
� 1

Architecture Adaptive Routability-Driven Placement for FPGAs

Akshay Sharma Carl Ebeling Scott Hauck
 Electrical Engineering Computer Science & Engineering Electrical Engineering
 University of Washington University of Washington University of Washington
 Seattle, WA Seattle, WA Seattle, WA
 akshay@ee.washington.edu ebeling@cs.washington.edu hauck@ee.washington.edu

Abstract
Current FPGA placement algorithms estimate the routability of a
placement using architecture-specific metrics. The shortcoming
of using architecture-specific routability estimates is limited
adaptability. A placement algorithm that is targeted to a class of
architecturally similar FPGAs may not be easily adapted to other
architectures. The subject of this paper is the development of a
routability-driven architecture adaptive FPGA placement
algorithm called Independence. The core of the Independence
algorithm is a simultaneous place-and-route approach that
tightly couples a simulated annealing placement algorithm with
an architecture adaptive FPGA router (Pathfinder). The results
of our experiments demonstrate Independence’s adaptability to
island-style and hierarchical FPGA architectures. The quality of
the placements produced by Independence is within 5% of the
quality of VPR’s placements and 17% better than the
placements produced by HSRA’s place-and-route tool. Further,
our results show that Independence produces clearly superior
placements on routing-poor island-style FPGA architectures.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – gate
arrays.

B.7.2 [Integrated Circuits]: Design Aids – placement and
routing.

General Terms
Algorithms.

Keywords
placement, routing, FPGA, Independence, adaptive.

1. Introduction
FPGAs have become an increasingly visible computational
substrate in the past decade. The reprogrammable nature of
FPGAs, coupled with low NRE costs and fast time-to-market,
makes them an attractive choice for a variety of applications.
While flexibility and affordability are the mainstays of FPGA-
based systems, the performance levels that can be extracted from
FPGAs clearly lag application specific implementations. In
order to bridge performance gaps between FPGAs and custom
logic, FPGA architectures are widely researched in academic
and industrial settings.

The most important architectural feature of an FPGA is arguably
the interconnect structure. Since any FPGA has a finite number
of discrete routing resources, a large share of the architectural
research effort is devoted to determining the composition of an
FPGA’s interconnect structure. During architecture
development, the effectiveness of an FPGA’s interconnect

structure is evaluated using placement and routing tools
(collectively termed place-and-route tool). The place-and route
tool is responsible for producing a physical implementation of
an application netlist on the FPGA’s prefabricated hardware.
More specifically, the placement tool determines the actual
physical location of each netlist logic block in the FPGA layout,
and the routing tool assigns the signals that connect the placed
logic blocks to routing resources in the FPGA’s interconnect
structure. Due to the finite nature of an FPGA’s interconnect
structure, the success of the routing tool is heavily reliant on the
quality of the solutions produced by the placement tool. Not
surprisingly, the primary objective of the placement tool is to
produce a placement that can indeed be routed by the routing
tool.

The effectiveness of a placement tool as an evaluation
mechanism relies on the ability of the placement algorithm to
capture the interconnect structure of the FPGA architecture.
During the placement process, the placement algorithm must be
able to accurately estimate the routability of a placement on the
target architecture’s interconnect structure. Currently, the modus
operandi used in the development of placement algorithms is to
use architecture-specific metrics to heuristically estimate the
routability of a placement. For example, the routability of a
placement on island-style FPGAs is estimated using the ever-
popular Manhattan Distance wirelength metric, while the
routability of a placement on tree-based architectures is
estimated using cutsize metrics.

In our opinion, there are two fundamental concerns with
architecture-specific placement formulations:

• Adaptability – Architecture-specific routability estimates
limit the adaptability of a placement algorithm. To the best
of our knowledge, there is no single routability estimate
that can effectively capture the interconnect structure of
every FPGA in the architecture spectrum. This is an
impediment to FPGA architecture research, since much
time is spent in selecting and tuning architecture-specific
routability estimates. In contrast, the abstractions and
heuristics used in the state-of-the-art FPGA routing
algorithm (Pathfinder [17]) are in fact adaptive. Retargeting
Pathfinder to architecturally unique FPGAs is often as
simple as expressing an FPGA’s interconnect structure as a
directed graph.

• Accuracy – Using heuristic estimates of routabillity
(wirelength, cutsize etc.) during the placement process
often leads to troubling questions like How accurate are
the routability estimates? or Are the estimates truly
reflective of the realities of the interconnect structure?.
These questions are generally answered in the routing
phase, and the feedback mechanism between routing and
placement is a time-consuming, iterative parameter-tuning-
and-refinement phase.

� 2

In view of these concerns, we feel that research in FPGA
architectures would stand to benefit from a placement algorithm
that can quickly be retargeted to relatively diverse FPGA
architectures, while producing high quality results at the same
time. The subject of this paper is the development of an
architecture adaptive routability-driven FPGA placement
algorithm called Independence. Since the objective of an FPGA
placement algorithm is to produce a routable placement, we
tightly couple the placement algorithm with an FPGA router.
Specifically, we use an architecture adaptive routing algorithm
in the inner loop of a simulated annealing placement algorithm
to actually route signals. Thus, instead of using architecture-
specific routability estimates, we use the routing produced by an
architecture adaptive router to independently guide the
placement algorithm to a high-quality solution.

The remainder of this paper is organized as follows. In Section
2, we briefly describe current, state-of-the-art FPGA placement
(VPR) and routing (Pathfinder) algorithms. Section 3 examines
VPR’s routability-driven placement cost function, and uses
architectural examples to demonstrate limitations of VPR’s cost
formulation. In Section 4 we survey previous work in integrated
FPGA placement and routing. Section 5 describes
Independence’s placement heuristic, and important aspects of
integrating Pathfinder with Independence. We present our
validation strategy and experimental results in Sections 6.
Section 7 briefly explains techniques that can be used to speedup
Independence, and Section 8 concludes this paper and discusses
future directions.

2. FPGA Place-and-Route
This section describes the FPGA placement and routing
problems, and state-of-the-art algorithms that are used to place
and route netlists on FPGA architectures.

2.1 FPGA Placement
The FPGA placement problem is to determine the physical
assignment of the logic blocks in a netlist to locations in the
FPGA layout. The primary goal of any FPGA placement
approach is to produce a placement that can successfully be
routed using the limited routing resources provided by the
FPGA. VPR [4,5] is the current, public-domain state-of-the-art
FPGA placement tool. VPR consistently produces high-quality
placements, and at the time of this writing, the best reported
placements for the Toronto20 [5] benchmark netlists are those
produced by VPR.

VPR uses a simulated annealing algorithm [15] that attempts to
minimize an objective cost function. The algorithm operates by
taking a random initial placement of the logic blocks in a netlist,
and repeatedly moving the location of a randomly selected logic
block. A move is accepted if it improves the overall cost of the
placement. In order to avoid getting trapped in local minima,
non-improving moves are also sometimes accepted. The
temperature of the annealing algorithm governs the probability
of accepting a “bad” move. The temperature is initially high,
causing a large number of bad moves to be accepted, and is
gradually decreased until no bad moves are accepted. A large
number of moves are attempted at each temperature. VPR
provides an adaptive cooling schedule that is used to determine
the starting temperature, number of moves attempted at each
temperature, the maximum separation between moved logic

blocks, and the rate of temperature decay during the annealing
process.

VPR’s objective cost function is a function of the total
wirelength of the current placement. The wirelength is an
estimate of the routing resources needed to completely route all
nets in the netlist. Reductions in wirelength mean fewer routing
wires and switches are required to route nets. This is an
important consideration because the number of routing resources
in an FPGA is limited. Fewer routing wires and switches
typically also translate to reductions in the delay incurred in
routing nets between logic blocks. The total wirelength of a
placement is estimated using a semi-perimeter metric, and is
given by equation 1. N is the total number of nets in the netlist,
bbx(i) is the horizontal span of net ‘i’, bby(i) is its vertical span,
and q(i) is a correction factor.

�
=

+=
N

i

yx ibbibbiqWireCost
1

))()((*)(�� ����

Fig. 1 illustrates the calculation of the horizontal and vertical
spans of a hypothetical net that has ten terminals.

bbx

bby

Fig. 1: The horizontal and vertical spans of a hypothetical
10-terminal net [5].
�

2.2 FPGA Routing
The FPGA routing problem is to assign the nets that connect
placed logic blocks to routing resources in the FPGA’s
interconnect structure. Pathfinder [17] is the most widely used
FPGA routing algorithm. Pathfinder operates on a directed
graph abstraction (G(V,E)) of the routing resources in an FPGA.
The set of vertices V in the graph represents the IO terminals of
logic blocks and the routing wires in the interconnect structure.
An edge between two vertices represents a potential connection
between the two vertices. Given this graph abstraction, the
routing problem for any given net is to find a directed tree
embedded in G that connects the source terminal of a net with
all its sink terminals. Since the number of routing resources in
an FPGA is limited, the goal of finding unique, non-intersecting

� 3

trees (hereafter called “routes”) for all the nets in a netlist is a
difficult problem.

Pathfinder uses an iterative, negotiation-based approach to
successfully route all the nets in a netlist. During the first routing
iteration, nets are freely routed without paying attention to
resource sharing. Two terminal nets are routed using Dijkstra’s
shortest path algorithm [8], and multi-terminal nets are routed
using an algorithm reminiscent of Prim’s algorithm [8] for
finding a minimum-spanning tree over an undirected graph. At
the end of the first iteration, resources are congested because
multiple nets have used them. During subsequent iterations, the
cost of using a resource is increased based on the number of nets
that share the resource, and the history of congestion on that
resource. Thus, nets are made to negotiate for routing resources.
If a resource is highly congested, nets that can use lower
congestion alternatives are forced to do so. On the other hand, if
the alternatives are more congested than the resource, then a net
may still use that resource. The cost of using a routing resource
‘n’ during a routing iteration is given by equation 2.

nnnn phbc *)(+= � � � � ����

bn is the base cost of using the resource ‘n’, hn is related to the
history of congestion during previous iterations, and pn is
proportional to the number of nets sharing the resource in the
current iteration. The pn term represents the cost of using a
shared resource ‘n’, and the hn term represents the cost of using
a resource that has been shared during earlier routing iterations.
The latter term is based on the intuition that a historically
congested node should appear expensive, even if it is currently
lightly shared.

Pathfinder has proved to be one of the most powerful FPGA
routing algorithms to date. Pathfinder’s negotiation-based
congestion elimination strategy is an extremely effective
technique for routing signals on FPGAs. More importantly,
Pathfinder is a truly architecture adaptive routing algorithm.
Since the algorithm operates on a directed graph abstraction of
an FPGA’s routing structure, it can be used to route netlists on
any FPGA that can be represented as a directed routing graph.

3. VPR Targets Island-style FPGAs
Due to a strong prevalence of routing rich island-style FPGA
architectures, VPR’s placement algorithm (Section 2.1) is
primarily targeted to island-style FPGAs. The semi-perimeter
based cost function relies on certain defining features of island-
style FPGAs (Fig. 2):

�

Fig. 2: An illustration of an island-style FPGA. The white
boxes with black borders represent logic blocks. The
horizontal and vertical intersecting boldface lines represent
the wiring segments in a segmented interconnect structure.
The logic blocks connect to surrounding wire segments using
programmable connection-points (shown as crosses), and
individual wire segments connect to each other by means of
programmable routing switches (shown as gray lines).

• Two-dimensional Geometric Layout - An island-style
FPGA is laid out as a regular two-dimensional grid of logic
blocks surrounded by a sea of routing wires and switches.
As a result, VPR’s cost function is based on the assumption
that the routability of a net is proportional to the Manhattan
distance (measured by semi-perimeter) between its
terminals. A net with terminals that are far apart needs
more routing resources than a net with terminals close to
each other. A direct result of a semi-perimeter based cost
function is tightly packed placements, even if the capacity
of the target FPGA far exceeds the logic requirements of
the netlist.

• Uniform Connectivity – Island-style architectures provide
uniform connectivity. The number and type of routing
resources available for a net with a given semi-perimeter
are independent of the actual placement of the terminals of
the net. Thus, VPR determines the cost of a net based
purely on its semi-perimeter, and not the actual location of
the terminals of the net.

• Directionality – Island-style architectures have no implied
directionality. The routing structure does not impose
constraints on the placement of logic blocks. Thus, no
move made by VPR’s simulated annealing algorithm is
illegal. As long as a placement is valid (no overlapping
logic blocks), an island-style architecture guarantees that a
route exists between any two logic blocks regardless of
their locations.

� 4

VPR’s dependence on island style FPGA architectures limits its
adaptability to architectures that do not provide features of
island-style FPGAs. For instance, the interconnect structure of
an FPGA architecture may not conform to the Manhattan
distance estimate of routability. One example is the hierarchical
interconnect structure found in tree-based FPGA architectures
[9]. In tree-based FPGAs, there is no way of estimating the
number of routing resources between two logic blocks based on
layout positions. In fact, for an architecture like HSRA, the
number of routing resources required to connect a logic block in
one half of the interconnect tree to a logic block in the other half
does not depend on the actual locations of the logic blocks. A
strictly semi-perimeter based cost function does not accurately
capture the routability characteristics of tree-based FPGAs.

Another class of non-island style FPGA architectures provides
heterogeneous interconnect structures. Triptych [6] is an
example of an FPGA architecture that provides only segmented
vertical tracks. There are no segmented horizontal tracks;
horizontal routes are built using directional, nearest-neighbor
connections. A second example of an FPGA architecture that
has non-uniform routing resources can be found in [13]. The
horizontal channels in this architecture gradually increase in
width from left to right. For a given semi-perimeter, the amount
of routing available to a net at the far right edge of this
architecture exceeds the amount available at the far left edge.
For both Triptych and the architecture presented in [13], the type
and amount of routing available to route a net clearly depends
on the placement of the net’s terminals. VPR’s semi-perimeter
based cost function is oblivious of the heterogeneity of such
architectures.

VPR’s cost function also does not recognize directional FPGA
architectures. The interconnect structure in a directional FPGA
does not allow the routing of signals in specific directions. The
architecture presented in [13], PipeRench [11], and Chimaera
[12] are all instances of FPGA architectures that forbid signals
from being routed in certain directions. Not all placements on
directional architectures are legal, and consequently a cost
function that is unaware of the directionality of the interconnect
structure is insufficient.

Finally, efforts to incorporate FPGA-like logic in System-on-
Chip designs have motivated non-rectangular FPGA fabrics. In
[13], the authors investigate a directional FPGA fabric that
resembles the shape of a trapezoid. The FPGA fabrics proposed
in [24] are built by abutting smaller, rectangular fabrics of
different aspect ratios. In both cases, the semi-perimeter metric
is an inaccurate estimate of the resources available to route
signals.

The architectural examples cited in this section clearly show that
a semi-perimeter placement cost function does not adapt to non-
island style FPGAs. A cost function’s adaptability lies in its
ability to guide a placement algorithm to a high-quality solution
across a range of architecturally diverse FPGAs. In this paper
we present Independence, an architecture adaptive routability-
driven FPGA placement algorithm. Since Independence’s core is
a simultaneous place-and-route algorithm, we survey previous
research in simultaneous FPGA place-and-route techniques in
the next section.

4. Related Work
Research in simultaneous place-and-route techniques for FPGAs
can be broadly categorized into three categories:

4.1 Partitioning-based Techniques
Partitioning-based FPGA placement is used to obtain a global
routing of the netlist as a direct result of the partitioning process.
Note that partitioning-based FPGA placement algorithms are not
truly simultaneous place-and-route algorithms, since no explicit
routing step is attempted during placement. However, since
partitioning-based placement naturally produces the global
routing of a netlist, we briefly survey partitioning-based
techniques in the hope of identifying an approach that might aid
in the development of Independence. Further, partitioning-based
placement is a well-known divide-and-conquer approach to
solving placement problems.

Iterative k-way partitioning techniques are particularly well
suited to tree-based FPGA architectures, and have been used to
place and globally route netlists on HSRA [9] and k-HFPGA
[23]. During recursive k-way partitioning, logic blocks are
recursively clustered together into k smaller subtrees while
reducing cutsize and/or area. At the end of the partitioning
phase, the leaves of the netlist’s partitioning tree are mapped to
logic block clusters in the tree-based architecture. Since there is
a unique global route between any two logic block clusters in a
tree-based architecture, the global routing for the entire netlist is
easily found from the placement.

Partitioning-based techniques have also been considered for
simultaneously placing and routing netlists on island-style
FPGA architectures. In [22], a recursive bipartitioning technique
is used to place and globally route netlists on an island-style
FPGA architecture. At the end of a bi-partitioning stage, if a net
crosses the cutline, a pseudo-block is generated on the cutline to
preserve a connection. Each psuedo-block corresponds to a
track, and a sequence of pseudo-blocks between the terminals of
a net corresponds to a global route for that net. When the
bipartioning is complete, each partition consists of a single
switch-block with pseudo-blocks allocated at the partition edges.
The global routing for the netlist is directly implied by the
placed netlist.

A similar approach to integrated place-and-route for island-style
FPGAs is presented in [1]. The FPGA is divided into m x n
rectangular regions, and a partitioning heuristic is used to assign
the logic blocks in a netlist to the regions. The assignment is
improved using simulated annealing. A greedy congestion
reduction heuristic is then used to select a rectilinear Steiner tree
for each net such that cutsize is reduced. Finally, the nets that
cross each edge of a region are assigned to switch-blocks located
on the edge. This process is recursively carried out until each
region consists of a single logic block.

The partitioning-based techniques presented above can be used
to simultaneously place and globally route netlists on FPGA
architectures. However, since FPGAs have a finite number of
discrete routing resources, heuristic estimates of the global
routing requirements of a netlist during the placement process
might not be the most accurate measure of the actual routing
requirements of the netlist. A tighter coupling between
partitioning-based placement and the interconnect structure of

� 5

the FPGA might be obtained by finding detailed routes for
signals during partitioning. However, the actual placement of a
netlist is only known at the end of the partitioning-phase, and
hence a complete detailed routing is not possible during the
partitioning process.

4.2 Constructive / Cluster-Growth Placement
Constructive, cluster-growth placement is a technique that has
been used to simultaneously place and route netlists on different
FPGA architectures. In cluster-growth placement, signals are
considered one at a time in a sequential manner. The terminals
of the signal under consideration are placed based on a cost
function derived from heuristic force-directed estimates [2], or
global routing estimates [7]. Once a signal’s terminals have been
placed, it is not possible to change their placement to
accommodate the demands of later signals.

Combining cluster-growth placement with detailed routing may
seem like a good choice for architecture-adaptive placement.
However, the quality of the placements produced by a cluster-
growth approach is sensitive to the order in which signals are
considered. Since determining an optimal ordering of the signals
is a difficult task, cluster-growth placement is usually an
iterative process. The signal ordering at the beginning of each
pass is either random, or determined heuristically from netlist or
architectural features.

4.3 Simulated Annealing Placement
Simulated Annealing based simultaneous place-and-route
techniques are presented in [19]. Fast global and detailed routing
heuristics are used in the simulated annealing inner loop to
estimate the routability of a placement. Separate techniques for
row-based and island-style FPGAs are presented. A brief
description of the techniques follows:

Row-based FPGAs (PRACT): The PRACT algorithm is targeted
to row based FPGAs. The cost of a placement is a weighted,
linear function of the number of globally unrouted nets, the
number of nets that lack a complete detailed routing, and the
critical path delay of the placement. For every move that is
attempted during the annealing process, the nets that connect the
moved logic blocks are ripped up and added to a queue of
unrouted nets. After a move is made, fast heuristics attempt to
find global and detailed routes for the ripped up nets. The global
route for a net is found using geometric information specific to
row-based FPGAs. The detailed route for a net in a channel is
found using a greedy heuristic that tries to reduce segment
wastage and the number of segments used. Critical path delays
are updated using incremental static timing analysis. PRACT
yielded up to a 29% improvement in delay and 33%
improvement in channel widths when compared to a place-and-
route flow used at Texas Instruments (circa 1995).

Island style FPGAs (PROXI): The PROXI algorithm uses a cost
function that is a linear, weighted function of the number of
unrouted nets, and the critical path delay of the placement. No
global routing is attempted. The interconnect structure of the
FPGA is represented as a routing graph similar to the directed
graph used by Pathfinder. For each placement move, the nets
connecting the moved logic blocks are ripped up and added to a
global queue of unrouted nets. Nets are rerouted using a maze
routing algorithm augmented with a cost-to-target predictor. To

keep runtime under control, the depth of the maze search is
modulated as the annealing placement proceeds. The segmented
nature of the routing resources is addressed by means of an
explicit weighting scheme that encourages high fanout nets to
use long segments, and low fanout nets to used shorter
segments. This weighting scheme relies on the bounding box of
the net being routed. Critical path delays are incrementally
updated in a manner similar to PRACT. The placements
produced by PROXI exhibited 8 – 15% delay improvement
compared to Xilinx’s XACT5.0 place-and-route flow.

The quality of the placement solutions produced by PRACT and
PROXI was noticeably superior to commercial, state-of-the-art
CAD flows at that time (circa 1995). The results were a strong
validation of a simulated annealing based FPGA placement
algorithm that is tightly coupled with routing heuristics.
However, both algorithms have potential shortcomings from
adaptability as well as CAD perspectives:

• The cost functions developed for the algorithms do not
explicitly consider total wirelength or congestion. The only
metric used to estimate the routability of a placement is the
total number of unrouted nets. It can easily be seen that the
total wirelength and congestion of a placement may change
without affecting the number of unrouted nets. A cost
function that is insensitive to such changes may allow
wirelength and/or congestion to increase undesirably.

• The routing heuristics used by PRACT are tied to row-
based FPGAs, and may be difficult to adapt to FPGA
architectures that have different interconnect structures. At
the same time, PROXI uses bounding box estimates to
dynamically weight nodes of the routing graph when
routing nets. This dynamic weighting approach is targeted
at island-style architectures that have segmented routing
resources.

• PROXI’s routing algorithm does not allow sharing of
routing nodes by multiple signals. Disallowing sharing
prevents PROXI from leveraging the negotiation-based
congestion resolution heuristics from the Pathfinder
algorithm.

The approaches and techniques surveyed in this section are
either targeted to certain architectural styles, or use relatively
weak estimates of routability during the placement process. No
clear cost formulation or technique emerges that can be used to
produce high quality placements across a range of
architecturally unique FPGAs.

5. Independence
In this section we present Independence, an architecture
adaptive routability-driven FPGA placement algorithm.
Realizing that the overriding goal of a placement algorithm is to
produce a high-quality, routable solution, we tightly integrate
FPGA placement and routing. Instead of using architecture
specific heuristics, we estimate routability during placement by
actually routing signals using an adaptive routing algorithm
(Pathfinder). By doing so, we obtain accurate estimates of the
routing resource usage and total congestion of a placement while
maintaining the adaptability of the placement algorithm. Fig. 3
lists pseudo-code for Independence. The remainder of this
section is a consolidated explanation of the algorithm in Fig. 3.

� 6

5.1 Placement Heuristic and Cost Formulation
Since simulated annealing has clearly produced some of the best
placement results reported for FPGAs [5], we chose to use
simulated annealing as Independence’s placement heuristic.
Independence’s cooling schedule is mostly an adoption of
VPR’s cooling schedule. This is because VPR’s cooling
schedule is adaptive, and incorporates some of the most
powerful features from earlier research in cooling schedules. For
similar reasons, we chose an auto-normalizing formulation for
Independence’s cost function. The main benefit of using
normalization variables is that changes in cost of a placement do
not depend on the actual magnitude of the cost variables. This
makes the cost function adaptive, since the size of a netlist or the
target architecture does not skew cost calculations.
Independence’s cost function is described in equation 3.

∆ C = ∆ WireCost / prevWireCost +
 λ * ∆ CongestionCost / CongestionNorm ����

WireCost: The wire cost of a placement (equation 4) is
calculated by summing the number of routing resources used by
each signal in the placed netlist. Routing resource usage is
measured by simply traversing the route-tree of each signal and
incrementing WireCost. In equation 4, N is the number of
signals in the netlist, and NumRoutingResourcesi is the number
of routing resources in the route tree of signal i. The
normalization variable prevWireCost in equation3 is equated to
the WireCost of a placement before a placement move is
attempted.

�
=

=
N

1i

iResourcesNumRoutingWireCost ���

CongestionCost: The congestion cost (equation 5) represents the
extent to which the routing resources are congested in a given
placement, and is calculated by summing the number of signals
that overuse each congested resource. The congestion cost of a
placement is calculated by traversing the routing graph and
increasing CongestionCost when a shared resource is
encountered. In equation 5, Occupancyi is the number of signals
that are currently using routing resource i, Capacityi is the
capacity of routing resource i, and R is the total number of
vertices in the routing graph of the target architecture. It could
be argued that CongestionCost renders WireCost redundant,
since the objective of an FPGA placement algorithm is to
produce a routable netlist. However, a cost function that is
unaware of changes in wire cost will not recognize moves that
might improve future congestion due to reductions in routing
resource usage. Also, note that the total congestion cost of the
placement cannot be used as a normalizing factor, since
CongestionCost might be zero towards the end of the annealing
process. In our present implementation, CongestionNorm is
equated to prevWireCost.

Independence(Netlist, G(V,E)){
// Create an initial random placement.
createRandomPlacement(Netlist, G(V,E));

N = set of all nets in Netlist;

// Freely route all nets in N; similar to Pathfinder’s first
// routing iteration. R contains the complete, current
// routing of the nets in N at any time during placement.
R = routeNets(N, G(V,E));

// Calculate the cost of the placement using eq. 3, 4 and 5.
C = calculateCost(R, G(V,E));

// Calculate the starting temperature of the anneal.
T = StartTemperature(Netlist, G(V,E), R);

while(terminatingCondition() == false){
while(innerLoopCondition() == false){

// Randomly generate the two locations involved
// in the move.
(x0,x1) = selectMove(G(V,E));

// Get the nets connected to the logic blocks
// mapped to x0 and/or x1.
Nx = getNets(x0, x1);

// Cache the routes of the nets connected to the
// logic blocks mapped to x0 and/or x1.
cacheR = getRoutes(Nx);

// Rip up the nets connected to the logic blocks
// mapped to x0 and/or x1.
R = R – cacheR;

// Swap the logic blocks mapped to x0 and/or x1.
// Update the source/sink terminals of the nets in
// Nx to reflect the new placement.
swapBlocks(x0, x1);

// Reroute the nets connected to the logic blocks
// that are now mapped to x0 and/or x1.
R = R + routeNets(Nx, G(V,E));

// Calculate the change in cost due to the move
newC = calculateCost(R, G(V,E));

∆C = newC – C;

if(acceptMove(∆C, T) == true){
 C = newC; // Accept the move.
}
else{
 // Restore the original placement and routing
 swapBlocks(x0, x1);
 R = R – getRoutes(Nx) + cacheR;
}

}

T = updateTemp(); // Update temperature T.
// Update history costs using equation 6.
updateHistoryCosts(R, G(V,E));
R=Φ; // Rip up the entire routing
R=routeNets(N, G(V,R)); // Refresh routing.

}
}

Fig. 3: Pseudo-code for the Independence algorithm. G(V,E)
is the routing graph of the target architecture on which
Netlist has to be placed.

� 7

�
=

−=
R

1i

 ii 0) ,Capacityncymax(OccupaCostCongestion ���

λλλλ: This tuning parameter controls the relative importance of
changes in wire and congestion costs, and is a number greater
than one. The magnitude of λ is inversely related to the richness
of the target architecture’s interconnect structure.

5.1 Integrating Pathfinder
FPGA routing is a computationally intensive process.
Admittedly, it is infeasible to reroute all the signals in a netlist
after each placement move. Our solution is to start out with an
initially complete routing, and then incrementally reroute signals
during placement. Specifically, only the signals that connect to
the logic blocks involved in a move are ripped up and rerouted.
This is based on the intuition that for any given move, major
changes in congestion and routing resource usage will be
primarily due to the rerouting of signals that connect moved
logic blocks.

Since we only attempt an incremental rip-up and reroute after
every move, the routes found for signals during the early parts of
a temperature iteration may not accurately reflect the congestion
profile of the placement at the end of an iteration. Hence, we
periodically refresh the netlist’s routing by ripping up and
rerouting all signals. Currently, the netlist is ripped up and
rerouted at the end of every temperature iteration.

In light of the fact that the placement of a netlist is constantly
changing during simulated annealing, it is necessary to examine
whether Pathfinder’s cost function (equation 2 in Section 2.2) is
directly applicable to finding routes during incremental rip-up
and reroute. When routing a signal, Pathfinder uses the number
of signals currently sharing a routing node (pn in equation 2),
and the history of congestion on the node (hn in equation 2) to
calculate the cost of the routing node. Since the netlist is
completely routed at any given point in the placement process,
the current sharing of routing nodes can easily be calculated, and
thus we directly adopt Pathfinder’s pn cost term.

Pathfinder’s history cost term is motivated by the intuition that
routing nodes that have been historically congested during the
routing process probably represent a congested area of the
placed netlist. Thus, if a routing node is shared at the end of a
routing iteration, its history cost is incremented by a fixed
amount to make the node more expensive during subsequent
iterations. Note that the process of updating history costs during
a Pathfinder run makes history cost a monotonically increasing
function. A monotonically increasing history cost formulation is
inappropriate for Independence. An increasing history cost
would reflect the congestion on a routing node during the entire
placement process. However, since placements are in constant
flux during the placement process, the congestion on a routing
node during the early stages of the annealing process (when
placements are very different) might not be relevant to the
routing process towards the end.

Independence uses a decaying function to calculate history costs
during incremental rip-up and reroute. Specifically, we use a
mathematical formulation that decreases the relevance of history
information from earlier parts of the placement process.

Currently, we update history costs once every temperature
iteration based on the assumption that the number of signals
ripped up and rerouted during a temperature iteration is roughly
equivalent to the number of signals routed during a single or
small number of Pathfinder iterations. The history cost of a
routing node during a temperature iteration ‘i+1’ is presented in
equation 6.

if (shared)
 historyCosti+1 = α * historyCosti + β
else
 historyCosti+1 = α * historyCosti �	��
�
In equation 6, i is a positive integer, and α and β are tuning
parameters. Currently, α = 0.9 and β = 0.5. Thus, the history
cost of a shared routing node during a new iteration is
determined by 90% of the history cost during earlier iterations
plus a small constant. As an example, the history cost of a node
that is shared during the first five iterations progressively goes
from 0 to 0.5, to 0.95, to 1.36, and to 1.72. In case a routing
node is not shared during a temperature iteration, its history cost
is allowed to decay as per equation 6.

6. Validation Strategy and Results
The objective of our validation strategy is to demonstrate
Independence’s adaptability to different architectures while
maintaining the quality of a well-tuned architecture specific
placement tool. Our experiments target two FPGA architectural
styles; island-style FPGAs, and FPGAs that have hierarchical,
tree-based interconnect structures (specifically HSRA [9] in this
paper). The main reasons for selecting island-style FPGAs and
HSRA as target architectures are:

• HSRA and island-style FPGAs have fundamentally
different interconnect structures. Targeting Independence to
FPGAs with different interconnect structures will assess its
adaptability.

• The existence of extensively researched, public-domain
place-and-route tools for both island-style FPGAs (VPR) as
well as HSRA (ppw + arvc). This allows us to directly
compare the quality of the placements produced by
Independence with those produced by architecture specific
placement techniques.

6.1 Island-style FPGAs
Our first experiment (Experiment 1) compares the placements
produced by Independence with VPR when targeted to a
clustered, island-style architecture. Each logic block cluster in
this architecture has eighteen inputs, eight outputs, and eight 4-
LUT/FF pairs per cluster. The interconnect structure consists of
staggered length four track segments and disjoint switchboxes.
The input pin connectivity of a logic block cluster is 0.4*W
(where W is the channel width) and output pin connectivity is
0.125*W. The island-style architecture described here is similar
to the optimal architecture reported in [16].

Table 1 lists minimum track counts obtained on routing
placements produced by VPR and Independence. Column 1 lists
the netlists used in this experiment, column 2 lists the total
number of logic clusters plus IO blocks in the netlist, column 3
lists the total number of nets in the netlist, column 4 lists the
minimum track counts required to route the placements

� 8

produced by VPR, and column 5 reports the minimum track
counts needed to route1 placements produced by Independence.
Note that each netlist is placed on the minimum size square array
required to just fit the logic and/or IO blocks in a netlist.

Table 1: A comparison of the placements produced by VPR

and Independence.
Netlist NBlocks Nets VPR Ind
s1423 51 165 17 17
vda 122 337 33 35
rot 299 407 27 29

alu4 215 792 39 42
misex3 207 834 45 47
ex5p 210 767 60 58
tseng 307 780 34 36
apex4 193 869 60 61

seq 297 1055 49 54
diffeq 292 1033 33 36
dsip 598 762 31 30
des 701 1178 38 42

SUM 466 487

The final row in Table 1 lists the sum of the minimum track
counts (which is our quality metric for all experiments presented
in this paper) required by VPR and Independence across the
benchmark set. These results show that the quality of the
placements produced by Independence is within 5% of those
produced by VPR. We consider this a satisfactory result, since it
demonstrates that Independence can target island-style FPGAs
and produce placements that are within 5% of an extensively
tuned, state-of-the-art placement algorithm.

Our second experiment (Experiment 2) studies Independence’s
adaptability to routing-poor FPGA architectures. The philosophy
behind routing-poor architectures [6,9] is increased silicon
utilization through efficient use of the interconnect structure
(which often accounts for ~90% of the total area in current
FPGA families). Routing-poor architectures attempt to increase
interconnect utilization at the expense of logic utilization. This is
in direct contrast to VPR’s exploratory style that fixes logic
utilization, and then increases interconnect richness until a
netlist’s placement is successfully routed.

Fig. 4 shows a placement produced by VPR for the netlist alu2
on a target architecture2 that has four times as many logic blocks
as a minimum size square array required to fit the netlist. VPR’s
router needed five tracks to route this placement. Our first
observation is the tightly packed nature of the placement in Fig.
4, and our second observation is that the placement produced by
VPR does not change with the actual number of tracks in the
target architecture. As a result, VPR is unable to produce
routable placements for alu2 on target architectures that have
less than five tracks. VPR’s limited adaptability to routing-poor

���
�

The placements produced by VPR and Independence are both routed
using VPR’s implementation of the Pathfinder algorithm.
�

Each logic block has a single LUT/FF pair, and the interconnect
structure contains only length-one wire segments. This is the VPR
“challenge” architecture [3].

architectures is a direct consequence of VPR’s semi-perimeter
based cost formulation that has no knowledge of the number of
routing resources in the target FPGA.

Unlike VPR, Independence’s integrated approach that tightly
couples the placement algorithm with an architecture adaptive
router is in fact able to produce routable placements on routing-
poor island-style architectures. Fig. 5 shows successfully routed
placements produced by Independence on 34x34 arrays that
have five, four and three tracks respectively.

�
Fig. 4: Placement produced by VPR for alu2 on a 34x34
array. VPR needed 5 tracks to route this placement.
�

�

�

�

�

�

�

�

� 9

Fig. 5: Placements produced by Independence for alu2 on a
34x34 array that has 5, 4 and 3 tracks respectively.

Table 2 shows the extent to which Independence is able to adapt
to routing-poor island-style FPGAs. The parameters of the target
architecture are identical to those used in Experiment 1. The
only exception is the logic capacity, which is four times that of a
minimum size square array. Column 1 lists the netlists used in
the experiment, and column 2 lists the minimum track counts
needed by VPR to route each netlist. Let the minimum track
count needed by VPR to route a netlist be WVPR. Columns 3
through 8 list the number of tracks in a target architecture that
has 1.0*WVPR, 0.9*WVPR, 0.8*WVPR, 0.7*WVPR, 0.6*WVPR, and
0.5*WVPR tracks respectively. In Columns 3 – 8, an unshaded
table entry means that Independence produced a routable
placement on that architecture, while a shaded entry means that
Independence was unable to produce a routable placement. So,
for example, the unshaded table entry 37 for the netlist ex5p
means Independence produced a routable placement for ex5p on
a 37-track (0.7*52) architecture. Similarly, the shaded entry 32
for ex5p means that Independence failed to produce a routable
placement for ex5p on a 32-track (0.6*52) architecture.

Table 2: Quantifying the extent to which Independence
adapts to routing-poor island-style architectures.

Netlist WVPR
1*

WVPR
0.9*

WVPR
0.8*

WVPR
0.7*

WVPR
0.6*

WVPR
0.5*

WVPR
s1423 17 17 16 14 12 11 9
vda 33 33 30 27 24 20 17
rot 30 30 27 24 21 18 15

alu4 37 37 34 30 26 23 19
misex3 43 43 39 35 31 26 22
ex5p 52 52 47 42 37 32 26
tseng 33 33 30 27 24 20 17
apex4 52 52 47 42 37 32 26
diffeq 31 31 28 25 22 19 16
dsip 34 34 31 28 24 21 17

6.2 HSRA
Our final experiment (Experiment 3) targets HSRA [9], which
has a hierarchical, tree-based interconnect structure (Fig. 6). The
richness of HSRA’s interconnect structure is defined by its base
channel width and interconnect growth rate. The base channel
width ‘c’ is the number of tracks at the leaves of the interconnect
tree (in Fig. 6, c=3). The growth rate ‘p’ is the rate at which the
interconnect grows towards the root (in Fig. 6, p=0.5). The
growth rate is realized using the following types of switch-
blocks:

• Non-compressing (2:1) switch blocks - The number of root-
going tracks is equal to the sum of the number of root-
going tracks of the two children.

• Compressing (1:1) switch blocks – The number of root-
going tracks is equal to the number of root-going tracks of
either child.

A repeating combination of non-compressing and compressing
switch blocks can be used to realize any value of p less than one.
So, a repeating pattern of (2:1 � 1:1) switch blocks realizes
p=0.5, while the pattern (2:1 � 2:1 � 1:1) realizes p=0.67.

� 10

�

Fig. 6 [9]: An illustration of HSRA’s interconnect structure.
The leaves of the interconnect tree represent logic blocks, the
crosses represent connection points, the hexagon-shaped
boxes represent non-compressing switches, and the
diamond-shaped boxes represent compressing switches. The
base channel width of this architecture is three (c=3), and
the interconnect growth rate is 0.5 (p=0.5).

In HSRA, each logic block has a single LUT/FF pair. The input-
pin connectivity is based on a c-choose-k strategy [9], and the
output pins are fully connected (Fig. 7). The base channel width
of the target architecture is eight, and the interconnect growth-
rate is 0.5. The base channel width and interconnect growth rate
were both selected so that the placements produced by HSRA’s
CAD tool were noticeably depopulated (a medium-stress
placement problem). A detailed explanation of HSRA’s main
architectural parameters and placement algorithm can be found
in [9].

k = 3

c = 5

3-LUTk = 3

c = 5

3-LUT

Fig. 7 [9]: Example of c-choose-k LUT input connectivity
(c=5, k=3). The output is fully connected.

Table 3 compares the minimum base channel widths required to
route3 placements produced by HSRA’s placement tool and
Independence. Column 1 lists the netlists used in this
experiment, column 2 lists the number of LUTs in each netlist,
column 3 lists the minimum base channel widths required to
route placements produced by HSRA’s CAD tool, and column 4
lists the minimum base channel widths required to route
placements produced by Independence. To ensure a fair
comparison, Independence was targeted to architectures with the
same horizontal span (lsize as defined in [9]) and interconnect
levels as required by HSRA’s CAD tool. Overall, Independence
was able to produce placements that required 17% fewer tracks
compared to HSRA’s placement tool.

Table 3: Independence compared to HSRA's placement tool.

Netlist NLUTs HSRA Ind
mm9b 120 10 9

cse 134 11 9
s1423 162 10 9
9sym 177 11 8
ttt2 198 10 8
keyb 209 12 9
clip 243 11 9

term1 246 11 10
apex6 258 10 9
vg2 277 11 9
frg1 282 12 10
sbc 332 11 10
styr 341 12 9
i9 347 11 10

C3540 382 11 9
sand 406 12 10
x3 441 11 10

planet 410 12 9
rd84 405 12 9
dalu 502 12 9

 SUM 223 184

7. Runtime Considerations
Currently, the runtime penalty incurred by Independence’s
simultaneous place-and-route technique is significant. Since a
small number of routing searches (Section 5.1, incremental rip-
up and reroute) are launched during every attempted placement
move, Independence’s runtime is directly impacted by the size
of the routing graph and the size of the netlist. In contrast, the
runtime of an architecture-specific placement algorithm like
VPR depends only on the size of the netlist, and is not affected
by the size of the target architecture.

Independence’s current incarnation may require multiple
runtime enhancements before it can be considered a production
version. Examples of enhancements include:

���
�

The placements produced by HSRA’s CAD tool and Independence
were both routed using HSRA’s router (arvc).
�

� 11

• A* search: In an A* search, the search space of a breadth-
first routing algorithm is pruned by preferentially
expanding the search wavefront in the direction of the
target node. In [21], a variant of A* search was used to
speedup VPR’s router by up to 50X with negligible quality
degradation. We expect an A* version of Pathfinder to
improve Independence’s runtime by 5 – 10X.

• Statistical techniques: This approach will involve using
Independence to initially produce placements for a
representative set of netlists. The placements will then be
routed, and post-routing congestion information will be
stored in lookup tables. Specifically, after each successful
full placement and routing run, we will save the history
information from the final Pathfinder run. This information
captures the history penalties required to achieve a
successful routing of that circuit on the target architecture.
We will then use an all-pairs shortest path algorithm to
determine the wire and congestion (measured by history)
costs of the route between each pair of logic blocks in the
architecture. The resulting congestion and wire costs will
be stored in a lookup table that can then be plugged into
VPR as a routing estimator for future placement runs.

In addition to using A* and statistical techniques, the user can
manually control Independence’s runtime by varying the
number of moves attempted during a temperature iteration.

8. Conclusions and Future Work
The results of the experiments presented in Section 6
demonstrate Independence’s adaptability to two significantly
different interconnect styles. Further, our experiment with
routing-poor island-style FPGAs showed that Independence is
sensitive to the richness of interconnect structures. When
considered together, the results presented in Section 6 are a clear
validation of using an architecture-adaptive router to guide
FPGA placement. We believe that a production version of
Independence (i.e. a well-engineered version that has been
enhanced to reduce runtime) would be of considerable use in the
following scenarios:

• Architecture Exploration: Independence’s adaptability
makes it a naturally attractive candidate for exploring
FPGA interconnect structures. Independence’s Pathfinder-
based approach is particularly useful for this task because
its history cost formulation naturally identifies congestion
bottlenecks in the interconnect structure.

• Evaluation of CAD Tools: In many cases, CAD tool
developers spend considerable time trying to evaluate the
“goodness” of an architecture-specific placement tool. The
central concern in this process is finding an alternative
comparison point without resorting to impractical
exponential search strategies that attempt to find an optimal
solution. The quality of the placements obtained on
targeting Independence to the architecture would serve as a
good quality goal during the tool development process.

In the near future, our main focus will be reducing
Independence’s runtime. We plan to actively investigate both
algorithmic and statistical approaches to reduce Independence’s
runtime. A second direction for future work is the development
of a timing-driven version of the Independence algorithm.
Finally, we also plan to investigate Independence’s ability to

adapt to target architectures that have non-uniform and
directional interconnect structures.

Acknowledgments
We would like to thank Andre’ DeHon at Caltech for providing
the HSRA toolflow and helping us understand various aspects of
the architecture. Thanks are also due to Larry McMurchie for his
helpful comments and feedback during the development of the
Independence algorithm. This work was supported by grants
from the NSF. Scott Hauck was supported in part by an NSF
Career Award and an Alfred P Sloan Fellowship.

References
[1] M. Alexander, J. Cohoon, J. Ganley, G. Robins, “

Performance-Oriented Placement and Routing for Field-
Programmable Gate Arrays”, European Design Automation
Conference, pp. 80 – 85, 1995.

[2] J. Beetem, “Simultaneous Placement and Routing of the
LABYRINTH Reconfigurable Logic Array”, In Will
Moore and Wayne Luk, editors, FPGAs, pp. 232-243,
1991.

[3] V. Betz, The FPGA Place-and-Route Challenge, at
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.
html.

[4] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research”, 7th International
Workshop on Field-Programmable Logic and Applications,
pp 213-222, 1997.

[5] V. Betz, J. Rose and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
Boston, MA:1999.

[6] G. Boriello, C. Ebeling, S Hauck, S. Burns, “The Triptych
FPGA Architecture”, IEEE Transactions on VLS Systems,
Vol. 3, No. 4, pp. 473 – 482, 1995.

[7] Y.W. Chang and Y.T. Chang, “An Architecture-Driven
Metric for Simultaneous Placement and Global Routing for
FPGAs”, ACM/IEEE Design Automation Conference, pp.
567-572, 2000.

[8] T. Cormen, C. Leiserson, R. Rivest, Introduction to
Algorithms, MIT Press, Cambridge, MA:1990.

[9] A. DeHon, “Balancing Interconnect and Computation in a
Reconfigurable Computing Array (or, why you don’t really
want 100% LUT utilization),” ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 1999.

[10] C. Fiduccia, R. Mattheyses, "A Linear-Time Heuristic for
Improved Network Partitions", ACM/IEEE Design
Automation Conference, pp. 241-247, 1982.

[11] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
R. Taylor, “PipeRench: A Reconfigurable Architecture and
Compiler”, IEEE Computer, pp. 70 – 76, 2000.

[12] S. Hauck, T. Fry, M. Hosler, J. Kao, “The Chimaera
Reconfigurable Functional Unit”, IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 87
– 96, 1997.

[13] N. Kafafi, K. Bozman, S Wilton, “Archhitectures and
Algorithms for Synthesizable Embedded Programmable
Logic Cores”, ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 3 – 11, 2003.

[14] G. Karypis, Vipin Kumar, “Multi-level k-way Hypergraph
Partitioning”, ACM/IEEE Design Automation Conference,
pp. 343 – 348, 1999.

� 12

[15] S. Kirkpatrick, C. Gelatt Jr., M. Vecchi, “Optimization by
Simulated Annealing”, Science, 220, pp. 671-680, 1983.

[16] A. Marquardt, V. Betz and J. Rose, “Speed and Area
Tradeoffs in Cluster-Based FPGA Architectures”, IEEE
Transactions on VLSI Systems, Vol. 8, No. 1, pp. 84 – 93,
2000.

[17] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-
Based Performance-Driven Router for FPGAs”,
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp 111-117, 1995.

[18] C. Mulpuri, S. Hauck, “Runtime and Quality Tradeoffs in
FPGA Placement and Routing”, ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp. 29 –
36, 2001.

[19] S. Nag and R. Rutenbar, “ Performance-Driven
Simultaneous Placement and Routing for FPGAs”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits, Vol. 17, No. 6, pp. 499 – 518, 1998.

[20] C. Sechen, VLSI Placement and Global Routing Using
Simulated Annealing, Kluwer Academic Publishers,
Boston, MA: 1988.

[21] J. Swartz, V. Betz, J. Rose, “A Fast Routability-Driven
Router for FPGAs”, ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 140 – 149, 1998.

[22] N. Togawa, M. Yanigasawa, T. Ohtsuki, “Maple-opt: A
Performance-Oriented Simultaneous Technology Mapping,
Placement, and Global Routing Algorithm for FPGAs”,
IEEE Transactions on Computer-Aided Design of
Integrated Circuits, Vol. 17, No. 9, pp. 803 – 818, 1998.

[23] P. Wang and K. Chen, “A Simultaneous Placement and
Global Routing Algorithm for an FPGA with Hierarchical
Interconnection Structure”, International Symposium on
Circuits and Systems, pp. 659 – 662, 1996.

[24] T. Wong, “Non-Rectangular Embedded Programmable
Logic Cores”, M.A.Sc. Thesis, University of British
Columbia, May 2002.�

