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Abstract

We present an algorithm for lossy compression of hyperspectral images for imple-
mentation on field programmable gate arrays (FPGA). To greatly reduce the bit rate
required to code images, we use linear prediction between the bands to exploit the
large amount of inter-band correlation. The prediction residual is compressed using
the Set Partitioning in Hierarchical Trees algorithm. To reduce the complexity of the
predictive encoder, we propose a bit plane-synchronized closed loop predictor that does
not require full decompression of a previous band at the encoder. The new technique
achieves similar compression ratios to that of standard closed loop predictive coding
and has a simpler on-board implementation.

1 Introduction

Every day, NASA collects and stores large amounts of hyperspectral data. For example, one
Moderate Resolution Imaging Spectroradiometer (MODIS) alone can produce hyperspectral
data that require up to 225 Gbytes of storage per day. The Terra spacecraft produces 194
Gbytes of data per day [1]. The hyperspectral images are transmitted to the ground station,
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stored, and used to identify occurrences of fire, water, and snow on the Earth.

The huge amount of data generated by satellites presents a compression challenge. In
this research, we code the hyperspectral data with the Set Partitioning in Hierarchical Trees
(SPIHT) algorithm [2], which is a wavelet-based technique that codes images with both high
compression ratios and high fidelity. SPIHT was originally designed as a sequential algo-
rithm; however, with some modifications, it can be parallelized for implementation on field
programmable gate arrays (FPGAs) [3] and therefore has great potential for applications
where the compression is performed in hardware on the satellite.

To reduce the bit rate required to code hyperspectral images, we use linear prediction
between the bands. Each band, except the first one, is predicted by previously transmitted
band. Once the prediction is formed, it is subtracted from the original band, and the residual
(difference image) is compressed using SPIHT. Because different bands are used for different
purposes, we compress all bands to the same fidelity.

To compute the exact difference between a band and its prediction, the encoder must
have access to the decoded version of the band used for prediction; however, such a closed
loop system requires a full implementation of the decoder on the satellite, which increases
the complexity of on-board applications. In this article we present a new prediction tech-
nique, bit plane-synchronized closed loop prediction, that significantly reduces the complexity
of the encoder [4]. Instead of requiring the encoder to fully reconstruct the compressed band
from which the current band is predicted, the encoder and the decoder simply use the same
integral number of full bit planes of the wavelet-coded difference image of the band used for
prediction. This enables the encoder to be less complex because, while it must still do an
inverse wavelet transform, full decompression on-board the satellite is avoided. The proposed
prediction method is very promising in that for the same target fidelity, the average bit rate
is only slightly higher than for traditional predictive coding.

The paper is organized as follows. In Section 2, we review related background material. In
Section 3, we describe algorithms for predictive coding of hyperspectral images. In Section 4,
we introduce our new reduced complexity encoder. We present results of our algorithm on
hyperspectral images in Section 5, and conclude in Section 6.

2 Background

In this section, we present related work. We first review satellite images, the SPIHT algo-
rithm, and predictive coding. Then, we discuss prior work in hyperspectral image compres-
sion and finish with a discussion on FPGAs.

2.1 Satellite Images

NASA has launched numerous Earth-imaging satellites in the past decade, which take pic-
tures of the Earth to help understand our planet’s topography, weather, and environment.
Many of these instruments take multiple pictures of the same location, but at different wave-
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lengths, to provide a greater range of observations. Such images can involve tens (“multi-
spectral”) or hundreds (“hyperspectral”) of individual spectral bands. As such, a hyper-
spectral image can be viewed as a 3D data cube, with the X and Y dimensions representing
different coordinates on the Earth’s surface, while the third dimension is the band, repre-
senting the frequency being imaged. The actual data values are the intensity of the light at
that wavelength from that location on the Earth. For example, a MODIS image might be
2030x1354 spatially, with 36 spectral bands holding 16-bit unsigned pixel values. An AVIRIS
image might be 512x512 spatially, with 224 spectral bands, and a 16-bit pixel value.

2.2 Set Partitioning in Hierarchical Trees

SPIHT is a progressive image coder, which first approximates an image with a few bits of
data, and then improves the quality of approximation as more information is encoded. As
shown in Figure 1, the encoder first performs a wavelet transform on the image pixels. Then,
the wavelet coefficients are encoded one bit plane at a time. The embedded bit stream, in
which the later bits refine the earlier bits, can be truncated at any time (see Figure 2). Bit
plane encoding and decoding take significantly more time than the wavelet transform.
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transformed image
(coefficients) bit plane

coding
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coefficients)
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bit
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distorted
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Figure 1: Block diagram of SPIHT.
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Figure 2: Bit plane coding.
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2.3 Predictive Coding

Predictive coding has been a popular data compression technique for years. Prediction ex-
ploits the correlation in spatial or temporal dimensions, or context, to improve compression
performance over independent coding. It is used in both lossy and lossless coding. For exam-
ple, differential pulse code modulation (DPCM) [5] uses prediction to improve performance
over standard PCM. The MPEG video coding standard [6] uses temporal prediction to sig-
nificantly improve compression ratios over independent coding of video frames. Predictive
vector quantization (VQ) [7, 8, 9, 10] exploits spatial correlation over a larger region of an
input image or speech signal to give improvements over memoryless VQ [11, 9]. Usually in
predictive VQ, the design of the predictor is open-loop for simplicity (the predictor is opti-
mized using unquantized samples and then fixed), although it is expected that a somewhat
higher PSNR would be obtained by using a closed-loop design (the predictor and quantizer
are jointly optimized) [8].

2.4 Previous Work in Hyperspectral Image Compression

The proposed techniques for lossy compression of hyperspectral images can be classified
into two types: vector quantization [12, 13, 14] and transform-based [15, 16, 17] algorithms.
Motta, Rizzo, and Storer [12] designed a product VQ with an algorithm to determine how
to form subvectors across bands. In [18], Rizzo, Carpentieri, Motta, and Storer modify
this method to include a low-complexity encoder. Qian et al. [13] generated separate sub-
codebooks for regions with similar spectral characteristics. Ryan and Pickering [14] used
mean-normalized VQ followed by the discrete-cosine transform (DCT) in the spatial and
spectral domains and entropy coding.

Markas and Reif [19] applied the DCT or the Karhunen-Loeve (KL) transform in the
spectral domain and the discrete wavelet transform in the spatial domain, followed by uni-
form scalar quantization and block-based encoding using multidemensional bitmap trees.
Abousleman, Marcellin, and Hunt in [20] proposed using DPCM for spectral decorrela-
tion and 2-D DCT for spatial decorrelation combined with entropy-constrained trellis coded
quantization (ECTCQ). Lee, Younan, and King [16] used different 1-D transforms to obtain
spectral decorrelation (KL, DCT, and the difference pulse-coded modulation (DPCM)) and
applied JPEG 2000 to the resulting data.

Tang, Cho, and Pearlman compared the performance of several 3-D versions of SPIHT
on hyperspectral data with the performance of JPEG2000 [17]. The algorithms included
the original 3D-SPIHT, 3D-SPIHT with asymmetric trees (AT-3DSPIHT), and the 3D Set
Partitioned Embedded Block method. AT-3DSPIHT outperformed the other algorithms by
0.2-0.9 dB. All of the SPIHT-based algorithms were significantly better then JPEG2000 ap-
plied to each band separately. Dragotti, Poggi, and Ragozini [21] modified the 3D-SPIHT
algorithm to better compress multispectral images. In the first method, they performed a
3D transform which consisted of the wavelet transform in the spatial domain and the KL
transform in the spectral domain. The 3D transform was followed by 3D-SPIHT coding.
In the second method, 2D wavelet transform was first taken in the spatial domain. Then,
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spectral vectors of pixels were vector quantized and gain-driven SPIHT was used.

Linear prediction as a method to reduce inter-band correlation was investigated by
Memon in [22] who proposed adaptive reordering of the spectral components of each pixel
followed by a piecewise linear function at a specified error tolerance. Rao and Bhargava [23]
used simple block-based linear inter-band prediction followed by a block-based DCT. To take
advantage of linear prediction between bands, Tate in [24] explored unconstrained optimal
reordering of the multispectral bands followed by linear prediction, which uses spatial neigh-
borhoods to predict each pixel and arithmetic coding.

An appropriate distortion measure for compressed hyperspectral data was investigated
by Ryan and Arnold in [25]. Their goal was to find a measure that is a suitable error metric
for decompressed data used in various scientific algorithms instead of viewed by humans.
The proposed distortion measure was the Percentage Maximum Absolute Distortion which
guarantees that each pixel in the reconstructed image is within a maximum percentage dis-
tance of its original value.

In addition to lossy compression, lossless hyperspectral image coding has been also widely
investigated. See [24, 26, 27, 28, 29, 30, 31, 32] for more detail.

2.5 FPGAs

Field-Programmable Gate Arrays are chips that can be programmed and reprogrammed
to implement complex digital logic [33]. Current chips may run at speeds of 100MHz or
more, with logic capacities in the millions of gates. As such they can implement large
computation chunks, or even complete systems. Because of their reprogrammability, they
are particularly attractive in remote applications, where configurations can be changed and
upgraded by simply shipping a setup file. The chips are programmed by a binary file,
similar to a program executable, which sets configuration points in the chip to program in
the desired circuit. While these chips are malleable like software, they implement hardware
circuits, and have similar capabilities and requirements to custom logic devices. For our
application, satellite image compression, their mix of high performance, high gate count,
and remote reconfigurability make them particularly attractive.

3 Predictive Coding of Hyperspectral Images Using

SPIHT

Because each band of a hyperspectral image corresponds to the same location on Earth,
there is a high level of correlation between the bands (see Figure 3 for an example). How-
ever, bands corresponding to different wavelengths have different dynamic ranges, and thus,
do not lend themselves easily to simple difference coding. For example, in Figure 3, Bands 30
and 200 of a 224-band image of the Cuprite geology site are highly correlated, yet a simple
difference between the two would contain significant energy. It has been suggested in the
literature that the pixel values across different bands are linearly related [24, 34] and sim-
ple linear prediction has been successfully used to remove the spectral correlation between
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(a) Band 30 (b) Band 200

Figure 3: Sample bands 30 and 200 of a 224-band image of the Cuprite geology site.

bands [20].

We also use linear prediction to take advantage of correlation between bands. Assume
there are m bands Bi for 0 ≤ i < m. We define an additional root band Bm in which
each pixel is the constant 1. This band will be the only band that is not predicted by an-
other band. Each band Bi (0 ≤ i < m) can be linearly predicted from another band Bj

(0 ≤ j < m) and the root band as described in Equations (1). The values aij and cij are
the prediction coefficients and Pij is the prediction of the current band Bi from a previously
transmitted band Bj. The difference Dij between Bi and Pij is a residual and can usually
be compressed well. Once Dij is transmitted, band Bi can be recovered by adding Dij to
the prediction Pij.

Pij = aijBj + cijBm

Dij = Bi − Pij
Bi = Pij +Dij.

(1)

Figure 4 visually shows the advantage of linear prediction over direct difference coding.
Figure 4 (a) is the simple difference of Bands 77 and Band 78 (B77−B78), whereas Figure 4
(b) is the result of solving Equation 1 when predicting Band 77 from Band 78. Notice that
the difference corresponding to the linearly predicted band (right) contains a great deal less
energy than the simple difference (left).

Note that the prediction Pim requires that aim = 0 so that the prediction only depends
on the value of cij. We assume that the prediction coefficients are known to both the encoder
and decoder by some prior communication. The quality of a particular prediction can be
measured by its prediction mean squared error (PMSE), ‖Dij‖

2/n, where n is the number
of pixels in a single band. Generally, the larger the PMSE, the more bits are needed to
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(a) Difference band B77 −B78. (b) Difference band 77 when band 77 is predicted
from band 78 using linear prediction (D77 78).

Figure 4: Band 77 - Band 78 (left) and the difference band when band 77 is predicted from
band 78 (right).

compress the difference. The PMSE depends on a good choice of aij and cij. If 0 ≤ i, j < m,
i 6= j, then a natural choice for aij and cij are values that minimize the PMSE. These can
be calculated by least squares fit [35]. The value cim that minimizes the PMSE ‖Dim‖

2/n is
simply the average pixel value of the band Bi.

A band prediction ordering is a function σ : {0, . . . ,m−1} → {0, . . . ,m}. That is, except
for band Bm, band Bi is predicted by band Bσ(i). The function σ must satisfy the following
property: For each i such that 0 ≤ i < m, there is a sequence i = i1, i2, . . . , ik = m such that
ij+1 = σ(ij) for 1 ≤ j < k. An alternative definition is that a prediction order is a tree with
nodes labeled uniquely from {0, 1, . . . ,m} with root labeled m. For 0 ≤ i < m, i’s parent in
the tree is σ(i).

We measure the quality of the prediction ordering σ as the average PMSE:

1

mn

m−1∑

i=0

‖Di,σ(i)‖
2. (2)

3.1 Basic Band Prediction Orderings

The simplest band ordering is the forward monotonic ordering where σ(0) = m and σ(i) =
i− 1 for 1 ≤ i < m, and the reverse monotonic ordering where σ(i) = i + 1 for 0 ≤ i < m.
There are two relatively easy-to-compute alternatives that are significantly better than the
monotonic orderings. These alternatives are based on examining the m× (m+1) prediction
matrix, where the (i, j)-th entry is ‖Dij‖

2/n, the PMSE.

Figure 5 is an example of a prediction matrix. The horizontal axis represents the predic-
tor band numbers and the vertical axis represents the predicted band numbers. The darker
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Figure 5: Prediction matrix (log scale).

color represents larger values, which is where the prediction does not perform well. Clearly,
some bands do not perform well as predictors, while other bands are very easily predicted.
For example, bands 110 and 160 do not predict others well, whereas bands 110 and 158 are
well predicted by any other band.

To take advantage of the fact that some bands are better predictors than others we define
the best forward ordering by choosing σ(i) < i or σ(i) = m that minimizes ‖Di,σ(i)‖

2/n for
0 ≤ i < m. That is, the bands are predicted smallest to largest, and a particular band is
predicted by the best band with a smaller number, with the exception of the root band. Simi-
larly, we can define the best reverse ordering by choosing σ(i) > i that minimizes ‖Di,σ(i)‖

2/n
for 1 ≤ i < m. That is, the bands are predicted largest to smallest, and a particular band
is predicted by the best band with a smaller number. Both best orderings can be computed
in O(m2) time once the prediction matrix is constructed.

We also consider the optimal ordering in which there is no limit on which band can pre-
dict other bands. We formulate the problem of determining the best ordering as a graph
problem — more specifically, the problem of finding the minimum weight rooted spanning
tree on a directed graph. The directed graph has m + 1 vertices representing the m bands
and the root band. The root band is the root of the spanning tree. The directed graph has
a directed edge from j to i if, i 6= j, 0 ≤ i < m and 0 ≤ j ≤ m. The weight of the edge from
j to i is ‖Dij‖

2/n, a value in the prediction matrix. A minimum spanning tree is a spanning
tree that minimizes the sum of all the weights of the edges in the spanning tree. A minimum
spanning tree T defines a prediction ordering σT as followings. If (j, i) is a directed edge in T ,
then σT (i) = j. That is, band Bi is predicted from band Bj if (j, i) is an edge in the spanning
tree. The fact that T has a minimum sum of weights ensures that Equation (2) is minimized.
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The algorithm for finding the minimum spanning tree in a directed graph was first devel-
oped in the 1960s [36]. It was then applied in the 1970s [37] to solve network flow problems
and its implementation was further improved in [38]. The best complexity bound for finding
the minimum spanning tree in a directed graph is O(n2) [37, 38], but theses algorithms are
significantly more complex than computing the other orderings. The minimum spanning
tree technique was also used by S.R Tate [24] to find an optimal band ordering for lossless
compression of multispectral images and by Pavel Kopylov and Pasi Fränti [39] to find an
optimal layer ordering for lossless compression of multilayered maps. In both these works the
weight on the edge from j to i was the size of the losslessly compressed difference Dij. We
use the PMSE because it approximately represents the size of the lossy compressed difference
regardless of the amount of loss required.

Examples of the five possible orderings are shown in Fig. 6. Table 1 lists the average
PMSE over the 224-band Cuprite image for all of these orderings. As can be seen, the best
reverse ordering is actually very close to the optimal ordering (within 0.41%). Since the
running time of the best reverse ordering is much faster than the optimal, we use it for all
simulations in this paper.
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3
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5

Optimal

Figure 6: Prediction band ordering.

Table 1: Average PMSE for the Cuprite Image Set for 5 Different Band Orderings.

Ordering Type Average PMSE

Forward Monotonic 254.48

Best Forward 252.61

Reverse Monotonic 183.65

Best Reverse 175.24

Optimal 174.52

3.2 Target MSE

For each band i, the quality of a particular compression scheme can be measured by its
compression mean square error (MSE), ‖Bi − B̂i‖

2/n, where n is the number of pixels in a
single band and B̂i is the decoded band i. In this research, we encode each band to the same
compression MSE, which we call the target MSE, and compare the resulting bit rates. The
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SPIHT algorithm can be modified to keep track of the MSE of the wavelet coefficients which
approximates the MSE of the residuals and original bands. For this study we used binary
search to find the bit rate for given target MSE.

Prediction significantly improves the compression ratio. For example, as shown in Fig-
ure 7, for the Cuprite image (614x512, 224 bands, 16-bit integer data), when all of the bands
are encoded to a target MSE of 100 per band, using prediction increases the compression
ratio from 8:1 to 33:1.
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Figure 7: Comparison of bit rates required to code the Cuprite image to MSE=100 with and
without prediction for best reverse ordering.

3.3 Standard Closed Loop Prediction

To predict the current band, a previous band is needed. In closed loop prediction, shown in
Figure 8, the decompressed version of a previously encoded band is used for prediction by
both the transmitter and receiver.

Let σ be a prediction ordering. As described in Equations (3), the transmitter uses a
decompressed previous band B̂σ(i) to form Pi,σ(i), the prediction of original band Bi. Next,
Pi,σ(i) is subtracted from Bi to obtain the difference Di,σ(i), which is then coded with SPIHT

to the bit rate which yields the target MSE. The decompressed difference band D̂i,σ(i) is

summed with Pi,σ(i) to obtain B̂i. Finally, B̂i is stored in the encoder and decoder so that
it can be used to predict some other band, if necessary. Note that this method requires the
transmitter to implement the decoder, which increases computational complexity.
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Pi,σ(i) = ai,σ(i)B̂σ(i) + ci,σ(i)Bm

Di,σ(i) = Bi − Pi,σ(i)

B̂i = Pi,σ(i) + D̂i,σ(i)

(3)
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ci,σ(i)
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Figure 8: Standard closed loop prediction.

4 Bit Plane-Synchronized Closed Loop Prediction

As a lower complexity solution for on-board implementation, we introduce a new kind of
predictive coder, the bit plane-synchronized closed loop predictor. We take advantage of
the fact that the SPIHT algorithm can be split into two steps: wavelet transform and bit
plane coding. We also exploit the fact that the wavelet transform step requires much less
computation than the bit plane encoding step. To eliminate the bit plane decoding step
from the transmitter, we will predict using only full bit planes of the wavelet transform.

4.1 The Algorithm

The transmitter first performs the wavelet transform on the difference band Di,σ(i) to obtain
Wi,σ(i). Let R(Wi,σ(i)) be the bit rate required to encode Wi,σ(i) to the target MSE. This
corresponds to stopping the encoder mid-bit-plane, for example, in bit plane number k + 1.
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Figure 9: Bit plane-synchronized closed loop prediction.

Let W k
i,σ(i) and W k+1

i,σ(i) be the wavelet coefficients truncated to k or k + 1 bit planes, respec-

tively. Also, let R(W k
i,σ(i)) and R(W k+1

i,σ(i)) be the bit rates required to code W k
i,σ(i) and W k+1

i,σ(i)

losslessly. Note that R(W k
i,σ(i)) ≤ R(Wi,σ(i)) < R(W k+1

i,σ(i)).

The basic idea of our algorithm is to only use complete bit planes for prediction. Thus,
if we reach our target MSE mid-bit plane, we now have to decide whether to trim our pre-
diction back to the last full bit plane. Alternatively, if we are close enough to the end of the
current bit plane, we can decide to transmit the remaining portion of the bit plane in order
to have a better predictor.

In our algorithm, if Equation (4) is satisfied, k complete bit planes are selected for predic-
tion, and the bit rate at which we transmit Wi,σ(i), R(Wi,σ(i)), does not change. Otherwise,
k + 1 complete bit planes are used for both prediction and coding. The bit rate at which
we transmit Wi,σ(i) must be increased to R(W k+1

i,σ(i)). In both cases, the transmitter and re-
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ceiver use the same number of complete bit planes (either k or k + 1) for prediction. In
Equation (4), T is a threshold with typical values on the order of 0.1 − 1.0. Note that to
reduce the computational complexity, we do not look ahead to see how the prediction results
propagate into the future.

R(Wi,σ(i))−R(W k
i,σ(i)) ≤ T (R(W k+1

i,σ(i))−R(W k
i,σ(i))) (4)

For example, the bit rate required to code the difference band 35 of the Cuprite image to
the target MSE of 100 is 1.5 bpp. This corresponds to stopping mid-bit-plane in bit plane
number 13. The bit rates required to code this difference band to 12 and 13 bit planes are
0.64 bpp and 1.89 bpp, respectively. If our threshold in Equation (4) is T = 0.2, we use 13
bit planes for prediction and encode the difference band to 13 bit planes for transmission
(1.89 bpp).

However, in the case of the difference band 69, the bit rate required to code it to the
target MSE of 100 is 0.16 bpp. This corresponds to stopping mid-bit-plane in bit plane
number 6. The bit rates required to code this difference band to 5 and 6 bit planes are
0.04 bpp and 0.73 bpp, respectively. For the same threshold T = 0.2 in Equation 4, we use
5 bit planes for prediction and encode the difference band to 0.16 bpp for transmission.

Figure 9 further describes the prediction and encoding processes. If k bit planes are used
for prediction, the transmitter sends Wi,σ(i) at bit rate R(Wi,σ(i)). The receiver decodes to

Ŵi,σ(i), takes the inverse wavelet transform to obtain D̂i,σ(i) and adds to Pi,σ(i), the prediction

of the current band, to compute the decompressed band B̂i. However, to form the prediction
of the current band for possible later use, both the transmitter and receiver truncate Wi,σ(i)

and Ŵi,σ(i) toW
k
i,σ(i), take the inverse wavelet transform to obtain Dk

i,σ(i), and then add Dk
i,σ(i)

to Pi,σ(i) to compute the decompressed truncated band Bk
i which is stored.

If k + 1 bit planes are used for prediction, the encoder transmits W k+1
i,σ(i) at bit rate

R(W k+1
i,σ(i)). The receiver decodes to Ŵi,σ(i) = W k+1

i,σ(i), takes the inverse wavelet transform to

obtain D̂i,σ(i) = Dk+1
i,σ(i) and adds to Pi,σ(i), the prediction of the current band, to compute

the decompressed band B̂i. What differs from the previous case of using k bit planes for
prediction is that to form the prediction of Bi for possible later use, here, both the encoder
and receiver simply inverse transform W k+1

i,σ(i) to obtain Dk+1
i,σ(i) which is added to Pi,σ(i) to

compute Bk+1
i .

5 Results

In this section we present the results. We start by estimating reduction in the complexity of
the transmitter. Then we compare the bit plane-synchronized closed loop prediction with the
standard closed loop. Finally, we comment on the universality of the prediction coefficients
and band ordering.
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5.1 Reduction in Transmitter Complexity

In order to estimate the impact of the techniques presented in the paper, we can consider
an existing FPGA-based implementation of the SPIHT engine [40], which does not include
any prediction. This system achieves a 100Mbytes/second throughput rate on a system of
3 Virtex 2000E FPGAs. This performance was achieved primarily through a set of small
alterations to the SPIHT algorithm that introduce minor (< 0.2db) degradations in image
quality yet allow for aggressive pipelining of the bit plane encoder. The first FPGA performs
4 separate wavelet transforms in parallel to boost the throughput rate, and is 62% full. The
other two FPGAs handle the bit plane encoding, and are 34% and 98% full respectively.

The hardware impact of including the proposed bit plane-synchronized prediction tech-
nique is quite reasonable. The inverse wavelet transform is very similar to the forward
wavelet transform, and would likely also achieve a 100 Mbytes/second throughput and con-
sume about 62% of an FPGA. The linear predictor (a multiplier, an adder, and a subtractor),
as well as the truncator (replacing some bits of the wavelet coefficients with zeros) are very
simple to implement in hardware, and would easily fit into the remaining space on that
FPGA. In contrast, the bit plane decoder engine required by the standard closed loop would
likely consume 2 additional FPGAs, and it would be quite difficult to implement at the
desired throughput. The high performance of the bit plane encoder was achieved by care-
fully altering the algorithm to remove many sequential dependencies, and allow individual
coefficients to be encoded almost independently from the others. It is likely that the same
transformations could not be accomplished in the bit plane decoder. While the encoder
transforms a well-structured dataset (wavelet coefficients in an array in memory) to a convo-
luted representation (the SPIHT encoded data), the decoder must start with the convoluted
representation, and may not be able to find much parallelism at all. Our estimate is that
this change would result in a 10-fold decrease in throughput if the decoder were required,
compared to the approaches given here. This factor of 10 is based on the fact that the paral-
lel processing of the bit plane encoding boosted the encoder performance by approximately
a factor of 10.

Note that in a software implementation of SPIHT we can imagine an easy alternative to
the bit plane-synchronized approach. As we compress the image, we maintain an array, one
location per wavelet coefficient, containing information about how much of that coefficient
has been transmitted. Each time the SPIHT algorithm emits a bit, the corresponding coeffi-
cient locations are updated to the current bit plane. Then, once we have emitted the desired
number of bits to meet a maximum file size, we stop. The coefficient array then holds the
information about the data that have been transmitted, and we can quickly create a predic-
tion frame from the original frame and the coefficient array we have maintained. However,
because of the parallel implementation of SPIHT on the FPGAs, the information needed to
determine which bit plane is last for each coefficient is difficult to maintain. Therefore, the
proposed bit plane synchronized algorithm is much more feasible than this approach.
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5.2 Compression Results of the Bit Plane-Synchronized Closed

Loop vs. Standard Closed Loop Prediction

In Figure 10, we compare the standard closed and new bit plane-synchronized predictive
coders. Over a range of target MSEs from 50 to 500, the bit rate of the bit plane-synchronized
coder is only slightly higher than the bit rate of the standard closed loop technique. For a
target MSE of 150, the average bit rate for the proposed method is 0.52 bpp, which is an
37% increase in bit rate over the 0.38 bit rate for the closed loop prediction. However, for a
target MSEs of 200 and 250, the bit rates are very close. Hence, the bit plane-synchronized
loop is a very promising method to code hyperspectral data. It achieves a very good com-
pression ratio with a low MSE and has a much lower computational complexity compared
to the original closed loop prediction.

In Table 2, we test our algorithm on four different image sets to see if our results are
consistent across different image sets. As the table shows, across the four image sets, the bit
rate for the synchronized closed-loop is never more than 22.7% higher than standard closed
loop for a target MSE of 100.
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Figure 10: Bit rate vs. target MSE for bit plane-synchronized closed loop prediction and
standard closed loop prediction.

5.3 Universality

Next, we investigated the universality of the prediction ordering and of the prediction coef-
ficients (the aijs and cijs). We designed four best reverse predictors using images from the
Cuprite, Jasper Ridge, Lunar Lake, and Moffett Field sites. For each of these four images,
we compared the compression performance when using prediction ordering and coefficients
obtained from this image (custom predictor) against using predictors designed for the other
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Table 2: Average bit rate (bpp) when all bands are encoded to a target MSE of 100.

Image Data No Prediction Closed Loop Bit Plane-Synchronized Closed Loop

Cuprite 1.997 0.476 0.580

Jasper Ridge 2.728 0.654 0.778

Lunar Lake 1.889 0.524 0.643

Moffett Field 2.794 0.695 0.823

images.

Table 3: Average bit rate for all bands encoded to a target MSE of 100 when either a custom
predictor or predictors designed on other image sets are used.

Training Data
Cuprite Jasper Ridge Lunar Lake Moffett Field

Cuprite 0.477 0.561 0.513 0.534

Jasper Ridge 0.765 0.655 0.706 0.700

Lunar Lake 0.547 0.566 0.524 0.560

Moffet Field 0.714 0.721 0.710 0.697

Table 3 shows the average bit rate required to compress the four data sets to a target
MSE of 100 when using different predictors. As expected, the best performance is obtained
when an image is compressed using a custom predictor. However, when a predictor designed
on a different image set is used, the performance is often not affected that severely. The
increase in bit rate when a non-custom predictor is used is on the order of 3.4 - 17.6%.

We also compared the prediction ordering. When the Cuprite image was compressed
using predictors designed using the Jasper Ridge, Lunar Lake and Moffet Field data, only 9-
16 out of the 224 bands were predicted from different previous bands compared to the custom
predictor. Thus we believe that good hyperspectral image compression can be obtained with
a fixed band ordering and set of prediction coefficients.

6 Conclusions

In this research, we have investigated different methods of using prediction to code hyper-
spectral data. As expected, combining prediction with a state-of-the-art image compression
algorithm significantly improves the compression ratio (from 8:1 to 33:1 for the Cuprite im-
age and a target MSE of 100). We have also proposed a new method of prediction, the
bit plane-synchronized closed loop prediction. We showed that under the constraints of a
simple implementation on-board the satellite, it offers excellent performance. For example,
in the case of the Cuprite data set, the presented method requires only one additional FPGA
with no change in throughput compared to the standard SPIHT implementation, while the
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standard closed loop would require three additional FPGAs and cause a 10-fold decrease
in throughput. The price paid in compression performance is on the order of about 20%
increase in the bit rate required to encode all of the bands to a target MSE of 100, compared
to standard closed loop prediction.
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