is some small factor, α, times the standard unit cost.

This α factor, which typically ranges from 1 to 10, models the fact that sequential processors

typically can execute a single instruction faster than a comparable accelerator. The cost does

not vary with the number of operations executed, so it is clearly beneficial to execute as many

operations as possible. The crucial limitations on the operations executed in a single step

are that none of them can depend on any other, since they are executing simultaneously, and

all but a very small number must fetch their operands from the workspace memory, since the

bandwidth to main memory is so low. There are two immediate and important consequences

of these costs: To achieve full utilization, it must be possible to amortize each piece of data

transfered between main memory and workspace memory over many operations, roughly

proportional to P/β, where β is the bandwidth between the main and workspace memories.

Also, while operating in accelerator mode, each kernel’s current “working set”, for a given

algorithm, should entirely or largely fit in the workspace memory. If the working set does

not fit, then the achievable parallelism is limited by the low-bandwidth connection to main

memory, thus reducing or eliminating any potential for increased performance.

2.2 Implementations of the HMP model

Implementations of the HMP model are free to let the sequential processor and accelera-

tor run simultaneously, either overlapping sequential and accelerated portions of a single

program, or concurrently scheduling different threads or processes on the two resources, as

long as the appearance of non-overlapping execution is maintained. The details of how such

concurrent execution is accomplished are implementation issues that programmers should

be able to ignore safely.

Shared memory is another area where an implementation of the HMP model may choose

to optimize. Although the HMP model dictates that all memory resources are visible to the

sequential processor and accelerator, accelerators often have registers and memories that

22

are not easily accessible from outside and may use data copying and caching to simplify

data access. Additionally, static and dynamic program analysis may be used to optimize

away data movement or copies of data.

In the remainder of this section we analyze how well several architectures fit the abstrac-

tions of the HMP model. This analysis helps clarify the differences and similarities between

architectures.

FPGA Platforms It is clear that FPGAs paired with sequential processors can im-

plement the HMP model. Using the HMP model to model FPGA platforms constrains how

the spatial fabric is used. For example in the model, the fabric is not used to implement

large numbers of independent concurrent “hardware threads”, but as a unified accelerator.

In return for this restriction, the programmer is able to reason abstractly about how to

structure the program so that it will run efficiently on the combined sequential/accelerator

platform.

Garp An early example of an FPGA-based hybrid sequential/accelerator architecture

that fits the HMP model is Garp [CHW00]. Garp had a single thread of control, an FPGA

fabric that was optimized for computation, and specialized memory access units that fa-

cilitated data movement between memory and the FPGA fabric. The small size of Garp’s

workspace memory, which restricts the range of algorithms that can be accelerated, is a

constraint that the HMP explicitly models.

Coarse-grained Configurable Research in coarse-grained configurable computing

has produced accelerators such as RaPiD [CFF+99] and PipeRench [GSB+00]. When cou-

pled with sequential processors to form hybrid systems, as seen in HASTE [LS03], they

fit the HMP model. The RaPiD architecture fits the accelerator in the HMP model well:

The workspace memory comprises the datapath registers and embedded memories as well

as pipeline registers in the interconnect. Access to memory occurs via specialized mem-

ory streams that can support a small number of memory accesses per cycle. Experiments

showed that a large number of different algorithms could be executed efficiently on RaPiD

because of the large workspace memory. Coarse-grained architectures have some potential

advantages over FPGA-based HMP systems: The overhead of switching from sequential to

accelerator mode is lower because there is far less configuration data, and cost and power

23

are reduced because of the custom functional units.

Extended Datapaths Other work, such as the Stretch S5 engine [Wan04] and

ADRES[MVV+03], extend a conventional processor by integrating an accelerator into the

processor’s datapath. Data movement between main memory and the workspace is typically

provided by the processor, via wide load/store operations, rather than a dedicated stream

engine or DMA engine. These architectures fit the HMP model and are characterized by

a low cost to transition between sequential and accelerator modes, small accelerators, and

small workspaces with shared links to main memory.

Boundaries of the HMP Clearly not all parallel architectures fit the HMP model

well. For example, SIMD architectures such as Imagine [KRD+03] or vector extension

units have some features of HMP and not others. Although SIMD architectures have many

functional units operating in parallel, they all execute the same instruction stream, and the

communication between them is limited.

2.3 Algorithm analysis and design

The most important role of a model is in performance analysis of algorithms. In the case

of the von Neumann machine, the analysis is so simple and widely used that we tend to

lose sight of the model itself. However, when programmers assume that each arithmetic

operation, switch statement, or array access has unit cost, and the total cost of a program

is simply the sum of all the costs of its pieces, they are using the von Neumann model.

In this section, we consider several applications and use the HMP model to analyze

their performance. Note that this analysis has similarities to that typically done by skilled

hardware designers when moving algorithms into hardware.

The speedup achieved using an accelerator depends, of course, on how much of the

application run time is spent in code that can be accelerated (Tµp) and what the average

achievable parallelism is in the accelerated parts (Pavg). We will focus on the latter analysis

which determines the parallelism that can be achieved within the constraints of the model.

Given this analysis, the speedup for the application as a whole is a straightforward appli-

cation of Amdahl’s law. Given P , α, TC and TI , as defined in Section 2.1.1 of the HMP

24

x =
A B C

Figure 2.3: Tiled Matrix Multiplication

model, the overall resulting speedup is

Tseq + Tµp

Tseq + TC + n×TI + (Tµp/Peff)

where Peff = min(Pavg , P)/α is the effective parallelism relative to sequential execution,

and n is the number of sequential/acclerator mode transitions.

The algorithms analyzed here are drawn from MiBench [GRE+01] and a few other

sources. The results are summarized in Table 2.1. The algorithms we chose are not novel, nor

are their accelerator implementations. Rather they highlight key issues in using the HMP

model as an analysis and design tool. In fact, not all of the examples are highly conducive

to acceleration, and for those that are not we can use the HMP model to understand what

inhibits greater parallelism. The importance of having a model like this is that we can do this

sort of algorithm analysis without thinking about the details of any particular architecture.

All algorithms that can be accelerated have at their core a small number of loops. A

critical issue in determining the amount of acceleration available in an algorithm is inter-

iteration feedback dependencies. If there are no inter-iteration dependencies, also known as

loop-carried dependencies, then loop iterations can be executed independently and initiated

as fast as resources allow. However, loop-carried dependencies, when they do exist, con-

strain the initiation rate (the number of loop iterations that can start per unit time) and

thus may affect the achievable parallelism. This rate is conventionally call the initiation

interval of a loop [Rau94b]. Though programmers must be aware of the importance of

inter-iteration dependencies, they need not compute the exact initiation intervals of their

programs; algorithms for analyzing initiation intervals are known, and compilers should

provide clear feedback when acceleration is limited by loop-carried dependencies.

Dense matrix-matrix multiplication, computing the value of C, given A × B = C

25

T
ab

le
2.

1:
Su

m
m

ar
y

ch
ar

ac
te

ri
st

ic
s

th
at

m
ak

e
al

go
ri

th
m

s
m

or
e

or
le

ss
am

en
ab

le
to

ac
ce

le
ra

ti
on

K
er

n
el

(A
p
p
li
ca

ti
o
n
)

P
a
ra

m
s

B
a
n
d
w

id
th

A
p
p
ro

x
im

a
te

In
it

ia
ti

o
n

P
a
ra

ll
el

is
m

P
re

d
ic

ta
b
il
it
y

R
eg

u
la

ri
ty

(u
n
it

s
p
er

cy
cl

e)
W

o
rk

sp
a
ce

In
te

rv
a
l

(P
a

v
g
)

m
a
tr

ix
m

u
lt

ip
li
ca

ti
o
n

T
w

o
rd

si
ze
×

P
/
T

w
o
rd

si
ze
×

2
×

T
2

1
T

2
H

ig
h

H
ig

h

co
lo

r
co

n
v
er

si
o
n

(J
P

E
G

)
n

4
8
n

b
it

s
8
n

k
B

y
te

s
1

1
5
n

H
ig

h
H

ig
h

m
o
ti

o
n

es
ti

m
a
ti

o
n

(M
P

E
G

)
-

m
in

im
a
l

1
+

k
B

y
te

s
1
-6

1
0
-6

4
L
ow

L
ow

2
D

co
n
v
o
lu

ti
o
n

(i
m

a
g
e

p
ro

c.
)

k
,n

2
p
ix

el
s

k
2
+

(k
−

1
)n

p
ix

el
s

1
2
k

2
−

1
H

ig
h

M
ed

S
m

it
h
-W

a
te

rm
a
n

T
6
4

b
it

s
T

k
B

y
te

s
3

7
T

H
ig

h
M

ed

R
ij
n
d
a
el

b
a
se

li
n
e

(A
E

S
)

-
2
5
6
/
1
4

b
it

s
4

k
B

y
te

s
1
4

9
.6

H
ig

h
H

ig
h

R
ij
n
d
a
el

F
F

T
A

B
L
E

(A
E

S
)

-
2
5
6
/
5

b
it

s
3
2

k
B

y
te

s
5

9
.6

H
ig

h
H

ig
h

A
D

P
C

M
(A

u
d
io

en
co

d
in

g
)

-
2
4

b
it

s
m

in
im

a
l

1
4

3
H

ig
h

H
ig

h

26

and values for A and B, is a simple algorithm that offers abundant parallelism. Assuming A,

B and C are M×N , N×O and M×O matrices respectively, there are MNO multiplications

and additions to compute, there are no dependencies at all among the multiplications and

the additions break down into MO summations, each composed of N additions. On an

HMP computer, however, we must schedule the computation carefully to use the compute,

communication and storage resources efficiently.

For large values of N , M and O, the arrays will not fit in the workspace memory. Due

to the limited main memory bandwidth, we must stage the computation so that values from

the A and B matrices are reused many times whenever they are read into the workspace. One

way to accommodate both of these constraints is to break the C matrix into T×T tiles, and

to compute each one completely, before moving to the next tile. This well-known Summa

algorithm [vW97] is illustrated in Figure 2.3 and the following pseudocode.

for (i from 0 to M-1, step by T) {

for (j from 0 to O-1, step by T) {

for (x from 0 to T-1)

for (y from 0 to T-1)

C[i+x,j+y] = 0;

for (k from 0 to N-1)

for (x from 0 to T-1) // Unroll all

for (y from 0 to T-1) // Unroll all

C[i+x,j+y] += A[i+x,k] * B[k,j+y];

} }

Notice that the the inner two loops are intended to be fully unrolled, which means that

an iteration of the k loop computes one multiply-accumulate for each cell of the current tile

and can be completed in a single step. Clearly, not all accelerators will have T 2 multiply-

accumulators available, but we make the assumption that as long as T 2 is a reasonably

small multiple of P , the system can time-multiplex these independent operations efficiently.

Note that in order to carry out these T 2 operations, we need T values from the A matrix

and T values from the B matrix, and each value is reused T times.

This organization of the algorithm fits within the constraints of the HMP model. First,

the amount of state in workspace memory is only proportional to T 2. Second, the ra-

27

Cells in
Workspace

Cells no
longer needed

Cells in main
memory

Cells Being
Computed

Cells to be
computed

Data
dependences

Memory I/O

Computational
flow

Figure 2.4: Smith-Waterman example with T = 4

tio of computation to communication is proportional to T . A single iteration of the k

loop executes T 2 operations and reads 2T values from the A and B matrices for a ratio of

multiply-accumulates to communication of T 2/2T=T/2. For example, if the memory inter-

face averages only 1 read per cycle and the accelerator can sustain 20 multiply-accumulates

per cycle, then a tile size of T ≥ 40 yields full utilization.

There is some overhead associated with transitioning from one tile to the next, which re-

quires some control as well as additional workspace memory for double-buffering the results.

However, with sufficient workspace memory and control resources, the full P parallelism po-

tential of the accelerator is achievable.

Smith-Waterman is a sequence similarity algorithm used widely in bioinformatics to

search DNA, RNA and protein databases. The algorithm finds highly similar subsequences

of two longer sequences, usually called the database string and the query string. This uses

a dynamic programming algorithm to fill in a scoring table that has the database string

along the top and the query string along the left. The score at each entry of the table

indicates how well the substrings of the database and query strings ending at this location

match. The computation of each entry in the table requires 21 additions, subtractions and

comparisons, and one look-up into a character comparison table. This computation depends

on the entries to the top, left, and top-left as shown in Figure 2.4.

28

Though there are data dependencies between entries, we can find a great deal of par-

allelism by computing diagonally across the table. Unfortunately, for large genomes this

strategy would overwhelm any realistic workspace, because all of the entries along the entire

diagonal of the table would have to be resident simultaneously. One solution, illustrated

in Figure 2.4, is to break the table into vertical stripes, T columns wide, and compute in

a diagonal fashion down each stripe, one stripe at a time. Using this strategy, the average

parallelism is 21×T/II where II is the initiation interval. The amount of workspace storage

needed for intermediate results is only proportional to T . Note that this solution requires

additional memory bandwidth to save the right-most column of the stripe, which must be

read back in when computing the next stripe. However, this requires only one extra read

and write, which is amortized over the computation of one row of the stripe. The initiation

interval is 3 and thus the average parallelism is 7T .

The workspace memory must also accommodate the character comparison table. In

order to maintain this level of parallelism, the accelerator must execute T/II lookups into

the table per cycle, which means that the table must be capable of multiple simultaneous

lookups, or that multiple copies of the table must be resident in workspace memory. For

protein databases, the table is about 2KB, and in this case the achievable parallelism may

be constrained by the size of workspace memory needed for the lookup tables.

ADPCM, which stands for adaptive differential pulse code modulation, is a technique

for encoding audio signals that produces lower bit rates than conventional PCM. The core of

the ADPCM encoding algorithm is a relatively simple loop that seems to offer a great deal

of parallelism. In the MiBench implementation, there are slightly more than 40 operations

in the inner loop, and minimal communication is necessary between the accelerator and

main memory or the sequential processor. Unfortunately, the initiation interval of this

implementation is 14, which means that the average parallelism is only approximately 3

operations (40/14≈3). This analysis shows us that there is a clear limit on the benefit of

acceleration for this algorithm, barring deeper algorithmic transformations.

The parallelism of this application can be improved if the encoding of multiple inde-

pendent audio streams can be interleaved. This technique, called C-slowing [WMPW03],

can often be applied when loop-carried dependencies constrain the achievable performance

29

and leverages the ability of the hardware to time-multiplex the same operations between

multiple data. By reformulating the algorithm as in [PKCD05], it is possible to achieve even

greater parallelism. The main problem addressed in that paper is that saturating accumu-

lations are a bottleneck to high degrees of pipeline parallelism, because they require a tight

inter-iteration dependency. By refactoring saturating accumulation to make it more like

normal accumulation, it is possible to loosen the inter-iteration dependency considerably.

This is a perfect example of the kind of concerns that are important because of the kind of

parallelism accelerators exploit, not the details of any particular accelerator.

Color conversion, from RGB to YCC color spaces, as implemented in the MiBench

JPEG benchmark, also appears to be amenable to acceleration. The core of the algorithm

is a doubly-nested loop with 9 multiplications by a constant, 6 additions and 3 shifts. The

multiplications are implemented by table lookups, which may or may not be a good design

choice in an HMP computer, depending on the size of the workspace relative to the available

multiplication resources. For 24-bit pixels, the total size of the tables is 8 kilobytes, and for

36-bit pixels the total size is 128 kilobytes.

The most serious problem with color conversion is memory bandwidth. Each iteration

of the inner loop reads and writes a pixel. Given the restricted bandwidth to main memory

in the HMP model, color conversion cannot fully utilize the computational resources of a

well balanced accelerator. In some cases, it is possible to mitigate the problem of a low

computation to communication ratio by performing two or more algorithms together in

the accelerator. For example, color conversion may be part of a larger graphics pipeline,

in which case it could be combined with another phase without creating any additional

bandwidth requirements.

Motion estimation is a computationally significant part of MPEG-2 video encoding.

Motion estimation is used to calculate differences between adjacent video frames, which

require less data to encode than the frames themselves. Each 16×16 block of pixels is

compared with blocks in its neighborhood in the adjacent frame to find the least different

block.

The amount of computation that is needed to do full motion estimation is enormous,

and many ASIC and FPGA implementations opt to do full motion estimation. However,

30

Image

=Mask
Result

(a) k rd / 1 wr

Image

Mask

Buffers

(b) 1 rd / 1 wr

Figure 2.5: Communication/workspace tradeoffs for (a) simple and (b) buffered 2D convo-

lution.

the Mediabench implementation uses two techniques to minimize this computation for a

sequential processor. First, block comparisons are aborted as soon as the difference exceeds

the best difference found thus far. Second, blocks are searched in an order that spirals

out from the location of the reference under the assumption that most image movement is

small. While these optimizations make perfect sense on a sequential processor, they reduce

the predictability and regularity that accelerators depend on.

These two optimizations highlight a weakness in the HMP model: we know that accel-

erating algorithms requires some predictability and regularity, but real accelerators have a

wide range of control mechanisms and internal interconnect networks that may or may not

be flexible enough to support optimized MPEG-2 motion estimation. Pure model-based

analysis cannot tell us if these optimizations are possible on particular accelerators. It

may be necessary to use an unoptimized motion estimation algorithm that performs more

computation in return for a regular and predictable algorithm.

Even with the Mediabench optimizations there is a great deal of parallelism (≈64 ops)

to exploit in motion estimation. Assuming that the early termination optimization is used,

the initiation interval of the inner loop is not a simple number. If that optimization were

not present, the initiation interval would be 1. However, if we force each iteration of the

inner loop to complete before initiating the next one, in order to check against the best

difference observed so far, then the initiation interval is 6. If we optimistically initiate

iterations as soon as possible, and cancel them if necessary, the effective initiation interval

will be between 1 and 6, and the parallelism available, will be between 10(≈64/6) and 64.

31

2D Convolution is the core of many image processing operations such as noise reduc-

tion, image smoothing, and edge detection. 2D convolution consists of repeatedly applying

a relatively small convolution kernel to a comparatively large source image, as shown in Fig-

ure 2.5. Image processing kernels commonly range from 3×3 to 17×17, for Sobel operators

and Laplacian of Gaussian kernels respectively.

In our analysis, we will apply a k×k convolution kernel to an n×n source image, where

k�n. To compute a new image, the convolution kernel is applied n2 times, each comprising

k2 independent multiplies followed by k2 − 1 additions. Since the kernel applications are

independent, the initiation interval is 1. If the kernel is applied in row major order, then

most of the data can be reused and only k pixels need to be read. This yields a compu-

tation/memory bandwidth ratio of about k. Given sufficient workspace memory we can

further reduce the communication requirements to reading 1 pixel and writing 1 pixel by

buffering the pixels across rows as shown by the light gray horizontal bars in Figure 2.5(b).

This requires buffer memory for an additional (k − 1)(n− k) pixels but increases the com-

putation to communication ratio to ∼(2k2 − 1)/2. If this amount of workspace memory is

unavailable, then the image can be processed in stripes with relatively small overhead.

For locations within k/2 pixels from the edge of the image, there is no source data “un-

derneath” part of the kernel. Many heuristics exist to handle these edge cases, but they

increase the complexity and decrease the regularity of the control flow. The weakness of

the control flow support in accelerators mean that implementing such a heuristic could neg-

atively impact the performance of 2D convolution. Fortunately, in an HMP-based system,

the accelerator can simply calculate the edge pixels incorrectly and let the sequential pro-

cessor correct them after the accelerator is done. To illustrate the expected performance of

this algorithm, consider a 7×7 kernel being applied to a 1280×720 HDTV image. Using the

sequential processor to compute the edge pixels, roughly 1.3% of the image will need to be

recomputed. For the remaining 98.7% of the image, by fully pipelining the implementation,

the average parallelism is 97 = (2(72) − 1) operations, with a communication requirement

of 2 pixels per cycle.

Rijndael is the cryptographic algorithm that was chosen for the advanced encryption

standard (AES), and is part of the MiBench benchmark suite. Rijndael has three main

32

components, the cipher (encryption), the inverse cipher (decryption), and key expansion.

The computational requirements of the inverse cipher are very similar to that of the cipher;

the differences are mainly in the order in which operations are applied. Since the key

expansion routine is run infrequently, when the key is changed, and it contains irregular

data and control flow, it is relegated to the processor.

The algorithm as implemented in MiBench offers several implementation options that

trade off memory and computation. The faster finite field arithmetic (FF TABLE) option

precomputes much of the core part of the computation and stores that information in a

2kilobyte table that can then be replicated to permit parallel access. The alternative, i.e.

baseline, approach uses a small 256B table to perform the non-linear byte substitution

but performs the rest of the computation as normal logical and arithmetic operations. The

FF TABLE implementation requires sixteen 2KB lookup tables and 48 operations per round

while the baseline implementation requires sixteen 256B lookup tables and 136 operations

per round. Thus, given sufficient workspace memory, the FF TABLE approach offers better

throughput and latency.

Given a modest size accelerator, it is reasonable to fully pipeline a single round for either

implementation; this achieves an average parallelism of ∼9.6 operations per cycle and the

core loop has a initiation interval of 14 cycles for baseline and 5 cycles for FF TABLE.

Ideally we could C-slow the entire encryption routine to overlap the computation of several

text blocks, but the MiBench implementation uses cipher-block-chaining. This means that

the cipher text from each stage is added to the subsequent plain text block, which prevents

C-slowing.

2.4 Summary

The HMP model serves four roles:

1. It provides a common language for analyzing and comparing a variety of hybrid se-

quential/accelerator architectures.

2. Programmers can use the execution model to develop algorithms that run efficiently

on accelerators that conform to the model without considering the details of any

33

particular architecture.

3. It defines a model for whole systems that include sequential and accelerator sub-

systems. Again, this kind of standard allows programmers to design their systems

without studying the details of hardware system integration issues.

4. It serves as a target model for designers implementing highly accessible hybrid com-

puters.

The need for a model like this is based on several assumptions. First, we cannot expect

programmers who want to accelerate their application to spend the time needed to become

expert accelerator programmers with low-abstraction languages. Second, for the foresee-

able future, and for most interesting applications, compilers will not be able to perform the

program transformations that will produce efficient acceleration from conventional sequen-

tial code. Finally, given an appropriate model, programmers can analyze the potential for

acceleration in an application and design algorithms and programs that execute efficiently

on implementations of that model.

In the next chapter we look at Macah, the language that we designed to be the C

of the parallel coprocessor accelerator model. C exposes the von Neumann model to the

programmer fairly directly, with features like unrestricted pointers to a single large pool

of main memory. Macah exposes the HMP model in a similar way. For example, code is

explicitly partitioned between sequential parts and accelerator parts, and access to main

memory is restricted in accelerator parts. This close connection between language and

model is very useful because it gives the programmer language-level control over the most

important features of programs running on an accelerator.

34

Chapter 3

MACAH AND THE MOSAIC TOOLCHAIN

Macah is a C-like language designed as part of the Mosaic project. In this chapter I

describe the language, the Mosaic system it is a part of, and the important parts of our

compilation strategy.

3.1 Macah and the HMP model

Among the factors that influenced the design of Macah, one of the most important was

the HMP model described in Chapter 2. We felt that the language features had to have

a logical connection to the model so that Macah programmers could make good decisions

about their programs without knowing the details of a particular compiler or architecture.

We introduce the features of the language and briefly discuss the connections to the

HMP model in this section. Later we cover the language in greater detail in the context of

a running example application.

• Kernel blocks look like regular blocks of C code, but they are marked with the new

keyword kernel. The connection with the HMP model is simple: code inside kernels

is accelerated, and code outside kernels runs sequentially. Some research projects

for programming accelerators attempt to identify kernels automatically (for example,

[GDKG05]), but the number of kernels in a typical application is small and identifying

them is not challenging for programmers.

There are some restrictions on what kind of code is allowed inside kernels; for example,

calls through function pointers are not allowed. Compared to many C-like languages

for accelerators, Macah allows a wide range of control flow patterns, thanks to the

enhanced loop flattening transformation described in Chapter 4.

The semantics of the language are relaxed somewhat inside kernels to allow for auto-

matic loop pipelining. The details of this relaxation and its consequences are described

35

in Chapter 7.

• FOR loops are similar to for loops, except the compiler will automatically attempt

to completely unroll FOR loops. FOR loops make writing a large number of parallel

operations easier.

• Streams are first-in/first-out buffered data channels between threads or tasks. There

are two distinct uses of streams in Macah. Almost all applications use streams to

read from and write back to main memory. Kernel code is not allowed to read and

write main memory directly, so we set up “memory accessor tasks” that perform the

main memory reads and writes, and communicate with kernels via streams. This

arrangement has two benefits: first, the fact that a completely different mechanism is

used in kernel code to access main memory emphasizes the fact that such access is a

precious resource. Second, we completely avoid having to perform alias analysis and

detailed array analysis by having the programmer partition main memory access out

of the kernel.

The second use for streams is as communication channels between tasks that are both

doing real computation, not just reading or writing memory. Here streams provide

decoupling and buffering between tasks to avoid unnecessary synchronization.

• Tasks are essentially stylized threads. In our thinking about applications there are

three different kinds of tasks, though the language does not currently syntactically

distinguish between them. Kernel tasks run a kernel, perhaps after some initial se-

quential setup. Memory accessor tasks just read or write memory and communicate

with another task over a stream. General sequential tasks do anything else that needs

to be done, and are assumed to run on a conventional processor.

• Configurations are collections of streams and tasks. The first version of Macah and

the Mosaic toolflow supported only configurations with a single kernel task, but we

recently added support for multikernel applications. Configuration structure can be

determined statically, which is important for accelerators like FPGAs where the layout

of a configuration must be statically compiled.

• Tuning knobs are a special kind of constant that are defined to have not a single value,

but a range of legal values. The system performs an empirical auto-tuning search for

36

good values for the tuning knobs in an application. Tuning knobs are critical for

fitting an application to an architecture because the model does not reveal specifically

how many processing elements are available or the size of the workspace memory. Our

tuning knob search procedure is described in Chapter 6.

• Shiftable arrays are like C arrays, but they also support shift operators for moving

the data up or down in the array. In addition to supporting many application do-

mains nicely, shiftable arrays are useful for describing simple regular communication

patterns between operations. Such communication patterns are good, because though

the model does not specify a particular network style, communicating with a near

neighbor is cheaper than communicating with a more distant processing element in

most accelerators.

Standard C programs can be compiled and run as Macah programs, but the compiler will

not automatically accelerate them. In order to compile Macah code to an accelerator, the

programmer must explicitly define a configuration, which is a collection of asynchronously

running tasks that communicate with each other over buffered streams. Some of the tasks

will execute kernels, which are the core compute-intensive parts of the program that actually

run on an accelerator.

The “hello world” of Macah is shown in Figure 3.1. The configuration block, which

defines a set of asynchronous tasks and streams, begins on line 3. It is important for

the compiler to know the communication structure of these cooperating tasks, and the

configuration block is how the programmer declares this structure. All streams and tasks

declared in a configuration block are assumed to be part of the same configuration.

Notice that part of the task declaration is a list of the streams that a task will interact

with. Streams in Macah are point-to-point (single sender task, single receiver task), and

the task/stream connections are statically specified as part of a configuration.

The kernel—which begins on line 13—is the part of the application that will be accel-

erated. In this simple example, there isn’t much acceleration to do, but we will see more

realistic examples soon.

The simplest real Macah applications have a single kernel that runs in a task and a couple

37

int main(int argc, char *argv)
{
 configuration {
 int stream s1 = stream_create(int, 10),
 s2 = stream_create(int, 10);
 task t1 (output s1) {
 for (int i = 0; i < 100; i++) {
 s1 <! i;
 }
 } // task t1

 task t2 (input s1, output s2) {
 kernel {
 int t;
 for (int i = 0; i < 100; i++) {
 t <? s1;
 s2 <! t + 1;
 }
 } // kernel
 } // task t2

 task t3 (input s2) {
 int t;
 for (int i = 0; i < 100; i++) {
 t <? s2;
 printf("Hello world %i\n", t);
 }
 } // task t3
 } // configuration
} // main

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Task t1

Stream s1

Task t2

Stream s2

Task t3

Figure 3.1: A very simple Macah program, along with the task and stream graph that is

created when the configuration block is executed. Streams have exactly one sender task

and one receiver task, but we generally represent them as nodes, not edges, in the task

and stream graph because tasks can receive from and send to multiple streams and it is

sometimes convenient to label the edges between tasks and streams with “port” information.

<! and <? are the receive from stream and send to stream operators, covered in more detail

later in the chapter.

of other tasks that just perform reads from or writes to main memory, and communicate

with the kernel task over streams. These tasks and the streams they communicate over

make up a single configuration.

Compared to many streaming languages, Macah gives the programmer a lot of control

over the inter-task communication patterns in their program. Tasks can choose to execute

sends and receives based on some dynamically computed condition, which means that Macah

programs do not have to fit in the synchronous dataflow mold. Macah also has non-blocking

sends and receives, which can succeed or fail depending on the state of the stream buffer at

38

runtime.

Macah is “C-level” in the sense that the balance between transparency and abstraction

relative to machines that implement the hybrid accelerator model described in Chapter 2

is similar to the balance that C has relative to conventional sequential processors. There

are certainly situations in which Macah programmers will have to look under the hood of

the model to take advantage of specific features of particular architectures. However, they

should be able to do most of their work with architecture-independent thinking.

So far we have only implemented Macah for the range of architectures the Mosaic system

can simulate, which is a narrower set than all accelerators. My hope is that the language

itself is flexible enough that it would not take a huge amount of effort to compile it to different

families of accelerators. When writing Macah code, programmers do make choices about

how to organize loops and buffer data that might work better on one style of accelerator

than another. However, making these kinds of adjustments to port an application should

be far less work than porting from an HDL to CUDA.

3.2 Example application: motion estimation

Much of the remainder of this chapter is organized around a running example, block match-

ing motion estimation, which is the most computationally significant part of video com-

pression for modern, high compression-ratio codecs. We use this application to describe in

detail the novel features of Macah and our prototype compiler.

Block-matching motion estimation (BMME) is the part of video compression that finds

similar blocks of pixels in different frames. Video codecs that support high compression

ratios, like H.264, allow blocks of pixels in one frame (the current frame) to be defined as

similar to some other block of pixels in another frame (the reference frame). The difference

in position of the two blocks within their respective frames is called the motion vector (MV).

The MV plus the small pixel value differences between the two blocks can be encoded in far

fewer bits than the raw pixel data. Motion estimation terminology is illustrated in Figure

3.2.

During the compression process, the encoder must decide which block in the reference

frame to use for each block in the current frame. This decision is made by the motion

39

Reference Frame Current Frame

Block

Motion Vector 〈-2,2〉

Search Area

Candidate Block

Search Radius

Search Diameter Motion Vector Space

X

Y

Figure 3.2: An illustration of some motion estimation terminology. In this picture, the

frames are 16px×12px, the blocks are 4px×4px, and the search radius is 3px. The goal

in motion estimation is to find the block of pixels inside the largest shaded region in the

reference frame that most closely matches the shaded block of pixels in the current frame.

estimation algorithm. “Full search” (FS) is the simplest BMME algorithm. For each block

in the current frame, it does a complete block comparison with every block in the reference

frame that is within the search radius defined by the codec. This algorithm clearly finds the

best MV in the window, but at a huge computational cost. For example, one 1920×1080

frame of full search with a search radius of 15 requires almost 2 billion pixel comparisons.

Fortunately, BMME can be approximated very accurately with heuristics that drastically

reduce the amount of computation required. The variety of BMME heuristics that have

been proposed is impressive, but most are based on a combination of four ideas. 1) Motion

estimation can be performed on down-sampled versions of the input frames, with detailed

block comparisons only done in regions that the down-sampled comparison judged to be

promising. 2) Block comparisons for a sparse subset of MVs can be tested first, with more

detailed searching in the area of the best comparisons. 3) “Predictive” BMME algorithms

first try MVs based on which MVs were best for adjacent blocks (in both space and time),

which works because of the strong spatial and temporal correlation of motion in most video.

4) Finally, the search for a good MV for a particular block can be terminated early as soon

as a “good enough” MV is found. When carefully combined, these heuristics can reduce the

computational demands of BMME by two to three orders of magnitude compared to FS,1

40

void motionEst(refFrame, curFrame, bestMVs)
{
  // outer two loops iterate over all blocks
  for (i=0; i<ImgH/BlkH; i++) {
    for (j=0; j<ImgW/BlkW; j++) {
      // initialization of the block difference array
      int blkDiffs[SrchDia][SrchDia];
      for (y=0; y<SrchDia; y++) {
        for (x=0; x<SrchDia; x++) {
          blkDiffs[y][x] = NOT_COMPUTED;
      } }
      boolean searching = 1;
      motion_vec_t mv;
      int bestD = infinity;
      while (searching) {
        chooseMV(blkDiffs, bestMVs, &mv);
        d = compareBlks(ref,cur,i,j,mv);
        if (d < bestD) {
          bestD = d;
          bestMVs[i][j] = mv;
        }
        blkDiffs[mv.i][mv.j] = d;
        searching = stillSearch(blkDiffs);
} } } }

Figure 3.3: Sketch of generic heuristic motion estimation in C. Particular heuristics are

defined by the implementation of chooseMV and stillSearch. chooseMV decides which

motion vector to test next. stillSearch decides when to stop searching for a particular

block.

with negligible reduction in video quality[ZLCP04].

Heuristic approaches to BMME are extremely fast, but also relatively complex (a high-

level sketch is shown in Figure 3.3). As a result, many researchers continue to use FS as a

benchmark to demonstrate the power of coprocessor accelerators. But there is no reason to

run FS on an accelerator when smarter algorithms can compute (almost) the same result

at least as quickly on a conventional processor. Similar patterns exist in other application

domains. For example, the BLAST tool uses a heuristic approach to compute the same

biological sequence alignments as the Smith-Waterman algorithm in a fraction of the time,

with only a small loss of accuracy. Just like the motion estimation example, BLAST is less

predictable and regular than Smith-Waterman. Programming tools for accelerators must

be able to handle these fast algorithms for the architectures to be relevant to the given

application.

1The speedup factor depends strongly on the search radius.

41
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 10, OCTOBER 2004 1211

to be the starting point to perform the hexagonal search, which is
termed as the predictive HEXBS method. With a good prediction
asthestartingpoint, thepredictiveHEXBSmethodnormallyfinds
better motion vectors than the original HEXBS scheme that may
get trapped in local optima starting from zero motion vector, thus
decreasing the distortion.

The remainder of the letter is organized as follows. In the fol-
lowing section, a novel 6-side-based fast inner search is pro-
posed and the experimental results showing the efficiency of
the proposed fast inner search are presented in Section III. Sec-
tion IV concludes the letter.

II. FAST HEXAGONAL INNER SEARCH

In the original hexagonal search (HEXBS) algorithm [10],
two search procedures are involved. The coarse search proce-
dure first locates a region where the optimal motion vector is ex-
pected to lie, using the large hexagon search pattern consisting
of six endpoints in Fig. 1. The coarse search continues based
on a gradient scheme until the center point of the hexagon has
the current smallest distortion. After a hexagonal area is located
in the coarse search, then the following fine-resolution search
looks into the small area enclosed by the large hexagon for fo-
cused inner search using the shrunk hexagon pattern, which is
not a full inner search. As shown in Fig. 1, if full search is re-
quired for the inner search, eight search points inside the large
hexagon will be evaluated, which is computationally inefficient.
Interestingly, we find that strong correlation exists between the
inner search points to be checked (i.e., the eight labeled points
in Fig. 1) and their surrounding checked points (here the six
endpoints of the hexagon in Fig. 1). Based on the monotonic
distortion characteristic in the localized area around the global
minimum, we propose to check only a portion of the inner search
points that are nearer to the checked points with smaller distor-
tions, which can save more than half of the eight search points
inside. In the following we will present such an efficient inner
search scheme by exploiting the distortion information of the six
checked endpoints of the large hexagon. There can be several
different ways to exploit the distortion information. By trial and
error we find the most efficient inner search method in terms of
minimizing both number of search points evaluated and the cor-
responding distortion. The method is referred to as 6-side-based
fast inner search, which is found to be most reliable and robust
among some other variants we tried in maintaining almost the
same distortion as the full inner search.

A. 6-Side-Based Fast Inner Search

We consider grouping the search points in the six sides of the
hexagon, resulting in six groups (pairs) of points, as shown in
Fig. 2. For each group, we define a group distortion by sum-
ming the distortions of all the points within the group. The area
near to the group with the smallest group distortion is consid-
ered as the region in which the minimum distortion is most
likely to be found. Therefore we focus the inner search just in
the region near to the group with the smallest group distortion.
For different groups (sides) in different locations, we have dif-
ferent number of inner search points, as shown in Fig. 2(a) and
Fig. 2(b), respectively. Two or three search points are used in the

Fig. 2 (a) Three inner points nearest to Group 2 with the smallest group
distortion are to be checked. If the smallest distortion group is Group 2 or 5,
three checking points nearest to the smallest distortion group will be used in
the focused inner search. (b) Two inner points nearest to Group 1 with the
smallest group distortion are to be checked. If the smallest distortion group is
Group 1, 3, 4, or 6, two inner points nearest to the smallest distortion group
will be evaluated in the focused inner search.

focused inner search, depending on the position of the group.
Three inner points closest to Group 2 or Group 5 will be eval-
uated if either has the smallest group distortion, as shown in
Fig. 2(a) where Group 2 is the minimum distortion group as an
example. Similarly, two inner points nearest to Group 1, Group
3, Group 4, or Group 6 are to be checked if one of the groups cor-
responds to the smallest group distortion, as shown in Fig. 2(b)
where an example for Group 1 is illustrated. Note that Group 2
and 5 are the horizontally positioned while the other four groups
are in diagonal directions.

The overhead of the fast inner search is negligible, where six
additions are required computationally and six memory units
are needed to store the distortions corresponding to the six end-
points of the hexagon. Here we would like to highlight that
our method is significantly different from the SES algorithm
[5] used to speed up the TSS, although they share the similar
philosophy in reducing the number of search points. The SES
algorithm mainly speeds up the coarse search by making use
of some individual distortions to determine a search quadrant
in each step of the three steps based on the globally unimodal
error surface assumption. In our view and observation, the glob-
ally unimodal error surface assumption is too strong to be met
for most video sequences. In contrast, based on the locally uni-
modal error surface assumption which is statistically valid ac-
cording to our experiments, our proposed method selects some
portion of inner search points by taking advantage of the overall
distortion information of the six checked points within a small

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 10, OCTOBER 2004 1211

to be the starting point to perform the hexagonal search, which is
termed as the predictive HEXBS method. With a good prediction
asthestartingpoint, thepredictiveHEXBSmethodnormallyfinds
better motion vectors than the original HEXBS scheme that may
get trapped in local optima starting from zero motion vector, thus
decreasing the distortion.

The remainder of the letter is organized as follows. In the fol-
lowing section, a novel 6-side-based fast inner search is pro-
posed and the experimental results showing the efficiency of
the proposed fast inner search are presented in Section III. Sec-
tion IV concludes the letter.

II. FAST HEXAGONAL INNER SEARCH

In the original hexagonal search (HEXBS) algorithm [10],
two search procedures are involved. The coarse search proce-
dure first locates a region where the optimal motion vector is ex-
pected to lie, using the large hexagon search pattern consisting
of six endpoints in Fig. 1. The coarse search continues based
on a gradient scheme until the center point of the hexagon has
the current smallest distortion. After a hexagonal area is located
in the coarse search, then the following fine-resolution search
looks into the small area enclosed by the large hexagon for fo-
cused inner search using the shrunk hexagon pattern, which is
not a full inner search. As shown in Fig. 1, if full search is re-
quired for the inner search, eight search points inside the large
hexagon will be evaluated, which is computationally inefficient.
Interestingly, we find that strong correlation exists between the
inner search points to be checked (i.e., the eight labeled points
in Fig. 1) and their surrounding checked points (here the six
endpoints of the hexagon in Fig. 1). Based on the monotonic
distortion characteristic in the localized area around the global
minimum, we propose to check only a portion of the inner search
points that are nearer to the checked points with smaller distor-
tions, which can save more than half of the eight search points
inside. In the following we will present such an efficient inner
search scheme by exploiting the distortion information of the six
checked endpoints of the large hexagon. There can be several
different ways to exploit the distortion information. By trial and
error we find the most efficient inner search method in terms of
minimizing both number of search points evaluated and the cor-
responding distortion. The method is referred to as 6-side-based
fast inner search, which is found to be most reliable and robust
among some other variants we tried in maintaining almost the
same distortion as the full inner search.

A. 6-Side-Based Fast Inner Search

We consider grouping the search points in the six sides of the
hexagon, resulting in six groups (pairs) of points, as shown in
Fig. 2. For each group, we define a group distortion by sum-
ming the distortions of all the points within the group. The area
near to the group with the smallest group distortion is consid-
ered as the region in which the minimum distortion is most
likely to be found. Therefore we focus the inner search just in
the region near to the group with the smallest group distortion.
For different groups (sides) in different locations, we have dif-
ferent number of inner search points, as shown in Fig. 2(a) and
Fig. 2(b), respectively. Two or three search points are used in the

Fig. 2 (a) Three inner points nearest to Group 2 with the smallest group
distortion are to be checked. If the smallest distortion group is Group 2 or 5,
three checking points nearest to the smallest distortion group will be used in
the focused inner search. (b) Two inner points nearest to Group 1 with the
smallest group distortion are to be checked. If the smallest distortion group is
Group 1, 3, 4, or 6, two inner points nearest to the smallest distortion group
will be evaluated in the focused inner search.

focused inner search, depending on the position of the group.
Three inner points closest to Group 2 or Group 5 will be eval-
uated if either has the smallest group distortion, as shown in
Fig. 2(a) where Group 2 is the minimum distortion group as an
example. Similarly, two inner points nearest to Group 1, Group
3, Group 4, or Group 6 are to be checked if one of the groups cor-
responds to the smallest group distortion, as shown in Fig. 2(b)
where an example for Group 1 is illustrated. Note that Group 2
and 5 are the horizontally positioned while the other four groups
are in diagonal directions.

The overhead of the fast inner search is negligible, where six
additions are required computationally and six memory units
are needed to store the distortions corresponding to the six end-
points of the hexagon. Here we would like to highlight that
our method is significantly different from the SES algorithm
[5] used to speed up the TSS, although they share the similar
philosophy in reducing the number of search points. The SES
algorithm mainly speeds up the coarse search by making use
of some individual distortions to determine a search quadrant
in each step of the three steps based on the globally unimodal
error surface assumption. In our view and observation, the glob-
ally unimodal error surface assumption is too strong to be met
for most video sequences. In contrast, based on the locally uni-
modal error surface assumption which is statistically valid ac-
cording to our experiments, our proposed method selects some
portion of inner search points by taking advantage of the overall
distortion information of the six checked points within a small

Figure 3.4: An illustration of the inner search points chosen by the enhanced hexagonal

search algorithm. It is interesting to note the the number of inner points tested depends on

which pair of outer points is best. Graphics borrowed from [ZLCP04].

3.2.1 Accelerating motion estimation

The particular BMME implementation that I chose to accelerate is called the enhanced

hexagonal search (EHS)[ZLCP04]; other heuristic searches would have worked as well. EHS

is a three phase algorithm. In the “predictive” phase, block comparisons are done for the

〈0, 0〉 MV and a small number of other MVs that were found to work well in previously

processed adjacent blocks. The best of these MVs is taken as the initial center of the “coarse

search” phase. In the coarse phase, block comparisons are done for the six MVs arranged in

a hexagon around the current center MV. If any of them is better than the center, the best

is taken as the new center and the process repeats. When the center is better than all of

the points of the hexagon around it, the algorithm moves on to the “fine search” phase. In

the fine phase (Figure 3.4), a few more blocks inside the perimeter of the final hexagon are

compared. The best MV from the fine search phase is taken as the best MV for the block.

Three things are important about heuristic algorithms for motion estimation: 1) Even

though they are much more efficient than FS, they still do a large amount of computa-

tion in the block comparisons. 2) Their control flow and data access patterns are highly

dependent on the input data. 3) Intermediate results produced by the algorithm are used

relatively quickly to make decisions about what to compute next. There is additional com-

plexity in real video compression systems that we do not discuss in this chapter, including

42

Main
Memory

Sequential Processor
Micro-Parallel Engine

 PC

Workspace Memory

Processing Elements

Figure 3.5: An abstract model of a hybrid processor-coprocessor system. Macah program-

mers need to think about writing accelerable code at the level of detail shown in this model.

variable block sizes, sub-pixel MVs, and multiple reference frames. This added complex-

ity only strengthens the argument for support of sophisticated algorithms in accelerator

programming languages and compilers.

Before implementing EHS in Macah, we will analyze its potential for acceleration. This

analysis is done relative to the abstract model described in the previous chapter, an illustra-

tion of which is repeated in Figure 3.5. In order to write good Macah code, the programmer

must do this kind of analysis, and therefore must have a high-level understanding of the

structure and behavior of coprocessor accelerators. Though Macah looks like C, a well

written version of EHS for a sequential processor will not produce efficient accelerator code.

Some of the most important constraints in the accelerator are the limited local memory

and limited external communication bandwidth. The processing elements draw most of their

input data from this local memory, because the bandwidth of the connection to the larger

main memory is substantially lower than the computational throughput of the accelerator.

Applications must have a sufficiently high computation to main memory bandwidth ratio

in order to accelerate well.

EHS performs approximately 10 block comparisons per block on average (with a search

radius of 7). Each block comparison requires 16× 16 = 256 pixel comparisons. Each pixel

comparison requires approximately 4 operations (2 reads, one absolute difference, and one

43

accumulation). So EHS requires about 10× 256× 4 = 10240 operations per block.

The main memory bandwidth requirements depend on what is stored in workspace mem-

ory. On average, we need to transfer at least a block’s worth of pixels for the current frame

and the reference frame (2 × 16 × 16 = 512 pixels). Depending on how large and flexible

the workspace memory is, we may have to transfer pixels from the reference frame multi-

ple times. Optimistically assuming that each pixel is transfered only once, and assuming

two bytes per pixel, that makes the main memory bandwidth requirement 1024 bytes per

block. The computation to main memory bandwidth ratio comes to approximately 10 oper-

ations per byte. This number is reasonable, but leaves very little room for wasting memory

bandwidth.

The next important feature of EHS that we consider is its complex control. Accelerator

architectures have very poor support for unpredictable control flow, such as the logic to

determine which block comparison to perform next. We believe that the best way to imple-

ment algorithms of this complexity is to partition them into a control part that executes on a

conventional sequential processor and a kernel part that performs the repetitive, predictable

piece of the computation. The control part sends commands consisting of block locations

and motion vectors to the kernel part. The kernel part then does block comparisons and

sends back computed block differences.

For such an implementation to work well, the accelerator must be integrated with a

sequential processor. This could be die-level integration, as in FPGAs with embedded

processors, or board-level, such as products from XtremeData, Inc. and DRC Computer

Corp.

Next we must consider what data can be buffered in the workspace memory. A single

frame of 1920×1080 video is almost 4MB of data (assuming 16 bits per pixel), and motion

estimation requires data from at least two frames.2 Real accelerators have a workspace

memory capacity in the range of low hundreds of KBs to very low MBs, so realistically we

will be able to store only a modest number of blocks worth of data in the workspace memory

at a given time. This will affect how we do buffering in the Macah code.

2More advanced motion estimation algorithms perform comparisons with multiple frames simultaneously.

44

Accelerators work by executing many simple operations concurrently on their simple

processing elements (PEs), so we have to think about which operations can execute in

parallel. The inner loops that perform a single block comparison are a simple reduction,

so they will parallelize nicely. The only complication is the order in which pixels from the

reference frame are accessed depends on the MV currently being tested. This fact will make

the buffer for the reference frame slightly more complicated than the buffer for the current

frame.

Finally, there is inevitably some latency involved in sending an MV from the sequential

processor to the coprocessor and getting a result back. Therefore, we want to have multiple

MVs “in flight” at any time to keep the whole pipeline full. However, at certain points in

the motion estimation algorithm, there may be only one or two new MVs to perform block

comparisons on before those results are needed to decide what to do next. To keep the

pipeline full, we need to work on multiple blocks from the current frame simultaneously.

This requirement forces us to change the algorithm because the predictive part of the

sequential version needs to know what the best MVs are for its neighboring blocks. This

change illustrates one of the most important weaknesses of a pure optimizing compiler

approach to programming accelerators. Even if we assume that a compiler’s loop and array

analyses are smart enough to optimize irregular, input dependent code well, we generally

expect compilers not to change the meaning of a program. We believe that this kind of

super-aggressive optimization is best done in a separate code restructuring tool.

The accelerated implementation of EHS that we have sketched here is more complicated

than the sequential version. The Macah code, parts of which are presented in the next sec-

tion, is longer and more complicated than the C version as well. However, current compiler

technology cannot automatically transform the plain C version into the most accelerator-

optimized version. Also, it is not clear how to program this kind of fast motion estimation

algorithm in the more abstract languages discussed in Section 1.4. Our only remaining op-

tion is to use an accelerator’s native language, which forces the programmer to think at an

even more detailed level about the hardware in the coprocessor. Accelerator research con-

tinues to include simple algorithms like full search, because more efficient versions require

much more effort. There is some work on fast motion estimation on GPUs (for example,

45

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11 
12 
13 
14 
15 
16 
17 
18 

void blkCompareSetup(refFrame,curFrame,cStrm,rStrm)
{
  pixel stream refStrm = stream_create(pixel,100);
  pixel stream curStrm = stream_create(pixel,100);

  task refFrameTask (output refStrm) {
    refReader(refStrm, refFrame);
  }

  task curFrameTask (output curStrm) {
    curReader(curStrm, curFrame);
  }

  task blkCompareTask (output rStrm, input cStrm,
      input refStrm, input curStrm) {
    compareBlocks(rStrm, cStrm, refStrm, curStrm);
  }
}

#TuningKnob NumBlks int (1,16)

void motionEstAccelerated(refFrame,
                          curFrame, bestMVs)
{
  configuration {
    cmd_t stream cStrm =
      stream_create(cmd_t,10);
    rslt_t stream rStrm =
      stream_create(rslt_t,10);
    blkCompareSetup(refFrame, curFrame,
                    cStrm, rStrm);
  
    task mvChooseTask (input rStrm,
                       output cStrm) {
      mvChooseFn(refFrame, curFrame,
                 cStrm, rStrm, bestMVs);
} } }

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11 
12 
13 
14 
15 
16 
17 
18

Figure 3.6: Top level of an accelerated Macah implementation of heuristic motion estima-

tion. The application has been factored into two tasks: one for just comparing blocks of

pixels and one for deciding which blocks should be compared. The two tasks communicate

to each other over the streams cStrm and rStrm. One of the task instantiations occurs di-

rectly in this block, while the other is in the body of the function blkCompareSetup, which

sets up the memory accessor tasks and streams for the block comparison kernel.

[TPO05]). However, all implementations only use resampling techniques, which are more

data parallel and not the most efficient.

3.3 Motion estimation in Macah

The top level of our Macah implementation of motion estimation is shown in Figure 3.6. The

main software architectural difference between the sequential version and the Macah version

is that we have factored the algorithm into two tasks: one for comparing blocks of pixels,

and one for choosing which motion vectors to compare. The two pieces of functionality will

run in different tasks and communicate over streams.

3.3.1 Configurations

Configurations in Macah are essentially containers for tasks and streams, the details of both

of which are covered directly below. Tasks are blocks of code that execute asynchronously

46

and communicate with each other over streams.

The standard Macah compilation flow has two distinct steps: first there is a conventional

compilation, then there is a separate “configuration time” during which the configuration

blocks are executed to determine the structure of the task and stream graph, but the

tasks themselves are not executed. Because it is executed pre-runtime, the code inside

of configuration blocks but outside of any particular task should be thought of as meta-

programming code that declares tasks and streams, but does not perform application logic.

It is legal to write essentially arbitrary configuration code. For example, a configure

block could open a file to read some parameters that are used to determine how many

tasks and streams should be created. It is just important to remember that whatever it

does, the configuration code is conceptually executed between conventional compile time

and runtime. At runtime when the a program gets to a configure block the task and stream

graph is executed. Buffer space is allocated for all the streams, and threads are spawned

for all the tasks. Once all the tasks that participate in a configuration complete, execution

resumes in the code directly after the configure block.

It is perfectly legal to call functions inside of configure blocks (Figure 3.6, line 9). The

bodies of functions called at configure time can declare more streams and tasks.

3.3.2 Tasks

A task is a block of code that belongs to some configuration. When a configuration is

actually executed, all of its tasks are launched simultaneously. Some tasks contain kernel

blocks which run on the accelerator proper, some perform memory access and will ideally be

compiled into direct memory access (DMA) commands, and others will run on a conventional

sequential processor. During configuration time the compiler analyzes each of the tasks in

a configuration and decides where it will execute on a particular architecture.

Because tasks each logically execute in a separate thread, there are some restrictions

on how they are allowed to access data. Tasks are not allowed to directly access non-const

local variables declared outside their own scope. The following is illegal Macah code:

47

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

int a = 42;
configure {
 task taskName1 () {
 a = 17;
 }

 task taskName2 () {
 printf("%d n", a);
 }
}

The reason for this is a language implementation issue that Macah inherits from C. a is

allocated in the stack frame of the function that this code lives in, but the tasks run in

separate threads with their own stacks. There is no direct way for the tasks to access a.

Luckily there is a work-around. Tasks are allowed to share immutable (const) variables,

because their value can be copied into the task’s stack at task creation time, so a can be

accessed with code like the following:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

int a = 42;
int *const aPtr = &a;
configure_tasks {
 task taskName1 () {
 *aPtr = 17;
 }

 task taskName2 () {
 printf("%d n", *aPtr);
 }
}

In this case, the tasks are not modifying the (const) variable aPtr itself, so the code

will work fine. There is still a race condition between the update through aPtr and the

read through aPtr, but that gets into general shared memory multithreaded programming

topics, which are well beyond the scope of this dissertation.

3.3.3 Streams

Streams are first-in, first-out channels between different threads or tasks that are used for

sending data and certain kinds of synchronization. There are two main patterns for stream

use in Macah programs. Simple Macah configurations that have a single main compute task

with a kernel use streams to get data to and from main memory. In this case the streams

are connected to very simple “memory accessor tasks”. Ideally the memory accessor task

and stream pattern can be recognized by the compiler and transformed into an optimized

architecture-dependent memory read or write implementation of some kind. Our current

48

implementation runs all non-kernel tasks on a conventional sequential processor.

More complex Macah applications that have several concurrent compute tasks can use

streams to directly communicate between tasks, instead of communicating through memory.

The ordering of stream operations inside of kernels is handled in a somewhat relaxed way;3

this is discussed in more detail in the kernel section below.

The basic operations that streams support are send (written stream-exp <! exp) and

receive (written l-exp <? stream-exp). Both blocking and non-blocking versions of send and

receive are available. The blocking versions will wait until the stream is not empty (for a

receive) or not full (for a send) before returning. The non-blocking versions are ternary

operators (receive: l-exp1 :: l-exp2 <? stream-exp) (send: l-exp :: stream-exp <! exp) that

will attempt to do the stream operation, but will return immediately if it’s not possible.

The l-exp to the left of “::” will be set to true or false, depending on whether the operation

completed successfully.

The type declaration of a stream carrying some type of data value (I’ll use float in

this example) should be written “float stream s” where stream is syntactically similar

to the * in pointer type declarations. To work around a small parser problem, the current

implementation of Macah actually uses the syntax “float s <∼∼<”, which is more like

the postfix array type declaration (“float arr[10]”).

Streams are created with calls to intrinsic functions. The stream create function (Fig-

ure 3.6, lines 7-10 on the left; lines 3 and 4 on the right), builds a stream capable of carrying

data elements of the given type with the specified amount of buffering. All streams declared

as part of a configuration are implicitly deallocated at the end of a configuration execution;

if any data is left in a stream buffer at that time, it is lost.

The implementation of one of the memory accessor tasks for motion estimation is shown

in Figure 3.7. As shown, functions can be used to separate the task declaration of a memory

accessor task from its implementation, but this is not necessary.

Macah streams are unlike streams in languages like StreamIt [TKA02], and StreamC

[KRD+03]. In those languages, by definition kernels consume and produce a particular

3“Relaxed” in the sense of relaxed memory models.

49

void refReader (pixel stream s,
                pixel refFrame[ImgH][ImgW]) {
  int iPx, jPx, i, j;
  for (iPx=0; iPx<ImgH; iPx+=BlkH*NumBlks) {
    for (i = MAX(0, iPx‐SrchRad);
         i < MIN(ImgH, iPx+NumBlks*BlkH+SrchRad);
         i++) {
      for (j = 0; j < SrchRad; j++) {
        s <! refFrame[i][j];
    } }
    for (jPx=SrchRad; jPx<ImgW; jPx+=BlkW) {
      for (i = MAX(0, iPx‐SrchRad);
           i < MIN(ImgH, iPx+NumBlks*BlkH+SrchRad);
           i++) {
        for (j = jPx; j < MIN(ImgW,jPx+BlkW); j++) {
          s <! refFrame[i][j];
} } } } }

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11 
12 
13 
14 
15
16
17

void curReader (pixel stream s,
                pixel curFrame[ImgH][ImgW]) {
  int iBlk, jBlk, b, i, j;
  for (iBlk=0; iBlk<ImgH/BlkH; iBlk+=NumBlks) {
    for (jBlk=0; jBlk<ImgW/BlkW + NumBlks ‐ 1; jBlk++) {
      for (b = MAX(0, jBlk + 1 ‐ ImgH/BlkH);
           b < MIN(NumBlks, jBlk + 1);
           b++) {
        if (iBlk + b < ImgH/BlkH) {
          for (i=0; i<BlkH; i++) {
            for (j=0; j<BlkW; j++) {
              int i2 = (iBlk+b) * BlkH + i;
              int j2 = (jBlk‐b) * BlkW + j;
              s <! curFrame[i2][j2];
} } } } } } }

Figure 3.7: Memory accessor functions for accelerated motion estimation. These functions

are run in separate tasks; they feed the kernel through streams.

number of stream elements per firing. In other words, they have no send and receive

operators that can execute conditionally. This more restrictive use of streams gives the

compiler more opportunity to statically analyze the interactions of a group of kernels, but

makes some programming styles difficult or impossible to use. For example, it is not clear

how to program the motion estimation kernel that conditionally receives data into its buffers

when it gets the command to move to the next block.

3.3.4 Tuning knobs

Macah is intended to be as portable as possible, but deciding how to structure a kernel

to best exploit the local memory, external bandwidth and parallel computation resources

of a particular accelerator often requires non-trivial application-level tradeoffs. Tuning

knobs give programmers a tool to write code that can be automatically adapted to different

architectures. They are typically used to control code features like the size of buffer arrays

and the extent of loops. They are declared by the programmer (Figure 3.6, line 1). The

compiler then searches for a value in this range that produces efficient code.

In the motion estimation code, the tuning knob NumBlks (for example, Figure 3.8, lines

3, 5, 8) controls the number of blocks from the current frame that are are buffered in

workspace memory at a time. The size of the current frame buffer and reference frame

buffer both depend directly on NumBlks. By using a tuning knob instead of a fixed constant

50

void mvChooseFn(refFrame,curFrame,cStrm,rStrm,bestMVs)
{
  int blkDiffs[NumBlks][SrchDia][SrchDia];
  for (i=0; i<ImgH/BlkH; i += NumBlks) {
    for (j=0; j<(ImgW/BlkW) + NumBlks ‐ 1; j++) {
      // initialize all block differences
      int bestDs[NumBlks];
      for (b=0; b<NumBlks; b++) {
        bestDs[b] = infinity;
        for (y=0; y<SrchDia; y++) {
          for (x=0; x<SrchDia; x++) {
            blkDiffs[b][y][x] = NOT_COMPUTED;
      } } }
      boolean searching = 1;
      motion_vec_t mv;
      while (searching) {
        blockNum = chooseMV2(blkDiffs, i, j, bestDs, bestMVs, &mv);
        cmd.code = COMPARE_BLOCKS;
        cmd.i = mv.i;
        cmd.j = mv.j;
        cmd.b = blockNum;
        cmdStrm <! cmd;
        blkDiffs[blockNum][mv.i][mv.j] = IN_PROG;
        searching = stillSearch(blkDiffs);
      }
      cmd.code = DONE_WITH_BLOCKS;
      cmdStrm <! cmd;
} } }

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11 
12 
13 
14 
15 
16 
17 
18 
19 
20
21 
22 
23 
24 
25 
26 
27 
28 

Figure 3.8: The sequential part of the accelerated implementation.

the compiler can adapt the program to accelerators with significantly different amounts of

workspace memory. This explicit technique gives a level of portability and automation that

exceeds the ad hoc technique of manually tuning C pre-processor #define values for each

architecture. Tuning knobs are discussed in much greater depth in Chapters 5 and 6.

The code in Figure 3.8 is the main part that runs on the sequential processor; it is very

similar to the C version sketched in Figure 3.3. There are three substantial changes in the

motion estimation code itself. Where the C version calls a function to do a block comparison

for a MV, the Macah version sends a command to the kernel and marks that MV in the

distortion table as currently being worked on. In the function for choosing the next MV

to try (Figure 3.9), if the heuristic needs to know the distortion for a particular MV, and

finds that entry marked with a IN PROG, it blocks until the coprocessor sends back a result.

Finally, there is an additional loop to let the sequential side send MVs from several blocks

at the same time.

51

int chooseMV2(int blkDiffs[NumBlks][SrchDia][SrchDia],
    int i, int j, int bestDs[NumBlks],
    motion_vec_t bestMVs[ImgH/BlkH][ImgW/BlkW],
    motion_vec_t *mv) {
  ...
  // complex logic to choose b, x and y
  ...
  if (blkDiffs[b][y][x] == IN_PROG) {
    blkDiffs[b][y][x] <? rsltStrm;
    if (blkDiffs[b][y][x] < bestDs[b]) {
      bestDs[b] = blkDiffs[b][y][x]
      bestMVs[i+b][j‐b] = {x,y};
    }
  }
  ...
  return b;
}

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11 
12 
13 
14 
15 
16 
17 

Figure 3.9: chooseMV2 implements the heuristics of a particular motion estimation algo-

rithm. Because the interface between the sequential logic and the kernel is asynchronous,

this code might find a MV in the distortion table that has been sent to the kernel, but for

which a result has not yet returned. In that case, the code does a blocking receive on the

result stream.

3.3.5 Kernel blocks

Kernel blocks mark what code should be run on the accelerator, and ease the challenge of

pipelining loops by relaxing the order of evaluation rules. Kernel blocks are written like

standard C blocks, preceded by the new keyword kernel. The Macah compiler attempts

to generate an accelerated implementation for the code in kernel blocks. If such an imple-

mentation is not possible for whatever reason, the compiler will report either an error or

a warning, along with diagnostic information to help the programmer understand why the

block cannot be mapped to the accelerator. Code outside of kernel blocks is translated to

standard C, as discussed below.

The motion estimation kernel is shown in Figure 3.10. A large part of the code (most

of lines 11-43) is devoted to managing the local frame buffers. In fact, the code presented

here is slightly simplified for clarity of presentation; the real version has a bit of additional

complexity to ensure that the buffer arrays can be accessed in parallel in the main block

comparison loop. We have found that many of the more complex Macah applications have

a lot of buffer management code. This suggests that it might be valuable to build a library

52

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11 
12 
13 
14 
15 
16 
17 
18 
19 
20
21 
22 
23 
24 
25 
26 
27 
28 
29 
30
31 
32 
33 
34 
35 
36 
37 
38 
39 
40
41 
42 
43 
44 
45 
46 
47 
48 
49 
50
51 
52 
53 
54 
55 
56 
57 
58 
59 
60
61 
62 
63 
64 
65 
66 
67 

#define RefBuffH (NumBlks*BlkH+2*SrchRad)
#define RefBuffW (NumBlks*BlkW+2*SrchRad)

void compareBlocks(rStrm, cStrm, refStrm, curStrm)
{
  px curBuff[NumBlks][BlkH][BlkW];
  px refBuff[RefBuffH][^RefBuffW^];
  kernel {
    for (iPx = 0, iBlk = 0; iPx < ImgH;
         iPx += NumBlks * BlkH, iBlk += NumBlks) {
      // start getting strip of ref buffer for a new row
      for (i2 = MAX(0,    iPx‐SrchRad);
           i2 < MIN(ImgH, iPx+NumBlks*BlkH+SrchRad);
           i2++) {
        for (j = 0; j < SrchRad; j++)
          refBuff[i2‐iPx+SrchRad][j + NumBlks*BlkW + SrchRad]
            <? refStrm;
      }
      // done getting strip
      for (jPx = 0, jBlk = 0;
           jBlk < (ImgW/BlkW) + NumBlks ‐ 1;
           jPx += BlkW, jBlk++) {
        // start shifting ref buffer for new blocks
        for (i2 = MAX(0,    iPx‐SrchRad);
             i2 < MIN(ImgH, iPx+NumBlks*BlkH+SrchRad);
             i2++) {
          int refI = i2‐i+SrchRad;
          refBuff[refI] <<= BlkW;
          for (j2 = 0; j2 < BlkW; j2++)
            int refJ = j2 + (NumBlks‐1)*BlkW + 2*SrchRad;
            if (jPx + j2 < ImgW)
              refBuff[refI][refJ] <? refStrm;
        } } }
        // get curr buffer data for new blocks
        for (i2Blk = MAX(0, jBlk‐(ImgW/BlkW) + 1);
             i2Blk < MIN(NumBlks, jBlk + 1);
             i2Blk++) {
          if (iBlk + i2Blk < ImgH/BlkH)
            for (i2 = 0; i2 < BlkW; i2++) {
              for (j2 = 0; j2 < BlkH; j2++) {
                curBuff[i2Blk][i2][j2] <? curStrm;
        } } } }
        // done shifting buffers
        boolean doneWithBlock = 0;
        while (!doneWithBlock) {
          boolean recvCmd = 0;
          while (!recvCmd) {
            recvCmd :: cmd <? cmdStrm;
          }
          if (cmd.code == CMD_COMPARE_BLOCKS) {
            FOR (i2 = 0; i2 < BlkH; i2++) {
              blkDiffTmps[i2] = 0;
              refI = (i2 + cmd.i + cmd.b*BlkH);
              for (j2 = 0; j2 < BlkW; j2++) {
                refJ = j2 + cmd.j + cmd.b*BlkW;
                refPx = refBuf[refI][refJ];
                curPx = curBuf[cmd.b][i2][j2]
                blkDiffTmps[i2] += ABS(curPx ‐ refPx);
            } }
            blkDiff = 0;
            FOR (i2 = 0; i2 < BlkH; i2++)
              blkDiff += blkDiffTmps[i2];
            rsltStrm <! blkDiff;
          }
          else { // command is 'done with blocks'
            doneWithBlock = 1;
} } } } } }

Figure 3.10: Block comparison kernel in Macah.

53

of common buffer management functions.

In order to find enough parallel operations to keep the PEs busy, most kernels need to

be pipelined. This means that “later” loop iterations are started before “earlier” iterations

have completed. The order of execution rules inside kernel blocks have been subtly relaxed

to accommodate this pipelining. Consider the simple example illustrated in Figure 3.11.

There is a loop with three operations: a receive, some computation, and a send. In the

sequential implementation the first receive happens before the first send, which happens

before the second receive, and so on. In the pipelined trace, however, the second receive

happens before the first send. If the rest of the program that this code interacts with

is expecting to receive a value on s2 before sending another value on s1, the pipelined

implementation will cause the program to deadlock.

The motion estimation kernel has exactly this structure. The kernel receives a command

on the command stream, computes a block difference, and sends back a result. Both streams

are connected to a sequential thread that receives results, chooses what MV to try next and

sends back commands. This circular stream communication structure has the potential

to create deadlock, which is why the receive on the command stream in the kernel is non-

blocking. If the latency of the pipelined kernel and the communication between the processor

and accelerator is long enough that the sequential thread cannot keep the kernel filled

with commands, the non-blocking receive will fail, and “bubbles” will automatically be

introduced into the pipeline.

The semantics of Macah explicitly allow stream sends and receives in kernel blocks

to happen “late” and “early”, respectively, from the perspective of an outside observer.

This relaxation permits the compiler to perform loop optimizations like pipelining without

analyzing the other code that interacts with the kernel through streams. This semantic

issue is covered in greater detail in Chapter 7. Informally, cyclic communication patterns

through streams in which at least one of the participating tasks is a kernel, can lead to

deadlock. Tools for analyzing whole Macah programs for safety of stream communication

patterns could clearly offer helpful error checking. In the spirit of Macah’s “C-levelness”,

the default is to trust the programmer on this point.

Syntactically, any Macah code can be written inside kernels. However, kernel code needs

54

for (...) { recv1 recv1
 x <? s1; compute1 recv2, compute1
 y = f(x); send1 recv3, compute2, send1
 s2 <! y; recv2 recv4, compute3, send2
} compute2 recv5, compute4, send3
 send2 recv6, compute5, send4
 recv3 recv7, compute6, send5

Sequential trace Pipelined traceCode

tim
e

Figure 3.11: Simple pipelining example

to be “amenable to acceleration”, which means that there are some restrictions on what

what will work.

• All function calls must be in-lineable. In particular, the system does not currently

support calls to recursive functions and calls through function pointers (though special

cases of both could be supported). Most special system functions (or things that call

system functions, like printf) cannot be called either.

• No “real” accesses through pointers are allowed. If p is some pointer, “*p” and

“p[4]” are both disallowed.4 In some cases it is convenient to take the address of

some variable and then dereference the resulting pointer somewhere. For example:

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11 
12 
13 
14 

int foo(float *f, ...)
{
  S1;
  *f = 4.5;
  S2;
}
...
{
  float g;
  kernel {
    ...
    int x = foo(&g, ...);
  }
}

In this restricted case, using pointers is okay, because after inlining we get:

4Note that locally declared arrays are different from pointers (though C tries to make them look similar),
and accesses to them are fine.

55

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

{
 float g;
 kernel {
 ...
 {
 tempf = &g;
 {
 S1;
 *tempf = 4.5;
 S2;
 }
 x = retVal;
 }
 }
}

after constant propagation:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

{
 float g;
 kernel {
 ...
 {
 tempf = &g;
 {
 S1;
 *(&g) = 4.5;
 S2;
 }
 x = retVal;
 }
 }
}

after dereference-address-of simplification, and dead code elimination

1
2
3
4
5
6
7
8
9

10
11
12
13
14

{
 float g;
 kernel {
 ...
 {
 {
 S1;
 g = 4.5;
 S2;
 }
 x = retVal;
 }
 }
}

The pointer operations are all gone, which means that the kernel can be compiled

without any problems.

• All data structures referred to inside a kernel will get allocated into the workspace

memory. All such data structures must be statically allocated. If necessary, the

56

system will automatically copy data from main memory to workspace memory at the

beginning of kernel execution, and copy it back at the end. This copying is performed

when a variable (scalar or array) is accessed both inside and outside of kernel code.

• Global variable access is illegal.

• Non-local control flow, like exceptions and return, are not supported. With enhanced

loop flattening (described in Chapter 4), it should be possible to support at least some

kinds of non-local control flow. However, it has not been an important feature for the

applications we have looked at.

The combined restrictions on data access in tasks and kernels mean that there is no way

to directly share memory between kernels. Tasks can only share memory through pointer

dereferencing, and pointer dereferencing is not allowed in kernels. Concurrently running

kernels can only communicate with each other via streams. This restriction is intentional; it

is not a consequence of immature compiler tools. Shared memory can be simulated by using

a single task/kernel as the manager of the state, with other kernels sending requests and

getting responses via streams. This is not a recommended pattern for most applications.

One common pattern in applications that requires some workaround because of these

restrictions is getting an array of values into and/or out of a kernel. For example, many

applications read an array of constant coefficients from a configuration file during startup

and need to get these values into an array in a kernel. The standard workaround is shown.

The standard workaround (Figure 3.12) is appropriate only for relatively small arrays that

are intended to reside in workspace memory. Large arrays need to be streamed in and out

as the kernel is running.

Finally, tasks in Macah are not explicitly declared by the programmer to be kernel tasks,

memory accessor tasks or conventional processor tasks. A task is simply defined by what

it does when it runs. This is different from languages like Impulse C, in which each task is

declared as either “software” or “hardware”. The Macah approach is more convenient, but

does require the compiler to do some inference.

57

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int arr[N0][N1][N2];
int (* const arrPtr)[N0][N1][N2] = &arr;

configure {
 task t1 () {
 int arrBuf[N0][N1][N2];
 // copy in
 for (i0 = 0; i0 < N0; i0++) {
 for (i1 = 0; i1 < N1; i1++) {
 for (i2 = 0; i2 < N2; i2++) {
 arrBuf[i0][i1][i2] = (*arrPtr)[i0][i1][i2];
 } } }

 kernel {
 // ... use arrBuf freely ...
 }

 // copy out
 for (i0 = 0; i0 < N0; i0++) {
 for (i1 = 0; i1 < N1; i1++) {
 for (i2 = 0; i2 < N2; i2++) {
 (*arrPtr)[i0][i1][i2] = arrBuf[i0][i1][i2];
 } } }
 }
}
// ... arr will have the same values that arrBuf had at the end ...

Figure 3.12: The copy-in copy-out trick for working around data access restrictions in

Macah.

3.3.6 Shiftable arrays

Shiftable arrays are just like C arrays, except they also support shift left and right operators

(<<= and >>=, respectively). The result of shifting an array left by N is that each element

of the array is moved to the left (that is, towards lower indices5) by N places. After a left

shift of N , the right-most N places in the array are uninitialized. Right shifts work exactly

the same way, in the opposite direction. Shifting by negative amounts is allowed; shifting

in one direction by −N is exactly the same as shifting in the opposite direction by N .

Shiftable arrays, in addition to being convenient for many application domains, help

describe the kinds of regular local communication patterns that accelerators support well.

The reference frame buffer in the motion estimation kernel is defined as a shiftable array

5It’s a curiosity of computing conventions that the relationship between left/right and higher/lower indices
is exactly the reverse for bits in a word.

58

because there is significant overlap between the search areas for adjacent blocks. When the

kernel receives a command to move from one block to the next, it shifts the reference frame

buffer by the block width and fills in the empty piece.

Shiftable arrays can be simulated with normal arrays and extra index arithmetic. How-

ever, shiftable arrays can be used to describe more directly the spatial relationships that

exist in an algorithm, and potentially lead to a more efficient implementation.

In C, multidimensional arrays are just arrays of arrays. That is, an array of arrays is

identical in almost all respects to an array of structs or floats. Shiftable arrays follow this

C philosophy. Shiftable arrays of arrays (arr[^N^][M]) are legal, as are arrays of shiftable

arrays (arr[N][^M^]) and shiftable arrays of shiftable arrays (arr[^N^][^M^]). If the

“first dimension” is shiftable, then a statement like “arr <<= 3;” will move all the “second

dimension” arrays by three slots. If the “second dimension” is shiftable, then a statement

like “arr[i] <<= 3;” will move all the individual pieces of data in just the i-th “second

dimensional” shiftable array. Rotation is similar to shifting, but the data that would have

been shifted off the end and lost is instead copied into the slots that were vacated at the

opposite end of the array. Rotation is not currently officially supported, but probably should

be.

3.3.7 FOR loops

FOR loops are simply for loops that the user has declared should be unrolled completely at

compile time. In the motion estimation kernel, the loops over the height of the block are

all FOR loops (Figure 3.10, line 51). The iterations of a FOR loop need not be completely

independent. The accumulations needed to produce a single distortion value for a block

create a moderately long dependence chain, which is exactly why we rely on pipelining to

overlap the computations of adjacent iterations.

Loop transformations like unrolling, interchange and blocking are well understood and

can be performed by compilers. Advanced parallelizing and vectorizing compilers [AJ88]

use sophisticated linear algebra-based loop and array analyses to decide how to apply loop

optimizations. However, the extent to which they are applied can have a significant impact

59

on important issues like workspace memory and main memory bandwidth requirements,

and it is far from trivial to decide automatically what combination of transformations will

produce good results. The authors of [CDG+06], who include pioneers of parallelizing and

vectorizing compilers, state “the quality of compiler-optimized code for high-performance

applications is far behind what optimization and domain experts can achieve by hand. . . the

performance gap has been widening over time”. We therefore consider it important to

give the programmer the tools needed to express which operations should be carried out

in parallel. In the future, it may be worthwhile to use these kinds of optimizations on the

most inner loops of applications like motion estimation.

3.4 Implementing Macah: Mosaic toolchain overview

The initial goal of the Mosaic project was to investigate the factors that contribute to

energy efficiency in the design of coarse-grained reconfigurable architectures (CGRAs). The

project has grown to include not only architecture, but circuit design, power modeling,

compiler algorithms, programming language design and application programming. The

main engineering artifact that we have produced is a toolflow (Figure 3.13) for compiling

programs written in Macah and simulating them on CGRAs.

The box labeled “Electric VLSI Arch. Generator” represents a flexible system for speci-

fying architectures. The primitive components that we currently support include arithmetic

and logical units (ALUs) for primitive operation evaluation, multiplexors for dynamically

controlling the flow of data, registers for short-term data storage, memories for long-term

data storage, and I/O ports for implementing stream operations.

In order to support applications that have more operations than there are physical func-

tion units, each architectural primitive has a small configuration memory. The array has a

single “program counter” that is broadcast to all the configuration memories and controls

which operation each primitive performs. There is currently no support for branching or

dynamic execution of different instructions based on live data, though we are actively inves-

tigating such features. Operations that cause side-effects (like stream sends and receives,

and memory writes) have predicate inputs that dynamically control whether the operation

should perform its effect or not.

60

Macah Compiler

SPR: Schedule,
Place & Route

Electric VLSI
Arch. Generator

Power

Area & Delay

Behavioral
Simulation

datapath graph

mapped design

dataflow graph

Benchmarks

C
yc

le
 0

C
yc

le
 1

+
in

a

b

out

Techmapper

Simulator +
Power Analysis

Figure 3.13: An overview of the Mosaic toolchain.

In the middle of the Mosaic toolchain diagram is SPR, which is responsible for mapping a

dataflow graph representation of a kernel onto a particular architecture. SPR can be seen as

a blend of a conventional software compiler back-end—scheduling and register allocation—

and a conventional hardware CAD tool back-end—placement and routing. We will look

more closely at how SPR works in section 3.6. The output of SPR is a configured architecture

that can be simulated to estimate performance and energy consumption.

The top parts of the toolchain diagram—the front-end tools and benchmarks—are the

main subject of this dissertation. The toolchain currently supports five different ways of

running Macah programs, with different pros and cons.

Plain C. Macah programs can be translated into plain C with calls to a runtime li-

brary that provides implementations for the Macah features that do not exist in C. This

61

mode of execution provides no acceleration, but compilation is fast and it requires no addi-

tional infrastructure. It is primarily used for early-stage application development when the

programmer is mostly focused on getting the logic of the application right.

Plain C with kernel instrumentation. The next step closer to a real implementation

involves the compiler going through the architecture-independent optimization processes for

the parts of the program that will eventually run on an accelerator. The program is then

translated “back” into plain C with extra performance monitoring code in the kernels.

Because it is still architecture-independent, this mode cannot provide a complete picture

of how the program will perform on an accelerator, but some performance issues can be

spotted early. Kernel instrumentation slows down the execution of the program somewhat

relative to plain translation to C, but not by more than a factor of 2.

Architecture-independent Verilog. The interface between the front-end and SPR is

dataflow graphs (DFGs) for the kernels. The DFGs are implemented as simulateable Verilog

code, and the whole program can be run with the kernels executed in a Verilog simulator.

The runtime library is responsible for starting the simulator and communicating the data

back and forth.

In theory this style of simulation does not provide any more information than the “C with

kernel instrumentation” mode, though there are some differences between the actual data

gathering that has been implemented. The main benefit of having this mode of execution

is in isolating bugs in the toolflow. When problems are identified we use the architecture-

independent Verilog execution mode to determine quickly whether the problem is most

likely in the application or front-end part of the compiler versus the architecture model or

SPR. Verilog simulation is considerably slower than any of the modes that do not involve

Verilog, at least by an order of magnitude. This mode is not frequently used for application

development.

Architecture-dependent Verilog. The backend part of the compiler maps kernels

onto the architecture it is given, and produces a configured version of the architecture in

Verilog. In particular, all of the operations have been given slots in a schedule and registers

and routing paths have been allocated to get data from one operation to another. The

execution of the non-kernel code works just as with the unscheduled kernels. The only

62

difference from the sequential side’s perspective is that the order in which send and receive

requests come from the Verilog simulator may be different. This execution mode provides

more implementation detail, but costs roughly another order of magnitude in execution time

compared to architecture-independent Verilog.

Power modeling. The architecture-dependent simulation can be instrumented to mea-

sure signal activity in sufficient detail to provide reasonably accurate estimates of power con-

sumption. This carries yet greater run time and memory costs, but is, of course, essential

for experiments involving energy efficiency.

Notably absent from this list of implementation options is running kernels on an actual

accelerator. While it would be interesting to do real-world performance comparisons of the

Mosaic system versus other options, the specific research results in later chapters do not

depend on that level of implementation detail. The performance results are given in terms

of relative comparisons of different options within the Mosaic system.

Synthesizing the output of SPR to an FPGA should be mostly straightforward, and we

believe the performance of such an implementation would be reasonable. The reason that

we have not undertaken that project is that implementing the I/O and system integration

components efficiently requires significant engineering effort.

3.5 Compiling Macah I: front-end

As indicated in the Mosaic toolchain system diagram (Figure 3.13), we have split com-

pilation of Macah into two distinct pieces: an architecture-independent front-end and an

architecture-dependent back-end (SPR). The front end is an extension of CIL, the C parsing

and translation infrastructure [NMRW02]. We have modified the parser and internal data

structures to accommodate Macah’s new features. Most of the analyses and transformations

described in this section are well known. What we provide here are explanations of why

and how they are applied differently in the context of coprocessor accelerators. In CIL, all

loops are represented as infinite loops with explicit breaks and continues. This works well

for us, because we can implement the critical loop optimizations once for all kinds of loops.

63

3.5.1 Kernel partitioning

For each kernel block, the necessary control transfers between the sequential processor and

the accelerator are automatically generated by the compiler, as are any data transfers that

are necessary for data structures that are accessed both inside and outside of a kernel. This

piece of compiler support is conceptually simple, but quite valuable, because systems that

require kernel code and non-kernel code to be written in different languages create a large

amount of manual interfacing work for the programmer.

3.5.2 Function inlining

Function inlining is a well known optimization, which replaces calls to a function with a

copy of the body of the function. Complete function inlining is required for most kinds of

accelerators, because they do not support function calls. Partial support for function calling

on accelerators has been investigated, but there is significant tension between the dynamic

allocation of stack frames that true function calling support implies and the limited nature

of workspace memory.

3.5.3 FOR loop unrolling

A FOR loop is replaced by multiple copies of its body, with constants filled in for the loop

induction variable. It is considered an error, if the initial value, termination condition or

induction variable increment cannot be computed at compile time.

3.5.4 Array scalarization

Array scalarization breaks arrays up into smaller pieces that can be accessed independently,

when it is legal to do so. The motion estimation code is carefully structured so that after

FOR loop unrolling, both the current frame buffer and the reference frame buffer are ac-

cessed only by constants in their first dimension. It is then clear without any sophisticated

array analyses that each sub-array can be allocated to a different physical memory and

accessed in parallel. The dists array will be similarly scalarized.

64

if (e) {
 a = x*2;
 b = y/3;
 c <? s;
}
else {
 a = z+r;
 while (1) {
 ...
 }
}

(a) Before

eThen = e;
eElse = !eThen;
aT = x*2;
bT = y/3;
if (eThen)
 c <? s;
aE = z+r;
if (eElse)
 while (1) {
 ...
 }
a = eThen ? aT : aE;
b = eThen ? bT : b;

(b) After

Figure 3.14: “If conversion” replaces conditional blocks with unconditional statements,

selection expressions and individual predicated statements. This is almost always preferable

for accelerators, which have poor support for unpredictable control flow.

Shiftable arrays that are not scalarized are implemented as normal arrays with additional

offset and size variables. Indexing is performed relative to the offset, modulo the size, and

shifting is implemented as offset arithmetic. If an architecture has built-in support for this

kind of indexing, we take advantage of that.

What we call array scalarization is unrelated to another use of that term [ZK05b, ZK05a],

which has to do with translating array expressions in data parallel languages into loops.

3.5.5 If-conversion

If-conversion is illustrated in Figure 3.14. After if-conversion, both sides of conditional

branches are executed unconditionally. Variables that are modified on either side have to

be renamed, with the final result selected after both sides have executed. Statements with

side-effects, like the stream receive and the loop in the example, have to be individually

predicated. Inside kernels, the current compiler completely converts all if-then-else and

switch-case statements, though this can be an inefficient strategy. Aggressive if-conversion

can lead to many values being computed and then discarded. Though it can be helpful to

think about if-conversion as separate from any loop optimization, it is actually subsumed

by loop flattening which is described briefly below, and in much greater depth in Chapter

65

while (1) {
 S1;
 if (e1) {
 while (1) {
 S2;
 if (e2)
 break;
 }
 }
 S3;
}

(a) Before

before = 1;
inner = 1;
after = 0;
while (1) {
 if (before) {
 S1;
 before = 0;
 if (!e1) {
 inner = 0;
 after = 1;
 }
 }
 if (inner) {
 S2;
 if (e2)
 after = 1;
 }
 if (after) {
 S3;
 before = 1;
 inner = 1;
 after = 0;
 }
}

(b) After

Figure 3.15: Loop flattening example for the special case where there is only one inner loop.

4.

3.5.6 Loop flattening

In order for kernels to perform well, the loops must be pipelined. The actual pipelining

process is described below. Pipelining algorithms, like software pipelining [Lam88] and it-

erative modulo scheduling [Rau94a] can handle only a single loop, but Macah programs can

have multiple nested and sequenced loops. We apply a transformation that in slightly dif-

ferent forms has been called flattening [GF95], coalescing [Pol87] and collapsing [KKLW80].

The basic idea is that the bodies of inner loops are placed directly into the outer loop and

additional conditional guards are generated to implement the original control flow. In other

work it is generally taken for granted that the loops involved have to be reasonably analyz-

able to avoid a large number of added conditional tests. However, we must flatten all loops

in order to enable pipelining, so we generalized flattening to work with all kinds of loops.

The intuition behind what flattening does is illustrated in Figures 3.15 and 3.16; the details

66

while (1) {
 S1;
 while (1) {
 S2;
 if (e1)
 break;
 }
 S3;
 while (1) {
 S4;
 if (e2)
 break;
 }
 S5;
}

(a) Before

count = 1;
while (1) {
 if (count == 1) {
 S1;
 count++;
 }
 if (count == 2) {
 S2;
 if (e1)
 count++;
 }
 if (count == 3) {
 S3;
 count++;
 }
 if (count == 4) {
 S4;
 if (e2)
 count++;
 }
 if (count == 5) {
 S5;
 count = 1;
 }
}

(b) After

Figure 3.16: Loop flattening example for multiple inner loops. These example loops are not

predicated only to keep the example manageable. Our loop flattening algorithm can handle

multiple predicated inner loops. Flattening with a single count variable, as shown here, is

not a very efficient method. A more sophisticated method for flattening is covered in the

next chapter.

are in Chapter 4.

3.5.7 Loop fusion

Loop fusion [KM94, Gan94, QCS02, LZSS04] (Figure 3.17) involves putting the bodies of

multiple sequenced loops together into a single loop. Fusion can be very profitable for

accelerators, because it takes code that would have run mostly sequentially and completely

parallelizes it. If there are any dependencies between sequenced loops, fusion becomes much

more complicated. In some cases it is possible to skew one or both loops by some number

of iterations in order to make fusion possible. These transformations are not implemented

in the prototype Macah compiler.

67

while (1) {
 S1;
 while (1) {
 S2;
 if (e1)
 break;
 }
 S3;
 while (1) {
 S4;
 if (e2)
 break;
 }
 S5;
}

(a) Before

while (1) {
 S1;
 brk1 = 0;
 brk2 = 0;
 while (1) {
 if (!brk1) {
 S2;
 if (e1)
 brk1 = 1;
 }
 if (!brk2) {
 S4;
 if (e2)
 brk2 = 1;
 }
 if (brk1 && brk2)
 break;
 }
 S3;
 S5;
}

(b) After

Figure 3.17: Loop fusion merges two (or more) sequenced loops into one. It can be applied

only if there are no blocking dependences. In particular, S4 must not depend on S3 nor

overwrite values that S3 depends on.

3.5.8 Setting tuning knobs

Searching for good tuning knob values is covered in depth in Chapter 6; here we make some

comments about the integration of tuning knobs into the rest of the compiler flow. Tuning

knob values can be used as true constants in Macah code; for example, they can be used to

calculate the size of statically allocated arrays. Clearly tuning knob value choices have to

happen before the rest of compilation, essentially during preprocessing.

3.5.9 Memory accessor streams

Memory accessor streams can be compiled into commands or “programs” for special memory

interface units like direct memory access (DMA) controllers and streaming engines. This

compilation process is not trivial, but because Macah programmers segregate the memory

access code into memory accessor functions, it is at least clear what should be compiled this

way.

68

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

configure {
 int stream s1, s2, s3;

 task t1 (input s1, input s2, output s3) {
 kernel {
 for (int i = 0; i < N; i++) {
 x <? s1;
 for (int j = 0; j < M; j++) {
 y <? s2;
 ...
 }
 z <? s2;
 ...
 }
 for (int i = 0; i < M; i++) {
 ...
 s3 <! = e + f;
 }
 }
 }

 task t2 (output s1) {
 for (int i = 0; i < N; i++) {
 s1 <! A[i];
 }
 }

 task t3 (output s2) {
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < M; j++) {
 s2 <! B[i][j];
 }
 s2 <! C[i];
 }
 }

 task t4 (input s3) {
 for (int i = 0; i < M; i++) {
 D‐>arr[i] <? s3;
 }
 }
}

configure {
 int stream s1, s2, s3;

 task t1 (input s1, input s2, output s3) {
 kernel {
 for (int i = 0; i < N; i++) {
 x = (? s1, A[i] ?);
 for (int j = 0; j < M; j++) {
 y = (? s2, B[i][j] ?);
 ...
 }
 z = (? s2, C[i] ?);
 ...
 }
 for (int i = 0; i < M; i++) {
 ...
 (! s3, D‐>arr[i] !) = e + f;
 }
 }
 }
}

(a) (b)

Figure 3.18: Streamable expressions are a convenience feature that let programmers avoid

writing separate memory accessor tasks for simple memory access patterns. (a) is what the

programmer writes; the streamable expressions (? ... ?) and (! ... !) are automatically

replaced by the compiler with receives and sends as indicated in (b). The compiler also

generates the memory accessor tasks using program slicing. Streamable expressions are

currently only partially implemented in the prototype Macah compiler.

69

Streams and tasks provide a flexible mechanism for accessing memory in Macah. How-

ever, many applications have relatively simple memory access behaviors. For these appli-

cations, declaring streams and writing separate memory accessor tasks is fairly high code

overhead. We have partially implemented a feature that we call “streamable expressions”

in Macah that allows programmers to use normal array and pointer access code in their

kernels. The expressions have to be specially marked, and the compiler then automatically

generates the necessary streams and memory accessor tasks.

Figure 3.18 shows an example of the use of streamable expressions. Part (a) is what

the programmer would write. A streamable read is written (? stream-exp, exp ?), and the

meaning is “read exp, but do it in another task and stream the results here over stream

stream-exp”. Streamable writes are very similar, (! stream-exp, l-exp !), except the stream

goes in the opposite direction, and l-exp has to be an expression that is legal for writing.

In order to generate the memory accessor tasks, the compiler uses program slicing [Wei81,

HR92, BH93] on a copy of the original task to remove all statements and expressions that are

not necessary for generating a particular streamable expression. Slicing is not computable

in general, so there will be cases when the compiler has to report that extracting a particular

streamable expression is not possible. In these cases the programmer will simply have to

write the memory accessor task explicitly.

3.5.10 Inner functions

In Macah, functions can be declared inside other functions. Inner functions behave a little

differently because the declared function actually becomes a closure, not a simple function.

The biggest programmer-visible difference is that closures are not called with the usual

syntax. In this example, bar is an inner function and x and y are local variables that the

body of bar is allowed to access.

70

1
2
3
4
5
6
7
8
9
10
11
12
13

int foo()
{
 int const x = 4;
 float const y = 3.2;
 ...
 int bar(int w, float z)
 {
 return x * z + y * w;
 }

 int q = bar‐>f(bar, 3, 7.1);
 ...
}

In the implementation, bar is actually turned into a pointer to a struct that has a field

called “f” for the function itself, and (hidden) fields for the captured variables x and y.

Calls to the function are actually done through the field f, and the closure itself has to be

passed as the first argument so that the function has access to the captured variables. All

captured variables must be declared const.

Inner functions are not used explicitly in much of the Macah code we have written.

However, they are the mechanism we use to implement tasks. In implementation terms,

tasks are translated into zero-argument inner functions that are then passed to thread

creation functions when their configuration is run.

Inner functions in Macah are very similar to Apple’s Blocks[CBl] extension to standard

C. The nested function support in the GNU project’s gcc is different, because it performs

runtime code generation on the stack in order to support inner function calling without any

syntax or type system changes[gcc].

3.6 Compiling Macah II: back-end

The back-end part of the Macah compiler is called SPR (schedule, place, route) [CE06,

FCVE+09]. SPR is conceptually similar to conventional compiler back-ends that perform

scheduling and register allocation. However, the physical location of an operation is im-

portant in accelerator architectures, so SPR has much in common with automatic circuit

placement and routing tools.

In the back-end, architectures are represented as collections of interconnected ALUs,

registers, local memories and stream ports. Communication delay within an architecture

is non-uniform. The job of SPR is to schedule and place operations onto the appropriate

71

devices (arithmetic operations on ALUs, array reads and writes on memories, stream sends

and receives on I/O ports), and configure the interconnect network to move data from

producers to consumers. We expect that a wide range of accelerators can be faithfully

modeled in this framework.

SPR accepts a single dataflow graph (DFG), which it treats as the body of an infinite

loop with an explicit operation to indicate when to break. Ideally each operation would be

placed on a hardware device and every cycle that device would perform that operation for

the next iteration of the loop. However, there are two reasons that it might not be possible

to start a new loop iteration every cycle. First, the DFG might not fit on the available

hardware resources. Second, there might be inter-iteration dependencies in the code that

force later iterations to wait until some part of an earlier iteration is complete.

To address these issues, SPR performs scheduling with software pipelining, which assigns

every operation to a time step and decides how frequently new iterations of the loop will

start. The time between iterations is referred to as the initiation interval (II). When the II

is greater than 1 (which is common), each physical resource in the architecture will perform

II different operations before it needs to start over again on its first operation for the next

iteration. This time-multiplexing idea is illustrated in Figure 3.19, where II=2. Increasing

the II makes more virtual hardware resources available and increases the amount of time

between loop iterations, which makes it possible to respect inter-iteration dependencies.

The placement part of SPR uses a mostly conventional simulated annealing-based ap-

proach. However, the placement is on a version of the architecture that has been “unrolled”

in time by a factor of II, as indicated in Figure 3.19(b). The schedule produced in the first

stage of SPR determines which copy of the unrolled architecture an operation can be placed

on. If an operation is scheduled in step S it must be placed on copy S mod II. The placer

is allowed to adjust the schedule, but this introduces some additional complexity, since the

placer needs to ensure that producers are scheduled before consumers.

The routing in SPR is actually a combination of conventional circuit routing and register

allocation. If operation B depends on operation A, and A is scheduled at an earlier step

in the schedule, the router has to use wires to get the data from the location of A to the

location of B, and registers to delay the value for the appropriate amount of time. SPR

72
43

C
yc

le
 0

(a) Initial datapath graph

C
yc

le
 1

C
yc

le
 0

(b) Datapath graph unrolled twice

C
yc

le
 1

C
yc

le
 0

(c) Register connections from cycle 0 to 1 (Only)

C
yc

le
 1

C
yc

le
 0

(d) Register connections from cycle 1 back to 0

(Only)

Figure 4.2: Stages of unrolling a CGRA’s datapath graph.

to devices. Simulated annealing is modeled after the annealing phenomenon found in ma-

terial science, particularly in the formation of crystalline structures. The idea is that the

placer is allowed to move and swap operations throughout the fabric, and the quality of each

move is judged by a distance function that quantifies how good or bad an operator’s position

is with respect to operators that produce and consume its operands. The probability that

a bad move will be permitted is proportional to the “temperature” of the annealing phase,

which starts off high and is cooled during the placement process. SPR’s simulated annealing

algorithm is based on the VPR tool for FPGAs [49]; a more detailed discussion of the algo-

rithm including the cooling schedule is provided in [49]. The distance (or cost) function used

by the annealer is architecture-specific. To maintain SPR’s architecture-independent design

the distance function is customized by a plugin generated by the architecture generator,

43

C
yc

le
 0

(a) Initial datapath graph

C
yc

le
 1

C
yc

le
 0

(b) Datapath graph unrolled twice

C
yc

le
 1

C
yc

le
 0

(c) Register connections from cycle 0 to 1 (Only)

C
yc

le
 1

C
yc

le
 0

(d) Register connections from cycle 1 back to 0

(Only)

Figure 4.2: Stages of unrolling a CGRA’s datapath graph.

to devices. Simulated annealing is modeled after the annealing phenomenon found in ma-

terial science, particularly in the formation of crystalline structures. The idea is that the

placer is allowed to move and swap operations throughout the fabric, and the quality of each

move is judged by a distance function that quantifies how good or bad an operator’s position

is with respect to operators that produce and consume its operands. The probability that

a bad move will be permitted is proportional to the “temperature” of the annealing phase,

which starts off high and is cooled during the placement process. SPR’s simulated annealing

algorithm is based on the VPR tool for FPGAs [49]; a more detailed discussion of the algo-

rithm including the cooling schedule is provided in [49]. The distance (or cost) function used

by the annealer is architecture-specific. To maintain SPR’s architecture-independent design

the distance function is customized by a plugin generated by the architecture generator,

43

C
yc

le
 0

(a) Initial datapath graph

C
yc

le
 1

C
yc

le
 0

(b) Datapath graph unrolled twice

C
yc

le
 1

C
yc

le
 0

(c) Register connections from cycle 0 to 1 (Only)

C
yc

le
 1

C
yc

le
 0

(d) Register connections from cycle 1 back to 0

(Only)

Figure 4.2: Stages of unrolling a CGRA’s datapath graph.

to devices. Simulated annealing is modeled after the annealing phenomenon found in ma-

terial science, particularly in the formation of crystalline structures. The idea is that the

placer is allowed to move and swap operations throughout the fabric, and the quality of each

move is judged by a distance function that quantifies how good or bad an operator’s position

is with respect to operators that produce and consume its operands. The probability that

a bad move will be permitted is proportional to the “temperature” of the annealing phase,

which starts off high and is cooled during the placement process. SPR’s simulated annealing

algorithm is based on the VPR tool for FPGAs [49]; a more detailed discussion of the algo-

rithm including the cooling schedule is provided in [49]. The distance (or cost) function used

by the annealer is architecture-specific. To maintain SPR’s architecture-independent design

the distance function is customized by a plugin generated by the architecture generator,

43

C
yc

le
 0

(a) Initial datapath graph

C
yc

le
 1

C
yc

le
 0

(b) Datapath graph unrolled twice

C
yc

le
 1

C
yc

le
 0

(c) Register connections from cycle 0 to 1 (Only)

C
yc

le
 1

C
yc

le
 0

(d) Register connections from cycle 1 back to 0

(Only)

Figure 4.2: Stages of unrolling a CGRA’s datapath graph.

to devices. Simulated annealing is modeled after the annealing phenomenon found in ma-

terial science, particularly in the formation of crystalline structures. The idea is that the

placer is allowed to move and swap operations throughout the fabric, and the quality of each

move is judged by a distance function that quantifies how good or bad an operator’s position

is with respect to operators that produce and consume its operands. The probability that

a bad move will be permitted is proportional to the “temperature” of the annealing phase,

which starts off high and is cooled during the placement process. SPR’s simulated annealing

algorithm is based on the VPR tool for FPGAs [49]; a more detailed discussion of the algo-

rithm including the cooling schedule is provided in [49]. The distance (or cost) function used

by the annealer is architecture-specific. To maintain SPR’s architecture-independent design

the distance function is customized by a plugin generated by the architecture generator,

(a) Initial datapath graph (b) Datapath graph "unrolled" to make
two virtual copies of the architecture

(c) Temporal connections through registers (d) Temporal connections wrap around
from last virtual copy back to the first

Figure 3.19: SPR uses a software pipelining-style cyclic approach to scheduling. It makes

a virtual copy of the architecture for each phase in the cyclic schedule. Connections be-

tween the different phases are made through registers. This arrangement allows schedul-

ing/placement and register allocation/routing to be done simultaneously with mostly con-

ventional CAD algorithms.

sees registers as connections between different instances of the architecture, as shown in

Figure 3.19(c,d). With this unrolled architecture, SPR can use negotiated-congestion-based

routing [ME95, LE04] to route and allocate registers simultaneously.

The back-end process outlined here has similarities to those used for other aggressively

clustered VLIW processor and reconfigurable hardware projects, see, for example [FDF98,

MVV+02, KFM06]. Other work has proposed solving the whole schedule/placement/routing

problem as a single large optimization. We believe that breaking the problem up will help

73

SPR scale well to larger kernels and architectures.

3.7 Applications

In addition to motion estimation, we have worked on a variety of applications in Macah.

As described in Chapter 1, applications for accelerators can be categorized as brute force,

efficient or complex. Brute force applications have simple nested loops, lots of available

parallelism and simple data access patterns. Efficient applications are still predictable but

with more complex control flow and data access patterns, and often less parallelism. Com-

plex applications use data-dependent branching and often more complex heuristics of some

kind.

The applications for which members of the Mosaic group have done at least some work

developing a Macah version appear in Table 3.1. Some of these applications are the classic

bread and butter of accelerator language and architecture projects. Applications like FIR

filter, 2D convolution, and matrix multiplication all have single kernels with simple nested

loops and regular data access patterns. Implementing them is useful for performance com-

parisons, but these applications are simple enough that a wide range of languages and

compilation strategies work reasonably well for them. Efficient applications like K-means

clustering and principal components analysis (PCA) pushed us to find efficient implemen-

tations for applications with more complex control flow. Both of these applications have

non-trivial nested and sequenced loops that are not amenable to conventional software pipe-

lining.

Some of the applications motivated work on libraries that provide important function-

ality. For example, the pixel correlation application has a lot of data reuse and somewhat

predictable access patterns. However, exactly which pixel is accessed at a particular point

in the program is data-dependent, so the most basic streaming and buffering patterns that

work for convolution and matrix multiplication are not applicable. What is needed to get

the best performance out of this application is a banked cache, but many accelerators do

not have hardware caches. Thus, we developed a parameterized software cache library that

uses tuning knobs to adapt to the constraints of a particular application and architecture.

Our molecular dynamics implementation brought two language challenges to the fore.

74

Application Category

Finite impulse response (FIR) filter brute force

2D convolution brute force

Discrete cosine transform for JPEG brute force

Matched filter[BGT07] brute force

Dense matrix-matrix multiplication brute force

Image resolution scaling brute force

Probabilistic Neural Network[CH99] brute force

CORDIC[And98] efficient

K-means clustering[GFM+03] efficient

PET scanner event detection[HML+09] efficient

Smith-Waterman sequence alignment[HJL+07] efficient

Viterbi decoding[ZZH+09] efficient

Wavelet encoding[FH05] efficient

fast Fourier transform[HU05] efficient

Pixel correlation efficient

Principal components analysis[ZCS08] efficient

Motion estimation for video encoding[RS01] complex

Molecular dynamics simulation[SP06] complex

BLAST sequence alignment[MUS05] complex

Table 3.1: The applications for which we have written Macah code, ordered by increasing

algorithmic complexity (a subjective judgment).

75

It was the first application we implemented that used feedback through streams, which has

the potential to create unexpected deadlocks, as discussed in Chapter 7. It also has the

kind of unbalanced paths—a fast common path and a slow uncommon case—that badly

inflate initiation intervals during software pipelining. The loop transformation discussed in

the next chapter was designed partially to address this issue.

Working with these applications has been an essential part of designing Macah and the

Mosaic toolchain. Without a particular application to make a potential challenge concrete,

it is hard to even know that it exists, let alone solve it.

3.8 Summary

We designed Macah to be a C-like programming language for accelerators with three primary

constraints in mind:

• Macah reflects the HMP model defined in the previous chapter in the same way that

C reflects the von Neumann model. This connection is valuable because it means

that programmers can use the language effectively with a good understanding of the

model, but without needing to understand the details of a particular architecture.

• The compilation strategy for Macah does not require any radical transformations.

Designing the language such that reasonably simple compilation approaches work is

important because it makes the connection between source code and the performance

of a compiled program comprehensible to programmers. There are no parts of Macah

compilation to accelerators that require the kind of pattern matching-based paral-

lelization often employed by compilers from standard C to accelerators.

• Macah allows applications that can work well on accelerators to be coded without

huge additional overhead. Members of the Mosaic group have worked on a reasonably

wide range of applications, and though some adjustments have been made in response

to programmer feedback, we have not found applications that do not work at all.

The loop flattening transformation described in the next chapter is important for freeing

programmers to use whatever control flow patterns are natural for their application. Many

C-like languages support only particular looping and branching control flow patterns, not

76

because it is impossible to support other patterns on accelerators, but because it is simpler

for the compiler to recognize and handle restricted patterns.

The tuning features of Macah allow programmers to specify a range of legal values for

“constants” in their programs. The compiler uses a search procedure, described in detail in

Chapter 6, to find values that lead to good performance on particular architectures. This

provides a degree of performance portability across accelerators.

Finally, in Chapter 7 we show that C-like languages that combine streaming I/O with

compilers that use reordering optimizations like loop pipelining have serious semantic cor-

rectness issues. The semantics of Macah explicitly give the implementation flexibility to

reorder stream operations on different streams.

77

Chapter 4

ENHANCED LOOP FLATTENING

Software pipelining1 is a compiler transformation that statically schedules a loop such

that operations from different iterations are overlapped in time. In other words, the first

operation from a later iteration is scheduled before the last operation from an earlier it-

eration. The benefits of pipelining include avoiding stalls for long-latency operations like

memory loads by increasing the distance between dependent operations, and exposing more

opportunities for operation-level parallelism.

For compiling C-like languages to accelerators, pipelining is an essential optimization.

Conventional approaches to pipelining work only on simple loops, which means that kernels

that naturally have a more complex looping structure need to be manually recoded in order

to get the full benefit of pipelining. This recoding process is quite tedious and error prone,

even for kernels with only a few nested and/or sequenced loops. In this chapter I propose a

new method for preprocessing loops for pipelining that can handle arbitrary static control

flow and maintains the good performance characteristics of simple loop pipelining.

The earliest pipelining algorithms worked only on the simplest kinds of loops: a sin-

gle loop with a constant number of iterations and no branching control flow. Supporting

dynamic break conditions is a simple extension that is now in wide use. Acyclic control

flow—for example if/then/else and switch/case—can be supported by applying if-conversion

before pipelining. The idea behind if-conversion is that instead of executing one branch or

another, both are executed unconditionally and the results are selected based on the branch

condition. Other approaches to handling acyclic control flow are described in Section 4.1.

More complex cyclic control flow—for example, nested and sequenced loops—is a bigger

challenge for pipelining than if/then/else control flow. One approach is to pipeline only the

individual inner loops of a more complex loop nest. The problem with pipelining only inner

1In this chapter “software pipelining”, “loop pipelining” and “pipelining” are used interchangeably.

78

loops is that pipelined loops have prologue and epilogue (or fill and drain) periods at the

beginning and ending of the loop execution, and during those periods the parallel hardware

of an accelerator is underutilized. Pipelining only the inner loops of a more complex loop

nest means that each time execution flows from one inner loop to another, the epilogue of

the previous loop generally cannot be overlapped with the prologue of the next loop.

There are some existing methods for pipelining nested loops such that prologues and

epilogues can be overlapped, but the majority of them are applicable only to very restricted

loop patterns. One approach that can handle arbitrary cyclic control flow is to first flatten

the complex loop into a single-level loop and then apply pipelining to the flattened loop.2

Loop flattening is a transformation that “emulates” an arbitrarily complex loop nest with

a single-level loop by guarding each part of the original loop nest with a different predicate.

In each iteration of the flattened loop, only some of the predicates are true; additional

logic is needed to make the flattened loop correctly implement the original nested looping

structure.

Existing flattening algorithms are greedy in the sense that the predicate logic is set

up to execute each operation in the earliest possible iteration of the flattened loop. This

strategy minimizes the number of iterations of the flattened loop, which is clearly desirable,

but it does not necessarily lead to the most efficient pipelined schedule. Inter-iteration

dependencies are an important limit on the effectiveness of pipelining, and flattening a

loop in a way that adds extra iterations can loosen the scheduling constraints imposed by

inter-iteration dependencies and improve the overall pipelined schedule.

Enhanced loop flattening is a new framework we developed for flattening loops that

makes it possible to control precisely the addition of extra iterations to create the most

efficient balance of total number of loop iterations and good pipelined scheduling. Flat-

tening a complex loop requires a fairly large number of predicate variables and Boolean

operations to implement the predicate logic. Because of this, enhanced loop flattening is

most appropriate for architectures that have hardware support for single-bit computation.

Section 4.1 covers background on conventional loop pipelining and existing methods

2Loop flattening is also sometimes referred to as loop collapsing or loop coalescing.

79

+

‐ * %/

+

‐ * %/

Time

H
ar

dw
ar

e
re

so
ur

ce
s

Figure 4.1: Without pipelining we cannot schedule operations from later iterations until all

operations from earlier iterations have completed.

for extending pipelining to more complex loops. The high-level design of enhanced loop

flattening is described in Section 4.2; the implementation details are given in Section 4.3.

We evaluate enhanced loop flattening in the context of the Mosaic toolchain in Section 4.4.

Some extensions and important issues related to enhanced loop flattening are discussed in

Section 4.5.

4.1 Background

Software pipelining is a family of compiler methods for scheduling and execution unit

allocation that convert loop-level parallelism into instruction-level parallelism. Pipelining

exploits the fact that while the number of parallel operations available in a single iteration

of a loop is often limited, operations from later iterations can be executed before earlier

iterations have completed. Unlike complete loop parallelization, pipelining can handle

loops that have inter-iteration dependencies. Here is a very simple example of a loop that

can benefit from pipelining.

while (true)
 A := A + C
 B := B ‐ C
 C := A * B
 D := C / E
 E := A % D

If we insist on completing all the operations from one iteration before any of the operations

80

+

‐ *

%/

+

‐ *

%/

+

‐ *

%/

H
ar

dw
ar

e
re

so
ur

ce
s

Time

Figure 4.2: Loop pipelining allows later iterations to start before earlier iterations are

complete.

from the next iteration can start, we cannot schedule the loop any tighter than the example

schedule shown in Figure 4.1. There is a four-long chain of operations in a single iteration,

which means that the latency of a single iteration of the loop cannot be any lower than

four time units (assuming unit time latency for all operations).

Using software pipelining, we can get higher parallelism and throughput, as illustrated

in Figure 4.2. Even though each iteration still takes 4 time units to complete, we can start

a new iteration every 2 time units, roughly doubling overall throughput.

To help visualize pipelined loop schedules, “parallelogram diagrams”, like Figures 4.3

and 4.5, are used throughout this chapter. In those diagrams a vertical slice is a snapshot

of what each hardware unit is scheduled to do at a particular point in time; a horizontal

slice is the complete schedule for a particular hardware unit; the schedule and hardware

assignment of each individual iteration can be seen as a diagonal slice, though there is no

actual requirement that the iterations line up on a diagonal. Figure 4.4 has a summary of

the abbreviations we use.

The result of applying pipelining to a loop is a schedule that assigns every operation to

a time step and hardware resource. It is assumed that every dynamic instance of a given

static operation will execute at the same time relative to the start of its iteration, and on

the same hardware resource. There are actually two distinct “schedules” in the context of

pipelining. One is the schedule for a single iteration of the loop. In our simple example,

81

+

‐ *

%/

+

‐ *

%/

+

‐ *

%/

Time

H
ar

dw
ar

e
re

so
ur

ce
s

Figure 4.3: In “parallelogram diagrams” like this a vertical slice represents a snapshot in

time, a horizontal slice represents the schedule for a single hardware resource, and a diagonal

slice represents a single loop iteration.

that is:
Time step Operations

0 −, +

1 ∗

2 /

3 %

The length of the single iteration schedule is also referred to as the latency of the

loop. The other schedule that is important is the steady state schedule, which is the

repeating pattern of operations executed by the machine at a particular time. In general

operations from multiple iterations can overlap in the steady state schedule. In our simple

example the steady state schedule is:

Time step Ops from Iteration N − 1 Ops from Iteration N

0 / −, +

1 % ∗

The length of the steady state schedule is the same as the amount of time between

new iterations starting. This time is referred to as the initiation interval (II) of a pipelined

schedule. Pipelined loops cannot start executing the full steady state schedule from the

very first iteration, because executing operations for iterations before the first does not

82

Abbr. Meaning

L Latency (of a single loop iteration)

II Initiation interval

T Time

C Trip count

RecII Recurrence initiation interval

ResII Resource initiation interval

Figure 4.4: Abbreviations used throughout the chapter.

make any sense. For this reason, pipelined loops have a prologue or fill period during which

the first few iterations start executing, but the steady state schedule has not started yet.

The length of the prologue is approximately equal to the latency of the loop. There is a

symmetric period at the end of the execution of a pipelined loop called the epilogue or

drain period.

The II is an important metric for pipelined loops, because the total execution time for

all iterations of a pipelined loop (ignoring stalls) is the latency plus (II multiplied by one

less than the total number of iterations). The total number of iterations is also called the

trip count, and as long as it is reasonably high, the II is much more important that the

latency for determining the performance of a pipelined loop.

There are two important limitations on the achievable II: resource limits and inter-

iteration feedback dependencies. If a loop body requires N of some resource, but there are

only M (<N) available in the architecture, the II must be at least N/M . This applies to

each different kind of resource in the architecture, and the lower bound on the II imposed

by resource constraints—referred to as the minimum resource II—is the maximum across

all kinds of resources.

Perhaps less obviously, if some static operation depends (directly or indirectly) on an

execution of itself from an earlier iteration, the latency of the dependency chain between

those two executions also limits the II. In our simple example, the multiplication operation

depends on the addition, which in turn depends on the multiplication from the previous

83

iteration. This means that the II must be long enough to execute an addition and a mul-

tiplication in sequence. In general, an inter-iteration feedback dependency chain can cross

multiple iterations, and the bound imposed on the II—referred to as the minimum recur-

rence II—is equal to the latency of the chain divided by the number of iterations it crosses.

In the context of massively parallel architectures, computational resources are sufficiently

abundant that for most applications we are more concerned about the minimum II imposed

by feedback paths (the recII) than resource limits (the resII). Controlling the minimum

recII is the main point of enhanced loop flattening. The details are covered later, but the

intuition is that the iteration distance for specific inter-iteration dependency chains can be

increased, which lowers the minimum recII imposed by that chain.

The criticality of a particular inter-iteration dependency chain is a measure of how close

the minimum recII imposed by that chain is to the overall minimum II for the loop. The

closer these two numbers are, the more critical the chain is. We can extend the notion of

criticality from dependency chains to particular operations by defining the criticality of an

operation to be the worst-case criticality over all inter-iteration feedback chains in which it

participates.

The number of iterations that are “in-flight” at a particular point in time is an important

measure of how deeply pipelined a loop is. This number is approximately equal to the latency

of the loop divided by the II.

The basic terminology of pipelining is illustrated in Figure 4.5. The highlighted inter-

iteration feedback path has a latency of 5 (assuming unit latency for all operations along

the path) and an iteration distance of 2, which means the II can be no lower than 5/2 = 2.5

time units. In most cases we measure time units in machine cycles, which means that

fractional IIs are not possible with conventional pipelining algorithms.3 For this example,

the minimum integral II would be 3.

Finding enough parallel operations to make use of all the physical resources can be a

serious challenge with parallel accelerators, and high IIs exacerbate this problem, because

an application scheduled at II on an architecture with M physical resources needs II×M

3Fractional IIs can be implemented, for example, by using a steady state schedule that executes multiple
iterations.

84

Time

Physical
Resources

Inter-iteration feedback path
Latency of a single iteration

Steady-state
scheduleIterationsInitiation interval

Epilogue

Prologue

Figure 4.5: The basic terminology of loop pipelining. The repeated shape of the loop

iterations signifies that in conventional software pipelining all iterations share the same

schedule and resource assignments. The inter-iteration feedback path is the whole chain of

operations from square to square. In this picture, 2 instances of the steady state schedule

are shown, though typically there will be many more.

operations per iteration to achieve full utilization. To visualize why this is the case, imag-

ine scheduling a loop on an architecture at some II as creating II virtual copies of the

architecture to use.

For loops with very high trip counts, the latency of a single iteration is not usually

important for overall program performance. However, the lower the trip count, the more

important prologue and epilogue periods are. During prologue and epilogue, the hardware

resources are underutilized, which negatively impacts performance.

If a pipelined loop is nested within another loop, as illustrated in Figure 4.6, and the

prologue and epilogue periods of an inner loop can be overlapped properly, the total ex-

ecution time will be approximately Couter×Cinner×II . On the other hand, If the pro-

logue and epilogue cannot be overlapped, the total execution time will be approximately

Couter×(Linner+Cinner×II).

Many different variants of pipelining exist; most require that the input to the pipelining

85

Time

T ≈ Couter × (Cinner × IIinner + Linner)

C × II L

T ≈ Couter × Cinner × IIflattened

Time

(a) Inner loop pipelining only

(b) Nested loop pipelining

Figure 4.6: Sketches of the execution of a nested loop. In case (a), only the inner loop is

pipelined, which results in the empty triangles at the beginning and end of each iteration

of the outer loop. In case (b), the whole loop nest is pipelined together, which improves

performance roughly in proportion to the ratio of Cinner×II to L.

algorithm be the body of a single loop with no function calls or non-trivial control flow.

Iterative modulo scheduling [Rau94b] and swing modulo scheduling [LGAV96] are the classic

implementations of inner-loop-only pipelining. No static pipelining algorithms we are aware

of can handle truly dynamic control flow, like exceptions, continuations and calls through

function pointers. Simple function calls are usually addressed with inlining before pipelining,

and this is the assumption we make with enhanced loop flattening as well.

4.1.1 Previous work on pipelining complex loops

One existing approach to pipelining loops with complex control flow is hierarchical reduc-

tion[Lam88]. The hierarchical reduction (HR) method applies pipelining to more deeply

nested blocks of code (like branches of an if/then/else or inner loop bodies), then treats the

resulting schedule and resource allocation as a “complex primitive” and applies pipelining

again to the next level.

The “reduction” in HR refers to reducible control flow, which is formally defined below.

86

Informally, programs that use structured control flow mechanisms will have only reducible

control flow. Programs that use gotos or are optimized in certain ways can have irreducible

control flow.

HR has two weaknesses compared to enhanced loop flattening:

• It is applicable only to reducible control flow.

• Good solutions to the inner/local scheduling and resource allocation problem can be

quite suboptimal in the outer/global context.

Our compiler does not support the complex primitive concept required to implement HR,

so we cannot experimentally evaluate the schedule quality that results from solving the

scheduling problem hierarchically. However, the authors of [WMHR93] compared HR to

predication in the context of if-conversion, and found that HR was significantly less efficient.

Thus we expect that HR would produce poor results in our context as well.

Many other approaches to pipelining nested loops have been proposed [Ram94, YTZL97,

BDH+00, CW00, GSZ01, MD01, PHA02, RTG+04, BRS07, RTG+07, TCMC08, ZXQ+08].

All these proposals are applicable only to limited classes of loop nests, like perfectly nested

loops. There is some disagreement about the exact definition of perfect and imperfect loops.

Loop nests with sequenced loops inside of other loops are imperfect by all definitions. Some

authors consider loops nests where there is some non-looping code between outer and inner

loops to be imperfect and while others consider them perfect.

Of the published approaches to statically pipelining complex loops, the one that cov-

ers the broadest class of loop nests is [FCT07]. Their approach can handle at least two

levels of truly imperfectly nested loops. However, the prologues and epilogues of the inner

loops cannot be overlapped if there are dependencies between the inner loops, which we

will demonstrate is an unnecessarily strong restriction. Compared to this approach, our

enhanced loop flattening can handle yet a broader class of loops (structured and unstruc-

tured, reducible and irreducible loops), and does a better job of overlapping epilogues and

prologues in the presence of complex data dependencies.

Software Bubbles [GCHP02] is an interesting technique for software pipelining in the

presence of hard to predict dependencies through memory. It has similarities with enhanced

87

loop flattening in that both methods add extra iterations to the execution of a loop in

order to accommodate infrequent, long-latency events. However, the methods described in

[GCHP02] are directly applicable only to a single loop, and it is not obvious how to extend

them to address the issue of complex looping control flow.

A whole different perspective on pipelining complex loops is to delay much of the schedul-

ing to runtime by augmenting the hardware with some form of dynamic token passing

[BG02, Car05]. Dynamic approaches make it much easier to accommodate complex loops,

but they also have non-trivial energy and run time overhead for the extra coordination

that is required. Also, sharing of hardware between operations that execute under different

conditions requires dynamic arbitration. This issue is discussed further below.

4.1.2 Flattening

Loop flattening transforms complex looping code into a single loop that can then be pipelined

with conventional algorithms. Loop flattening has been proposed as a solution to a number

of different problems [PW86, Pol87, vHK92, OD93, GF95, Kni98, KNP08].

Parts (a) and (b) of Figure 4.7 illustrate the effects of flattening. A complex loop is

transformed into a single loop with additional predicate logic to control when the various

blocks of code should execute. In each iteration of the flattened loop (part (b)), each block

of code (S1, S2, S3) might execute, depending on the predicates (p1, p2, p3).

Each block can execute at most once in a single iteration of the flattened loop; flattening

does not duplicate any blocks. Existing approaches to flattening have at least one of two

limitations that we eliminate with enhanced loop flattening:

• Restrictions on the kinds of loops that are handled (such as perfectly nested loops).

• Being greedy in the sense that each operation is executed in the earliest possible

iteration of the flattened loop. This may seem like a positive feature for performance,

because the total number of iterations is minimized. However, in the context of loop

pipelining it is not the best, because it can create long inter-iteration feedback paths.

Flattening and pipelining are complements to other loop optimizations, like unrolling

or fusion, not a replacement for them. For example, if a program has two sequenced loops

88

do {
  do {
    S1;
  } while (C2);
  S2;
  do {
    S3;
  } while (C3);
} while (C1);

p1 := true, p2 := false,
p3 := false;
while (true)
    if (p1)
        S1;
        if (!C2)
            p1 := false;
            p2 := true;
    if (p2)
        S2;
        p2 := false;
        p3 := true;
    if (p3)
        S3;
        if (!C3)
            p3 := false;
            if (C1)
                p1 := true;
            else
                break;

p1 := true, p2_0 := false,
p2_1 := false, p2_2 := false,
p3 := false;
while (true)
    if (p1)
        S1;
        if (!C2)
            p1 := false;
            p2_0 := true;
    if (p2_2)
        p3 := true;
    p2_2 := p2_1;
    p2_1 := p2_0;
    if (p2_0)
        S2;
    p2_0 := false;
    if (p3)
        S3;
        if (!C3)
            p3 := false;
            if (C1)
                p1 := true;
            else
                break;

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11 
12 
13 
14 
15 
16 
17 
18 
19 
20
21 
22 
23 
24 

(a) (b) (c)

p1 := true, p2_0 := false,
p2_1 := false, p2_2 := false,
p3 := false;
while (true)
    (p1) S1;
    p1 := C2 ? p1 : false;
    p2_0 := C2 ? p2_0 : true;
    p2_2 := p2_1;
    p3 := p2_2 ? true : p3;
    p2_1 := p2_0;
    (p2_0) S2;
    p2_0 := false;
    (p3) S3;
    if (p3 && !C3 && !C1)
        break;
    p3 := p3 ? C3 : false;
    p1 := p3 ? !C3 : p1;

(d)

Figure 4.7: A simple loop nest (a) can be flattened in many different ways. (b) shows a

greedy flattening, where each block executes in the earliest possible iteration of the flattened

loop. (c) shows another possible flattening with extra predicate variables and extra “bubble”

iterations between the two inner loops. These bubble iterations will help create slack in the

schedule, will hopefully allow the loop to have a lower II, and only increase the trip count

in proportion to the number of times the outer loop executes. (d) shows the completely

flattened version of (c), which emphasizes the fact that all operations execute on every

iteration of the flattened loop—some are just predicated off.

with similar trip counts and no true dependences between them, it is probably best to

apply fusion first. Whatever other optimizations are applied, it is often still beneficial to

use pipelining to perform the final scheduling.

Flattening control flow (with if-conversion or loop flattening) has the important side-

effect that all operations are executed, whether their results are needed or not. The un-

necessary executions can be a performance problem, which is discussed further in Section

4.5.

89

4.2 Enhanced loop flattening

Enhanced loop flattening strategically increases the iteration distance along certain control

flow paths. In other words, some blocks execute in a later iteration than is strictly necessary.

This iteration distance increase is like inserting “pipeline bubbles” that can reduce the RecII

by increasing the iteration distance along inter-iteration feedback paths. For example, in

Figure 4.5 imagine an extra “dead” iteration inserted between the last and second to last

iterations. The highlighted inter-iteration feedback path would still have latency 5, but

would have an iteration distance of 3, meaning the minimum II imposed by that path would

be 12
3 instead of 21

2 . However, increasing iteration distances by adding bubbles4 also inflates

the trip count for the flattened loop, so we want to increase iteration distances just enough

to reduce the II.

A more detailed example is shown in Figure 4.7. Part (b) is a greedy flattening. It is

usually possible for every code block (S1, S2, and S3) to execute in a single iteration of the

flattened loop. This means that any feedback dependency cycle that goes through all blocks

must complete in a single iteration, which in turn means that the II will have to be large

enough to accommodate the longest cycle.

Part (c) of Figure 4.7 shows an alternative flattening that adds bubble iterations between

the two inner loops. These extra iterations mean that to get from S1, though S2 and S3,

and back to S1 will take at least 4 iterations in the flattened loop. Notice, however, that

these bubble iterations only happen between the two inner loops. So, if the inner loops have

reasonably high trip counts, adding bubble iterations between them will not increase the

total trip count for the flattened loop by more than a few percent.

Part (d) of Figure 4.7 shows the almost fully flattened version of the loop nest. The

syntax “(p) S” indicates that the statement S is executed in a predicated fashion with

predicate p. This version of the code clearly illustrates that every piece of the original loop

nest is executed in every iteration of the flattened loop—some statements are just predicated

and therefore have no effect.

4In a well-scheduled pipeline, bubble iterations are not a time when no work is happening. Rather, bubble
iterations allow extra time for slower infrequently executed chains of operations to complete.

90

do {
    S1;
    if (C2)
        S2;
    else
        S3;
    S4;
} while (C1);

p1 := true, p2_then := false, p2_else := false,
p2_else_1 := false, p2_else_2 := false, p3 := false;
while (true)
    if (p1)
        S1;
        p1 := false;
        if (C2)
            p2_then := true;
        else
            p2_else := true;
    if (p2_then)
        S2;
        p2_then := false;
        p3 := true;
    if (p2_else_2)
        p2_else_2 := false;
        p3 := true;
    if (p2_else_1)
        p2_else_1 := false
        p2_else_2 := true;
    if (p2_else)
        S3;
        p2_else := false
        p2_else_1 := true;
    if (p3)
        S4;
        p3 := false;
        if (C1)
            p1 := true;
        else
            break;

(a) (b)

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11 
12 
13 
14 
15 
16 
17 
18 
19 
20
21 
22 
23 
24 
25
26
27
28
29
30
31

Figure 4.8: Another example of enhanced loop flattening. Here the original loop does not

have any nesting or sequencing, but it does have an unbalanced if/then/else. Using enhanced

loop flattening we can add extra “bubble” iterations to one side of the conditional, but not

the other, which means that the II does not have to be set pessimistically high.

Figure 4.8 shows another use of enhanced loop flattening. In this case the original code

does not have any nested loops, but it does have an unbalanced if/then/else. For this

example, we assume that C2 is heavily biased towards true, and S3 creates much longer

inter-iteration feedback paths than S2. If we simply apply conventional if-conversion and

software pipelining, the II will be high because of S3. However, as shown in part (b) of

Figure 4.8, we can change the flattening to add bubble iterations only when C2 is false.

This increases the time available for inter-iteration chains that involve operations from S3,

and hopefully allows the whole flattened loop to be scheduled at a lower II.

The enhanced loop flattening algorithm translates a control flow graph (CFG) repre-

91

sentation of a loop nest into a single dataflow graph (DFG) that can be scheduled with

conventional software pipelining algorithms. The output DFG can be thought of as the

body of a single loop where all code in the original loop nest executes in every iteration of

the flattened loop. In order for the flattened loop to correctly implement the original loop

nest, two issues must be dealt with:

• A set of predicates have to be used to guard operations with side-effects, so that the

side-effects only happen when the logic of the original loop nest says they should.

• The flow of data from producer operations to consumer operations must be controlled

correctly. For example, a use of variable x that appears after an if/then/else that

causes different assignments to x needs to get the correct value, as dictated by the

branch condition. We use trees of select operations in enhanced loop flattening to

implement this data flow.

The novel contributions of our enhanced loop work are:

• a flexible framework for specifying iteration distances;

• a heuristic for deciding what iteration distances along specific control paths should

be; and

• Iteration distance-sensitive algorithms for generating logic for predicates and select

operations that heuristically minimize inter-iteration feedback paths.

4.3 Enhanced loop flattening implementation

There are two major subcomponents to enhanced loop flattening:

1. Given a control flow graph representation of a loop nest, assign an iteration distance

to each edge.

2. Given a control flow graph with iteration distance annotations, generate the predicate

logic and select operations to correctly implement the loop nest.

92

1 1

2
1

0

00

0 00

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

A
B
C
D
E
F

Iteration Count:

Black indicates
that a block's
predicate is true
in that iteration

1 2 3 4 5 6 7 8 9 10

ABCE BCE BCE B DE BCE F ABCE F
Example execution trace:

Loop-flattened version of this trace:

A B

C

D E F
Start End

Figure 4.9: An example CFG with iteration-distance annotations, an example trace through

that CFG, and a view of how that trace could execute in a loop-flattened version of the

CFG. The specific iteration distance annotations were chosen for illustrative purposes, and

do not necessarily represent the best choices for this graph.

4.3.1 Choosing iteration distances

Iteration distances are non-negative integer annotations on control flow graph edges. If

there is a zero-distance edge between two blocks it means that if the predicate for the

predecessor block is true in some iteration and it branches to the successor, the predicate

for the successor will be true in the same iteration. If there is a d (> 0) distance edge between

two blocks, it means that if the predicate for the predecessor block is true in iteration N

and the edge condition is true, then the predicate for the successor block will be true in

iteration N +d. We can think of this iteration distance as putting d bubbles in the software

pipeline between the two blocks.

Figure 4.9 shows a control flow graph that has been annotated with iteration distances.

93

The enhanced loop flattening algorithm uses “intra-iteration” variants of many flow

graph concepts like paths, dominance and topological order. A CFG edge with a

distance of zero is intra-iteration, and an edge with non-zero distance is inter-iteration.

The intuition for the intra-iteration variant of a flow graph concept is that you remove

the inter-iteration edges from the graph and evaluate the flow graph concept with the

remaining (intra-iteration) edges. Here are more formal definitions of the important

relations reachablility, dominance and post-dominance.

x reach y There is an intra-iteration path from x to y.

x dom y Every intra-iteration path to y from either the start node or an inter-

iteration edge includes x. “You can’t get to y without going through

x.”

x pdom y Every intra-iteration path from y to either the end node or an inter-

iteration edge includes x. “You can’t leave y without eventually going

through x.”

Figure 4.10: Intra- and inter-iteration flow graph concepts.

The “flattened trace” at the bottom shows how an example trace maps to iterations of

the flattened loop. Notice that after the execution of block B in iteration 4 there are two

“bubble iterations” before block D executes. This corresponds to the “2” annotation on the

B-D edge in the CFG.

The only hard constraint on the selection of iteration distances for a CFG is that in

every cyclic path there must be at least one edge with distance greater than zero. Zero-

distance cycles imply executing the same block twice in the same iteration of the flattened

loop, which does not make any sense (if loop unrolling is desired, it should be done before

flattening).

Optimal selection of iteration distances involves minimizing the following formula for

94

total execution time of the flattened loop: T=Cflat×IIflat+Lflat . Usually the latency is not

significant, because it is only an extra cost during the prologue and epilogue of the entire

loop nest. Ignoring latency leaves trip count (C) and initiation interval (II) as the variables

to minimize. Increasing the iteration distance on an edge will increase C whenever the

dynamic execution of the flattened loop follows that edge, but might lower the overall II

if the critical-latency feedback path in the program involves values that flow through that

CFG edge.

Two pieces of information should be known or estimated in order to optimize iteration

distances: the relative execution frequencies of the CFG edges, and the criticality of the

cycles. It is good to increase iteration distances on edges that participate in higher criticality

feedback paths, because that is more likely to reduce the II. However, it is also good to keep

iteration distances low on edges with high execution frequency, because that will inflate the

trip count less.

Execution frequency information can be collected by profiling. Profiling for branch fre-

quency has been implemented in many compilers, and is not conceptually complex, although

it does require some additional infrastructure. The programmer has to provide a represen-

tative input set for the profiling run, and the intermediate representation has to be enriched

so that the compiler can map the results of the profiling run back to its internal control

flow graph. We have not implemented the necessary infrastructure for profiling, so we use

a simple static heuristic to estimate execution frequency: edges inside of loops are assumed

to execute more frequently than edges that enter or leave loops.

Loop flattening comes before scheduling in the compilation flow and needs estimates

of the criticality of inter-iteration feedback chains, but the latencies of particular chains

of operations (and thus their criticality) are not known until scheduling. Loop flattening

could be performed multiple times with feedback from the scheduler, but again this requires

more compiler infrastructure work. We currently use a simple criticality heuristic that is

described below as part of the predicate and select implementation algorithm. We found

this heuristic works well for our benchmark set.

95

4.3.2 Generating predicates and selects

This section covers the translation of a control flow graph that has been annotated with

iteration distances into a dataflow graph. This dataflow graph represents the body of the

single simple loop that is the output of loop flattening.

The only primitive DFG operation we use that is not common is the iteration delay

(or just “delay”). Delays have an input, an output and a static parameter d. A delay

operation’s output on iteration i+d is whatever its input was on iteration i. Delays may or

may not be initialized with output values for the first d iterations. In hardware terms, delays

are similar to chains of registers. In software terms, delays are like chains of d temporary

variables that get “shifted” by one at the end of each iteration.

4.3.3 Basic blocks

Basic blocks are sequences of simple statements with no other control flow; once a basic

block (sometimes just “block”) starts executing, all its statements will execute. We use

a static-single assignment (SSA) style representation for the basic blocks in our internal

representation, which means that producer and consumer operations are directly connected

to each other.

We do not strictly preserve the original ordering of operations from the source program,

so operations that modify or read a stateful object require extra scheduling constraints to

keep all operations on a particular object in program order. For example, without these

constraints two writes to a single array could execute out of order, which could lead to incor-

rect results. Scheduling constraints are implemented as pseudo-dataflow dependencies that

are removed after scheduling. Operations with side-effects are also individually predicated

with a dynamic Boolean input to control whether they should perform their action on each

iteration.

4.3.4 Predicates

Every basic block has a predicate that is true on iterations of the flattened loop when the

block should execute and false on iterations when the block should not execute. Each block’s

96

A
C2¬C2

A

D

C¬C
A B

D

A B

D

E
C¬C

B

D

E
C1¬C1

A B

D

E
C¬C

1

(a) (b) (c) (d) (e)

"True" branch

"False" branch

Unconditional branch

Figure 4.11: Different situations for generating a predicate for block D. In case (a), D’s

predicate is A’s predicate ANDed with the branch condition. In case (b) D’s predicate

could be the OR of A’s predicate and B’s predicate. However, if the CFG looks like (c),

D’s predicate should just be identical to E’s predicate. More complex patterns, like the

irreducible graph in (d) require more complex logic. Non-zero iteration distances, like the

edge from E to B in (e) make the logic more complex even for graphs that are structurally

simple.

predicate is a function of the predicates of its predecessor blocks and the branch conditions

on the edges between them.

We extend the notion of predicates to CFG edges by defining the predicate of an edge

to be the predicate of its source block logically ANDed with the condition under which that

block takes a branch along that edge. Edges whose source node has a single successor (i.e.

an unconditional branch) have a predicate that is identical to the source node.

Figure 4.11 illustrates different CFG shapes and their relationship to predicate genera-

tion. Blocks that have a single predecessor (a) are the simplest case; the block’s predicate is

exactly the edge predicate of the block’s single incoming edge. Blocks with multiple prede-

cessors (b-e) can use the logical OR of their incoming edge predicates, however, this strategy

97

makes more complex predicates than is necessary. For example in case (c), the predicate

for block D can simply be the same as block E. Irreducible CFG patterns, like case (d), and

non-zero iteration distances, like case (e) require more complex predicate logic.

We will look at case (e) more closely, since it involves non-zero iteration distances. The

predicate for block D in this case should be (PE ∧ ¬C) ∨ delay1(PE ∧ C). In English, this

means that block D’s predicate should be true whenever in the current iteration block E’s

predicate is true and condition C is false, or in the previous iteration block E’s predicate

was true and condition C was true.

The simplest correct method for generating predicates is that each block’s predicate

is the logical disjunction of its incoming edge predicates (delayed appropriately). In the

next section we show how to use the structure of the flow graph to generate more efficient

predicate logic. However, it is also possible to use conventional logic synthesis tools like

ESPRESSO[MSBSV93] to generate more efficient logic directly from the simple version.

We have not yet quantitatively evaluated how well such an approach would work.

4.3.5 Predicate optimization

Our method for computing predicates is illustrated in Figure 4.12. It is similar to existing

methods for if-conversion [CCF03], which in turn are based on the notion of control depen-

dence from the program dependence graph (PDG) literature. To calculate the predicate

for a CFG node x, we find its intra-iteration post-dominated region, the set {y|x pdom y}.

Intuitively, once one of the nodes in x’s post-dominated region executes, we can be sure

that x will execute in the current iteration.

The edges that cross from outside of x’s post-dominated region into the region determine

whether x will execute or not; these are called the control dependence edges for x. x’s

predicate is the logical OR of the predicates of the control dependence edges. However,

some of these might be inter-iteration edges. For these edges, x’s predicate does not depend

on the current edge predicate, but the value of the edge predicate from d iterations in the

past, where d is the iteration distance associated with the edge. We use delays to represent

these inter-iteration connections. Delays in the predicate logic must be initialized to false

98

0
0 0

E

1
A B D

Set of basic blocks
that E post-dominates
(intra-iteration)

0
0 2 0

CA CD

PE = PA∧CA ∨ delay(1,PB) ∨ delay(2,PD∧¬CD)

¬CD

¬CA

OR

OR AND

PA

CADel(1) Del(2)

PB AND

PD

CD

NOT

Figure 4.12: A piece of a control flow graph on the left, with the predicate logic for block

E represented as a formula and a data flow graph. Px means “predicate for block x”, Cx

means “branch condition for exiting block x”, and Del(N) means N -iteration delay.

to prevent spurious execution of predicated operations during the prologue.

The number of control dependence edges can be greater than two, which means that we

have to choose how to best perform OR reductions. Normally balanced trees are the best

approach to large reductions, but we found that it is most important to keep the critical

paths as short as possible. We use a linear chain of binary OR operations, where the two

least critical predicates are ORed together and the result ORed with the next most critical,

and so on.

As noted earlier, our current implementation does not have support for the feedback

from scheduling that is necessary to compute accurate criticality information. As an easily

computed estimate of criticality, we use the smallest number of iterations it can take to

get from the current block back to itself through a particular control dependence edge. For

each control dependence edge, we count the smallest total iteration distance on any cyclic

path backwards to the block for which we are generating a predicate. If there is no such

path, we consider the distance for that edge to be infinite. Criticality is taken to be the

inverse of this distance. This heuristic aims to keep latencies around the inner loops as low

as possible.

99

4.3.6 Select operations

In order to process a basic block we need to know what the latest producer operation is for

each variable that is live-in5 to the block. Blocks that have a single predecessor are easy

to handle: the definition for each variable is whatever it was at the end of the predecessor

block. Blocks with multiple predecessors require extra work, as illustrated in Figure 4.13.

For basic blocks with multiple predecessors, there can be multiple producer operations

for each variable. On each iteration the dynamic control flow determines which value should

be seen by consumer operations. As suggested in Figure 4.13, there are two options: predi-

cate the writes so that only one of them actually has an effect, or rename the variables and

explicitly select between them based on the condition. Predicated register updates have

been implemented in some VLIW architectures specifically to support this kind of transfor-

mation. However, even for conventional architectures this approach introduces performance

challenges related to register renaming [WWK+01], and massively parallel architectures

generally have no global register file at all. Therefore, we use explicit select operations in

enhanced loop flattening.

Explicit select operations are similar to phi operators in static single assignment (SSA)

compiler intermediate representations or “decoded multiplexors”[Bud03] in dynamic data-

flow style representations. The difference is that our select operations, like hardware mul-

tiplexors, have an explicit control input whose value determines which input should be

chosen.

The logic for inserting select operations is similar in some ways to predicate generation

logic. However, there are some important differences as well. Figure 4.14 shows some simple

cases of select logic generation. The most important difference between predicates and

selects is that in every iteration the predicate for a block must be true or false, according

to the control flow of the application and the chosen iteration distances. In contrast, in

iterations where some particular block does not execute, it does not matter what the inputs

to that block are. These don’t care cases make it allowable to only use condition C1 in

case (d). If the program follows the ¬C2 branch out of block A, it doesn’t matter what

5Live-in variables are those that are read before they are reassigned.

100

1 
2 
3 
4 
5 

if (a < b)
  x = a + b;
else
  x = b ‐ d;
e = x + y;

(a) (b)

c1 = a < b;
x = a + b;
x = b ‐ d;
e = x + y;

c1 = a < b;
(c1)  x = a + b;
(!c1) x = b ‐ d;
e = x + y;

(c)

c1 = a < b;
x1 = a + b;
x2 = b ‐ d;
x3 = c1 ? x1 : x2
e = x3 + y;

(d)

Figure 4.13: An illustration of the need for selects to control the flow of data in flattened

code. (a) is the original code where some variable is updated in different ways along different

control flow paths. Flattening results in code like (b) where both paths execute no matter

what the condition evaluates to. Clearly this code does not work properly, because the

second assignment to x always overwrites the first. To make the proper producer flow to

consumers after the control flow reconvergence, we can predicate the updates (c) or add

select operations and use static single assignment-style variable renaming (d).

the selects for block D do. Generating efficient select trees in more complex cases requires

careful analysis of these don’t care cases.

As we described for the predicates, it should be possible to use standard logic synthesis

tools to optimize a simple specification of a block’s select operations. The input to a block

for some variable x is a function of the block’s predecessors’ edge predicates and data

outputs for x. Figure 4.15 shows a truth table representation of the logic for a block with

three predecessors. The important fact for efficient select generation is that if all the edge

predicates are false, it does not matter which data value is selected.

Qualitatively, select optimization seems like a harder problem than predicate optimiza-

tion, though we have not quantitatively evaluated this intuition yet. In order to do well

on select logic generation, a logic synthesis tool would have to understand don’t cares. In

the following section we describe an approach to generating select logic that exploits the

structure of the control flow graph to generate good logic quickly. This approach does not

require a separate logic optimization step.

101

A
C2¬C2

A

D

C¬C
A B

D

A B

D

E
C¬C

B

D

E
C1¬C1

A B

D

E
C¬C

1

(a) (b) (c) (d) (e)

"True" branch

"False" branch

Unconditional
branch

T F

No selects defB

PA

defA

T F

defA

C

defB

T F

defA

C1

defB

T F

defB

PE ∧ ¬C

defA

Figure 4.14: Along the top are the same snippets of control flow graphs from Figure 4.11.

At the bottom are the selects that are required for block D variables that have different

definitions in D’s predecessor blocks. Case (b) illustrates the option of using a predecessor

block’s predicate as the control input for the selects. Case (c) shows that branch conditions,

which are usually simpler than predicates, can be used instead. Case (d) illustrates the role

of don’t care cases; if C1 and C2 are both false, block D’s execution predicate will be

false, so it does not matter which input D’s select operations choose. Case (e) hints at

the complexity that non-zero iteration distances add to select logic generation; this issue is

covered in more detail later.

EP1
T
F
F
*

EP2
F
T
F
*

EP3
F
F
T
*

Out

D1
D2
D3

Don't care

Figure 4.15: A truth table representation of the simple select function for some block with

three predecessors. The inputs to the function are the edge predicates along the three

incoming edges, and placeholders for the three different data inputs. The output is defined

to be one of the data inputs if one of the edge predicates is true and the others are false.

102

4.3.7 Select operation optimization

For acyclic reducible control flow graphs, efficient select logic generation is relatively simple.

At every merge point in the CFG there is a corresponding branch, and the condition for that

branch can be used to control the selects at the merge point. However, irreducible control

flow and non-zero iteration distances make the process more complicated. Our algorithm for

generating select trees for a particular basic block has two phases. First there is a backwards

flow analysis that identifies the branches that have some influence on which input should be

chosen. This analysis is intra-iteration; it stops at non-zero iteration distance CFG edges.

The next phase considers the inter-iteration edges that can reach the block for which we

are generating selects.

The algorithm for generating select operations for a consumer block labels CFG edges

during the first phase with one of two kinds of labels:

• Re, where R stands for “pRoducer”6 and e is a reference to one of consumer ’s incoming

edges. Re labels represent a direct input from one of consumer ’s predecessors.

• The other kind of label is B stands for “branch”, and it represents a choice between

multiple producers, based on some condition. The syntax is B(C, 〈e1, l1〉, . . ., 〈en, ln〉),

where C is a reference to a specific branch condition, ex is a reference to an edge and

lx is a label (Either R or B). The order of the edges matters in a B label. If C is a

two-way branch, the first edge is “then” and the second is “else”.

We will use these labels later as a schema or template for generating trees of select opera-

tions.

Algorithm for labeling all edges that can reach consumer :

1. Label each of consumer ’s direct incoming edges, e, with Re.

2. Visit the nodes that can reach consumer (intra-iteration) in reverse topological order.

For each node n

(a) let Sn be the set of edges that leave n and can reach consumer : {e | (source(e) =

n) ∧ (e reach consumer)}.

6We did not want to use P , to avoid confusion with predicates.

103

0

0

2 0

0
A

B D

E

0

Set of basic blocks
that can reach E
(intra-iteration)

3

F

XE = (Del(3,PF) ∨ Del(1,PG)) ?

 (Del(3,PF) ? (CA?XB:XD) : XD) :

 Del(1,XH)

defB defD
CA

T F
1

G

Del(3)

PF

T F

H

1

Del(1)

defH

OR

Del(1)

PG

F T

Figure 4.16: A piece of a control flow graph on the left, with the select logic for the incoming

value of variable X to block E represented as a formula and a data flow graph. P , C, and

Del have the same meaning as in Figure 4.12. Xy means the last definition of the variable

X in block y. The “?:” expressions have the same meaning they do in C/C++/Java.

(b) If all edges in Sn have the same label, label all of n’s incoming edges (intra- and

inter-iteration) with that label.

(c) If not all of the labels are the same, label all incoming edges with B(C, 〈e1, l1〉, . . .,

〈en, ln〉), where C is n’s branch condition (n must end in a branch to have multiple

outgoing edges), and the list of pairs are Sn, together with their respective labels.

�

After running this algorithm, all inter-iteration edges whose destination can reach con-

sumer will have a label. We now have to consider two cases: either all these inter-iteration

edge labels match or they do not. If all labels match we can generate a select tree for each

variable by following the label with this intra-iteration select algorithm:

Algorithm intra-iteration select (variable x, label l)

104

1. if l = Re and e is an intra-iteration edge,

return the last definition of x in e’s source block.

2. if l = Re and e is an inter-iteration edge,

return the last definition of x in e’s source block, delayed by the iteration distance

associated with e. These delays do not need to be initialized, because the value of the

output does not matter unless the predecessor block is actually executed in an earlier

iteration.

3. else l = B(C, 〈e1, l1〉, . . ., 〈en, ln〉),

build a select operation controlled by C with inputs determined by recursive invoca-

tions: intra-iteration select(x,l1), . . . intra-iteration select(x,ln). If C is a multi-way

branch, we decompose it into a chain of two-way selects, with the more critical inputs

nearer the output of the chain. If the target architecture directly supports multi-way

selection, that could be used as well. �

There is a relatively important optimization that we apply in step 3 of the intra-iteration

select algorithm. If all the definitions for x returned by the recursive calls to intra-iteration

select are the same, there is no need for a select operation at all. Optimizing away selects

with identical data inputs can be done as a later pass, but the number of unnecessary selects

that would be created can be quite high, bloating the size of the intermediate representation.

Inter-iteration select control

Now we consider the general case where after running the labeling algorithm there are N

inter-iteration edges that can reach the block and have different labels. We run the intra-

iteration algorithm on each of the labels and then we need an additional layer of select

operations to choose between these N options.

We use a heuristic for inter-iteration select logic generation that is illustrated in Figure

4.17. Like the predicate logic OR chains, we compute an estimate of the criticality of each

of the paths, then make a chain of selects with the most critical select “closest” to the

consumer and the least critical select “farthest”. Select trees can be further optimized with

more detailed criticality information, but that is beyond the scope of this dissertation.

105

t1

t2

t3 t4

OR

OR

exec4

exec3

exec2
F T

F T

F T

defH

defD

OR

PF

PG
F T

F T

Intra-iter
tree

defB defD

Figure 4.17: On the left is a generic select chain for the inter-iteration part of data flow

control. “tn” represents the mux tree generated from intra-iteration select label “ln”. t1 is

the most critical; t4 the least. execn is an expression that represents a predecessor block

executing in an earlier iteration. Notice that the most critical “exec” is not part of the logic

at all. On the right is a concrete example derived from Figure 4.16.

To control the select chain, we need some expression that represents a particular edge

executing; we will call this exece. exece can be the the edge predicate, but as we will see

below it can also be some other predicate that is true on a superset of the iterations on

which the edge predicate is true. The least critical select operation is controlled by exece

for the least critical edge; if exece is true, select along the least critical path, if it is false,

select along the next-least critical path. The next select in the chain is controlled by the

OR of the two least critical exece expressions, and so on.

This organization has the important benefit that exece for the most critical edge is not

part of the logic at all. Imagine a simple nested loop where the inner loop has two incoming

edges: the loop-back and the external entry. The select operations for the inner loop can be

controlled by the expression that represents that the loop is starting, so that they do not

directly depend on the loop completion logic for the inner loop itself.

Now that we have a structure for the inter-iteration select logic, we need to choose how

to implement the exece expressions; the simplest correct way to do so is to directly use the

edge predicate for e. This strategy is somewhat inefficient, because again there are many

don’t care cases to be exploited in select logic generation.

106

For each edge for which we need to compute an exece, consider the set of nodes that

dominate its source node. The predicate for any of these dominators might be a good

replacement for the edge’s predicate, because we know that a dominator’s predicate will

be true on all iterations that the edge’s predicate is true. The only problem is that the

dominator might also reach one of the other inter-iteration edges that reaches consumer.

So, for each edge we get its dominator set as well as the set of nodes that can reach all

the other edges’ sources. We subtract the reaching set from the dominator set and choose

the highest (in the dominator tree sense) node that remains and use its predicate as exece

for that edge. If there are no dominators left after the subtraction, we must use the edge’s

predicate. Whichever predicate we choose, we must then delay it by whatever the edge’s

iteration distance is.

4.3.8 Scheduling, placement and routing

After flattening is complete, the resulting loop can be scheduled by conventional software

pipelining algorithms. Note that there is nothing special about the predicate and select

operations; they should get scheduled and have their outputs pipelined, just like any other

operations.

For applications with non-trivial loop nesting, the predicate logic and select trees created

by our flattening method can be sufficiently complex that we expect targeting conventional

processors would not work very well. In particular a large number of predicate values have

to be maintained and pipelined. This would create severe register pressure and would be

an inefficient use of wide registers for Boolean values. In [MHM+95] the authors observe a

similar problem with predication, and propose architectural features to address the problem.

Our current target architectures are FPGA-like in the sense that they have large amounts

of compute resources compared to conventional VLIWs, support deep pipelining of data

values well, and support Boolean computation efficiently. Because these architectures are

spatial, our back-end must perform not only the scheduling and resource allocation of con-

ventional software pipelining, but also temporospatial placement and routing, like that

described in [MVV+02, FCVE+09].

107

4.3.9 Complete enhanced loop flattening algorithm

Enhanced Loop Flattening(input cfg)

• Use profiling information and/or scheduling feedback to assign iteration distances to

edges in cfg . For now we use the heuristic that all back-edges and edges that enter or

leave a loop are assigned iteration distance 1; all others are assigned 0.

• Visit each basic block, bb, in intra-iteration topological order (that is, all intra-iteration

predecessors of a block will be visited before that block.)

– Create a predicate, Pbb, for bb:

∗ Find PD, the set of cfg nodes that bb intra-iteration post-dominates.

∗ Let EC be the set of edges whose destination is in PD and whose source is

not in PD.

∗ Sort EC by the criticality of the predicate associated with each edge.

∗ Make a linear chain of binary OR operations with the predicates from EC

as the inputs, where the most critical predicate is closest to the final output

and the least critical is farthest. For inter-iteration edges, insert a delay

operation with the delay parameter set to the iteration distance on the edge.

– Create a select schema for bb. The procedure for building a select schema is

described in Section 4.3.7, and is too complex to repeat here.

– For each variable x

∗ Build a select tree for x based on the schema. If at any point both data

inputs to a select are the same, eliminate the select.

∗ Add an entry to bb’s input symbol table for variable x.

– Do an SSA-style translation of the (straight-line) code in bb into DFG operations,

predicating side-effecting operations with Pbb.

– Update the symbol table associated with each of bb’s outgoing edges to the final

symbol table from this block’s translation.

108

Application Abbr.

2D convolution conv

CORDIC cord

Dense matrix multiplication mm

Event detection ed

Finite impulse response (few coefficients) firs

Finite impulse response (many coefficients) firl

K-means clustering km

Matched filter mf

Motion estimation for video compression me

Smith-Waterman sw

Figure 4.18: Benchmarks used in our evaluation of enhanced loop flattening.

4.4 Evaluation

In the context of C-like languages for parallel accelerators, the most important advantage of

enhanced loop flattening over plain software pipelining is that it works on applications that

have more complex control flow. Existing systems for translating from sequential languages

to highly fine-grained parallel architectures, like Impulse-C [PT05] and StreamC/KernelC

[KRD+03] force the programmer to settle for inner-loop-only pipelining (ILOP) or do the

flattening transformations by hand, which is hard to get right and results in messy, unmain-

tainable code.

To quantify the benefits of enhanced loop flattening, we compare the run times of a set of

benchmarks compiled with enhanced loop flattening in a number of different experimental

configurations. The benchmark applications we used are listed in Figure 4.18. Three of the

applications (cordic, firs, and ed) have only a single loop, so there is no difference between

enhanced loop flattening and conventional software pipelining. Thus, we do not report

results for these applications.

Our target architecture is a simulated accelerator with 200 ALUs arranged in clusters

109

B D EA F

back edges

inner loop edges

outer loop edges

entry edges exit edges
Entry

All
All
All
Inner
Inner
Inner
None
None
None

Exit

All
Inner
None
All
Inner
None
All
Inner
None

Abbr.

A-A
A-I
A-N
I-A
I-I
I-N
N-A
N-I
N-N

Figure 4.19: The family of static iteration distance heuristics utilize the loop structure of

the program. Particular heuristics in the family put different iteration distances on edges

based on whether they are entry or exit edges, and whether they are entering/exiting an

inner or outer loop. For example, the “AN” version would put extra iteration distance on

edges A-B and B-D, but not D-E and E-F.

with a grid interconnect, like that described in [VWC+09].

All results are normalized to the ILOP implementation. We implement ILOP in our

infrastructure by adding extra scheduling constraints that prevent the overlap of operations

from different blocks, except the overlap of inner loop operations with each other. We

then add enough iteration distance on outer loop connections to cover the latency of those

blocks. This effectively prevents epilogue and prologue overlapping, except for inner loops.

The other point of comparison is conventional loop flattening, which we call greedy because

blocks are scheduled in the earliest possible iteration of the flattened loop.

Enhanced loop flattening provides a flexible framework for setting iteration distances,

but leaves open exactly what those distances should be. We implemented and evaluated a

family of heuristics for setting iteration distances based on the loop structure of the program.

We use the algorithm from [SGL96] to identify the CFG nodes that participate in all loops,

including arbitrary nesting of reducible and irreducible loops. Here we mean loop in the

programming language sense, not the graph theoretic sense, so a simple diamond-shaped

(or hammock-shaped) CFG with a back-edge from the bottom to the top is a single loop,

not two.

110

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

dmm
conv

sw mf me km firl GM

Sp
ee

du
p

re
la

tiv
e

to
 in

ne
r-l

oo
p-

on
ly Inner

Greedy
Heuristic-A
Optimistic

Figure 4.20: Normalized speedups for a suite of applications compiled with enhanced loop

flattening. The baseline is inner-loop only pipelining (ILOP). “Greedy” is conventional

loop flattening with non-zero iteration distances on back edges only. “Heuristic-A” is our

enhanced loop flattening with an iteration distance of 1 on all loop entry and exit edges.

“Optimistic” is a bound on how well the iteration distances can be selected. “GM” is

geometric mean.

By default, control flow edges are intra-iteration (have iteration distance zero). Once

we have identified the loops, we give all all back-edges iteration distance one. Back-edges

can be identified in the conventional way with a depth-first traversal of the nodes in each

loop. After this, different members of the heuristic family assign one to different additional

edges. Figure 4.19 illustrates the different kinds of edges. In this setup, we can choose to

increase the distance on all loop entry edges, only inner loop entry edges or no loop entry

edges. We have the same set of choices for loop exit edges. If we choose to add distance to

no entry or exit edges, we are back to the greedy loop flattening case.

Figure 4.20 shows the results for the 7 benchmarks that have more than a single loop in

the kernel. The “Heuristic-A” bars show the runtimes when the iteration distances are set

to one on all loop entry and exit edges (“A-A” from Figure 4.19). We see that the greedy

flattening is almost always worse than ILOP. The enhanced loop flattened implementations

with our simple heuristic for setting iteration distances are all at least as fast as ILOP, and

some are substantially faster.

111

Greedy loop flattening performs poorly because the low iteration distances cause the

minimum initiation intervals to be higher than the minima for just the inner loops. Table

4.1 shows the performance data broken up into initiation interval and trip count. High

initiation intervals have a very negative impact on performance because they cause every

iteration of the loop to take more time than is necessary.

The heuristic enhanced loop flattening performs much better than greedy flattening,

even though the trip counts are somewhat higher, because the initiation intervals are much

lower. The “Optimistic” bars in Figure 4.20 show the speedups we would see if we could

get the lower trip counts of greedy flattening and the lower IIs of enhanced flattening at

the same time. This represents an optimistic bound on the performance improvement that

could not be exceeded by choosing better iteration distances.

The application characteristics that determine the effectiveness of enhanced loop flat-

tening relative to ILOP are the latency of the inner loop(s) and the trip counts of the inner

loops. Enhanced loop flattening allows useful work to be done during the fill and drain pe-

riods of the inner loops; the latency determines how long each fill/drain period is, and the

lower the trip counts of the inner loops, the less steady-state execution there is to amortize

the fill/drain inefficiency over.

In our benchmark set, dense matrix multiplication (dmm) shows very little performance

difference between enhanced loop flattening and ILOP. The reason for this is that we

use a SUMMA-style algorithm where the inner loop is essentially many parallel multiply-

accumulate loops. This means that the latency of the inner loop is very low and the benefit

of pipelining around the outer loops is small as a consequence. At the other extreme, our

banked FIR filter implementation (firl) shows a large performance difference, because there

is a very long-latency chain of additions in the inner loop.

As a final note on the inner loop only experiments, we believe that our method is quite

optimistic about the performance in the ILOP case. Depending on how the outer loop

code is compiled and what the target architecture is, there might be significant additional

overhead associated with entering and leaving inner loops.

Table 4.1 shows the performance results broken up into initiation interval and trip count.

We also include data for enhanced loop flattening with the iteration distance heuristic set

112

App Initiation Interval Trip Count Speedup

ILOP Grdy. I-I A-A Grdy. I-I A-A Grdy. I-I A-A

mm 4 2.0 1 1 0.99 1.00 1.00 0.51 1.00 1.00

conv 3 1.67 1.33 1 0.85 0.93 0.93 0.70 0.81 1.08

sw 5 1.6 1 1 0.80 0.83 0.83 0.78 1.20 1.20

mf 3 3.0 1 1 0.56 0.74 0.79 0.60 1.35 1.27

me 4 3.0 1 1 0.52 0.69 0.74 0.64 1.45 1.35

km 4 2.0 1 1 0.57 0.65 0.65 0.88 1.54 1.54

firl 3 1.67 1 1 0.26 0.37 0.37 2.30 2.70 2.70

GM 1.66 1.03 1 0.71 0.79 0.80 0.80 1.34 1.37

Table 4.1: Performance data broken up into initiation interval and trip count. The first

data column shows IIs for ILOP in units of clock cycles. All other data are normalized to

the ILOP case. In addition to the greedy and heuristic with non-zero iteration distances

on all entries and exits (A-A), we also show results for the static heuristic with non-zero

iteration distances on only the inner loop entries and exits (I-I).

to add distance to entry and exit edges for only the inner loops (I-I). The first column shows

the natural initiation intervals of the inner loops of the applications, and the rest of the

data is all normalized to the ILOP values. As shown in the Trip Count section of the table,

adding more iteration distance (A-A vs. I-I) increases the trip counts slightly. The A-A

configuration achieves a slightly higher average performance than I-I because there is one

application that is not able to get back down to the minimum II in the I-I configuration.

Our final experiments examined the value of the more sophisticated dominator-based

inter-iteration select control mechanism described at the end of Section 4.3.7 compared to

directly using the edge predicate of the inter-iteration edge. This optimization has no effect

on trip count and only a small effect on the latency of critical feedback loops. The effect was

only large enough to actually reduce the II in a very few cases, so we looked at a different

quality metric that is a more precise measure of the “slack” in the inter-iteration feedback

paths. For every operation that participates in a feedback path we compute how much

additional latency that operation would need to have in order to make it II-critical (i.e.

113

App A-A A-I I-I A-N N-N

mm 1.040 1.026 1.049 1.0 1.0

conv 1.071 1.100 0.4347 1.0 1.0

sw 1.034 1.034 1.034 1.035 1.016

me 1.0 1.0 1.001 1.003 1.0

km 1.124 1.041 1.100 1.114 1.015

firl 1.0 1.0 1.0 1.0 1.0

GM 1.044 1.033 0.896 1.025 1.005

Table 4.2: Ratio of the average slack in inter-iteration feedback paths when the more sophis-

ticated dominator-based method was used over the simpler direct predecessor method. The

columns represent different iteration distance insertion heuristics, as described in Figure

4.19. The dominators method generally results in slightly greater slack. The only exception

is conv in the “I-I” case, where the dominator method actually achieved a lower initiation

interval (3 vs. 4).

any more latency would cause the minimum RecII to increase). We use the table method

from [Rau94b] to compute these numbers. We found that using the dominator-based select

logic led to noticeably higher average slack, which means that those implementations were

fractionally closer to achieving a lower II.

Table 4.2 shows the slack data for our benchmark set. The difference between using

the dominator method versus directly using the inter-iteration edge’s predicate is not huge.

However, it can only improve performance, and we believe that in applications with more

complex control flow and iteration distances it may have a larger impact.

4.5 Discussion

Loop flattening and its acyclic cousin if-conversion share an important performance chal-

lenge, which is that all operations execute on every iteration, whether their results are used

7The slack in this case is much lower because the application compiled with a lower initiation interval
when using the dominator-based select logic.

114

or discarded. In loop nests with lots of infrequently executed operations, this can lead to a

lot of wasted execution resources. In the future we plan to address this problem by explor-

ing ways that operations that are guaranteed to never execute in the same iteration of the

flattened loop can share physical resources. This problem was addressed in the acyclic case

by the authors of [SMDL03] (who mostly ignored spatial distribution issues). We believe

that extending those results to incorporate spatial distribution and iteration distances is an

interesting and tractable challenge.

To facilitate this sharing between operations that execute in mutually exclusive condi-

tions, we build a control dependence graph (CDG)[CFS90], which keeps track of the condi-

tions under which each part of the DFG should actually execute. We are also considering a

modified CDG that represents iteration distances between different branches. This extended

CDG should support sharing of resources between, for example, operations in different inner

loops in the same loop nest.

Another approach to avoid executing unnecessary operations is “reverse if-conversion”

or “control flow regeneration” [WHSB92, WMHR93, MJ02]. The idea is that after schedul-

ing, true control flow can be used instead of predication to control execution and data flow.

The problem with this approach is that pipelined scheduling does not respect basic block

boundaries, and operations from different branches get spread out in time, which makes

the control flow much more complex. The additional control flow complexity grows ex-

ponentially with the depth of pipelining, which makes this approach inefficient for most

applications.

4.5.1 Unbalanced diamonds

As suggested earlier, enhanced loop flattening offers an elegant solution to the classic unbal-

anced diamond control flow problem, where one side of a conditional statement is “fast” and

executed frequently, and one side is “slow” and executed infrequently. With conventional

if-conversion followed by software pipelining, the compiler is forced to choose an initiation

interval high enough to accommodate execution of the slow branch in consecutive itera-

tions. With enhanced loop flattening, we can increase the iteration distance on the slow

115

E3

A

DB

E

A1

D1B1

E1

A4

D4B4

E4

A2

D2B2

E2

A3

D3B3

3

3

3

3

E3

A1

D1B1

E1

A4

D4 B4

E4

A2

D2 B2

E2

A3

D3 B3

E3

E1

A4

B4

B2

E2

A3

B3

A2

12

A1

B1

E4

A'

D' B'

E'
E3

E1

A4

B4

B2

E2

A3

B3

A2

3

1

1

1
3

1

(a) (b) (c) (d)

Hot path

Cold path

A1

B1

E4

D'

E3

E1

A4

B4

B2

E2

A3

B3

A2

1

(e)

3

Figure 4.21: Trace scheduling in the enhanced loop flattening framework. (a) is an inner

loop with one internal conditional branch. For this example we will assume that B executes

much more frequently than D, and D has some operations that create a long latency feedback

path. In order to increase parallelism we unroll the loop to get the CFG in (b). For reasons

explained in the main text, the trace version (c) can be more efficient than (b). (d) shows

the idea of “rerolling” the cold path to avoid unnecessary code duplication. (e) is another

variation that has the interesting property that the set of dynamic iterations executed by a

particular static copy of the hot path depends on the dynamic control flow. In all the other

variations, B2, for example, will always execute iterations 2, 6, 10, . . .

116

side, which will increase the number of iterations it takes to follow that path, but reduce

the II.

Figure 4.21 gives an example of the flexibility that the enhanced loop flattening frame-

work provides. In part (a) is a CFG for a simple loop with an unbalanced “if” (B is the

fast, frequently executed block). First we unroll the loop by a factor of 4 (b) to increase

the available parallelism. We have also increased the iteration distance along the A-D edges

to improve the II. Adding the iteration distance creates an interesting new problem: if all

the A-D iteration distances were 0, the predicate for E4 would be exactly the same as the

predicate for A1. However, with the higher iteration distances, the predicate for A2 depends

on the branch out of A1, the predicate for A3 depends on the branch out of A2, and so

on. This chain of dependencies significantly complicates the predicate logic in a way that

is very likely to be on the critical path. Adding the iteration distances solves one problem,

but creates more complex predicate logic.

We can use the idea of trace scheduling [Fis81] to get the more efficient implementation

in (c). As long as the branches all go in the B direction, execution stays on the hot path and

there is no reconvergence from the cold path. Within the cold path itself we do not need

extra iteration distance for each D block, just one large distance where the cold path rejoins

the hot path. Reconvergence in the control flow graph of paths with different iteration

distances create complex predicate and select logic, and the trace implementation (c) has

fewer such reconvergence points than the implementation in (b).

Parts (d) and (e) show further possible optimizations of the control flow for this loop.

In (d) we show “re-rolling” the cold path,8 which can help save instruction memory. For

the re-rolled implementation to work correctly, the compiler would have to add a counter

variable that would be set differently by A1, A2, A3, and A4. If the unrolled copies of the

loop body are truly identical, we can use the cold path short-cut in (e).

We have not fully implemented these trace-based CFG optimizations. The reason for

describing them here is to give a sense for the kinds of optimizations that enhanced loop

flattening makes easier. The CFGs in (c), (d), and (e) are irreducible, but that is not prob-

8Loop re-rolling is a code transformation that is exactly the reverse of loop unrolling. The term is used
in the compiler community, but the transformation is not as widely used as unrolling.

117

lematic for enhanced loop flattening. Also, in working on a preliminary implementation of

trace-based optimization, we found that the predicate and select logic increased in complex-

ity somewhat. An efficient implementation would need to use detailed criticality feedback

from the scheduler and more sophisticated logic minimization algorithms.

4.6 Summary

In this chapter we presented enhanced loop flattening a compiler framework for software

pipelining nested loops with arbitrarily complex static control flow. The ability to overlap

epilogues and prologues seamlessly around inner and outer loops is most beneficial when

the pipelining is very deep9 and the trip counts of the inner loops are not extremely high.

Enhanced loop flattening provides a flexible mechanism for increasing the iteration distance

along specific control paths, which can be used to balance the competing performance factors

of trip count and initiation interval of the flattened loop.

In order to avoid unnecessary inter-iteration feedback paths, we proposed algorithms for

predicate and select operation generation that use “intra-iteration” variants of the classic

flow graph relations reachability, dominance and post-dominance and heuristics for mini-

mizing inner loop latencies. Our implementation and the experiments we performed with

it showed that even for relatively simple loop nests, pipelining the flattened loop has a

better combination of trip count and initiation interval than inner loop only pipelining. We

also showed that greedy loop flattening–with non-zero iteration distances on back edges

only–creates long inter-iteration data flow feedback paths. Increasing iteration distances on

less frequently executed control paths can improve performance by decreasing the initiation

interval.

Automatic software pipelining is a necessary optimization for C-like language compil-

ers for accelerators. Existing compilers support pipelining only loops that fit restrictive

patterns. Most commonly, inner loop only pipelining is supported, which leads to badly

suboptimal performance for applications that relatively long chains of dependent operations

and relatively low inner loop trip counts. For such applications it is currently common for

9Deep pipelining can be seen as a large number of iterations overlapped in the steady state, or a high
ratio of the latency of an iteration to the initiation interval.

118

programmers to hand-optimize their code to achieve roughly the same effect as enhanced

loop flattening. Such hand optimizations obscure the main logic of the application and are

hard to maintain. With enhanced loop flattening, programmers can use a natural coding

style and get the performance benefit of pipelining around all kinds of control flow.

119

Chapter 5

A SHORT SURVEY OF TUNING

Tuning is the process of adapting a program to a particular target architecture or class

of target architectures. Automatic and semi-automatic tuning has been a topic of interest in

the high performance computing community for many years, and tuning for embedded sys-

tems and even general purpose processors has been growing in importance recently. In fact,

according to [CDG+06], the gap between peak performance and what is typically achieved

by conventional compiler optimization has widened, not shrunk, as the technological arms

race between architects and compiler writers has progressed over the last few decades.

For parallel coprocessor accelerators tuning is at least as important as it is for conven-

tional processors. Accelerators have explicitly managed resources, like distributed memories

and non-uniform local networks, that applications must use well to achieve good perfor-

mance. Accelerators present the additional challenge for automatic tuning that there are

relatively few graceful fallback mechanisms built into the architectures. If a particular con-

figuration of a program needs to use more local memory than is available, the program will

simply fail to compile or run properly. Thus, tuning for accelerators combines searching for

high values of a quality function while satisfying a number of resource constraints, whereas

conventional approaches to tuning focus on just the quality function. Quality-only methods

can be adapted by giving a default “very bad” quality to configurations that violate some

constraint. However, as we will see in the next chapter, this strategy does not produce good

results.

Chapter 6 presents a new probability-based method for tuning applications with a more

sophisticated treatment of constraints. To put that work in perspective, this chapter is

a survey of existing approaches to automatic and semi-automatic tuning. Automatically

adapting programs to architectures in a way that maximizes performance is a challenging

problem that has inspired a diverse set of solutions.

120

5.0.1 Tuning and portability

Auto-tuning is useful for getting a particular application to perform well on a particular

machine. A related but distinct concern is portability, and specifically performance porta-

bility : it is hugely valuable to be able to recompile/retune a source program to an efficient

implementation on a new architecture with minimal additional engineering effort. Perfor-

mance portability not only allows programmers to target a wider set of architectures more

easily, it also frees system designers to innovate without requiring laborious porting of a

large set of applications.

One of the important differences between C and less abstract languages is that a program

developed in C on machine X should be a simple recompile away from running reasonably

well on machine Y, as long as the program is written in a portable style. Not only do general

purpose C programs work correctly when recompiled on different machines, but they also

generally perform well even if the architectures in question have very different resources.

This kind of performance portability is an important part of the meaning of C-level.

Even in the world of C and conventional processors achieving performance portabil-

ity has become more challenging as architectures have become more complex. Tuning of

performance-critical libraries, like linear algebra routines and fast Fourier transforms, has

become important. The architectural challenges that motivate work like this are more

pronounced for accelerators and large parallel machines.

5.0.2 Outline

The two extremes of the tuning space are fully manual tuning, where the programmer explic-

itly encodes a particular tuning configuration into the source program, and fully automatic

one-shot compilation, where the compiler uses some predictive models of performance to

make tuning decisions. Fully manual tuning has the drawback of requiring huge human

effort. Fully automatic compilation has been shown to produce badly suboptimal code in

a number of contexts. The systems covered in this survey aim to strike a better balance

between the extremes: less effort than fully manual and better performance than fully

automatic. They can be distinguished based on how the following questions are answered:

121

• What is being tuned?

– A specific library designed explicitly for being tuned

– A broad class of programs

– Not specific programs at all, but rather the compiler infrastructure itself

• How is the space of possible configurations defined?

– An engineer explicitly defines the space of configurations

– The configuration space is hard-coded into the system

– The space is inferred by the tuning system

• How is the space of possible configurations explored?

– Predictive models.

– General heuristic searching (exhaustive, binary search, genetic, . . .)

– Domain-specific hybrid.

5.1 Background

Conventional optimizing compilers transform programs with the intension of improving the

“quality” of the program, by some metric like execution time or energy consumed. They

use models to estimate whether a particular transformation will improve the quality of a

program or reduce it. However, modern architectures are so complex and unpredictable that

creating precise models is challenging. As a consequence, conventional compilers produce

code that is badly suboptimal in many contexts.

The failure of conventional compilers motivated investigation of a wide range of empirical

approaches to compilation. The unifying idea behind empirical optimization is that we can

get information about hard-to-model characteristics of a program running on an architecture

by simply running it and seeing what happens. Typically, empirical compilers try running

several variations of a program to see which works best. Empirical compilers and tuners do

not necessarily discard the kinds of models used by conventional compilers, but rather use

empirical feedback as additional input used to make optimization decisions.

The primary advantage that empirical approaches have is that they can use concrete

performance information that is unavailable to conventional compilers. The primary disad-

122

vantage is that compilation can take a substantially longer time. Secondary disadvantages

are that the compilation infrastructure is more complicated in some cases, and it is harder

to know why an empirical compiler produces good or bad results, and thus how to improve

it.

5.1.1 Complexity and unpredictability

Tuning is important because modern computers are complex and unpredictable. Most main-

stream modern architectures include features like caches, branch predictors and out-of-order

execution that make the runtime performance characteristics of a program less predictable.

For tuning systems an important question is whether to treat architectures as complex but

predictable, in which case more sophisticated models could accurately predict performance,

or so unpredictable that only rough estimates of the performance of a configuration can

be made before it is tested. The distinction between complexity and unpredictability is

not black and white. For example, caches can be treated as totally unpredictable, making

the latency of any given memory reference unknown, within some range. However, if the

characteristics of a particular cache are known, models can be built which transform the un-

predictability into complexity. In general, the harder it is to build a model of some feature,

the more likely it is that empirical optimization will have some advantage over model-based

optimization.

Many processors found in embedded systems, like DSPs (Digital Signal Processors), are

more predictable but also more complex than conventional processors. DSPs tend to use

less aggressive prediction and speculation, and expose more byzantine micro-architectural

detail, like partitioned register files and local explicitly managed scratchpad memories.

Multiprocessors, which have recently moved into commodity computers and promise to

offer greater degrees of parallelism as circuit technologies continue to scale, introduce sig-

nificant new sources of complexity and unpredictability. For example, dynamically routed

networks make the communication latency between processors depend on the communica-

tion patterns of all the processors sharing the network, and shared caches make the memory

latencies experienced by a given processor dependent on the memory access patterns and

123

timing of other processors.

5.1.2 Transformations

Now we take a look at the kinds of techniques that compilers and tuners can use to deal with

the complexity and unpredictability of modern computers. The program transformations

made by optimizing compilers can be placed in three categories:

• Necessary transformations

• Classical optimizations

• Restructuring optimizations

Necessary transformations are tasks like instruction selection, register allocation, and

instruction scheduling that essentially all modern compilers perform in some way. Classi-

cal optimizations, like dead code elimination and common subexpression elimination, are

usually relatively local in scope, almost always have a positive impact on the quality of

the code produced, and rarely have unpredictable negative side-effects. Restructuring op-

timizations include loop transformations like unrolling, strip-mining, blocking, interchange

and software pipelining. A simple example, taken from [BGS94], is presented in Figure 5.1.

Restructuring optimizations can dramatically improve the performance of programs, but

can also have a negative impact, for example by increasing the code size or creating bad

cache effects. Many restructuring optimizations take some extra parameter(s), such as the

unrolling factor for loop unrolling. Optimizations with parameters increase the size of the

search space much more than optimizations that are simply on or off.

All the existing work described in this chapter takes as a baseline a compiler that does at

least a reasonably good job with the necessary transformations and classical optimizations.

Some of the work focuses more on using empirical feedback to do a better job with these

transformations, and some focusses on enabling or enhancing more dramatic restructuring

optimizations.

124

do i=2, n-1
a[i] = a[i] + a[i-1] * a[i+1]

end do

do i=2, n-2, 2
a[i] = a[i] + a[i-1] * a[i+1]
a[i+1] = a[i+1] + a[i] * a[i+2]

end do

if (mod(n-2,2) = 1) then
a[n-1] = a[n-1] + a[n-2] * a[n]

end if

1

do i=2, n-1
a[i] = a[i] + a[i-1] * a[i+1]

end do

do i=2, n-2, 2
a[i] = a[i] + a[i-1] * a[i+1]
a[i+1] = a[i+1] + a[i] * a[i+2]

end do

if (mod(n-2,2) = 1) then
a[n-1] = a[n-1] + a[n-2] * a[n]

end if

1

Figure 5.1: Simple loop unrolling example (in Fortran) taken from [BGS94]. The loop on

the right does twice as much work per iteration and has half as many iterations. Unrolling

is a program transformation that can have both positive and negative effects on program

performance, depending on the program, the degree of unrolling, and the target architecture.

5.2 Improving mostly conventional compilers

The first family of compilers we will consider use empirical feedback to improve the quality

of all or nearly all programs for a particular target architecture. There are three sub-

families that we will look at, in roughly increasing order of complexity: profiling compilers,

empirically tuned compilers and empirical restructuring compilers. The fact that these

compilers can improve the quality of a wide range of programs with relatively little change

in the programming environment is clearly very attractive. The main shortcoming of this

approach, relative to the library approach described in the next section, is that the program

quality improvements achieved are modest—on the order of tens of percent, as opposed to

more than a factor of two.

5.2.1 Profiling compilers

Profiling compilers [CMmWH91, CBM+93] are the simplest of the compilers that use em-

pirical feedback, and are also the most widely used. The usage flow of profiling compilers

is:

1. Compile source in profiling mode to produce a version of the program that will gather

and save statistics as it runs.

2. Run the generated program on one or more representative input data sets.

125

3. Compile again with the gathered statistics as an extra input, to produce a final com-

piled program.

The two most useful pieces of profile information most compilers use are the execution

frequency of various paths, and data dependence information that is either impossible to

know or difficult to discover without runtime information (for example, whether two pointers

are expected to alias).

Profiling compilers typically use profile data to tune necessary transformations and clas-

sical optimizations, but not restructuring transformations. A single compile-run cycle of a

program generally does not provide enough information to prune the enormous search space

of possible program restructurings substantially. Of course, profiling compilers can still use

primarily model-based approaches for restructuring.

The performance improvement achieved in one of the most heavily cited works on en-

hancing conventional compiler optimizations with profile information ([CMmWH91]) on a

broad suite of C benchmarks was 15% on average. These results clearly demonstrate the

strengths and weaknesses of profiling compilers: they require relatively little change in

programming environment, relatively little extra compilation time and can be applied to

essentially all existing programs, but achieve only modest performance gains.

5.2.2 Empirically tuned compilers

The second group of compilers we will consider do not empirically adjust to particular

programs, but use extensive empirical feedback to tune the compiler itself [CSS99, CST02,

KZM+03, KHH+04]. This tuning can be used to make the compiler simply better for all

programs, or to tune it to particular application domains.

All mainstream compilers attempt to heuristically find good solutions to problems

for which finding optimal solutions is intractable, like register allocation and instruction

scheduling. These heuristics can be quite complex, and ideally combine information about

both the program being compiled and the target architecture in sophisticated ways.

Stephenson, et al. [SAMO03, Ste06] have developed a method, based on machine learn-

ing, to tune compiler heuristics automatically to particular systems. Many heuristics use

126

(a) (b) (c) (d)

exec_ratio

num_ops 4.0

+

*

total_ops 2.3 predictability 4.1

-

* /

-

* exec_ratio

total_ops 2.3

+

exec_ratio +

num_branches 1.2

Figure 1: GP Genomes. Part (a) and (b) show examples of GP genomes. Part (c) provides an example of a random
crossover of the genomes in (a) and (b). Part (d) shows a mutation of the genome in part (a).

Compile and run each expression

gens < LIMIT?

Probabilistically select expressions

Crossover and mutation

gens = gens + 1

No

End

Yes

Create initial population

gens = 0

Figure 2: Flow of genetic programming. Genetic pro-
gramming (GP) initially creates a population of expres-
sions. Each expression is then assigned a fitness, which
is a measure of how well it satisfies the end goal. In
our case, fitness is proportional to the execution time of
the compiled application(s). Until some user-defined cap
on the number of generations is reached, the algorithm
probabilistically chooses the best expressions for mat-
ing and continues. To guard against stagnation, some
expressions undergo mutation.

Like other evolutionary algorithms, GP is loosely pat-
terned on Darwinian evolution. GP maintains a popula-
tion of parse trees [13]. In our case, each parse tree is an
expression that represents a priority function. As with natu-
ral selection, expressions are chosen for reproduction (called
crossover) according to their level of fitness. Expressions
that best solve the problem are most likely to have progeny.
The algorithm also randomly mutates some expressions to
innovate a possibly stagnant population.

Figure 2 shows the general flow of genetic programming in
the context of our system. The algorithm begins by creat-
ing a population of initial expressions. The baseline heuris-
tic over which we try to improve is included in the initial
population; the remainder of the initial expressions are ran-
domly generated. The algorithm then determines each ex-

pression’s level of fitness. In our case, compilers that pro-
duce the fastest code are fittest. Once the algorithm reaches
a user-defined limit on the number of generations, the pro-
cess stops; otherwise, the algorithm proceeds by probabilis-
tically choosing the best expressions for mating. Some of the
offspring undergo mutation, and the algorithm continues.

Unlike other evolutionary algorithms, which use fixed-
length binary genomes, GP’s expressions are variable in
length and free-form. Figure 1 provides several examples
of genetic programming genomes (expressions). Variable-
length genomes do not artificially constrain evolution by
setting a maximum genome size. However, without special
consideration, genomes grow exponentially during crossover
and mutation.

Our system rewards parsimony by selecting the smaller
of two otherwise equally fit expressions [13]. Parsimonious
expressions are aligned with our philosophy of using GP as
a tool for compiler writers and architects to identify impor-
tant heuristic features and the relationships among them.
Without enforcing parsimony, expressions quickly become
unintelligible.

In Figure 1, part (c) provides an example of crossover,
the method by which two expressions reproduce. Here the
two expressions in (a) and (b) produce offspring. Crossover
works by selecting a random node in each parent, and then
swapping the subtrees rooted at those nodes1. In theory,
crossover works by propagating ‘good’ subexpressions. Good
subexpressions increase an expression’s fitness.

Because GP favors fit expressions, expressions with favor-
able building blocks are more likely selected for crossover,
further disseminating the blocks. Our system uses tourna-
ment selection to choose expressions for crossover. Tourna-
ment selection chooses N expressions at random from the
population and selects the one with the highest fitness [13].
N is referred to as the tournament size. Small values of
N reduce selection pressure; expressions are only compared
against the other N − 1 expressions in the tournament.

Finally, part (d) shows a mutated version of the expression
in (a). Here, a randomly generated expression supplants a
randomly chosen node in the expression. For details on the
mutation operators we implemented, see [2].

1
Selection algorithms must use caution when selecting random tree nodes. If

we consider a full binary tree, then leaf nodes comprise over 50% of the tree.
Thus, a naive selection algorithm will choose leaf nodes over half of the time.
We employ depth-fair crossover, which equally weighs each level of the tree [12].

79

Figure 5.2: Example functions for use in compiler heuristics. These kinds of functions are

used by compilers to make decisions about register allocation and code layout for branch

optimization. Graphic borrowed from [SAMO03], which proposes a genetic approach to

optimization, as suggested by the mixture of (a) and (b) to produce (c). (black = from

example formula (a); white = from example formula (b); gray = a “mutation” from neither

formula.)

simple mathematical combinations of several pieces of data to make decisions. For exam-

ple, when a register allocation algorithm is deciding which variable to spill to memory, it

might combine the number of times each variable is accessed and the size of each variable’s

live range to come up with a metric for which is the “best” variable to spill. There is a

considerable amount of art and black magic involved in tuning these heuristic functions.

Furthermore, it is extremely hard to know how close a particular function is to optimal,

and thus whether it is even worthwhile to spend more programmer effort on optimizing it.

“Meta optimization” injects a measure of science and engineering into the process of

tuning compiler heuristics. During the optimization process, the compiler randomly selects

heuristic functions of the form seen in Figure 5.2. The functions can use any of the pieces

of information about the program or the architecture that the compiler collects. It then

compiles and runs some set of benchmarks and collects performance data. The heuristic

functions are then randomly recombined, with pieces of functions that lead to high perfor-

mance getting higher priority than functions that lead to low performance.

The amount of time needed to tune a compiler is very large, because several iterations

are needed to find good heuristic functions, and for each iteration the system needs to

127

compile and run a whole suite of benchmarks. However, this optimization process need

only be done once per installation of a compiler,1 so there is little per-compilation overhead

compared to compilers that use empirical feedback for every program that they compile.

The speedups achieved by a meta optimized compiler compared to a conventional opti-

mizing compiler are non-trivial, but modest: typically in the low tens of percent [SAMO03].

An important caveat to consider with meta optimization is the risk of over-training. When

a compiler is trained on a relatively homogenous suite of benchmarks, the resulting heuris-

tic functions can actually be worse than the baseline conventional hand-tuned functions on

programs outside the training set.

In summary, meta optimization appears to be a good method for optimizing complex

heuristic functions. However, because the compiler is expected to work well on all or a large

class of applications, it is unlikely that it will achieve the high performance of compilers

that tune individual programs. Of course, the two techniques can be used together. In

fact, meta-optimization can be applied not just to compilers, but to any program that uses

complex heuristic functions.

5.2.3 Restructuring compilers with empirical feedback

A rich body of work on restructuring optimizations has grown over several decades (for

example, [BGS94]). Applying a particular transformation at a particular program point is

usually not hard. The major challenge faced by restructuring compilers is deciding where

and with what parameters to apply restructuring optimizations. Conventional restructuring

compilers use predictive models to estimate the impact of applying an optimization, but they

do not validate these predictions by actually running the program. Because these models

are inevitably not perfectly accurate, restructuring compilers tend to apply optimizations

relatively conservatively in order to avoid having a large negative impact on the performance

of the generated code.

Figure 5.3 illustrates the basic flow of restructuring compilers with empirical feedback.

Empirical restructuring compilers offer enormous promise: in principle, they are capable of

1The optimization effort can be amortized across many identical (or sufficiently similar) systems, if a
method for distributing the configured compiler is available.

128

Figure 6. Overview of the iterative compilation/optimisation framework

Figure 7. Speedup due to high-level transformation over the most
aggressive native compiler optimisation for the TigerSHARC.

ties of the individual transformations are updated based on the suc-
cess (i.e. execution time) of the sequence as a whole. Transforma-
tions contributing to better performance are rewarded while those
resulting in performance losses are penalised. Thus, future sample
points are more likely to include previously successful transforma-
tions more frequently and search their neighbourhood more inten-
sively.
Standard PBIL allows for random mutation within the proba-

bility vector, but we discard this as we do not wish to incur the
overhead. Finally we do not generate a population based on a prob-
ability vector, but just one candidate. Depending on its success we
update the probability vector accordingly.
The high learning rate, lack of mutation and a single candidate

per generation means that we strongly focus the search based on
feedback results.

5. Experimental Evaluation

In this section we present and analyse the empirical results we
gained with our tool. All results are found after running the search
algorithm for 500 evaluations corresponding two about 2-6 hours
search.

5.1 Processors and Compilers

We have evaluated our adaptive optimisation scheme against three
different processors representing different aspects of the embedded
computing domain. Among the three embedded processors are a
high-performance floating-point digital signal processor (Analog
Devices TigerSHARC TS-101), a multimedia processor (Philips
TriMedia TM-1100) and an embedded processor derived from a
popular general-purpose processor architecture (Intel Celeron 400).
As native compilers we used Analog Devices’ VisualDSP++ 3.5

for the TigerSHARC v7.0.1.5, Philips’ TriMedia v1.1y Software
Development Environment (SDE v5.3.4) for the TriMedia, and
both Intel’s ICC 8.0 and the GNU GCC 3.3.3 for the Celeron. The
highest optimisation settings were used on the native compilers and
execution times were measured using hardware cycle counters.
The optimisation methodology and transformation toolkit are

highly portable and have been ported within few hours to eight
distinct embedded processor architectures. However, as the time of
writing our experimental data for these additional platforms is not
yet available.

5.2 Benchmarks

We have chosen the UTDSP [15, 19] benchmark suite to evaluate
our technique. This set of benchmarks contains compute-intensive
DSP kernels as well as applications composed of more complex
algorithms and data structures. The details are shown in figure 5.
Many of the programs are available in up to four coding styles (ex-
plicit vs pointer-based array references, plain vs source-level soft-
ware pipelined). Some of the benchmarks are excluded from this
study. This is due to the incompatibility between the differing inter-
pretations of acceptable C syntax/semantic between SUIF and the
native compilers. The TigerSHARC in particular is much stricter
than SUIF in terms of the C accepted. Also some of the bench-
marks are focused on bit manipulation which causes problems due

82

Figure 5.3: Empirical optimizing compiler flow. With minor variations, most program

auto-tuning systems have a similar flow. Graphic borrowed from [FOTF05]. Automatic

updating of the transformation database, as suggested by the bidirectional arrow suggests,

is an uncommon feature of empirical compilers.

taking simple, unoptimized source code and automatically searching through the space of

restructuring optimizations to find a high performance implementation. The major problem

that empirical restructuring compilers have to contend with is long compile times. Typical

restructuring compilers have many tens of (parameterized) optimizations that can be applied

on their own or in combination at any of hundreds or thousands of program points. Clearly,

the space of possible combinations of optimizations to try on a reasonably sized program is

prohibitively large to search exhaustively.

In the last ten years, many efforts have been made to build an empirical restructur-

ing compiler that uses a reasonable amount of compile time [FOK02, TVVA03, FCOT05,

CGH+05, FOTF05, PE06, DCF+07]. The most impressive speedup results were reported in

[FOTF05], and are reproduced in Figure 5.4. The authors used two independent strategies

for pruning the enormous search space of possible optimizations. One strategy is completely

random; it simply selects some arbitrary combination of optimizations at arbitrary program

points and evaluates the quality of the result. The other strategy uses PBIL (Population-

129

Figure 8. Speedup due to high-level transformation over the most
aggressive native compiler optimisation for the TriMedia.

to conflicting endianness. This issue has been fixed recently, how-
ever, data is not yet available.

5.3 Results

As stated in section 4, all speedups are with respect to the best per-
forming original program giving a true evaluation of our approach.
Thus, the best original execution time of the four possible versions
of each program was selected for speedup comparison using the
highest optimisation level selected on the native compiler.

5.3.1 Platform Based Evaluation

Figures 7, 10, 11 and 8 show the performance improvements
achieved by our approach across processors and benchmarks. All
the platforms benefited from the iterative search. The TigerSHARC
had an average speedup of 1.73, the TriMedia 1.43, the Celeron
with GCC 1.54 and with ICC 2.14 giving an overall average of
1.71. This overall figure demonstrates the importance of high-level
optimisation. In other words, using a platform independent ap-
proach we are able to reduce execution time on average by 41%,
outperforming any other approach.
Examining the TigerSHARC results (see figure 7) more closely

we see there is much variation. Surprisingly, the matrix multiplica-
tion routines can be improved by almost a factor of 7 by completely
flattening the code. As this is such a well known routine, one would
have thought that the baseline compiler would do well here.
The iterative scheme performs less well on the very small data

sizes of FIR and IIR, unlike the other processors. It also is unable
to improve the performance of the G721 encoder, a problem shared
by all of the processors.
A different picture emerges when considering the Celeron pro-

cessor with GCC (see figure 10) where the speedups are less vari-
able. In direct contrast to the TigerSHARC, large performance
gains are achieved on the small data sized IIR program. Good re-
sults are also found for the compression and edge detection appli-
cations. Like the TigerSHARC, little performance was gained on
the G721 encoder.
The largest performance gains were achieved with the ICC

compiler on the Celeron. This in itself is a surprising result given
that it is the most mature compiler here and therefore should have
proved difficult to improve upon. Like the TigerSHARC it performs
well on the large matrix multiplication and the small FFT and
poorly on the G721 encoder. However, it performs well on the
small IIR like GCC and shares similar performance gains on edge
detection and V.32 encoder. We will compare the two compilers

Figure 9. Program speedup averaged across all platforms over the
most aggressive native compiler optimisation.

GCC and ICC for the Celeron in more detail below (see section
5.3.3).
The TriMedia has the lowest average speedup of 1.43 and like

the TigerSHARC has an uneven distribution of results with the
large FFT achieving a speedup of almost 5. Once again it performs
poorly on the G721 encoder, but unlike other platforms it performs
poorly on the V.32 decoder and compress benchmarks.

5.3.2 Benchmark Orientated Evaluation

If we examine the average performance improvement across the
benchmarks as shown in figure 9, we see that only three of them
fail to achieve an average speedup of 1.25. LATNRM benefits from
loop unrolling. However, due to cross-iteration dependences the
native compilers instruction scheduler cannot take full advantage
of the enlarged loop body. LMSFIR suffers from a coding style
that introduces frequent conditional branches to the innermost loop.
Similarly, G721 is limited in its transformation potential by many
conditional branches between tiny basic blocks.
Surprisingly in four out of six cases high-level iterative search

is able to speed up programs to a greater extent for small rather
than large data sizes. This is counterintuitive as many of the re-
structuring transformations only have any noticeable effect when
dealing with large amounts of data and computation. Examining
the output code, it seems that in several cases the iterative search
has completely unrolled or flattened certain sections of code turn-
ing loops into large basic blocks and act as an enabler of baseline
compiler optimisation. This is the reason for the large speedup of
matrix multiplication on the TigerSHARC.

5.3.3 GCC vs ICC

Using two compilers on one platform gives an insight in to their
effect on performance. As expected, overall the ICC compiler out-
performs GCC and is approximately 1.22 times faster on average.
However, on applying high-level transformations on top of GCC,
we see an improvement on average of 1.54, outperforming ICC
on its own. This means that an automatic platform-independent
approach can use simple compilers as a baseline and outperform
hand-crafted optimisers based on many person years work. Fur-
thermore, it allows vendors to put less effort into their compiler
reducing the time to market of their product, while giving higher
performance.
The diagram also shows that applying transformations to ICC

gives a speedup of more than 2.5 relative to GCC alone. This also

83

Figure 5.4: Aggressively optimizing compilers that use empirical feedback to tune particular

programs can achieve impressive performance advantages compared to conventional compil-

ers. The main disadvantage of this approach is very long compile times. Graphic borrowed

from [FOTF05].

Based Incremental Learning) [Bal94], which combines elements of genetic algorithms and

machine learning. The two search strategies have complementary strengths and weaknesses,

though it is not clear from the paper whether the good optimizations found by the random

search are used to inform the PBIL search.

The work in [FOTF05] has two important shortcomings. Even though the search strate-

gies used explored only a small fraction of the total space of potential optimizations, compile

times are still very long. Compilation of simple programs (in some cases, about 100 lines)

can take hours. Also, the suite of benchmarks used includes programs that range from

relatively simple to trivial. It is not clear how well this approach to compilation will scale

to more complex programs.

Other compilers in this family tend to take more draconian approaches to pruning the

search space. As a result, compile times tend to be shorter, but average performance

improvement over conventional optimizing compilers is also more modest–typically in the

low to mid tens of percent.

Aggressively applying empirical optimization strategies to a broad class of unoptimized

130

applications remains a fertile area of research, and it seems likely that some of the techniques

used by these compilers will see wider usage. One particularly interesting avenue is pursued

in [FCOT05]. The authors attempt to decrease the compile times needed for iterative

compilation by, in some sense, blending empirical and model-based approaches. Using

machine learning techniques and a relatively small number of actual compiled program runs,

they dynamically build models that can predict the performance of untested configurations

of a program. Their results are still preliminary, but this approach may lead to more

practical iterative compilers. However, given the enormous search space that seems to be

inherent in this approach there are still substantial challenges that these generic compilers

must address in order to achieve the impressive speedups with reasonable compile times

demonstrated by the more restricted auto-tuners covered in the next section.

5.3 The auto-tuner approach

Auto-tuners are not compilers in the usual sense, but either compilers that take a highly con-

strained DSL (Domain-Specific Language) as input or library generators that are designed

to generate code with a predefined interface. Auto-tuners can use the extreme constraints

on their inputs to restrict the space of implementations through which they search. Auto-

tuners either generate or have programmed-in highly parameterized versions of algorithms.

At installation time they search through the space of valid parameter values to find con-

figurations that produce high quality results on a particular platform. In most cases, these

parameters control the extent to which the loop transformations described in Section 5.1.2,

and associated array transformations, are applied.

5.3.1 Linear algebra

Linear algebra operations, such as matrix multiplication, are central to a wide range of

scientific and engineering algorithms. Two of the most popular linear algebra libraries are

BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage).

ATLAS (Automatically Tuned Linear Algebra Software) [WPD01] is an implementation

of BLAS and parts of LAPACK that is automatically tuned to a particular platform at

installation time. Using analysis and extensive experience, the designers of ATLAS built

131

!"#$#%&'(&)*#&#+%&,#(-.)&/0&1#,0/,2"+3&)*#&0/../$"+3&(#4-#+5#&/0&

5/%#&),'+(0/,2')"/+(&/+&)*#&*"3*6.#!#.&5/%#&"+&7"3-,#&89&

• !"#$%&'%(%') *+'+,-:&;*#&()'+%',%&'11,/'5*&)/&#<1./")"+3&%')'&

,#-(#& "+& .//1(& (-5*& '(& 2'),"<& 2-.)"1."5')"/+& "(&)/&)".#& =/,&

>./5?@&)*#& .//1(& "+&)*#& .//1& +#()& ABC9& D+& #00#5)E&)*#&2'),"<&

2-.)"1."5')"/+& "(& 5/+!#,)#%&)/& '& (#4-#+5#& /0& (2'..#,&2'),"<&

2-.)"1."5')"/+(&$*/(#&$/,?"+3&(#)(&0")& "+&)*#&5'5*#9&F'5*&/0&

)*#& (2'..&2'),"<&2-.)"1."5')"/+(&2-.)"1."#(& '+&./<0/& (->6

2'),"<& /0&G& >H& '&0/<1/& (->62'),"<& /0&I& '+%& '55-2-.')#(&

)*#&,#(-.)&"+&'&./<1/&(->62'),"<&/0&!9&D+&)*"(&1'1#,E&$#&5'..&

)*#(#& /1#,')"/+(&2+,+&...39&G;JGK&)".#(& /+.H& 0/,&)*#&JB&

%')'&5'5*#E&'+%&")&-(#(&/+.H&(4-',#&)".#(&=1/4./40/56&;*#&

5/%#& 0/,& '&2"+"6LLL& "(& (*/$+& "+& 7"3-,#& ME& '((-2"+3&)*#&

NDO&.//1&/,%#,9

 for (int j = 0; j < NB; j++)
 for (int i = 0; i < NB; i++)
 for (int k = 0; k < NB; k++)
 C[i][j] += A[i][k] * B[k][j]

!"#$%&'()'*"+",***'-./&'

;*#&!'.-#&/0&1/&"(&'+&/1)"2"P')"/+&1','2#)#,9&Q*//("+3&)//&

.',3#&/,&)//&(2'..&'&!'.-#&/0&RI&"+5,#'(#(&)*#&JB&5'5*#&2"((&

,')"/&'+%&.#'%(&)/&"+#00"5"#+)&5'5*#&-)"."P')"/+9&

• 7%-+3*%8&'%(%') *+'+,-:& ;*#& 5/%#& 0/,&)*#& 2"+"6LLL& "+&)*#&

1,#!"/-(&()#1&"(&")(#.0&)".#%&)/&2'?#�#5)"!#&-(#&/0&)*#&3#+6

#,'.61-,1/(#&,#3"()#,(9&F'5*&/0&)*#&(2'..#,&2'),"<&2-.)"1."5'6

)"/+(&2-.)"1."#(&'&.9<:& (->62'),"<&/0&G&$")*&'&:<19& (->6

2'),"<& /0& I& '+%& '55-2-.')#(&)*#& ,#(-.)& "+& '&.9<19& (->6

2'),"<&/0&!9& D+&)*"(&1'1#,E&$#&5'..&)*#(#&2+#8;&...39&;*#&

.//1(&/0&'&2"5,/6LLL&',#&-+,/..#%&5/21.#)#.H&)/&1,/%-5#&'&

(),'"3*)6."+#&5/%#&(#32#+)9&

;*#&1(#-%/65/%#&0/,&'&2"+"6LLL&'0)#,& ,#3"()#,6.#!#.&)"."+3&

'+%& -+,/.."+3& /0&)*#&2"5,/6LLL& "(& (*/$+& "+& 7"3-,#& S9& D+&

)*"(&5/%#E&$#&'((-2#& 0/,& ("21."5")H&)*')&)*#&#.#2#+)(& "+&)*#&

GE& IE& '+%& Q&)".#(&)/-5*#%& "+&)*#& 2"+"6LLL& ',#& "+%#<#%&

()',)"+3& ')& =TE& T@9&G& 1"5)/,"'.& !"#$&/0&)*"(& 5/%#& "(& (*/$+& "+&

7"3-,#&U9&;*#& (*'%#%& ,#3"/+(& "+&)*"(& 0"3-,#& 5/,,#(1/+%&)/&'&

2"5,/6LLL9&

for (int j = 0; j < NB; j += NU)
 for (int i = 0; i < NB; i += MU)
 load C[i..i+MU-1, j..j+NU-1] into registers
 for (int k = 0; k < NB; k++)
 load A[i..i+MU-1,k] into registers
 load B[k,j..j+NU-1] into registers
 multiply A’s and B’s and add to C’s
 store C[i..i+MU-1, j..j+NU-1]

!"#$%&'0)'*"+",***'1./&'234&%'5&#"64&%,7&8&7'9"7"+#&

G0)#,& ,#3"()#,6.#!#.&)"."+3E&)*#&?& .//1& "+&7"3-,#&S& "(&-+,/..#%&

5/21.#)#.H&"0&1/&"(&(2'..&#+/-3*9&V)*#,$"(#E&)*"(&.//1&"(&-+6

,/..#%&>H&'&0'5)/,&/0&099&W+,/.."+3&)/3#)*#,&$")*&(5*#%-."+3&

/0&/1#,')"/+(E&'(&%#(5,">#%& "+&)*#&+#<)& ()#1E&3"!#(&)*#�#5)&

/0&(/0)$',#61"1#."+"+3&)*#&"++#,2/()&.//1&/0&)*#&2"+"6LLL9&

;*#&!'.-#(&/0&.9E&19E&'+%&09&',#&/1)"2"P')"/+&1','2#)#,(9&

D0&.9&'+%&19&',#&)//&(2'..E&,#3"()#,(&',#&+/)&0-..H&-)"."P#%E&

>-)& "0&)*#H& ',#&)//& .',3#E&)*#& 5/21".#,& 2'H& 3#+#,')#& 2'+H&

(1"..(&)/& 2#2/,H9& W+,/.."+3& >H& 09& ,#%-5#(& .//1& 5/+),/.&

/!#,*#'%E& >-)&)//& 2-5*& -+,/.."+3& 5'+& .#'%&)/& "+(),-5)"/+&

5'5*#&/!#,0./$E&$*"5*&,#%-5#(&1#,0/,2'+5#9&

!

"!

"
!

$

%

&
'

"'

%

'

!"#$%&':;'<"-4.%"27'="&>'.3'1./&'"+'!"#$%&'0'

• <#$%=>'+,-?&;*#&>/%H&/0&)*#&"++#,2/()&.//1&)*')&,#(-.)(&0,/2&

)*#&1,#!"/-(&()#1&"(&(),'"3*)6."+#&5/%#&)*')&5/+)'"+(&09&5/16

"#(&/0&)*#&2"5,/6LLL&5/%#X&#'5*&5/1H&*'(&.9Y19&2-.)"6

1.H6'%%&/1#,')"/+(&'+%&)*#&5/,,#(1/+%"+3&.9& ./'%(&0,/2&G&

'+%&19& ./'%(& 0,/2&I9&;*#&/1#,')"/+(& "+&)*#& .//1&>/%H&5'+&

>#& %"!"%#%& "+)/&)$/& 3,/-1(:& #;2@>*"*+;,& '+%&2%2;8A& "#&

#%33%39&

Z#& 0",()& 0/5-(&/+&)*#& (5*#%-."+3&/0&)*#&5/21-)')"/+&/1#,'6

)"/+(& "+&)*#& .//1& >/%HE& '((-2"+3&)*')&)*#& '11,/1,"')#& ./'%(&

'!#&>##+&%/+#9&D0&)#&LLK#',5*&,/-)"+#&"+&G;JGK&%#)#5)(&

)*')&)*#& 1,/5#((/,& *'(& '& 5/2>"+#%&2-.)"1.H6'%%& "+(),-5)"/+&

=)*')& "(E&)*#&1','2#)#,&.>'B==& "(&),-#@E&)*#&5/%#&3#+#,')"/+&

2/%-.#&3#+#,')#(&5/%#&)*')& "+5,#'(#(&)*#& ."?#."*//%&)*')&)*#&

Q&5/21".#,&$"..&-(#(&)*')&"+(),-5)"/+9&Z#&5/+0"+#&/-,&%"(5-(6

("/+&)/&)*#&2/,#&5/21."5')#%&5'(#&$*#+&(-5*&'+&"+(),-5)"/+&

"(&+/)&'!'".'>.#9&D+&)*"(&5'(#E&#'5*&2-.)"1.H&"+(),-5)"/+&$,")#(&

")(&,#(-.)&)/&'&)#21/,',H&,#3"()#,E&$*"5*&"(&,#'%&>H&)*#&5/,,#6

(1/+%"+3&'%%&"+(),-5)"/+9&&

7/,& #00"5"#+)& 1"1#."+"+3E& ")& "(& %#(",'>.#&)*')& '&2-.)"1."5')"/+&

"+(),-5)"/+& '+%& ")(& 5/,,#(1/+%"+3& '%%")"/+& "+(),-5)"/+& >#&

(#1',')#%& >H& "+%#1#+%#+)& "+(),-5)"/+(9& ;/& '55/21."(*&)*"(E&

"+(),-5)"/+&(5*#%-."+3&5/+("%#,(&(#1',')#.H&)*#&.9C19)2-.6

)"1.H&"+(),-5)"/+(&=LBL8[L.9Y19@&'+%&)*#&.9C19&'%%&"+6

(),-5)"/+(&=GBG8[G.9Y19@&"+&'&("+3.#&2"5,/6LLL9&D)&"+)#,6

.#'!#(&)*#&)$/&."()(&'0)#,&(?#$"+3&)*#2&>H&D"*%,#AE&'&1','2#6

)#,& ,#.')#%&)/& 7\& 2-.)"1."#,& .')#+5HE&)/& 1,/%-5#& '& (5*#%-.#&

."?#&)*"(:&

LB&

L8&

&[&

LD"*%,#A)

GB&
LD"*%,#A]B&

G8&
LD"*%,#A]8&

[&

L.9Y196B&

G.9Y196D"*%,#A)
L.9Y19)

G.9Y196D"*%,#AE:)
G.9Y196D"*%,#AEF)
[)

G.9Y19&

65

Figure 5.5: Blocked matrix multiplication with some of the parameters used by ATLAS to

define a particular implementation. Graphic borrowed from [YLR+03].

highly parametric versions of the BLAS and LAPACK routines, the most important of which

is matrix-matrix multiplication (Figure 5.5). Most of the parameters determine the degree

to which various loop transformations, like unrolling and blocking, will be applied. Some

of the parameters relate to simpler architectural features, like whether fused multiply-adds

are supported.

The original implementation of ATLAS uses a pseudo-global, “orthogonal line” empirical

search. At installation time, the system runs a set of micro-benchmarks designed to discover

properties of the system, like memory hierarchy structure. These properties are used to

directly determine some of the simpler parameters. The more complex parameters are put

in a priority order by the ATLAS developers. One by one, the values for the parameters

are determined by compiling the library with every possible value of the parameter and

choosing the value that leads to the best performance. Standard reference values are used

for the parameters that have not yet been empirically determined.

This method for choosing parameter values takes a relatively long time, but it is still

132

!"#$ %&'()**)(%+&$,")'#$ -)&$.#$ /%0%/#/$ %&(+$ 1+23$,)3('4$!"#$ 1%3'($

,)3(5$!"#"$#%&'()*$+%&"(,*-*."#"-/5$ ()6#'$ 789:;8$ *+&<#3$ %&$

=+/#*5$ >)%&*?$.#-)2'#$ +1$ ("#$ @)?$ ("#$ -+/#$ %'$ +3<)&%A#/4$!"#$

+3%<%&)*$ 0#3'%+&$ +1$B!CBD$ /#(#-('$ ("#$ -)-"#$ '%A#$)'$,)3($ +1$ ("#$

#>,%3%-)*$'#)3-"$@"%*#$=+/#*$,#31+3>'$("%'$()'6$%&$("%'$,)3(4$!"#$

'#-+&/$,)3(5$ 0/#%.*#%&'(12#%.%3*#%4&(,*-*."#"-/5$ %'$ @"#3#$

B!CBD$,#31+3>'$ ("#$ #>,%3%-)*$ '#)3-"4$ E&$=+/#*5$ ("%'$,)3($ ()6#'$

)*>+'($ &+$ (%>#$.#-)2'#$ &+$ '#)3-"$ %'$,#31+3>#/4$!"#$ 1%&)*$ (@+$

,)3('$+1$ ("#$ %&'()**)(%+&$,")'#$<#)(#$ ("#$1%&)*$'+23-#5$)&/$("#&$

-+>,%*#$ %($ (+$>)6#$ ("#$ *%.3)3?4$F233#&(*?5$@#$<#)(#$>+3#$0#39

'%+&'$ +1$ ("#$ -*#)&92,$ -+/#$ G1+3$ >2*(%,*?%&<$.+2&/)3?$ '2.9

>)(3%-#'H$ (")&$ B!CBD$ /+#'5$ '+$ ("#3#$)3#$>%&+3$ /%11#3#&-#'$.#9

(@##&$B!CBD$)&/$=+/#*$ %&$ ("#$ (%>#$ ("#?$ ()6#$ (+$#I#-2(#$ ("#'#$

(@+$,)3('4$J%<23#K,3#'#&('$("%'$.3#)6/+@&$+1$%&'()**)(%+&$(%>#'4$

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

(!!!

)!!!

*!!!

"!!!!

+,-./0123 +,-.45671 +89./0123 +89.45671 -9071./0123 -9071.45671

!"
#
$
%&
'
(

:707;0.42;<=97.>2?2@707?3 AB0=@=C7.444 ,797?207.D=921.E567 F8=16.G=H?2?I
$

!"#$%&'()'*+,-.//.-"0+'1"2&'

56767(12#%.%3*#%4&(,*-*."#"-(8*9:"/(
!).*#L)&/$!).*#$M$'"+@$("#$0)*2#'$+1$("#$+,(%>%A)(%+&$,)3)>#9

(#3'$ (")($)3#$ /#(#3>%&#/$.?$ B!CBD$)&/$.?$=+/#*$ 3#',#-(%0#*?4$

!"#$,)3)>#(#3$ 0)*2#'$ /#(#3>%&#/$.?$ ("#$ (@+$ '?'(#>'$)3#$ 0#3?$

'%>%*)3$+&$ ("#$ E&(#*$)&/$DNE$>)-"%&#'4$O&$("#$D2&5$ (%*#$'%A#$)&/$

PQ$0)*2#'$)3#$ '%<&%1%-)&(*?$/%11#3#&(5$.2($+("#3$,)3)>#(#3$0)*2#'$

)3#$-*+'#4$!"#$ %>,)-($+1$ ("#'#$/%11#3#&-#'$@%**$.#$/%'-2''#/$ *)(#3$

%&$("%'$,),#34$

1.3/&'4)'51657'8,-"2.-&9':.%.2&-&%,'

5%;<"=

-&;-$%&'

1"/&'7">&'

F+,?RS+&9F+,?$

?+%0//''

=QRSQRPQ$

!&-;<''

JRERS$

6.-&+;@'

7A*' 7MR7M$ MRMR7M$ TRUR:$ L$

7$+' MV$RMV URLRMV$ TRLRU$ U$

*+-&/' MTRMT$;R:RMT$ TRLR:$ M$

1.3/&'B)'C09&/'8,-"2.-&9':.%.2&-&%,'

5%;<"=

-&;-$%&'

1"/&'7">&'

F+,?RS+&9F+,?$

?+%0//''

=QRSQRPQ$

!&-;<''

JRERS$

6.-&+;@'

7A*' 7;RMU$ MRMR7;$:R;R;$ 7$

7$+' VV$RKV MRMRVV$:R;R;$ M$

*+-&/' M;RLW$;R:RM;$:R;R;$ L$

D)E' F02G.%",0+'0H':&%H0%2.+;&'
E&$("%'$'#-(%+&5$@#$-+>,)3#$("#$#I#-2(%+&$(%>#'$+1$.+("$("#$>%&%9

===$3+2(%&#'$ G!).*#UH)'$@#**$)'$-+>,*#(#$===$1+3$0)3%+2'$

>)(3%I$'%A#'$GJ%<23#$V5$J%<23#W)&/$J%<23#$:TH4$

56;67()%&%<)))(,"-=4-.*&$"(

!).*#U'"+@'$(")($+&$.+("$ ("#DNE)&/$E&(#*$>)-"%&#'5$("#$,#39

1+3>)&-#$+1$("#$-+/#'$<#)(#/$.?$("#$(@+$),,3+)-"#'$%'$'%>%*)34$

O&$("#$D2&5$("#3#$%'$3+2<"*?$)$;T8$/%11#3#&-#$%&$,#31+3>)&-#4$

1.3/&'D)'C"+"=CCC':&%H0%2.+;&'F02G.%",0+'

5%;<"-&;-$%& 51657'

G=JCOXDH$

C09&/'

G=JCOXDH$

I"HH&%&+;&'

G8H$

7A*' MUK$ MUL$:$

7$+' :;VK$:TU;$;T$

*+-&/' LWM$ LVM$:$

56;6;()))(,"-=4-.*&$"(

S#I(5$@#$-+>,)3#$("#$,#31+3>)&-#$+1$-+>,*#(#$===$2'%&<Y$

• >%&%9==='$<#)(#/$.?$B!CBD$G@%("$#>,%3%-)*$'#)3-"H5$

• >%&%9==='$<#)(#/$.?$=+/#*5$

• ")&/9(2&#/$ZCBD$3+2(%&#'5$)&/$

• "%<"9*#0#*$ >)(3%I$ >2*(%,*%-)(%+&$ -+>,%*#/$ 2'%&<$ ("#$ >+'($

,+@#312*$+,(%>%A)(%+&'$)0)%*).*#$%&$("#$&)(%0#$-+>,%*#34$

[#$-+>,)3#$,#31+3>)&-#$1+3$'\2)3#$>)(3%-#'$+1$'%A#$:TT$(+$UTTT4$

O&DNE)&/$D2&5$.+("$B!CBD$)&/$=+/#*$2'#$("#$&+&9-+,?$0#39

'%+&'$ +1$>%&%9===$ 1+3$>2*(%,*?%&<$ *)3<#$>)(3%-#'4$!"#'#$ /)()9

,+%&('$)3#$'"+@&$)'$:&=%99">$>)36#3'$+&$("#$,*+('4$

!

"!!

#!!

$!!

%!!

&!!

'!!

! "!!! #!!! $!!! %!!! &!!!

)*+!",%-".$

)
/
0
1
2
-

D((/JG/+ 45671 FG/+

$

!

!K&

"

"K&

#

#K&

$

$K&

%

%K&

&

! "!!! #!!! $!!! %!!! &!!!

)*!+",%-".$

3
0
4
%)
"'
'
$
'
%&
4
"5
5"
6
7
'
(

45671 /JG/+

.

'

!"#$%&'J)'CCC':&%H0%2.+;&'F02G.%",0+'0+'7A*'

71

(a) SGI

!"# $%&# '()#*+,%-"&.# $%&# /&0$# 1&2342*&2# -0# $%&# "+$-5ʦ'# 9-:

/2+2;<#!"#$%&#*+$2-=#0->&0#?&#$&0$&@.#A4@&9#-0#+9?+;0#?-$%-"#BC#

43# 8D78'# -"# 1&2342*+",&<# E42# *+$2-=# 0->&0# 9+2F&2# $%+"# GHHH.#

A4@&9# 4I$1&2342*0#8D78'#/;# 24IF%9;#JHC.#/I$#/4$%#+2&#*I,%#

094?&2# $%+"# 678'<# E42# $%&0&# *+$2-=# 0->&0.# /4$%# 8D78'# +"@#

A4@&9# @&,-@&# $4#I0&# $%&#"4":,41;#5&20-4".# +"@# $%-0# ,+I0&0#D76#

*-00&0# $4#F4#I1.#+0#,+"#/&# 0&&"# -"#E-FI2&#K<#8D78'#3-"@0#+# $-9&#

0->+#LG.#?%-,%#-0#+904#$%�->+#$%&#D76#4"#$%&#'()#*+,%-"&<#

D%&#*4@&9#12&@-,$0#+#$-9�->+#GM.#04#-$#2&NI-2&0#3&?&2#D76#&":

$2-&0.#+"@#$%I0#1&2342*0#/&$$&2<#D%&0&#&=1&2-*&"$0#@&*4"0$2+$&#$%&#

?&99:O"4?"#3+,$# $%+$# 342# 9+2F&#@+$+#0->&0.#D76#&33&,$0#,+"#/&#-*:

142$+"$<#

!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

&$!!

&%!!

! &!!! "!!! '!!! #!!! (!!!

!"#$%&'(%)*

!
+
,
-
.
(

)*+,-./0 12314 5*6/. 7314

!

"#$%&'!()!***!+'&,-&./01'!2-.3/-0!-0!5%0!

!"#$%&#'I".#$%&#/&0$#1&2342*&2#-0#+F+-"#$%&#"+$-5ʦ'#9-/2+2;<#

D%&#,4@&0#F&"&2+$&@#/;#8D78'#+"@#/;#A4@&9#+2&#/&$?&&"#BMC#

+"@#MHC#094?&2#$%+"#$%ʦ'<#8D78':F&"&2+$&@#,4@&2342*0#

+/4I$#BHC#/&$$&2#$%+"#A4@&9:F&"&2+$&@#,4@Ŗ#*+$2-=#0->&0#9&00#

$%+"#JHHH<#

80#4"#$%$%&2#*+,%-"&0.#$%&#"+$-5ʦ'#9-/2+2;#1&2342*0#/&0$#

4"# $%&# P&"$-I*<# 64$%# 8D78':F&"&2+$&@# ,4@&# +"@# A4@&9:

F&"&2+$&@#,4@&2342*#+/4I$#BHC#?420&#$%+"#$%ʦ'.#+"@#+2&#

?-$%-"#JC#$4#QHC#43#&+,%#4$%&2<##

#

!

&!!

"!!

'!!

#!!

(!!

$!!

! &!!! "!!! '!!! #!!! (!!!

!"#$%&'(%)*

!
+
,
-
.
(

899 12314 5*6/. 7314

#
"#$%&'!67)!***!+'&,-&./01'!2-.3/-0!-0!809':!

D%&#"+$-5&#,4*1-9&20#4"#+99# $%2&&#*+,%-"&0#@-@#"4$#124@I,&2;#

F44@# ,4@&<#)"# $%&0&# &=1&2-*&"$0.# $%&# 0->&0# 43# $%&#*+$2-,&0#?&2&#

1+2+*&$&20# $4# $%&# %-F%:9&5&9# ,4@&# 342# *+$2-=# *I9$-19-,+$-4"# $%+$#

?+0#F-5&"#$4#$%&0&#,4*1-9&20<#R"I"@#$%+$#-3#$%&#*+$2-=#0->&0#+2&#

%+2@:,4@&@# ,4"0$+"$0# -"# $%-0# ,4@&.# $%&# 1&2342*+",&# 4/$+-"&@# /;#

$%&#"+$-5&# ,4*1-9&20# 4"#'()# +"@#'I"# -0# ,940&# $4# $%+$#43#8D78'#

+"@#A4@&9<#R&#@4#"4$#;&$#I"@&20$+"@#$%-0#-00I&<#

;)<! 5%../&=!
D?4# 0I212-0-"F# ,4",9I0-4"0# ,+"#/&#@2+?"# 324*# $%&#&=1&2-*&"$+9#

2&0I9$0# -"# $%-0# 0&,$-4"<# E-20$.# ?&# 34I"@# $%+$# %+"@?2-$$&"# 678'#

9-/2+2-&0# 1&2342*#/&$$&2# $%+"# &-$%&2#8D78':F&"&2+$&@# 42#A4@&9:

F&"&2+$&@# ,4@&# 4"# +99# $%2&&#*+,%-"&0S# 4"# $%&# 'I"# +"@#)"$&9#*+:

,%-"&0.# $%&#@-33&2&",&# -"#1&2342*+",&#-0#BMC:JJC<#D%-0#0IFF&0$0#

$%&2&#-0#,4"0-@&2+/9ô*#342#-*1245&*&"$#-"#/4$%#&*1-2-,+9#+"@#

4@&9:@2-5&"# 41$-->+$-4"# $&,%"-NI&0# 342# F&"&2+$-"F# $%&# 678'<#

'&,4"@.#?&# 34I"@# $%+$# 4"# $%&# '()# +"@#)"$&9#*+,%-"&0.# $%&# ,4@&#

F&"&2+$&@#/;#*4@&9:@2-5&"#41$-*->+$-4"#-0#0-*-9+2#-"#1&2342*+",&#

$4# $%&# ,4@&# F&"&2+$&@# /;# 8D78'<# !"# $%&# 'I".# 4"9;# $%&# 5+9I&0#

0&9&,$&@#342#$-9�->&#+"@#!"#/;#$%&#$?4#0;0$&*0#?&2�-F"-3-,+"$9;#

@-33&2&"$.# +"@# $%&2342*+",+#A4@&9:F&"&2+$&@#,4@&# -0#+/4I$#

BHC#?420&#$%+"#8D78':F&"&2+$&@#,4@&<#)$#?4I9@#+11&+2#$%+$#342#

F&"&2+$-"F#41$-*->&@#678'.#&*1-2-,+9#0&+2,%#-0#"4$#+0#-*142$+"$#

+0#-0#,4**4"9;#/&9-&5&@<##

R&#+904#2&1&+$&@#$%&0&#&=1&2-*&"$0#?-$%##$%&'()*+'##*+$2-,&0#43#

@-33&2&"$#0->&0.#/I$#2&+,%&@#$%�+*&#,4",9I0-4"0<##

>)! 5?@58A8B8AC!D@DEC585!
D%&# 2&0I9$0#43# $%&5-4I0#0&,$-4"#0%4?#$%+$# $%&2342*+",+#

,4@|@I,&@#/;#*4@&9:@2-5&"#41$-*->+$-4"# ,+"#/&# ,4*1+2+/9&#

$4#$%+$#43#,4@&#F&"&2+$&@#/;#&*1-2-,+9#41$-*->+$-4"<#8"#-"$&2&0$-"F#

NI&0$-4"#+$#$%-0#14-"$#-0#$%袲?-"FT#

U4?# 0&"0-$-5&# -0# $%&# 1&2342*+",&# 43# $%&# ,4@&# $4# ,%+"F&0# -"# $%&#

5+9I&0#43#41$-*->+$-4"#1+2+*&$&20V#

D%-0#NI&0$-4"#-0#43#-"$&2&0$#342#0&5&2+9#2&+04"0<#)"#4I2#,4"$&=$.#$%&#

124/9&*# 43# F&"&2+$-"F# &33-,-&"$# ,4@&# ,+"# /&# 5-&?&@# +0# +#*I9$-:

@-*&"0-4"+9#41$-*->+$-4"#124/9&*#-"#?%-,%#$%&#-"@&1&"@&"$#5+2-:

+/9&0#+2&# $%)$-*->+$-4"#1+2+*&$&20#0I,%#+0#,-.#.".#,".#&$,<.#

+"@# $%&# @&1&"@&"$# 5+2-+/9&# -0# 1&2342*+",&<#R%&"# $%&# 1+2+*&$&2#

5+9I&0# @&$&2*-"&@# /;# $%&# $?4# 0;0$&*0# +2&# @-33&2&"$.# 0&"0-$-5-$;#

+"+9;0-0# -0# I0&3I9# $4# I"@&20$+"@# ?%-,%# 43# $%&0&# @-33&2&",&0# +3:

3&,$&@#1&2342*+",&# $%&#*40$<#)"#+@@-$-4".#-3#-$# $I2"0#4I$#$%+$#"&+2#

$%)$-*+9#14-"$.#1&2342*+",&#-0#2&9+$-5&9;#-"0&"0-$-5&#$4#,%+"F&0#

-"# 4"&# 43# $%&# 1+2+*&$&20.# ?&# ,+"# 01&"@# 9&00# $-*&# +"@# &3342$# -"#

41$-*->-"F#$%+9I+#$%+$#1+2+*&$&2.#?%-,%#?4I9@#/&"&3-$#/4$%#

&*1-2-,+9# +"@# *4@&9:@2-5&"# 41$-*->+$-4"<# 'I,%# -"0-F%$0# ?4I9@#

+904# %&91# -"# @&5&941-"F# %;/2-@# 41$-*->+$-4"# 0$2+$&F-&0# $%+$# ,4*:

/-"&#*4@&9:@2-5&"# +"@# &*1-2-,+9# 41$-*->+$-4"S# -3# 1&2342*+",&# -0#

-"0&"0-$-5&# $4# $%&# 5+9I&# 43# 04*&# 1+2+*&$&2.# ?&# ,+"# I0&# 0-*19&#

*4@&90#$4#,%440&#-$0#5+9I&.#+"@#I0&#,4*19&=#*4@&90#42#&*1-2-,+9#

41$-*->+$-4"# 4"9;# 342# @&$&2*-"-"F#5+9I&0# 342# %-F%:0&"0-$-5-$;#1+:

2+*&$&20<#)"# $%&# 9-*-$.# -3# 1&2342*+",&# "&+2# $%&# 41$-*+9# 14-"$# -0#

2&9+$-5&9;#-"0&"0-$-5&#$4#,%+"F&0#-"#'(/#43#$%+2+*&$&20.#+#0-*19&#

4@&9:@2-5&"#41$-->+$-4"#0$2+$&F;#-0#+@&NI+$&<#

6&,+I0+#$%	+2F&#"I*/&2#43#41$-*->+$-4"#1+2+*&$&20.#-$#-0#-*:

12+,$-,+9# $4# 5+2;# +99# 43# $%&*# 0-*I9$+"&4I09;<#)"0$&+@.# ?&# 0&$# +99#

41$-*->+$-4"#1+2+*&$&20#$4#$%+9I&0#34I"@#/;#8D78'.#+"@#$%&"#

&+0I2&@# %4?# 1&2342+",&# 43# $%&# *-"-:AAA# ,4@&# ,%+"F&0#

?%&"#?+2;#4"+2+*&$&2#+$#+#$-*&<#

!"# 04*&#F2+1%0#12&0&"$&@# -"# $%-0# 0&,$-4".#?&#*+2O# $%2&&# -*142:

$+"$# 14-"$0T# W8X# 0%4?0# $%+2+*&$&2# 5+9I&# 0&9&,$&@#/;#8D78'.#

72

(b) Sun

!"# $%&# '()#*+,%-"&.# $%&# /&0$# 1&2342*&2# -0# $%&# "+$-5ʦ'# 9-:

/2+2;<#!"#$%&#*+$2-=#0->&0#?&#$&0$&@.#A4@&9#-0#+9?+;0#?-$%-"#BC#

43# 8D78'# -"# 1&2342*+",&<# E42# *+$2-=# 0->&0# 9+2F&2# $%+"# GHHH.#

A4@&9# 4I$1&2342*0#8D78'#/;# 24IF%9;#JHC.#/I$#/4$%#+2&#*I,%#

094?&2# $%+"# 678'<# E42# $%&0&# *+$2-=# 0->&0.# /4$%# 8D78'# +"@#

A4@&9# @&,-@&# $4#I0&# $%&#"4":,41;#5&20-4".# +"@# $%-0# ,+I0&0#D76#

*-00&0# $4#F4#I1.#+0#,+"#/&# 0&&"# -"#E-FI2&#K<#8D78'#3-"@0#+# $-9&#

0->+#LG.#?%-,%#-0#+904#$%�->+#$%&#D76#4"#$%&#'()#*+,%-"&<#

D%&#*4@&9#12&@-,$0#+#$-9�->+#GM.#04#-$#2&NI-2&0#3&?&2#D76#&":

$2-&0.#+"@#$%I0#1&2342*0#/&$$&2<#D%&0&#&=1&2-*&"$0#@&*4"0$2+$&#$%&#

?&99:O"4?"#3+,$# $%+$# 342# 9+2F&#@+$+#0->&0.#D76#&33&,$0#,+"#/&#-*:

142$+"$<#

!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

&$!!

&%!!

! &!!! "!!! '!!! #!!! (!!!

!"#$%&'(%)*

!
+
,
-
.
(

)*+,-./0 12314 5*6/. 7314

!

"#$%&'!()!***!+'&,-&./01'!2-.3/-0!-0!5%0!

!"#$%&#'I".#$%&#/&0$#1&2342*&2#-0#+F+-"#$%&#"+$-5ʦ'#9-/2+2;<#

D%&#,4@&0#F&"&2+$&@#/;#8D78'#+"@#/;#A4@&9#+2&#/&$?&&"#BMC#

+"@#MHC#094?&2#$%+"#$%ʦ'<#8D78':F&"&2+$&@#,4@&2342*0#

+/4I$#BHC#/&$$&2#$%+"#A4@&9:F&"&2+$&@#,4@Ŗ#*+$2-=#0->&0#9&00#

$%+"#JHHH<#

80#4"#$%$%&2#*+,%-"&0.#$%&#"+$-5ʦ'#9-/2+2;#1&2342*0#/&0$#

4"# $%&# P&"$-I*<# 64$%# 8D78':F&"&2+$&@# ,4@&# +"@# A4@&9:

F&"&2+$&@#,4@&2342*#+/4I$#BHC#?420&#$%+"#$%ʦ'.#+"@#+2&#

?-$%-"#JC#$4#QHC#43#&+,%#4$%&2<##

#

!

&!!

"!!

'!!

#!!

(!!

$!!

! &!!! "!!! '!!! #!!! (!!!

!"#$%&'(%)*

!
+
,
-
.
(

899 12314 5*6/. 7314

#
"#$%&'!67)!***!+'&,-&./01'!2-.3/-0!-0!809':!

D%&#"+$-5&#,4*1-9&20#4"#+99# $%2&&#*+,%-"&0#@-@#"4$#124@I,&2;#

F44@# ,4@&<#)"# $%&0&# &=1&2-*&"$0.# $%&# 0->&0# 43# $%&#*+$2-,&0#?&2&#

1+2+*&$&20# $4# $%&# %-F%:9&5&9# ,4@&# 342# *+$2-=# *I9$-19-,+$-4"# $%+$#

?+0#F-5&"#$4#$%&0&#,4*1-9&20<#R"I"@#$%+$#-3#$%&#*+$2-=#0->&0#+2&#

%+2@:,4@&@# ,4"0$+"$0# -"# $%-0# ,4@&.# $%&# 1&2342*+",&# 4/$+-"&@# /;#

$%&#"+$-5&# ,4*1-9&20# 4"#'()# +"@#'I"# -0# ,940&# $4# $%+$#43#8D78'#

+"@#A4@&9<#R&#@4#"4$#;&$#I"@&20$+"@#$%-0#-00I&<#

;)<! 5%../&=!
D?4# 0I212-0-"F# ,4",9I0-4"0# ,+"#/&#@2+?"# 324*# $%&#&=1&2-*&"$+9#

2&0I9$0# -"# $%-0# 0&,$-4"<# E-20$.# ?&# 34I"@# $%+$# %+"@?2-$$&"# 678'#

9-/2+2-&0# 1&2342*#/&$$&2# $%+"# &-$%&2#8D78':F&"&2+$&@# 42#A4@&9:

F&"&2+$&@# ,4@&# 4"# +99# $%2&&#*+,%-"&0S# 4"# $%&# 'I"# +"@#)"$&9#*+:

,%-"&0.# $%&#@-33&2&",&# -"#1&2342*+",&#-0#BMC:JJC<#D%-0#0IFF&0$0#

$%&2&#-0#,4"0-@&2+/9ô*#342#-*1245&*&"$#-"#/4$%#&*1-2-,+9#+"@#

4@&9:@2-5&"# 41$-->+$-4"# $&,%"-NI&0# 342# F&"&2+$-"F# $%&# 678'<#

'&,4"@.#?&# 34I"@# $%+$# 4"# $%&# '()# +"@#)"$&9#*+,%-"&0.# $%&# ,4@&#

F&"&2+$&@#/;#*4@&9:@2-5&"#41$-*->+$-4"#-0#0-*-9+2#-"#1&2342*+",&#

$4# $%&# ,4@&# F&"&2+$&@# /;# 8D78'<# !"# $%&# 'I".# 4"9;# $%&# 5+9I&0#

0&9&,$&@#342#$-9�->&#+"@#!"#/;#$%&#$?4#0;0$&*0#?&2�-F"-3-,+"$9;#

@-33&2&"$.# +"@# $%&2342*+",+#A4@&9:F&"&2+$&@#,4@&# -0#+/4I$#

BHC#?420&#$%+"#8D78':F&"&2+$&@#,4@&<#)$#?4I9@#+11&+2#$%+$#342#

F&"&2+$-"F#41$-*->&@#678'.#&*1-2-,+9#0&+2,%#-0#"4$#+0#-*142$+"$#

+0#-0#,4**4"9;#/&9-&5&@<##

R&#+904#2&1&+$&@#$%&0&#&=1&2-*&"$0#?-$%##$%&'()*+'##*+$2-,&0#43#

@-33&2&"$#0->&0.#/I$#2&+,%&@#$%�+*&#,4",9I0-4"0<##

>)! 5?@58A8B8AC!D@DEC585!
D%&# 2&0I9$0#43# $%&5-4I0#0&,$-4"#0%4?#$%+$# $%&2342*+",+#

,4@|@I,&@#/;#*4@&9:@2-5&"#41$-*->+$-4"# ,+"#/&# ,4*1+2+/9&#

$4#$%+$#43#,4@&#F&"&2+$&@#/;#&*1-2-,+9#41$-*->+$-4"<#8"#-"$&2&0$-"F#

NI&0$-4"#+$#$%-0#14-"$#-0#$%袲?-"FT#

U4?# 0&"0-$-5&# -0# $%&# 1&2342*+",&# 43# $%&# ,4@&# $4# ,%+"F&0# -"# $%&#

5+9I&0#43#41$-*->+$-4"#1+2+*&$&20V#

D%-0#NI&0$-4"#-0#43#-"$&2&0$#342#0&5&2+9#2&+04"0<#)"#4I2#,4"$&=$.#$%&#

124/9&*# 43# F&"&2+$-"F# &33-,-&"$# ,4@&# ,+"# /&# 5-&?&@# +0# +#*I9$-:

@-*&"0-4"+9#41$-*->+$-4"#124/9&*#-"#?%-,%#$%&#-"@&1&"@&"$#5+2-:

+/9&0#+2&# $%)$-*->+$-4"#1+2+*&$&20#0I,%#+0#,-.#.".#,".#&$,<.#

+"@# $%&# @&1&"@&"$# 5+2-+/9&# -0# 1&2342*+",&<#R%&"# $%&# 1+2+*&$&2#

5+9I&0# @&$&2*-"&@# /;# $%&# $?4# 0;0$&*0# +2&# @-33&2&"$.# 0&"0-$-5-$;#

+"+9;0-0# -0# I0&3I9# $4# I"@&20$+"@# ?%-,%# 43# $%&0&# @-33&2&",&0# +3:

3&,$&@#1&2342*+",&# $%&#*40$<#)"#+@@-$-4".#-3#-$# $I2"0#4I$#$%+$#"&+2#

$%)$-*+9#14-"$.#1&2342*+",&#-0#2&9+$-5&9;#-"0&"0-$-5&#$4#,%+"F&0#

-"# 4"&# 43# $%&# 1+2+*&$&20.# ?&# ,+"# 01&"@# 9&00# $-*&# +"@# &3342$# -"#

41$-*->-"F#$%+9I+#$%+$#1+2+*&$&2.#?%-,%#?4I9@#/&"&3-$#/4$%#

&*1-2-,+9# +"@# *4@&9:@2-5&"# 41$-*->+$-4"<# 'I,%# -"0-F%$0# ?4I9@#

+904# %&91# -"# @&5&941-"F# %;/2-@# 41$-*->+$-4"# 0$2+$&F-&0# $%+$# ,4*:

/-"&#*4@&9:@2-5&"# +"@# &*1-2-,+9# 41$-*->+$-4"S# -3# 1&2342*+",&# -0#

-"0&"0-$-5&# $4# $%&# 5+9I&# 43# 04*&# 1+2+*&$&2.# ?&# ,+"# I0&# 0-*19&#

*4@&90#$4#,%440&#-$0#5+9I&.#+"@#I0&#,4*19&=#*4@&90#42#&*1-2-,+9#

41$-*->+$-4"# 4"9;# 342# @&$&2*-"-"F#5+9I&0# 342# %-F%:0&"0-$-5-$;#1+:

2+*&$&20<#)"# $%&# 9-*-$.# -3# 1&2342*+",&# "&+2# $%&# 41$-*+9# 14-"$# -0#

2&9+$-5&9;#-"0&"0-$-5&#$4#,%+"F&0#-"#'(/#43#$%+2+*&$&20.#+#0-*19&#

4@&9:@2-5&"#41$-->+$-4"#0$2+$&F;#-0#+@&NI+$&<#

6&,+I0+#$%	+2F&#"I*/&2#43#41$-*->+$-4"#1+2+*&$&20.#-$#-0#-*:

12+,$-,+9# $4# 5+2;# +99# 43# $%&*# 0-*I9$+"&4I09;<#)"0$&+@.# ?&# 0&$# +99#

41$-*->+$-4"#1+2+*&$&20#$4#$%+9I&0#34I"@#/;#8D78'.#+"@#$%&"#

&+0I2&@# %4?# 1&2342+",&# 43# $%&# *-"-:AAA# ,4@&# ,%+"F&0#

?%&"#?+2;#4"+2+*&$&2#+$#+#$-*&<#

!"# 04*&#F2+1%0#12&0&"$&@# -"# $%-0# 0&,$-4".#?&#*+2O# $%2&&# -*142:

$+"$# 14-"$0T# W8X# 0%4?0# $%+2+*&$&2# 5+9I&# 0&9&,$&@#/;#8D78'.#

72

(c) Intel

Figure 5.6: Comparisons of empirically-guided optimization and model-based approaches to

optimizing matrix-matrix multiplication. The three graphs are for three difference processor

architectures. The main result is that empirical feedback provides a substantial advantage

across a range of matrix sizes and architectures. The unfilled marks indicate a non-copying

version of the algorithm. Graphics borrowed from [YLR+03].

133

linear in the number of parameters, compared to the exponential size of the whole configura-

tion space. Typical installations take several hours. However, since installation needs to be

performed only once per system, the installation time can be amortized over many uses of

the library. Implicit in the one variable at a time search method is the assumption that the

values of later-determined parameters do not have a significant impact on earlier-determined

parameters. This assumption is not strictly true for any sufficiently complex target archi-

tecture, but it works reasonably well in practice. The search space must be pruned in some

way; if ATLAS used a truly global search, installation times would be measured in months

or years instead of hours.

Another approach to tuning ATLAS is combining test runs with models. [YLR+03,

YPS05, CCH05]. In the work of Yotov, et al., Model-ATLAS uses the same micro-

benchmarks as search-ATLAS, but then uses the architectural properties to estimate the

best values for the parameters analytically. Some of the results of their initial study are

presented in Figure 5.6. The three different graphs are for three different systems used, one

each from SGI, Sun and Intel.

Before looking at the differences between model and search based ATLAS, consider

two striking trends in this data. Hand-optimized libraries (represented by the BLAS line)

achieve near-peak performance on all of the architectures across the range of matrix sizes.

It is surprising that even for these relatively simple matrix computations that have arguably

received more compiler optimization attention than any other application family, there is

still a sizable performance gap between ATLAS and hand-optimized libraries. Perhaps even

more striking is how poorly the code generated by an optimizing Fortran compiler performs.

In many cases the compiler-produced code is more than an order of magnitude slower than

the hand-optimized libraries.

The model-based version of ATLAS is able to generate code that is almost as high per-

formance as the search-based version of ATLAS in most cases, and even higher performance

in a few cases. Because extensive search is not necessary, model-ATLAS installation times

are typically an order of magnitude or two shorter than search-ATLAS. In [YPS05], Yotov,

et al. improved their model-based ATLAS by refining the model used to select the param-

eters, and using empirical search within a small neighborhood of parameter values around

134

are scalarized. Once the code for loading elements of C is

lifted outside the k′′ loop, the body of this loop contains

MU + NU loads and MU × NU multiply-add pairs. ATLAS

schedules this basic block based on the FMA, Ls, IF , and

NF optimization parameters as follows.

1. Intuitively, FMA is 0 if code should be generated

without assuming that the hardware supports a fused

multiply-add. In that case, dependent multiply and

add operations are separated by Ls other multiplies

adds. This produces sequence with 2×MU ×NU com-

putation statements (MU × NU if FMA = 1).

2. The MU +NU loads of elements of A and B are injected

into the resulting computation sequence by scheduling

a block of IF loads in the beginning and blocks of NF

loads thereafter as needed.

3. The KU iterations of the k′′ loop are completely un-

rolled.

4. The k′ loop is software-pipelined so that operations

from the current iteration are overlapped with opera-

tions from the previous iteration.

Table 1 lists all optimization parameters for future refer-

ence.

Name Description

NB L1 data cache tile size

MU , NU Register tile size

KU Unroll factor for k′ loop

Ls Latency for computation scheduling

FMA 1 if fused multiply-add should be assumed,

0 otherwise

FF , IF , NF Scheduling of loads

Table 1: Summary of optimization parameters

Finally, ATLAS copies portions of A, B, and C into se-

quential memory locations before performing the mini-MMM,

if it thinks this would be profitable. The strategy for copy-

ing is shown in Figure 4. ATLAS also incorporates a simple

form of tiling for the L2 cache, called CacheEdge; we will

not discuss this because our focus in the mini-MMM code,

which is independent of CacheEdge.

2.2 Global search in ATLAS
It is intuitively obvious that the performance of the gen-

erated mini-MMM code suffers if the values of the optimiza-

tion parameters in Table 1 are too small or too large. For

example, if MU and NU are too small, the MU ×NU block of

computation instructions might not be large enough to hide

the latency of the MU + NU loads, and performance suffers.

On the other hand, if these parameters are too large, register

spills will reduce performance. Similarly, if the value of KU

is too small, there is more loop overhead, but if this value

is too big, the code in the body of the k′ loop will overflow

the instruction cache and performance will suffer. The goal

therefore is to determine optimal values of these parameters

for obtaining the best mini-MMM code.

To find optimal values for the optimization parameters,

ATLAS uses a global search strategy called orthogonal line
search [11]. This is a general optimization strategy that tries

to find the optimal value of a function y = f (x1, x2, ..., xn)

by reducing the n-dimensional optimization problem into a

sequence of n 1-dimensional optimization problems by order-

ing the parameters xi in some order, and optimizing them

one at a time in that order, using reference values for pa-

rameters that have not been optimized yet. Orthogonal line

search is an approximate method in the sense that it does

not necessarily find the optimal value of a function, but it

might come close if the parameters x1, x2, ..., xn are more or

less independent. The specific order used in ATLAS is: NB ;

(MU NU); KU ; Ls FF , IF , and NF . Details can be found

in [18].

2.3 Model-driven optimization
We now describe a model for estimating values for op-

timization parameters [17]. This model is used to generate

mini-MMM code using the ATLAS code generator, as shown

in Figure 5.

ATLAS
Model

ATLAS
Code Generator

mini-MMMLS
MU, NU, KU

NB

FF, IF, NF
FMA

CL1, BL1

FMA
NR

Lh

Measure
Hardware

Parameters

CI

Figure 5: Model-driven Optimization Architecture

This model requires the following machine parameters.

• CL1, BL1 – capacity and line size of the L1 data cache

• CI – capacity of the instruction cache

• NR – number of floating-point registers

• Ls – as measured by the ATLAS micro-benchmark

• FMA – existence of a fused multiply-add instruction

Figure 6 describes the model. The rationale for the model

is as follows.

The simplest model for NB is to choose its value so that

all three blocks of matrices A, B, and C can reside in the

cache simultaneously. This gives the following inequality.

3 × N2

B ≤ CL1 (2)

A more careful analysis shows that when multiplying two

matrices, capacity misses can be avoided completely if one

of the matrices, a row or a column of another matrix, and an

element of the third matrix can be cache resident simultane-

ously [17]. This analysis assumes that the cache replacement

policy is optimal. It yields the following inequality for NB .

N2

B + NB + 1 ≤ CL1 (3)

Finally, we must correct for non-unit cache line size (BL1)

and LRU replacement policy, which yields the model shown

in Figure 6 [17].

• Choose largest NB , which satisfies:
⌈

N2

B

BL1

⌉
+ 3

⌈
NB

BL1

⌉
+ 1 ≤

CL1

BL1

. (1)

• Choose MU and NU as follows:

NU ←

⌊√
NR − Ls + 1 − 1

⌋

MU ←
NR−Ls−NU

NU +1
.

• Use Ls as determined by the ATLAS micro-

benchmark.

• Use FMA as determined by the ATLAS micro-

benchmark.

• Set FF = 1 and IF = NF = 2.

Figure 6: Model for estimating optimal values of
optimization parameters

143

Figure 5.7: Equations from the basic model-based ATLAS for setting the parameters for

dense matrix-matrix multiplication. It is remarkable how complex the equations are, given

the relative simplicity of matrix multiplication as an application. The variables represent

architectural features like cache size, cache line size, number of registers, and the presence

of a fused multiply-add instruction. Graphic borrowed from [YPS05].

those chosen by the model. The hybrid model/search implementation of ATLAS performs

better than both the simpler model and the pseudo-global search implementations. The

improvements come from both the more sophisticated model and the local searching. In-

stallation times for hybrid-ATLAS are still in the range of an order of magnitude shorter

than search-ATLAS.

The models used by model- and hybrid-ATLAS are surprisingly complex, given the

simplicity of the application (dense matrix-matrix multiplication). The equations for the

simpler of the two models are shown in Figure 5.7. The equations for the refined model are

roughly twice as complex. However, the combination of relatively short installation time

and high performance that the hybrid-ATLAS implementation is able to achieve suggests

that systems for tuning algorithms to particular architectures should use empirical search

judiciously.

There are several other linear algebra-related auto-tuners that use optimization tech-

niques similar to those described for ATLAS. FLAME (Formal Linear Algebra Method

135

Environment)[GGHvdG01] used an approach to dense linear algebra routines that recur-

sively broke arrays into smaller blocks, instead of processing them primarily in row-major

or column-major order. OSKI (Optimized Sparse Kernel Interface)[VDY05] is an extension

of library tuning ideas to sparse matrix algorithms, which are substantially more com-

plex and less regular than dense matrix algorithms. FEniCS (collection of Finite Element

libraries)[LW10] is an autotuned library for differential equation solving, which is more

complex in some ways than basic linear algebra routines.

5.3.2 DSP algorithms

Many DSP (Digital Signal Processing) transforms can be seen as a single linear algebra al-

gorithm: the matrix-vector multiplication, with a constant matrix. This family includes the

discrete cosine transform (DCT), discrete Fourier transform (DFT), Walsh-Hadamard trans-

form (WHT), discrete Hartley transform (DHT) and discrete wavelet transform (DWT).

SPIRAL2[PMJ+05] is a system for generating efficient implementations of these kinds of

transforms from descriptions written in SPL (Signal Processing Language).

SPIRAL exploits mathematical properties of the matrix of coefficients defined by a par-

ticular transform to find implementations that require significantly fewer operations than

the O(N2) required for matrix-vector multiplication. For example, given a description of a

DFT, SPIRAL can generate many different FFT (Fast Fourier Transform) implementations,

which require only O(N log(N)) operations. In addition to these remarkable algorithmic

transformations, SPIRAL is also capable of exploring the more pedestrian kinds of opti-

mizations like loop unrolling and tiling that can have substantial constant-factor impact on

the performance of a program.

How SPIRAL works

The high level architecture of SPIRAL is illustrated in Figure 5.8. It takes a linear trans-

form, represented as an SPL formula, and applies two phases of optimization: “formula

2SPIRAL stands for either Signal Processing Implementation Research for Adaptable Libraries or Louis
Auslander’s Remarkable Ideas for Signal Processing.

136

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 3

explain the high-level approach taken by SPIRAL, which

restates the problem of finding fast code as an optimization

problem over the space of possible alternatives. Second, we ex-

plain the architecture of SPIRAL, which implements a flexible

solver for this optimization problem and which resembles the

human approach for code creation and optimization. Finally,

we discuss how SPIRAL’s architecture is general enough to

solve a large number of different implementation/optimization

problems for the DSP transform domain. More details are

provided in later sections.

A. Optimization: Problem Statement

We restate the problem of automatically generating soft-

ware (SW) implementations for linear digital signal process-

ing (DSP) transforms that are tuned to a target hardware (HW)

platform as the following optimization problem. Let P be a

target platform, Tn a DSP transform parameterized at least

by its size n, I ∈ I a SW implementation of Tn, where I is
the set of SW implementations for the platform P and trans-

form Tn, and C (Tn,P, I) the cost of the implementation I
of the transform Tn on the platform P.
The implementation Î of Tn that is tuned to the platform P

with respect to the performance cost C is

Î = Î(P) = arg min
I∈I(P)

C (Tn,P, I) . (1)

For example, we can have the following: as target platform P
a particular Intel Pentium 4 workstation; as transform Tn the

discrete Fourier transform of size n = 1024, which we will
refer to asDFT1024, or the discrete cosine transform of type 2

and size 32, DCT-232; as SW implementation I a C-program
for computing Tn; and as cost measure C the runtime of I on
P. In this case, the cost depends on the chosen compiler and
flags, thus this information has to be included in P. Note that
with the proliferation of special vendor instruction sets, such

as vector instructions that exceed the standard C programming

language, the set of all implementations becomes in general

platform dependent, i.e., I = I(P) with elements I = I(P).
To carry out the optimization in (1) and to automatically

generate the tuned SW implementation Î poses several chal-
lenges:

• Set of implementations I . How to characterize and

generate the set I of SW implementations I of Tn?

• Minimization of C. How to automatically minimize the
cost C in (1)?

In principle, the set of implementations I for Tn should

be unconstrained, i.e., include all possible implementations.

Since this is unrealistic, we aim at a broad enough set of

implementations. We solve both challenges of characterizing I
and minimizing C by recognizing and exploiting the specific

structure of the domain of linear DSP transforms. This struc-

ture enables us to represent algorithms for Tn as formulas

in a concise mathematical language called signal processing

language (SPL), which utilizes only a few constructs. Further,

it is possible to generate these SPL formulas (or algorithms)

recursively using a small set of rules to obtain a large formula

space F . These formulas, in turn, can be translated into code.
The SPIRAL system implements this framework and we define

I as the set of implementations that SPIRAL can generate.

The degrees of freedom in translating from F to I reflect

the implementation choices that SPIRAL can consider for the

given algorithms. Finally, the recursive structure of F , and thus
I, enables the use of various, transform independent, search

and learning techniques that successfully produce very good

solutions for (1), while generating only a small subset of I.
SPIRAL’s architecture, shown in Fig. 1, is a consequence

of these observations and, for the class of DSP transforms

included in SPIRAL, can be viewed as a solver for the opti-

mization problem (1). To benchmark the performance of the

transform implementations generated by SPIRAL, we compare

them against the best available implementations whenever

possible. For example, for the DFT, we benchmark SPIRAL
against the DFT codes provided by FFTW, [18], [19], and

against vendor libraries like Intel’s IPP (Intel Performance

Primitives) and MKL (Math Kernel Library); the latter are

coded by human experts. However, because of SPIRAL’s

breadth, there are no readily available high quality implemen-

tations for many of SPIRAL’s transforms. In these cases, we

explore different alternatives generated by SPIRAL itself.

In the following paragraphs, we briefly address the above

two challenges of generating the set of implementations I
and of minimizing C. The discussion proceeds with reference
to Fig. 1 that shows the architecture of SPIRAL as a block

diagram.

Formula GenerationFormula Optimization
ImplementationCode Optimization
CompilationPerformance Evaluation

DSP transform (user specified)

optimized/adapted implementation

Searc
h/Lea

rning

controls

controls

performance

algorithm as formulain language

C/Fortranimplementation

AlgorithmLevel
ImplementationLevel(SPL Compiler)
EvaluationLevel

Fig. 1. The architecture of SPIRAL.

B. Set of Implementations I
To characterize the set of implementations I, we first

outline the two basic steps that SPIRAL takes to go from

the high-level specification of the transform Tn to an actual

implementation I ∈ I of Tn. The two steps correspond

to the ALGORITHM LEVEL and to the IMPLEMENTATION

LEVEL in Fig. 1. The first derives an algorithm for the given

Figure 5.8: Architecture of SPIRAL. SPIRAL performs more radical program transforma-

tions than most auto-tuners, which it can do because the space of algorithms it accepts as

input is quite narrow. Graphic borrowed from [PMJ+05].

optimization” and “code optimization”. During the formula optimization phase, the for-

mula is recursively broken down into several “smaller” SPL formulas. The smaller formulas

can operate on smaller matrices or be simpler in some other sense. SPIRAL uses guarded

rewrite rules to define the possible formula optimizations; for example, “if the coefficient

matrix is upper-triangular, then the formula can be decomposed into three smaller mul-

tiplications and an addition.” The guards for several rules may be satisfied by the same

formula, which is where SPIRAL gets its flexibility in optimizing SPL formulas. Once a

formula has been decomposed into sufficiently simple formulas, the formula optimization

phase is declared complete, and the generated formula is passed to the code optimization

phase.

The database of rules used by SPIRAL was written by hand, and is a distillation of

about 50 journal papers on ways to implement linear transform algorithms. The space of

possible decompositions of reasonably large transforms is enormous, so the search for good

formulas must be guided in some way. Because the formulas can be defined recursively in

137
PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 24

• Hill climbing is a compromise between random search

and evolutionary search and has proven to be inferior to

the latter. See [44] for an explanation of this technique

in the context of SPIRAL.

We explain dynamic programming and the evolutionary

search in greater detail.

Dynamic programming. The idea of dynamic program-

ming (DP) is to recursively construct solutions of large prob-

lems from previously constructed solutions of smaller prob-

lems. DP requires a recursive problem structure and, hence, is

perfectly suited for the domain of transform algorithms.

We have implemented the DP search in a straightforward

way as follows. Given a transform T , we expand T one

step using all applicable rules and rule instantiations (for

parameterized rules). The result is a set {RTk|k = 1, . . . ,m}
ofm ruletrees of depth 1 (as (40)) or 0 (if the rule is a terminal

rule). For each of these ruletrees RTk the set of children

{Ci|i = 1, . . . , jk} (the Ci are again transforms) is extracted,

and for each of these children Ci, DP is called recursively to

return a ruletree RCi, which is fully expanded. Inserting the

ruletrees RCi into RTk (that means replacing Ci by RCi in

RTk), for i = 1, . . . , jk, yields a fully expanded ruletree RT ′
k

for T . Finally the best (minimal cost) ruletree among the RT ′
k

is returned as the result for T .
To see how DP reduces the search space consider a DFT

of size 2n and only the Cooley-Tukey rule (20). Using

recurrences, one can show that the number of formulas is

O(4n/n3/2) (the number of binary trees by using Stirling’s
formula, [80, pp. 388–389]), whereas DP visits only O(n2).
The inherent assumption of DP is that the best code for

a transform is independent of the context in which it is

called. This assumption holds for the arithmetic cost (which

implies that DP produces the optimal solution), but not for the

runtime of transform algorithms. For example, the left smaller

transform (child) in the DFT rule (20) is applied at a stride,

which may cause cache thrashing and may impact the choice

of the optimal formula. However, in practice, DP has proven

to generate good code in reasonably short time [44] and thus

is the default search method in the current version of SPIRAL.

Finally, we note that the vector extension of SPIRAL

requires a special version of DP, which is motivated by

the manipulated formula (46). As explained above, the first

expansion (shown in (46)) is vectorized, whereas the smaller

occurring DFTs can be expanded arbitrarily since their context
is ⊗ Iν , which ensures they are vectorizable (matching (42)).
To account for the conceptual difference between the first and

the remaining expansions we need a variant of DP, which we

introduced in [54].

Evolutionary search. It is valuable to have another search

method available to evaluate DP and overcome its possible

shortcomings, particularly in view of the growing number of

applications of SPIRAL (e.g., Sections III and V-C). Evolu-

tionary search operates in a mode that is entirely different

from the DP mode; it attempts to mimic the mechanics of

evolution, which operates (and optimizes in a sense) through

cross-breeding, mutation, and selection [81].

For a given transform, the evolutionary search generates

an initial population P1 of a fixed size n of randomly

(a) cross-breeding

(b) regrow (c) copy (d) swap

Fig. 6. Ruletree manipulation for the evolutionary search: (a) cross-breeding;
(b)–(d) three types of mutations: regrow, copy, and swap.

selected ruletrees. Then, the population is increased using

cross-breeding and mutation. Cross-breeding is implemented

by swapping subtrees with the same root (transform) of two

selected ruletrees in P1 (see Fig. 6, left). Three different types

of mutations are used: 1) regrow expands a selected node using

a different subruletree; 2) copy copies a selected subruletree to

a different node representing the same transform; and 3) swap

exchanges two subruletrees belonging to the same transform.

See Fig. 6 for an illustration. The trees that undergo cross-

breeding and mutation are randomly selected, and the number

of those trees is a parameter. Finally, the increased population

is shrunk to a size smaller than n by removing the slowest

trees. Then the population is increased to the original size n by
adding random trees to yield the population P2. This process

is repeated for a given number of iterations or until the best

member of the population does not improve the minimization

any further. For a more detailed discussion and evaluation of

the evolutionary search, we refer to [44], [82].

The problem with evolutionary search (in general) is that it

may converge to solutions that are only locally optimal.

B. Learning

Search becomes more difficult as the number of possible

ruletrees increases. However, it is easy to collect a set of

runtimes for random implementations of a given transform.

This data could be used to learn how to construct a fast

ruletree for that transform. Further, we have found that this

knowledge can be applied to generate fast implementations of

different sizes of a given transform, even when the knowledge

was gathered from only a single transform size.

Our approach consists of two stages.

• Modeling Performance of Individual Nodes. The first step

begins by collecting timing information for each individ-

ual node in a set of random ruletrees. From this data,

we then learn how to construct a model that accurately

predicts the runtimes for nodes in ruletrees. This effort

requires a well-chosen set of features that describe a node

and its context within the larger ruletree.

• Generating Fast Implementations. The second step uses

the model developed in the first step to then generate

ruletrees that have fast running times.

Our discussion will focus on the WHT and the DFT. For
the WHT we consider only ruletrees based on rule (26) with

Figure 5.9: Moves used by the SPIRAL formula search algorithms. Splits in the trees

indicate recursively splitting the input array, and potentially applying different algorithms

to the subparts.

terms of smaller formulas (as suggested by Figure 5.9) dynamic programming works well as

a search technique.

To understand how the dynamic programming search works, consider the following sim-

ple example. We want to implement formula A, which has two alternative decompositions:

A1 decomposes to sub-formulas B and C, and A2 decomposes to D and E. Each of the sub-

formulas has two alternative implementations, B1, B2, C1, C2, etc. SPIRAL will generate

code for and test the running time of each of the sub-formulas to determine which is best;

lets assume B2, C1, D1 and E2 are the winners. Now we implement A1 and A2 with their

respective winning sub-formulas and test which is faster. Assuming A2 is the winner, we

now declare A2, as implemented by D1 and E2, to be the best implementation of A. Notice

that we did not even measure the performance of A2 as implemented by D1 and E1, or any

other combination. This search strategy is polynomial in the height of the formula tree,

even though the space of all possible decompositions is exponential.

The SPIRAL group has also investigated an evolutionary approach to searching through

the space of formula trees. This algorithm uses the “mutations” illustrated in Figure 5.9.

Because the evolutionary search is more randomized than the dynamic programming search,

it offers the promise of not getting “stuck” in local maxima. However, in practice, the

138

PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 32

4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

size (log
2
n)

p
e

rf
o

rm
a
n

c
e

 (
p
s
e
u

d
o

 M
F

L
O

P
S

)
IPP 4.0 (inplace)
Intel MKL 6.1
FFTW 3.0.1 SSE
SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL
FFTW 3.0.1
GNU sci. lib. (inplace)

(a) single precision

4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

size (log
2
n)

p
e
rf

o
rm

a
n
c
e
 (

p
s
e
u
d
o
 M

F
L
O

P
S

)

IPP 4.0 (inplace)
Intel MKL 6.1
FFTW 3.0.1 SSE
SPIRAL SSE
SPIRAL (comp. vect.)
SPIRAL
FFTW 3.0.1
GNU sci. lib. (inplace)
Num. Rec. (inplace)

(b) double precision

Fig. 10. FFT performance comparison (in pseudo MFLOPS) of the best available libraries. Platform: p4-3.0-win.

Figure 5.10: Performance on single-precision FFT [PMJ+05]

evolutionary search takes substantially longer than the dynamic programming search, and

rarely produces superior formulas.

The optimizations performed in the “implementation” and “code optimization” phases

of the SPL compiler are similar to the ATLAS optimizations. The SPIRAL optimization

engine can iterate in the code optimization loop several times for a single formula produced

by the formula optimization phase. The C or Fortran code produced by the code optimizer

is then compiled with a conventional optimizing compiler.

A representative example of the performance of the code generated by SPIRAL is pre-

sented in Figure 5.10. This graph highlights several interesting performance trends. First,

the code generated by both SPIRAL and FFTW [FJ05] is usually competitive with the

hand-crafted libraries (IPP and Intel MKL). However, there is a substantial gap between

the hand-crafted libraries and the generated code for FFTs of size roughly 210 to 213. The

SPIRAL designers speculate that this gap is caused by the generated code not being tuned

to the size of the L2 cache well. This is a somewhat disappointing failure on the part of the

auto-tuners, since in theory they should be able to adapt to any memory structure through

empirical feedback.

139
!"#$%&'%()%**+$

!"#$%&'()*+,-."(/- 0"$12-#3

Viterbi decoding (8-bit) on 2.66 GHz Core 2 Duo
performance [Gbutterflies/s]

0

0.5

1

1.5

2

2.5

6 7 8 9 10 11 12 13

log2(size of state machine)

Spiral 16-way vectorized

Spiral scalar

Karn's Viterbi decoder

(hand-tuned assembly)

1 butterfly
= ~22 ops

!"#$%&'(") *+',-./&0#$'#0112.$3".+04".&*1"+.0+.5%&.678

work with S. Chellappa, CMU Karn: http://www.ka9q.net/code/fec/

!"#$%&'%()%**+$

!"#$%&'()*+',(-./+',(-.*+01,-21-$',-3#

DGEMM on 3 GHz Core 2 Duo (1 thread)
performance [Gflop/s]

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256 512

N (matrix size is N x N)

Goto

Spiral

triple loop

work with F. de Mesmay, CMU

Figure 5.11: Non-matrix-vector multiplication algorithms in SPIRAL

Perhaps more strikingly, we see that the performance of a reasonably well-written FFT

implementation from the GNU scientific library, compiled with a conventional optimizing

compiler, is over an order of magnitude slower than the highest performance implementa-

tion for some input sizes. This evidence corroborates the ATLAS findings that given the

complexity and unpredictability of today’s processors, and even with only modestly com-

plicated programs, there is a very large performance gap between reasonably well written

code compiled with conventional optimizing compilers and highly optimized code—whether

that optimization is done by expert programmers or automated systems.

140

The results achieved by the SPIRAL system are impressive, but there is an important

caveat to keep in mind. The range of applications that SPIRAL can handle is quite nar-

row. Many useful DSP algorithms can be encoded as matrix-vector multiplication, but the

space of programs that we would like to run on accelerators is much larger. In a recent

presentation, the SPIRAL team described attempts to expand SPIRAL’s repertoire to in-

clude Viterbi decoding and matrix-matrix multiplication. The preliminary results, shown

in Figure 5.11 indicate that for some parameters, the SPIRAL-generated implementations

are substantially slower than hand-crafted libraries.

The relative weakness of SPIRAL on applications outside of its original, relatively re-

stricted domain raises doubts about the ability of highly optimizing auto-tuners to scale in

generality towards general purpose programming languages. This work is still quite prelim-

inary, though, so it is quite possible that more encouraging results will be forthcoming.

5.4 General purpose auto-tuning

Recently there has been an explosion in interest in applying auto-tuning to a wider range

of applications [MSBL98, CH04, QKMC06, YSY+07, YW07, RPH+08, NBH+08, Sch09,

TCC+09, KSP09, ZHCC09, HNS09, ZHCC09, GYQ10]. Developing an auto-tuner that

can work for a wide range of applications is challenging because different applications have

very different shapes (Figure 5.12). These images only begin to give a sense for the com-

plexity that can exist in higher dimensional applications. Unfortunately, visualizing higher

dimensional functions is challenging, which makes it hard to develop an intuition for such

functions.

The most common search method used in these systems is some variant of direct search

[KLT03], which is a broad and imprecisely defined class of optimization methods. In par-

ticular, methods based on the work of Nelder and Mead [NM65] are most common. The

unifying concept behind these search methods (Figure 5.13) is that the next configuration

to test is chosen by moving in some direction from the best configuration found so far.

The specific methods for choosing the direction and distance usually use complex geometric

heuristics. The other common property of direct search methods is that they do not use

gradients to predict the location of the best configuration.

141

determined by the best values of tunables at M1 is P2. If P2

is different from the assumed size P1, to get the optimal per-
formance, the tunable space at M0 should be explored again.
Unlike cache-based architectures, where conflict misses vary
with the problem size, for software-managed memory hierar-
chies, we observe much less correlation between the problem
size and the best values of tunables. If the run time of the
problem at M2 is dominated by communication operations,
or if both problem sizes P1 and P2 at M1 are much larger
than the best problem size at M0, there is little or no benefit
gained from re-exploring the space at M0. In fact, for all our
benchmarks, at least one of the two conditions are satisfied.
Therefore, a single bottom-up pass suffices.

Changing the values of the tunables involved in one loop
nest, in many cases has little or no effect on the performance
of other loop nests. To exploit this independence, we fur-
ther divide tunables in the same level into groups. If two
tunables are not involved in the same loop nest, we say they
are independent and belong to different groups. Separate
instances of the search algorithm on individual groups are
initiated with loop level profiling results to guide the search.
And those instances run simultaneously to reduce the tuning
time.

4.3 Characteristics of the Search Space
We compare the search space of tile sizes on cache-based

machines with the search space of the tunables on software-
managed memory hierarchies. Since conflict misses play
a significant part in the cache behavior of blocked algo-
rithms, the repetitive characteristic of conflict misses causes
the search space of tile sizes to be periodic with high fre-
quency oscillations. Studies [22][17] have shown that indeed
the search space is neither smooth nor continuous. A small
deviation from “good” tile sizes can cause a huge increase
in execution time. Due to conflict misses, “good” tile sizes
usually utilize only a fraction of the cache’s capacity, and
square tile sizes usually work well.

Consider how the performance of an application changes
with the tunables on software-managed memory hierarchies.
First, the amount of reuse that is exploited changes when
the tunables are varied. We can estimate the exploited
reuse by the number of memory transfers: more exploited
reuse means fewer bytes transferred. For our conv2d ex-
ample, the number of elements transferred scales with 1 +

U−1
Y BLK

and 1 + V−1
XBLK

. For IJK version of matrix multi-
plication with NxN problem size, the amount of transfer
scales with N/JBLK and N/IBLK. For different appli-
cations, the exploited reuse varies with the tunables in dif-
ferent ways. Second, transfer sizes of communication oper-
ations vary as the tunables. We achieve higher bandwidth
for larger transfers, particularly for MPI communication op-
erations between nodes and DMA operations across levels.
Third, the values of tunables can impact the number of TLB
misses, because they change the way arrays are traversed.
Finally, alignment of transfer operations and SIMD opera-
tions in the leaf tasks affect performance.

We study the search space of tunables by evaluating all
the feasible points on a coarse grid (some tunables are mul-
tiples of 8). For conv2d on Cell, the search space is shown in
Figure 4. We notice that the space is smooth and the high
frequency components due to alignment issues cause vari-
ations of no more than 20 percent. If we downsample the
space by collecting the points that are multiples of 32, most

of the high frequency components are gone (i.e. the data
is properly aligned). We observe similar characteristics on
our other benchmarks running on Cell. A rougher surface
is observed for our benchmarks on a cluster of PCs because
each node is a cache-based machine. And we notice that the
best values are often close to the boundary created by the
capacity constraints.

101

102

103

101

102

103
0

0.2

0.4

0.6

0.8

1

XBLK

Conv2d on Cell

YBLK

Pe
rfo

rm
an

ce

Figure 4: Search space of conv2d on Cell

We notice that square tunables (i.e. the same value is used
for multiple tunables) do not work well for several tunable
groups of SUmb (Stanford University MultiBlock, see Sec-
tion 6). On Cell, the best tunable values for two loop nests
of SUmb are (128,1,4) and (128,4,1) respectively, far from the
square shape. With the best square tunables, the perfor-
mance of the two loop nests degrades 6.5x and 5.4x, due to
small transfer sizes.

In summary, the tunable search space on software-managed
memory hierarchies displays different characteristics from
the search space on cache-based architectures:

• Smoothness: The search space is rough for cache-based
machines due to the repetitive characteristic of conflict
misses. If a subblock is copied to a contiguous region,
the search space becomes much smoother due to re-
duced self-interference misses. For software-managed
memory hierarchies, the search space is smooth with
high-frequency components due to alignment issues.

• Sensitivity to the tunable shape: Memory bandwidth
saturates at the cache line size for cache-based ar-
chitectures, but on software-managed memory hierar-
chies, the achieved bandwidth of bulk transfers still
scales up at 1K bytes. This often requires tunables
affecting the transfer size to be larger than other tun-
ables on software-managed memory hierarchies. We
say the performance is more sensitive to the tunable
shape for software-managed memory hierarchies than
for cache-based architectures.

• Closeness to the search boundary: Due to conflict misses
on cache-based architectures, only a small portion of
the cache capacity is utilized when achieving the best
performance. However for machines with software-
managed memory hierarchies, the best tunable values
are often close to the capacity boundary.

283

Figure 11: Exhaustive Search of Matrix-Vector Mul-

tiply Code

heuristic search. PHiPAC[10] is a methodology for

developingHigh-Performance linear algebra libraries

in ANSI C. It searches for the optimal block sizes

starting from register level (L0 cache), then L1 cache,

L2 cache, and so on. A random search strategy is

used for searching the L0 search space and a sim-

ple heuristic-based search is used for the other levels.

ATLAS[8, 9] is an empirical tuning system, which

generates an optimized BLAS library. ATLAS first

bounds the search space based on hardware informa-

tion detected by microbenchmarks. It then uses an

orthogonal search, which starts with an initial set of

parameters and searches for the optimal value for one

parameter at a time and keeps the rest unchanged. Af-

ter each one-dimensional linear search, the selected

parameter value will be preserved. FFTW[11] gen-

erates a highly optimized library for computing the

discrete Fourier transform (DFT). Its search strategy

is called dynamic programming, which takes advan-

tage of the recursive nature of the problem and so-

lutions of smaller problems can be used to construct

solutions of larger problems. SPIRAL[20] generates

highly optimized code for a broad set of digital sig-

nal processing transforms. It uses dynamic program-

ming primarily, but when that fails, it has several

other methods to fall back on (e.g. genetic algorithms

and random search). However, our goal is to develop

a generic search strategy that is effective for a vari-

ety of different applications. From our initial experi-

ments with ATLAS and the Generic Code Optimiza-

tion system, we have found that the simplex method

converges relatively fast and produces good results

for both.

7 Conclusion

Empirical optimization has been shown to be an ef-

fective technique for optimizing code for a particular

platform. Since the search heuristic plays such an im-

portant role in the system, existing empirical tuning

software such as ATLAS [8, 9], PHiPAC [10], and

FFTW [11] each have their own search strategy. Our

research provides a generic way to search for the op-

timal parameters and it could be extended to Direct

Search Methods such as pattern search methods and

methods with adaptive sets of search directions [21].

This paper has demonstrated the effectiveness

of the simplex search strategy with ATLAS and the

Generic Code Optimization system, but in the future,

we would like to evaluate its effectiveness with other

tuning systems. Also, while the GA approach did not

turn out to be as effective, it has the advantage of be-

ing naturally parallellizable. We are planning to im-

plement a parallel version of the GA to be run on a

cluster of identical machines.

References

[1] Gordon E. Moore. Cramming More Com-

ponents onto Integrated Circuits. Electronics,

38(8):114–117, 19 April 1965.

[2] Randy Allen and Ken Kennedy. Optimizing

Compilers for Modern Architectures. Morgan

Kaufmann Publishers, 2002.

[3] David A. Padua and Michael Wolfe. Advanced

Compiler Optimizations for Supercomputers.

Commun. ACM, 29(12):1184–1201, 1986.

[4] Qing Yi, Ken Kennedy, Haihang You, Keith

Seymour, and Jack Dongarra. Automatic Block-

ing of QR and LU Factorizations for Locality.

In 2nd ACM SIGPLAN Workshop on Memory

System Performance (MSP 2004), 2004.

[5] Robert Schreiber and Jack Dongarra. Automatic

Blocking of Nested Loops. Technical Report

CS-90-108, Knoxville, TN 37996, USA, 1990.

[6] Kathryn S. McKinley, Steve Carr, and Chau-

Wen Tseng. ImprovingData Locality with Loop

Transformations. ACM Trans. Program. Lang.

Syst., 18(4):424–453, 1996.

7

 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

 0
 5

 10
 15

 20
 25

 30
 35

 1
 2
 3
 4
 5
 6
 7
 8

Runtime

Parameter Interaction (Tiling and Unrolling for MM, N=800)

Tile Size

Unroll Amount

Runtime

Figure 1. Parameter Search Space for Tiling and Unrolling (Figure is easier to see in color).

three categories: automatically-generated libraries,
compiler-generated code and application-level param-
eters exposed to auto-tuning environments. Thus, ap-
plications of the future will demand a cohesive envi-
ronment that can seamlessly combine these different
kinds of auto-tuning software and that employs scal-
able empirical search to manage the cost of the search
process.

In this paper, we take an important step in the
direction of building such an environment. We be-
gin with Active Harmony [8], which permits applica-
tion programmers to express application-level param-
eters, and automates the process of searching among
a set of alternative implementations. We combine
Active Harmony with CHiLL [5], a compiler frame-
work that is designed to support convenient auto-
matic generation of code variants and parameters
from compiler-generated or user-specified transforma-
tion recipes. In combining these two systems, we have
produced a unique and powerful framework for auto-
tuning compiler-generated code that explores a richer
space than compiler-based systems are doing today and
can empower application programmers to develop self-
tuning applications that include compiler transforma-
tions.

A unique feature of our system is a powerful paral-
lel search algorithm which leverages parallel architec-
tures to search across a set of optimization parameter
values. Multiple, sometimes unrelated, points in the
search space are evaluated at each timestep. With this
approach, we both explore multiple parameter inter-
actions at each iteration and also have different nodes
of the parallel system evaluate different configurations
to converge to a solution faster. In support of this

search process, CHiLL provides a convenient high-level
scripting interface to the compiler that simplifies code
generation and varying optimization parameter values.

The remainder of the paper is organized into five
sections. The next section motivates the need for an ef-
fective search algorithm to explore compiler generated
parameter spaces. Section 3 describes our search algo-
rithm, which is followed by a high-level description of
CHiLL in section 4. In section 5, we give an overview
of the tuning workflow in our framework. Section 6
presents an experimental evaluation of our framework.
We discuss related work in section 7. Finally, section
8 will provide concluding remarks and future implica-
tions of this work.

2 Motivation

Today’s complex architecture features and deep
memory hierarchies require applying nontrivial opti-
mization strategies on loop nests to achieve high per-
formance. This is even true for a simple loop nest
like Matrix Multiply. Although naively tiling all three
loops of Matrix Multiply would significantly increase
its performance, the performance is still well below
hand-tuned libraries. Chen et al [7] demonstrate that
automatically-generated optimized code can achieve
performance comparable to hand-tuned libraries by us-
ing a more complex tiling strategy combined with other
optimizations such as data copy and unroll-and-jam.
Combining optimizations, however, is not an easy task
because loop transformation strategies interact with
each other in complex ways.

Different loop optimizations usually have different

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 24, 2009 at 21:05 from IEEE Xplore. Restrictions apply.

(a) (b)

(c)

Figure 5.12: Illustrations of the complexity of the optimization functions faced by general

purpose auto-tuners. These are three different applications from three different publications

(a) 2D convolution [RPH+08], (b) Matrix-vector multiplication [YSD06], (c) Matrix-matrix

multiplication [TCC+09].

142

JOTA: VOL. 113, NO. 1, APRIL 2002 13

Fig. 1. Trial points from the Nelder–Mead algorithm (left) and the pseudo-expand point from
the ghost simplex for the modified Nelder–Mead algorithm (right).

Figure 1 shows the positions of the standard Nelder–Mead points (left-hand
image) and those arising from the ghost simplex (right-hand image) for a 2-
dimensional simplex x0 , x1 , x2 .

Hence, if sufficient descent is not forthcoming from a Nelder–Mead
iteration a frame can be completed by assuming a fictitious history for the
algorithm. If the pseudo-expand point yields sufficient descent, then the
algorithm continues with another Nelder–Mead step; otherwise, the frame
is quasiminimal and the algorithm shrinks the frame and may also reorient
the frame.

Algorithm 3.1.

Step 1. Let mGjG1, and choose the initial simplex. Choose
ûH1, NH0, κH1, hH0. Set f (0)

n GS. Let (GNhν.
Step 2. While f (jA1)

n Af (j)
n H(and the stopping conditions do not

hold, execute iterations of the Nelder–Mead method without
shrinks, and increment j after each iteration.

Step 3. If the basis violates (2) or (5), reshape the basis. Set jGjC1.
Step 4. Calculate x(j)

p and f (j)
p .

Step 5. Repeat the following steps until a frame that is not quasimini-
mal is found:
(a) Set z(m)Gx(j)

0 and increment m.
(b) If the basis has not been reshaped, reshape the basis;

otherwise, set hGh!κ , set (GNhν, and reverse the basis
directions.

(c) Set jGjC1. Calculate the function values on the new
frame.

OPTIMIZATION BY DIRECT SEARCH 429

v
0

v
1

v
2

v
r

c

(a)

v
0

v
1

v
2

c

(b)

Fig. 4.2 Examples in R2 of both (a) the single possible step for the simplex algorithm of Spendley,
Hext, and Himsworth and (b) the four basic steps for the Nelder–Mead simplex algorithm.

The simplex algorithm of Nelder and Mead [194] is a variation on this basic idea
that allows, in effect, a simple line search of the form vn + α(c − vn), with a set
of four possible choices for α. Typical choices are α ∈ { 1

2 , 3
2 , 2, 3}, as illustrated

in Figure 4.2(b); see Lagarias et al. [164] for a particularly careful and complete
description of the Nelder–Mead simplex algorithm. The line search has the effect of
allowing the shape of the simplex to deform (for any choice of α other than 2), which
is touted as a feature that allows the simplex to adapt to the local topology of the
function, hence references to this algorithm as the adaptive simplex method.

While these two simplex algorithms are classical direct search methods, neither is
a GSS method. These two simplex methods search along the single search direction
(c − vn). Further, both these methods enforce only simple decrease, but in a sense
that is subtly different from the definition of simple decrease defined in (2.3) and
used in Step 2 of Algorithm 3.2, since their step acceptance condition requires simple
decrease in f at the vertex in the simplex with the second highest function value vn−1,
not at the vertex in the simplex with the lowest known function value (denoted v0).
Thus both algorithms only ensure improvement of the function value at the sequence
of worst vertices, but it is the sequence of best vertices (i.e., those with the lowest
function value) that ultimately is of interest. As an interesting aside, the Nelder–
Mead simplex algorithm in R1 can be restated as a GSS method. Since in this special
case v0 serves both as the centroid of the opposite face and as the vertex with the next
highest function value, in effect the search is along two directions (a positive basis in
R1) from v0, and any improvement in the function value is with respect to f at v0.
An alternative proof for this special case, under different assumptions on f , is given
in [164].

McKinnon [179] constructed a family of functions in R2 which demonstrates that
the Nelder–Mead simplex algorithm can fail to converge to a stationary point of f ,
even if the family is parameterized so that f is strictly convex and has up to three
continuous derivatives. Key to the failure McKinnon demonstrates is the ability to
deform the simplex. Repeated deformations can cause the sequence of simplices pro-
duced by the Nelder–Mead simplex algorithm to converge to a degenerate simplex.
Notice in Figure 4.2 that choosing α = 1

2 (a so-called inside contraction) replaces
vn with a vertex that moves closer to c. In McKinnon’s examples, the Nelder–Mead
simplex algorithm repeatedly chooses α = 1

2 (only) and the simplices converge to a
straight line that is orthogonal to the steepest descent direction and have interior
angles which tend to zero (i.e., the simplices collapse along the steepest descent di-

OPTIMIZATION BY DIRECT SEARCH 429

v
0

v
1

v
2

v
r

c

(a)

v
0

v
1

v
2

c

(b)

Fig. 4.2 Examples in R2 of both (a) the single possible step for the simplex algorithm of Spendley,
Hext, and Himsworth and (b) the four basic steps for the Nelder–Mead simplex algorithm.

The simplex algorithm of Nelder and Mead [194] is a variation on this basic idea
that allows, in effect, a simple line search of the form vn + α(c − vn), with a set
of four possible choices for α. Typical choices are α ∈ { 1

2 , 3
2 , 2, 3}, as illustrated

in Figure 4.2(b); see Lagarias et al. [164] for a particularly careful and complete
description of the Nelder–Mead simplex algorithm. The line search has the effect of
allowing the shape of the simplex to deform (for any choice of α other than 2), which
is touted as a feature that allows the simplex to adapt to the local topology of the
function, hence references to this algorithm as the adaptive simplex method.

While these two simplex algorithms are classical direct search methods, neither is
a GSS method. These two simplex methods search along the single search direction
(c − vn). Further, both these methods enforce only simple decrease, but in a sense
that is subtly different from the definition of simple decrease defined in (2.3) and
used in Step 2 of Algorithm 3.2, since their step acceptance condition requires simple
decrease in f at the vertex in the simplex with the second highest function value vn−1,
not at the vertex in the simplex with the lowest known function value (denoted v0).
Thus both algorithms only ensure improvement of the function value at the sequence
of worst vertices, but it is the sequence of best vertices (i.e., those with the lowest
function value) that ultimately is of interest. As an interesting aside, the Nelder–
Mead simplex algorithm in R1 can be restated as a GSS method. Since in this special
case v0 serves both as the centroid of the opposite face and as the vertex with the next
highest function value, in effect the search is along two directions (a positive basis in
R1) from v0, and any improvement in the function value is with respect to f at v0.
An alternative proof for this special case, under different assumptions on f , is given
in [164].

McKinnon [179] constructed a family of functions in R2 which demonstrates that
the Nelder–Mead simplex algorithm can fail to converge to a stationary point of f ,
even if the family is parameterized so that f is strictly convex and has up to three
continuous derivatives. Key to the failure McKinnon demonstrates is the ability to
deform the simplex. Repeated deformations can cause the sequence of simplices pro-
duced by the Nelder–Mead simplex algorithm to converge to a degenerate simplex.
Notice in Figure 4.2 that choosing α = 1

2 (a so-called inside contraction) replaces
vn with a vertex that moves closer to c. In McKinnon’s examples, the Nelder–Mead
simplex algorithm repeatedly chooses α = 1

2 (only) and the simplices converge to a
straight line that is orthogonal to the steepest descent direction and have interior
angles which tend to zero (i.e., the simplices collapse along the steepest descent di-

Tabatabaee et al [19]. Although the original PRO algo-
rithm can effectively deal with high-dimensional search
spaces with unknown objective functions, there are two
main differences between the type of search PRO was
designed for and the type of search we want to con-
duct. First, PRO was designed for online tuning of
SPMD-based parallel applications while our approach
needs an offline search. Secondly, Tabatabaee et al only
looked at (hyper) rectangular search spaces instead of
the more general parameter space used in our com-
piler optimization. In addition, we modified the initial
simplex construction method to better suit our goal of
using all available parallelism. We describe each mod-
ification in detail later in this section. We will refer to
the modified algorithm as PRO-C (PRO for Compiler
Optimization).

The parameter tuning algorithm is given in Algo-
rithm 1. For a function of N variables, PRO-C main-
tains a set of kN points forming the vertices of a sim-
plex in an N -dimensional space. Each simplex trans-
formation step3 (lines 5, 8 and 15) of the algorithm gen-
erates up to kN −1 new vertices by reflecting, expand-
ing, or shrinking the simplex around the best vertex.
After each transformation step, the objective function
value, f , associated with each of the newly generated
points are calculated in parallel. The reflection step
is considered successful if at least one of the kN − 1
new points has a better f than the best point in the
simplex. If the reflection step is not successful, the
simplex is shrunk around the best point. A successful
reflection step is followed by expansion check step (line
9). If the expansion check step is successful, the ex-
panded simplex is accepted. Otherwise, the reflected
simplex is accepted and the search moves on to the
next iteration. A graphical illustration for reflection,
expansion and shrink steps are shown in Figure 2 for a
2-dimensional search space and a 4-point simplex. In
the remainder of this section, we describe the modifi-
cations that we made to the original PRO algorithm
to make it suitable for searching compiler generated
parameter spaces.

3.1 Parallelizing Expansion Check Step

Recall that each simplex transformation step gen-
erates up to kN − 1 new vertices. The time required
to complete the parallel evaluation of these new ver-
tices is the time taken by the worst performing vertex.
The decision to introduce the expansion-check step in

3Each simplex transformation is considered to be a search-

step within one search iteration. One iteration of the search
algorithm consists of all the simplex transformations that happen
between successive reflection steps.

Figure 2. Simplex Transformation steps.

PRO was motivated by the observation that there are
some expansion points with very poor performance.
For online tuning of SPMD-based parallel applications,
such configurations slow down not only the search but
also the execution of the application itself. To avoid
these time consuming instances, before evaluating all
expansion points, PRO first calculates the expansion
point performance of only the most promising case4 at
the expense of parallelism. If the expansion checking
step is successful, the algorithm performs expansion
of other points in the simplex. Assuming we have kN
nodes available, each iteration of PRO, therefore, takes
at most three search steps (reflection, expansion check
and expansion).

In an offline parallel search, however, processors par-
ticipating in the search are independent, which allows
us to take full advantage of the underlying parallelism
while still avoiding expansion points with poor per-
formance. To that end, PRO-C evaluates all expan-
sion points and the decision to accept or reject the
expanded simplex is based on the performance of the
most promising case. If the performance reported by
the most promising case is worse than that of the best
point in the reflected simplex, our system sends a sig-
nal to all the other processors to stop the evaluation of
their candidate configurations and accepts the reflected
simplex. The expansion of the simplex is accepted if
the performance of the most promising case is better
than the best vertex in the reflected simplex. With
this modification, we not only reduce the number of
steps within one iteration of the search algorithm to at

4Most promising point is the point in the original simplex
whose reflection around the best point returns a better function
value.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 24, 2009 at 21:05 from IEEE Xplore. Restrictions apply.

(a)

(b) (c)

Figure 5.13: Direct search methods choose the next configuration to test by starting from

the best found so far and moving in some direction based on the value of other configurations

using geometrically complex patterns. Here are illustrations of the kinds of patterns used

from three different publications (a) [PCB02], (b) [KLT03], (c) [TCC+09].

143

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

1.39

1.16

1.38

0.29

0.77
0.93

0.37

0.34

0.83

0.40

1.32

0.42

0.43

1.89
1.15

0.60

1.

0.05

1.51

1.58

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

1.39

1.16

1.38

0.29

0.77
0.93

0.37

0.34

0.83

0.40

1.32

0.42

0.43

1.89
1.15

0.60

1.

0.05

1.51

1.58

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

1.39

1.16

1.38

0.29

0.77
0.93

0.37

0.34

0.83

0.40

1.32

0.42

0.43

1.89
1.15

0.60

1.

0.05

1.51

1.58

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

1.39

1.16

1.38

0.29

0.77
0.93

0.37

0.34

0.83

0.40

1.32

0.42

0.43

1.89
1.15

0.60

1.

0.05

1.51

1.58

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

1.39

1.16

1.38

0.29

0.77
0.93

0.37

0.34

0.83

0.40

1.32

0.42

0.43

1.89
1.15

0.60

1.

0.05

1.51

1.58

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

1.39

1.16

1.38

0.29

0.77
0.93

0.37

0.34

0.83

0.40

1.32

0.42

0.43

1.89
1.15

0.60

1.

0.05

1.51

1.58

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8
-0.2

0

0.2

0.4

0.6

0.8

Figure 5.14: An example of an exotic search method from [MSBL98]. The concept is to

iteratively reduce the size of the subspace that is believed to contain the best configuration

by partitioning it with a single hyperplane. In each iteration a configuration is chosen to test

in the “good” subspace, and another hyperplane is drawn. The “good” convex polyhedron

is whittled down until it is small enough to test all configurations in it.

It seems that the most important reason for the popularity of direct search is that its

mathematical properties (like convergence) have been studied extensively. However, most

of the mathematical analyses start with the assumption that the function is smooth, which

is clearly not always the case in real world tuning applications.

More exotic search methods for auto-tuning have also been proposed, such as Q2

[MSBL98] (Figure 5.14). The Q2 search method iteratively reduces the size of the sub-

space in which the best configuration is believed to exist. It is hard to compare the quality

of these search methods, because every group doing auto-tuning work uses its own set of

benchmarks. I believe that research on auto-tuning methods would benefit enormously from

an effort to create an open, standard set of benchmarks.

In the absence of standard benchmarks and standard search methods, authors of new

general purpose auto-tuning methods often resort to comparing against different versions of

their own methods and very simple methods, like purely random searching. Some examples

of these kinds of evaluations can be seen in Figure 5.15.

Auto-tuning is computationally expensive because the program being tuned must be

144

(c)(b)

(a)

CONV2D SGEMM FFT3D SUmb
auto 99.6 137 42(57) 12.1

Cell hand 85 119 54
Cluster of auto 26.7 92.4 4.4(5.5) 2.2
PCs hand 24 90 5.5
Cluster of auto 20.7 33.4 0.57 0.63
PS3s hand 19 30 0.36

Table 3: Measured raw performance of benchmarks:
the tuning framework vs. hand-tuned version in
GFLOPS. For FFT3D, performance with fusion of
leaf tasks is displayed in parentheses.

Our approach attempts to maximize the utilization of
communication bandwidth by intelligently setting the values
of tunables and our fusion algorithm aims to reduce the fre-
quency of memory accesses and communication. Figure 11
shows the breakdown of execution time and the utilization
of communication bandwidth for our 4 applications across
3 platforms. On Cell, the sustained bandwidth is the total
execution time divided by number of bytes transferred be-
tween memory and LS. On both Cluster of PCs and Cluster
of PS3s, the sustained bandwidth is calculated as the total
execution time divided by number of bytes communicated
inter-node.

On Cell, CONV2D and SGEMM are compute bound and spend
97% of execution time running kernels. For compute limited
benchmarks, the only way to improve performance would be
to further tune the kernels. SUmb is bandwidth limited, wait-
ing on memory transfers 25% of the time, and it achieves
16.6GB/s, which is a high utilization of the memory band-
width, relative to the optimal DRAM throughput of our Cell
system (25.6GB/s). FFT3D strikes a balance between compu-
tation and memory. It spends 94% of execution time running
leaf tasks and 6% of time waiting on memory transfers. The
above 4 applications either fully utilize the SPEs’ arithmetic
resources or achieve a high sustained memory bandwidth.

On Cluster of PCs, the 4 applications spend between 10
and 42 percent of their time waiting for transfer operations
to finish. SGEMM is sufficiently compute intensive that it only
spends 10% of its time waiting on transfers, while the other
3 applications are limited by the interconnect performance.
FFT3D achieves the highest sustained communication band-
width (650 MB/s), while CONV2D has the lowest bandwidth
since it reads the boundary of a region from neighboring
nodes, causing remote transfers with small sizes.

On Cluster of PS3s, all 4 applications spend a significant
amount of time, between 63 and 95 percent, waiting for
transfers. So all applications are limited by transfer opera-
tions between M2 and M1. For each transfer operation from
a virtual level, a contiguous block is usually constructed for
the requested data at the destination node, with memcpys to
move the portion owned by the node and inter-node com-
munication to transfer data from remote nodes. Other than
the temporary data blocks, memory space is also required
at each node to store the owned portion of each distributed
array. The speed of GigE interconnect, the limited available
memory and the overhead of memcpys drive the transfers
between M2 and M1 slow.

6.2 Evaluation of the Tunable Space Search
To evaluate the performance of our search algorithm on

Cell, we use the best result from an exhaustive search on a
coarse grid as the baseline. The number of program evalua-
tions required by the exhaustive search is shown in the last
column of Table 4. On Cluster of PCs and Cluster of PS3s,

Number of Number of Number of
Tunable Groups Tunables Search Points
Per Level Per Level

FFT3D V1 6 15 361
FFT3D V2 5 12 363
SGEMM 1 3 6546
CONV2D 1 2 566
SUmb 13 39 486

Table 4: Search space properties. The last column
is the maximal number of search points across all
tunable groups on Cell.

0 5 10 15 20 25 30 35 40 45 50
40

50

60

70

80

90

100

of program evaluations

Re
la

tiv
e

Pe
rfo

rm
an

ce

Cell
Cluster of PCs
Cluster of PS3s

Figure 12: Convergence rate of our search algorithm
on Cell, Cluster of PCs and Cluster of PS3s.

the baseline is the best performance achieved by 50 evalua-
tions. Figure 12 shows that our search algorithm converges
quickly on Cell, 90% performance achieved in 6 evaluations.
On Cluster of PCs and Cluster of PS3s, we observe slower
convergence compared to targeting Cell. We believe it is
due to: First, the search spaces for these two targets, af-
ter pruned by the capacity constraints, are larger than the
search space on Cell; Second, the search space on Cell is
relatively smoother.

We also studied the performance of our search algorithm
on each tunable group. Even though there are 26 tunable
groups across our benchmarks, since some tunable groups
are from multiple instantiations of the same loop nest, only
19 tunable groups are unique. Figure 13 shows that after x
program evaluations, how many tunable groups (y) achieve
70%, 80%, 95% or 99% performance relative to the baseline.
Our search algorithm works well on Cell: in 14 evaluations,
all tunable groups achieve 85% performance and 16 out of
19 tunable groups achieve 99% performance. An additional
15 evaluations are needed for the other 3 tunable groups to
reach 99% performance.

We achieve good performance quickly on all three plat-
forms due to:

• the smoothness of the search space.

• the relative insensitivity to the problem size. Thus
less correlation is observed between tunable values at
a level and tunable values at its child level.

• the specialization of the search algorithm for software-
managed memory hierarchies, such as how to select the
initial point, how to set a non-square grid, and how to
handle the case that the current search point is close
to the boundary.

6.2.1 Comparison of Search Algorithms on Cell
The performance of random search is shown in Figure

14 and it makes progress at a much slower rate than our

288

Cell Cluster of PCs Cluster of PS3s
CONV2D

SGEMM
SUmb

FFT3D

CONV2D

SGEMM
SUmb

FFT3D

CONV2D

SGEMM
SUmb

FFT3D
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
so

ur
ce

 u
til

iza
tio

n
(%

)

Sustained BW, as percentage of 25.6GB/s (Cell), 700MB/s (Cluster of PCs), 50MB/s (Cluster of PS3s)
Runtime Overhead M1-M0 (Cell, Cluster of PCs) or M2-M1 (Cluster of PS3s)
Idle Waiting on Xfer M1-M0 (Cell, Cluster of PCs) or M2-M1 (Cluster of PS3s)
Execution of Tasks at M0 (Cell, Cluster of PCs) or M1 (Cluster of PS3s)

Figure 11: Utilization of communication bandwidth (left bar) and execution time breakdown (right bar).

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

of program evaluations

of
 tu

na
bl

e
gr

ou
ps

80% of max
85% of max
90% of max
95% of max
99% of max

Figure 13: Performance of our search algorithm
across tunable groups, on Cell.

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

of program evaluations

Re
la

tiv
e

Pe
rfo

rm
an

ce

our search
our search that starts at a middle point
our search with square grid
random search

Figure 14: Comparing different search algorithms
on Cell.

search algorithm. To achieve 80 percent performance, ran-
dom search requires only 3 evaluations for CONV2D, but
139 evaluations for one tunable group of SUmb.

To evaluate sensitivity to the initial point, an alternative
approach first finds the maximal square tunables, then the
value of each tunable is halved to get an initial point that is
in the middle of the search space. This alternative approach
is often used when empirically searching tile sizes on cache-
based architectures. We observe that with the alternative
approach more evaluations are required to achieve a certain
performance, as shown in Figure 14. Since the middle point

(Pa) often performs worse than the initial point (Pb) chosen
by our algorithm, it takes up to 12 evaluations to reach the
performance of Pb if we start the algorithm with Pa.

If we use a square grid, the search algorithm shows a
slower convergence. At coarse grid levels there are fewer
points with a square grid than with a non-square grid, thus
less progress is made at those levels.

6.3 Evaluation of the Integrated Fusion Algo-
rithm

FFT3D V1 FFT3D V2 SUmb
search-based 2.26 1.92 1.27

Cell model-based 2.26 1.92 1.20
Cluster of search-based 1.0 1.1 1.21
PCs model-based 0.9 1.1 1.16
Cluster of search-based 1.12 1.21 2.7
PS3s model-based 1.12 1.21 2.3

Table 5: Performance improvement with loop fusion
for FFT3D V1, FFT3D V2 and SUmb, compared to
without fusion.

We evaluate the model-based and search-based fusion al-
gorithms on SUmb, FFT3D V1 and FFT3D V2, since those are
the only applications that have multiple loop nests. Ta-
ble 5 shows the performance improvement gained by our
integrated fusion algorithm, with 30 points evaluated dur-
ing the tunable search and without fusion of leaf tasks. On
Cell a 2.26x performance is achieved for FFT3D V1, and we
see a performance improvement of 92 percent and 20 per-
cent for FFT3D V2 and SUmb respectively. The performance
of model-based fusion is close to that of search-based fusion,
which suggests that our profitability model is quite accurate.
A greedy pair-wise fusion algorithm that fuses the pair with
the biggest gain at each step does not guarantee optimal per-
formance. Global loop fusion can be formulated as a graph-
partitioning problem [18, 10], where loops are divided into
a sequence of partitions. Our profitability model targeting
software-managed memory hierarchies, and our extension to
handle multiple outermost loop levels are applicable to other
fusion methods.

The fusion algorithm on Cluster of PCs does not achieve
much performance gain, in fact, the performance degrades
for FFT3D V1. Since we do not explicitly model the cache of
each node as a machine level, there are cache interactions
that are not captured by our model-based fusion algorithm.

289

Performance on 8-core Intel

0

5000

10000

15000

20000

25000

 gemm-
small

 gemv-
small

 ger-
small

 gemm-
large

 gemv-
large

 ger-
large

Benchmarks

M
F

L
O

P
S

TA-default

annealing

hill-climb

random search

Performance on 4-core AMD

0

2000

4000

6000

8000

10000

 gemm-
small

 gemv-
small

 ger-
small

 gemm-
large

 gemv-
large

 ger-
large

Benchmarks

M
F

L
O

P
S

Fig. 3. Best performance achieved by different search algorithms

(hill-climb), and random search, to explore the optimization space of each bench-
mark. Table 2 shows the number of configurations tried by each search algorithm
when using both small and large matrices for each benchmark. Note that all the
generic algorithms (i.e., annealing, hill-climb, and random) have been forced
to terminate after evaluating 500 different configurations of the optimizations.
From Table 2, annealing is the only generic search algorithm that has converged
within 400 iterations (both hill-climb and random search algorithms have tried
the full 500 iterations). In contrast, all the TA searches have terminated before
reaching 400 evaluations. As a result, the TA searches have generally taken much
shorter tuning time than the other generic search algorithms.

From Figure 3, the TA search algorithm has performed similarly as or bet-
ter than all the other generic search algorithms in all cases except for gemm
using small (1002) matrices, where TA-default lags slightly behind annealing.
The results on both machines are fairly consistent. The performance comparison
among the three generic search algorithms are consonant with conclusions by
Seymoure et. al[18]. In particular, random search has performed reasonably well
except for gemv using small matrices, annealing has done mostly well except for
gemv-small and gemm-large, and hill-climb has performed well in some cases but
failed by a large margin in some others (e.g., gemv-large on the 8-core Intel).

Generic search algorithms are advantageous over optimization-specific ones
as they are more general and readily applicable to arbitrary contiguous spaces.
However, the lack of domain-specific knowledge about the search space could
seriously detriment their effectiveness when exploring the enormously complex
configuration space of heavily interacting optimizations. For example, since all
the annealing searches have converged within 350 iterations, the low performance
achieved is likely due to the search algorithm getting stuck at a local minimum.
On the other hand, the low performance by hill-climb was due to the search
spending too much within the same neighboring region (a histogram of visited
points revealed this pattern).

Our TA search algorithm is based purely on optimization-specific heuristics.
In particular, the algorithm completely ignores the local performance relations
between neighboring points. It strictly follows statically-determined heuristics to
explore the configuration space of each optimization in a pre-determined order,
and the tuning space is dynamic adjusted only in-between the tuning of different
optimizations. Therefore, the TA search is not affected by the local minima of the

Figure 5.15: Evaluating tuning methods for general purpose applications is hard; it is not

even clear what the best comparison metric is. (a) shows a comparison of the quality of the

best configuration found by different methods [GYQ10]. (b) shows the quality of the best

configuration found so far as a function of the number of tests [RPH+08]. This kind of data

can be important for judging how quickly different search methods approach the optimal

configuration. (a) and (c) show that researchers have not settled on a good baseline search

method. Completely (pseudo-)random testing is still a common point of comparison.

145

compiled and run with some test input tens or hundreds of times. Parallelizing this process

on a cluster of development machines could be an effective way to speed it up. However,

many search methods do not parallelize nicely; deciding which configuration to test next

depends on the results of testing all previously selected configurations. The method pro-

posed in [TTH09] is in the direct search style, but tests multiple configurations that are

geometrically related to the best found so far.

There has been some work on using auto-tuning methods on algorithms themselves, as

opposed to tuning a program to an architecture [ACW+09, AWC+10]. This work is relevant

to algorithms that can be tuned to have more or less accuracy or to converge more or less

quickly in a way that is input data-dependent. Tuning is used to adapt the algorithm to a

particular data set or class of data sets.

5.5 Tuning for coprocessor accelerators

Accelerators are substantially more complex than conventional processors in some ways.

They have many semi-independent processing elements that communicate over a non-

uniform network of some sort, many distributed on-chip memories, and nonstandard ex-

ternal memory interfaces. Moreover, these architectural complexities are exposed directly

to the low-level programmer or compiler.

To achieve high efficiency on most reasonably complex kernels, on-chip memory and I/O

resources must be used well. However, individual accelerators vary greatly in the size and

structure of their on-chip memory and I/O systems. Therefore, a kernel must be adapted

to the memory and I/O resources provided by a particular architecture. Auto-tuning is a

promising approach to doing this adaptation.

The most important difference between accelerators and conventional processors for the

purpose of auto-tuning is that accelerators have many hard constraints that must be met

for an application to work at all. Such constraints make tuning harder because they make

some configurations fail. Failing configurations have an undefined value for the application’s

quality function and most search algorithms have no natural mechanism to handle partially-

defined quality functions. Moreover, many of the highest quality configurations “just barely

fit”, that is, they are very close to failing configurations in natural representations of the

146

42

arcs, and they are typically added on the basis of intuitive notions of causality. In

Figure 3.2, for example, increasing the checkpoint interval typically leads to an

increase in the amount of data logged between checkpoints, and thus there is a

conditional arc from checkpoint int to MB per checkpt.

Arcs into decision nodes represent known information. If there is an arc from

C to D, the value of C is known when decision D is made. In Figure 3.2, for example,

the arc from log writes per sec to checkpoint int indicates that the value of the former

variable is available when the checkpoint interval is chosen. These arcs are referred

to as informational arcs.

If an influence diagram has multiple decision nodes, it must have at least one

directed path that includes all of these nodes. This restriction effectively requires

that the decisions be made sequentially, in the order in which they are encountered

on one of these directed paths.2 However, as noted by Nielsen and Jensen [Nie99],

there are cases in which a full temporal ordering of the decision nodes is not strictly

necessary. In particular, if Ci is the set of chance nodes whose values are known when

decision Di is made, two decision nodes D1 and D2 can be commuted whenever C1 =

C2. In such cases, either ordering of the decision nodes will produce the same optimal

policies.

2. Note that because an influence diagram cannot have any cycles, any directed path containing all of
the decision nodes must encounter them in the same order.

checkpoint int

log entr/MB aborts/s MB/checkpt time to rec

1000-5000 0-10 0-5 1.0 min

log entries

MB per

time to

checkpoint int
MB per checkpt 1 min 10 min 30 min ...
0-5 0.60 0.10 0.05 ...
5-10 0.15 0.17 0.15 ...
10-50 0.10 0.65 0.33 ...

P(MB per checkpt | 50 log writes/s, checkpt int)

1000-5000 0-10 5-10 2.5 min

...

E(time to rec | log entr/MB, aborts/s MB/checkpt)

1000-5000 0-10 10-50 8.3 min

Figure 3.2. An example of an influence diagram and its associated parameters. The structure
of the model is shown on the left-hand side of the figure. Also shown is an example of a portion of a
conditional probability table for one of the chance nodes (upper right) and a portion of the table of
expected values for a value node (lower right).

log writes
per sec

checkpt

recover

per MB

checkpt
overhead

...

aborts
per sec

.........

Figure 5.16: A different kind of tuning explored in [Sul03]. The goal is to discover the influ-

ence relationships between performance metrics of large complex applications, like relational

database management systems and web servers. This is the only existing tuning system we

are aware of that uses probabilistic or statistical methods in its tuning algorithms.

configuration space.

Another consideration for accelerators is that compiling an application for some archi-

tectures can take many hours. This is much more time than is expected in the conventional

processor context, and it has a direct impact on the amount of tuning that is tolerable. This

means that in order to be useful, auto-tuners for accelerators will need to find reasonably

good configurations very quickly.

Existing approaches to auto-tuning with constraints assume that simple—in many

cases linear—functions of the tuning parameters themselves can distinguish satisfactory

configurations from unsatisfactory configurations [KLT03]. However, the relationship be-

tween application-level tuning parameters (degree of loop unrolling, buffer size, . . .) and

architecture-level resources (registers, instruction memory, . . .) can be quite complex and

hard to predict without actually evaluating a configuration. This means that constraints

applied to application-level parameters either need to be quite conservative to avoid config-

urations that violate architecture-level constraints or the tuning system has to be designed

to handle configurations with no defined quality.

The new search method we designed and evaluate in the next chapter uses a probabilistic

147

framework to combine the desire to find high quality configurations with the desire to avoid

configurations that fail. We have found one other tuning system that uses a probabilistic

approach [Sul03]. However, that system is designed for a very different kind of tuning (Figure

5.16). The systems being tuned are operating systems and network servers, and the goal of

the tuning system is to discover, out of hundreds of factors, which actually influence each

other. In a sense this work is focused on discovering a reasonable space for tuning out of the

truly astronomical space of ways to tweak large, complex software systems. In performance

tuning of kernels for accelerators, we generally assume that a reasonable configuration space

is already defined.

148

Chapter 6

AUTO-TUNING FOR ACCELERATORS

All non-trivial applications for accelerators must be tuned or adapted to a particular

architecture to achieve the best performance. Accelerator architectures have distributed

resources like memories, registers, I/O ports and interconnect that need to be used efficiently.

In contrast to conventional processors, accelerators have few features like global caches,

branch predictors or reorder buffers that are designed to adapt to the needs of a program.

Getting the best performance out of a conventional processor sometimes requires tuning;

for accelerators it is almost always important. For programmability and portability it is

critical that we hide the exact sizes of these resources from programmers.

The major difference between tuning for conventional processors and tuning for acceler-

ators is that in accelerators there are many resources whose capacity is strictly limited. If

an application attempts to use more embedded memory than exists in an FPGA or DSP,

the application will simply fail. Failures are much less common for conventional proces-

sors, because resources like caches are generally designed with reasonably graceful dynamic

fallback mechanisms.

As discussed in the previous chapter, there are many strategies for tuning applications

to particular architectures. In this chapter I describe a semi-automatic empirical tun-

ing method where the programmer specifies the variables to tune (or tuning knobs) and

application-level optimization criteria. The compiler writer or architect supplies system-

specific resource constraint formulas. The tuning system automatically searches for con-

figurations that satisfy all constraints and have high quality according to the optimization

formula. Below I discuss the strengths of this approach compared to other tuning strategies,

in the context of accelerators.

Failures make auto-tuning more challenging because it is no longer sufficient to optimize

a single quality function. It is possible to define the quality of all failing configurations to

149

be “very low”. However, there are two important weaknesses to this simple approach to

failures:

• If a large portion of the configurations fail, it can be hard for a tuning search to find

any regions of the space where there are successes, because all failures are viewed as

equally bad.

• The highest quality configurations are often very close to failing configurations, be-

cause it is usually best to use up all the available resources without oversubscribing

them. So it is likely that smart auto-tuning algorithms for accelerators will spend a

lot of time exploring the border between successful and failing configurations. Under-

standing why some configurations fail can help the search choose better sequences of

configurations to test.

In this chapter I describe an auto-tuning system with two novel features:

• It is designed to simultaneously optimize a quality formula and avoid testing too many

failing configurations. Previous work implicitly assumes that all configurations have a

defined quality value. Our key technical innovation is that predictions about untested

configurations are made in terms of probabilities and probabilistic value distributions;

this allows multiple factors to be combined in a mathematically clean way.

• The system is integrated into a programming language. This is important in the

context of accelerators because the need for tuning is so common. Concurrently with

the development of tuning knobs in Macah a few similar proposals have been published

[YSY+07, ACW+09, HNS09, SPT09, ZHCC09, AWC+10].

The probabilistic framework for tuning has some additional benefits that are not neces-

sarily limited to accelerators. We will discuss these throughout the chapter.

6.0.1 Portability

Tuning applications to a single accelerator is a challenging problem, and providing effec-

tive automation for it is an important usability goal for accelerators. Solving the tuning

150

problem well also contributes to the goal of performance portability across different accel-

erator architectures. Portability is an extremely useful property of programming systems

and individual programs. The ability to develop a program on one platform, then rebuild

it on another with little or no additional engineering effort, saves time and money. Porta-

bility also contributes to freeing system designers and application developers to innovate

independently.

Portability across different kinds of accelerators (for example GPU to FPGA) is some-

thing that does not exist at all in current practice. Even porting between different vendors

of similar accelerators (for example, Altera to Xilinx or NVIDIA to ATI) generally requires

substantial manual effort. Porting to a later generation of a particular product is sometimes

supported, but often does not bring any performance benefit because the application does

not automatically scale up.

The reason for this portability gap is that engineers who choose to use an accelerator

are usually concerned with getting close to the best performance possible for their appli-

cation, and getting peak performance out of an accelerator requires fitting the application

to particular architectural capacities, like the embedded memory structure. An application

that is manually tuned to a particular architecture quite possibly will not work at all on a

different architecture, and almost certainly will not achieve peak performance.

Improving portability is one of the ways in which this dissertation contributes to bringing

accelerator programming to the C-level. One of the important differences between C and

less abstract languages is that a program developed in C on machine X should be a simple

recompile away from running reasonably well on machine Y.1 Not only do C programs

work correctly when recompiled on different machines, they also often perform well even if

the architectures in question have very different performance characteristics. This kind of

performance portability is an important part of the meaning of “C-level”.

The tuning system described in this chapter is a direct solution for the problem of

porting between accelerators of different capacities in a particular family. Porting between

different vendors or kinds of accelerators is a harder problem because in some cases there

1As long as the program is written in a portable style.

151

are kinds of resources present in one family that are totally absent in another. A simple

example is floating-point arithmetic which is extremely costly to implement on architectures

that do not support it natively. It is possible that the tuning ideas presented here can be

extended to cover these more challenging porting scenarios, but we have not investigated

that question deeply.

6.1 Overview of the tuning knobs method

There are four basic ingredients required to use the tuning knob system:

• A program with tuning knobs, as well as code to indicate what program features (like

run time) the system should record.

• A testing harness supplied by the programmer that the system will compile and run

in particular configurations.

• A real-valued optimization formula written by the programmer, with program features

as the variables and simple arithmetic like addition and multiplication. Also, the

programmer must indicate whether the system should search for high or low values of

the formula.

• A set of Boolean-valued constraint formulas, some of which are written by the pro-

grammer (e.g., energy consumed less than some application-defined limit) and some

of which are provided as part of the system implementation (e.g., memory usage less

than capacity of the target architecture).

From the programmer’s perspective, a tuning knob is a special kind of “constant” that

is defined to have a range of possible values instead of a particular value. Tuning knobs can

be used anywhere a constant is used, including as the size of an array.

The tuning process involves iteratively selecting and testing configurations until some

stopping criterion is met. The search algorithm has to make predictions about which

untested point is most likely to both have a good value for the optimization formula and

satisfy all the constraint formulas. One of the contributions of my work on tuning knobs

is the idea that probabilities and probabilistic distributions should be used to represent

predictions about the values of program features, the likelihood of meeting constraints, and

152

the likelihood of having a “good” value for the optimization formula. Casting the problem

in probabilistic terms is useful because we can use rich statistical math to combine many

competing factors.

Aside. The tuning system currently supports only tuning knobs that can take any int

value between a specified minimum and maximum. There are other kinds of knobs that

would be interesting extensions:

• float-valued (or double-valued) knobs are a straightforward extension that could be

implemented with very little change to the system.

• Knobs with an unordered set of possible values, which we call modal knobs or switches,

present a greater challenge to the system because it is much harder to say what the

relationship is between configurations that differ in the value assigned to a switch.

Switches can be simulated with a basic int knob by encoding each value as an in-

teger, but the value predictions during the search process might be very inaccurate.

Supporting switches is an interesting direction for future work.

• Constrained versions of any kind of knob can be supported using a constraint formula.

For example, consider an application with two knobs, N and M , where it does not

make sense for N to be greater than M . The knobs can be specified in the normal

way, and the programmer can provide an extra constraint formula, (N ≤ M). The

system will learn to not test configurations that violate the constraint.2

6.2 An example

To show how the Mosaic group uses tuning knobs in the applications we have developed,

we go through an iterative refinement of a finite impulse response (FIR) filter. We start

with a simple sequential version and then add in refinements that make the code more

accelerator-friendly.

Figure 6.1 shows a simple sequential FIR filter in Macah (or C). Each entry in the

output array (O) is defined to be the scaled sum of a window of the input array (I), with the

2Our tuning search algorithms are designed to handle the more challenging case of constraints that are
not simple combinations of the tuning parameters. It would be easy to add a special case for slightly more
efficient handling of the simpler constraints.

153

void fir1(int *I, int *O, int *C, int N, int NC)
{
  for (j = 0; j < N; j++) {
    O[j] = 0;
    for (k = 0; k < NC; k++) {
      O[j] += I[j+k] * C[k];
} } }

1
2
3
4
5
6
7

Figure 6.1: A simple sequential FIR filter.

void fir2(int *I, int *O, int *C, int N, int NC)
{
  for (j = 0; j < N; j++) {
    O[j] = 0;
    FOR (k = 0; k < NC; k++) {
      O[j] += I[j+k] * C[k];
} } }

1
2
3
4
5
6
7

Figure 6.2: FIR with an unrolled inner loop.

scaling coefficients given in C. The number of coefficients is NC, and the number of values to

compute is N. In order to avoid running off the end of the input array, we assume that I is

larger than O.

There is abundant potential parallelism in this application. All N × NC multiplications

are completely independent, and the N× NC additions can be broken up into N independent

reductions of size NC. In Macah we do not assume the system will automatically determine

how to exploit this parallelism, so the programmer has to provide more implementation

detail.

The first step in parallelizing this program for accelerators, illustrated in Figure 6.2, is

to request that the inner loop be completely unrolled. As long as the number of coefficients

is reasonably small, this is not a bad strategy. However, it is important to think about

where the data is going to be stored. In particular, the accesses to global data structures

inside the inner loop are problematic.

The next refinement, shown in Figure 6.3, is to declare extra buffer arrays to avoid

global data structure access in the inner loop. This refinement creates the awkward problem

that we want to declare buffers whose size is the number of coefficients, but the original

code had the number of coefficients as a parameter to the FIR function. We need the

154

#define NC ...

void fir3(int *I, int *O, int *C, int N)
{
  int Ib[^NC^], Cb[NC];
  for (int j=0; j<NC; j++) {
    Ib[j] = I[j];
    Cb[j] = C[j];
  }
  for (j = 0; j < N; j++) {
    int Ob = 0;
    FOR (k = 0; k < NC; k++)
      Ob += Ib[k] * Cb[k];
    O[j] = Ob;
    Ib <<= 1;
    Ib[NC‐1] = I[j+NC];
} }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

Figure 6.3: FIR with explicit local buffering.

number of coefficients to be defined at compile time to know if the buffer arrays can fit

in the workspace memory of the target architecture. It would be cleaner to use a meta-

programming mechanism like C++ templates,3 but to keep the focus on the main topic of

tuning knobs, we assume that NC is a globally defined constant.

The input buffer Ib is a shiftable array,4 which is a perfect fit for the FIR filter, because

all but one of the values from the input array that are used to compute output i are

used again to compute output i + 1. With these new buffer variables, we have some extra

bookkeeping code for initializing them (lines 6-9), moving data from and to the global data

structures (lines 14 and 16), and managing the movement of data within the workspace

memory (line 15). The important feature of this version 3 is that there are no longer any

accesses to the global data structures in the inner compute loop.

Next, we consider the case where the number of coefficients is quite large (say, tens

of thousands). Version 3 has a problem in this case, because the inner loop is unrolled

as many times as there are coefficients. If the number of coefficients is large, this will

create a program with an unreasonably huge amount of code. The solution to this problem,

presented in Figure 6.4 is to break the buffers up into banks and tile the inner loop into two

3. . . or something cleaner than C++ templates.

4See Section 3.3.6 for the definition of shiftable arrays.

155

#TuningKnob Banks int 1..1024
#define NC ...
#define CperB ((NC‐1)/Banks)+1
#define NC_round Banks * CperB

void fir4(int *I, int *O, int *C, int N)
{
  int Ib[Banks][^NC/Banks^];
  int Ob[Banks];
  int Cb[Banks][NC/Banks];
  for (j=0; j<Banks; j++) {
    for (k=0; k<CperB; k++) {
      int n = j * CperB + k;
      Cb[j][k] = n < NC ? C[n] : 0;
      Ib[j][k] = I[n];
    }
  }
  for (j = 0; j < N; j++) {
    FOR (b = 0; b < Banks; b++)
      Ob[b] = 0;
    for (k = 0; k < NC/Banks; k++) {
      FOR (b = 0; b < Banks; b++) {
        Ob[b] += Ib[b][k] * Cb[b][k];
    } }
    int o = 0;
    FOR (b = 0; b < Banks; b++) {
      Ib[b] <<= 1;
      Ib[b][CperB‐1] = IB[b+1][0];
      o += Ob[b];
    }
    O[j] = o;
    Ib[Banks‐1][CperB‐1] = I[j+Banks*CperB];
} }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Figure 6.4: Banking the buffers.

nested loops, one of which will be unrolled and one of which will not.

The input and coefficient buffers, declared on lines 9 and 11 respectively, are now two

dimensional arrays, and the assumption is that they will be partially scalarized5 into several

smaller arrays, each of which can be accessed independently. We assume that the banks of

the buffer arrays can be allocated into the distributed local memories in the target archi-

tecture. If the number of coefficients was so large that the buffers could not fit, additional

programming effort would be required to add an extra layer of shuffling data back and forth

between the local and global data structures.

The idea of banking an array for parallel access is a common one, and it always brings

with it the question of how many banks to use. This is where the tuning knob comes in.

5See Section 3.5.6 for a discussion of array scalarization.

156

#TuningKnob Banks int 1..1024
#TuningKnob AccPerB int 1..32
#define NC ...
#define CperB ((NC‐1)/Banks)+1
#define NC_round Banks * CperB

void fir5(int *I, int *O, int *C, int N)
{
  int Ib[Banks][^NC/Banks^];
  int Ob[Banks];
  int Cb[Banks][NC/Banks];
  for (j=0; j<Banks; j++) {
    for (k=0; k<CperB; k++) {
      int n = j * CperB + k;
      Cb[j][k] = n < NC ? C[n] : 0;
      Ib[j][k] = I[n];
    }
  }
  for (j = 0; j < N; j++) {
    FOR (b = 0; b < Banks; b++)
      Ob[b] = 0;
    for (k = 0; k < NC/(Banks*AccPerB); k++) {
      FOR (b = 0; b < Banks; b++) {
        FOR (k2=0; k2<AccPerB; k2++) {
          Ob[b] += Ib[b][k+k2] * Cb[b][k+k2];
    } } }
    int o = 0;
    FOR (b = 0; b < Banks; b++) {
      Ib[b] <<= 1;
      Ib[b][CperB‐1] = IB[b+1][0];
      o += Ob[b];
    }
    O[j] = o;
    Ib[Banks‐1][CperB‐1] = I[j+Banks*CperB];
} }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Figure 6.5: Multiple parallel accesses to each bank.

As you can see on line 1, the number of banks is not fixed in the program, but allowed to

range between 1 and 1024. On most accelerators this program will perform best when the

number of banks is roughly equal to the number of distributed memories in the architecture.

Instead of fixing that number into the program source itself, tuning knobs let us leave that

decision to the compiler.

This tuning knob also raises the critical issue of failures. On some systems it might not

be possible to allocate multiple arrays into a single memory, so if the number of banks is

greater than the number of memories available the program will not compile.

The final refinement addresses the issue of multiple parallel accesses to a single bank. The

code in Figure 6.5 shows one approach. This transformation is useful for reuse of distributed

157

embedded memories when the implementation does not support packing of multiple arrays

into a single hardware memory. This optimization is more implementation-specific than the

others we looked at, and is a good concrete example of the level of portability that we have

achieved with Macah. Tuning knobs and other language features make it relatively easy to

port Macah programs between architectures, as long as those architectures are within the

same family. There are more thoughts on the ease/difficulty of porting between different

kinds of accelerators in the conclusions chapter.

It is important to keep in mind that this kind of application refinement in Macah is

not a perfectly architecture-independent process. There are some assumptions in this code

about the structure of the memory system that may be more or less appropriate for different

accelerators. As mentioned in the introduction to this chapter, tuning knobs make porting

between different sizes of the same kind of architecture easy, but porting between different

kinds of architecture requires at least some careful forethought by the programmer, and

perhaps a modest amount of additional engineering effort for the port.

6.3 Context for accelerators

Given the potentially huge space of legal knob settings for a program, and the relatively

long time that compilation and testing for accelerators can take, it is important for a knob-

setting search procedure to be able to find good settings with only a very sparse sampling

of the whole space. To be concrete, the challenges are:

• Resource limits, like workspace memory size, interconnect resources, or instruction/

configuration storage, can result in certain settings failing to produce a score.

• Evaluating a single point can take minutes to many hours.

• Complex heuristics in toolchain and unrelated runtime system events can add a non-

trivial amount of noise to the quality measurements.

• Plateaus, which make it hard to decide on a search direction, are common because for

some knobs all values within certain sub-ranges are essentially equivalent.

• Local minima and maxima are common, and are a challenge for many optimization

strategies.

158

 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60 70 80

 0
 5

 10
 15

 20
 25

 30
 35

 1
 2
 3
 4
 5
 6
 7
 8

Runtime

Parameter Interaction (Tiling and Unrolling for MM, N=800)

Tile Size

Unroll Amount

Runtime

Figure 1. Parameter Search Space for Tiling and Unrolling (Figure is easier to see in color).

three categories: automatically-generated libraries,
compiler-generated code and application-level param-
eters exposed to auto-tuning environments. Thus, ap-
plications of the future will demand a cohesive envi-
ronment that can seamlessly combine these different
kinds of auto-tuning software and that employs scal-
able empirical search to manage the cost of the search
process.

In this paper, we take an important step in the
direction of building such an environment. We be-
gin with Active Harmony [8], which permits applica-
tion programmers to express application-level param-
eters, and automates the process of searching among
a set of alternative implementations. We combine
Active Harmony with CHiLL [5], a compiler frame-
work that is designed to support convenient auto-
matic generation of code variants and parameters
from compiler-generated or user-specified transforma-
tion recipes. In combining these two systems, we have
produced a unique and powerful framework for auto-
tuning compiler-generated code that explores a richer
space than compiler-based systems are doing today and
can empower application programmers to develop self-
tuning applications that include compiler transforma-
tions.

A unique feature of our system is a powerful paral-
lel search algorithm which leverages parallel architec-
tures to search across a set of optimization parameter
values. Multiple, sometimes unrelated, points in the
search space are evaluated at each timestep. With this
approach, we both explore multiple parameter inter-
actions at each iteration and also have different nodes
of the parallel system evaluate different configurations
to converge to a solution faster. In support of this

search process, CHiLL provides a convenient high-level
scripting interface to the compiler that simplifies code
generation and varying optimization parameter values.

The remainder of the paper is organized into five
sections. The next section motivates the need for an ef-
fective search algorithm to explore compiler generated
parameter spaces. Section 3 describes our search algo-
rithm, which is followed by a high-level description of
CHiLL in section 4. In section 5, we give an overview
of the tuning workflow in our framework. Section 6
presents an experimental evaluation of our framework.
We discuss related work in section 7. Finally, section
8 will provide concluding remarks and future implica-
tions of this work.

2 Motivation

Today’s complex architecture features and deep
memory hierarchies require applying nontrivial opti-
mization strategies on loop nests to achieve high per-
formance. This is even true for a simple loop nest
like Matrix Multiply. Although naively tiling all three
loops of Matrix Multiply would significantly increase
its performance, the performance is still well below
hand-tuned libraries. Chen et al [7] demonstrate that
automatically-generated optimized code can achieve
performance comparable to hand-tuned libraries by us-
ing a more complex tiling strategy combined with other
optimizations such as data copy and unroll-and-jam.
Combining optimizations, however, is not an easy task
because loop transformation strategies interact with
each other in complex ways.

Different loop optimizations usually have different

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 24, 2009 at 21:05 from IEEE Xplore. Restrictions apply.

Figure 6.6: A tuning space for a matrix multiplication kernel on some architecture. The

run time function is not generally smooth, which makes tuning a challenge. In particular,

there are flat “plateaus”, sharp “cliffs” and multiple “troughs” with near-optimal values.

(Graphic borrowed from [TCC+09].)

Figure 6.6 shows an example of the kinds of challenging shapes that are common in

auto-tuning.

To perform well, the search must balance three competing concerns:

1. The search should favor areas where there are likely to be high-value points.

2. The search needs to “intelligently” avoid over-testing in regions where the compilation

process or application is likely to fail.

3. The search should not completely avoid searching in areas of lower predicted value,

because hard to predict interactions between compiler, architecture and application

features can cause nonlinearities in the value function.

In other words, the desirability of some untested point is a function of three things: its

expected goodness value, the probability of it succeeding, and the confidence level of these

predictions.

6.4 The prominent alternatives

As described in the previous chapter, there are several methods for tuning applications to

particular target architectures:

159

• Mostly manual human effort

• Mostly automatic optimization by an aggressive transforming compiler

• Using domain knowledge to calculate parameter settings from an architecture/system

description of some kind

• Empirical auto-tuning

All of these methods are appropriate under certain circumstances. The strengths of

empirical auto-tuning make it a good choice for compiling C-like languages to accelerators.

We will consider some of the important weaknesses of the other methods for this task.

6.4.1 Mostly manual human effort

It is clearly possible for a programmer to tune an application to a particular architecture by

hand. Manual programmer effort has the obvious cost of requiring lots of human time, which

can be quite expensive. In particular, when programs have to be retuned by a human for

each architecture, it is not possible just to recompile an application when a new architecture

is released. So if portability is a concern, fully manual tuning is generally not the best choice.

6.4.2 Mostly automatic compiler optimization

Fully automatic optimization has the extremely desirable feature of not requiring any extra

tuning effort from the programmer. Purely static compiler optimization faces the daunting

challenge of not only adjusting the size of various loop bounds and buffers, but deciding

what higher-level transformations should be applied as well. There is little to no opportunity

for human guidance in this situation. The space of all possible transformations of even a

simple program can be intractably large, and decades of research on auto-parallelization so

far has not led to compilers that can reliably navigate this space well. In fact, as argued

by the authors of [CDG+06], the gap between vanilla code compiled by the best optimizing

compilers and hand-optimized code has grown over the years as architectures have become

more complex.

160

6.4.3 Using deterministic models

Deriving application-level parameters from architecture-level parameters with formulas like

“use half of the available memory for buffer X” are sometimes a good tradeoff between

human effort and application performance. However, the more complex the application and

architecture in question, the more complex these relationships are. Even the interactions

between two levels in a memory hierarchy can be complex enough to produce relationships

that are extremely hard to capture with formal models.

Another approach that fits in this category and is reasonably common in the FPGA space

is writing a “generator” (usually in some scripting language) that takes a few parameters

and produces an implementation tuned to the given parameters.

6.4.4 Empirical tuning

The space of empirical auto-tuners includes: (1) self-tuning libraries like ATLAS[WPD01],

PhiPAC[BACD97], OSKI[VDY05], FTTW[FJ05] and SPIRAL[PMJ+05]; (2) compiler-

based auto-tuners that automatically extract tuning parameters from a source program;

and (3) application-level auto-tuners that rely on the programmer to identify interesting

parameters. The tuning knob search developed in this chapter fits primarily into category

3, though our search methods could certainly be used in either of the other contexts.

6.5 How it works

In this section, we describe the most important features of the tuning knobs system in a

top-down style. There are many implementation details in the system, and many of them

have a number of reasonable alternative choices. We will explicitly point out what parts

are essential to the functioning of the system and what parts could be replaced without

fundamentally altering it.

In theory, at each step in the search process the algorithm is trying to find the untested

configuration c that maximizes the following joint probability formula:

P (c is the highest quality6 configuration ∩ c satisfies all constraints)

161

Analyzing the interdependence of the quality and constraint features of a tuning space

is hard given the relatively small amount of training data that auto-tuners typically have to

work with. There certainly are such interdependences, but we found in our experimentation

that it works reasonably well to assume that the two factors are completely independent.

With this independence assumption we can factor the joint probability into the product of

two simpler probabilities.

P (c is the highest quality configuration)×P (c satisfies all constraints)

A successful tuning algorithm must maintain a balance between focusing the search in the

areas that seem most promising versus testing a more evenly distributed set of configurations

to get a good sampling of the space. There is a nice technical trick that helps maintain

this balance, which is that instead of predicting the probability that a candidate is the very

highest quality, we predict the probability that the quality of a candidate is higher than

some target; how the target is adjusted is explained in Section 6.9.1.

P (quality(c) > qt)×P (c satisfies all constraints)

Next we consider how to compute the joint probability that a configuration satisfies

all constraints. Ideally, the system would be able to model the correlation between differ-

ent constraints and use them to predict the joint probability of satisfying all constraints.

Unfortunately, the small number of configurations that auto-tuning systems generally test

provide very little training data for these kinds of sophisticated statistical analyses. How-

ever, there are often strong correlations between different constraints, since most of them

relate to overuse of some resource, and a knob that correlates with one kind of resource con-

sumption often correlates with consumption of other kinds of resources. In our experiments

we found that using the minimum probability of success across all constraints worked well.

This is an optimistic simplification; if we assume instead that all constraints are completely

6For simplicity of presentation we assume that the optimization formula specifies that high values are
good.

162

independent, using the product of the individual probabilities would be appropriate.

P (quality(c) > qt)× Min
N∈constraints

(
P (c satisfies constraint N)

)

At each step in the tuning process, the system attempts to find the untested configuration

that maximizes this formula. This formula is complex enough that it is not clear that there

is an efficient way to solve precisely for the maximum. Instead our tuning algorithm chooses

a pseudorandom set of candidates, evaluates the formula on each one, and tests the one with

the highest probability.

To evaluate this formula, we need probabilistic predictions for the program features

that determine quality and constraint satisfaction. We call raw features, like the run time

or energy consumption of the program sensors. Sensors can be combined with arithmetic

operations to make derived features, like run time-energy product.

For each candidate point and each sensor, the tuning knob search algorithm produces a

predicted value distribution for that sensor at the given point. We use normal (Gaussian)

distributions, because as long as we assume that the features are independent, we can

combine normal distributions with arithmetic operations to produce predictions for the

derived features that are also normal. Derived features are discussed in more detail in

Section 6.7.

Aside. In our experiments, we made the simplifying assumption that a particular

configuration will always have the same values for its features (run time, memory use, . . .)

if it is compiled and tested multiple times. In other words, we assume that the features are

a deterministic function of the tuning parameters. This is clearly not true in all systems,

and accommodating random system variation is an interesting and important direction for

future work. It seems possible that probabilistic predictions, as implemented in the tuning

knob search, will be useful in the context of the random variation problem as well. Since

we already represent predictions for untested points as distributions, representing values for

tested points as distributions may not be a big challenge.

163

6.5.1 Hard to predict constraints

One of the trickiest issues left to deal with is deciding what the constraint formula should

be for some failure modes. The easy failures are those for which some program feature can

be used to predict failure or success, and it is possible to get a value for that feature for

both failed and successful tests. For example, the programmer can impose the constraint

that the program cannot use more than a certain amount of energy. Every test can report

its energy use, and these reported values can be used to predict the energy use of untested

configurations.

The harder failures are those for which the most logical feature for predicting the failure

does not have a defined value at all for failing tests. For example, consider an application

where some tuning knobs have an impact on dynamic memory allocation, and a non-trivial

range of configurations require more memory than is available in the system. It is possible

to record the amount of memory used as a program feature, but for those configurations

that run out of memory it is not easy to get the value we really want, which is how much

memory would this configuration have used if it had succeeded.

Another constraint of the nastier variety is compile time. Full compilation for FPGAs

and other accelerators can take hours or even days, and it can be especially high when the

resource requirements of the application are very close to the limits of the architecture. For

this reason it is common to impose a time limit on compilation. Like the memory usage

example, failing configurations do not tell us how much of the relevant resource (compile

time) would have been required to make the application work.

To compute predictions for the probability of satisfying the harder constraints, we use

proxy constraints that the programmer or compiler writer believes correlate reasonably well

with the “real” constraint, but for which it is possible to measure a value in both successful

and failed cases. An example of a proxy constraint from our experiments is the size of the

intermediate representation (IR) of a kernel as a proxy for hitting the time limit during

compilation. This is not a perfect proxy in the sense that some configurations that succeed

will be larger than some that cause a time limit failure. This imperfection raises the question

of what the IR size limit should be for predicting a time limit failure.

164

Constraint metric

Value for a
configuration
that did not
satisfy the
constraint

Value for a
configuration
that satisfied
the constraint

Set of values whose mean and variance
define the cutoff that will be used to
predict failure for this constraint

(a)

(b)

Cutoff distributions

Figure 6.7: Two examples of setting the cutoff value for some constraint. The portion of a

candidate’s predicted value that is less than the cutoff determines what its predicted prob-

ability of passing this constraint will be. Values of this metric for tested configurations are

represented as red x’s and blue o’s. Tested configurations that cannot be said to have passed

or failed this constraint (because they failed for some other reason) are not represented here

at all. Note that if there is some overlap in the constraint metric between cases that passed

and cases that failed, the cutoff will be a distribution, not a scalar value; this is fine: the

result of comparing two normal distributions with a greater-than or less-than operator can

still be interpreted as a simple probability.

To set the limit for constraint f with proxy metric p, we examine all tested points. If

a configuration failed constraint f , its value for metric p is recorded as a failed value. If a

configuration succeeded, or even got far enough to prove that it will not fail constraint f , its

value for metric p is recorded as a successful value. Configurations that failed in some other

way that does not determine whether they would have passed f or not are not recorded.

The failed and successful values are sorted, as indicated in Figure 6.7. The cutoff region

is considered to be everything from the lowest failed value up to the lowest failed value

that is higher than the highest successful value. In the special case of no overlap between

successful and failed values, the cutoff region is a single value. The cutoff is then computed

as the mean and variance of the values in the cutoff region. Since the system is already using

165

normal distributions to model the predictions for all real values, it is completely natural to

compare this distribution with the IR size prediction distribution to compute the probability

of hitting the compiler time limit.

There are many other strategies that could be used to predict the probability of a

candidate satisfying all constraints. For example, classification methods like support vector

machines (SVMs[SS01]) or neural networks could prove effective. The classical versions of

these methods produce absolute predictions instead of probabilistic predictions, but they

have been extended to produce probabilistic predictions in a variety of ways. Also, the

intermingling of successful and failing configurations (as opposed to a clean separation

between the classes) is a challenge for some conventional classification methods.

6.6 Probabilistic regression analysis

At the heart of the tuning knob search method is probabilistic regression analysis. Re-

gression analysis is the process of predicting values of a real-valued function (usually of a

multi-dimensional real space) given a potentially sparse set of training data. Probabilis-

tic regression analysis produces a predicted distribution, as opposed to a single particular

value. Classical regression analysis is a more heavily studied problem than the probabilistic

variant. However, there are a number of existing methods in the applied statistics and

machine learning literature, perhaps the hottest of which in recent years are methods based

on Gaussian processes (GPs[RW06]).

While probabilistic regression analysis is a well-studied problem in a variety of con-

texts, we are not aware of any auto-tuning algorithms that use it. The regression analysis

needed for auto-tuning is somewhat different from the conventional applications in predict-

ing natural processes. Most existing approaches to probabilistic regression require a prior

distribution, which is an assumption about the shape of the function before any training

points have been observed. These assumptions are usually based on some formal or informal

model of the system being measured. However, auto-tuners generally have no way to know

the shape of the function for some program feature.

We must, however, make some kind of assumptions about the underlying functions.

Without any assumptions, it is impossible to make predictions; any value would be equally

166

likely. We designed our own relatively simple probabilistic regression method based on

the assumption that local linear averaging and derivative projection are good guides for

predicting values of untested configurations.

Several of the subcomponents of the regression analysis developed here, such as distance-

weighted averaging in multidimensional space given a sparse set of data points, are them-

selves well studied problems with a diverse literature of good solutions. I have used existing

approaches to these subcomponents to make a regression analysis method that I believe

matches the needs of tuning knob searching well.

To keep it as clear as possible, the initial description of the complete tuning knob search

method uses simplistic implementations for some subcomponents. More sophisticated al-

ternatives are described in Section 6.9.

Throughout this section we use one-dimensional visualizations to illustrate the mathe-

matical concepts. The math itself generalizes to an arbitrary number of dimensions.

6.6.1 Averaging tested values

The first step in calculating a candidate’s distribution is a local linear averaging. For some

candidate point ~p, interp~p is the weighted average7 of the values of the points that are

neighbors of ~p, where the weight for neighbor ~n is the inverse of the distance between ~p and

~n. This model has two components that require definition: distance and neighbors.

Distance

The distance between two points is composed of individual distances between two settings

on each knob, and a method for combining those individual distances. For continuous and

discrete range knobs, we initially assume that the distance between two settings is just the

absolute difference between their numerical values. We will discuss scaling these numbers

in Section 6.9.5.

We combine the individual distances by summing them (i.e., we use the Manhattan

distance). Euclidean distance can be used as well; in our experiments, the impact of the

7Any weighted averaging method works (arithmetic, geometric, etc.); we used the arithmetic mean.

167

va
lu

e

knob

 Local linear
 interpolation

 Local linear
 derivative

Tested
configurations

Figure 6.8: A comparison of local linear averaging and derivative projection. Averaging is

“safe” in the sense that it never produces predictions outside the range of observed values.

However, plain averaging does not follow the trends in the data, and so produces predictions

that do not seem intuitively right when the tested values seem to be “pointing” in some

direction.

difference between Manhattan and Euclidean distances on final search effectiveness was

small.

Neighbors

There are many reasonable methods for deciding which points should be considered neigh-

bors of a given point. For the initial description, we will assume that a point’s neighbors in

some set are the k nearest points in that set, where we choose k to be 2 times the number of

tuning knobs (i.e. dimensions) in the application. The intuition for this k value is that if the

tested configurations are evenly distributed, most points will have one neighbor in each di-

rection. This definition of neighbors performed reasonably well in preliminary experiments,

but has some weaknesses. In Section 6.9.2 we give a more sophisticated alternative.

6.6.2 Derivative-based projection

Averaging is important for predicting the value of a function, but it does not take trends

in the training data into account at all, as illustrated in Figure 6.8. In order to take trends

168

in the data into account, we add a derivative-based projection component to the regression

analysis. In a sense, projection is actually serving two roles: (1) it helps make the predictions

follow our assumption that functions are piecewise linear; (2) it helps identify the regions

where there is a lot of uncertainty about the value of the function.

For each candidate point ~c we produce a separate projection from each of the neighbors

of ~c. We do this by estimating the derivative in the direction of ~c at each neighbor ~n. The

derivative estimate is made by using the averaging model to estimate the value of the point

ε distance from ~n in the opposite direction from ~c.

~d = ~n +
ε

dist(~c, ~n)
(~n− ~c)

We use the averaging model to calculate a value for ~d, which gives us a predicted derivative

at ~n.

derivative at ~n towards ~c =
value(~n)− interp(~d)

ε

Finally to get the value for ~c predicted from ~n we project the derivative back at ~c.

extrap(~c, ~n) = value(~n) + dist(~c, ~n)×derivative(~n,~c)

A useful property of this projection method is that it takes into account the values of

points farther from ~c than its immediate neighborhood; in a sense expanding the set of local

points that influence the prediction.

Figure 6.9 illustrates averaging between two tested points and derivative projection from

the same points. Three different values are generated for the candidate configuration (the

dotted vertical line); the mean and variance of these values become the predicted distribution

for this candidate for whatever feature we are currently working with.

6.6.3 Predicted distribution

The final predicted distribution for each candidate point ~c is the weighted mean and variance

of its distance-weighted average, and projected values from all its neighbors to compute

its predicted value distribution. The selection of the weights is important, and we use a

“gravitational” model, where the weight on each projected value is the square of the inverse

169

Interpolation

Extrapolation lines

Neighbor points

knob setting

va
lu

e Candidate point Values used to compute
mean and standard

deviation

Figure 6.9: The basic ingredients that go into the probabilistic regression analysis used in

the tuning knob search. The distribution for a given candidate configuration is the weighted

mean and standard deviation of the averaged value between neighboring tested points (black

line) and projected values from the slope at the neighbors (dashed blue lines).

distance from the neighbor that we used to calculate that projection (w~n = 1
dist(~p,~n)2

). The

weight on the averaged value is equal to the sum of the weights on all the projected values.

In other words, the averaging is as important as all of the projections combined. So the

complete set of weights and values used to compute the predicted distribution is:{(
(

∑
n∈neighbors

wn), interp(~c)
)}
∪

{(
wn, extrap(~c, ~n)

)∣∣n ∈ neighbors
}

Observe that the variance of this set will be large when the values projected from each of

the neighbors are different from each other and/or the averaged value.

Figure 6.10 shows what the predicted distributions would look like for the whole range

of candidates between two tested points.

6.6.4 Target quality

Initially we assume that the target is simply the quality of the best configuration found so

far; the high-water mark. Figure 6.11 illustrates how candidates’ quality predictions are

compared with the target. In this example, the highest quality tested point is not shown.

170

Mean

± 1 standard deviation

± 2 standard deviations

knob setting

va
lu

e

Figure 6.10: An illustration of the distributions that produced by the regression method

presented here. Notice that the variance is much higher farther away from tested points.

Also the slopes at the neighbors (blue lines) “pull” the mean line up or down. Finally, the

“best” configuration to test next depends on the relative importance given to high mean

quality versus large variance.

Sc
or

e

Knob setting

Distribution of
interpolated

and
extrapolated

values

High-water
mark

Probability of
better than the

high-water mark

Figure 6.11: An illustration of randomly selected candidate configurations (dotted vertical

lines), quality predictions for those configurations (normal distributions), the current target

(dashed line), and the probability of a candidate being better than the target (dark portions

of the distributions).

171

6.7 Derived features

An important part of the tuning knob search method is that predictions for sensors (features

for which raw data is collected during configuration testing) can be combined in a variety of

ways to make derived feature predictions. A very simple example of a derived feature is the

product of program run time and energy consumption. It is possible to compute a run time-

energy product value for each test point, and then run the regression analysis directly on

those values. However, by making predictions independently on the more primitive values

we can sometimes make significantly more accurate predictions.

A slightly more complex example of how derived features can be useful is an application

with two sequenced loops nested within an outer loop. We can measure the run time of

the whole loop nest as a single sensor, or we can measure the run time of the inner loops

separately and combine them into a derived feature for the run time of the whole loop nest.

If the adjustment of the tuning knobs in this application trade off run time of the two inner

loops in some non-trivial way, it is more likely that we will get good predictions for the

individual inner loops. The individual effects of the knobs on the inner loops are conflated

together in the run time of the whole loop nest, which makes prediction harder.

An example of a derived feature that is used in our experiments is the proxy metric

for compiler time limit violations. The proxy metric combines a number of measures of

intermediate representation size and complexity; each measure is predicted in isolation,

then the predictions are combined using derived features.

Each mathematical operator that we would like to use to build derived features needs

to be defined for basic values (usually simple) and distributions of values. The simplest

operators are addition and subtraction. The sum of two normal distributions (for example

the predicted run times for the two inner loops in our example above) is a new normal

distribution whose mean is the sum of the means of the input distributions and whose

standard deviation is the sum of the input standard deviations. This definition assumes

that the input distributions are independent, which is a simplifying assumption we make

for all derived features.

Multiplication and division are also supported operators for derived features. Unfortu-

172

nately, multiplying and dividing normal distributions does not result in distributions that

are precisely normal. However, as long as the input distributions are relatively far from

zero, the output distribution can be closely approximated with a normal distribution. We

use such an approximation, and it is currently left to the user (either the programmer or

the compiler writer) to decide when this might be a problem.

There are also comparison operators, like less-than and greater-than, that take normal

distributions as inputs and produce a single probability as an output. The probability of

a number drawn at random from distribution X being smaller than a number drawn at

random from distribution Y is (as usual, assuming independence):

P (X < Y) = P (X − Y < 0)

= P (Z < 0), where µZ = µX − µY and σZ = σX + σY

= P (Z ′ < µY − µX), where µZ′ = 0 and σZ′ = σZ

= P (Z ′′ <
µY − µX

σX + σY
), where Z ′′ is the standard normal distribution

The probability of a number drawn at random from the standard normal distribution being

below some given constant can be computed using standard methods.

Probabilities can be combined with Boolean operator features (AND, OR, . . .). For

example, the probability of the conjunction of two independent events is the product of the

probabilities of the individual events.

Finally, the tuning knob system has “aggregator” functions, like minimum and maxi-

mum, that are computed over all the configurations that have been tested so far. Aggregator

functions are essential for computing features like the quality high-water mark.

6.8 Complete basic tuning knob algorithm

The complete basic tuning knob algorithm is shown in Figure 6.12.

6.9 Enhancements

As described so far, the search method worked reasonably well in our preliminary experi-

ments, but we found a number of ways to improve its overall performance or its robustness.

173

1 Basic tuning knob search

2 Initialize T , the set of results, to empty

3 Select a configuration at random, test it, add results to T

4 while (termination criteria not met)

5 Compute quality target value

6 Do pre-computation for regression analysis (e.g. build neighborhood)

7 Repeat N times (100 in our experiments)

8 Select an untested configuration c at random

9 Perform regression analysis at point c for all sensors

10 Evaluate derived features at point c

11 pSuccess ← 1

12 ∀f ∈ failure modes

13 pSuccess ← min
(
pSuccess, P (feature linked to f)

)
14 score for c = P (quality(c) > target) × pSuccess

15 Test candidate with highest score, add results to T

Figure 6.12: The complete basic tuning knob search algorithm.

The main quantitative result in the evaluation section will show the large difference between

our search method with all the refinements versus using the approach that treats all failing

configurations as having a very low quality. Compared to the large difference between so-

phisticated and simplistic failure handling, the refinements in the following sections have a

relatively small impact. They are described here for completeness; quantitative evaluation

of their individual impacts is left to future work.

6.9.1 Target quality

Given a predicted quality distribution for each candidate in a set, it is not immediately

obvious which is the best to test next. This is true even if we ignore the issue of failures

entirely. Some distributions have a higher mean and smaller variance, whereas some have a

174

larger variance and lower mean. This is a question of how much “risk” the search algorithm

should take, and there is no simple best answer. The strategy we use is to compute the

probability that each candidate’s quality is greater than some target; in other words, the

likelihood that a value selected at random from a candidate’s quality distribution is higher

than the target.

The simplest method for choosing the target that worked well in our experiments is

using the maximum quality over all the successful configurations that have been tested so

far. There is no reason that the target has to be exactly this high-water mark, though,

and adjusting the target is a very effective way of controlling how evenly distributed the

set of tested points is. The evenness of the distribution of tested points is an interesting

metric because the ideal distribution of tested points is neither perfectly evenly distributed

nor too narrowly focused. Distributions that are too even waste many searches in regions

of the configuration space that are unlikely to contain good points. Distributions that are

too uneven run a high risk of missing good points by completely ignoring entire regions of

the space.

To keep the set of tested points somewhat evenly distributed the target is adjusted up

(higher than the high-water mark) when the distribution is getting too even and adjusted

down when the distribution is getting too uneven. Higher targets tend to favor candidates

that have larger variance, which are usually points that are farther from any tested point,

and testing points in “empty space” tends to even out the distribution.

There are many ways to measure the evenness of the distribution of a set of points. We

are currently using the coefficient of variation of the distances between all neighbor pairs.

The coefficient of variation of a set of numbers is the standard deviation of the set divided

by the mean. If the tested points are very evenly distributed, the coefficient will be close to

zero. If the points are very irregularly dispersed, the coefficient of variation will be close to

1. To take edge effects into consideration, the extreme corners of the space are included as

pseudo-points for the coefficient of variation calculation. Other ideas about how to compute

a coefficient of “uniformity” or “empty space” include [FLC03] and [JXHX02].

Two more concepts affect target quality adjustment. The first is the percentage of the

tested points that succeeded. The motivation for including this is that if too many tested

175

points are failing, one of the possible reasons is that the search is choosing candidates with

variances that are too high.

The last factor that goes into my target adjustment is the average across all the candidate

points of the standard deviation of their quality prediction. This may seems unnecessarily

byzantine; the point is just to get the target correction into the right units and the right

sort of scale to have an influence on which candidate is selected.

With this approach to adjusting the quality target the complete probability formula

becomes:

P (quality(c) > qt)× Min
N∈constraints

(
P (c satisfies constraintN)

)
qt = Max

t∈tested

(
quality(t)

)
+(

coefficient of variation(Distances between neighbor pairs)×
of successful tests

of tests
×

Avg
c∈candidates

(Standard deviation of quality prediction of c)
)

The motivation for exploring target adjustment was that in some of our early experiments

with the simple high-water mark, the distribution of tested configurations seemed far too

tightly clustered.

6.9.2 Neighborhoods

When the distribution of a set of points is fairly uneven, the simple k-nearest and radius δ

hypersphere definitions of neighbor pairs (illustrated in Figure 6.13) do not capture some

important connections. In particular, points that are relatively far apart but do not have

any points in between them might not be considered neighbors, because there are enough

close points in other directions.

To get a better neighbor connection graph, we use a method similar to the elliptical

Gabriel graph described in [PSC06]. Two points are considered neighbors as long as there

does not exist a third point in “region of influence” between them. There are many reason-

able options described in the cited paper for defining the shape of the region of influence.

Our implementation, for which there is pseudocode directly below, defines the region of

176

NMesh
v ðmÞZ fx2Vjðx;vÞ2Eg. NMesh

v ðmÞ can be regarded as the
set of points directly influencing v. However, a mesh structure
often distorts neighbor relations. In Fig. 2, comparing the three
vertices v1, v2, and v3 under similar condition, we can see big
differences in their valence and directional balance: (1) v1, v2,
and v3 have a valence of 4, 8, and 6, respectively, and (2) v3 has
directionally biased neighbors. Unbalanced neighbor set gives
harmful impact on the normal vector estimation as shown in
Fig. 13(d) and (e).

In this paper, we will present a new method for finding
neighbors considering both distance and directional balance
through an extension of a neighborhood graph.

Neighborhood graphs are briefly reviewed in Section 2.
Section 3 introduces the concept of iso-influence curve. Elliptic
Gabriel graph is defined and its properties are explored in
Section 4. The computation algorithms for EGG are shown in
Section 5. In Section 6, normal vector estimation methods are
explained, followed by experimental results and concluding
remarks.

2. Neighborhood graph

The neighborhood graph (also known as proximity graph)
of a given point set S is a graph with a vertex set of S and an
edge set that defines the neighbor relationship between
vertices. For a more formal definition of the term ‘neighbor-
hood graph’, readers are referred to [10]. Edges of a
neighborhood graph are defined by the influence region.
Given a pair of points p and q in S, let Ip,q denote the influence
region between p and q (Ip,q will be explained shortly). (p, q)
becomes an edge of the neighborhood graph if and only if
Ip,qhSZø. Depending on the definition of Ip,q, many kinds of
neighborhood graphs are possible.

The relative neighborhood graph (RNG) connects the two
points, p and q, if and only if:

distðp;qÞ%maxfdistðp;vÞ; distðq; vÞg for any v2S:

Let B(x, r) denote an open ball with radius r centered at x,
i.e. B(x, r)Z{yjdist(x,y)!r}. The definition of RNG implies
that the influence region for RNG is given by Ip,qZB(p,

dist(p,q))hB(q, dist(p,q)), as depicted by region (b) in Fig. 3.
In other words, a pair of points p and q becomes an edge of
RNG if and only if Ip,q contains no other points of S.

Gabriel graph (GG) can be defined similarly. GG connects
two points p and q if and only if:

distðp;qÞ%
ffi
dist2ðp;vÞCdist2ðv;qÞ

q
for any v2S:

This gives the influence region for GG as Ip,qZB((pCq)/2,
dist(p,q)/2), shown as region (a) in Fig. 3. GG is a sub-graph of
Delaunay triangulation (DT) due to the ‘empty circle’ property,
which states that any two points form an edge of DT if there is
an empty circle touching both of them [10,11].

Kirkpatrick and Radke [12] introduced a parameterized
neighborhood graph called b-skeleton, which has a shape
control parameter b for the influence region. GG is a (lune-
based) b-skeleton with bZ1, and RNG is also a (lune-based)
b-skeleton with bZ2. For more details on b-skeletons, readers
are referred to [12].

The RNG and GG for the point set of Fig. 4(a) are shown in
Fig. 4(b) and (c), respectively. Although the RNG and GG are
relatively easy to compute, the resulting graphs usually report
an insufficient number of neighbors for normal vector
estimation. The b-skeleton has a diverse range of potential
applications. Two typical application fields of the b-skeleton
are (1) external shape description, i.e. the boundary curve
reconstruction from point samples [11], and (2) internal shape
description, i.e. the inter-point connection computation and
pattern analysis of empirical networks in such fields as traffic or
communication systems [12]. To the best of our knowledge,

Fig. 1. Desirable and undesirable neighbors.

V1 V2
V3

Fig. 2. Undesirable neighbors with meshes.

Fig. 3. Influence regions of neighborhood graphs.

Fig. 4. Example of RNG and GG.

J.C. Park et al. / Computer-Aided Design 38 (2006) 619–626620

(a) (b) (c)

Figure 6.13: The mathematically simple methods for defining neighbor graphs can produce

unsatisfactory results. (a) illustrates the radius δ hypersphere method; (b) illustrates the

k-nearest method (with k=5). In both cases the set of neighbors is highly skewed. (c) shows

a more desirable neighbor graph. Graphic borrowed from [PSC06].

influence between two points as the intersection of two spheres around the two points and

an ellipsoid with the two points at the foci. The aspect ratio of the ellipse is defined by a

parameter (“ellipseConst”) that is set to 1.1 for all experiments. The distance constraints

are illustrated in Figure 6.14.

1 areNeighbors(x1,x2,points)

2 d1,2 = distance(x1, x2)

3 ∀x3 ∈ (points \ {x1, x2})

4 d1,3 = distance(x1, x3)

5 d2,3 = distance(x2, x3)

6 if
(
(d1,3 < d1,2) ∧ (d2,3 < d1,2) ∧ (d1,3 + d2,3 < ellipseConst× d1,2)

)
7 return false

8 return true

The näıve approach to building the neighborhood graph with this method scales badly

with the number of tested configurations. For every pair of configurations, every other

configuration must be checked to see if it is between, which makes the total running time

O(N3). We have run searches up to about 100 tests, and not found the neighborhood graph

building run time to be a problem. For scaling the tuning knob search up to larger numbers

of tested configurations, there are more efficient methods for building the graph given in

177

Figure 6.14: An illustration of how we compute whether some third point is between two

other points. A third point must lie in the intersection of the two circles and the ellipse to

be considered between the first two (hyperspheres and hyperellipse in N-dimensional space).

[LKSK08].

6.9.3 Boundary conditions

In early experimentation, the sensor predictions for configurations outside the convex hull

of tested points tended to have unreasonably high variance. To counteract this problem, we

add pseudoconfigurations outside the space of legal values by mirroring the actual tested

points across the boundary of the tuning knob space (not the convex hull of tested points).

For example, if there are two knobs with ranges [1,10] and [2,15] a real point at (7,11) will

have four mirrored points: (1-(7-1),11), (10+(10-7),11), (7,2-(11-2)), (7,15+(15-11)), which

equal (-5,11), (13,11), (7,-7), (7,19). These points are treated as regular training points by

the regression analysis, and they reduce the predicted variance of the predictions on the

periphery of the space.

6.9.4 Combining constraints, part II

In experimenting with this search system we found that there were situations where the

algorithm would test “too many” points that ended up failing for a particular reason, and

178

other situations where the algorithm would stay “too far away” from a region that had some

failures. To even out these imbalances we added a negative feedback loop mechanism to

the constraint probability calculations. The system keeps track of what percentage of all

tested points have failed because of violating each constraint. If this percentage is low, the

probability of failing for that reason is scaled down; if the percentage is high, the probability

is scaled up.

This mechanism allows the constraint prediction formulas to be only “relatively” accu-

rate rather than “absolutely” accurate. As long as the formula correlates reasonably well

with whether a point will actually violate a constraint or not, this feedback mechanism will

use the actual search data to scale up or down the actual probabilities to achieve a “good”

balance between testing successful and failing configurations. This makes the overall prob-

ability that a configuration is the best to test next:

P (quality(c) > qt)× Min
N∈constraints

(
SN

(
P (c satisfies constraintN)

))

SN (p) = p

(
1−Min

(
β,# points that violate constraint N

points tested

))
qt = Max

t∈tested

(
quality(t)

)
+(

coefficient of variation(Distances between neighbor pairs)×
of successful tests

of tests
×

Avg
c∈candidates

(Standard deviation of quality prediction of c)
)

The β cap helps the search perform reasonably in pathological situations, like early in a

search if all of the tested configurations failed for the same reason. In our experiments, β

is 0.9.

6.9.5 Distance scaling

Intuitively, not all tuning knobs are equally “important”. What this means for our search

process is that we want to be more “careful” to ensure that we get good distribution of

points in some dimensions than others. We could accomplish this goal by scaling up the

raw distances in the dimensions that we estimate are more important.

179

The way scaling works is that for each tested point, we want to get an estimate of the

derivative of the score function in each dimension. We do this by using distance-weighted

averaging to get an estimated value at points ±ε away from each tested point in that

dimension. The absolute difference between the predicted value (±ε away) and the actual

value of the tested point, divided by ε, gives a slope estimate for that dimension.

For each dimension (knob) we then average the slope across all the tested points to

get an average importance factor for that knob. From that time on, the distance in each

dimension gets scaled up by the ratio of that dimension’s importance factor to the least im-

portant dimension’s factor. Note that when using a neighborhood-based averaging method,

a point’s neighbors can change when the dimension scaling factors change. One could imag-

ine iterating the distance scaling process and the neighborhood determination process until

it reaches a fixed point, and no more neighborhood changes happen. We have found one

iteration to be sufficient.

6.9.6 Running multiple tests simultaneously

So far we have assumed that only one test runs at a time, and when it completes, a new

candidate point is selected. However, given the high computational demands of compilation

for some accelerators, some users will want to use a cluster of development machines to test

multiple points simultaneously.

In a production setting, adapting the search process for parallel tests is relatively easy.

Whenever a machine is free to test a new point, there will be a number of configurations

that have been selected but not completed yet. A reasonable approach to handling inflight

configurations is to assume that for every program feature, the point’s value is whatever

the mean of its prediction was when it started testing. Because the “ersatz score” of the

inflight points matched the model prediction perfectly, the variance for sensor predictions

near such points will be low, which discourages searching close to inflight points—a good

thing.

180

6.9.7 Adding randomness to candidate selection

The basic method of selecting the candidate configuration with the highest heuristic score

works reasonably well. However, no predictive model can be perfect, and all behave poorly

on some training data. As a defense against getting trapped in pathological situations,

we have experimented with adding an additional layer of randomness at the end of the

candidate selection process. After each candidate has been assigned a score, we could select

a candidate randomly, with higher scoring candidates given a higher probability of being

selected.

6.9.8 Termination criteria

The search process can terminate at any time (preferably after at least one successful config-

uration has been found!). Reasonable termination conditions include testing a fixed number

of points, testing for a fixed amount of wall clock time, testing until a certain number of

points have been tried without finding any improvement. All the experiments reported in

this chapter performed 50 tests per search.

6.10 Evaluation

Comparing the tuning knob search against existing auto-tuning approaches is problematic

because the main motivation for developing a new search method was handling hard-to-

predict failures, and we are not aware of any other auto-tuning methods that address this

issue. As evidence that our failure handling is effective, we compare the complete tun-

ing knob algorithm against the same algorithm, but with the constraint/failure prediction

mechanisms turned off. Points that fail are simply given the quality value of the lowest

quality configuration found so far.8

As a basic verification that the tuning knob search algorithm selects a good sequence of

configurations to test, we also compare against pseudorandom configuration selection. As

mentioned in the previous chapter, pseudorandom searching is a common baseline in the

8We also tried making the score for failing points lower than the lowest found so far. The results were
not significantly different.

181

auto-tuning literature. Other baselines that are used in some published results include hill-

climbing style searches and simulated annealing-style searches. These kinds of algorithms

could be combined with trivial failure handling, but we chose not to perform these compar-

isons because they would not shed light on the central issue of the importance of handling

failures intelligently.

Within the structure of the tuning knob search algorithm we can imagine investigating

the effectiveness of the core probabilistic regression analysis for sensors, and comparing it

with other regression methods. While this is an interesting direction for improvement of

the overall search performance, it is again secondary to the main issue of failure handling.

We leave such investigations of the regression analysis itself to future work.

We tested four applications written in Macah and targeted coarse-grained reconfigurable

arrays in the Mosaic infrastructure. The applications were chosen for their interesting use

of tuning knobs. To show that the tuning algorithm adapts to different architectures we

used four different specific architectures in the same family by varying two parameters: the

number of clusters (small or large) and the number of memories per cluster (few or many).

6.10.1 The applications

To give a sense for the shapes of the tuning spaces, below are plots of all the performance and

failure data gathered for each application. These plots include data from experiments with

many different search methods, so the distribution of tested configurations is not meaningful.

Each application has one plot for each architecture. The meaning of the symbols in the plots

are given in the following table. See Section 3.5 for a definition of initiation interval.

Symbol Meaning

Black dot Not tested

Green star Max initiation interval failure

Empty blue square Data memory or I/O failure

Red X Compiler timeout failure

Filled square Color indicates normalized quality (1 is best)

The finite impulse response (FIR) filter application, which was discussed in detail earlier

182

Performance; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Performance; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Performance; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Performance; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 6.15: Normalized performance and failure modes for the FIR filter. Orange/1 is the

highest performance setting; Black/0 is the lowest performance setting. Small/Large and

Few/Many refer to the architecture variants that we experimented with.

in this chapter, has a knob that controls the number of banks into which the coefficient and

input buffer arrays are broken. The more banks, the more distributed memories that can

be used in parallel. The second knob controls the number of accesses to each bank per

iteration. Performance should increase with increasing values of both knobs, because more

parallel arithmetic operations are available.

As you can see in Figure 6.15, both data memory and initiation interval failures are

common; more so in the smaller architectures. The number of memories clearly limits the

banks knob, which results in the large regions of failures on the right side of the plots for

183

Performance; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Performance; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Performance; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Performance; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 6.16: Normalized performance and failure modes for dense matrix multiplication.

Orange/1 is the highest performance setting; Black/0 is the lowest performance setting.

Small/Large and Few/Many refer to the architecture variants that we experimented with.

the smaller architectures. The number of parallel accesses to an array is limited by the

maximum initiation interval of the architecture, which creates the large regions of failure

toward the top of the plots. The larger architectures show an interesting effect, when both

knobs are turned up relatively high the compiler begins to hit the time limit because the

application is just too large to compile. This creates the jagged diagonal line of failures.

The dense matrix multiplication implementation has one level of blocking in both di-

mensions in the SUMMA style[vW97]. SUMMA-style matrix multiplication involves reading

stripes of the input matrices in order to compute the results for small rectangular blocks of

184

Performance; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Performance; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Performance; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Performance; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Figure 6.17: Normalized performance and failure modes for Smith-Waterman. Orange/1 is

the highest performance setting; Black/0 is the lowest performance setting. Small/Large

and Few/Many refer to the architecture variants that we experimented with.

the output matrix, one at a time. The tuning knobs control the size of the blocking in each

dimension.

Like FIR, the highest performance configurations are towards the top right of the plots,

but failures are a major factor. Notice that failing configurations are intermixed with

successful configurations, which would make it very hard to make a formal model to predict

precisely which configurations will fail.

The Smith-Waterman (S-W) implementation follows the common strategy of paralleliz-

ing a vertical swath of some width. One of the tuning knobs controls the width of the swath

and the other controls the number of individual columns that share a single array for the

table lookup that’s used to compare individual letters.

The S-W results show an interesting and counterintuitive effect: the range of tuning knob

185

settings that work is actually smaller on the larger architecture than it is on the smaller

architecture. The reason is that something about the S-W application is more challenging

for the backend of the compiler and the larger architecture puts more stress on placement

and routing, causing compilation to timeout in more cases.

The 2D convolution implementation has one knob that controls the number of pixels

it attempts to compute in parallel, and another that controls the width of the row buffer

(assuming that all of the rows do not fit in memory simultaneously). Of the applications and

configurations that we have tested, the convolution setup had one of the most challenging

shapes.

For all the applications, the highest quality configurations are directly adjacent to, and

sometimes surrounded by, configurations that fail. This supports the assertion that in

order to have any hope of finding the highest quality configurations a tuning method for

accelerators needs an approach to failure handling that is at least somewhat sophisticated.

For example, a search that had a strong preference for testing points far away from failures

would clearly not perform particularly well.

6.10.2 Results

The experimental validation of our tuning strategy involved performing tuning searches

for each of the application/architecture combinations with a particular candidate selection

method. The three main methods compared were the full tuning knob search, a purely

random search and the tuning knob search with the trivial approach to failures. In all cases

the termination criterion was 50 tested configurations. All the search methods have some

form of random behavior, so we ran each experiment with 11 different initial seeds; the

reported results are averages and ranges across all initial seeds.

Figure 6.19 shows the summary of the search performance results across all applications

and architectures. To produce this visualization, the data for each application/architecture

combination are first normalized to the highest quality achieved for that combination across

all experiments. For each individual search we keep a running maximum, which represents

the best configuration found so far by that particular search. Finally we take the average

186

Performance; Conv Small, Few

 20 30 40 50 60

Stripe width

 1
 4
 7

Pa
ra

lle
l o

ut
pu

ts

 0
 0.5
 1

Performance; Conv Small, Many

 20 30 40 50 60

Stripe width

 1
 4
 7

Pa
ra

lle
l o

ut
pu

ts

 0
 0.5
 1

Performance; Conv Large, Few

 20 30 40 50 60

Stripe width

 1
 4
 7

Pa
ra

lle
l o

ut
pu

ts

 0
 0.5
 1

Performance; Conv Large, Many

 20 30 40 50 60

Stripe width

 1
 4
 7

Pa
ra

lle
l o

ut
pu

ts

 0
 0.5
 1

Figure 6.18: Normalized performance and failure modes for 2D convolution. Orange/1 is

the highest performance setting; Black/0 is the lowest performance setting. Small/Large

and Few/Many refer to the architecture variants that we experimented with.

187

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

P
e
rf

o
rm

a
n
c
e
 o

f
b
e
s
t
c
o
n
fi
g
u
ra

ti
o
n

Number of configurations tested

Performance as a function of search length averaged across all applications and architecturesAverage performance across all applications and architectures
Q

ua
lit

y
of

 b
es

t
pe

rf
or

m
in

g
co

nfi
gu

ra
tio

n
te

st
ed

 s
o

fa
r

Number of configurations tested

= mean across all
 applications and
 architectures

= 10/90 percentile
 region

= Tuning knob

= Trivial failures

= Random

Search Methods

Figure 6.19: Given a particular number of tests, the complete tuning knob strategy clearly

finds higher quality configurations on average than either the pseudorandom method or the

method without failure prediction.

and 10th/90th percentile range across all application/architecture/initial seed combinations.

The headline result is that the tuning knob search method is significantly better than

the other two methods. For almost the entire range of tests the 10th percentile quality for

the tuning knob search is higher than the mean for either of the other two methods.

Interestingly, it seems that the purely random search does better than the tuning knob

search with the trivial approach to failures. Our intuition for this result is that the tuning

knob search that assigns a constant low quality to all failing points does not “understand”

the underlying cause for the failures and chooses to test too many points that end up

failing. To reemphasize, without failures in the picture at all, some completely different

search strategy might be better than the tuning knob search. However, it is very interesting

that for these applications that have a large fraction of failing configurations there is a very

large gap between a reasonably good search method that makes smart predictions about

failure probability and one that uses essentially the same predictions, but treats failures

trivially.

Figure 6.20 shows the same search results summarized in a different way. This figure

has the axes swapped compared to Figure 6.19, which shows the number of tests required

188

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

e
r

o
f

te
s
ts

Fraction of peak performance

Tests needed to achieve specific quality levelTests needed to achieve specific quality level

N
um

be
r

of
 t

es
ts

Fraction of peak performance

= median across all
 applications and
 architectures

= 30/70 percentile
 region

= Tuning knob

= Trivial failures

= Random

Search Methods

Figure 6.20: Number of tests required to achieve a specific fraction of peak performance,

averaged across all application/architecture combinations.

to achieve a specific fraction of peak performance. To produce this plot, for each individual

search (application/architecture/initial seed) we calculated how many tested configurations

it took to achieve a certain quality level. We then aggregated across all the applications,

architectures and initial seeds for each search strategy and computed the 30th percentile,

median and 70th percentile9 at each quality level. The essential difference between these

two plots is which dimension the averaging is done in.

The important result that this plot shows clearly is that for the interesting quality

range, from about 50% to 90% of peak, the random and trivial failure strategies take at

least twice as many tests on average to achieve the same level of quality. After 50 tests, the

median search for both of the less good strategies are still reasonably far from the peak, and

without running many more tests it is hard to know how many it would take to approach

peak performance.

It is interesting to observe that the mean performance after 50 tests for the trivial failure

strategy is below the mean performance for the random strategy (Figure 6.19). However,

when we look at Figure 6.20, we see the the performance level at which the median number

9The reason that this visualization has a 30/70 range and the Performance has 10/90 is that the data
has more “spread” in one dimension than the other. Look at Figure 6.19 and imagine a horizontal line at
any point, and notice how much wider a slice of the shaded region it is than a vertical slice.

189

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
te

s
ts

Fraction of peak performance

Tests needed to achieve specific quality level (Conv)

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
te

s
ts

Fraction of peak performance

Tests needed to achieve specific quality level (DMM)

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
te

s
ts

Fraction of peak performance

Tests needed to achieve specific quality level (FIR)

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
e
r

o
f
te

s
ts

Fraction of peak performance

Tests needed to achieve specific quality level (S-W)

Tests needed to achieve specific quality level
N

um
be

r
of

 t
es

ts

Fraction of peak performance

median across all
applications and
architectures

30/70 percentile
region

Tuning knob

Trivial failures

Random

Search Methods

2D convolution

Dense matrix
multiplication

FIR filter

Smith-Waterman

N
um

be
r

of
 t

es
ts

N
um

be
r

of
 t

es
ts

N
um

be
r

of
 t

es
ts

Figure 6.21: Number of tests needed broken up by application.

190

of tests required is 50 is higher for the trivial failure strategy than the random strategy.

The reason for this apparent contradiction is the difference between mean and median. The

trivial failure strategy had a relatively small number of searches that ended with a very low

quality configuration, which drags down the mean more than it drags down the median.

Figure 6.21 shows the number of tests as a function of quality data broken up by ap-

plication. We will comment on two interesting features of the data. First, the application

for which the tuning knob search has the biggest advantage over both the random search

and the trivial failures search is 2D convolution. This application has the most complex

boundary between failing and successful configurations. The proxy metrics do a reasonably

good job of identifying the boundary, which means that the full tuning knob search spends

the majority of its tests in the most interesting region of the space.

Second, the only application for which the trivial failure search does better than the

random search is the FIR filter. This application has the simplest regions of failure; for the

smaller architectures, the separations are perfectly linear functions of the tuning knobs.

These two cases support the conclusion that the more complex the separation between

configurations that satisfy all constraints and those that do not, the more important it is to

model the causes of failures explicitly. Conversely, for applications that do not have failures

at all, or have failures that can be predicted easily, existing single-factor optimization tech-

niques may be sufficient. More data for individual application/architecture combinations

can be found in Appendix A.

As mentioned earlier, we have run some preliminary experiments on the contribution of

individual features of the tuning knob search algorithm, like the target quality adjustment

and failure probability scaling. Turning these features off has a small negative impact on

search quality, but the effect is much smaller than using the trivial approach to failures. We

leave a more detailed analysis and tuning of the tuning algorithm to future work.

6.11 Summary

Tuning applications to specific architectures is critical for parallel coprocessor accelerators.

Defining the space of possible configurations can be achieved in a number of different ways;

adding tuning knobs to a programming language partitions the problem nicely. The pro-

191

grammer provides the human intelligence about what kind of high level transformations to

apply to a program and the compiler does the grunt work of discovering which configurations

work best on a particular target architecture.

Tuning for accelerators is harder than tuning for conventional processors because it is

much more common for configurations to fail entirely, which makes the quality function only

partially defined. It is possible to treat all failing tests as simply having very low quality.

However, our experiments with such an approach performed very poorly on average. These

results suggest that it is critical for tuning methods for accelerators to make predictions

related to both quality and likelihood of failure.

The tuning knob search developed in this chapter uses probabilities and probabilistic

distributions to model all its predictions, which makes combining multiple factors relatively

simple. The search algorithm also has a couple of negative feedback loops that ensure the

distribution of tested points is neither too even nor too uneven, and that not too many

points fail for a particular reason.

192

Chapter 7

RELAXED OPERATIONAL SEMANTICS FOR DYNAMIC
STREAMING LANGUAGES

C-like languages for accelerators have a serious language definition problem. The parts

of programs that are accelerated (kernels) are generally written as sequential loop nests.

The compiler, perhaps with hints from the programmer, uses a number of loop transforma-

tions, like tiling and pipelining, to parallelize the kernels. These loop transformations can

dramatically reorder the operations in the kernel, relative to the sequential interpretation.

The compiler can use easy, conventional analyses to avoid reorderings that would violate

dependencies through local variables and control flow. However, non-local dependencies are

a bigger challenge.

Non-local dependencies include reads and writes through global pointers, sends to and

receives from inter-thread streams, and general system I/O. In this chapter we focus on

dependencies through streams because that is a common mechanism for both inter-thread

communication and global memory access in C-like languages for accelerators. At the end

of the chapter there are a few comments on other kinds of non-local dependencies.

The problem with non-local dependencies is that the language definition either has to

guarantee that they will be respected, which forces the compiler to prove that all trans-

formations preserve non-local dependencies, or explicitly relax the non-local behavior of

kernels, which makes it significantly harder to reason about the behavior of programs. This

dilemma has many similarities with the problem of deciding what the memory model should

be for multithreaded shared memory programming languages: sequential consistency is the

definition that programmers are comfortable with, but most real implementations have to

relax the memory model in some way for performance reasons.

The solution that we propose for C-like languages with streams is analogous to the

Java [MPA05] and C++ [BA08] memory models. In those languages, as long as a program

193

does not have a data race, it will execute as if the underlying machine were sequentially

consistent. Programs that do have data races can go wrong in unpredictable ways.1 In

Macah, programs that are well-behaved in ways that are defined below will execute as if all

stream operations in all threads execute in program-order.

As a very simple example of the kinds of problems we will address in this chapter, con-

sider the following program. When the stream operations are executed in program-order, it

works fine. <? is the receive operator and <! is the send operator; the ‖ notation indicates

that the two blocks of code are run as parallel threads.

t1 t2

s1 <! 42 ‖ for (i = 0; i < 10; i++) {
for (i = 0; i < 10; i++) { x2 <? s1

x1 <? s2 s2 <! x2
s1 <! x1 }

}

The program passes the value 42 back and forth between the two threads, and then

finishes with 42 in stream s1’s buffer. Now we assume that the code in t2 is a kernel to

which we apply software pipelining. The result of such a transformation would look like:

t1 t2

s1 <! 42 ‖ x2 <? s1
for (i = 0; i < 10; i++) { for (i = 0; i < 9; i++) {

x1 <? s2 x3 <? s1
s1 <! x1 s2 <! x2

} x2 := x3
}
s2 <! x2

This transformation is perfectly legal if we consider only the local dependencies in

thread t2. However, the stream operation ordering of t2 has been altered, which can change

how it interacts with other threads. In particular, t2 now receives twice from s1 before it

sends to s2. Since t1 sends only once before its first receive, the program is now guaranteed

to deadlock.

1There are many more details in the Java and C++ memory models; this is a reasonable first-order
approximation.

194

time

thread 1 thread 2

send s1

recv s2

send s1

recv s1

recv s1

send s2

Data dependency

Program order

thread 1 thread 2

send s1

recv s2

send s1

recv s1

recv s1

send s2

(a) (b)

bad!!

Figure 7.1: Traces of the simple loop in the body of the text. (a) shows a trace of the unop-

timized version that works correctly. (b) shows a trace after thread 2 have been pipelined.

Notice the causality loop in the dependencies and program order constraints.

The problem in this example is that the first receive in t1 depends on the first send in

t2, the second send in t1 is ordered after the first receive, the second receive in t2 depends

on the second send in t1, and the first send in t2 is ordered after the second receive. This

cycle of dependencies and ordering relationships means no progress can be made, but the

compiler does not see that its pipelining optimization created the cycle because it did not

analyze the inter-thread dependencies. Figure 7.1 illustrates this problem.

The potential for these kinds of deadlocks do exist in real C-like language implemen-

tations for accelerators. The genealogically related languages NAPA C[GS98], Streams-

C[GSAK00] and especially Impulse C[PT05] are closely related to Macah. They share

several concepts, like streams and pipelined kernels. However, Impulse C simply ignores

the interaction between stream sends and receives and loop pipelining. The authors of the

Impulse-C book [PT05] observe this fact in Section 4.10 with little further comment.

In order to achieve good performance on accelerators, compilers must be permitted to use

transformations like loop pipelining, so we have two options for defining C-level streaming

languages:

195

• A relatively “strong” definition that matches normal intuition about execution order,

but forces the compiler to do hard global analyses to ensure that kernel optimizations

are safe.

• A relatively “weak” definition that explicitly allows local reordering, but creates pos-

sibilities for unexpected results.

For Macah we propose weak semantics that are provably equivalent to the stronger semantics

for certain classes of programs.

Rather than trying to specify all legal reordering transformations using an axiomatic

style, as is common in the relaxed memory ordering literature[AG95], we follow the style

of Boudol and Petri [BP09] and define relaxed operational semantics. These operational

semantics can be viewed as an abstract machine that interprets the threads essentially in

program order, but uses tricks to make stream operations appear to happen in a different

order. We informally argue that the relaxed operational semantics have essentially the same

scheduling flexibility that the compiler needs for efficient loop transformation.

7.1 Summary of Results for Non-Language Semanticists

The following sections in this chapter use technical programming language terminology, so

in this section we provide a summary of the results in less technical terms. The main con-

tribution of this chapter is a pair of formal definitions for a core Macah-like language; one

of the definitions keeps all stream operations strictly in program-order and one has extra

language definition machinery to allow reordering of stream operations. The program-order

semantics are more intuitive and the relaxed semantics are closer to a realistic implemen-

tation.

Though not equivalent in general, we prove that the program-order and relaxed semantics

are equivalent for certain classes of Macah programs. This equivalence means that as long

as a particular program falls within one of these “well-behaved” classes, programmers are

free to reason about it as if all its stream operations happened strictly in program order.

This dual-semantics approach is analogous to shared memory multithreaded languages that

guarantee that data-race-free programs behave as if the implementation were sequentially

196

consistent, while explicitly acknowledging that real implementations are not sequentially

consistent for all programs.

The kinds of Macah programs for which the program-order and relaxed semantics are

equivalent are those that avoid bad cyclic communication patterns through streams. By

cyclic communication patterns we mean situations where a thread performs a send on some

stream, then later2 performs a receive that is directly or indirectly dependent on the previous

send. We have not yet found a class as general as data-race-free in the shared-memory

context, but we do present equivalence proofs for some useful classes of programs. For

example, Macah programs with no cyclic communication through streams at all are safe.

The method we use for proving equivalence between different semantics is inspired by

[BP09]. The semantics are small-step operational, which means they can be thought of

as abstract machines that evaluate programs step-by-step. The proofs show that given

an arbitrary sequence of evaluation steps under one semantics for a program that is well-

behaved in some defined way, we can find an equivalent sequence of evaluation steps under

the other semantics. Sequences of states are considered equivalent if the abstract states that

they imply are equivalent. If for all possible sequences of states under each semantics we can

find an equivalent sequence under the other semantics, that means any observed execution

on a real implementation (for which the relaxed semantics are a model) is equivalent to

a legal execution under the simplifying assumption that all stream operations remain in

program order.

In this section we have so far discussed a single pair of language definitions, but in fact

this chapter presents two. The first pair assumes that the number of values that can be

buffered in a stream is unbounded. Unbounded streams are not representative of most real

implementations, but they do simplify the equivalence proofs, and serve as a useful stepping

stone to the more complicated bounded stream case.

Bounded stream buffers complicate reasoning about streaming programs because threads

can be blocked in two different ways: either an input stream can be empty or an output

stream can be full. With unbounded stream buffers, empty input streams are the only

2“Later” according to a program-order interpretation of the program.

197

source of thread blocking.

In the bounded stream buffer context it is not only bad cyclic communication patterns

that can cause inconsistencies between program-order and relaxed semantics. Communi-

cation patterns that involve branching and reconvergence can also be problematic. For

example, if thread t1 sends to both t2 and t3, which both send to thread t4, there are no

directed cycles in the communication graph. However, stream operation reordering in t4

can cause a deadlock that would not exist under the program-order semantics by causing

the stream buffers along one of the paths to fill up, which can cause t1 to block and prevent

it from sending along the other path.

In the bounded stream buffer context, programs that have no cyclic or reconvergent

communication patterns (in other words, programs whose communication graphs are trees)

are guaranteed to behave equivalently under the program-order and relaxed semantics.

However, many useful programs are not in this set. One of the important areas for future

work in semantics for C-like streaming languages is finding broader classes of programs for

which equivalence can be proved. One direction that we believe could be fruitful is programs

that send to and receive from different streams at restricted (static) rates.

The proofs in this chapter are all based on dynamic properties of programs: “if a program

ever does X during its execution, then Y”. We do not address the related issue of predicting

whether a program is well-behaved based only on its source code. This static analysis

problem is another important direction in which this work could be extended in the future.

Finally, we offer an analysis of one technique the programmer can use to make ker-

nels safer at the expense of optimization opportunities. The common stream primitives

in Macah programs are blocking sends and receives; abstractly, a thread will not continue

executing past a blocking operation until it has completed. Macah also has non-blocking

sends and receives that might fail, but will not stall the thread, and return a Boolean flag

indicating success or failure. Polling stream operations behave like blocking operations,

but are constructed by putting non-blocking operations in an explicit loop that re-executes

the operation until it succeeds. The looping control flow of the polling operations prevent

stream operation reordering by making the execution of later operations explicitly depen-

dent upon the success of the polling operation. The fact that polling stream operations

198

inhibit operation reordering is bad for optimization flexibility, but it does make it easier to

prove equivalence of the program-order and relaxed interpretations of a given program.

The broadest classes of programs for which we prove the equivalence of the program-order

and relaxed semantics are those that do not have directed cycles (in the unbounded buffer

case) or undirected cycles (in the bounded buffer case) in the stream communication graph.

For the purpose of these definitions, there is no edge between two threads in the stream

communication graph if they only use non-blocking stream operations to communicate with

each other. Because polling operations are built from non-blocking operations, they do not

induce edges in the stream communication graph either.

7.2 Basics

The semantics presented in this chapter are not for full Macah, but rather a small core

language with threads, streams and kernels. Using the smaller language allows the semantics

and proofs to be more compact and readable, and still presents the same stream operation

reordering issues. Core Macah is essentially the call-by-value lambda calculus with some

additional expressions to operate on streams.

The only values in core Macah are “42”, which is a stand-in for all primitive values, λx.e

which is a function definition and x, which is a variable use.

In core Macah the blocking receive expression does include a specific target location for

the received value, because in the usual lambda calculus style it simply evaluates to the value

received from the stream. The non-blocking send and receive operators in full Macah use

Boolean flags that we usually refer to as the “worked” expressions to indicate whether the

operation succeeded or not. In core Macah we use a style similar to Church encoding for non-

blocking sends and receives. Each non-blocking stream has two “continuation expressions”

at the end; if the operation is successful the program evaluates to the first, if it fails the

program evaluates to the second. The first continuation expression for the non-blocking

receive (e1) is assumed to be a function that is called with the value that gets received.

Expressions nested inside a kernel expression are evaluated in kernel mode, which can

change the relative ordering of sends and receives on different streams in the relaxed seman-

tics.

199

Core Macah Name Full Macah Analogue

(e0 e1) Function call All non-trivial control flow

C? s Blocking receive lexp <? stream

s C! ev Blocking send stream <! rexp

l? s ew ef Non-blocking receive wexp :: lexp <? stream

s l! ev ew ef Non-blocking send wexp :: stream <! rexp

kernel e Kernel block kernel {...}

v Values

Figure 7.2: All of the expressions in the core Macah grammar and their intuitive connections

to full Macah statements/expressions.

For convenience we will use expressions like if/then/else, while and recursive function

definitions. These can all be translated into lambda expressions using the conventional

encodings. We also define polling sends and receives in terms of their non-blocking cousins.

Polling stream operations are almost identical to blocking operations. The difference is

that the polling versions use the non-blocking variant and explicit looping. Under the

program-order semantics there really is no meaningful difference between polling and

blocking. Under the relaxed semantics there is a difference that we will describe in more

detail later.

e <@? s
.= w := false; do { w :: e <? s } while (!w)

s <@! e
.= w := false; do { w :: s <! e } while (!w)

Or, in core Macah terms . . .

E? s
.= let loop = l? s (λx.x) (loop 42) in (f 42)

s E! e
.= let v = e in let f = s l! v v (f 42) in(f 42)

A program configuration or state is a tuple (S, T) where S is a stream buffer that

maps stream ids to stream configurations, and T is a thread system that maps thread ids

200

to thread configurations. A stream configuration is a tuple with an unbounded positive

integer-indexed array of values and some “pointers”, the details of which depend on which

semantics we are considering. A thread configuration is a tuple that includes an expression

evaluation context and a kernel depth counter. A complete program also includes a stream

connectivity description that specifies which thread is allowed to send to a stream and

which thread is allowed to receive from a stream. Streams are point-to-point; they have

exactly one sender thread and one receiver thread.

7.2.1 Non-blocking stream operations

As we will define formally later, non-blocking operations are “weak” in the sense that it is

always legal for a non-blocking operation to fail, even if it seems like it should succeed. For

the purposes of performance analysis, programmers can expect implementations to provide

reasonable best effort in terms of non-blocking stream operations succeeding when possible.

The motivation for using this weak definition is similar to the situation with trylock in

C++ [BA08]. Using the strong definition enables some strange “backwards” programming

idioms and badly complicates the semantics equivalence proofs.

Here is a very simple example of the difference between weak and strong definitions of

non-blocking operations.

t1 t2

s2 <! 42; ‖ temp1 :: y <? s1;

s1 <! 43 temp2 :: z <? s2

Using strong non-blocking receives, there are three possible results from running this

program:

Result Schedule

y = 44, z = 45 t2 goes first; both receives fail

y = 42, z = 43 t1 goes first; both receives succeed

y = 44, z = 43 t2 starts, t1 interrupts it, then t2 finishes; the first receive fails, but the

second succeeds

201

Using the weak definition of non-blocking receives the fourth and most counterintu-

itive option is also possible, that the first receive succeeds and the second fails.

Preventing the y = 42, z = 45 result from occurring in a real implementation requires

all stream operations to stay in order, even when different streams are involved. This is an

expensive guarantee for an interconnect network to provide. We could explicitly model an

interconnect network that might reorder messages between threads in our semantics, but we

can achieve the same effect with considerably less complexity by using the weak definition

of non-blocking stream operations.

Here’s another example based on a trylock-based example in [BA08]. It may seem

strange, but it gets closer to the importance of the weak definitions.

t1 t2

s1 <! 42; ‖ s2 <! 42;

temp <? s2 do {

w1 :: x1 <? s2

if (w1) s2 <! x1;

} while(w1);

w2 :: x2 <? s1;

assert(w2)

This example is actually not entirely legal, since both threads receive from a single

stream (s2), but we will pretend that is legal for the purpose of this example. Thread t2

sends a single value on stream s2 and then goes into a loop where it is essentially waiting

for t1 to receive it. Since the send to s1 happens before the receive from s2, with a strong

definition of non-blocking receives, the receive at the end of t2 will never fail. In a sense t2

is getting information (whether t1 has performed the receive or not) backwards along s2,

which is a feature that we do not want to support.

202

Pre-action state Act. Post-action state Cond.

S, (k,E[λx.e v]) β S, (k,E[{x7→v}e])

S, (k,E[kernel e]) kbk+1 S, (k + 1,E[kmode e])

S, (k,E[kmode v]) kek S, (k − 1,E[v])

S[s7→(r,w,V)], (k,E[C? s]) rs S[s7→(r+1,w,V)], (k,E[V (r)]) r < w

S, (k,E[l? s e1 e2]) frs S, (k,E[e2])

S[s7→(r,w,V)], (k,E[l? s e1 e2]) rs S[s7→(r+1,w,V)], (k,E[e1 V (r)]) r < w

S[s7→(r,w,V)], (k,E[s C! v]) ss S[s7→(r,w+1,V [w 7→v])], (k,E[v])

S, (k,E[s l! v e2 e3]) fss S, (k,E[e3])

S[s7→(r,w,V)], (k,E[s l! v e2 e3]) ss S[s7→(r,w+1,V [w 7→v])], (k,E[e2])

Figure 7.3: Program order semantics with unbounded stream buffers.

7.3 Unbounded stream buffer semantics

Here we present program-order and relaxed semantics with the assumption that stream

buffers are unbounded. Bounded streams are more realistic from an implementation per-

spective, but starting with unbounded streams lets us prove the equivalence of the program-

order and relaxed semantics in a simpler setting. In the next section we will introduce stream

bounds and discuss the complexities that they add.

Figure 7.3 shows the evaluation rules for the program-order semantics. For simplicity

of presentation, each row in the table shows only the state of the global stream buffer and

a single thread. A complete evaluation step has to select some thread nondeterministically

and apply one of these rules. All other threads are not affected by some thread taking an

evaluation step.

Each evaluation rule is labeled with an “action name” (Act. in Figure 7.3). These actions

are used in the equivalence proofs. A complete list of the actions is shown in Figure 7.4.

All stream operations in all the semantics presented in this chapter have the additional

implicit condition that the thread performing the operation must be the correct one accord-

ing to the connectivity description for the program. We write “thread t is the sender to

203

Act. Meaning

β Beta-reduction; no externally observable effect

kbk Begin kernel level k

kek End kernel level k

rs Receive from stream s

ss Send to stream s

frs Failed non-blocking receive from s

fss Failed non-blocking send to s

brs Receive from s becomes blocked

urs Receive from s becomes unblocked

bss Send to s becomes blocked

uss Send to s becomes unblocked

lgs Move a value from the local to global buffer for stream s

Figure 7.4: Each evaluation step in the semantics is labeled with an action name.

stream s” t↪→s, and “thread t is the receiver from stream s” s↪→t.

kmode is a runtime expression that does not exist in the programmer-visible syntax of

the language. Its purpose is to keep track of whether some expression is being evaluated in

kernel mode or not. Because it is legal to nest kernels, we add a counter (k) to the state of a

thread. This counter indicates how deeply nested in kernel expressions a thread is currently.

In the program-order semantics there is no difference between evaluation in kernel mode

versus non-kernel mode.

We are mostly concerned with programs that deadlock under one semantics, but not

another. Clearly the language we have defined permits deadlocking programs, but we are

mostly going to focus on programs that do not deadlock under the unbounded buffers,

program-order semantics. Programs that deadlock under even those semantics are prob-

ably buggy programs. Some languages like StreamIt make it easy to prove the complete

absence of deadlocks [PD10]. However, languages with such guarantees make it hard to pro-

gram some reasonable stream communication patterns. In analogy with the shared memory

204

multithreading world, the Macah ecosystem probably needs analysis tools like data race

detectors to find programs that might deadlock no matter which semantics is chosen.

7.3.1 Relaxed semantics with unbounded streams

The relaxed semantics are intended to model static reordering of code inside kernels. Instead

of syntactically reordering expressions, which would introduce a huge amount of complexity

to the semantics and proofs, we chose to model static code reordering as local buffering of

stream operations. The local evaluation of each thread is essentially identical under the

program-order and relaxed semantics. The difference is that different threads can have

different understandings of the order in which stream operations happen.

There are several important things to note about the relaxed semantics in Figure 7.5.

The stream configurations have an additional component (bw): a write buffer count. In

kernel mode (and only in kernel mode) when a thread sends a value to a stream, the value

does not immediately go to the global stream buffer, but lives in a local buffer for some

amount of time. We model this local buffering in the semantics with the buffer count. Sends

in kernel mode do not affect the write pointer, but do increment the buffer count. Later

a thread can take a step with the last rule that moves a value from the local buffer to the

global buffer by incrementing the write pointer and decrementing the buffer count.

If a thread’s next expression to evaluate is a receive, but there is no data available from

the stream, the thread can take a step into a special blocked state (represented by B).

When a thread is in the blocked state, it cannot send values from its local buffer. This

additional restriction has the effect that there are some programs that have deadlocking

traces under the relaxed semantics, but not under the program-order semantics.

There is an additional condition on the step that leaves kernel mode (i.e. when k goes

from 1 to 0). The condition says that all streams for which the thread making the step

is the sender must have no buffered sends. In code reordering terms, this means that the

compiler is free to ignore the possibility of dependencies through streams only when it is

reordering code inside kernels.

Observation. As long as a thread is in kernel mode some values might be “trapped”

205

Pre-action state Act. Post-action state Condition

S, (k,E[λx.e v]) β S, (k,E[{x7→v}e])

S, (k,E[kernel e]) kbk+1 S, (k + 1,E[kmode e])

S, (k,E[kmode v]) kek S, (k − 1,E[v]) k > 1

S, (1,E[kmode v]) ke1 S, (0,E[v]) ∀s such that t↪→s,

S[s7→(r,w,0,V)]

S[s7→(r,w,bw,V)], rs S[s7→(r+1,w,bw,V)], r < w

(k,E[C? s]) (k,E[V (r)])

S, (k,E[l? s e1 e2]) frs S, (k,E[e2])

S[s7→(r,w,bw,V)], rs S[s7→(r+1,w,bw,V)], r < w

(k,E[l? s e1 e2]) (k,E[e1 V (r)])

S[s7→(r,w,bw,V)], brs S, (B,k,E[J? s]) r ≮ w

(k,E[C? s])

S[s7→(r,w,bw,V)], urs S, (k,E[C? s]) r < w

(B,k,E[J? s])

S[s7→(r,w,0,V)], ss S[s7→(r,w+1,0,V [w 7→v])],

(0,E[s C! v]) (0,E[v])

S[s7→(r,w,bw,V)], sds S[s7→(r,w,bw+1,V [w+bw 7→v])], k > 0

(k,E[s C! v]) (k,E[v])

S, (k,E[s l! v e2 e3]) fss S, (k,E[e3])

S[s7→(r,w,0,V)], ss S[s7→(r,w+1,0,V [w 7→v])],

(0,E[s l! v e2 e3]) (0,E[e2])

S[s7→(r,w,bw,V)], sds S[s7→(r,w,bw+1,V [w+bw 7→v])], k > 0

(k,E[s l! v e2 e3]) (k,E[e2])

S[s7→(r,w,bw,V)], lgs S[s7→(r,w+1,bw−1,V)], bw > 0

(k,E) (k,E)

Figure 7.5: The local send buffering semantics with unbounded streams

206

in the local buffers of the streams that it sends to. The action for leaving kernel mode

under the relaxed semantics requires that the local buffers be empty, so it is not until the

sending thread has left kernel mode that we can guarantee that all the values it has sent

are “visible”.

7.3.2 Simple example of deadlock

Here is a simple program that illustrates the difference between the program-order semantics

and the local send buffer semantics.

Initially S = {s1 7→ (1, 1, ε), s2 7→ (1, 1, ε)}.
t1 t2

kernel{ ‖ x2 <? s1;

s1 <! 42 s2 <! x2

x1 <? s2

}

First we consider how it executes under the program-order semantics. Thread t2 is

stuck initially because it needs to receive on stream s1 and initially the stream is empty.

The kernel “wrapper” under the program-order semantics is essentially meaningless, so

thread t1 can evaluate its send along stream s1. Thread t1 then becomes stuck on its receive

from stream s2. Thread t2 can now proceed with its receive from s1, then do its send to s2.

Finally t1 can receive from s2 and now both threads have evaluated to 42. We made no

meaningful nondeterministic choices along the way; every execution of this program will

have the same result.

Next we look at the execution of this program under the local send buffering semantics.

Just like before, t2 cannot make any progress initially. Under the buffering semantics the

send in t1 goes to the local buffer, because it happens when the thread is in kernel mode.

After t1 sends to the local buffer we arrive at the only important nondeterministic choice

in this example: t1 can send 42 from its local buffer to the global stream buffer or it can

attempt to perform a receive from s2. If t1 “chooses” the receive we are in trouble, s2 is

empty, so t1 will go to the blocked receive state and both threads will be stuck. t1 will

207

never send to s1 because of the condition that threads cannot send from their local buffer

to the global buffer if their current expression is a blocked receive, and t2 will never send to

s2 because it is waiting to receive from s1 first.

This example shows that there exist programs that can deadlock under the buffering

semantics but cannot under the program-order semantics.

7.3.3 Equivalence of program-order and relaxed

The program-order semantics and relaxed semantics are clearly different for some programs,

but they are equivalent for large classes of interesting programs. Specifically, for all programs

that do not deadlock under the program-order semantics and are “well-behaved” in ways

that explained below, the semantics are equivalent.

To prove equivalence of the semantics we show that every non-deadlocking trace of ac-

tions under the program-order semantics has an equivalent trace under the relaxed semantics

and that every trace under the relaxed semantics falls into one of three categories:

• It has an equivalent trace under the program-order semantics.

• Its equivalent trace under the program-order semantics leads to deadlock, in which

case the non-deadlocking program assumption has been violated.

• It leads to a deadlocking trace under the relaxed semantics, in which case the program

is not “well-behaved”.

Lemma 1 (Relaxed simulates program-order) For every non-deadlocking trace of ac-

tions under the program-order semantics there is an equivalent trace under the relaxed se-

mantics.

Proof by induction on the length of the trace. The invariant is that both program-order and

relaxed configurations are exactly equivalent after every program-order action and mirroring

relaxed action(s). The base case is simple: the streams are all empty and each thread is

just in its initial configuration.

The inductive step is also relatively simple. Most of the actions in the program-order

trace can be mirrored one-to-one by equivalent relaxed semantics actions. The most impor-

tant exception is sending in kernel mode. Under the relaxed semantics a local send followed

208

immediately by a global send from the same thread to the same stream has the equivalent

effect as a send under the program-order semantics and leaves the buffered send count for

the stream at zero. There is no need to ever select an action that leads to a blocked state,

so we do not need to worry about those. And the additional condition on leaving kernel

mode in the relaxed semantics is easily satisfied because we chose to pair every local send

immediately with a global send. �

In code reordering terms, Lemma 1 simply shows that it is possible for the compiler and

hardware to leave all stream operations in their natural program order, in which case the

meaning of the program does not change.

Lemma 2 (program-order simulates relaxed) For every non-deadlocking trace of ac-

tions under the relaxed semantics there is an equivalent trace under the program-order se-

mantics.

Proof by induction on the length of the relaxed trace. The base case is the same trivial

argument as the last proof.

The inductive case requires a more subtle invariant. The write pointers on the streams

can get out of sync because a local send under the relaxed semantics does not increment

the write pointer whereas a send under the program-order semantics does. The invariant

for stream states is that the write pointer in the program order configuration will always be

equal to the write pointer plus the buffer count in the relaxed configuration. Also a relaxed

thread in blocked mode on a stream op is considered equivalent to a program-order thread

that has an equivalent stream op in the evaluation hole.

Showing that each step preserves the invariant is simple for most of the actions. Blocking

and unblocking a thread do not change any state relevant to the invariant. Receiving,

evaluating a function call, entering kernel mode, sending outside of kernel mode and failed

non-blocking stream operations are all trivial.

Sending in kernel mode is more interesting, because the write pointer does not change in

the relaxed semantics, but it does in the program-order semantics. The buffered send count

does change though, which maintains the invariant. The global send action also maintains

the invariant because it increments the write pointer and decrements the buffered send count.

209

The global send action has the condition that the buffered send count not go negative, so it

is impossible for the write pointer in the relaxed configuration to get higher than the write

pointer in the program-order configuration. �

Observation. The equivalence relation between program-order configurations and

relaxed configurations is one-to-many. What the above lemmas do not prove is that one

can choose an arbitrary pair of related configurations and proceed happily from there. For

example, consider this example.

t1 t2 t3

s1 <! 42 ‖ kernel{ ‖ x1 <? s2

s2 <! 43

x2 <? s1

}

The interesting relaxed trace is the one where t2 enters kernel mode, locally sends

to s2, then blocks. The equivalent program-order trace enters kernel mode, then performs

a normal send to s2. From that program-order configuration we can choose to either send

in t1 or receive in t3, whereas in the relaxed configuration sending in t1 is the only option,

because the value in s2 is “trapped” in t2’s local buffer.

The reason that this apparent disparity between the semantics is not a problem is that

we only need to prove that for each possible program-order trace there exists some valid

relaxed trace, and vice-versa. It is not necessary to prove that from every possible pair of

related intermediate states we can take equivalent steps under both semantics.3

Lemma 3 (Deadlocking under the relaxed semantics) Every relaxed semantics

trace that leads to a deadlocked configuration either leads to a deadlocked configuration

under the program-order semantics or leads to a relaxed configuration in which there is a

cycle in the thread and stream graph in which every thread is stalled waiting on a receive

from its predecessor. Also, at least one thread in the cycle must be blocked in kernel mode

and have locally buffered values for its successor in the cycle.

3Which is lucky, because it is not true.

210

Proof by case analysis of the possible deadlocked configurations. There are many programs

that can deadlock under both the program-order semantics and relaxed semantics; these

are not interesting programs because it is usually considered desirable to prove (formally or

informally) that programs are deadlock-free under the program-order semantics.

The more interesting case is traces under the relaxed semantics that lead to a deadlock

where the equivalent program-order trace can still make progress. There are two interesting

sub-cases to consider:

• Exiting kernel mode. A thread cannot exit kernel mode if there are buffered values on

any of the streams it sends to. However, if both the relaxed and program-order traces

manage to reach a configuration where kmode v is the next expression to evaluate, the

program under the relaxed semantics is not actually deadlocked, because the global

sending action can be applied.

• Under the unbounded stream buffer semantics, the only kind of expression a thread

can get deadlocked on is a receive. So there must be at least one thread that can

receive under the program-order semantics, but cannot under the relaxed semantics

because the value in question is stuck in the sender’s local buffer. The sender must

also be deadlocked on a receive, or else the program would be able to make progress.

We can continue tracing back this way until we find a cycle in the sequence of blocked

threads. It is impossible for there not to be a cycle, because that would require some

“source” thread that is deadlocked but is not waiting for a receive from some other

thread. But there is no way to deadlock without blocking on a receive.

Finally, at least one of the streams must have values trapped in the local buffer of

its sender. Otherwise the relaxed and program-order configurations of these streams

would be the same and we have found a deadlocked configuration under the program-

order semantics, which we assumed was not the case.

�

Theorem 4 (Unbounded stream equivalence) Every program that cannot deadlock

under the program-order semantics either (a) behaves equivalently under program-order and

211

relaxed semantics or (b) might reach a deadlocked configuration under the relaxed semantics

with at least one thread that is blocked on a receive and has unsent buffered values.

Proof by a straightforward combination of Lemmas 1, 2 and 3. �

Theorem 4 gives the fundamental symptom shared by all programs that differ under the

program-order and relaxed semantics, but does not give much intuition about what kinds

of programs these are. An example of a class of programs that trivially cannot exhibit

relaxed semantics deadlocking is those that have no receives at all. A more interesting class

is captured in the following theorem.

Theorem 5 (Non-blocking receive in cycles) Every program that cannot deadlock un-

der the program-order semantics and uses only non-blocking receives in kernel mode on

streams that participate in some cyclic (i.e. feedback) path in the stream graph behaves iden-

tically under program-order and relaxed semantics.

Proof by extension of Theorem 4. Using the previous theorem, we only have to show that

not using non-blocking receives in kernel mode on “feedback streams” makes it impossible

for a thread to be simultaneously blocked on a receive and have values locally buffered.

Only blocking receives can cause a thread to enter the blocked state, so threads with only

non-blocking receives will not. �

Note that any program can be adapted to fit the constraints of theorem 5 by replacing

blocking receives with polling receives. Polling receives behave almost exactly like blocking

receives, but they let buffered values drain out, which prevents the kind of deadlock that

the relaxed semantics can introduce. Polling receives are generally much more expensive

than blocking receives, which is why the blocking version exists at all.

Observation. From any pair of a relaxed configuration and its equivalent program-

order configuration, there are a finite number of legal steps under the relaxed semantics

that correspond to no action at all under the program-order semantics (i.e. blocking or

unblocks, global sending). This means that under the relaxed semantics progress will be

made.

Lingering issue. There are some programs that don’t quite fit in the equivalence

proof the way it seems they should. For example:

212

t1 t2

for (. . .) { ‖ kernel {

x1 E? s2 for (. . .) {

s1 C! x1 s2 C! x2

} x2 C? s1

}

}

If the receive in t1 was blocking, this would be a totally standard example of a pro-

gram that works fine under the program-order semantics, but can deadlock under the

relaxed semantics. However, the receive is polling, which means that if t2 does a local send

to s2, then goes into blocking mode on the receive from s1, t1 will just spin in the polling

receive forever.

In some sense this is a possible execution under the program-order semantics, but it is

not a very interesting one. The execution in which t2 essentially never executes represents

a totally unfair schedule.

There may be some way to extend the proof to handle cases like this. For example, maybe

we could say that any trace where some thread cannot make progress after an unbounded

number of steps is considered a deadlocked trace.

7.3.4 More complex communication patterns

Theorem 5 proves that the equivalence of the program-order and relaxed semantics applies

only to some programs. The set of programs covered is a useful one, but excludes many

reasonable programs. Here is an example pattern that we found to be fairly common in

practice.

213

t1 t2

while (. . .) { ‖ kernel {
s1 C! e1 while (. . .) {
for (. . .) { x2 E? s1

. . . for (. . .) {
s1 C! e2 x3 C? s1

} . . .

for (. . .) { }
x1 C? s2 for (. . .) {
.

} s2 C! e3

} }
}

}

This sketch represents an iterative computation where some part of each iteration

(t2) can be accelerated and some part cannot (t1). The non-kernel thread sends some input

data to the kernel thread, which does some computation on it and sends results back.

That whole pattern repeats in the while loop. The program is not covered by Theorem

5, because in kernel mode it performs a blocking receive from a stream that’s part of a

feedback loop.

Even though it seems like it might, in fact this program cannot deadlock. Informally, the

polling receive at the beginning of each outer iteration in t2 allows all the sends to complete

without getting blocked. In compiler scheduling terms, even if the send in t2 is scheduled

very late, the loop that is implicit in polling receives will keep the thread executing and

eventually all the sends will execute.

Generalizing from this example to an interestingly broad class of programs for which

the program-order and relaxed semantics are provably equivalent would be useful for static

analysis tools whose job is to check the safety of programs written in Macah (and similar

streaming languages). We believe that a number of such patterns exist; finding and proving

equivalence for them is an important piece of future work.

214

7.4 Blocking and polling

As observed in the previous section, programmers can simply always use polling receives

instead of blocking receives to guarantee that their programs behave identically under un-

bounded program order and relaxed semantics. There are two reasons that this program-

ming style is undesirable. The first is related to the relative weakness of the control resources

in accelerators. When data is not available for a blocking receive, it is legal for a hardware

implementation of a Macah kernel to stall the whole kernel until data is available. This is

a relatively inexpensive feature to implement.

Recall that polling receives are just non-blocking receives inside a loop that spins until

the receive succeeds. In implementation terms, adding an extra loop where there were just

blocking stream operations before significantly complicates the control flow of the kernel.

The second reason that using polling receives is undesirable has to do with the

scheduling flexibility given to the compiler. Consider this example that is like our earliest

pipelining example, except it uses polling instead of blocking stream operations.

for (i = 0..10) {
x E? s1
s2 E! x

}

Desugaring the polling operations (and using more familiar do/while syntax) gives

us:
for (i = 0..10) {

do w :: x l? s1
while ¬w
do w :: s2 l! x
while ¬w

}

The “::” notation for non-blocking operations is an alternative syntax where the op-

eration returns a Boolean flag that indicates success or failure, instead of evaluating one

expression or another. Because the polling loops will run until the stream operation

actually succeeds, later stream operations become control dependent on earlier polling

operations and cannot be reordered before them.

215

This analysis provides an interesting new perspective on blocking operations. The re-

laxed semantics of Macah essentially say that a program (running in kernel mode) can con-

tinue executing operations that come after a blocking stream operation, even if the stream

operation has not completed yet. Each thread just assumes that its stream operations will

complete eventually, no matter what it goes on to do.

Using polling operations makes explicit the sequencing constraints that are implicit

with blocking operations. This has the effect of preventing pipelining and other useful

optimizations, which can have a dramatic negative effect on performance.

7.5 Bounded stream buffers

Most streaming languages impose bounds on stream buffer capacities, because unbounded

stream buffers mean that the system has to be responsible for automatically allocating and

deallocating memory. For accelerators, bounded stream buffers also fit naturally with the

bounded local memory resources. Unfortunately, going from unbounded to bounded stream

buffers introduces significant complexity to stream operation reordering. The main addition

to the formal semantics is a capacity function (C) that maps stream IDs to the maximum

number of values that stream can hold at any given time. C does not change during the

execution of a program. The formal semantics with program-order stream operations and

bounded buffers is given in Figure 7.6.

To demonstrate the difference between unbounded and bounded semantics (independent

of program-order versus relaxed issues), here is a simple program that cannot deadlock

with unbounded streams, but will deadlock if the capacity of s1 is 1:

t1 t2

s1 C! 42; s1 C! 43; s2 C! 44 ‖ C? s2;C? s1;C? s1

t1 tries to send two values to s1 before sending anything to s2, but t2 tries to re-

ceive from s2 first. t1 will block on the second send to s1, because the stream buffer is full,

and t2 will never make any progress.

216

Pre-action state Act. Post-action state Condition

S, (k,E[λx.e v]) β S, (k,E[{x7→v}e])

S, (k,E[kernel e]) kbk+1 S, (k + 1,E[kmode e])

S, (k,E[kmode v]) kek S, (k − 1,E[v])

S[s7→(r,w,V)], (k,E[C? s]) rs S[s7→(r+1,w,V)], (k,E[V (r)]) r < w

S, (k,E[l? s e1 e2]) frs S, (k,E[e2])

S[s7→(r,w,V)], rs S[s7→(r+1,w,V)], (k,E[e1 V (r)]) r < w

(k,E[l? s e1 e2])

S[s7→(r,w,V)], (k,E[s C! v]) ss S[s7→(r,w+1,V [w 7→v])], (k,E[v]) w−r ≤ Cs

S, (k,E[s l! v e2 e3]) fss S, (k,E[e3])

S[s7→(r,w,V)], ss S[s7→(r,w+1,V [w 7→v])], (k,E[e2]) w−r ≤ Cs

(k,E[s l! v e2 e3])

Figure 7.6: Program order semantics with bounded buffers

7.5.1 Relaxed semantics with bounded-capacity streams

In the bounded stream context, the intuition for what the relaxed semantics are intended to

model is the same. Inside kernels, the compiler should be allowed to reorder stream opera-

tions in any way that respects local dependencies and keeps all operations for a particular

stream in order.

There is an important choice to make in the relaxed semantics: should the capacity

restriction be enforced on the local send action or the global send action? The local send

seems natural, because the number of values in the local and global buffers together would

be limited by the capacity of the stream. However, given that the idea is to model compiler

reorderings, it seems that enforcing the capacity restriction on the global send action is

the only option; otherwise the system would be unnaturally restricted in the ways it could

schedule a kernel. The formal semantics for the relaxed, bounded buffers case is shown in

Figures 7.7 and 7.8.

Here is an example that is guaranteed to not deadlock under both the program-order

217

Pre-action state Act. Post-action state Condition

S, (k,E[λx.e v]) β S, (k,E[{x7→v}e])

S, (k,E[kernel e]) kbk+1 S, (k + 1,E[kmode e])

S, (k,E[kmode v]) kek S, (k − 1,E[v]) k > 1

S, (1,E[kmode v]) ke1 S, (0,E[v]) ∀s such that t↪→s,

S[s7→(r,w,0,V)]

S[s7→(r,w,bw,V)], rs S[s7→(r+1,w,bw,V)], r < w

(k,E[C? s]) (k,E[V (r)])

S, (k,E[l? s e1 e2]) frs S, (k,E[e2])

S[s7→(r,w,bw,V)], rs S[s7→(r+1,w,bw,V)], r < w

(k,E[l? s e1 e2]) (k,E[e1 V (r)])

S[s7→(r,w,bw,V)], brs S, (B,k,E[J? s]) r ≮ w

(k,E[C? s])

S[s7→(r,w,bw,V)], urs S, (k,E[C? s]) r < w

(B,k,E[J? s])

Figure 7.7: The local send buffering semantics with bounded streams and unbounded re-

ordering (Part 1/2).

semantics with bounded buffers and the relaxed semantics with unbounded streams, but

might deadlock under the relaxed semantics with bounded streams.

t1 t2

kernel (s1 C! 42; s2 C! 43; s2 C! 44) ‖ C? s1;C? s2;C? s2

The problematic trace is when t1 performs a local send of 42 and 43, then tries to

send 44 to s2. Because s2’s capacity is 1 and there is already a value buffered in it, t1 will

block. Because t1 is blocked in kernel mode on a send to s2, it will never release the values

in its local buffers, so t2 can never receive from s1, and the system is deadlocked.

Here is another example that shows just how problematic the combination of relaxed

218

Pre-action state Act Post-action state Condition

S[s7→(r,w,0,V)], ss S[s7→(r,w+1,0,V [w 7→v])], w−r ≤ Cs

(0,E[s C! v]) (0,E[v])

S[s7→(r,w,bw,V)], sds S[s7→(r,w,bw+1,V [w+bw 7→v])], k > 0

(k,E[s C! v]) (k,E[v])

S, (k,E[s l! v e2 e3]) fss S, (k,E[e3])

S[s7→(r,w,0,V)], ss S[s7→(r,w+1,0,V [w 7→v])], w−r ≤ Cs

(0,E[s l! v e2 e3]) (0,E[e2])

S[s7→(r,w,bw,V)], sds S[s7→(r,w,bw+1,V [w+bw 7→v])], k > 0

(k,E[s l! v e2 e3]) (k,E[e2])

S[s7→(r,w,bw,V)], (k,E) lgs S[s7→(r,w+1,bw−1,V)], (k,E) bw>0 ∧ w−r≤Cs

S[s7→(r,w,bw,V)], (k,E) bss S, (Bs,k,E) bw>0 ∧ w−r�Cs

S[s7→(r,w,bw,V)], uss S, (k,E) w−r ≤ Cs

(Bs,k,E)

Figure 7.8: The local send buffering semantics with bounded streams and unbounded re-

ordering (Part 2/2).

kernels and bounded buffers is
t1 t2 t3

x1 := 0.1 ‖ kernel { ‖ x3 C? s2

while (x1 < 0.5) { s2 C! 0.1 while (x3 < 0.5) {

x1 := random() x2 C? s1 x3 C? s3

s3 C! x1 } }

}

s1 C! 42

The problem in this program is that t1 sends to t2 after its big loop and t3 receives

from t2 before its big loop. Under the program-order semantics, this program will work

fine. First t2 can send to t3. Then t1 and t3 can communicate as many values as they like

219

over a stream with a small capacity. Finally t1 can send a value to t2.

Under relaxed semantics with unbounded buffers this program is still okay. t2 might

reorder its stream operations (i.e. the send might get buffered locally until after the receive).

Now t3 cannot make progress, because it hasn’t received from t2 yet. But t1 can send as

many value as it likes on s3. After the loop in t1 finishes, it will send a value to t2, which

will unblock and send a value on to t3, which will then be free to receive all the values sent

by t1.

This example shows that even a very small reordering in a thread (t2) can cause an

unbounded amount of capacity to be required on a stream (s3), that it is not directly

connected to.

Here is another interesting example that shows that some programs that deadlock under

the bounded program-order semantics might not deadlock under the bounded relaxed

semantics with unconstrained reordering. It is essentially exactly the same as the first

example in this section, except t1’s code is in a kernel block in this version.

t1 t2

kernel { ‖ C? s2

s1 C! 42 C? s1

s1 C! 43 C? s1

s2 C! 44

}

From the compiler reordering perspective, it is clear that the send to s2 can be re-

ordered before the other sends, and the example works just fine with buffer capacities of 1.

Using the relaxed semantics, the first two sends can be stored in the local buffer while the

last send executes.

This example shows that under the relaxed semantics a program might “get lucky” and

execute in a way that it appears there is more buffering capacity than is specified by the

program.

220

7.5.2 Equivalence with Bounded Buffers

As the examples in the previous section suggest, proving equivalence between program-order

and relaxed semantics with bounded buffers requires very careful definition of “equivalence”

and exactly what set of programs it applies to.

Lemma 6 (Unbounded program-order simulates bounded relaxed) For every

non-deadlocking trace of actions under the bounded relaxed semantics there is an equivalent

trace under the unbounded program-order semantics.

Proof by induction on the length of the trace. This proof is essentially the same as the proof

that the unbounded program-order semantics simulate the unbounded relaxed semantics

(Lemma 2). The bounded relaxed semantics can hit deadlocking situations that would not

deadlock under the unbounded semantics, but these traces are not relevant to this proof. �

The importance of this lemma is that in the bounded buffers case there are non-

deadlocking traces under the relaxed semantics that cannot be simulated by the program-

order semantics. This is exactly because of the “lucky” reorderings referred to above.

However, with this lemma we can say that all such executions would have been possible if

the stream buffers were unbounded. In other words, under the relaxed semantics the system

is allowed to capriciously behave as if some buffers have more capacity than specified.

Lemma 7 (Bounded relaxed simulates bounded program-order) For every non-

deadlocking trace of actions under the bounded program-order semantics there is an equiva-

lent trace under the bounded relaxed semantics.

Proof by induction on the length of the trace. This proof is essentially identical to the proof

of Lemma 1, which states that the unbounded relaxed semantics simulate the unbounded

program-order semantics. �

Lemma 8 (Deadlocking with bounded streams) Every trace under the bounded re-

laxed semantics that leads to a deadlocked configuration either leads to a deadlocked con-

figuration under the program-order semantics or leads to a relaxed configuration in which

there is an undirected cycle in the stream graph in which every thread is stalled waiting on

221

a receive or send from a neighbor. Also, at least one thread in the cycle must be blocked in

kernel mode and have locally buffered values for its successor in the cycle.

Proof idea by case analysis of the possible deadlocked configurations. This proof is similar

to the proof of Lemma 3 for the unbounded semantics. There are more cases, because

threads can block either sending or receiving, but the high level concept is the same: There

must be some thread that has buffered sends and is in an undirected cycle of threads that

are stuck waiting for those values to come out.

In the unbounded case we showed that using polling receives on any “feedback streams”

guarantees that the program-order and relxed semantics are equivalent. The corresponding

programming pattern in the bounded case is to use polling receives and sends on all feedback

streams and “reconvergent fanout streams”. Reconvergent fanout streams are those that

participate in undirected cycles in the stream graph, but not directed cycles. Such a severe

restriction would likely have a substantial negative impact on the performance of many

programs.

7.6 Future work

7.6.1 Less severe restrictions

Finding useful classes of programs that can be proved equivalent with bounded buffers

is an important direction for future work. For example, even though Macah allows free

use of conditional and non-blocking stream operations, programs could adhere to a more

limited style, like synchronous dataflow. In synchronous dataflow, threads perform sends

and receives in some statically known simple pattern.

The trouble with synchronous dataflow is that it is too restrictive for some applications

that have data-dependent behavior. To use the shared memory analogy again, program-

ming strictly with critical sections and no data races works well most of the time, but for

some applications it is important to have other mechanisms like atomic read-modify-write

primitives. Perhaps there are equivalent techniques that could be used to write streaming

programs that are both safe and efficient.

222

7.6.2 Receive reordering

The relaxed semantics with send buffers are actually more strict than our current imple-

mentation. The semantics dictate that all receives happen in program order, whereas our

implementation allows receives from different streams to be reordered.

A simple program that cannot deadlock under any of the semantics we have looked at

so far, but can deadlock if we allow receive reordering (the capacity of s1 is 1):

t1 t2

s1 C! 42 ‖ kernel {

s1 C! 43 x1 C? s1

s2 C! 44 x2 C? s1

x3 C? s2

}

In the deadlocking trace, t1 sends 42 to s1. Then t1 blocks on the next send, be-

cause the capacity of s1 is 1. t2 can demand to receive on s2 first because we are allowing

receive reordering, and if it does the program is now deadlocked. t1 “wants” to send to s1

and t2 “wants” to receive from s2.

Formalizing receive reordering seems more complicated than send reordering. For send

reordering, we introduced local buffers that make sends “happen late” from the perspective

of the global stream buffer. It is not obvious how to make receives “happen early” in an

analogous way.

One possibility is to replace the buffering in the relaxed semantics proposed in this

chapter with a form of lazy evaluation. The main idea is that when a thread evaluates a

receive or send in kernel mode it does not actually perform the operation, but just records

the fact that it has to do it at some point in the future. The thread can then continue

executing, lazily delaying anything that depends (directly or indirectly) on the operation.

Similar to the nondeterministic sending from the local buffer, the thread can choose to

evaluate lazily built-up computations whenever it wants to.

This seems like a correct way to define programs, but I am afraid of trying to prove

223

anything useful with all the extra cruft the lazy evaluation would require.

If I could get the lazy evaluation version working it might subsume the local buffers

entirely which seems maybe nice.

7.6.3 Shared memory

Most C-like languages for accelerators do not support direct access to shared memory

through pointers inside of kernels.4 Accelerator hardware is not designed to support random

access of memory well, so it makes sense to force programmers to think differently about

memory by accessing it through streams.

Shared memory in kernels can be implemented by translating memory accesses into

sending an address to a special memory controller thread, and receiving the data back over

another stream. The programmer can do this translation by hand today, and it might make

sense to provide some automatic support.

7.7 Summary

Many existing C-like languages for accelerators use a combination of kernels that are au-

tomatically parallelized by the compiler and streams for inter-thread communication and

memory access. We showed that simply allowing the compiler to make reordering trans-

formations to kernels restricted only by local dependencies leads to differences between the

(intuitive) program-order semantics and the (actually implemented) relaxed semantics.

We believe that the best way to define a C-like language for accelerators is with both

program-order and relaxed semantics. The relaxed semantics represent the true meaning

of the language, and the program-order semantics provide a more intuitive model for pro-

grammers. We proved that for some interesting classes of programs the program-order and

relaxed semantics are equivalent, which means that thinking in terms of the program-order

semantics is safe.

Not all useful programs fit the patterns for which we proved equivalence, which means:

(a) there is more work needed in proving equivalence for wider sets of useful programs; and

4Languages and compilers that do support arbitrary pointer code face the challenge of proving that after
optimizations like deep loop pipelining, memory reads and writes appear to execute in the original order.

224

(b) there is a need for analysis tools that will tell programmers whether their program is

definitely safe, definitely dangerous, or too complex to say for sure.

We hope that this work provides motivation for researchers and vendors working on C-

like languages for accelerators to define formal semantics for their languages. In this space

it is common for languages to be “defined” by a single implementation alone, which is a

major obstacle to portability.

225

Chapter 8

CONCLUSIONS AND FUTURE WORK

Parallel coprocessor accelerators offer large performance and energy efficiency advan-

tages compared to conventional processors on a range of important applications. As the

performance scaling of conventional processors has slowed, interest has grown in accelerators

as a means to implement ever more powerful computer systems, from scientific computing

clusters to media-rich handheld devices. However, the languages currently in wide use

for programming accelerators are unfamiliar to most programmers and are generally (and

correctly) considered hard to use compared to conventional languages used for performance-

sensitive applications, like C/C++ and Fortran.

In this dissertation we explored abstract architectural models, language features, compi-

lation techniques, and formal semantics for making the programming of accelerators easier.

Together, these projects represent significant progress in making accelerators an attractive

tool for a wider range of programmers. Our specific goal is enabling “C-level” programming,

and we have taken clear steps in that direction.

8.1 Summary of results

The HMP model (Chapter 2) that we proposed provides an abstract picture of the hard-

ware resources available for algorithm designers to use when working with accelerators. We

demonstrated that using only the model, we can identify ways in which algorithms need

to be restructured to take advantage of accelerators. The model was an important tool

for teaching undergraduate students about the most important differences between conven-

tional processors and accelerators. Even members of the Mosaic group who are experts

in accelerator architectures found it useful to refer back to the model during application

development work to stay focused on the most fundamental performance issues.

Enhanced loop flattening (Chapter 4) helps remove unnecessary limitations on the style

226

of control flow that accelerator programmers can use. We showed that it is possible to

pipeline complex loop nests with the same level of efficiency as conventional inner-loop-only

pipelining. It is still possible for programmers to write loops that do not perform well

because of application-level dependencies. However, we can now compile complex kernels

without fear of the system introducing its own layer of inefficiency due to control flow

complexity.

Our experiments with auto-tuning applications for accelerators (Chapter 6) demonstrate

that hard architectural resource constraints are an important problem, especially when the

relationships between application-level tuning parameters and architecture-level constraints

are complex. We developed a new auto-tuning search algorithm that uses probabilistic

estimates of many program features to predict both the quality and likelihood of success for

untested configurations. The success of this search method means that programmers can

target families of related accelerators, instead of thinking about the exact capacities of a

particular chip.

We identified an important language semantics issue related to the deep pipelining of

kernels and the use of streams for communication and memory access. We proposed a

relaxed semantics (Chapter 7) that explicitly models reordering of stream send and receive

operations, which is provably equivalent for “well-behaved” programs to a semantics under

which all stream operations are kept in program-order. These semantics are a basis on

which tools to help programmers identify “ill-behaved” parts of their programs could be

built.

8.2 How far have we come?

To evaluate the significance of our progress, we take a step back from these specific contri-

butions. Our larger goal is to make programming accelerators as easy as possible, with the

critical caveat that there is no point in using accelerators if we give up too much performance

for convenience. At one extreme is current practice: hardware description languages for pro-

gramming FPGAs and CUDA/CTM for programming GPUs. According to the most recent

application studies that compare multiple accelerator families [THL09, GBL10, BNW+10],

CUDA and CTM have a shallower learning curve than HDLs, but they all require a non-

227

trivial amount of architecture-level thinking from the programmer.

At the other extreme are compiler research projects that aim to make the existence of

accelerators nearly invisible to programmers. If we had effective “accelerating” compilers for

conventional languages, accelerators could just be treated as a different kind of processor

with slightly different performance characteristics. Unfortunately, many of the technical

impediments to automatic acceleration are the same as those that automatically parallelizing

compilers have run up against. After several decades of research, automatically parallelizing

compilers have seen limited success. In fact, the increasing popularity of self-tuning libraries

and general purpose auto-tuning show that even standard processors are now sufficiently

complex that fully automatic compilation of unoptimized code to modern processors results

in relatively poor performance. The parallelism and hard resource constraints of accelerators

make them harder to compile to than even the most complex conventional processors. Given

all these challenges, I do not believe that fully automatic compilation to accelerators from

conventional languages will be a practical reality for the foreseeable future.

Between these two extremes, C-level programming of accelerators is an attempt to bal-

ance the strengths of humans and compilers. We aim to hide as many details of an accel-

erator as possible, but not the essential differences between accelerators and conventional

processors. This is exactly our goal for Macah and the Mosaic toolchain, and to evaluate

how much progress we made towards that goal, we will consider three questions:

• Are there applications that should work well on accelerators, but are hard to express

in Macah?

• How much extra effort is required from a programmer to go from a good sequential

implementation of an application to a high performance Macah implementation?

• How architecture-independent are Macah programs?

8.2.1 Gaps in expressiveness

We have done development work on many applications, and most of them worked well in the

Macah/Mosaic framework. One of the important gaps that we identified is the assumption

that the logical unit of acceleration in an application is a single kernel. Kernels in Macah

228

can have a large number of parallel operations, but they are all scheduled in synchrony with

each other; Macah does not have kernel with asynchronous sub-parts.

Work has already begun on addressing this issue in the “Mosaic 2” toolchain. In Mosaic

2, applications can have multiple kernels that run asynchronously in different tasks at the

same time. This support is critical for applications that have sub-components that run at

different data-dependent rates, like (de)compression or data-dependent filtering. Adding

multikernel support to Macah/Mosaic introduces some interesting compiler problems, but

we believe they can be solved.

A smaller issue that has come up a number of times is that loop flattening/pipelining

do a good job of parallelizing primitive operations, but they do not parallelize whole loops

with other loops. Other optimizations like loop fusion and skewing are sometimes very prof-

itable, and automatically performing these transformations is not theoretically challenging.

However, deciding where and when such transformations should be applied is a bigger chal-

lenge. In the spirit of the C-level balance, I believe that C-like languages for accelerators

should come with a library of hints that guide the compiler to where it should apply various

optimizations. Ideally, the application of these hints would be tunable. By standardizing

these hints as part of the language, they can be portable across different compilers.

8.2.2 Application development experience

Close to two dozen programmers, many of them undergraduate students at the University

of Washington, have done application development work in Macah. From their experience

we can draw some qualitative conclusions about the difficulty of C-level programming of

accelerators. With a couple of training sessions and a tutorial that goes through the steps

necessary to turn a sequential program into a good Macah implementation, most of the

users were able to independently write good Macah code for basic applications like 2D

convolution.

The most common source of confusion for Macah programmers is that much of the code

looks like conventional sequential C code. This makes it hard for them to visualize the

loop parallelization that the compiler performs. This challenge in turn makes it hard to

229

understand why particular dependencies in a program are obstacles to good performance

on an accelerator.

We have also found that for more complex applications, the HMP model gives enough

detail to get started on a good accelerator implementation, but often issues come up that

require the programmer to “look under the hood”, for example, at a more detailed picture

of the local memory hierarchy. Learning about this additional layer of architectural detail

is an extra burden on the programmer.

In the future work section below, I sketch a performance analysis (profiling) tool that I

believe could go a long way towards demystifying the disconnect between sequential-looking

code and parallelized implementation. The issue of having to look underneath the model is

one for which I do not see an immediate compiler/tool solution. Perhaps a two layer model

would be appropriate, where the second layer has a more concrete picture of the accelerator

hardware, but still leaves out some details.

8.2.3 How portable is portable?

The Mosaic toolchain was designed to model and compile to a range of coarse-grained

reconfigurable architectures, a category that does not include accelerators with a strong

SIMD character (GPUs), accelerators with many independent control domains (MPPAs)

or fine-grained architectures (FPGAs). We believe that extending the Mosaic toolchain to

support FPGAs would require a modest amount of effort, and would not require changing

Macah or most programs is a fundamental way.

Adapting Macah and the Mosaic toolchain to massively parallel processor arrays (MP-

PAs) requires more rethinking of compilation techniques and programming styles. In fact,

MPPAs were a major motivation for adding multikernel support to Macah. With that

support we expect efficient compilation of Macah to MPPAs to be possible.

Graphics processing units (GPUs) are different from all these other families of acceler-

ators in some important ways. Modern “general purpose” GPUs have hundreds of simple

processors that are grouped into blocks of 32 or 64. The blocks are mostly independent

of each other, and within each block a single instruction is broadcast to all processors in a

230

SIMD fashion. GPUs have an important extra degree of flexibility compared to strict SIMD

machines: individual processors within a block can branch in different directions. However,

only one instruction at a time can be broadcast in a block. This means that if half of the

processors branch in one direction and half in another, half of them have to sit idle while

the others execute. When the divergent control paths reconverge, all processors can resume

executing in parallel.

SIMD execution has a natural connection with data-parallel programming, which is the

style that most languages targeted specifically at GPUs use in some way. Macah and the

Mosaic toolchain are designed to support a more ad hoc style of parallelism that comes from

loop unrolling and pipelining. Whether SIMD-style parallelism and pipeline parallelism can

be harmonized in an efficient way is an open research question.

Where does this discussion of different families of accelerators leave our claims about

the portability of Macah? The tuning knob search does a good job of adapting a program

to particular architectures within a family that differ only in the sizes of various resources.

Portability between architectures that differ in more fundamental ways from a single C-level

source program is a bigger challenge, and one that we have not yet solved.

At the heart of the cross-family portability challenge is the most imprecise part of the

HMP model: the accelerator controller. Different families of architectures have different

styles of control that provide different levels of support for three different kinds of par-

allelism: asynchronous task or thread parallelism, synchronous pipeline parallelism, and

symmetric data parallelism.

With the addition of multikernel support in Mosaic 2, Macah will have support for all

three styles parallelism, but neither the language nor the model force programmers to use the

style that a particular architecture supports best. For the near future I believe that targeting

different styles of accelerators will at least require somewhat different programming style,

if not different languages. There have been some preliminary efforts to compile languages

designed for GPUs to other kinds of accelerators [PGS+09a, PGS+09b, RVDB10], but the

results so far have been mixed.

231

8.3 Promising directions for future work

Throughout this dissertation we have written about possible incremental improvements to

the ideas and algorithms we proposed. Here are three bigger-picture ideas for improving

the programmability of accelerators.

8.3.1 Healing the GPU/Macah divide

In the previous section we discussed the three different styles of parallel control (task, SIMD,

and pipelined) that accelerators can exploit to varying degrees. There is a relatively large

gap between Macah and GPUs, because GPUs have strong support for SIMD-style control,

and Macah does not force the programmer into a data-parallel style of coding.

One approach to resolving this tension is to change GPUs, rather than the language

or compilation approach. The current structure of GPUs is still strongly influenced by

their graphics rendering lineage. GPU vendors have only been seriously supporting non-

graphics applications on GPUs for a couple of generations. In that time, GPUs have already

changed in modest ways to support non-graphics applications (and more complex graphics

workloads). Though it was not a commercial success, Intel’s Larrabee showed that new

accelerators designed for graphics and other workloads do not have to look exactly like

today’s GPUs. Larrabee had more in common with MPPAs than it did with conventional

GPUs from NVIDIA and ATI.

Conventional GPUs already have strong support for SIMD-style parallelism and some

support for task parallelism (the blocks are mostly independent). The missing ingredient

for making GPUs truly general purpose accelerators is pipeline-style parallelism. Perhaps a

local microcode approach within the blocks could be effective. The central block controller

broadcasts instructions, but (subsets of) processors reinterpret those instructions based on

their local microcode.

It is also possible that it would be easier to design a high performance, parallelism-style-

flexible accelerator starting from something other than a GPU. The reason for the focus on

GPUs here is simply the commercial momentum behind them. Millions of developers already

have GPUs in their systems to experiment with, which is an important consideration.

232

8.3.2 Model-based profiling tools

As mentioned in the previous section, one of the biggest challenges we faced in getting new

programmers to write good Macah code is that it mostly looks sequential. The results of

loop unrolling and pipelining are hard for many programmers to imagine, which makes it

hard to gain intuition for why specific dependencies in a program are problematic. We have

also run into the kinds of deadlocks described in Chapter 7 in more complex programs.

These problems can be addressed with correctness and performance analysis tools that

are designed for accelerator-specific problems. These tools would analyze I/O behavior,

workspace memory usage, performance-limiting dependencies, and potentially problematic

feedback through streams. The critical requirement for these tools is that they provide

feedback in programming language and model terms, not architecture terms.

8.3.3 What’s the best auto-tuner?

In Chapter 6 the evaluation of our tuning knob search algorithm focused on the issue of hard-

to-predict failures. We have not directly compared our algorithm to other search methods

for optimizing a single function. However, given the high cost of testing a configuration and

the relatively small number of iterations that are tolerable in many development situations,

the question of which search method is fastest in general is an interesting one. The method

we developed, based on locally weighted averaging and derivative projection, is somewhat

unusual, but we believe it deserves further investigation as a generally efficient auto-tuning

search method.

One of the common features of many of the popular approaches to auto-tuning, including

direct search-style algorithms, simulated annealing, and genetic algorithms, is that as the

search runs there is a notion of the current configuration (or a few current configurations in

the case of genetic algorithms). The search proceeds by moving in some direction from the

current configuration. One of the major problems that all such search algorithms have to

contend with is getting trapped in local minima. If all configurations in range of the current

configuration are worse than it, the search will stop.

This single configuration style of searching makes a lot of sense for applications like

233

circuit layout where a single configuration is large, the whole space of possible configurations

is gargantuan, and huge portions of the space are very low quality. When a reasonably good

configuration is found there are good reasons to not stray too far from it. However, many

tuning applications do not have these kinds of dimensions. Most auto-tuning applications

have at most a couple tens of knobs; many only two or three. Given this much smaller

scale, it is easy to generate a large number of candidate configurations. Also, the fewer

dimensions, the easier it is to use trends in a set of test data to predict the value of untested

configurations. Clearly more experimentation is needed, but we believe that there is a

potential for methods that consider candidate configurations from the whole range of the

tuning space for every test.

8.4 The last word

We now have the technology to support C-level programming of a particular family of ac-

celerators. Modest tool and algorithm improvements will soon improve the convenience and

speed of accelerator development to the point where most programmers of performance-

critical applications should consider using accelerators. Porting between different accelera-

tor families still requires at least a change in coding style for many applications. In practice

different languages will be used to program different kinds of accelerators for the near future.

The biggest question for the accelerator ecosystem is whether there will continue to be room

for multiple families of accelerators with different parallelism-control strengths. If the com-

munity converges on a family of architectures that have support for the three fundamental

styles of accelerator parallelism control, there will be no need to develop technologies to

facilitate porting across the families of accelerators we have today.

234

BIBLIOGRAPHY

[ACW+09] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan
Edelman, and Saman Amarasinghe. Petabricks: a language and compiler for
algorithmic choice. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages 38–49,
New York, NY, USA, 2009. ACM.

[ADK+04] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi, and Ab-
hishek Das. Evaluating the Imagine Stream Architecture. In Proceedings of
the 31st annual international symposium on Computer architecture, page 14,
Mnchen, Germany, 2004. IEEE Computer Society.

[AG95] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency
Models: A Tutorial. Research Report 95/7, Western Research Laboratory,
250 University Avenue Palo Alto, California 94301 USA, September 1995.

[AJ88] R. Allen and S. Johnson. Compiling C for vectorization, parallelization,
and inline expansion. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation, pages 241–
249, New York, NY, USA, 1988. ACM Press.

[And98] Ray Andraka. A survey of CORDIC algorithms for FPGA based computers.
In FPGA ’98: Proceedings of the 1998 ACM/SIGDA sixth international sym-
posium on Field programmable gate arrays, pages 191–200, New York, NY,
USA, 1998. ACM.

[ATA05] Sitij Agrawal, William Thies, and Saman Amarasinghe. Optimizing stream
programs using linear state space analysis. In CASES ’05: Proceedings of the
2005 international conference on Compilers, architectures and synthesis for
embedded systems, pages 126–136, New York, NY, USA, 2005. ACM Press.

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with
iteration. Commun. ACM, 20(7):519–526, 1977.

[AWC+10] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman,
and Saman Amarasinghe. Language and compiler support for auto-tuning
variable-accuracy algorithms. Technical Report MIT-CSAIL-TR-2010-032,
Computer Science and ArtificialIntelligence Laboratory, MIT, July 2010.

235

[BA08] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency
memory models. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and implementation, pages 68–
78, New York, NY, USA, 2008. ACM.

[BACD97] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing
matrix multiply using PHiPAC: a portable, high-performance, ANSI C coding
methodology. In ICS ’97: Proceedings of the 11th international conference
on Supercomputing, pages 340–347, New York, NY, USA, 1997. ACM.

[Bal94] Shummet Baluja. Population-Based Incremental Learning: A Method for
Integrating Genetic Search Based Function Optimization and Competitive
Learning. Technical Report CS-94-163, Carnegie Mellon University, Pitts-
burgh, PA, USA, 1994.

[BBKG07] Frank Bouwens, Mladen Berekovic, Andreas Kanstein, and Georgi Gaydad-
jiev. Architectural Exploration of the ADRES Coarse-Grained Reconfigurable
Array. In Springer Berlin / Heidelberg, editor, Reconfigurable Computing:
Architectures, Tools and Applications, volume Volume 4419/2007 of Lecture
Notes in Computer Science, pages 1–13, March 2007.

[BDH+00] Reynold Bailey, Delvin Defoe, Ranette Halverson, Richard Simpson, and Nel-
son Passos. A study of software pipelining for multi-dimensional problems.
In 13th International Conference on Parallel and Distributed Computing Sys-
tems, pages 426–431, Las Vegas NV, August 2000.

[BG02] Mihai Budiu and Seth Copen Goldstein. Compiling application-specific hard-
ware. In International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 853–863, Montpellier (La Grande-Motte), France,
September 2–4 2002.

[BGS94] David Bacon, Susan Graham, and Oliver Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys, 26(4):345–420,
1994.

[BGT07] Zachary K. Baker, Maya B. Gokhale, and Justin L. Tripp. Matched Fil-
ter Computation on FPGA, Cell and GPU. In IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 207–218, Washington,
DC, USA, 2007. IEEE Computer Society.

[BH93] Thomas Ball and Susan Horwitz. Slicing Programs with Arbitrary Control-
flow. In AADEBUG ’93: Proceedings of the First International Workshop on
Automated and Algorithmic Debugging, pages 206–222, London, UK, 1993.
Springer-Verlag.

236

[BHD+02] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and
W. Najjar. Mapping a Single Assignment Programming Language to Recon-
figurable Systems. The Journal of Supercomputing, 21(2):117–130, 2002.

[BJW07] Michael Butts, Anthony Mark Jones, and Paul Wasson. A Structural Ob-
ject Programming Model, Architecture, Chip and Tools for Reconfigurable
Computing. In IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, pages 55–64, Washington, DC, USA, 2007. IEEE Computer
Society.

[BNW+10] John Bodily, Brent Nelson, Zhaoyi Wei, Dah-Jye Lee, and Jeff Chase. A
comparison study on implementing optical flow and digital communications
on FPGAs and GPUs. ACM Trans. Reconfigurable Technol. Syst., 3(2):1–22,
2010.

[BP09] Gérard Boudol and Gustavo Petri. Relaxed memory models: an operational
approach. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 392–403,
New York, NY, USA, 2009. ACM.

[BRS07] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. Automatic mapping
of nested loops to FPGAs. In PPoPP ’07: Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 101–111, New York, NY, USA, 2007. ACM.

[BSWG00] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen Goldstein. BitValue
Inference: Detecting and Exploiting Narrow Bitwidth Computations. In Eu-
ropar Conference. Springer Verlag, 2000.

[Bud03] Mihai Budiu. Spatial Computation. PhD thesis, Carnegie Mellon University,
Computer Science Department, December 2003. Technical report CMU-CS-
03-217.

[Car05] Joäo M. P. Cardoso. Dynamic loop pipelining in data-driven architectures.
In CF ’05: Proceedings of the 2nd conference on Computing frontiers, pages
106–115, New York, NY, USA, 2005. ACM.

[CBl] http://en.wikipedia.org/wiki/Blocks_(C_language_extension).

[CBM+93] William Y. Chen, Roger A. Bringmann, Scott A. Mahlke, Sadun Anik,
Tokuzo Kiyohara, Nancy J. Warter, Daniel M. Lavery, Wen mei W. Hwu,
Richard E. Hank, and John C. Gyllenhaal. Using Profile Information to As-
sist Advaced Compiler Optimization and Scheduling. In Proceedings of the
5th International Workshop on Languages and Compilers for Parallel Com-
puting, pages 31–48, London, UK, 1993. Springer-Verlag.

http://en.wikipedia.org/wiki/Blocks_(C_language_extension)

237

[CCF03] Weihaw Chuang, Brad Calder, and Jeanne Ferrante. Phi-predication for light-
weight if-conversion. In CGO ’03: Proceedings of the international symposium
on Code generation and optimization, pages 179–190, Washington, DC, USA,
2003. IEEE Computer Society.

[CCH+00] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John Wawrzynek, and
André DeHon. Stream Computations Organized for Reconfigurable Execution
(SCORE). In International Conference on Field-Programmable Logic and
Applications, pages 605–614, London, UK, August 2000. Springer-Verlag.

[CCH05] Chun Chen, Jacqueline Chame, and Mary Hall. Combining models and
guided empirical search to optimize for multiple levels of the memory hi-
erarchy. In CGO ’05: Proceedings of the international symposium on Code
generation and optimization, pages 111–122, Washington, DC, USA, 2005.
IEEE Computer Society.

[CCL+98] Bradford L. Chamberlain, Sung-Eun Choi, E Christopher Lewis, Lawrence
Snyder, W. Derrick Weathersby, and Calvin Lin. The Case for High-Level
Parallel Programming in ZPL. IEEE Comput. Sci. Eng., 5(3):76–86, 1998.

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel Programmability
and the Chapel Language. Int. J. High Perform. Comput. Appl., 21(3):291–
312, 2007.

[CDG+06] Albert Cohen, Sébastien Donadio, Maria-Jesus Garzaran, Christoph Her-
rmann, Oleg Kiselyov, and David Padua. In search of a program generator to
implement generic transformations for high-performance computing. Science
of Computer Programming, 62(1):25–46, September 2006.

[CE06] Allan Carroll and Carl Ebeling. Reducing the Space Complexity of Pipelined
Routing Using Modified Range Encoding. In Proceedings of the International
Conference on Field Programmable Logic and Applications, September 2006.

[Cel04] Celoxica. Handel-C Language Reference Manual RM-1003-4.2. Celoxica,
2004.

[CFBE98] Darren C. Cronquist, Paul Franklin, Stefan G. Berg, and Carl Ebeling. Spec-
ifying and Compiling Applications for RaPiD. In Kenneth L. Pocek and
Jeffrey Arnold, editors, IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 116–125. IEEE Computer Society Press, 1998.

[CFF+99] D.C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Archi-
tecture design of reconfigurable pipelined datapaths. In Advanced Research
in VLSI, 1999. Proceedings. 20th Anniversary Conference on, pages 23–40,
Atlanta, 1999.

238

[CFS90] Ron Cytron, Jeanne Ferrante, and V. Sarkar. Compact representations for
control dependence. In PLDI ’90: Proceedings of the ACM SIGPLAN 1990
conference on Programming language design and implementation, pages 337–
351, New York, NY, USA, 1990. ACM.

[CGH+05] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, De-
vika Subramanian, Linda Torczon, and Todd Waterman. ACME: adaptive
compilation made efficient. SIGPLAN Not., 40(7):69–77, 2005.

[CH99] Mark L. Chang and Scott Hauck. Adaptive Computing in NASA Multi-
Spectral Image Processing. In Military and Aerospace Applications of Pro-
grammable Devices and Technologies International Conference, 1999.

[CH04] I-Hsin Chung and Jeffrey K. Hollingsworth. Using information from prior
runs to improve automated tuning systems. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomputing, page 30, Washington, DC,
USA, 2004. IEEE Computer Society.

[CHW00] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp Architecture and C
Compiler. IEEE Computer, 33(4):62–69, 2000.

[CLS+08] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. Ac-
celerating compute-intensive applications with GPUs and FPGAs. In SASP
’08: Proceedings of the 2008 Symposium on Application Specific Processors,
pages 101–107, Washington, DC, USA, 2008. IEEE Computer Society.

[CMmWH91] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using Profile
Information to Assist Classic Code Optimizations. Softw. Pract. Exper.,
21(12):1301–1321, 1991.

[Cra] Inc. Cray. Cray XD1 Supercomputer Overview.
http://www.cray.com/products/xd1/.

[CSJC10] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A dynamically configurable coprocessor for convolutional neural
networks. In ISCA ’10: Proceedings of the 37th annual international sympo-
sium on Computer architecture, pages 247–257, New York, NY, USA, 2010.
ACM.

[CSS99] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing
for reduced code space using genetic algorithms. In LCTES ’99: Proceedings
of the ACM SIGPLAN 1999 workshop on Languages, compilers, and tools
for embedded systems, pages 1–9, New York, NY, USA, 1999. ACM.

239

[CST02] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive opti-
mizing compilers for the 21st century. J. Supercomput., 23(1):7–22, 2002.

[CW00] Timothy J. Callahan and John Wawrzynek. Adapting Software Pipelining
for Reconfigurable Computing. In International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES) 2000, 2000.

[DCF+07] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin,
Michael F.P. O’Boyle, and Olivier Temam. Fast compiler optimisation evalua-
tion using code-feature based performance prediction. In CF ’07: Proceedings
of the 4th international conference on Computing frontiers, pages 131–142,
New York, NY, USA, 2007. ACM Press.

[DLD+03] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-
Ho Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck,
Timothy J. Knight, and Ujval J. Kapasi. Merrimac: Supercomputing with
Streams. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on Su-
percomputing, page 35, Washington, DC, USA, 2003. IEEE Computer Society.

[FCOT05] Grigori Fursin, Albert Cohen, M. O’Boyle, and Olivier Temam. A Practi-
cal Method For Quickly Evaluating Program Optimizations. In Intl. Conf.
on High Performance Embedded Architectures and Compilers (HiPEAC’05),
number 3793 in LNCS, pages 29–46, Barcelona, Spain, November 2005.
Springer-Verlag.

[FCT07] Mohammed Fellahi, Albert Cohen, and Sid Touati. Code-size conscious pipe-
lining of imperfectly nested loops. In MEDEA ’07: Proceedings of the 2007
workshop on MEmory performance, pages 49–55, New York, NY, USA, 2007.
ACM.

[FCVE+09] Stephen Friedman, Allan Carroll, Brian Van Essen, Benjamin Ylvisaker, Carl
Ebeling, and Scott Hauck. SPR: an architecture-adaptive CGRA mapping
tool. In ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 191–200, New York, NY, USA, 2009. ACM.

[FDF98] Paolo Faraboschi, Giuseppe Desoli, and Joseph A. Fisher. Clustered
Instruction-Level Parallel Processors. Technical Report HPL-98-204, Hewlett
Packard Laboratories Cambridge, December 1998.

[FH05] T.W. Fry and S.A. Hauck. SPIHT image compression on FPGAs. IEEE
Transactions on Circuits and Systems for Video Technology, 15(9):1138–1147,
2005.

[Fis81] J. A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Trans. Comput., 30(7):478–490, 1981.

240

[FJ05] Matteo Frigo and Steven G. Johnson. The Design and Implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[FLC03] M Forina, S Lanteri, and C Casolino. Cluster analysis: significance, empty
space, clustering tendency, non-uniformity. II - empty space index. Annali di
Chimica, 93(5-6):489–498, May-June 2003.

[FOK02] Grigori Fursin, Michael F. P. O’Boyle, and Peter M. W. Knijnenburg. Evalu-
ating Iterative Compilation. In William Pugh and Chau-Wen Tseng, editors,
LCPC, volume 2481 of Lecture Notes in Computer Science, pages 362–376.
Springer, 2002.

[FOTF05] Björn Franke, Michael O’Boyle, John Thomson, and Grigori Fursin. Prob-
abilistic source-level optimisation of embedded programs. SIGPLAN Not.,
40(7):78–86, 2005.

[Gan94] Amit Ganesh. Fusing loops with backward inter loop data dependence. SIG-
PLAN Not., 29(12):25–30, 1994.

[GBL10] Cristian Grozea, Zorana Bankovic, and Pavel Laskov. FPGA vs. multi-core
CPUs vs. GPUs: Hands-on experience with a sorting application. In Facing
the Multi-Core Challenge: Conference for Young Scientists at the Heidel-
berger Akademie der Wissenschaften, 2010.

[gcc] http://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html.

[GCHP02] Benjamin Goldberg, Emily Crutcher, Chad Huneycutt, and Krishna V.
Palem. Software bubbles: Using predication to compensate for aliasing in
software pipelines. In PACT ’02: Proceedings of the 2002 International Con-
ference on Parallel Architectures and Compilation Techniques, pages 211–221,
Washington, DC, USA, 2002. IEEE Computer Society.

[GDKG05] M.D. Galanis, G. Dimitroulakos, A.P. Kakarountas, and C.E. Goutis.
Speedups from partitioning software kernels to fpga hardware in embedded
socs. In Signal Processing Systems Design and Implementation, 2005. IEEE
Workshop on, pages 485 – 490, 2005.

[GF95] Anwar M. Ghuloum and Allan L. Fisher. Flattening and parallelizing irreg-
ular, recurrent loop nests. SIGPLAN Not., 30(8):58–67, 1995.

[GFM+03] Maya Gokhale, Janette Frigo, Kevin McCabe, James Theiler, Christophe
Wolinski, and Dominique Lavenier. Experience with a Hybrid Processor:
K-Means Clustering. The Journal of Supercomputing, 26(2):131–148, 2003.

http://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html

241

[GGHvdG01] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de
Geijn. Flame: Formal linear algebra methods environment. ACM Trans.
Math. Softw., 27(4):422–455, 2001.

[GMR99] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. The queue-read
queue-write pram model: Accounting for contention in parallel algorithms.
SIAM J. Comput., 28:733–769, February 1999.

[GRE+01] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commercially rep-
resentative embedded benchmark suite. In IEEE 4th Annual Workshop on
Workload Characterization, December 2001.

[GS98] M. Gokhale and J. Stone. NAPA C: Compiling for Hybrid RISC/FPGA Ar-
chitecture. In IEEE Symposium on Field-Programmable Custom Computing
Machines, 1998.

[GSAK00] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented FPGA
computing in the Streams-C high level language. In IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 49–56, 2000.

[GSB+00] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt
Moe, and Reed Taylor. PipeRench: A Reconfigurable Architecture and Com-
piler. IEEE Computer, 33(4):70–77, 2000.

[GSM+99] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari
Cadambi, R. Reed Taylor, and Ronald Laufer. PipeRench: A Coprocessor
for Streaming Multimedia Acceleration. In 26th International Symposium on
Computer Architecture (ISCA99), 1999.

[GSZ01] Elana Granston, Eric Stotzer, and Joe Zbiciak. Software pipelining irregular
loops on the tms320c6000 vliw dsp architecture. In LCTES ’01: Proceed-
ings of the ACM SIGPLAN workshop on Languages, compilers and tools for
embedded systems, pages 138–144, New York, NY, USA, 2001. ACM.

[GTK+02] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S.
Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David
Maze, and Saman Amarasinghe. A stream compiler for communication-
exposed architectures. In ASPLOS-X: Proceedings of the 10th international
conference on Architectural support for programming languages and operating
systems, pages 291–303, New York, NY, USA, 2002. ACM.

[GYQ10] Jichi Guo, Qing Yi, and Apan Qasem. Evaluating the role of optimization-
specific search heuristics in effective autotuning. Technical Report CS-TR-
2010-010, University of Texas at San Antonio, July 2010.

242

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and
Shuqing Zhao. SpecC: Specification Language and Methodology. Springer,
March 2000.

[HJL+07] B. Harris, A.C. Jacob, J.M. Lancaster, J. Buhler, and R.D. Chamberlain. A
banded smith-waterman FPGA accelerator for mercury BLASTP. In Field
Programmable Logic and Applications, 2007. FPL 2007. International Con-
ference on, pages 765 –769, aug. 2007.

[HML+09] Michael Haselman, Robert Miyaoka, Thomas K. Lewellen, Scott Hauck,
Wendy McDougald, and Don Dewitt. FPGA-based front-end electronics for
positron emission tomography. In FPGA ’09: Proceeding of the ACM/SIGDA
international symposium on Field programmable gate arrays, pages 93–102,
New York, NY, USA, 2009. ACM.

[HNC+01] Malay Haldar, Anshuman Nayak, Alok Choudhary, Prith Banerjee, and Na-
graj Shenoy. Fpga hardware synthesis from matlab. In VLSID ’01: Proceed-
ings of the The 14th International Conference on VLSI Design (VLSID ’01),
page 299, Washington, DC, USA, 2001. IEEE Computer Society.

[HNS09] Albert Hartono, Boyana Norris, and P. Sadayappan. Annotation-based em-
pirical performance tuning using orio. In IPDPS ’09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing, pages 1–
11, Washington, DC, USA, 2009. IEEE Computer Society.

[HR92] Susan Horwitz and Thomas Reps. The use of program dependence graphs
in software engineering. In ICSE ’92: Proceedings of the 14th international
conference on Software engineering, pages 392–411, New York, NY, USA,
1992. ACM.

[HU05] K. Scott Hemmert and Keith D. Underwood. An Analysis of the Double-
Precision Floating-Point FFT on FPGAs. In FCCM ’05: Proceedings of the
13th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’05), pages 171–180, Washington, DC, USA, 2005. IEEE
Computer Society.

[HW97] John R. Hauser and John Wawrzynek. A MIPS Processor with a Reconfig-
urable Coprocessor. In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 12–
21. IEEE Computer Society Press, 1997. Los Alamitos, CA.

[JTLC09] Qiwei Jin, David B. Thomas, Wayne Luk, and Benjamin Cope. Exploring re-
configurable architectures for tree-based option pricing models. ACM Trans.
Reconfigurable Technol. Syst., 2(4):1–17, 2009.

243

[JXHX02] A.K. Jain, Xiaowei Xu, Tin Kam Ho, and Fan Xiao. Uniformity testing
using minimal spanning tree. In Pattern Recognition, 2002. Proceedings. 16th
International Conference on, volume 4, pages 281–284 vol.4, 2002.

[KDK+01] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung
Namkoong, John D. Owens, Brian Towles, Andrew Chang, and Scott Rixner.
Imagine: Media Processing with Streams. IEEE Micro, 21(2):35–46, 2001.

[KFM06] Manjunath Kudlur, Kevin Fan, and Scott Mahlke. Streamroller: Automatic
Synthesis of Prescribed Throughput Accelerator Pipelines. In International
Conference on Hardware/Software Codesign and System Synthesis, October
2006.

[KHH+04] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson,
and Douglas Jones. Fast searches for effective optimization phase sequences.
In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Pro-
gramming language design and implementation, pages 171–182, New York,
NY, USA, 2004. ACM.

[KKLW80] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe. The structure of an
advanced vectorizer for pipelined processors. In Proc. IEEE Computer Society
Fourth International Computer Software and Applications Conf., October
1980.

[KLT03] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization
by direct search: New perspectives on some classical and modern methods.
SIAM Review, 45:385–482, 2003.

[KM94] Ken Kennedy and Kathryn S. McKinley. Maximizing Loop Parallelism and
Improving Data Locality via Loop Fusion and Distribution. In Proceedings
of the 6th International Workshop on Languages and Compilers for Parallel
Computing, pages 301–320, London, UK, 1994. Springer-Verlag.

[Kni98] Peter M.W. Knijnenburg. Flattening VLIW code generation for imperfectly
nested loops. Technical report, Department of Computer Science, Leiden
University, 1998.

[KNP08] Arun Kejariwal, Alexandru Nicolau, and Constantine D. Polychronopou-
los. Enhanced loop coalescing: A compiler technique for transforming
non-uniform iteration spaces. Lecture Notes in Computer Science, Volume
4759/2009:17–32, January 2008.

[KRD+03] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho
Ahn, Peter Mattson, and John D. Owens. Programmable Stream Processors.
IEEE Computer, 36(8):54–62, 2003.

244

[KSP09] Thomas Karcher, Christoph Schaefer, and Victor Pankratius. Auto-tuning
support for manycore applications: perspectives for operating systems and
compilers. SIGOPS Oper. Syst. Rev., 43(2):96–97, 2009.

[KZM+03] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David
Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan.
Finding effective optimization phase sequences. In LCTES ’03: Proceedings
of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for
embedded systems, pages 12–23, New York, NY, USA, 2003. ACM.

[Lam88] Monica Lam. Software pipelining: an effective scheduling technique for VLIW
machines. In ACM SIGPLAN conference on Programming Language Design
and Implementation, pages 318–328, New York, NY, USA, 1988. ACM Press.

[LCD91] David Levine, David Callahan, and Jack Dongarra. A comparative study of
automatic vectorizing compilers. Parallel Computing, 17(10-11):1223–1244,
1991.

[LE04] Song Li and C. Ebeling. QuickRoute: a fast routing algorithm for pipelined
architectures. In IEEE International Conference on Field-Programmable
Technology, pages 73–80, Queensland, Australia, 2004.

[LGAV96] Josep Llosa, Antonio González, Eduard Ayguadé, and Mateo Valero. Swing
modulo scheduling: A lifetime-sensitive approach. In PACT ’96: Proceedings
of the 1996 Conference on Parallel Architectures and Compilation Techniques,
page 80, Washington, DC, USA, 1996. IEEE Computer Society.

[LKSK08] Changhee Lee, Donguk Kim, Hayong Shin, and Deok-Soo Kim. Trash removal
algorithm for fast construction of the elliptic gabriel graph using delaunay
triangulation. Comput. Aided Des., 40(8):852–862, 2008.

[LLS98] E. Christopher Lewis, Calvin Lin, and Lawrence Snyder. The implementation
and evaluation of fusion and contraction in array languages. In PLDI ’98:
Proceedings of the ACM SIGPLAN 1998 conference on Programming lan-
guage design and implementation, pages 50–59, New York, NY, USA, 1998.
ACM.

[LS03] Benjamin A. Levine and Herman H. Schmit. Efficient Application Represen-
tation for HASTE: Hybrid Architectures with a Single, Transformable Ex-
ecutable. In IEEE Symposium on Field-Programmable Custom Computing
Machines, page 101, Washington, DC, USA, 2003. IEEE Computer Society.

[LW10] Anders Logg and Garth N. Wells. Dolfin: Automated finite element comput-
ing. ACM Trans. Math. Softw., 37(2):1–28, 2010.

245

[LZSS04] Meilin Liu, Qingfeng Zhuge, Zili Shao, and Edwin H.-M. Sha. General loop
fusion technique for nested loops considering timing and code size. In CASES
’04: Proceedings of the 2004 international conference on Compilers, architec-
ture, and synthesis for embedded systems, pages 190–201, New York, NY,
USA, 2004. ACM.

[Mat01] Peter Mattson. A Programming System for the Imagine Media Processor.
PhD thesis, Stanford University, 2001.

[MD01] Kalyan Muthukumar and Gautam Doshi. Software pipelining of nested loops.
In CC ’01: Proceedings of the 10th International Conference on Compiler
Construction, pages 165–181, London, UK, 2001. Springer-Verlag.

[ME95] Larry McMurchie and Carl Ebeling. PathFinder: A negotiation-based
performance-driven router for FPGAs. In ACM International Symposium on
Field-Programmable Gate Arrays, pages 111–117. ACM Press, 1995. Mon-
terey, California, United States.

[MGAK03] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.
Cg: a system for programming graphics hardware in a C-like language. ACM
Trans. Graph., 22(3):896–907, 2003.

[MHM+95] Scott A. Mahlke, Richard E. Hank, James E. McCormick, David I. August,
and Wen-Mei W. Hwu. A comparison of full and partial predicated execution
support for ilp processors. In ISCA ’95: Proceedings of the 22nd annual in-
ternational symposium on Computer architecture, pages 138–150, New York,
NY, USA, 1995. ACM.

[MJ02] Dragan Milicev and Zoran Jovanovic. Control flow regeneration for software
pipelined loops with conditions. Int. J. Parallel Program., 30(3):149–179,
2002.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java Memory
Model. In POPL, 2005.

[MSBL98] Andrew Moore, Jeff Schneider, Justin Boyan, and Mary Soon Lee. Q2:
Memory-based active learning for optimizing noisy continuous functions. In
J. Shavlik, editor, Proceedings of the Fifteenth International Conference of
Machine Learning, pages 386–394, San Francisco, CA, 1998. Morgan Kauf-
mann.

[MSBSV93] Patrick McGeer, Jagesh Sanghavi, Robert K. Brayton, and Alberto
Sangiovanni-Vincentelli. ESPRESSO-signature: A new exact minimizer for
logic functions. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 1(3):432–440, December 1993.

246

[MUS05] Krishna Muriki, Keith D. Underwood, and Ron Sass. RC-BLAST: Towards a
Portable, Cost-Effective Open Source Hardware Implementation. In IPDPS
’05: Proceedings of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’05) - Workshop 7, page 196.2, Washington, DC,
USA, 2005. IEEE Computer Society.

[MVV+02] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
DRESC: a retargetable compiler for coarse-grained reconfigurable architec-
tures. In IEEE International Conference on Field-Programmable Technology,
pages 166–173, 2002.

[MVV+03] Bingfen Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy
Lauwereins. ADRES: An Architecture with Tightly Coupled VLIW Proces-
sor and Coarse-Grained Reconfigurable Matrix. In International Conference
on Field-Programmable Logic and Applications, volume 2778, pages 61–70,
Lisbon, Portugal, 2003. 2003.

[NBH+08] Y.L. Nelson, B. Bansal, M. Hall, A. Nakano, and K. Lerman. Model-guided
performance tuning of parameter values: A case study with molecular dy-
namics visualization. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1–8, April 2008.

[NM65] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate Language and Tools for Analysis and Transformation of
C Programs. In CC ’02: Proceedings of the 11th International Conference on
Compiler Construction, pages 213–228, London, UK, 2002. Springer-Verlag.

[OD93] M. T. O’Keefe and H. G. Dietz. Loop Coalescing and Scheduling for Barrier
MIMD Architectures. IEEE Trans. Parallel Distrib. Syst., 4(9):1060–1064,
September 1993.

[Pan01] Preeti Ranjan Panda. SystemC: a modeling platform supporting multiple
design abstractions. In ISSS ’01: Proceedings of the 14th international sym-
posium on Systems synthesis, pages 75–80, New York, NY, USA, 2001. ACM.

[PBD+08] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and S. Eg-
gers. Chimps: A c-level compilation flow for hybrid cpu-fpga architectures. In
Field Programmable Logic and Applications, 2008. FPL 2008. International
Conference on, pages 173 –178, 2008.

[PCB02] C. J. Price, I. D. Coope, and D. Byatt. A convergent variant of the nelder-
mead algorithm. J. Optim. Theory Appl., 113(1):5–19, 2002.

247

[PD10] Jongsoo Park and William J. Dally. Buffer-space efficient and deadlock-free
scheduling of stream applications on multi-core architectures. In SPAA ’10:
Proceedings of the 22nd ACM symposium on Parallelism in algorithms and
architectures, pages 1–10, New York, NY, USA, 2010. ACM.

[PE06] Zhelong Pan and Rudolf Eigenmann. Fast, automatic, procedure-level per-
formance tuning. In PACT ’06: Proceedings of the 15th international con-
ference on Parallel architectures and compilation techniques, pages 173–181,
New York, NY, USA, 2006. ACM Press.

[PGS+09a] Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Dem-
ing Chen, Jason Cong, and Wen-Mei W. Hwu. FCUDA: Enabling efficient
compilation of CUDA kernels onto FPGAs. Application Specific Processors,
Symposium on, 0:35–42, 2009.

[PGS+09b] Alexandros Papakonstantinou, Karthik Gururaj, John A. Stratton, Deming
Chen, Jason Cong, and Wen-Mei W. Hwu. High-performance cuda kernel ex-
ecution on fpgas. In ICS ’09: Proceedings of the 23rd international conference
on Supercomputing, pages 515–516, New York, NY, USA, 2009. ACM.

[PHA02] Darin Petkov, Randolph E. Harr, and Saman P. Amarasinghe. Efficient pipe-
lining of nested loops: Unroll-and-squash. In IPDPS ’02: Proceedings of the
16th International Parallel and Distributed Processing Symposium, page 136,
Washington, DC, USA, 2002. IEEE Computer Society.

[PKCD05] Karl Papadantonakis, Nachiket Kapre, Stephanie Chan, and Andr DeHon.
Pipelining Saturated Accumulation. In IEEE International Conference on
Field-Programmable Technology, pages 19–26. IEEE, December 2005.

[PMJ+05] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yev-
gen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPIRAL:
Code Generation for DSP Transforms. Proceedings of the IEEE, special is-
sue on ”Program Generation, Optimization, and Adaptation”, 93(2):232–275,
2005.

[Pol87] Constantine D. Polychronopoulos. Loop Coalescing: A Compiler Transfor-
mation for Parallel Machines. In Proc. International Conf. on Parallel Pro-
cessing, pages 235–242, August 1987.

[Poz05] D.S. Poznanovic. Application development on the src computers, inc. sys-
tems. In Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, pages 78a – 78a, 2005.

248

[PSC06] Joon C. Park, Hayong Shin, and Byoung K. Choi. Elliptic gabriel graph for
finding neighbors in a point set and its application to normal vector estima-
tion. Comput. Aided Des., 38(6):619–626, 2006.

[PT05] David Pellerin and Scott Thibault. Practical FPGA Programming in C. Pren-
tice Hall PTR, April 2005.

[PW86] David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for
supercomputers. Commun. ACM, 29(12):1184–1201, 1986.

[QCS02] Yi Qian, Steve Carr, and Philip Sweany. Loop fusion for clustered VLIW
architectures. In LCTES/SCOPES ’02: Proceedings of the joint conference
on Languages, compilers and tools for embedded systems, pages 112–119, New
York, NY, USA, 2002. ACM.

[QKMC06] Apan Qasem, Ken Kennedy, and John Mellor-Crummey. Automatic tuning
of whole applications using direct search and a performance-based transfor-
mation system. J. Supercomput., 36(2):183–196, 2006.

[Ram94] J. Ramanujam. Optimal software pipelining of nested loops. In Proceedings
of the 8th International Symposium on Parallel Processing, pages 335–342,
Washington, DC, USA, 1994. IEEE Computer Society.

[Rau94a] B. Rau. Iterative Modulo Scheduling. Technical Report Technical Report
HPL-94-115, HP Labs, 1994.

[Rau94b] B. Ramakrishna Rau. Iterative Modulo Scheduling: An Algorithm For Soft-
ware Pipelining Loops. In International Symposium on Microarchitecture,
pages 63–74. ACM Press, 1994. San Jose, California, United States.

[RPH+08] Manman Ren, Ji Young Park, Mike Houston, Alex Aiken, and William J.
Dally. A tuning framework for software-managed memory hierarchies. In
PACT ’08: Proceedings of the 17th international conference on Parallel ar-
chitectures and compilation techniques, pages 280–291, New York, NY, USA,
2008. ACM.

[RS01] S. Ramachandran and S. Srinivasan. FPGA implementation of a novel,
fast motion estimation algorithm for real-time video compression. In
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 213–219, New York, NY, USA, 2001. ACM Press.

[RTG+04] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Alban Douillet, and
Guang R. Gao. Single-dimension software pipelining for multi-dimensional
loops. In CGO ’04: Proceedings of the international symposium on Code

249

generation and optimization, page 163, Washington, DC, USA, 2004. IEEE
Computer Society.

[RTG+07] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Alban Douillet, and
Guang R. Gao. Single-dimension software pipelining for multidimensional
loops. ACM Trans. Archit. Code Optim., 4(1):7, 2007.

[RVDB10] Sean Rul, Hans Vandierendonck, Joris D’Haene, and Koen De Bosschere. An
experimental study on performance portability of opencl kernels. In Applica-
tion Accelerators in High Performance Computing, 2010.

[RW06] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning. Massachusetts Institute of Technology Press, 2006.

[SAMO03] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May
O’Reilly. Meta optimization: improving compiler heuristics with machine
learning. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages 77–90, New York,
NY, USA, 2003. ACM Press.

[SBA00] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bidwidth anal-
ysis with application to silicon compilation. In PLDI ’00: Proceedings of
the ACM SIGPLAN 2000 conference on Programming language design and
implementation, pages 108–120, New York, NY, USA, 2000. ACM.

[Sch09] Christoph A. Schaefer. Reducing search space of auto-tuners using parallel
patterns. In IWMSE ’09: Proceedings of the 2009 ICSE Workshop on Multi-
core Software Engineering, pages 17–24, Washington, DC, USA, 2009. IEEE
Computer Society.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: a many-core x86 architecture for visual computing. ACM Trans.
Graph., 27(3):1–15, 2008.

[SGL96] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Identifying loops
using DJ graphs. ACM Trans. Program. Lang. Syst., 18(6):649–658, 1996.

[SMDL03] Mikhail Smelyanskiy, Scott A. Mahlke, Edward S. Davidson, and Hsien-
Hsin S. Lee. Predicate-aware scheduling: a technique for reducing resource
constraints. In CGO ’03: Proceedings of the international symposium on
Code generation and optimization, pages 169–178, Washington, DC, USA,
2003. IEEE Computer Society.

250

[Smi91] Lauren L. Smith. Vectorizing C compilers: how good are they? In Supercom-
puting ’91: Proceedings of the 1991 ACM/IEEE conference on Supercomput-
ing, pages 544–553, New York, NY, USA, 1991. ACM Press.

[Sny86] Lawrence Snyder. Type architectures, shared memory, and the corollary of
modest potential. Annual Reviews Inc., Palo Alto, CA, USA, 1986.

[SP06] Ronald Scrofano and Viktor K. Prasanna. Preliminary Invesitgation of Ad-
vanced Electrostatics in Molecular Dynamics on Reconfigurable Computers.
In Supercomputing, 2006. Proceedings of the ACM/IEEE SC 2006 Confer-
ence, November 2006.

[SPT09] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy. Atune-il: An
instrumentation language for auto-tuning parallel applications. In Springer
Berlin / Heidelberg, editor, Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, volume LNCS, pages 9–20, August 2009.

[SS01] Bernhard Schlkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. The MIT Press,
2001.

[Ste06] Mark W. Stephenson. Automating the Construction of Compiler Heuristics
Using Machine Learning. PhD thesis, Massachusetts Institute of Technology,
June 2006.

[Sul03] David Gerard Sullivan. Using Probabilistic Reasoning to Automate Software
Tuning. PhD thesis, Harvard University, Cambridge, Massachusetts, Septem-
ber 2003.

[TCC+09] A. Tiwari, Chun Chen, J. Chame, M. Hall, and J.K. Hollingsworth. A scalable
auto-tuning framework for compiler optimization. In Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages
1–12, May 2009.

[TCK09] Dimitris Theodoropoulos, Catalin Bogdan Ciobanu, and Georgi Kuzmanov.
Wave field synthesis for 3d audio: architectural prospectives. In CF ’09:
Proceedings of the 6th ACM conference on Computing frontiers, pages 127–
136, New York, NY, USA, 2009. ACM.

[TCMC08] Kieron Turkington, George A. Constantinides, Konstantinos Masselos, and
Peter Y. K. Cheung. Outer loop pipelining for application specific datapaths
in FPGAs. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 16(10):1268–1280, Oct. 2008.

251

[THL09] David Barrie Thomas, Lee Howes, and Wayne Luk. A comparison of CPUs,
GPUs, FPGAs, and massively parallel processor arrays for random number
generation. In FPGA ’09: Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays, pages 63–72, New York, NY,
USA, 2009. ACM.

[TJH02] Justin L. Tripp, Preston A. Jackson, and Brad L. Hutchings. Field-
Programmable Logic and Applications: Reconfigurable Computing Is Going
Mainstream, volume 2438/2002 of Lecture Notes in Computer Science, chap-
ter Sea Cucumber: A Synthesizing Compiler for FPGAs, pages 875–885.
Springer Berlin / Heidelberg, January 2002.

[TKA02] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt:
A Language for Streaming Applications. In Computational Complexity, pages
179–196, 2002.

[TKM+02] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal.
The Raw Microprocessor: A Computational Fabric for Software Circuits and
General Purpose Programs. IEEE Micro, 22(2):25–35, 2002.

[TKS+05] William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah, and
Saman Amarasinghe. Teleport messaging for distributed stream programs.
In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 224–235, New York, NY,
USA, 2005. ACM.

[TPA+05] J.L. Tripp, K.D. Peterson, C. Ahrens, J.D. Poznanovic, and M. Gokhale.
Trident: An FPGA Compiler Framework for Floating-Point Algorithms. In
International Workshop on Field Programmable Logic and Applications, 2005.

[TPO05] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: simplified pro-
gramming of graphics-processing units for general-purpose uses via data-
parallelism. Technical Report MSR-TR-2004-184, Microsoft Corporation,
December 2005.

[TTH09] Ananta Tiwari, Vahid Tabatabaee, and Jeffrey K. Hollingsworth. Tuning
parallel applications in parallel. Parallel Comput., 35(8-9):475–492, 2009.

[TVVA03] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I.
August. Compiler optimization-space exploration. In CGO ’03: Proceedings
of the international symposium on Code generation and optimization, pages
204–215, Washington, DC, USA, 2003. IEEE Computer Society.

252

[VBCG04] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea, and Seth Goldstein. C
to Asynchronous Dataflow Circuits: An End-to-End Toolflow. In Interna-
tional Workshop on Logic and Synthesis (IWLS), June 2004.

[VDY05] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. In Proceedings of SciDAC 2005,
Journal of Physics: Conference Series, San Francisco, CA, USA, June 2005.
Institute of Physics Publishing.

[vHK92] Reinhard von Hanxleden and Ken Kennedy. Relaxing SIMD control flow con-
straints using loop transformations. In PLDI ’92: Proceedings of the ACM
SIGPLAN 1992 conference on Programming language design and implemen-
tation, pages 188–199, New York, NY, USA, 1992. ACM.

[vW97] R. A. van de Geijn and J. Watts. SUMMA: scalable universal matrix mul-
tiplication algorithm. Concurrency: Practice and Experience, 9(4):255–274,
1997.

[VWC+09] B. Van Essen, A. Wood, A. Carroll, S. Friedman, R. Panda, B. Ylvisaker,
C. Ebeling, and S. Hauck. Static versus scheduled interconnect in Coarse-
Grained Reconfigurable Arrays. In International Conference on Field-
Programmable Logic and Applications, pages 268–275, 31 2009-Sept. 2 2009.

[Wan04] Albert Wang. The Stretch Architecture: Raising the Level of Productiv-
ity and Compute Efficiency. Keynote Speech, 6th WorkShop on Media and
Streaming Processors, December 2004.

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th inter-
national conference on Software engineering, pages 439–449, Piscataway, NJ,
USA, 1981. IEEE Press.

[WHSB92] Nancy J. Warter, Grant E. Haab, Krishna Subramanian, and John W. Bock-
haus. Enhanced modulo scheduling for loops with conditional branches. In
MICRO 25: Proceedings of the 25th annual international symposium on Mi-
croarchitecture, pages 170–179, Los Alamitos, CA, USA, 1992. IEEE Com-
puter Society Press.

[WMHR93] Nancy J. Warter, Scott A. Mahlke, Wen-Mei W. Hwu, and B. Ramakrishna
Rau. Reverse if-conversion. In PLDI ’93: Proceedings of the ACM SIGPLAN
1993 conference on Programming language design and implementation, pages
290–299, New York, NY, USA, 1993. ACM.

[WMPW03] Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. Post-
placement C-slow retiming for the Xilinx Virtex FPGAs. In FPGA ’03:

253

Proceedings of the 2003 ACM/SIGDA eleventh international symposium on
Field programmable gate arrays, pages 185–194, New York, NY, USA, 2003.
ACM Press.

[WPD01] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Auto-
mated Empirical Optimization of Software and the ATLAS Project.
Parallel Computing, 27(1–2):3–35, 2001. Also available as Univer-
sity of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps).

[WWK+01] Perry H. Wang, Hong Wang, Ralph M. Kling, Kalpana Ramakrishnan, and
John P. Shen. Register renaming and scheduling for dynamic execution of
predicated code. In HPCA ’01: Proceedings of the 7th International Sym-
posium on High-Performance Computer Architecture, page 15, Washington,
DC, USA, 2001. IEEE Computer Society.

[YLR+03] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong,
Maria Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng
Wu. A comparison of empirical and model-driven optimization. In PLDI
’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 63–76, New York, NY, USA, 2003.
ACM Press.

[YMA+06] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai,
Jeremy Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan M.
Baas. An Asynchronous Array of Simple Processors for DSP Applications. In
IEEE International Solid-State Circuits Conference, (ISSCC ’06), February
2006.

[YPS05] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Think globally, search
locally. In ICS ’05: Proceedings of the 19th annual international conference
on Supercomputing, pages 141–150, New York, NY, USA, 2005. ACM Press.

[YSD06] Haihang You, Keith Seymour, and Jack Dongarra. An effective empirical
search method for automatic software tuning. Technical Report ICL-UT-05-
02, Dept. of Computer Science, University of Tennessee, 2006.

[YSY+07] Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quinlan.
POET: Parameterized optimizations for empirical tuning. In IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS, pages 1–8,
March 2007.

[YTZL97] T. Yu, Z. Tang, C. Zhang, and J. Luo. Control mechanism for software
pipelining on nested loop. In APDC ’97: Proceedings of the 1997 Advances

254

in Parallel and Distributed Computing Conference (APDC ’97), page 345,
Washington, DC, USA, 1997. IEEE Computer Society.

[YVE06] Benjamin Ylvisaker, Brian Van Essen, and Carl Ebeling. A Type Architec-
ture for Hybrid Micro-Parallel Computers. In IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 99–110. IEEE, April
2006.

[YW07] Qing Yi and R. Clint Whaley. Automated transformation for performance-
critical kernels. In LCSD ’07: Proceedings of the 2007 Symposium on Library-
Centric Software Design, pages 109–119, New York, NY, USA, 2007. ACM.

[ZCS08] Fang Zhong, D.W. Capson, and D.C. Schuurman. Parallel architecture for
PCA image feature detection using FPGA. In Electrical and Computer En-
gineering, 2008. CCECE 2008. Canadian Conference on, pages 001341 –
001344, may. 2008.

[ZHCC09] Hans Zima, Mary Hall, Chun Chen, and Jaqueline Chame. Model-guided au-
totuning of high-productivity languages for petascale computing. In HPDC
’09: Proceedings of the 18th ACM international symposium on High perfor-
mance distributed computing, pages 151–166, New York, NY, USA, 2009.
ACM.

[ZK05a] Yuan Zhao and K. Kennedy. Scalarization on short vector machines. In
ISPASS ’05: Proceedings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, 2005, pages 187–196, Washington,
DC, USA, 2005. IEEE Computer Society.

[ZK05b] Yuan Zhao and Ken Kennedy. Scalarization using loop alignment and loop
skewing. J. Supercomput., 31(1):5–46, 2005.

[ZLCP04] Ce Zhu, Xiao Lin, Lappui Chau, and Lai-Man Po. Enhanced Hexagonal
Search for Fast Block Motion Estimation. IEEE Transactions on Circuits
and Systems for Video Technology, 14(10):1210–1214, October 2004.

[ZXQ+08] Qingfeng Zhuge, Chun Jason Xue, Meikang Qiu, Jingtong Hu, and Edwin
H.-M. Sha. Timing optimization via nest-loop pipelining considering code
size. Microprocessors and Microsystems, 32(7):351 – 363, 2008.

[ZZH+09] Dan Zhang, Rongcai Zhao, Lin Han, Tao Wang, and Jin Qu. An implemen-
tation of Viterbi algorithm on GPUs. In ICISE ’09: Proceedings of the 2009
First IEEE International Conference on Information Science and Engineer-
ing, pages 121–124, Washington, DC, USA, 2009. IEEE Computer Society.

255

Appendix A

TUNING DATA

This appendix contains more detailed plots from our tuning knob experiments. The

first set of plots shows the performance of the three search strategies (full tuning knob,

tuning knob with trivial failures, random) individually for each application/architecture

combination. As a reminder, each application was compiled and run on four different

simulated architectures that were defined by two parameters: size of the architecture (large

or small) and number of embedded memories (many or few). Like the performance plot in

Chapter 6, the 10th/90th percentile range is plotted.

The next group of plots show a variety of important program factors for each applica-

tion/architecture combination. The meanings of the tuning knobs for the applications are

described in Section 6.10.1. The meanings of the symbols in these plots are shown directly

below.

Symbol Meaning

Black dot Not tested

Green star Max initiation interval failure

Empty blue square Data memory or I/O failure

Red X Compiler timeout failure

Filled square Color indicates normalized value of the feature

In contrast to the performances plot shown in Chapter 6, some of the features shown here

have values even for configurations that fail, which means that some coordinates have both

a failure symbol and a value color.

The features presented are listed in the table below. All values are normalized so that

the smallest value in each plot is 0 and the largest is 1.

256

Feature Comments

Performance Run time of the application

DFG Size A measure of the intermediate representation size. This is used as the

proxy metric for predicting compiler time-outs.

Req’d Arrays Number of embedded memories required

Req’d In Ports Number of input ports required

Req’d Out Ports Number of input ports required

II Initiation interval. See Chapter 4 for description.

257

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

FI
R

, S
m

al
l,

Fe
w

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

FI
R

, S
m

al
l,

M
an

y

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

FI
R

, L
ar

ge
, F

ew

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

FI
R

, L
ar

ge
, M

an
y

F
ig

ur
e

A
.1

:
Q

ua
lit

y
of

be
st

co
nfi

gu
ra

ti
on

fo
un

d
as

a
fu

nc
ti

on
of

nu
m

be
r

of
te

st
s

fo
r

th
e

F
IR

fil
te

r
ap

pl
ic

at
io

n.

258

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

C
onv, Sm

all, Few

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

C
onv, Sm

all, M
any

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

C
onv, Large, Few

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

C
onv, Large, M

any

F
igure

A
.2:

Q
uality

of
best

configuration
found

as
a

function
of

num
ber

of
tests

for
the

2D
convolution

filter
application.

259

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

D
M

M
, S

m
al

l,
Fe

w

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

D
M

M
, S

m
al

l,
M

an
y

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

D
M

M
, L

ar
ge

, F
ew

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5
 3

0
 3

5
 4

0
 4

5
 5

0

Performance of best configuration

N
um

be
r o

f c
on

fig
ur

at
io

ns
 te

st
ed

D
M

M
, L

ar
ge

, M
an

y

F
ig

ur
e

A
.3

:
Q

ua
lit

y
of

be
st

co
nfi

gu
ra

ti
on

fo
un

d
as

a
fu

nc
ti

on
of

nu
m

be
r

of
te

st
s

fo
r
th

e
de

ns
e

m
at

ri
x

m
ul

ti
pl

ic
at

io
n

ap
pl

ic
at

io
n.

260

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

S-W
, Sm

all, Few

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

S-W
, Sm

all, M
any

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

S-W
, Large, Few

 0

 0.2

 0.4

 0.6

 0.8 1

 5
 10

 15
 20

 25
 30

 35
 40

 45
 50

Performance of best configuration

N
um

ber of configurations tested

S-W
, Large, M

any

F
igure

A
.4:

Q
uality

of
best

configuration
found

as
a

function
of

num
ber

of
tests

for
the

Sm
ith-W

aterm
an

application.

261

Performance; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

II; FIR Small, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

262

Performance; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

II; FIR Small, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

263

Performance; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

II; FIR Large, Few

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

264

Performance; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

II; FIR Large, Many

 0 5 10 15 20 25 30

Banks

 0
 5

 10
 15
 20
 25
 30

Ac
ce

ss
es

 p
er

 b
an

k

 0

 0.2

 0.4

 0.6

 0.8

 1

265

Performance; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

II; DMM Small, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

266

Performance; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

II; DMM Small, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

267

Performance; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

II; DMM Large, Few

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

268

Performance; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG Size; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Arrays; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd In Ports; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

Req'd Out Ports; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

II; DMM Large, Many

 0 5 10 15 20 25 30

Block height

 0
 5

 10
 15
 20
 25
 30

Bl
oc

k
w

id
th

 0

 0.2

 0.4

 0.6

 0.8

 1

269

Performance; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

DFG Size; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd Arrays; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd In Ports; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd Out Ports; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

II; S-W Small, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Performance; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

DFG Size; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

270

Req'd Arrays; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd In Ports; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd Out Ports; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

II; S-W Small, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Performance; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

DFG Size; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd Arrays; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd In Ports; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

271

Req'd Out Ports; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

II; S-W Large, Few

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Performance; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

DFG Size; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd Arrays; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd In Ports; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

Req'd Out Ports; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

II; S-W Large, Many

 0 5 10 15 20 25 30

Swath width

 0
 5

 10
 15

LU
T

sh
ar

in
g

 0
 0.2
 0.4
 0.6
 0.8
 1

272

Perform
ance; C

onv Sm
all, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

D
FG

 Size; C
onv Sm

all, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

R
eq'd Arrays; C

onv Sm
all, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

R
eq'd In Ports; C

onv Sm
all, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

R
eq'd O

ut Ports; C
onv Sm

all, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

II; C
onv Sm

all, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs
 0 0.5
 1

273

Pe
rfo

rm
an

ce
; C

on
v

Sm
al

l,
M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

D
FG

 S
iz

e;
 C

on
v

Sm
al

l,
M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

R
eq

'd
 A

rra
ys

; C
on

v
Sm

al
l,

M
an

y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

R
eq

'd
 In

 P
or

ts
; C

on
v

Sm
al

l,
M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

R
eq

'd
 O

ut
 P

or
ts

; C
on

v
Sm

al
l,

M
an

y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

II;
 C

on
v

Sm
al

l,
M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

274

Perform
ance; C

onv Large, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

D
FG

 Size; C
onv Large, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

R
eq'd Arrays; C

onv Large, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

R
eq'd In Ports; C

onv Large, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

R
eq'd O

ut Ports; C
onv Large, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs

 0 0.5
 1

II; C
onv Large, Few

 20
 30

 40
 50

 60

Stripe w
idth

 1 4 7Parallel outputs
 0 0.5
 1

275

Pe
rfo

rm
an

ce
; C

on
v

La
rg

e,
 M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

D
FG

 S
iz

e;
 C

on
v

La
rg

e,
 M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

R
eq

'd
 A

rra
ys

; C
on

v
La

rg
e,

 M
an

y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

R
eq

'd
 In

 P
or

ts
; C

on
v

La
rg

e,
 M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

R
eq

'd
 O

ut
 P

or
ts

; C
on

v
La

rg
e,

 M
an

y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

II;
 C

on
v

La
rg

e,
 M

an
y

 2
0

 3
0

 4
0

 5
0

 6
0

St
rip

e
w

id
th

 1 4 7 Parallel outputs

 0 0
.5

 1

	List of Figures
	The Parallel Coprocessor Accelerator Ecosystem
	Parallel coprocessor accelerators
	What accelerators are good for
	How engineers program accelerators today
	How researchers think engineers should program accelerators
	Contributions of this dissertation

	An Abstract Model for Parallel Coprocessor Accelerators
	A proposed model
	Implementations of the HMP model
	Algorithm analysis and design
	Summary

	Macah and the Mosaic Toolchain
	Macah and the HMP model
	Example application: motion estimation
	Motion estimation in Macah
	Implementing Macah: Mosaic toolchain overview
	Compiling Macah I: front-end
	Compiling Macah II: back-end
	Applications
	Summary

	Enhanced Loop Flattening
	Background
	Enhanced loop flattening
	Enhanced loop flattening implementation
	Evaluation
	Discussion
	Summary

	A Short Survey of Tuning
	Background
	Improving mostly conventional compilers
	The auto-tuner approach
	General purpose auto-tuning
	Tuning for coprocessor accelerators

	Auto-Tuning for Accelerators
	Overview of the tuning knobs method
	An example
	Context for accelerators
	The prominent alternatives
	How it works
	Probabilistic regression analysis
	Derived features
	Complete basic tuning knob algorithm
	Enhancements
	Evaluation
	Summary

	Relaxed Operational Semantics for Dynamic Streaming Languages
	Summary of Results for Non-Language Semanticists
	Basics
	Unbounded stream buffer semantics
	Blocking and polling
	Bounded stream buffers
	Future work
	Summary

	Conclusions and Future Work
	Summary of results
	How far have we come?
	Promising directions for future work
	The last word

	Bibliography
	Tuning Data

