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The Large Hadron Collider (LHC) is the largest accelerator laboratory in the world and is operated 

by CERN, an international organization dedicated to nuclear research. It aims to help answer the 

fundamental questions posed in particle physics. The general-purpose ATLAS detector, located 

along the LHC ring, will see an Inner Tracker (ITk) upgrade during the LHC Phase II shutdown, 

replacing the entire tracking system and providing many improvements to the detector technology. 

A new readout chip is being developed for this upgrade by the RD53 collaboration, code named 

RD53A. The chip is an intermediary pilot chip, meant to test novel technologies in preparation for 

the upgrade. The work contained in this thesis describes the Field-Programmable Gate Array 

(FPGA) based development of a custom Aurora protocol in anticipation of the RD53A chip. 

Leveraging the infrastructure developed to facilitate hardware tests of the custom Aurora protocol, 

a cable testing repository was created. The repository allows for preliminary testing of cabling 

setups and gives the users some understanding of the cable performance. 
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Chapter 1: Introduction 
 

Located in Geneva, Switzerland, the Large Hadron Collider (LHC) aims to help answer the 

fundamental questions posed in particle physics. The LHC is the largest particle physics 

accelerator laboratory in the world, operated by CERN (French: Conseil Européen pour la 

Recherche Nucléaire), an international organization dedicated to nuclear research [1]. 

 

The LHC contains several stages of particle acceleration, including the Linear Accelerator (LINAC 

2), Proton Synchrotron Booster (BOOSTER), Proton Synchrotron (PS), Super Proton Synchrotron 

(SPS), and finally the LHC itself [1]. The various stages accelerate bunches of particles (usually 

protons), to close to the speed of light, at which point the particles collide at collision points located 

around the LHC ring (as shown below in Figure 1.1). General purpose particle detectors placed 

around the ring detect the particles resulting from the collisions. The two general-purpose particle 

detectors are called ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid), 

located in Switzerland and France respectively. Other detectors, such as ALICE and LHCb are 

more specialized in their functionality, looking for specific particle signatures. 

 
Figure 1.1: The layout of the LHC and its various acceleration stages [2] 

 

1.1 The LHC Ring 

 

The largest and final stage of particle acceleration, the LHC, is a 27-km circumference ring 

accelerator and can achieve energies of up to 13 TeV at the collision points [3]. The LHC is located 
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100 meters underground and has sections located in both Switzerland and France. Generally, as 

the size of the accelerator increases, higher energies can be achieved. For comparison, the two 

preceding acceleration stages, SPS and PS, operate at 450 GeV and 25 GeV respectively [4]. These 

stages are significantly smaller in size than the LHC and now act as booster stages, accelerating 

particles as much as they can, before launching them off to the next stage of acceleration (PS to 

SPS, and SPS to LHC). 

 

 
Figure 1.2: Cross-section of an LHC dipole element [5] 

 

To accelerate particles to high energies, the ring in the LHC is composed of superconducting 

magnets, allowing the conduction of electricity without resistance [4]. These magnets provide the 

requisite magnetic field needed to accelerate charged particles to nearly the speed of light. The 

particles used in the accelerator are usually protons; however, heavy ions such as Lead are also 

used for specific experiments [4]. Protons are charged particles and are significantly more massive 

than electrons, allowing for more effective acceleration due to lower energy loss per turn through 

synchrotron radiation [4]. 

 

The particles are accelerated in bunches, where a bunch may consist of many protons (up to 1011 

protons) [1]. The bunches travel around the LHC in opposite directions, in separate beam lines, at 

energies of 6.5 TeV per beam. The cross section of an LHC dipole element is shown in Figure 1.2, 

where the two beam lines can be seen. There are four points throughout the ring where the beams 

intersect, allowing the particles to collide. This collision is referred to as a bunch crossing. The 

energy of the bunch crossing is the sum of the energy of each of the beam lines; in the case of the 

LHC, the resulting collision energy is 13 TeV [4]. The bunch crossing rate at the LHC is 40 million 

bunch crossings per second [4]. 

 

The Phase II upgrade, scheduled for the LHC around 2025, will increase the luminosity to 3000 

fb-1 and will reach energies up to 14 TeV within 10 years after the upgrade [6]. The increase in 

luminosity results in more collisions at the interaction point, increasing the amount of data 

generated. The high luminosity detector is abbreviated as HL-LHC [6]. 
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1.2 ATLAS Detector 

 

The developments in this work focus on the ATLAS (A Toroidal LHC ApparatuS) general-purpose 

particle detector, located on the Swiss side of the LHC. The ATLAS detector is shown in Figure 

1.3, with one of the distinguishing features being the large toroid magnets located on the outer 

parts of the detector [1]. The detector is roughly 44 meters in length and 25 meters in height and 

is significantly larger than the CMS detector located on the French side. This difference in size is 

attributed to differences in technical and design approaches.  

 
Figure 1.3: ATLAS Detector Side View [1] 

 

When particles collide at extremely high energies, they produce many resulting sub-atomic 

particles that travel radially from the collision point. Examples of such particles are electrons, 

protons, neutrons, muons, and photons, among others [1]. Recording and analyzing the data from 

the resulting particles is important in the progression of the Standard Model of Particle Physics, 

understanding Dark Matter, and many other areas of research. The data allows for analyses such 

as the measurement of transverse momentum, trajectory reconstruction, and locating the position 

of radiation charged particles [7]. Physicists analyze this data to study the nature of these particles. 

 

The characteristics of the particles are factored in the design of the detector, and drive the layout 

of the detector, as well as the detector technologies used [1]. Working our way from the inside 

(point of collision in the beamline) out, the detector consists of an Inner Detector, Calorimeters, 

and Muon Detectors. The Inner Detector can be further subdivided, using the same inside out 

approach, into the Pixel Detector (Pixel), followed by the Semi-Conductor Tracker (SCT) and the 

Transition Radiation Tracker (TRT). The calorimeters consist of the Liquid Argon Calorimeter 

(LAr) and the Tile Calorimeter. The Muon detectors are located on the outermost parts of the 

detector and take up a large amount of the volume of the overall detector [1] [7]. The components 
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of the Inner Detector will be replaced by an all silicon detector with the ITk upgrade described in 

Chapter 2 [8].  

 

Each of these detector systems serve a specific purpose. The overall detector must be properly 

coordinated in order to filter collisions, properly format and store data, monitor the status of each 

subsystem, and many other considerations. While general-purpose particle detectors are massively 

complex and contain many systems, the Frontend Electronics (FE) and Data Acquisition (DAQ) 

systems will be the focus of this work. FEs are used for the detection of particles. They record data 

that can be readout by systems further upstream. DAQs perform the readout and processing of the 

data and can perform more specialized functions [9]. 

 

1.3 Triggering and Data Acquisition 

 

Determining whether a significant collision event has occurred is handled by the triggering system, 

which works in conjunction with the DAQ. Triggering systems have several levels of triggers and 

look at the data obtained from a “bunch crossing”, i.e. bunches of particles crossing from opposite 

sides, to determine whether the collision constitutes an event worth keeping [9]. This allows for 

filtering of useless events and retaining only the interesting data. 

 

 
Figure 1.4: Upgraded ATLAS TDAQ for LHC Run 2 after long shutdown 1 [9] 

 

To reduce the data to manageable levels, several levels of triggers are used at the LHC. Level-1 

(L1) triggers process information from the Muon and Calorimeter detectors. The calorimeter 

detectors provide information about energy observed in a region of the detector. Muon detectors 

target muon particles, which are longer lived and highly penetrating. If these detectors provide 

data to the L1 trigger processor that matches some preprogrammed characteristics, a ‘Level-1 

Accept’ will be issued by the processor [9]. 
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If a Level-1 Accept has been issued, High-Level triggers analyze regions of interest identified by 

L1 triggers and perform a detailed analysis of event data, deciding whether the event is interesting 

enough to keep. If this is the case, the event data is sent for permanent storage to disk; otherwise 

the data is discarded [9]. 

 

L1 triggers are processed using custom ASICs and FPGAs, whereas High-Level triggers are 

processed using CPUs. The algorithms for L1 triggers and data processing architectures are always 

being improved and fine-tuned. As more data is collected and a better understanding of the 

Standard Model is obtained, L1 triggering algorithms are changed accordingly. This requires 

changes to the FPGA image [9]. The evolving nature of triggering algorithms make FPGAs a 

capable and well-chosen technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Chapter 2: Inner Tracker Upgrade (ITk) at the Large Hadron 

Collider 
 

The ATLAS general-purpose detector is scheduled for a replacement of the entire tracking system 

around 2025, during the LHC Phase II shutdown [8]. The innermost Pixel detector upgrade is 

called the Inner Tracker (ITk) upgrade and is a massive R&D effort investigating detector layout, 

sensors and front-end electronics, powering and detector control, and readout architecture. Planned 

for the upgrade is a new 5-layer Pixel detector with improved tracking performance and radiation 

tolerance and a new 4-layer Strip detector [8]. 

 

 
Figure 2.1: Side view of the planned ITk Pixel Detector [7]. 

 

The ITk Pixel detector will replace the entirety of the existing inner Pixel detector. The HL-LHC 

environment will have far greater radiation than is currently present in the detector, requiring new 

radiation hardened electronics to be developed. Additionally, the trigger rate in the HL-LHC will 

increase to five times that of the current LHC (200 kHz to 1 MHz), requiring increased bandwidth 

in the readout electronics [6]. 

 

2.1: RD53A Pixel Readout Integrated Circuit 

 

The ITk upgrade requires an Integrated Circuit (IC) that can handle high radiation levels, 1 MHz 

trigger rates, high bandwidth communication, and other demanding requirements while also 

keeping in mind factors such as power consumption [8]. The RD53A readout chip is an 

intermediary pilot chip meant to test several front-end technologies and is not meant to be the final 

Pixel readout chip [6].  
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Figure 2.2: Three front-end flavors on the RD53A chip [10] 

 

Figure 2.2 shows the three front-end flavors being tested on the RD53A chip; Synchronous, Linear, 

and Differential analog front-ends. Each front-end technology contains a different approach at 

solving the same problem: detecting charged particles and measuring particle characteristics, such 

as Time-over-Threshold (ToT) [10]. Performance characteristics of the three front-ends will be 

evaluated and only the best performing front-end design will be used in subsequent chips, making 

the entire pixel matrix uniform [10]. The bottom of the chip contains the periphery logic, which 

implements all of the control and processing functionality [10]. 

 

FPGAs have been instrumental in the process of developing the necessary technologies for the ITk 

upgrade [8]. Use cases include FPGA emulation of future FE ASICs, High Speed Communication, 

Data Aggregation, and Data Processing. 

 

2.2: RD53A FPGA Emulator 

 

The RD53A FPGA Emulator is a development effort at the University of Washington aiming to 

provide a platform that can be used to test various DAQ systems before the general availability of 

the RD53A IC.  
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Figure 2.3: RD53A Emulator Block Diagram 

 

The RD53A emulator block diagram is shown in Figure 2.3. The RD53A chip contains both analog 

and digital components; however the FPGA emulator is restricted to only emulating the digital 

components of the IC. Two major components that are emulated are the digital I/O communication 

block logic for the TTC stream and the Aurora 64b/66b output stream. The logic for the TTC 

stream includes clock and data recovery logic, as well as channel alignment. The logic for the 

Aurora 64b/66b stream supports multi-lane 1.28 Gbps output links. 

 

In addition to the communication logic, the FPGA emulator also emulates the Global Registers, 

Command Decoding, and Hit Data Generation. The functionality supported by the emulator allows 

for simple tests with DAQ systems. One such test may be sending a trigger from the DAQ over 

the TTC line and receiving corresponding hit data over the Aurora 64b/66b links. Chapter 3 covers 

the development of the Custom Aurora 64b/66b High Speed IO Core, which contains both a Tx 

core and a Rx core. The Tx core is integrated into the emulator, while the Rx core can be used in 

DAQ systems. 
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Chapter 3: Custom Aurora 64b/66b High Speed IO Core 
 

High speed communication links may use data encoding techniques to achieve better transmission 

performance across several metrics. Imagine a transmission (Tx) block sending data to a 

corresponding receiver (Rx) block over a single point-to-point connection as shown in Figure 3.1. 

A constant stream of data is sent to the Rx block across a communication medium. There is no 

accompanying clock sent with the data, so the only thing the Rx block sees is a serial stream of 1’s 

and 0’s. Additionally, the Tx and Rx blocks operate using different local clock(s).  

 

 
 

Figure 3.1: Tx core sending data to a Rx block through some communication medium 

 

With any such system, several challenges become immediately apparent and need to be addressed. 

First, there is no guarantee that the local clock(s) of each system will be in phase. This can lead to 

an undesired condition where the incoming data stream and the local Rx sampling clock are 

sufficiently out-of-phase, causing the data to be sampled improperly. Second, if the Tx core sends 

a long run of consecutive 1’s, DC drift may occur. This occurs when circuits with capacitive 

coupling on the receiver end accumulate enough charge, potentially causing issues with level 

detect thresholds [11]. In addition to these issues, there are a myriad of other things to worry about, 

such as line termination in differential transmission, clock phase drift, clock jitter, synchronization, 

etc. 

 

To address the first issue of the Rx sampling clock being out-of-phase with the data, a clock 

recovery scheme can be implemented. Under the assumption that bit-to-bit transitions occur 

sufficiently often in the incoming serial stream, a usable sampling clock can be created. This is 

achieved by phase aligning the sampling clock to the transitions of the incoming data using a 

phase-locked loop (PLL). On a similar note, DC drift can be mitigated when the number of 1’s and 

0’s in the incoming data stream are approximately equal and transitions happen frequently enough. 

If these conditions are met, the data stream is considered “DC-Balanced”. 

 

All these challenges are present in the RD53A to DAQ system and must be addressed with a line 

code for the data. A line encoding technique provides mechanisms to ensure the appropriate 

maximum run length, DC-balance, etc. Although there are several line encoding techniques, the 

64b/66b line code was chosen, which has been used in technologies such as 10 Gigabit Ethernet 

and InfiniBand [12]. The maturity of this technology and the support from Xilinx FPGAs, 

prevalent in many LHC DAQ systems, made this encoding an appropriate choice. 
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The RD53A chip contains a 64b/66b Tx core capable of driving 4 current model logic (CML) 

outputs at 1.28 Gbps each [10]. Xilinx provides an implementation of the 64b/66b encoding 

scheme for FPGAs in the form of an IP core named ‘Aurora 64B66B’ [13]. The Tx core in the 

RD53A chip is compatible with this Xilinx core, allowing for a capable Front-End chip to DAQ 

communication link. However, there are some limitations which will be covered in Section 3.1. 

 

3.1: Motivations 

 

As previously mentioned, the 64b/66b encoding has been used in many different interfaces and 

platforms. While the encoding is well defined, implementation of the encoding may vary from 

system to system. More specifically, the Xilinx implementation of the 64b/66b encoding, called 

‘Aurora’, may differ in implementation details when compared to InfiniBand or 10 Gigabit 

Ethernet [12]. In essence, Aurora 64b/66b encoding uses the Xilinx implementation of 64b/66b 

encoding. 

 

Xilinx provides an IP core called ‘Aurora 64B66B’ with many configuration options such as line 

rate, dataflow mode, flow control, etc. The core itself is a mixture of hardened IP in silicon and 

soft IP described in an HDL language. The IP leverages the GTX gigabit transceivers found in 7 

Series Xilinx FPGAs [13]. The GTX blocks are highly flexible and support a myriad of protocols 

and standards. When using the Aurora IP core, a GTX block primitive is instantiated and 

configured in a way that will support the 64b/66b encoding. In addition to instantiating a GTX 

core and supplying it with proper configuration, additional HDL “wrapper” code is used to 

describe elements of the encoding not contained in the GTX core, such as scrambling and channel 

bonding, which will be described in more detail later. 

 

The Aurora IP core provided by Xilinx is well documented, highly flexible, and is straightforward 

to integrate. However, there are several limitations to using the core in the context of the RD53A 

test chip. The first limitation is that the core is not compatible with Artix FPGAs. While many 

DAQ systems at CERN use compatible FPGAs, such as Kintex 7 and Virtex 7, there are existing 

DAQ systems that use the Artix 7 FPGA. The next limitation is that the Aurora IP core requires a 

GTX core. There are a limited number of GTX cores inside an FPGA and using one may incur 

significant overhead, especially when considering the additional logic around the Aurora IP core 

to ease interfacing. The final limitation is that the minimum bitrate for the IP core is 500 Mb/s 

[13]. The RD53A test chip has the capability to drive 64b/66b encoded data at bitrates lower than 

that: 320 Mb/s and 160 Mb/s. Driving data at a lower bitrate is useful when the link between the 

Tx and Rx contains cables that cannot handle the higher bitrate. 

 

To address these issues and attempt to meet the needs of the DAQ systems which will be 

interfacing with the RD53A chip, a custom Aurora protocol was developed. The custom Aurora 

protocol is flexible and makes use of the SERDESE2 blocks in the FPGA. Additionally, the custom 

protocol removes a lot of incurred overhead when using the Xilinx Aurora IP core. This is achieved 

by reducing the features the core supports to fit the scope of the RD53A chip. A key advantage of 

the custom protocol is that it makes use of the SERDESE2 blocks, allowing the use of regular I/O 

for data transmission, giving more flexibility regarding where the data is being driven i.e. as 

opposed to having to use dedicated GTX I/O [13]. Finally, the custom protocol leverages RTL 

code from the RD53A IC, allowing us to conform closely to the output expected from the chip. 
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Figure 3.2: Single lane Custom Aurora block diagram 

 

The sections that follow will cover the specifics of the custom protocol in more detail. An overview 

of a single lane Tx to Rx connection is shown in Figure 3.2. The custom protocol implementation 

can be broken up into two parts, the Tx core and the corresponding Rx core. The Tx core is meant 

to model the chip code RTL as closely as possible, while the Rx core is developed to properly 

synchronize to the Tx core. Hardware board-to-board tests could be performed on the custom 

protocol before the actual RD53A chip arrives. This provides some utility such as cable and 

hardware testing and debugging in preparation for the chip. 

 

While the work described in this thesis uses an existing encoding and leverages several existing 

modules, the novelty comes from reducing the overhead, integrating the SERDESE2 primitive, 

and developing many new modules (Rx Gearbox, Bitslip FSM, Channel Bonding, Top Level 

Encapsulation, etc) to provide a packaged Rx core that can be used in DAQ systems at CERN (or 

derivatives of it). 

 

3.2: Tx Core 
 

Up to this point, the specifics of the 64b/66b encoding have been mostly overlooked. To begin, 

the basic elements of the 64b/66b encoding are a 2-bit sync header and 64-bits of data. A block is 

specified as 2 bits of sync followed by 64 bits of data and is shown in Figure 3.3. 
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Figure 3.3: A stream of 64b/66b encoded blocks 

 

 

The sync header is described in Table 3.1. 

 

Table 3.1: Sync headers and their functionality 

 
Sync Header Binary Representation Description 

 

Control 

 

10 

 

The control sync header is used to specify 

control blocks i.e. 64-bits of control data. 

 

 

Data 

 

 

01 

 

The data sync header is used to specify 

data blocks i.e. 64-bits of user data. 

 

Invalid Header 

 

 

00 or 11 

 

Invalid headers that cannot be used. 

 

The sync header can be split into three categories: control, data, and invalid. Depending on the 

value of the sync header, the 64-bits of data that follows will be interpreted accordingly. With a 

sync header of 10 the data is treated as a control block, and with a sync header of 01 the data is 

treated as user data. 00 or 11 sync headers are invalid [14]. 

 

The reason valid sync headers are limited to 10 or 01 is because the 64b/66b encoding is meant to 

guarantee a maximum run length that is below a certain value, allowing the clock recovery circuits 

to operate properly. Run length is described as the number of consecutives 1’s or 0’s. Consider the 

case where the 64-bits of data are either all 1’s or all 0’s. If 00 or 11 sync headers were allowed, 

the 66-bits may be all 1’s or all 0’s, giving you a run length that exceeds 66 bits. Limiting valid 

sync headers to 01 or 10 guarantees transitions at 66-bit intervals, even when the data is all 1’s or 

0’s [14]. In addition to guaranteeing a maximum run length, the sync headers are also used for 

synchronization on the receiver end. 

 

In the Xilinx Aurora specification, when a control sync header is present, the control block that 

follows contains an 8-bit ‘Block Type Field’ specifying the type of control block being sent. Table 

3.2 is from the Xilinx Aurora protocol specification and contains the control block names, along 

with their corresponding ‘Block Type Field’ values [14]. 
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Table 3.2: Xilinx Aurora Control Block Type table [14] 

 

 
 

The specific function of each control block is covered in greater detail in the Xilinx Aurora 

protocol spec, SP011 [14].  

 

 
Figure 3.4: Four lane custom Aurora Tx core 

 

Figure 3.4 shows the custom Aurora 4-lane Tx module. The module is meant to be plug-and-play 

and attempts to closely represent the Tx core in the RD53A chip. The top-level 4-lane Tx module 

can be further subdivided into single-lane Tx modules, which are instantiated four times. In the 

figure, the blocks highlighted in green are the same for every lane. Each lane receives its own sync 

header and data, which is fed into the scrambler. The scrambler is a multiplicative self-

synchronizing scrambler and only scrambles the 64 bits of data, leaving the 2-bit sync header 

unscrambled [14]. More in-depth coverage of the scrambler functionality is covered in Section 

3.2.1. 
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After the scrambler, the 66-bits of the block (sync header + scrambled data) are fed into the Tx 

gearbox. The Tx gearbox takes the 66-bit block and outputs 32 bits at double the rate i.e. for every 

66-bit block, two instances of 32-bits are normally generated. The Tx gearbox is useful for taking 

the 66-bit encoded data and converting it into bit sizes that are easy to work with when serializing. 

The fact that for every 66 bits provided to the gearbox, only 64 bits are outputted, means the 

gearbox inputs need to pause periodically to allow the internal buffer to “catch up”. This is 

discussed in more depth in Section 3.2.2. Finally, the 32 bits from the Tx gearbox are sent to the 

output serializer, or OSERDES (Serializer/Deserializer). The OSERDES serializes the data and 

transmits a differential signal (LVDS in this case). 

 

ModelSim Testing 

 

The sections that follow look into the specific details of each component in the Tx module. When 

designing, testing, and integrating these modules, each module was tested in a standalone 

ModelSim simulation. After each component was determined to be functional, they were 

integrated into higher levels of simulation. For instance, the scrambler module was first simulated 

with a corresponding descrambler module. The Tx gearbox was simulated with a corresponding 

Rx gearbox. After each component was determined to be properly functioning, they were 

integrated into a higher-level simulation i.e. scrambler + Tx gearbox to Rx gearbox + descrambler. 

This simulation and testing hierarchy was applied to the rest of the components in the design e.g. 

OSERDES, ISERDES, etc. 

 

3.2.1: Scrambler 

 

In the introduction of this chapter, the necessity for bit-to-bit transitions to occur sufficiently often 

was discussed. This ensures that the PLL on the receiving end can generate a usable sampling 

clock and that the line is DC-balanced [11]. The scrambler acts as the main component for this 

function. As the name implies, the scrambler takes incoming data and scrambles it, giving roughly 

the same amount of 1’s and 0’s post-scrambling. The data can then be descrambled on the receiving 

end using a corresponding descrambler. The scrambler does not act as encryption and is not used 

with that in mind. 

 

The custom Aurora protocol uses the scrambler provided by the Xilinx Aurora 64B66B IP. The 

scrambler is a multiplicative self-synchronizing scrambler. This means the Tx scrambler and Rx 

descrambler may be initialized at different points in time, or be in different states, but can still 

achieve synchronization. If the Tx scrambler properly scrambles the data, the Rx descrambler will 

synchronize to the Tx scrambler after two blocks of scrambled data is received [14]. 

 

Scramblers can be described using a polynomial, which tells you what tap values to use for  

feedback. Figure 3.5 shows an example scrambler that uses a polynomial function of 1 + 𝑥18 +
𝑥23. 
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Figure 3.5: Example of a scrambler with function 𝟏 + 𝒙𝟏𝟖 + 𝒙𝟐𝟑 [15] 

 

As per the Xilinx documentation, SP011, the Aurora 64b/66b protocol uses the following 

polynomial function [14]: 

 

𝐺(𝑥) = 1 + 𝑥39 + 𝑥58 

 

In the custom Aurora implementation, the scrambler module was leveraged from the Xilinx Aurora 

64B66B IP core [13]. In the IP core, the scrambler module is implemented in HDL, with the code 

available in the wrapper logic of the IP. The descrambler was also leveraged in a similar manner. 

The scrambler and descrambler modules were tested extensively in simulation before being 

integrated into the custom Aurora protocol. 

 

3.2.2: Tx Gearbox 

 

In the custom Aurora implementation, the Tx module is used directly from the RD53A chip RTL 

code. This ensures that the custom Aurora Tx core behaves similarly to the chip, and that the 

corresponding Rx core is compatible with the chip. The Tx gearbox module comes after the 

scrambler and receives the 2-bit sync header and 64-bit scrambled data as it’s input from the 

scrambler. The gearbox aggregates the sync header and the scrambled data to form a 66-bit block. 

The block is then normally sent in 32-bit instances at double the rate of incoming sync and 

scrambled data. For every new 66-bit block, the gearbox sends two 32-bits outputs. Every 32 

blocks, the flow control in the Tx Gearbox tells the data driver further upstream to pause data for 

one block. 

 

To help illustrate the functionality of the gearbox, Figure 3.6 goes through a data stream processed 

by the Tx gearbox and sent to a corresponding Rx gearbox. 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

Figure 3.6: The Tx gearbox operation, along with the Rx gearbox buffer is described in (a) 

through (e). 
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Figure 3.6 (a) shows the beginning of a transmission from the Tx gearbox to the Rx gearbox. The 

details of serialization and deserialization are abstracted away for the purpose of demonstrating 

the high-level functionality. The figure shows a Tx data stream with 32-bit chunks labelled with 

corresponding numbers. 0 corresponds to the 32-bits in the red chunk, 1 corresponds to the 32-bits 

in the yellow chunk, and so on. The first encoded Aurora block (2-bit sync header + 64-bit 

scrambled data) is distributed across the first three chunks i.e. 0, 1, and 2. Chunks 0 and 1 contain 

the 64 bits of data, and chunk 2 contains the 2-bit sync header and 30-bits of data of the next 

encoded Aurora block. The Rx gearbox has just been initialized and is only receiving its first 

chunk, which goes into the 32 LSB of the Rx gearbox buffer. The rest of the buffer contains 

unknown data, meaning the data can be treated as don’t cares. 

 

Figure 3.6 (b) shows the next chunk in the Tx data stream being sent to the buffer. The rest of the 

operation is covered in Figures 3.6 (c) through (f). The important takeaway here is that the 66-bit 

blocks are distributed across the chunks. This is apparent in chunks 2 and 4, where some of the 

previous 66-bit block and some of the next 66-bit block is contained. Due to the way the buffer in 

the Tx is designed, the Tx gearbox inputs will eventually need to be paused for one block, allowing 

the Tx gearbox buffer to “catch-up” [16]. The pause operation is done every 32 blocks, meaning 

after 32 blocks are sent the gearbox inputs are paused for 1 block, resulting in 32 valid blocks for 

every 33 blocks. This has absolutely no bearing on the bandwidth of the link, since the 32-bit 

chunks are still being serialized during this one-block pause. Another way to put it is that the Tx 

gearbox needs to finish outputting the 32nd encoded block before accepting the next block. This is 

a consequence of appending a 2-bit sync header to the 64-bit data. In the layers above the Tx core, 

the pausing of the Tx gearbox will cause back-pressure on any FIFOs or storage elements 

containing data for transmission. 

 

3.2.3: Output SERDES 

 

The output SERDES, or OSERDES, is the final block in the Tx core. Its function is to serialize the 

data coming out of the Tx gearbox. The OSERDES is a primitive provided by Xilinx and can be 

customized for the required data rate. The OSERDES was customized using the Xilinx IP 

Generator and integrated into the Tx Core. Table 3.3 shows the settings used for the custom Aurora 

Tx OSERDES. 

Table 3.3: Settings for the OSERDES 

 

Property Setting 

Bandwidth 1.28 Gbps 

Interface Template Custom 

Data Bus Direction Output 

Data Rate DDR (Dual Data Rate) 

Serialization Factor 8 

External Data Width 1 

I/O Signaling Differential (LVDS) 

clk_in 640 MHz 

clk_div_in 160 MHz 
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3.3: Rx Core 
 

 
Figure 3.7: Four lane custom Aurora Rx block 

 

The custom Aurora Rx core is depicted in Figure 3.7. As with the custom Aurora Tx core, the Rx 

core is encapsulated in a top-level module and is designed to be plug-and-play. The core supports 

1 to 4 lanes at bitrates of up to 1.28 Gbps per lane. The top-level module can be subdivided into 

four instantiations of single lane Rx modules and one instantiation of a channel bonding module. 

Each lane receives a differential serial stream and is identical to all other lanes. Each individual 

Rx lane contains five submodules: ISERDES, Rx Gearbox, Descrambler, Block Sync, and Bitslip 

FSM. When more than one lane is used, a channel bonding module is necessary to compensate for 

differences in lane-to-lane signal arrival time [16]. The Rx core was tested in many different 

configurations, utilizing Xilinx provided Integrated Logic Analyzer (ILA) and Virtual 

Input/Output (VIO) debug cores. Additionally, the LCD on the board was used to display status 

information about the link when interfacing with the debug cores through JTAG was not possible. 

Bit-Error-Rate and Packet-Error-Rate utilities were also implemented to allow for performance 

evaluation of the link. The hardware tests showed successful transmission of data and channel 

bonding when four lanes were used. These results are covered in more depth in Section 3.4. 

 

3.3.1: Input SERDES 

 

The input SERDES (Serializer/Deserializer), or ISERDES, is the first block in the Rx core. The 

ISERDES function is to deserialize the incoming data stream with a deserialization factor of eight. 

Table 3.4 describes the settings used for the ISERDES. The settings are very similar to the 

OSERDES, with the data bus direction specified as ‘Input’ instead of ‘Output’. Additionally, an 

IDELAYE2 block precedes the ISERDES, allowing for delay control of the incoming serial stream 

at finite delay values. 
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Table 3.4: Settings for the ISERDES 

 

Property Setting 

Bandwidth 1.28 Gbps 

Interface Template Custom 

Data Bus Direction Input 

Data Rate DDR (Dual Data Rate) 

Deserialization Factor 8 

External Data Width 1 

I/O Signaling Differential (LVDS) 

clk_in 640 MHz 

clk_div_in 160 MHz 

 

The Xilinx ISERDESE2 primitive in 7 Series FPGAs can nominally perform 4x asynchronous 

oversampling at 1.25 Gb/s, as per Xilinx XAPP523 [17]. However, the bandwidth required by the 

custom Aurora protocol is 1.28 Gb/s. To solve this limitation in bandwidth, the Xilinx XAPP1017 

was used [18]. The XAPP1017 utilizes the IDELAYE2 block and a per-bit deskew state machine 

to control the delay of the incoming serial data stream. This allows for a dynamic, self-adjusting 

system which tries to align the serial data to the sampling clock in the best possible arrangement 

[18]. 

 

 
Figure 3.8: Modified Xilinx XAPP1017 Clock and Data Receiver Logic. Figure partially 

leveraged from XAPP1017 [18] 

 

Figure 3.8 depicts a modified version of the clock and data receiver logic in the Xilinx XAPP1017, 

which is used in the custom Aurora protocol implementation [18]. Parts of the source code for the 

module, contained in the XAPP, were integrated into the custom Aurora protocol; however, many 

changes were made to accommodate the specific requirements of the RD53A to DAQ setup. 

 

The input to the module is a differential serial stream, which is passed through an input buffer with 

a differential output, called IBUFDS_DIFF_OUT. After the serial stream is buffered, the negative 

and positive differential components are sent through separate IDELAYE2 and ISERDESE2 

blocks, as shown in Figure 3.8. The “Master” block corresponds to the positive component and the 
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“Slave” block corresponds to the negative component. The IDELAYE2 block controls the delay 

of the incoming serial stream based on a tap value provided to the block. Using the tap value, the 

serial stream is delayed by a multiple of some ∆𝑡, which is dependent on the reference clock 

supplied to the IDELAYE2 block i.e. 200MHz, 300MHz, etc. After the serial stream goes through 

the IDELAYE2 block, it is deserialized in the ISERDESE2 block according to some 

deserialization factor. The deserialized data from both the Master and Slave circuitry is passed to 

the “Per-Bit Deskew State Machine”, which controls the Master and Slave delay tap values on a 

per-bit basis [18]. A delay tap value that will sample as close to the middle of the eye as possible 

is desired, which the per-bit deskew state machine dynamically adjusts to try and achieve. The 

mechanism works in a feedback fashion, allowing for a self-regulating system. The specific details 

of how the delay tap values are changed are explained more comprehensively in the Xilinx 

XAPP1017 documentation [18]. 

 

The difference between the Xilinx module and the modified module used in the custom Aurora 

protocol is that the Xilinx module assumes an accompanying clock with the incoming data stream, 

which is not the case in the custom Aurora protocol. The custom Aurora implementation forwards 

the clock from the Rx to the Tx, and receives data from the Tx to the Rx, meaning the serial data 

stream coming into the Rx does not have an accompanying forwarded clock. Due to this difference, 

the circuitry that generates the clocks for the Master and Slave blocks from the incoming clock 

and the circuitry that trains on the incoming clock was removed. Instead, clocks from the FPGA 

logic are provided to the module. 

 

3.3.2: Rx Gearbox 

 

 
 

Figure 3.9: Rx Gearbox Functional Block Diagram 
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The Rx gearbox was not leveraged from the Xilinx Aurora IP and is a novel module that was 

designed to interface with the Tx gearbox in the Tx core. As a reminder, the Tx gearbox was used 

directly from the RD53A RTL chip code. The Rx gearbox uses a similar buffering technique used 

in the Tx gearbox, however the function is now the opposite (i.e. take 32-bit incoming data chunks 

and generate 66-bit blocks roughly every two 32-bit chunks). Figure 3.6 in Section 3.2.2 shows 

the Tx to Rx gearbox sequence. As with the Tx gearbox, the Rx gearbox outputs 32 valid Aurora 

blocks, followed by one block that should be ignored due to the buffer “catching up”, giving 32 

valid blocks every 33 blocks total. The Rx gearbox provides flow control to signify when the next 

output block should be ignored while the buffer is catching up. This again has no bearing on 

bandwidth, with the link operating at 1.28 Gb/s per lane. 

 

The functional block diagram of the Rx Gearbox is shown in Figure 3.9. The Rx Gearbox contains 

a 128-bit buffer that stores 32-bit chunks in the sequence described in Section 3.2.2. The buffer 

contains the 66 bits necessary to generate the 66-bit Aurora block, however these bits may be out 

of order and spread across several 32-bit chunks. To align the 66 bits, the 128-bit buffer is shifted 

to the left and to the right, depicted by the “Shifting Logic” block. The left and right shift amount 

is calculated using an internal counter value. Further detail on how this is done can be found in the 

source code. Once the 128-bit buffer is shifted to the left and to the right, the intermediate shifted 

results are passed through a bitwise OR operation. The 66 least significant bits of the result 

correspond to the 66-bit Aurora block. Another thing to note is that the internal counter value can 

be slipped, affecting the shift values that will be calculated. This becomes relevant when trying to 

synchronize the Rx gearbox to the Tx gearbox. Figure 3.10 shows a detailed progression of the 

mechanism with the counter value, left and right shifts amounts, clock cycle, and 128-bit buffer 

state shown. 

 

 
Figure 3.10: Rx Gearbox Shifting Mechanism Tables 

 

Color Code:  

• Blue, green, red, yellow is the order of the 66-bit incoming blocks 

• Purple means a shift operation takes place during this clock cycle and a 66-bit 

block is generated  

• Red Text represents the 32-bit chunk that was loaded during the clock cycle 
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The two tables show the shift values necessary to properly generate 66-bit blocks from the 32-bit 

incoming data chunks, and the state of the buffer during the shift operation. The table of the left-

hand side contains three columns that keep track of the internal counter value, left shift value, and 

right shift value. The table of the right-hand side contains the contents of the buffer, bit 

assignments, data widths, and the current clock cycle. The 66-bit blocks are color coded based on 

the order they come in i.e. blue, green, red, yellow. In chunks where data is shared across two 

blocks, the chunks are subdivided and contain two colors with the number of bits associated with 

each color. The chunks where the bit number is red represent the chunk that was loaded during the 

respective clock cycle. The purple blocks in the clock cycle column represent the clock cycle where 

a 66-bit block was generated. The way to interpret this table is to look at the left and right shift 

values, shift the buffer in two separate instances by each shift amount in the appropriate shift 

direction, and perform an OR operation on the resulting shifts. The 66 least significant bits of the 

result represent the 66-bit Aurora block sent across. Due the scrambling operation on the Tx side, 

the 66-bit block is still 2-bit sync and 64-bit scrambled data at this point. The buffer needs to be 

fully loaded before the first shift operation can take place, which is why no shift operations take 

place until the 3rd clock cycle. The next section describes the descrambler and the process by which 

the data is descrambled. As a final note, the mechanism by which the shift left and shift right values 

are calculated can be studied in the code. 
 

3.3.3: Descrambler 

 

The descrambler comes after the Rx gearbox and descrambles the 64-bit scrambled data. As with 

the scrambler, the descrambler is also multiplicative and self-synchronizing [14]. The job of the 

descrambler is to perform the reverse operation done during scrambling, giving us the original data 

contained in the block on the Tx side. The descrambling module used in the custom Aurora 

implementation leverages the descrambler provided in the Xilinx Aurora IP, with some minor 

changes to accommodate for the RD53A setup. Figure 3.11 shows a high-level diagram of a 

descrambler given a polynomial. 

 

 
Figure 3.11: Example of a descrambler with function 𝟏 + 𝒙𝟏𝟖 + 𝒙𝟐𝟑 [15] 

 

The descrambler used in Aurora is specified by the same polynomial used in the scrambler, namely 

[14]: 

 

𝐺(𝑥) = 1 + 𝑥39 + 𝑥58 
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The exponents in the polynomial specify what tap values to use from the shift register when 

computing the out bit in the descrambler. The operation involves using these tap values in the 

descrambler polynomial buffer and XOR’ing them with the input scrambled bit. 

 

3.3.4: Block Synchronization 

 

The block synchronization module’s purpose is to synchronize the Rx with the Tx. The module is 

leveraged from the Xilinx Aurora IP core and integrated into the custom Aurora implementation. 

The connection between the Tx and Rx is Simplex, meaning there is no communication from the 

Rx core to the Tx core i.e. no handshaking or similar provisions exist between the two cores. 

However, communication from the Rx to the Tx is not needed, as the Rx can be synchronized 

using only the incoming 2-bit sync header. 

 

As a reminder, the 2-bit sync headers are not scrambled on the Tx side, only the 64-bits of block 

data. On the receiver side, when the Rx gearbox outputs the 66-bit blocks, the output is comprised 

of a 2-bit sync header and 64-bits of scrambled data. Following the Rx gearbox module, the 64-

bits of data goes through the descrambler logic and the 2-bit sync header is passed through directly. 

Valid sync headers are either 10 or 01 in binary, meaning those are the only sync headers that 

should be seen on the receiver if synchronization is achieved. An invalid sync header of 11 or 00 

indicates that the Rx core needs to adjust itself. 

 

The block synchronization module counts the valid and invalid sync headers received. If the valid 

sync count equals some user defined value and no invalid sync headers were received, the link is 

considered synchronized. However, if the link is not yet synchronized and a single invalid sync 

header is received, a ‘rxgearboxslip’ signal is pulsed, and the internal counters are reset. Finally, 

if the link is synchronized, some number of invalid headers, specified by the user, are permissible 

before the link is required to resynchronize. 

 

Two components in the Rx core can be adjusted when synchronizing to the Tx core: the ISERDES 

and the Rx Gearbox. When these components are properly adjusted, the incoming serial data 

stream will be properly deserialized and the 66-bit Aurora blocks will be properly assembled and 

descrambled. The Bitslip FSM module shown in Figure 3.7 acts as the interface that adjusts the 

ISERDES and the Rx Gearbox. The Bitslip FSM module was not leveraged from the Xilinx Aurora 

IP and is a novel design that was developed to address the fact that the custom Aurora 

implementation contained two components that needed to be slipped. 

 

This module takes the ‘rxgearboxslip’ signal from the block synchronization module that tells it a 

component needs to be adjusted. Due to a deserialization factor of 8, the ISERDES can be bit-

slipped 8 times before reaching the original bit orientation. The Rx gearbox contains an 8-bit 

counter used to calculate shift values, shown in the table in Figure 3.10, that can be slipped 129 

times before all legal counter values have been tested. The mechanism for slipping these 

components is coordinated in a nested fashion. For every 8 ISERDES slips, the Rx Gearbox is 

slipped once, eventually exhausting all combinations. The Bitslip FSM goes through the slipping 

process continually, which allows for synchronization even if the Tx core is initiated much after 

the Rx core. 
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3.3.5: Channel Bonding 

 

The final component of the custom Aurora Rx core is the channel bonding module that is needed 

when more than one lane is used. This module was not leveraged from the Xilinx Aurora IP and 

is a novel design, accounting for differences in the arrival time of the serial signal received by each 

lane. These differences can be caused by mismatched PCB traces, cable mismatches, etc. 

 

As mentioned earlier, due to the sync header overhead, the Tx gearbox inputs need to be paused 

for one block every 32 blocks. As a result, there is one Aurora block generated by the Rx Gearbox 

that is ignored for every 32 valid Aurora blocks, since the Rx buffer needs to catch up internally. 

The Rx will signal the components upstream that the block should be ignored. The goal is to make 

sure the valid blocks are bonded so that the four blocks across each lane correspond to the original 

four blocks sent by the Tx. In the case where the channel is not bonded, improper states can occur 

where one or more blocks across the four lanes arrive a block late or are invalid at different points 

in time. 

 

 
 

Figure 3.12: Four lane Aurora stream with misaligned blocks 

 

Figure 3.12 shows data being sent across four lanes. Letters A through D are used to label the 

Aurora blocks, with A arriving first. The letter X depicts a don’t care and can be ignored for the 

purposes of this discussion. When the channel is properly bonded, the blocks should arrive at the 

same time across all four lanes i.e. every lane has block A, followed by block B, etc. However, in 

the figure this is not the case. Lane 0 and lane 2 are properly aligned to each other, but lane 1 and 

lane 3 are not aligned to each other or any of the other lanes. The channel bonding module fixes 

this problem and outputs the correct Aurora blocks on every lane. 

 

The Aurora protocol specification states that a unique ‘Channel Bonding’ frame should be sent by 

the Tx across all four lanes at some interval [16]. If there are no differences in the arrival times of 

the serial stream across the four lanes, the channel bonding frames should arrive at exactly the 

same time. However, this is not realistic in a physical implementation, and the differences in arrival 

times will manifest in blocks arriving one or more blocks late, or the Rx one block ignore point 

occurring at different points across the four lanes. The difference in ignore points is due to 

synchronization potentially configuring the ISERDES and Rx Gearbox blocks to different slip 

values across the four lanes. 

 

The channel bonding module uses four first in, first out (FIFO) buffers, one per lane. When the 

link is not properly bonded, the ‘channel_bonded’ signal is LOW. In this state, the channel bonding 

module will search for unique channel bonding blocks in each lane. If no such block is present, 
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the FIFO will be read continuously, and the blocks will pass through without accumulating in the 

FIFO. However, if a channel bonding block is seen on any lane, the FIFO in that lane will not be 

read until every lane has received a channel bonding block. This means that the lanes that are ahead 

will effectively wait for the lanes that are behind to catch up i.e. present a channel bonding block. 

Once this state is achieved, the FIFOs will be read in unison, using the same read signal. The final 

nuance is the fact that the Rx receives 32 valid blocks, followed by one block being ignored via 

flow control. In the channel bonding module, this characteristic of the Aurora protocol manifests 

itself in one or more FIFOs becoming empty when there is an invalid block. To maintain proper 

channel bonding, reading of the FIFOs must be paused after the first FIFO(s) becomes empty. The 

empty signal of that specific FIFO(s) will be used to pause reading of all FIFO in the channel 

bonding module. 

 

3.4: Simulation and Hardware Testing 

 

Testing of the Rx core was performed at different bitrates, across several different cable setups, 

and with a variety of data (incrementing data, user specified data, controlled invalid packets, etc). 

Packet-Error-Rate (PER) and Bit-Error-Rate (BER) debugging functionality was designed and 

implemented in test Vivado Projects, allowing for monitoring of the performance of the link.  The 

Xilinx Integrated Logic Analyzer (ILA) and Virtual Input/Output (VIO) debug cores were utilized 

to perform more advanced testing and debugging in the hardware [19]. 

 

Before any hardware evaluation of the Tx and Rx cores was performed, the custom Aurora design 

was tested extensively in simulation using ModelSim. Xilinx Vivado simulation libraries were 

compiled and allowed for simulating the Xilinx IP cores contained in the design. Many simulations 

were created to provide testing at different levels of granularity i.e. Tx gearbox to Rx gearbox, Tx 

core to Rx core. 

 

 
Figure 3.13: Single FPGA test with Tx and Rx custom Aurora protocol 

 

Figure 3.13 depicts the first test performed in hardware. The Tx and Rx core were instantiated onto 

a single FPGA and serial data was transmitted at a much lower, 320 Mb/s, bitrate. This basic test 

eliminated a lot factors that needed to be considered later, such as poor cable performance, 

different clock domains, and differential termination.  
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Figure 3.14: Xilinx Input/Output Buffer Primitive (IOBUF) [20] 

 

 

One of the challenges in performing this test was the fact that the Tx and Rx cores utilized the 

OSERDES and ISERDES Xilinx IP core, which interface with the I/O pins of the FPGA. A 

workaround was developed by first replacing the OSERDES used in the Tx core with a soft custom 

serializer provided by Dr. Timon Heim from Lawrence Berkeley National Lab. The custom 

serializer was compared to the OSERDES IP in simulation to make sure the functionality was the 

same. A Xilinx Input/Output Buffer (IOBUF) primitive was used, shown in Figure 3.14, to allow 

driving data into the ISERDES on a single FPGA without failing constraints. The input is specified 

as the Tx serial stream, the output is fed into the ISERDES, and the T signal is always held LOW, 

allowing for the input to go directly to the output. After this workaround was put in place, the 

design was successfully tested in hardware. 

 

 
Figure 3.15: Board to Board configurations tested 
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Figure 3.15 shows the different configurations tested in hardware at 320 Mb/s.  In the first 

configuration, the Tx FPGA forwards a 160 MHz LVDS clock, which is used to derive the clocks 

in the fabric of the Rx FPGA. In the second configuration, the opposite is the case, where the Rx 

FPGA forwards a 160 MHz LVDS clock from which the Tx FPGA clocks are derived. The final 

configuration derives the clocks in the Tx and Rx FPGAs using their respective on-board 

oscillators, with no clock forwarding between the two FPGAs. The first two configurations were 

successful, with synchronization and proper data transmission achieved over extended periods of 

time. In the final configuration, synchronization is achieved periodically, but permanent 

synchronization is never achieved. This can be attributed to phase-drift in the LVDS data stream 

being sent to the Rx core. 

 

The second configuration was chosen for testing of the custom Aurora Tx and Rx cores at higher 

bitrates because the configuration most closely resembles the setup of the RD53A chip to DAQ 

system. To clarify, the actual DAQ system will not forward a 160 MHz clock to the RD53A chip. 

However, the DAQ system does send a serial stream of Timing, Trigger, and Control (TTC) data 

at 160 Mb/s, which is used to recover a 160 MHz clock in the RD53A chip [10]. Forwarding a 160 

MHz clock from the Rx core (DAQ) to the Tx core (RD53A IC) is functionally similar to the actual 

setup, considering that the Tx and Rx cores are being tested in standalone tests. 

 

 
Figure 3.16: KC705 to KC705 Board setup with SMA and FMC communication links 

 

The Xilinx KC705 Development Boards were used for testing the Tx and Rx cores. The boards 

are flexible, allowing for tests over SMA and FMC communication links. Figure 3.16 shows two 

KC705 boards connected over SMA and FMC interfaces. The SMA wires are the six black wires 

with gold tips going from one board to the other. The FMC daughter cards are the blue cards with 

“#3” and “#2” written on them. In the FMC interface, the FMC to VHDCI daughter cards are used 
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to transmit data over a VHDCI cable [21]. The FMC to VHDCI daughter cards were developed by 

Dr. Timon Heim at Lawrence Berkeley National Lab [21]. 

 

 
Figure 3.17: Invalid frames displayed on LCD screen. Image depicts invalid frames being 

sent deliberately to test proper functionality of LCD. 

 

The ILA and VIO debug cores require a JTAG connection with a PC. In some extended test cases, 

when the tests lasted over a week, a JTAG connection to a PC was not always available. To 

eliminate the need for the PC, but still provide status information on the link, the Liquid Crystal 

Display (LCD) screen was used to display the number of invalid frames received by the Rx (Figure 

3.17). This required an LCD driver that can take the binary invalid frames value in the design and 

represent it in base 10 decimal. A generic LCD driver was found online and modified to display 

the “Invalid Frames” text and the decimal representation of the number of invalid frames received 

[22]. 

 

Table 3.5: Summary of Hardware Tests 

 
Interface Cable Lanes Bitrate (Mb/s) Success (Yes/No) 

SMA SMA 1 1280 Yes 

FMC to VHDCI Daughter Card VHDCI 4 640 Yes 

FMC to VHDCI Daughter Card VHDCI 4 1280 No 

CERN I/O Buffer Daughter Card VHDCI 4 640 Yes 

CERN I/O Buffer Daughter Card VHDCI 4 1280 No 

 

The summary of the hardware tests is shown in Table 3.5. The table describes the hardware 

interface, cable, number of lanes, bitrate, and whether the test was successful or not. The highest 

bitrate at which a test succeeded is included in the table, which is to say that tests at other bitrates 

may have been performed but are not listed in the table. As described earlier, the second 

configuration in Figure 3.15 was used when performing these tests. 

 

Although the FMC to VHDCI Daughter Card and the CERN I/O Buffer Daughter Card both failed 

when the link was configured to 4 lanes at 1.28 Gb/s, these will not be the cards used in the final 

DAQ to RD53A chip setup [21] [23]. A DisplayPort FMC daughter card has been developed that 
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seeks to address the issues of the other cards, namely poor or nonexistent buffering and poor 

shielding in the cable [24]. However, the two aforementioned cards were successfully tested when 

configured to 4 lanes at 640 Mb/s. 

 

3.5: Integrating the Tx Core into the RD53A FPGA Emulator 

 

Once the custom Aurora protocol was tested in standalone hardware tests and confirmed 

functional, the Tx core was integrated into the RD53A FPGA Emulator described in Chapter 3. 

The emulator was tested in simulation, with a corresponding Rx cores instantiated in the top-level 

of the testbench. The simulation showed proper synchronization in the Rx core using the Aurora 

Tx blocks generated in the emulator and transmitted using the Tx core. 
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Chapter 4: Cable Testing Infrastructure 
 

After the custom Aurora Tx and Rx modules were successfully tested in a single-lane SMA setup 

at 1.28 Gb/s, the tests were expanded to four lanes over other connectivity options, such as FPGA 

Mezzanine Cards (FMC). A repository was created containing Xilinx Vivado projects for various 

hardware setups. Tutorials on how to setup the link and use the debugging utilities are provided in 

the repository for the SMA and FMC hardware setups. 

 

4.1: Motivations 

 

The motivation for creating a cable testing repository was to help with the bring-up of future DAQ 

systems, where DAQ hardware and/or RD53A chips were not yet available. The idea is that the 

custom Aurora protocol Tx and Rx cores may be used for evaluating the performance of various 

cable setups, while fully taking advantage of the VIO and ILA debugging utilities, as well as the 

custom bit-error-rate and packet-error-rate debugging link performance metrics 

 

4.2: Repository Structure 

 

The repository structure separates the different hardware setups into their own folders, which 

contain a corresponding Tx and Rx Xilinx Vivado project. Each of the projects is self-contained 

and does not depend on any other project or resources. 

 

4.2.1: SMA Single Lane at 1.28 Gb/s 

 

Two Xilinx Vivado projects have been developed for setting up a single lane Aurora link at 1.28 

Gbps. A Xilinx KC705 board acts as the Tx and Rx platform and uses Kintex 7 FPGAs. Data and 

clock are transmitted over SMA cables. The SMA connections can be found on the board and are 

labeled as described below. 

 

SMA Connections: 

• Data: USER_GPIO_P, USER_GPIO_N 

• Clk: USER_CLK_P, USER_CLK_N 

 

The connections go from one board to the other to their corresponding names e.g. USER_GPIO_P 

on the Tx KC705 connects to USER_GPIO_P on the Rx KC705. Once the hardware is properly 

setup and the bitstreams are loaded to the FPGAs, the ILA and VIO can be used to monitor and 

stimulate the link. If everything is setup properly, valid data should be observed on the Rx side. 

The Rx data will correspond to the Tx data. 

 

4.2.2: FMC Four Lane at 640 Mb/s 

 

Projects were also developed for setting up a four lane Aurora link at 640 Mbps. A Xilinx KC705 

board acts as the Tx and Rx platform and uses Kintex 7 FPGAs. Data is transmitted over FMC and 

clock is transmitted over SMA cables. The SMA connections can be found on the board and are 

labeled as described below. The connections go from one board to the other to their corresponding 

names. 
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SMA Connections: 

• Clk: USER_CLK_P, USER_CLK_N 

 

The FMC card needs to go on either the FMC High Pin Count (HPC) mezzanine connector or the 

FMC Low Pin Count (LPC) mezzanine connector. The difference between these connectors is the 

pin count (HPC = High Pin Count, LPC = Low Pin Count). All of the data LVDS pairs are set to 

locations compatible with both HPC and LPC, so either connection can be used. The firmware in 

its current state is setup for the HPC connection, but location code is in the constraints file for both 

HPC and LPC. Comment out the one you don't need and uncomment the one that's being used. 

 

The biggest differentiator with four lanes as opposed to one is that the lanes need to be channel 

bonded. As a result, a channel bonding module is included in the firmware, which adapts to for 

differences in the arrival time of the signal. These differences can be cause by mismatched PCB 

traces, cable mismatch, etc. Once the channel is bonded, the 'channel_bonded' signal will be 

asserted HIGH. 

 

 

4.2.3: Aurora Rx Brute Force Alignment 

 

The Aurora Rx brute force alignment project uses the same hardware setup as the single lane SMA 

setup at 1.28 Gb/s. As described in Section 3.3.1, the Rx deserializer block uses an IDELAYE2 

Xilinx primitive to delay the incoming data stream. The IDELAYE2 block gives the user the option 

to specify the specific amount of delay desired by setting a 5-bit tap value, giving a total of 32 

delay taps. 

 

With the single lane SMA setup in Section 4.2.1, the Xilinx XAPP controls the tap values 

automatically, whereas with the Aurora Rx brute force alignment project the tap values may be 

specified by the user using the Xilinx VIO interface. This allows the user to set a desired tap value 

by either giving a specific 5-bit tap value directly or allowing the tap-values to be stepped through 

automatically using the brute force sequence designed in the firmware. This project allows for 

more control but should really only be used for debugging purposes. 

 

4.3: Automating the Build Procedure 

 

Automating the build procedure of the custom Aurora hardware tests and the RD53A emulator can 

allow for more control over the specific requirements of the project, such as what warning should 

be elevated to an error. Some headway was made in automating the build procedure of the Aurora 

projects using the CERN build framework, hdlmake, with a successful compilation of an RD53A 

Emulator build tested. However, additional work is required to flush out all the bugs and tidy up 

the process. 
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Chapter 5: Conclusion and Future Work 
 

The work contained in this thesis describes the development of a custom Aurora protocol in 

anticipation for the RD53A chip. The RD53A chip is a research development chip at CERN 

designed to test novel detector technologies in anticipation for the ITk Upgrade. The work done 

on the custom Aurora protocol was leveraged to create a cable testing repository. The custom 

Aurora protocol Tx core was integrated into the RD53A FPGA Emulator. 

 

Throughout the development of the custom Aurora protocol, many new modules, such as the Rx 

Gearbox and Channel Bonding modules, were designed and tested. Existing IP and firmware was 

also leveraged where it made sense, such as using the RTL from the RD53A chip for the Tx 

Gearbox or using the Xilinx Scrambler from the Xilinx Aurora 64B66B IP. As the project evolved, 

simulations in ModelSim were performed every step of the way. 

 

When the cores reached maturity and simulations showed proper behavior, hardware tests across 

different platforms and in varying configurations were performed. To aid with characterizing and 

debugging the performance of the custom Aurora protocol, Xilinx ILA and VIO debugging cores 

were used, bit-error-rate and packet-error-rate utilities were implemented, and an LCD display was 

utilized for displaying the number of invalid packets received. These tools helped aid in debugging 

communication issues and understanding the areas where further development was needed. 

 

As a result of the hardware tests and the infrastructure developed to facilitate them, a cable testing 

repository was created. The repository allows for preliminary testing of cable setups and gives the 

user some understanding of the cable performance. Several hardware configurations are supported 

and include tutorials in the repository. A more specialized debugging configuration is also 

provided, allowing the user to have finer control over some elements of the communication link. 

 

Finally, the custom Aurora Tx core was integrated into the RD53A emulator and preliminary 

simulations showed proper synchronization. Hardware tests still need to commence to test certain 

aspects of the connection such as channel bonding more extensively. 

 

Throughout the development process of the custom Aurora protocol, three new repositories were 

created, namely aurora_tx, aurora_rx, and cern_cable_test (Links in Appendix A). The aurora_tx 

and aurora_rx repositories contain the code and IP cores for the respective Tx and Rx core. These 

repositories are meant to be integrated into a build framework that can pull the repos and integrate 

them into a project. Further testing of building the cores using something such as CERN’s hdlmake 

can help in making the repositories suited for easier integration. 

 

Future Work 

 

While the custom Aurora protocol is functional and has been tested extensively, there is still work 

that can be done to improve it. Some of the modules, such as the channel bonding module, can be 

refactored to reduce the overhead. On that same note, the code can also be made more modular 

and configurable in the process, allowing for a broader range of applications. Another 

improvement that can be made is the removal of the 40 MHz clock from the design. The clock is 

used in the design due to some early modules, such as the scrambler, making use of it. However, 
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it is feasible to remove the clock altogether since the design still uses a 160 MHz clock throughout. 

This can reduce some clock routing overhead at the cost of some enable logic overhead. Finally, 

some requirements for the RD53A chip evolved and changed throughout the development of the 

custom Aurora protocol, so an evaluation of the most up-to-date specification would be important 

if further work were to continue. 
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Appendix 
 

Repositories 

• https://bitbucket.org/levkurilenko/aurora_rx 

• https://bitbucket.org/levkurilenko/aurora_tx 

• https://bitbucket.org/levkurilenko/cern_cable_test 

• https://bitbucket.org/levkurilenko/CERN_work 

• https://bitbucket.org/levkurilenko/acme_lhc_docs 

 

Ownership of the repositories may have been transferred over to my lab colleague, Dustin Werran, 

at: 

 

https://bitbucket.org/DustinWerran/ 

 

If the repositories are not found under my name, please check there. 

 

 

Tx Gearbox Shift Equations 

• Right Shift Amount = (𝑐𝑜𝑢𝑛𝑡𝑒𝑟[6: 0] ∗ 32)%132 

• Left Shift Amount = 132 −  (𝑐𝑜𝑢𝑛𝑡𝑒𝑟[6: 0] ∗ 32)%132 

 

Rx Gearbox Shift Equations 

• Right Shift Amount = (𝑐𝑜𝑢𝑛𝑡𝑒𝑟[7: 1] ∗ 66)%128 

• Left Shift Amount = 128 −  (𝑐𝑜𝑢𝑛𝑡𝑒𝑟[7: 1] ∗ 66)%128 

 

https://bitbucket.org/levkurilenko/aurora_rx
https://bitbucket.org/levkurilenko/aurora_tx
https://bitbucket.org/levkurilenko/cern_cable_test
https://bitbucket.org/levkurilenko/CERN_work
https://bitbucket.org/levkurilenko/acme_lhc_docs
https://bitbucket.org/DustinWerran/

