

A Comparison of Floating Point and Logarithmic Number
Systems on FPGAs

Michael Haselman

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in Electrical Engineering

University of Washington
2005

Program Authorized to Offer Degree:
Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a master’s thesis by

Michael Haselman

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Scott Hauck

Jeff Bilmes

Date:__________________________________

In presenting this thesis in partial fulfillment of the requirements for a master’s degree at
the University of Washington, I agree that the Library shall make its copies freely
available for inspection. I further agree that extensive copying of this thesis is allowable
only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright
Law. Any other reproduction for any purposes or by any means shall not be allowed
without my written permission.

Signature _________________________________

Date ____________________________________

University of Washington

Abstract

A Comparison of Floating Point and Logarithmic Number Systems on FPGAs

Michael Haselman

Chair of the Supervisory Committee:

Associate Professor Scott Hauck
Electrical Engineering

There have been many papers proposing the use of logarithmic numbers (LNS) as an

alternative to floating point because of simpler multiplication, division and

exponentiation computations [Lewis93, Wan99, Coleman99, Coleman00, Detrey03,

Lee03, Tsoi04]. However, this advantage comes at the cost of complicated, inexact

addition and subtraction, as well as the possible need to convert between the formats. In

this work, we created a parameterized LNS library of computational units and compared

them to existing floating point libraries. Specifically, we considered the area and latency

of multiplication, division, addition and subtraction to determine when one format should

be used over the other. We also characterized the tradeoffs when conversion is required

for I/O compatibility.

 i

Table of Contents

 Page
List of Figures ...ii
List of Tables .. iii
1 Introduction..1
2 Background..2
 2.1 Previous Work ..2
 2.2 Field Programmable Gate Arrays ...2
3 Number Systems ..5
 3.1 Floating Point..5
 3.2 Logarithmic Number System (LNS)...6
4 Implementation ..8
 4.1 Multiplication..9
 4.2 Division... 10
 4.3 Addition/Subtraction... 10
 4.4 Conversion .. 12
 4.5 Floating point to LNS ... 13
 4.6 LNS to floating point .. 16
5 Results.. 18
 5.1 Multiplication.. 18
 5.2 Division... 19
 5.3 Addition .. 19
 5.4 Subtraction .. 20
 5.5 Another floating point library ... 20
 5.6 Multiplication.. 21
 5.7 Division... 21
 5.8 Addition .. 21
 5.9 Subtraction .. 22
 5.10 Converting floating point to LNS ... 22
 5.11 Converting LNS to floating point ... 23
6 Analysis.. 24
 6.1 Area benefit without conversion... 24
 6.2 Area benefit with conversion .. 25
 6.3 Performance benefit without conversion .. 29
7 Conclusion ... 31
Bibliography ... 32

 ii

List of Figures

Figure Number Page

 1. FPGA architecture.. 4
 2. LNS addition/subtraction curves ...11
 3. Area breakeven for multiplication vs. addition, no conversion.................................24
 4. Area breakeven for division vs. addition, no conversion ..25
 5. FP to LNS conversion overhead for multiplication...26
 6. FP to LNS conversion overhead for division ..27
 7. LNS to FP conversion overhead for multiplication...28
 8. LNS to FP conversion overhead for division ..28
 9. Latency breakeven for multiplication vs. addition, no conversion29
 10. Latency breakeven for division vs. addition, no conversion...................................30

 iii

List of Tables

Table Number Page

 1. Floating point exceptions ... 6
 2. Area and latency of multiplication ..18
 3. Area and latency of division..19
 4. Area and latency of addition ...19
 5. Area and latency of subtraction...20
 6. Area and latency of Leeser multiplication ..21
 7. Area and latency of Leeser division ..21
 8. Area and latency of Leeser addition..21
 9. Area and latency of Leeser subtraction ...22
 10. Area and latency of conversion FP to LNS...22
 11. Area and latency of conversion LNS to FP...23

 iv

Acknowledgements

The author would like to thank his advisor, Scott Hauck for providing his conception of
this project and for his support and guidance throughout the term of the project. The
author would also like to thank, Michael Beauchamp, Aaron Wood, and Henry Lee for
their initial work on the arithmetic libraries. Finally, the author would like to thank Keith
Underwood and Scott Hemmert for their support with their floating point library.

This work was supported in part by grants from the National Science Foundation, and
from Sandia National Labs. Scott Hauck was supported in part by a Sloan Research
Fellowship.

1

1 Introduction
Digital signal processing (DSP) algorithms are typically some of the most challenging

computations. They often need to be done in real-time, and require a large dynamic

range of numbers. The requirements for performance and a large dynamic range lead to

the use of floating point or logarithmic number systems in hardware.

FPGA designers began mapping floating point arithmetic units to FPGAs in the mid 90’s

[Fagin94, Louca96, Belonovic02, Underwood04]. Some of these were full

implementations, but most make some optimizations to reduce the hardware. The

dynamic range of floating point comes at the cost of lower precision and increased

complexity over fixed point. Logarithmic number systems (LNS) provide a similar range

and precision to floating point but may have some advantages in complexity over floating

point for certain applications. This is because multiplication and division are simplified

to fixed-point addition and subtraction, respectively, in LNS. However, floating point

number systems have become a standard while LNS has only seen use in small niches.

Most implementations of floating point on DSPs or microprocessors use single (32-bit) or

double (64-bit) precision. Using FPGAs give us the liberty to use a precision and range

that best suits an application, which may lead to better performance. In this paper we

investigate the computational space for which LNS performs better than floating point.

Specifically, we attempt to define when it is advantageous to use LNS over floating point

number systems.

2

2 Background
2.1 Previous Work

Since the earliest work on implementing IEEE compliant floating point units on FPGAs

[Fagin94] there has been extensive study on floating point arithmetic on FPGAs. Some

of these implementations are IEEE compliant (see the Number Systems section below for

details) [Fagin94, Louca96, Underwood04] while others leverage the flexibility of

FPGAs to implement variable word sized that can be optimized per application

[Belanovic02, Ho02, Liang03, Liang03]. There has also been a lot of work on optimizing

the separate operations, such as addition/subtraction, multiplication, division and square

root [Loucas96, Li97, Wang03] to make incremental gains in area and performance.

Finally, there have been many applications implemented with floating point to show that

not only can arithmetic units be mapped to FPGAs, but that useful work can be done with

those units [Walter98, Leinhart02].

In recent years, there has been a lot of work with the logarithmic number system as a

possible alternative to floating point. There has even been a proposal for a logarithmic

microprosser [Colmen00]. Most of this work though has been algorithms for LNS

addition/subtraction [Lewis93, Colmen00, Lee03] or conversion from floating point to

LNS [Wan99, Wan99, Abed03] because these are complicated operations in LNS. There

have also been some previous studies that compared LNS to floating point [Colmen99,

Matousek02, Detrey03]. Colmen et al. showed that LNS addition is just as accurate as

floating point addition, but the delay was compared on a ASIC layout. Matousek et al

report size and speed numbers for LNS and floating point arithmetic units on a FPGA for

a 20-bit and 32-bit word size but offer no insight to when one format should be used over

the other. Detrey et al also compared floating point and LNS libraries, but only for 20

bits and less because of the limitation of their LNS library.

2.2 Field Programmable Gate Arrays

To gain speedups over software implementations of algorithms, designers often employ

hardware for all or some critical portions of an algorithm. Due to the difficulty of

3

floating point computations, floating point operations are often part of these critical

portions and therefore are good candidates for implementation in hardware to obtain

speedup of an algorithm. Current technology gives two main options for hardware

implementations. These are the application specific integrated circuit (ASIC) and the

field programmable gate array (FPGA). While an ASIC implementations will produce

larger speedups while using less power, it will be very expensive to design and build and

will have no flexibility after fabrication. FPGAs on the other hand will still provide good

speedup results while retaining much of the flexibility of a software solution at a fraction

of the startup cost of an ASIC. This makes FPGAs a good hardware solution at low

volumes or if flexibility is a requirement.

FPGAs have successfully filled a niche between of the flexibility of software and the

performance of an ASIC by using a large array of configurable logic blocks, and

dedicated block modules all connected by a reconfigurable communication structure (see

figure 1). The reconfigurable logic blocks and communications resources are controlled

by SRAM bits. Therefore, by downloading a configuration into the control memory, a

complex circuit can be created.

4

Figure 1. Architecture overview of a typical FPGA.

The configurable logic blocks (CLBs) typically contain multiple Look-up Tables (LUT)

each capable of implementing any 4 to 1 function, along with some additional resources

for registering data and fast addition [Xilinx05]. The typical dedicated block modules are

multipliers and block memories (BRAMs). While the LUTs can be used for memory, the

BRAM allows for more compact and faster large memories. The multipliers allow

multiplications to be done faster while taking up less space and using less power than

would be required if done with CLBs. The Xilinx VirtexII XC2V2000 (the device used

in our experiments) has 2,688 CLBs, 56 18 Kbit BRAMs and 56 18bit x 18bit multipliers

[Xilinx05]. The CLBs each contain four slices and the slices each contain two LUTs.

The slices will be used in our area metric as discussed in implementation section.

5

3 Number Systems
3.1 Floating point

A floating point number F has the value [Koren02]

ES fF 2.11 ××−=

where S is the sign, f is the fraction, and E is the exponent, of the number. The mantissa

is made up of the leading “1” and the fraction, where the leading “1” is implied in

hardware. This means that for computations that produce a leading “0”, the fraction must

be shifted. The only exception for a leading one is for gradual underflow (denormalized

number support in the floating point library we use is disabled for these tests

[Underwood04]). The exponent is usually kept in a biased format, where the value of E

is

.biasEE true +=

The most common value of the bias is

12 1 −−e

where e is the number of bits in the exponent. This is done to make comparisons of

floating point numbers easier.

Floating point numbers are kept in the following format:

 sign
(1 bit)

exponent
 (e bits)

 unsigned
significand
 (m bits)

6

The IEEE 754 standard sets two formats for floating point numbers: single and double

precision. For single precision, e is 8 bits, m is 23 bits and S is one bit, for a total of 32

bits. The extreme values of the exponent (0 and 255) are for special cases (see below) so

single precision has a range of)20.1(126−×± to)2...11.1(127× , ≈ 38102.1 −×± to
38104.3 × and resolution of 710− . For double precision, where m is 11 and e is 52, the

range is)20.1(1022−×± to)2...11.1(1023× , ≈ 308102.2 −×± to 308108.1 × and a resolution

of 1510− .

Finally, there are a few special values that are reserved for exceptions. These are shown

in table 1.

Table 1. Floating point exceptions (f is the fraction of M).

 f = 0 f ≠ 0

E = 0 0 Denormalized

E = max ±∞ NaN

3.2 LNS

Logarithmic numbers can be viewed as a specific case of floating point numbers where

the mantissa is always 1, and the exponent has a fractional part [Koren02]. The number

A has a value of

AA EsA 21 ×−=

where SA is the sign bit and EA is a fixed point number. The sign bit signifies the sign of

the whole number. EA is a 2’s complement fixed point number where the negative

numbers represent values less than 1.0. In this way LNS numbers can represent both

very large and very small numbers.

7

The logarithmic numbers are kept in the following format:

Since there are no obvious choices for special values to signify exceptions, and zero

cannot be represented in LNS, we decided to use flag bits to code for zero, +/- infinity,

and NaN in a similar manner as Detrey et al [Detrey03].

If k=e and l=m LNS has a very similar range and precision as floating point numbers.

For k=8 and l=23 (single precision equivalent) the range is ulp+−± 1292 to ulp−1282 , ≈
39105.1 −×± to 38104.3 × (ulp is unit of least precision). The double precision equivalent

has a range of ulp+−± 10252 to ulp−10242 , ≈ 309108.2 −×± to 308108.1 × . Thus, we have an

LNS representation that covers the entire range of the corresponding floating-point

version.

 flags
(2 bits)

 sign
(1 bit)

integer
portion
(k bits)

fractional
 portion
 (l bits)

 flags
(2 bits)

 sign
(1 bit)

integer
portion
(k bits)

fractional
 portion
 (l bits)

 flags
(2 bits)

log number

 sign
(1 bit)

integer
portion
(k bits)

fractional
 portion
 (l bits)

8

4 Implementation
A parameterized library was created in Verilog of LNS multiplication, division, addition,

subtraction and converters using the number representation discussed previously in

section 2.2. Each component is parameterized by the integer and fraction widths of the

logarithmic number. For multiplication and division, the formats are changed by

specifying the parameters in the Verilog code. The adder, subtracter and converters

involve look up tables that are dependent on the widths of the number. For these units, a

C++ program is used to generate the Verilog code.

The Verilog was mapped to a VirtexII 2000 using Xilinx ISE software. We then mapped

a floating point library from Underwood [Underwood04] to the same device for

comparison.

As discussed previously most of the commercial FPGAs contain dedicated RAM and

multipliers that will be utilized by the units of these libraries (see figure 1). This makes

area comparisons more difficult because a computational unit in one number system may

use one or more of these coarse-grain units while the equivalent unit in the other number

system does not. For example, the adder in LNS uses memories and multipliers while the

floating point equivalent uses neither of these. To make a fair comparison we used two

area metrics. The first is simply how many units can be mapped to the VirtexII 2000; this

gives a practical notion to our areas. If a unit only uses 5% of the slices but 50% of the

available BRAMs, we say that only 2 of these units can fit into the device because it is

BRAM-limited. However, the latest generation of Xilinx FPGAs have a number of

different RAM/multiplier to logic ratios that may be better suited for a design, so we also

computed the equivalent slices of each unit. This was accomplished by determining the

relative silicon area of a multiplier, slice and block RAM in a VirtexII from a die photo

[Chipworks] and normalizing the area to that of a slice. In this model a BRAM counts as

27.9 slices, and a multiplier as 17.9 slices.

9

4.1 Multiplication

Multiplication becomes a simple computation in LNS [Koren02]. The product is

computed by adding the two fixed point logarithmic numbers. This is from the

following logarithmic property:

)(log)(log)(log 222 yxyx +=⋅

The sign is the XOR of the multiplier’s and multiplicand’s sign bits. The flags for

infinities, zero, and NANs are encoded for exceptions in the same ways as the IEEE 754

standard. Since the logarithmic numbers are 2’s complement fixed point numbers,

addition is an exact operation if there is no overflow event, while overflows (correctly)

result in ±∞. Overflow events occur when the two numbers being added sum up to a

number too large to be represented in the word width.

Floating point multiplication is more complicated [Koren02]. The two exponents are

added and the mantissas are multiplied together. The addition of the exponents comes

from the property:

yxyx +=× 222

Since both exponents each have a bias component one bias must be subtracted. The

exponents are integers so there is a possibility that the addition of the exponents will

produce a number that is too large to be stored in the exponent field, creating an overflow

event that must be detected to set the exceptions to infinity. Since the two mantissas are

in the range of [1,2), the product will be in the range of [1,4) and there will be a possible

right shift of one to renormalize the mantissas. A right shift of the mantissa requires an

increment of the exponent and detection of another possible overflow.

10

4.2 Division

Division in LNS becomes subtraction due to the following logarithmic property

[Koren02]:

)(log)(log)(log 222 yx
y
x

−=

Just as in multiplication, the sign bit is computed with the XOR of the two operands’

signs and the operation is exact. The only difference is the possibility of underflow due

to the subtraction which results in a difference equal to 0. Underflow occurs when the

result of the subtraction is a larger negative number than can be represented in word

width.

Division in floating point is accomplished by dividing the mantissas and subtracting the

divisor’s exponent from the dividend’s exponent [Koren02]. Because the range of the

mantissas is (1,2] the quotients range will be in the range [.5,2), and a left shift by one

may be required to renormalize the mantissa. A left shift of the mantissa requires a

decrement of the exponent and detection of possible underflow.

4.3 Addition/Subtraction

The ease of the above LNS calculations is contrasted by addition and subtraction. The

derivation of LNS addition and subtraction algorithms is as follows [Koren02]. Assume

we have two numbers A and B (|A|≥|B|) represented in LNS: AA ESA 21 ⋅−= ,
BB ESB 21 ⋅−= . If we want to compute BAC ±= then

Ac SS =

)1(log)(log 22 A
BABAEC ±=±=

)(1loglog 22 ABA EEfE
A
BA −+=±+=

11

where)(AB EEf − is defined as

)(
22 21log1log)(AB EE

AB A
BEEf −±=±=−

The ± indicates addition or subtraction (+ for addition, - for subtraction). The value of

f(x) shown in figure 2, where () 0≤−= AB EEx , can be calculated and stored in a ROM,

but this is not feasible for larger word sizes. Other implementations interpolate the

nonlinear function [Wan99]. Notice that if 0=− BA EE then −∞=−)(BA EEf for

subtraction so this needs to be detected.

Figure 2. Plot of f(x) for addition and subtraction [Matousek02].

For our LNS library, the algorithm from Lewis [Lewis93] was implemented to calculate

f(x). This algorithm uses a polynomial interpolation to determine f(x). Instead of storing

all values, only a subset of values is stored. When a particular value of f(x) is needed, the

three closest stored points are used to build a 2nd order polynomial that is then used to

approximate the answer. Lewis chose to store the actual values of f(x) instead of the

polynomial coefficients to save memory space. To store the coefficients would require

three coefficients to be stored for each point. To increase the accuracy, the x axis is

broken up into even size intervals where the intervals closer to zero have more points

12

stored (i.e. the points are closer together the steeper the curve). For subtraction, the first

interval is even broken up further to generate more points, hence it will require more

memory.

Floating point addition on the other hand is a much more straight forward computation.

It does however require that the exponents of the two operands be equal before addition

[Koren02]. To achieve this, the mantissa of the operand with the smaller exponent is

shifted to the right by the difference between the two exponents. This requires a variable

length shifter that can shift the smaller mantissa possible the length of the mantissa. This

is significant because variable length shifters are a difficult process in FPGAs. Once the

two operands are aligned, the mantissas can be added and the exponent becomes equal to

the greater of the two exponents. If the addition of the mantissa overflows, it is right

shifted by one and the exponent is incremented. Incrementing the exponent may result in

an overflow event which requires the sum be set to ±∞.

Floating subtraction is identical to floating point addition except that the mantissas are

subtracted [Koren02]. If the result is less than one, a left shift of the mantissa and a

decrement of the exponent are required. The decrement of the exponent can result in

underflow, which means the result is set to zero.

4.4 Conversion

Since floating point has become a standard, modules that covert floating point numbers to

logarithmic numbers and vice versus may be required to interface with other systems.

Conversion during a calculation may also be beneficial for certain algorithms. For

example, if an algorithm has a long series of LNS suited computations (multiply, divide,

square root, powers) followed by a series of floating point suited computations (add,

subtract) it may be beneficial to perform a conversion in between. However, these

conversions are not exact and error can accumulate for multiple conversions.

13

4.5 Floating point to LNS

The conversion from floating point to LNS involves three steps that can be done in

parallel. The first part is checking if the floating point number is one of the special

values in table 1 and thus encoding the two flag bits.

The remaining steps involve computing the following conversion:

)2(log...).1(log)2.1(log exp
22

exp
2 +=× xxxxxx

exp...).1(log2 += xxx

Notice that the ...).1(log2 xxx is in the range of (0,1] and exp is an integer. This means

that the integer portion of the logarithmic number is simply the exponent of the floating

point minus a bias. Computing the fraction involves evaluating the nonlinear function

)....1(log 212 nxxx . Using a look up for this computation is viable for smaller mantissas

but becomes unreasonable for larger word sizes.

For larger word sizes up to single precision an approximation developed by Wan et al

[Wan99] was used. This algorithm reduces the amount of memory required by factoring

the floating point mantissa as (for 2
nm =)

)...0...00.1(log)...1(log
)]...0...00.1)(...1[(log)....1(log

)...0...00.1)(...1()....1(

212212

21212212

212121

mm

mmn

mmn

cccxxx
cccxxxxxx

cccxxxxxx

+=
=

=

where

)...1(
)..(....

21

221
21

m

mmm
m xxx

xxxccc += ++

Now)...1(log 212 mxxx and)...0...0.1(log 212 mccc can be stored in a ROM that is nm ×2 .

14

In attempt to avoid a slow division we can do the following.

If mcccc ... 21= , mmm xxxb 221 ... ++= and mxxxa ... 21= then

)1(a
bc +=

The computation can rewritten as

)1/(1)1/()1()1/(aababc +−++=+=

)1log()1log()1log(22 aab +−+−+ −=

where log(1+b) and log(1+a) can be looked up in the same ROM for)...1(log 212 mxxx .

All that remains in calculating 2z which can be approximated by

)1,0[)],1(1[log22 2 ∈−+−≈ zforzz

where)]1(1[log2 z−+ can be evaluated in the same ROM as above. To reduce the error

in the above approximation, the difference

)])1(1[log2(2 2 zz z −+−−=∆

can be stored in another ROM. This ROM only has to be 2m deep and less than m wide

because ∆z is small. This algorithm reduces the lookup table sizes from nn ×2 to

)5(2 nmm +× (m from ∆z ROM and 5n from 4)...1(log 212 mxxx and 1

)...0...0.1(log 212 mccc ROMs). For single precision (23 bit fraction), this reduces the

memory from 192MB to 32KB. The memory requirement can be even further reduced if

the memories are time multiplexed or dual ported.

15

For double precision the above algorithm requires 2.5Gbits of memory. This is

obviously an unreasonable amount of memory for a FPGA, so an algorithm [Wan99] that

does not use memory was used for double precision. This algorithm uses factorization to

determine the logarithm of the floating point mantissa. The mantissa can be factored as

)0..00.1)..(0.1)(.1(...1 2121 nn qqqxxx +++≅+

then

)1log()...1log(121 qxxx n +≅+

)0..001log(..)01log(2 nqq +++++

where qi is 0 or 1. Now the task is to efficiently find the qi’s. This is done in the

following manner:

)..0.1)(1(...1 11312121 nn aaaxxxx ++≅+

where 11 xq = and

).1/()..(...0. 13211312 qxxxaaa nn +=

Similarly,)..0.1(11312 naaa+ can be factored as

)..00.1)(0.1(..0.1 224231211312 nn aaaaaaa ++≅+

where 122 aq = and

)0.1/()..(.... 21141322423 qaaaaaa nn +=

This process is carried out for n steps, where n is the width of the floating point fraction.

Notice that determining q is very similar to calculating the quotient in a binary division

except the divisor is updated at each iteration. So, a modified restoring division is used to

16

find all q’s. At each step, if 1=iq then the value)0..00.1(log2 iq+ is added to a running

sum. The value of)0..00.1(log2 iq+ is kept in memory. This memory requirement is

nxn which is not stored in BRAM because there is a possibility of accessing all

“addresses” on one cycle and the memory space is very small.

4.6 LNS to floating point

In order to convert from LNS to floating point we created an efficient converter via

simple transformations. The conversion involves three steps. First, the exception flags

must be checked and possibly translated into the floating point exceptions shown in table

1. The integer portion of the logarithmic number becomes the exponent of the floating

point number. A bias must be added for conversion, because the logarithmic integer is

stored in 2’s complement format. Notice that the minimum logarithmic integer value

converts to zero in the floating point exponent since it is below floating point’s precision.

If this occurs, the mantissa needs to be set to zero for floating point libraries that do not

support denormalized (see table 1).

The conversion of the logarithmic integer to the floating point mantissa involves

evaluating the non-linear equation n2 . Since the logarithmic integer is in the range from

(0,1] the conversion will be in the range from (1,2], which maps directly to the mantissa

without any need to change the exponent. Typically, this is done in a look-up-table, but

the amount of memory required becomes prohibitive for reasonable word sizes. To

reduce the memory requirement we used the property:

zyxzyx 2222 ××=++

The integer of the logarithmic number is broken up in the following manner

k
n

k
n

k
nn zzzyyyxxxaaa 21212121 = ...

17

where k is the number of times the integer is broken up. The values of knxxx /21 ...2 ,
knyyy /21 ..0..00.2 etc. are stored in k ROMs of size nk ×2 . Now the memory requirement is

() nkk ××2 instead of nn ×2 . The memory saving comes at the cost of k-1

multiplications. k was varied to find the minimum area usage for each word size.

18

5 Results
The following tables show the results of mapping the floating point and logarithmic

libraries to a Xilinx VirtexII 2000. Area is reported in two formats, equivalent slices and

number of units that will fit on the FPGA. The number of units that fit on a device gives

a practical measure of how reasonable these units will be on current devices.

Normalizing the area to a slice gives a value that is less device specific. For the

performance metric, we chose to use latency of the circuit (time from input to output) as

this metric is very circuit dependent.

5.1 Multiplication

Table 2. Area and latency of a multiplication.

 single double
 FP LNS FP LNS

slices 297 20 820 36
multipliers 4 0 9 0
18K BRAM 0 0 0 0

units per FPGA 14 537 6.2 298
norm. area 368 20 981 36
latency(ns) 65 10 83 12

Floating point multiplication is complex because of the need to multiply the mantissas

and add the exponents. In contrast, LNS multiplication is a simple addition of the two

formats, with a little control logic. Thus, in terms of normalized area the LNS unit is

18.4x smaller for single, and 27.3x smaller for double. The benefit grows for larger

precisions because the LNS structure has a near linear growth, while the mantissa

multiplication in the floating-point multiplier grows quadratically.

19

5.2 Division

Table 3. Area and latency of a division.

 single double
 FP LNS FP LNS

slices 910 20 3376 36
multipliers 0 0 0 0
18K BRAM 0 0 0 0

units per FPGA 12 537 3.2 298
norm. area 910 20 3376 36
latency(ns) 150 10 350 12.7

Floating point division is larger because of the need to divide the mantissas and subtract

the exponent. Logarithmic division is simplified to a fixed point subtraction. Thus in

terms of normalized area the LNS unit is 45.5x smaller for single precision and 93.8x

smaller for double precision.

5.3 Addition

Table 4. Area and latency of an addition.

 single double
 FP LNS FP LNS

slices 424 750 836 1944
multipliers 0 24 0 72
18K BRAM 0 4 0 8

units per FPGA 25 2.33 12.9 0.78
norm. area 424 1291 836 3456
latency(ns) 45 91 67 107

As can be seen, the LNS adder is more complicated than the floating point version. This

is due to the requirement of memory and multipliers to compute the non-linear function.

This is somewhat offset by the need for lots of control and large shift registers required

by the floating point adder. With respect to the normalized area the LNS adder is 3.0x

for single, and 4.1x larger for double precisions.

20

5.4 Subtraction
Table 5. Area and latency of a subtraction.

 single double
 FP LNS FP LNS

slices 424 838 836 2172
multipliers 0 24 0 72
18K BRAM 0 8 0 16

units per FPGA 25 2.33 12.9 0.78
norm. area 424 1491 836 3907
latency(ns) 45 95 67 110

The logarithmic subtraction is even larger than the adder because of the additional

memory needed when the two numbers are very close. Floating point subtraction is very

similar to addition. In terms of normalized area, the LNS subtraction is 3.3x larger for

single and 4.4x larger for double precision. Note that the growth of the LNS subtraction

and addition are fairly linear with the number of bits. This is because the memory only

increases in width and not depth as the word size increases.

5.5 Another floating point library

After discussing our results with the community, a few engineers versed in the area of

computer arithmetic on FPGAs suggested that the implementation of the divider used for

floating point division has a large impact on the area and latency of the floating point

divider. They also discussed that current uses of LNS are for applications that require

word sizes smaller than single precision. The smaller word sizes make it possible to do

the converters with look-up table in memory which results in smaller and faster circuits.

This prompted us to make a comparison to another floating point library that had a

different floating point divider implementation and was capable of doing word sizes other

than single and double precision. The second library from Leeser et al [Belonovic 02] is

fully parameterizable and computes the mantissa division with reciprocal and multiply

method to contrast the restoring division used in the Underwood library. The reciprocals

are stored in a look-up table. This means that double precision division is unrealizable

due to memory requirements.

21

The following results include a “half” precision word size which is four bits of exponent

and 12 bits of significand. The single and double precision LNS data is identical to the

results above but is include for easy comparison

5.6 Multiplication
Table 6. Area and latency of Leeser floating point and LNS multiplication.

 half single double
 FP LNS FP LNS FP LNS

slices 178 13 377 20 1035 36
multipliers 1 0 4 0 9 0
18K BRAM 0 0 0 0 0 0

units per FPGA 113 1442 52 537 24 298
eq slices 196 13 449 20 1196 36

latency(ns) 19.8 6.9 30.6 10 44.8 12

5.7 Division

Table 7. Area and latency of Leeser floating point and LNS division.

 half single
 FP LNS FP LNS

slices 183 13 412 20
multipliers 2 0 8 0
18K BRAM 1 0 7 0

units per FPGA 28 1442 7 537
eq slices 246 13 751 20

latency(ns) 35.9 6.6 44.9 10

5.8 Addition

Table 8. Area and latency of Leeser floating point and LNS addition.

 half single double
 FP LNS FP LNS FP LNS

slices 166 341 360 750 757 1944
multipliers 0 9 0 24 0 72
18K BRAM 0 4 0 4 0 8

units per FPGA 113 6.2 52 2.33 24 0.78
eq slices 166 613 360 1291 757 3456

latency(ns) 25.3 63.2 33.2 91 44.9 107

22

5.9 Subtraction
Table 9. Area and latency of Leeser floating point and LNS subtraction.

 half single double
 FP LNS FP LNS FP LNS

slices 167 418 360 838 756 2172
multipliers 0 9 0 24 0 72
18K BRAM 0 8 0 8 0 16

units per FPGA 113 6 52 2.33 24 0.78
eq slices 167 802 360 1491 756 3907

latency(ns) 23.2 65 33.2 95 44.9 110

There are a few things of interest about the above data. Notice that for the single

precision floating point divider, the Leeser library divider is 18% smaller and 4x faster

than the Underwood library. The large difference in latency is due to the use of look-up

tables versus computing the mantissa division. Also notice that the LNS adder is still

quite large and slow at half precision. This is because even at half precision, the memory

requirement for a look-up table approach is prohibitive.

5.10 Convert floating point to LNS
Table 10. Area and latency of a conversion from floating point to LNS.

 half single double
slices 19 163 7631

multipliers 0 0 0
18K BRAM 3 24 0

units per FPGA 18.7 2.3 1.4
norm. area 103 832.6 7712
latency(ns) 7.6 76 380

.

Converting from floating point to LNS has typically been done with ROMs [Koren 02]

for small word sizes. For larger words, an approximation must be used. Two algorithms

were uses for this approximation, one for single precision [Wan 99] and another for

double precision [Wan99]. Even though the algorithm for double precision conversion

does not use any memory, it performs 52 iterations of a modified binary division which

explains the large normalized area.

23

5.11 Convert LNS to floating point
Table 11. Area and latency of a conversion from LNS to floating point.

 half single double
slices 10 236 3152

multipliers 0 20 226
18K BRAM 3 4 14

units per FPGA 14 2.8 0.25
norm. area 93.8 866 9713

The area of the LNS to floating point converter is dominated by the multipliers as the

word sizes increases. This is because in order to offset the exponential growth in

memory, the LNS integer is divided more times for smaller memories.

24

6 Analysis

6.1 Area benefit without conversion

The benefit or cost of using a certain format depends on the makeup of the computation

that is being performed. The ratio of LNS suited operations (multiply, divide) to floating

point suited operations (add, subtract) in a computation will have an effect on the size of

a circuit. Figure 3 shows the plot of the percentage of multiplies to addition that is

required to make LNS have a smaller normalized area than floating point. For example,

for a single precision circuit in the Underwood library (figure 3a), the computation

makeup would have to be 71% multiplies to 29% additions for the two circuits to be of

even size. More than 71% multiplies would mean that an LNS circuit would be smaller

and anything less means a floating point circuit would be smaller. For double precision,

the break even point is 73% multiplications versus additions. Notice that for half

precision, the number of multiplies required remains about the same. This is because half

precision still requires too much memory to make a look-up implementation of LNS

addition possible.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

single double

%
 m

ul
tip

lie
s

LNS
FP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

half single double

%
 m

ul
tip

lie
s

LNS
FP

 (a) (b)
Figure 3. Plot of the percentage of multiplies versus additions in a circuit that make LNS beneficial as far

as equivalent slices for the Underwood library (a) and the Leeser (b) library.

Figure 4 shows the same analysis as figure 3 but for divisions versus addition instead of

multiplication versus addition. For division, the break even point for single precision is

49% divides and 44% divides for double precision for the Underwood library. The large

25

decline in percentages from multiplication to division is a result of the large increase in

size of the floating point division over floating point multiplication. Notice that for

single precisions, in the Leeser library, the percentage of divides is greater reflecting the

18% reduction in the Leeser floating point multiplier over the Underwood divider.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

single double

%
 d

iv
id

es

LNS
FP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

half single

%
 d

iv
id

es

LNS
FP

 (a) (b)
Figure 4. Plot of the percentage of divides versus additions in a circuit that make LNS beneficial as far as

equivalent slices for Underwood library (a) and the Leeser (b) library.

Even though the LNS multiplier is 45x and 94x smaller than the floating point multiplier

and the LNS adder is only 3x and 4x larger than the floating point adder, a large

percentage of multiplies is required to make LNS a smaller circuit. This is because the

actual number of equivalent slices for the LNS adder is so large. For example, the LNS

single precision adder is 867 slices larger than the floating point adder while the LNS

multiplier is only 348 slices smaller than the floating point multiplier.

6.2 Area benefit with conversion

What if this computation requires floating point numbers at the I/O, making conversion

required? This is a more complicated space to cover because the number of converters

needed in relation to the number and makeup of the operations in a circuit affects the

tradeoff. The more operations done per conversion the less overhead each conversion

contributes to the circuit. With lower conversion overhead, fewer multiplies and divides

versus additions is required to make LNS smaller. Another way to look at this is for each

26

added converter, more multiplies and divides are need per addition to make the

conversion beneficial.

The curves in figure 5 show the break even point of circuit size if it was done strictly in

floating point, or in LNS with converters on the inputs and outputs. Anything above the

curve would mean a circuit done in LNS with converters would be smaller. Any point

below means it would be better to just stay in floating point. As can be seen in figure 5a,

a single precision circuit needs a minimum of 2.5 operations per converter to make

conversion beneficial even if a circuit has 100% multiplies. This increases to 8

operations per conversion for double precision. Notice that the two curves are

asymptotic to the break even values in figure 3 where there is assumed no conversion.

This is because when many operations per conversion are being performed, the cost of

conversion becomes irrelevant. Notice that the half precision curve approaches the 70%

multiplies line very quickly. This is because at half precision, the converters can be done

with look-up tables in memory and therefore it only takes a few operations to offset the

added area of the half precision converters. Single and double precision have to use an

approximation algorithm which are large as can be seen in table 6 and 7.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

operations per converter

%
 m

ul
tip

lie
s

single
double

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40

operations per conversion

%
 m

ul
tip

lie
s

half
single
double

 (a) (b)
Figure 5. Plot of the operations per converter and percent multiplies versus additions in a circuit to make

the area the same for LNS with converters and floating point for the Underwood library (a) and the Leeser

(b) library.

27

Figure 6 is identical to figure 5 except that it is for divides versus additions instead of

multiplies. Again, the break even point for the Leeser (figure 6b) single precision divider

is slightly higher than the Underwood divider (figure 6a) due to it’s smaller equivalent

slice count.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

operations per conversion

%
 d

iv
id

es

single
double

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40
operations per converter

%
 d

iv
id

es

half
single

 (a) (b)
Figure 6. Plot of the operations per converter and percent divides versus additions in a circuit to make the

area the same for LNS with converters and floating point for the Underwood library (a) and the Leeser (b)

library.

Notice that the 100% line in both figure 5 and 6 show how many multiplies and divides

in series are required to make converting to LNS for those operations beneficial. For

example, for double precision division, as long as the ratio of divisions to converters is at

least 3:1, converting to LNS to do the divisions in series would result in smaller area.

The conversion can be looked at in the other direction as well. While it is less likely that

a floating point computation would need LNS at the I/O, it could be beneficial to change

a LNS computation to a floating point computation for a section of a computation that

has a high ratio of additions. Figure 7 plots the break even point for converting from

LNS to floating point and back to LNS for the number of additions versus

multiplications. Notice that in general, the break even curves are lower than when

conversion from floating point to LNS was considered. This is because of the cost of

28

LNS addition over floating point addition is larger than the cost of floating point

multiplication or division.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60
operations per conversion

%
 a

dd
iti

on
s

single
double

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60
operations per conversion

%
 a

dd
s

half
single
double

 (a) (b)
Figure 7. Plot of the operations per converter and percent addition versus multiplication in a circuit to

make the area the same for LNS and floating point with converters for the Underwood library (a) and the

Leeser (b) library.

Figure 8 is identical to figure 7 but is for additions versus divisions instead of additions

versus multiplications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60
operations per conversion

%
 a

dd
iti

on
s

single
double

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60
operations per conversion

%
 a

dd
iti

on
s

half
single

Figure 8. Plot of the operations per converter and percent addition versus division in a circuit to make the

area the same for LNS and floating point with converters for the Underwood library (a) and the Leeser (b)

library.

29

6.3 Performance benefit without conversion

A similar tradeoff analysis can be done with performance as was performed for area.

However, now we are only concerned with the makeup of the critical path and not the

circuit as a whole. Figure 9 show the percentage of multiplies versus additions on the

critical path that is required to make LNS faster. For example, for the Underwood library

(figure 6a) it shows that for single precision, at least 45% of the operations on the critical

path must be multiplies in order for an LNS circuit to be faster. Anything less than 45%

would make a circuit done in floating point faster. For the Leeser library, the break even

points are much higher due to the reduced latency of the circuits (see results).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

single double

%
 m

ul
tip

lie
s

LNS
FP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

half single double

%
 m

ul
tip

lie
s

LNS
FP

 (a) (b)
Figure 9. Plot of the percentage of multiplies versus additions in a circuit that make LNS beneficial in

latency for the Underwood library (a) and the Leeser (b) library.

Figure 10 is identical to figure 9 but for addition versus division instead of multiplication.

The large difference in the break even points of the two for single precision are due to the

differences in the mantissa divider as discussed previously.

30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

single double

%
 d

iv
id

es

LNS
FP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

half single

%
 d

iv
id

es

LNS
FP

 (a) (b)
Figure 10. Plot of the percentage of divisions versus additions in a circuit that make LNS beneficial in

latency for the Underwood library (a) and the Leeser (b) library.

31

7 Conclusion
In this paper we created a guide for determining when an FPGA circuit should be

performed in floating point or LNS. We showed that while LNS is very efficient at

multiplies and divides, the difficulty of addition and conversion are great enough to

warrant the use of LNS only for a small niche of algorithms. For example, if a designer

is interested in saving area, then the algorithm will need to be at least 70% multiplies or

50-60% divides in order for LNS to realize a smaller circuit if no conversion is required.

If conversion is required or desired for a multiply/divide intensive portion of an

algorithm, all precisions require a high percentage of multiplies or divides and enough

operations per conversion to offset the added conversion area. If latency of the circuit is

the top priority then an LNS circuit will be faster if 60-70% of the operations are multiply

or divide. We also showed that the implementation of the mantissa divider has a larger

effect on the latency of the circuit than the area. These results show that for LNS to

become a suitable alternative to floating point for FPGAs, better addition and conversion

algorithms need to be developed to more efficiently compute the non-linear functions.

32

BIBLIOGRAPHY
Y. Wan, C.L. Wey, "Efficient Algorithms for Binary Logarithmic Conversion and Addition," IEE
Proceedings, Computers and Digital Techniques, vol.146, no.3, May 1999.

I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd., Natick, MA,
2002.

P. Belonovic, M. Leeser, “A Library of Parameterized Floating Point Modules and Their
Use”12th International Conference on Field Programmable Logic and Applications. September,
2002.

J. Detrey, F. Dinechin, “A VHDL Library of LNS Operators”, Signals, Systems & Computers,
2003 The Thirty-Seventh Asilomar Conference on , vol. 2 , 9-12 Nov. 2003, pp. 2227 – 2231.

D.M. Lewis, “An Accurate LNS Arithmetic Unit Using Interleaved Memory Function
Interpolator”, Computer Arithmetic, 1993. Proceedings., 11th Symposium on , 29 June-2 July
1993, pp. 2-9.

K.H. Tsoi et al., “An arithmetic library and its application to the N-body problem”, Field-
Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium
on , 20-23 April 2004 pp. 68 – 78.

B.R. Lee, N. Burgess, “A parallel look-up logarithmic number system addition/subtraction
scheme for FPGA”, Field-Programmable Technology (FPT), 2003. Proceedings. 2003 IEEE
International Conference on , 15-17 Dec. 2003 pp. 76 – 83.

J.N. Coleman et al., “Arithmetic on the European logarithmic microprocessor”, Computers, IEEE
Transactions on , vol. 49 , issue 7 , July 2000 pp. 702 – 715.

J.N. Coleman, E.I. Chester, ”A 32 bit logarithmic arithmetic unit and its performance compared
to floating-point”, Computer Arithmetic, 1999. Proceedings. 14th IEEE Symposium on, 14-16
April 1999 pp. 142 – 151.

B. Fagin, C. Renard, “Field Programmable Gate Arrays and Floating Point Arithmetic”, IEEE
Transactions on VLSI Systems, Vol. 2, No. 3, Sept. 1994, pp. 365-367.

L. Louca, T.A. Cook, W.H. Johnson, “Implementation of IEEE Single Precision Floating Point
Addition and Multiplication on FPGAs”, FPGA’s for Custom Computing, 1996.

R. Matousek et al., “Logarithmic Number System and Floating-Point Arithmetics on FPGA”,
FPL, 2002, LNCS 2438, pp. 627-636.

Y. Wan, M.A. Khalil, C.L Wey., “Efficient conversion algorithms for long-word-length binary
logarithmic numbers and logic implementation”, IEE Proc. Comput. Digit. Tech”, vol. 146, no. 6.
November 1999.

K. Underwood, “FPGA’s vs. CPU’s: Trends in Peak Floating Point Performance,” FPGA 04.

33

J.N. Coleman et al., “Arithmetic on the European logarithmic Microprocessor” IEEE
Transactions on Computers, vol. 49, no. 7, 2000, pp. 702-715.

Chipworks. Xilinx_XC2V1000_die_photo.jpg www.chipworks.com

J. Liang, R. Tessier, O. Mencer, “Floating Point Unit Generation and Evaluation for FPGAs”
Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th Annual IEEE
Symposium on, 9-11 April 2003 pp. 185 – 194.

R. Matousek et al., “Logarithmic Number Systems and Floating Point Arithmetics on FPGA”
FPL 2002, pp. 627-636.

K.H. Abed, R.E. Siferd, ” CMOS VLSI implementation of a low-power logarithmic converter”
Computers, IEEE Transactions on, vol. 52, issue 11, Nov. 2003, pp. 1421 – 1433.

G. Lienhart, A. Kugel, R. Manner, ” Using floating-point arithmetic on FPGAs to accelerate
scientific N-Body simulations”, Field-Programmable Custom Computing Machines, 2002.
Proceedings. 10th Annual IEEE Symposium on, 22-24 April 2002, pp. 182 – 191.

A. Walters, P. Athanas, “A scaleable FIR filter using 32-bit floating-point complex arithmetic on
a configurable computing machine”, FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on, 15-17 April 1998, pp. 333 – 334.

W. Xiaojun, B.E. Nelson, “Tradeoffs of designing floating-point division and square root on
Virtex FPGAs”, Field-Programmable Custom Computing Machines, 2003. FCCM 2003. 11th
Annual IEEE Symposium on, 9-11 April 2003, pp. 195 – 203.

Y. Li, W. Chu, “Implementation of single precision floating point square root on FPGAs”,
FPGAs for Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium
on, 16-18 April 1997, pp. 226 – 232.

C.H. Ho et al., “Rapid prototyping of FPGA based floating point DSP systems”, Rapid System
Prototyping, 2002. Proceedings. 13th IEEE International Workshop on, 1-3 July 2002, pp.19 –
24.

A.A. Gaffar, “Automating Customisation of Floating-Point Designs”, FPL 2002, pp. 523-533.

Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet”, v3.4, March 1, 2005.

