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Abstract 
Current FPGA placement algorithms estimate the routability of a 
placement using architecture-specific metrics. The shortcoming 
of using architecture-specific routability estimates is limited 
adaptability. A placement algorithm that is targeted to a class of 
architecturally similar FPGAs may not be easily adapted to other 
architectures. The subject of this paper is the development of a 
routability-driven architecture adaptive FPGA placement 
algorithm called Independence. The core of the Independence 
algorithm is a simultaneous place-and-route approach that 
tightly couples a simulated annealing placement algorithm with 
an architecture adaptive FPGA router (Pathfinder). The results 
of our experiments demonstrate Independence’s adaptability to 
island-style and hierarchical FPGA architectures. The quality of 
the placements produced by Independence is within 5% of the 
quality of VPR’s placements and 17% better than the 
placements produced by HSRA’s place-and-route tool. Further, 
our results show that Independence produces clearly superior 
placements on routing-poor island-style FPGA architectures. 
 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – gate 
arrays. 

B.7.2 [Integrated Circuits]: Design Aids – placement and 
routing.  

General Terms 
Algorithms. 

Keywords 
placement, routing, FPGA, Independence, adaptive. 

 
1. Introduction 
FPGAs have become an increasingly visible computational 
substrate in the past decade. The reprogrammable nature of 
FPGAs, coupled with low NRE costs and fast time-to-market, 
makes them an attractive choice for a variety of applications. 
While flexibility and affordability are the mainstays of FPGA-
based systems, the performance levels that can be extracted from 
FPGAs clearly lag application specific implementations. In 
order to bridge performance gaps between FPGAs and custom 
logic, FPGA architectures are widely researched in academic 
and industrial settings. 
 
The most important architectural feature of an FPGA is arguably 
the interconnect structure. Since any FPGA has a finite number 
of discrete routing resources, a large share of the architectural 
research effort is devoted to determining the composition of an 
FPGA’s interconnect structure. During architecture 
development, the effectiveness of an FPGA’s interconnect 

structure is evaluated using placement and routing tools 
(collectively termed place-and-route tool). The place-and route 
tool is responsible for producing a physical implementation of 
an application netlist on the FPGA’s prefabricated hardware. 
More specifically, the placement tool determines the actual 
physical location of each netlist logic block in the FPGA layout, 
and the routing tool assigns the signals that connect the placed 
logic blocks to routing resources in the FPGA’s interconnect 
structure. Due to the finite nature of an FPGA’s interconnect 
structure, the success of the routing tool is heavily reliant on the 
quality of the solutions produced by the placement tool. Not 
surprisingly, the primary objective of the placement tool is to 
produce a placement that can indeed be routed by the routing 
tool. 
 
The effectiveness of a placement tool as an evaluation 
mechanism relies on the ability of the placement algorithm to 
capture the interconnect structure of the FPGA architecture. 
During the placement process, the placement algorithm must be 
able to accurately estimate the routability of a placement on the 
target architecture’s interconnect structure. Currently, the modus 
operandi used in the development of placement algorithms is to 
use architecture-specific metrics to heuristically estimate the 
routability of a placement. For example, the routability of a 
placement on island-style FPGAs is estimated using the ever-
popular Manhattan Distance wirelength metric, while the 
routability of a placement on tree-based architectures is 
estimated using cutsize metrics. 
 
In our opinion, there are two fundamental concerns with 
architecture-specific placement formulations: 

• Adaptability – Architecture-specific routability estimates 
limit the adaptability of a placement algorithm. To the best 
of our knowledge, there is no single routability estimate 
that can effectively capture the interconnect structure of 
every FPGA in the architecture spectrum. This is an 
impediment to FPGA architecture research, since much 
time is spent in selecting and tuning architecture-specific 
routability estimates. In contrast, the abstractions and 
heuristics used in the state-of-the-art FPGA routing 
algorithm (Pathfinder [17]) are in fact adaptive. Retargeting 
Pathfinder to architecturally unique FPGAs is often as 
simple as expressing an FPGA’s interconnect structure as a 
directed graph. 

• Accuracy – Using heuristic estimates of routabillity 
(wirelength, cutsize etc.) during the placement process 
often leads to troubling questions like How accurate are 
the routability estimates? or Are the estimates truly 
reflective of the realities of the interconnect structure?. 
These questions are generally answered in the routing 
phase, and the feedback mechanism between routing and 
placement is a time-consuming, iterative parameter-tuning-
and-refinement phase. 
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In view of these concerns, we feel that research in FPGA 
architectures would stand to benefit from a placement algorithm 
that can quickly be retargeted to relatively diverse FPGA 
architectures, while producing high quality results at the same 
time. The subject of this paper is the development of an 
architecture adaptive routability-driven FPGA placement 
algorithm called Independence. Since the objective of an FPGA 
placement algorithm is to produce a routable placement, we 
tightly couple the placement algorithm with an FPGA router. 
Specifically, we use an architecture adaptive routing algorithm 
in the inner loop of a simulated annealing placement algorithm 
to actually route signals. Thus, instead of using architecture-
specific routability estimates, we use the routing produced by an 
architecture adaptive router to independently guide the 
placement algorithm to a high-quality solution.  
 
The remainder of this paper is organized as follows. In Section 
2, we briefly describe current, state-of-the-art FPGA placement 
(VPR) and routing (Pathfinder) algorithms. Section 3 examines 
VPR’s routability-driven placement cost function, and uses 
architectural examples to demonstrate limitations of VPR’s cost 
formulation. In Section 4 we survey previous work in integrated 
FPGA placement and routing. Section 5 describes 
Independence’s placement heuristic, and important aspects of 
integrating Pathfinder with Independence. We present our 
validation strategy and experimental results in Sections 6. 
Section 7 briefly explains techniques that can be used to speedup 
Independence, and Section 8 concludes this paper and discusses 
future directions. 
 
2. FPGA Place-and-Route 
This section describes the FPGA placement and routing 
problems, and state-of-the-art algorithms that are used to place 
and route netlists on FPGA architectures. 
 
2.1 FPGA Placement 
The FPGA placement problem is to determine the physical 
assignment of the logic blocks in a netlist to locations in the 
FPGA layout. The primary goal of any FPGA placement 
approach is to produce a placement that can successfully be 
routed using the limited routing resources provided by the 
FPGA. VPR [4,5] is the current, public-domain state-of-the-art 
FPGA placement tool. VPR consistently produces high-quality 
placements, and at the time of this writing, the best reported 
placements for the Toronto20 [5] benchmark netlists are those 
produced by VPR. 
 
VPR uses a simulated annealing algorithm [15] that attempts to 
minimize an objective cost function. The algorithm operates by 
taking a random initial placement of the logic blocks in a netlist, 
and repeatedly moving the location of a randomly selected logic 
block. A move is accepted if it improves the overall cost of the 
placement. In order to avoid getting trapped in local minima, 
non-improving moves are also sometimes accepted. The 
temperature of the annealing algorithm governs the probability 
of accepting a “bad” move. The temperature is initially high, 
causing a large number of bad moves to be accepted, and is 
gradually decreased until no bad moves are accepted. A large 
number of moves are attempted at each temperature. VPR 
provides an adaptive cooling schedule that is used to determine 
the starting temperature, number of moves attempted at each 
temperature, the maximum separation between moved logic 

blocks, and the rate of temperature decay during the annealing 
process.   
 
VPR’s objective cost function is a function of the total 
wirelength of the current placement. The wirelength is an 
estimate of the routing resources needed to completely route all 
nets in the netlist. Reductions in wirelength mean fewer routing 
wires and switches are required to route nets. This is an 
important consideration because the number of routing resources 
in an FPGA is limited. Fewer routing wires and switches 
typically also translate to reductions in the delay incurred in 
routing nets between logic blocks. The total wirelength of a 
placement is estimated using a semi-perimeter metric, and is 
given by equation 1. N is the total number of nets in the netlist, 
bbx(i) is the horizontal span of net ‘i’, bby(i) is its vertical span, 
and q(i) is a correction factor. 
 

�
=

+=
N

i

yx ibbibbiqWireCost
1

))()((*)( �� ����

 
Fig. 1 illustrates the calculation of the horizontal and vertical 
spans of a hypothetical net that has ten terminals. 
 
 

bbx

bby

 
Fig. 1: The horizontal and vertical spans of a hypothetical 
10-terminal net [5]. 
�

2.2 FPGA Routing 
The FPGA routing problem is to assign the nets that connect 
placed logic blocks to routing resources in the FPGA’s 
interconnect structure. Pathfinder [17] is the most widely used 
FPGA routing algorithm. Pathfinder operates on a directed 
graph abstraction (G(V,E)) of the routing resources in an FPGA. 
The set of vertices V in the graph represents the IO terminals of 
logic blocks and the routing wires in the interconnect structure. 
An edge between two vertices represents a potential connection 
between the two vertices. Given this graph abstraction, the 
routing problem for any given net is to find a directed tree 
embedded in G that connects the source terminal of a net with 
all its sink terminals. Since the number of routing resources in 
an FPGA is limited, the goal of finding unique, non-intersecting 
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trees (hereafter called “routes”) for all the nets in a netlist is a 
difficult problem.  
 
Pathfinder uses an iterative, negotiation-based approach to 
successfully route all the nets in a netlist. During the first routing 
iteration, nets are freely routed without paying attention to 
resource sharing. Two terminal nets are routed using Dijkstra’s 
shortest path algorithm [8], and multi-terminal nets are routed 
using an algorithm reminiscent of Prim’s algorithm [8] for 
finding a minimum-spanning tree over an undirected graph. At 
the end of the first iteration, resources are congested because 
multiple nets have used them. During subsequent iterations, the 
cost of using a resource is increased based on the number of nets 
that share the resource, and the history of congestion on that 
resource. Thus, nets are made to negotiate for routing resources. 
If a resource is highly congested, nets that can use lower 
congestion alternatives are forced to do so. On the other hand, if 
the alternatives are more congested than the resource, then a net 
may still use that resource. The cost of using a routing resource 
‘n’ during a routing iteration is given by equation 2. 
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bn is the base cost of using the resource ‘n’, hn is related to the 
history of congestion during previous iterations, and pn is 
proportional to the number of nets sharing the resource in the 
current iteration. The pn term represents the cost of using a 
shared resource ‘n’, and the hn term represents the cost of using 
a resource that has been shared during earlier routing iterations. 
The latter term is based on the intuition that a historically 
congested node should appear expensive, even if it is currently 
lightly shared. 
 
Pathfinder has proved to be one of the most powerful FPGA 
routing algorithms to date. Pathfinder’s negotiation-based 
congestion elimination strategy is an extremely effective 
technique for routing signals on FPGAs. More importantly, 
Pathfinder is a truly architecture adaptive routing algorithm. 
Since the algorithm operates on a directed graph abstraction of 
an FPGA’s routing structure, it can be used to route netlists on 
any FPGA that can be represented as a directed routing graph. 
 
3. VPR Targets Island-style FPGAs 
Due to a strong prevalence of routing rich island-style FPGA 
architectures, VPR’s placement algorithm (Section 2.1) is 
primarily targeted to island-style FPGAs. The semi-perimeter 
based cost function relies on certain defining features of island-
style FPGAs (Fig. 2): 
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Fig. 2: An illustration of an island-style FPGA. The white 
boxes with black borders represent logic blocks. The 
horizontal and vertical intersecting boldface lines represent 
the wiring segments in a segmented interconnect structure. 
The logic blocks connect to surrounding wire segments using 
programmable connection-points (shown as crosses), and 
individual wire segments connect to each other by means of 
programmable routing switches (shown as gray lines). 
 

• Two-dimensional Geometric Layout - An island-style 
FPGA is laid out as a regular two-dimensional grid of logic 
blocks surrounded by a sea of routing wires and switches. 
As a result, VPR’s cost function is based on the assumption 
that the routability of a net is proportional to the Manhattan 
distance (measured by semi-perimeter) between its 
terminals. A net with terminals that are far apart needs 
more routing resources than a net with terminals close to 
each other. A direct result of a semi-perimeter based cost 
function is tightly packed placements, even if the capacity 
of the target FPGA far exceeds the logic requirements of 
the netlist. 

• Uniform Connectivity – Island-style architectures provide 
uniform connectivity. The number and type of routing 
resources available for a net with a given semi-perimeter 
are independent of the actual placement of the terminals of 
the net. Thus, VPR determines the cost of a net based 
purely on its semi-perimeter, and not the actual location of 
the terminals of the net. 

• Directionality – Island-style architectures have no implied 
directionality. The routing structure does not impose 
constraints on the placement of logic blocks. Thus, no 
move made by VPR’s simulated annealing algorithm is 
illegal. As long as a placement is valid (no overlapping 
logic blocks), an island-style architecture guarantees that a 
route exists between any two logic blocks regardless of 
their locations. 
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VPR’s dependence on island style FPGA architectures limits its 
adaptability to architectures that do not provide features of 
island-style FPGAs. For instance, the interconnect structure of 
an FPGA architecture may not conform to the Manhattan 
distance estimate of routability. One example is the hierarchical 
interconnect structure found in tree-based FPGA architectures 
[9]. In tree-based FPGAs, there is no way of estimating the 
number of routing resources between two logic blocks based on 
layout positions. In fact, for an architecture like HSRA, the 
number of routing resources required to connect a logic block in 
one half of the interconnect tree to a logic block in the other half 
does not depend on the actual locations of the logic blocks. A 
strictly semi-perimeter based cost function does not accurately 
capture the routability characteristics of tree-based FPGAs. 
 
Another class of non-island style FPGA architectures provides 
heterogeneous interconnect structures. Triptych [6] is an 
example of an FPGA architecture that provides only segmented 
vertical tracks. There are no segmented horizontal tracks; 
horizontal routes are built using directional, nearest-neighbor 
connections. A second example of an FPGA architecture that 
has non-uniform routing resources can be found in [13]. The 
horizontal channels in this architecture gradually increase in 
width from left to right. For a given semi-perimeter, the amount 
of routing available to a net at the far right edge of this 
architecture exceeds the amount available at the far left edge. 
For both Triptych and the architecture presented in [13], the type 
and amount of routing available to route a net clearly depends 
on the placement of the net’s terminals. VPR’s semi-perimeter 
based cost function is oblivious of the heterogeneity of such 
architectures. 
 
VPR’s cost function also does not recognize directional FPGA 
architectures. The interconnect structure in a directional FPGA 
does not allow the routing of signals in specific directions. The 
architecture presented in [13], PipeRench [11], and Chimaera 
[12] are all instances of FPGA architectures that forbid signals 
from being routed in certain directions. Not all placements on 
directional architectures are legal, and consequently a cost 
function that is unaware of the directionality of the interconnect 
structure is insufficient. 
 
Finally, efforts to incorporate FPGA-like logic in System-on-
Chip designs have motivated non-rectangular FPGA fabrics.  In 
[13], the authors investigate a directional FPGA fabric that 
resembles the shape of a trapezoid. The FPGA fabrics proposed 
in [24] are built by abutting smaller, rectangular fabrics of 
different aspect ratios. In both cases, the semi-perimeter metric 
is an inaccurate estimate of the resources available to route 
signals. 
 
The architectural examples cited in this section clearly show that 
a semi-perimeter placement cost function does not adapt to non-
island style FPGAs. A cost function’s adaptability lies in its 
ability to guide a placement algorithm to a high-quality solution 
across a range of architecturally diverse FPGAs. In this paper 
we present Independence, an architecture adaptive routability-
driven FPGA placement algorithm. Since Independence’s core is 
a simultaneous place-and-route algorithm, we survey previous 
research in simultaneous FPGA place-and-route techniques in 
the next section. 
 

4. Related Work 
Research in simultaneous place-and-route techniques for FPGAs 
can be broadly categorized into three categories: 
 
4.1 Partitioning-based Techniques 
Partitioning-based FPGA placement is used to obtain a global 
routing of the netlist as a direct result of the partitioning process. 
Note that partitioning-based FPGA placement algorithms are not 
truly simultaneous place-and-route algorithms, since no explicit 
routing step is attempted during placement. However, since 
partitioning-based placement naturally produces the global 
routing of a netlist, we briefly survey partitioning-based 
techniques in the hope of identifying an approach that might aid 
in the development of Independence. Further, partitioning-based 
placement is a well-known divide-and-conquer approach to 
solving placement problems.  
 
Iterative k-way partitioning techniques are particularly well 
suited to tree-based FPGA architectures, and have been used to 
place and globally route netlists on HSRA [9] and k-HFPGA 
[23]. During recursive k-way partitioning, logic blocks are 
recursively clustered together into k smaller subtrees while 
reducing cutsize and/or area. At the end of the partitioning 
phase, the leaves of the netlist’s partitioning tree are mapped to 
logic block clusters in the tree-based architecture. Since there is 
a unique global route between any two logic block clusters in a 
tree-based architecture, the global routing for the entire netlist is 
easily found from the placement. 
  
Partitioning-based techniques have also been considered for 
simultaneously placing and routing netlists on island-style 
FPGA architectures. In [22], a recursive bipartitioning technique 
is used to place and globally route netlists on an island-style 
FPGA architecture. At the end of a bi-partitioning stage, if a net 
crosses the cutline, a pseudo-block is generated on the cutline to 
preserve a connection. Each psuedo-block corresponds to a 
track, and a sequence of pseudo-blocks between the terminals of 
a net corresponds to a global route for that net. When the 
bipartioning is complete, each partition consists of a single 
switch-block with pseudo-blocks allocated at the partition edges. 
The global routing for the netlist is directly implied by the 
placed netlist. 
 
A similar approach to integrated place-and-route for island-style 
FPGAs is presented in [1]. The FPGA is divided into m x n 
rectangular regions, and a partitioning heuristic is used to assign 
the logic blocks in a netlist to the regions. The assignment is 
improved using simulated annealing. A greedy congestion 
reduction heuristic is then used to select a rectilinear Steiner tree 
for each net such that cutsize is reduced. Finally, the nets that 
cross each edge of a region are assigned to switch-blocks located 
on the edge. This process is recursively carried out until each 
region consists of a single logic block. 
 
The partitioning-based techniques presented above can be used 
to simultaneously place and globally route netlists on FPGA 
architectures. However, since FPGAs have a finite number of 
discrete routing resources, heuristic estimates of the global 
routing requirements of a netlist during the placement process 
might not be the most accurate measure of the actual routing 
requirements of the netlist. A tighter coupling between 
partitioning-based placement and the interconnect structure of 
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the FPGA might be obtained by finding detailed routes for 
signals during partitioning. However, the actual placement of a 
netlist is only known at the end of the partitioning-phase, and 
hence a complete detailed routing is not possible during the 
partitioning process. 
 
4.2 Constructive / Cluster-Growth Placement 
Constructive, cluster-growth placement is a technique that has 
been used to simultaneously place and route netlists on different 
FPGA architectures. In cluster-growth placement, signals are 
considered one at a time in a sequential manner. The terminals 
of the signal under consideration are placed based on a cost 
function derived from heuristic force-directed estimates [2], or 
global routing estimates [7]. Once a signal’s terminals have been 
placed, it is not possible to change their placement to 
accommodate the demands of later signals. 
 
Combining cluster-growth placement with detailed routing may 
seem like a good choice for architecture-adaptive placement. 
However, the quality of the placements produced by a cluster-
growth approach is sensitive to the order in which signals are 
considered. Since determining an optimal ordering of the signals 
is a difficult task, cluster-growth placement is usually an 
iterative process. The signal ordering at the beginning of each 
pass is either random, or determined heuristically from netlist or 
architectural features. 
 
4.3 Simulated Annealing Placement 
Simulated Annealing based simultaneous place-and-route 
techniques are presented in [19]. Fast global and detailed routing 
heuristics are used in the simulated annealing inner loop to 
estimate the routability of a placement. Separate techniques for 
row-based and island-style FPGAs are presented. A brief 
description of the techniques follows: 
 
Row-based FPGAs (PRACT): The PRACT algorithm is targeted 
to row based FPGAs. The cost of a placement is a weighted, 
linear function of the number of globally unrouted nets, the 
number of nets that lack a complete detailed routing, and the 
critical path delay of the placement. For every move that is 
attempted during the annealing process, the nets that connect the 
moved logic blocks are ripped up and added to a queue of 
unrouted nets. After a move is made, fast heuristics attempt to 
find global and detailed routes for the ripped up nets. The global 
route for a net is found using geometric information specific to 
row-based FPGAs. The detailed route for a net in a channel is 
found using a greedy heuristic that tries to reduce segment 
wastage and the number of segments used. Critical path delays 
are updated using incremental static timing analysis. PRACT 
yielded up to a 29% improvement in delay and 33% 
improvement in channel widths when compared to a place-and-
route flow used at Texas Instruments (circa 1995). 
 
Island style FPGAs (PROXI): The PROXI algorithm uses a cost 
function that is a linear, weighted function of the number of 
unrouted nets, and the critical path delay of the placement. No 
global routing is attempted. The interconnect structure of the 
FPGA is represented as a routing graph similar to the directed 
graph used by Pathfinder. For each placement move, the nets 
connecting the moved logic blocks are ripped up and added to a 
global queue of unrouted nets. Nets are rerouted using a maze 
routing algorithm augmented with a cost-to-target predictor. To 

keep runtime under control, the depth of the maze search is 
modulated as the annealing placement proceeds. The segmented 
nature of the routing resources is addressed by means of an 
explicit weighting scheme that encourages high fanout nets to 
use long segments, and low fanout nets to used shorter 
segments. This weighting scheme relies on the bounding box of 
the net being routed. Critical path delays are incrementally 
updated in a manner similar to PRACT. The placements 
produced by PROXI exhibited 8 – 15% delay improvement 
compared to Xilinx’s XACT5.0 place-and-route flow. 
 
The quality of the placement solutions produced by PRACT and 
PROXI was noticeably superior to commercial, state-of-the-art 
CAD flows at that time (circa 1995). The results were a strong 
validation of a simulated annealing based FPGA placement 
algorithm that is tightly coupled with routing heuristics. 
However, both algorithms have potential shortcomings from 
adaptability as well as CAD perspectives: 

• The cost functions developed for the algorithms do not 
explicitly consider total wirelength or congestion. The only 
metric used to estimate the routability of a placement is the 
total number of unrouted nets. It can easily be seen that the 
total wirelength and congestion of a placement may change 
without affecting the number of unrouted nets. A cost 
function that is insensitive to such changes may allow 
wirelength and/or congestion to increase undesirably. 

• The routing heuristics used by PRACT are tied to row-
based FPGAs, and may be difficult to adapt to FPGA 
architectures that have different interconnect structures. At 
the same time, PROXI uses bounding box estimates to 
dynamically weight nodes of the routing graph when 
routing nets. This dynamic weighting approach is targeted 
at island-style architectures that have segmented routing 
resources. 

• PROXI’s routing algorithm does not allow sharing of 
routing nodes by multiple signals. Disallowing sharing 
prevents PROXI from leveraging the negotiation-based 
congestion resolution heuristics from the Pathfinder 
algorithm. 

 
The approaches and techniques surveyed in this section are 
either targeted to certain architectural styles, or use relatively 
weak estimates of routability during the placement process. No 
clear cost formulation or technique emerges that can be used to 
produce high quality placements across a range of 
architecturally unique FPGAs. 
 
5. Independence  
In this section we present Independence, an architecture 
adaptive routability-driven FPGA placement algorithm. 
Realizing that the overriding goal of a placement algorithm is to 
produce a high-quality, routable solution, we tightly integrate 
FPGA placement and routing. Instead of using architecture 
specific heuristics, we estimate routability during placement by 
actually routing signals using an adaptive routing algorithm 
(Pathfinder). By doing so, we obtain accurate estimates of the 
routing resource usage and total congestion of a placement while 
maintaining the adaptability of the placement algorithm. Fig. 3 
lists pseudo-code for Independence. The remainder of this 
section is a consolidated explanation of the algorithm in Fig. 3. 
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5.1 Placement Heuristic and Cost Formulation 
Since simulated annealing has clearly produced some of the best 
placement results reported for FPGAs [5], we chose to use 
simulated annealing as Independence’s placement heuristic. 
Independence’s cooling schedule is mostly an adoption of 
VPR’s cooling schedule. This is because VPR’s cooling 
schedule is adaptive, and incorporates some of the most 
powerful features from earlier research in cooling schedules. For 
similar reasons, we chose an auto-normalizing formulation for 
Independence’s cost function. The main benefit of using 
normalization variables is that changes in cost of a placement do 
not depend on the actual magnitude of the cost variables. This 
makes the cost function adaptive, since the size of a netlist or the 
target architecture does not skew cost calculations. 
Independence’s cost function is described in equation 3. 
 
∆ C  =  ∆ WireCost / prevWireCost   + 
              λ * ∆ CongestionCost / CongestionNorm ����
 
WireCost: The wire cost of a placement (equation 4) is 
calculated by summing the number of routing resources used by 
each signal in the placed netlist. Routing resource usage is 
measured by simply traversing the route-tree of each signal and 
incrementing WireCost. In equation 4, N is the number of 
signals in the netlist, and NumRoutingResourcesi is the number 
of routing resources in the route tree of signal i. The 
normalization variable prevWireCost in equation3 is equated to 
the WireCost of a placement before a placement move is 
attempted. 
 

�
=

=
N

1i

iResourcesNumRoutingWireCost   ��� 

 
CongestionCost: The congestion cost (equation 5) represents the 
extent to which the routing resources are congested in a given 
placement, and is calculated by summing the number of signals 
that overuse each congested resource. The congestion cost of a 
placement is calculated by traversing the routing graph and 
increasing CongestionCost when a shared resource is 
encountered. In equation 5, Occupancyi is the number of signals 
that are currently using routing resource i, Capacityi is the 
capacity of routing resource i, and R is the total number of 
vertices in the routing graph of the target architecture. It could 
be argued that CongestionCost renders WireCost redundant, 
since the objective of an FPGA placement algorithm is to 
produce a routable netlist. However, a cost function that is 
unaware of changes in wire cost will not recognize moves that 
might improve future congestion due to reductions in routing 
resource usage. Also, note that the total congestion cost of the 
placement cannot be used as a normalizing factor, since 
CongestionCost might be zero towards the end of the annealing 
process. In our present implementation, CongestionNorm is 
equated to prevWireCost. 
 

Independence(Netlist, G(V,E)){ 
// Create an initial random placement. 
createRandomPlacement(Netlist, G(V,E)); 

 
N = set of all nets in Netlist; 
 
// Freely route all nets in N; similar to Pathfinder’s first  
// routing iteration. R contains the complete, current 
// routing of the nets in N at any time during placement.   
R = routeNets(N, G(V,E)); 
 
// Calculate the cost of the placement using eq. 3, 4 and 5.   
C = calculateCost(R, G(V,E)); 
 
// Calculate the starting temperature of the anneal. 
T = StartTemperature(Netlist, G(V,E), R); 
 
while(terminatingCondition() == false){ 
while(innerLoopCondition() == false){ 

// Randomly generate the two locations involved  
// in the move. 
(x0,x1) = selectMove(G(V,E)); 
 
// Get the nets connected to the logic blocks 
// mapped to x0 and/or x1. 
Nx = getNets(x0, x1); 
 
// Cache the routes of the nets connected to the  
// logic blocks mapped to x0 and/or x1. 
cacheR = getRoutes(Nx); 
 
// Rip up the nets connected to the logic blocks  
// mapped to x0 and/or x1. 
R = R – cacheR; 
 
// Swap the logic blocks mapped to x0 and/or x1.  
// Update the source/sink terminals of the nets in  
// Nx to reflect the new placement. 
swapBlocks(x0, x1); 
 
// Reroute the nets connected to the logic blocks  
// that are now mapped to x0 and/or x1. 
R = R + routeNets(Nx, G(V,E)); 
 
// Calculate the change in cost due to the move 
newC = calculateCost(R, G(V,E)); 

∆C = newC – C; 
 
if(acceptMove(∆C, T) == true){ 
 C = newC; // Accept the move. 
} 
else{ 
 // Restore the original placement and routing 
 swapBlocks(x0, x1); 
 R = R – getRoutes(Nx) + cacheR; 
} 

} 
  

T = updateTemp(); // Update temperature T. 
// Update history costs using equation 6. 
updateHistoryCosts(R, G(V,E));  
R=Φ;  // Rip up the entire routing 
R=routeNets(N, G(V,R)); // Refresh routing. 

} 
} 
 
Fig. 3: Pseudo-code for the Independence algorithm. G(V,E) 
is the routing graph of the target architecture on which 
Netlist has to be placed. 
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λλλλ: This tuning parameter controls the relative importance of 
changes in wire and congestion costs, and is a number greater 
than one. The magnitude of λ is inversely related to the richness 
of the target architecture’s interconnect structure. 
 
5.1 Integrating Pathfinder 
FPGA routing is a computationally intensive process. 
Admittedly, it is infeasible to reroute all the signals in a netlist 
after each placement move. Our solution is to start out with an 
initially complete routing, and then incrementally reroute signals 
during placement. Specifically, only the signals that connect to 
the logic blocks involved in a move are ripped up and rerouted. 
This is based on the intuition that for any given move, major 
changes in congestion and routing resource usage will be 
primarily due to the rerouting of signals that connect moved 
logic blocks. 
 
Since we only attempt an incremental rip-up and reroute after 
every move, the routes found for signals during the early parts of 
a temperature iteration may not accurately reflect the congestion 
profile of the placement at the end of an iteration. Hence, we 
periodically refresh the netlist’s routing by ripping up and 
rerouting all signals. Currently, the netlist is ripped up and 
rerouted at the end of every temperature iteration. 
 
In light of the fact that the placement of a netlist is constantly 
changing during simulated annealing, it is necessary to examine 
whether Pathfinder’s cost function (equation 2 in Section 2.2) is 
directly applicable to finding routes during incremental rip-up 
and reroute. When routing a signal, Pathfinder uses the number 
of signals currently sharing a routing node (pn in equation 2), 
and the history of congestion on the node (hn in equation 2) to 
calculate the cost of the routing node. Since the netlist is 
completely routed at any given point in the placement process, 
the current sharing of routing nodes can easily be calculated, and 
thus we directly adopt Pathfinder’s pn cost term. 
 
Pathfinder’s history cost term is motivated by the intuition that 
routing nodes that have been historically congested during the 
routing process probably represent a congested area of the 
placed netlist. Thus, if a routing node is shared at the end of a 
routing iteration, its history cost is incremented by a fixed 
amount to make the node more expensive during subsequent 
iterations. Note that the process of updating history costs during 
a Pathfinder run makes history cost a monotonically increasing 
function. A monotonically increasing history cost formulation is 
inappropriate for Independence. An increasing history cost 
would reflect the congestion on a routing node during the entire 
placement process. However, since placements are in constant 
flux during the placement process, the congestion on a routing 
node during the early stages of the annealing process (when 
placements are very different) might not be relevant to the 
routing process towards the end.  
 
Independence uses a decaying function to calculate history costs 
during incremental rip-up and reroute. Specifically, we use a 
mathematical formulation that decreases the relevance of history 
information from earlier parts of the placement process. 

Currently, we update history costs once every temperature 
iteration based on the assumption that the number of signals 
ripped up and rerouted during a temperature iteration is roughly 
equivalent to the number of signals routed during a single or 
small number of Pathfinder iterations. The history cost of a 
routing node during a temperature iteration ‘i+1’ is presented in 
equation 6. 
 
if (shared) 
 historyCosti+1 = α * historyCosti + β 
else 
 historyCosti+1 = α * historyCosti  �	��
�
In equation 6, i is a positive integer, and α and β are tuning 
parameters. Currently, α = 0.9 and β  = 0.5. Thus, the history 
cost of a shared routing node during a new iteration is 
determined by 90% of the history cost during earlier iterations 
plus a small constant. As an example, the history cost of a node 
that is shared during the first five iterations progressively goes 
from 0 to 0.5, to 0.95, to 1.36, and to 1.72. In case a routing 
node is not shared during a temperature iteration, its history cost 
is allowed to decay as per equation 6. 
 
6. Validation Strategy and Results 
The objective of our validation strategy is to demonstrate 
Independence’s adaptability to different architectures while 
maintaining the quality of a well-tuned architecture specific 
placement tool. Our experiments target two FPGA architectural 
styles; island-style FPGAs, and FPGAs that have hierarchical, 
tree-based interconnect structures (specifically HSRA [9] in this 
paper). The main reasons for selecting island-style FPGAs and 
HSRA as target architectures are: 

• HSRA and island-style FPGAs have fundamentally 
different interconnect structures. Targeting Independence to 
FPGAs with different interconnect structures will assess its 
adaptability. 

• The existence of extensively researched, public-domain 
place-and-route tools for both island-style FPGAs (VPR) as 
well as HSRA (ppw + arvc). This allows us to directly 
compare the quality of the placements produced by 
Independence with those produced by architecture specific 
placement techniques. 

 
6.1 Island-style FPGAs 
Our first experiment (Experiment 1) compares the placements 
produced by Independence with VPR when targeted to a 
clustered, island-style architecture. Each logic block cluster in 
this architecture has eighteen inputs, eight outputs, and eight 4-
LUT/FF pairs per cluster. The interconnect structure consists of 
staggered length four track segments and disjoint switchboxes. 
The input pin connectivity of a logic block cluster is 0.4*W 
(where W is the channel width) and output pin connectivity is 
0.125*W. The island-style architecture described here is similar 
to the optimal architecture reported in [16]. 
 
Table 1 lists minimum track counts obtained on routing 
placements produced by VPR and Independence. Column 1 lists 
the netlists used in this experiment, column 2 lists the total 
number of logic clusters plus IO blocks in the netlist, column 3 
lists the total number of nets in the netlist, column 4 lists the 
minimum track counts required to route the placements 
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produced by VPR, and column 5 reports the minimum track 
counts needed to route1 placements produced by Independence. 
Note that each netlist is placed on the minimum size square array 
required to just fit the logic and/or IO blocks in a netlist. 
 
Table 1: A comparison of the placements produced by VPR 

and Independence. 
Netlist NBlocks Nets VPR Ind 
s1423 51 165 17 17 
vda 122 337 33 35 
rot 299 407 27 29 

alu4 215 792 39 42 
misex3 207 834 45 47 
ex5p 210 767 60 58 
tseng 307 780 34 36 
apex4 193 869 60 61 

seq 297 1055 49 54 
diffeq 292 1033 33 36 
dsip 598 762 31 30 
des 701 1178 38 42 

SUM     466 487 
 
The final row in Table 1 lists the sum of the minimum track 
counts (which is our quality metric for all experiments presented 
in this paper) required by VPR and Independence across the 
benchmark set. These results show that the quality of the 
placements produced by Independence is within 5% of those 
produced by VPR. We consider this a satisfactory result, since it 
demonstrates that Independence can target island-style FPGAs 
and produce placements that are within 5% of an extensively 
tuned, state-of-the-art placement algorithm. 
 
Our second experiment (Experiment 2) studies Independence’s 
adaptability to routing-poor FPGA architectures. The philosophy 
behind routing-poor architectures [6,9] is increased silicon 
utilization through efficient use of the interconnect structure 
(which often accounts for  ~90% of the total area in current 
FPGA families). Routing-poor architectures attempt to increase 
interconnect utilization at the expense of logic utilization. This is 
in direct contrast to VPR’s exploratory style that fixes logic 
utilization, and then increases interconnect richness until a 
netlist’s placement is successfully routed.        
 
Fig. 4 shows a placement produced by VPR for the netlist alu2 
on a target architecture2 that has four times as many logic blocks 
as a minimum size square array required to fit the netlist. VPR’s 
router needed five tracks to route this placement. Our first 
observation is the tightly packed nature of the placement in Fig. 
4, and our second observation is that the placement produced by 
VPR does not change with the actual number of tracks in the 
target architecture. As a result, VPR is unable to produce 
routable placements for alu2 on target architectures that have 
less than five tracks. VPR’s limited adaptability to routing-poor 

�����������������������������������������
�

The placements produced by VPR and Independence are both routed 
using VPR’s implementation of the Pathfinder algorithm. 
�

Each logic block has a single LUT/FF pair, and the interconnect 
structure contains only length-one wire segments. This is the VPR 
“challenge” architecture [3]. 

architectures is a direct consequence of VPR’s semi-perimeter 
based cost formulation that has no knowledge of the number of 
routing resources in the target FPGA.  
 
Unlike VPR, Independence’s integrated approach that tightly 
couples the placement algorithm with an architecture adaptive 
router is in fact able to produce routable placements on routing-
poor island-style architectures. Fig. 5 shows successfully routed 
placements produced by Independence on 34x34 arrays that 
have five, four and three tracks respectively. 
 

�
Fig. 4: Placement produced by VPR for alu2 on a 34x34 
array. VPR needed 5 tracks to route this placement. 
�

�

�

�

�

�

�

�
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Fig. 5: Placements produced by Independence for alu2 on a 
34x34 array that has 5, 4 and 3 tracks respectively. 
 

Table 2 shows the extent to which Independence is able to adapt 
to routing-poor island-style FPGAs. The parameters of the target 
architecture are identical to those used in Experiment 1. The 
only exception is the logic capacity, which is four times that of a 
minimum size square array. Column 1 lists the netlists used in 
the experiment, and column 2 lists the minimum track counts 
needed by VPR to route each netlist. Let the minimum track 
count needed by VPR to route a netlist be WVPR. Columns 3 
through 8 list the number of tracks in a target architecture that 
has 1.0*WVPR, 0.9*WVPR, 0.8*WVPR, 0.7*WVPR, 0.6*WVPR, and 
0.5*WVPR tracks respectively. In Columns 3 – 8, an unshaded 
table entry means that Independence produced a routable 
placement on that architecture, while a shaded entry means that 
Independence was unable to produce a routable placement. So, 
for example, the unshaded table entry 37 for the netlist ex5p 
means Independence produced a routable placement for ex5p on 
a 37-track (0.7*52) architecture. Similarly, the shaded entry 32 
for ex5p means that Independence failed to produce a routable 
placement for ex5p on a 32-track (0.6*52) architecture. 
 

Table 2: Quantifying the extent to which Independence 
adapts to routing-poor island-style architectures. 

Netlist WVPR 
1* 

WVPR 
0.9* 

WVPR 
0.8* 

WVPR 
0.7* 

WVPR 
0.6* 

WVPR 
0.5* 

WVPR 
s1423 17 17 16 14 12 11 9 
vda 33 33 30 27 24 20 17 
rot 30 30 27 24 21 18 15 

alu4 37 37 34 30 26 23 19 
misex3 43 43 39 35 31 26 22 
ex5p 52 52 47 42 37 32 26 
tseng 33 33 30 27 24 20 17 
apex4 52 52 47 42 37 32 26 
diffeq 31 31 28 25 22 19 16 
dsip 34 34 31 28 24 21 17 

 
 
6.2 HSRA 
Our final experiment (Experiment 3) targets HSRA [9], which 
has a hierarchical, tree-based interconnect structure (Fig. 6). The 
richness of HSRA’s interconnect structure is defined by its base 
channel width and interconnect growth rate. The base channel 
width ‘c’ is the number of tracks at the leaves of the interconnect 
tree (in Fig. 6, c=3). The growth rate ‘p’ is the rate at which the 
interconnect grows towards the root (in Fig. 6, p=0.5). The 
growth rate is realized using the following types of switch-
blocks: 

• Non-compressing (2:1) switch blocks - The number of root-
going tracks is equal to the sum of the number of root-
going tracks of the two children. 

• Compressing (1:1) switch blocks – The number of root-
going tracks is equal to the number of root-going tracks of 
either child. 

A repeating combination of non-compressing and compressing 
switch blocks can be used to realize any value of p less than one. 
So, a repeating pattern of (2:1 � 1:1) switch blocks realizes 
p=0.5, while the pattern (2:1 � 2:1 � 1:1) realizes p=0.67. 
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Fig. 6 [9]: An illustration of HSRA’s interconnect structure. 
The leaves of the interconnect tree represent logic blocks, the 
crosses represent connection points, the hexagon-shaped 
boxes represent non-compressing switches, and the 
diamond-shaped boxes represent compressing switches. The 
base channel width of this architecture is three (c=3), and 
the interconnect growth rate is 0.5 (p=0.5).  
 
 
In HSRA, each logic block has a single LUT/FF pair. The input-
pin connectivity is based on a c-choose-k strategy [9], and the 
output pins are fully connected (Fig. 7). The base channel width 
of the target architecture is eight, and the interconnect growth-
rate is 0.5. The base channel width and interconnect growth rate 
were both selected so that the placements produced by HSRA’s 
CAD tool were noticeably depopulated (a medium-stress 
placement problem). A detailed explanation of HSRA’s main 
architectural parameters and placement algorithm can be found 
in [9].  
 

k = 3

c = 5

3-LUTk = 3

c = 5

3-LUT

 
 
Fig. 7 [9]: Example of c-choose-k LUT input connectivity 
(c=5, k=3). The output is fully connected. 
 
 

Table 3 compares the minimum base channel widths required to 
route3 placements produced by HSRA’s placement tool and 
Independence. Column 1 lists the netlists used in this 
experiment, column 2 lists the number of LUTs in each netlist, 
column 3 lists the minimum base channel widths required to 
route placements produced by HSRA’s CAD tool, and column 4 
lists the minimum base channel widths required to route 
placements produced by Independence. To ensure a fair 
comparison, Independence was targeted to architectures with the 
same horizontal span (lsize as defined in [9]) and interconnect 
levels as required by HSRA’s CAD tool. Overall, Independence 
was able to produce placements that required 17% fewer tracks 
compared to HSRA’s placement tool. 
 
Table 3: Independence compared to HSRA's placement tool. 

Netlist NLUTs HSRA Ind 
mm9b 120 10 9 

cse 134 11 9 
s1423 162 10 9 
9sym 177 11 8 
ttt2 198 10 8 
keyb 209 12 9 
clip 243 11 9 

term1 246 11 10 
apex6 258 10 9 
vg2 277 11 9 
frg1 282 12 10 
sbc 332 11 10 
styr 341 12 9 
i9 347 11 10 

C3540 382 11 9 
sand 406 12 10 
x3 441 11 10 

planet 410 12 9 
rd84 405 12 9 
dalu 502 12 9 

 SUM   223 184 
 
 
7. Runtime Considerations 
Currently, the runtime penalty incurred by Independence’s 
simultaneous place-and-route technique is significant. Since a 
small number of routing searches (Section 5.1, incremental rip-
up and reroute) are launched during every attempted placement 
move, Independence’s runtime is directly impacted by the size 
of the routing graph and the size of the netlist. In contrast, the 
runtime of an architecture-specific placement algorithm like 
VPR depends only on the size of the netlist, and is not affected 
by the size of the target architecture. 
 
Independence’s current incarnation may require multiple 
runtime enhancements before it can be considered a production 
version. Examples of enhancements include: 

�����������������������������������������
�

The placements produced by HSRA’s CAD tool and Independence 
were both routed using HSRA’s router (arvc). 
�
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• A* search: In an A* search, the search space of a breadth-
first routing algorithm is pruned by preferentially 
expanding the search wavefront in the direction of the 
target node. In [21], a variant of A* search was used to 
speedup VPR’s router by up to 50X with negligible quality 
degradation. We expect an A* version of Pathfinder to 
improve Independence’s runtime by 5 – 10X. 

• Statistical techniques: This approach will involve using 
Independence to initially produce placements for a 
representative set of netlists. The placements will then be 
routed, and post-routing congestion information will be 
stored in lookup tables. Specifically, after each successful 
full placement and routing run, we will save the history 
information from the final Pathfinder run. This information 
captures the history penalties required to achieve a 
successful routing of that circuit on the target architecture.  
We will then use an all-pairs shortest path algorithm to 
determine the wire and congestion (measured by history) 
costs of the route between each pair of logic blocks in the 
architecture. The resulting congestion and wire costs will 
be stored in a lookup table that can then be plugged into 
VPR as a routing estimator for future placement runs. 

 
In addition to using A* and statistical techniques, the user can 
manually control Independence’s runtime by varying the 
number of moves attempted during a temperature iteration.          
 
8. Conclusions and Future Work 
The results of the experiments presented in Section 6 
demonstrate Independence’s adaptability to two significantly 
different interconnect styles. Further, our experiment with 
routing-poor island-style FPGAs showed that Independence is 
sensitive to the richness of interconnect structures. When 
considered together, the results presented in Section 6 are a clear 
validation of using an architecture-adaptive router to guide 
FPGA placement. We believe that a production version of 
Independence (i.e. a well-engineered version that has been 
enhanced to reduce runtime) would be of considerable use in the 
following scenarios: 

• Architecture Exploration: Independence’s adaptability 
makes it a naturally attractive candidate for exploring 
FPGA interconnect structures. Independence’s Pathfinder-
based approach is particularly useful for this task because 
its history cost formulation naturally identifies congestion 
bottlenecks in the interconnect structure.   

• Evaluation of CAD Tools: In many cases, CAD tool 
developers spend considerable time trying to evaluate the 
“goodness” of an architecture-specific placement tool. The 
central concern in this process is finding an alternative 
comparison point without resorting to impractical 
exponential search strategies that attempt to find an optimal 
solution. The quality of the placements obtained on 
targeting Independence to the architecture would serve as a 
good quality goal during the tool development process. 

 
In the near future, our main focus will be reducing 
Independence’s runtime. We plan to actively investigate both 
algorithmic and statistical approaches to reduce Independence’s 
runtime. A second direction for future work is the development 
of a timing-driven version of the Independence algorithm. 
Finally, we also plan to investigate Independence’s ability to 

adapt to target architectures that have non-uniform and 
directional interconnect structures. 
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