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Abstract

Resource Sharing in Modulo-Scheduled Reconfigurable Architectures

Stephen A. Friedman

Co-Chairs of the Supervisory Committee:
Professor William H.c. Ebeling

Computer Science & Engineering

Professor Scott Hauck
Electrical Engineering

This dissertation explores compiler algorithms for sharing resources in coarse-grained re-

configurable arrays (CGRAs). CGRAs are scalable, word-oriented architectures designed

for executing high-performance computation kernels. Instead of having a single configu-

ration like an FPGA or a program counter indexing arbitrary instruction words, a CGRA

maintains several configurations on chip that are sequenced through by a modulo-counter,

changing the configuration each cycle. This model of execution works well on pipelined

compute-intensive loops with a large amount of instruction level parallelism and limited

control flow. CGRAs provide high-efficiency, high-throughput computing, achieving an

order of magnitude improvement in operations per cycle over conventional CPUs.

Even with their considerable strengths, CGRAs’ flexibility and efficiency can still be

improved through compiler-based resource sharing. In this dissertation I propose and

demonstrate the following novel sharing techniques applicable to this execution model:

• Sharing Static Routing – Reducing the number of bits needed per configuration

can save area and power, or be used to allow for more configurations, increasing

flexibility. One way of reducing the number of control bits is to limit portions of

the interconnect to a single, repeated configuration while the rest of the array is

free to use multiple configurations. Towards this goal, I propose an extension to





the PathFinder/QuickRoute routing algorithms for supporting sharing of statically

configured pipelined routing resources in a time-multiplexed system.

• Predicate Aware Sharing of Compute and Routing Resources – The basic modulo-

scheduled execution model can efficiently pipeline and execute a simple loop. CGRAs

often support complex control flow by reserving resources to perform all compu-

tations, and then ignoring the results of the untraversed control paths. To reduce

this overhead, I propose a scalable hardware modification, hardware abstractions,

and a set of Schedule/Place/Route algorithms capable of predicate-aware map-

ping. This system allows sharing of resources across operations executed under

mutually-exclusive control flow – for example, reusing resources across then and

else branches of an if construct. It achieves this sharing by exploiting otherwise

wasted configuration memory.

These sharing techniques provide more efficient use of CGRA resources. Sharing

static routing helps reduce the large configurations needed for CGRAs. Mutual-exclusive

sharing reduces the burden of control flow, which can broaden the set of applications

CGRAs can accelerate, and provide some flexibility to the programmer. It allows the

programmer to handle infrequent or exceptional cases directly on the accelerator without

forcing portions of the accelerator to remain idle waiting for those cases. These algorithms

are implemented and evaluated across a suite of benchmarks to demonstrate the benefits

of sharing in CGRAs.
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Chapter 1

INTRODUCTION

This dissertation explores resource sharing in modulo-scheduled reconfigurable archi-

tectures. This introductory chapter will explain what a modulo-scheduled reconfigurable

architecture is and present a view of the current computing landscape, which explains

when and why resource sharing in such an architecture is beneficial. Starting at the

broadest sense of digital computing devices, it then narrows down to the specific appli-

cation space to which this work applies. The path taken from broad to narrow will help

motivate this work because the trajectory taken will help highlight lightly explored areas

of digital computation relative to more main-stream solutions.

1.1 Flexibility in Computation

In the broadest sense, a digital computation is accomplished by having a digital device

carry out a set of manipulations on a set of inputs to produce some outputs. Instantiat-

ing a computation in a digital device is a task that relies on balancing conflicting costs.

Though there may be many different costs, some of the most important are time to design

the system, monetary cost to design the system, cost of an instance of the system, time of

computation, silicon area, and power per computation.

Some of these costs are incurred only once or a few times relative to the number of

times the device executes a computation, and so can be amortized when considering a

per-computation cost. One way of amortizing these costs is to create a device for a single

application that will be used repeatedly over the life of the device. An example of this

is transforming data streams to be sent over radio protocols, as in a cellular telephone.

Another way of amortizing these costs is to support a broad range of applications on

the same device. An example of this is the processor in a desktop computer, which can

rapidly switch between entertainment, finance, scientific simulation, communication, and
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a myriad of other applications at the user’s request. I will illustrate this range of flexibility

by discussing two distant points in the range – Application Specific Integrated Circuits

and general-purpose processors.

Application Specific Integrated Circuits (ASICs) represent one end of this flexibility

range. Computations that can amortize the design, fabrication and dedicated hardware

costs can be directly embedded into hardware that does nothing but carry out that com-

putation as efficiently as possible. These applications require the least flexibility, and as

a result a great amount of design cost can be used to produce something that has low

per-computation cost – it is fast, low power, and can use a minimal amount of resources

to directly execute the computation at hand.

At the other end of this flexibility spectrum are Von Neumann style general- purpose

processors (CPUs). This type of device is highly flexible – it can compute any possi-

ble computation up to the system’s intrinsic resource limits. This flexibility is obtained

through reconfigurability, time multiplexing, and an extra source of input – the instruc-

tion stream. A very abstract way of understanding a processor is to view it as a hardware

device that performs a single word-sized manipulation at a time, which is configured by

a special instruction input. A CPU performs a large computation by time-multiplexing

the processor across all of the manipulations for a given computation, and storing the

intermediate results in a memory system. The instruction stream defines the sequencing

for this time-multiplexed reconfiguration.

However, in a CPU this flexibility comes at a cost. The direct hardware implementa-

tion of a computation carries out independent manipulations at the same time, whereas

a general-purpose processor must operate according to the serialization constraints of

the instruction stream, leading to an increase in computation time. Advanced processors

are able to eliminate some of the latency of this serialization in local windows of the in-

struction stream, but beyond the granularity of that window, they still serialize according

to the instruction stream. Additionally, individual operations may take longer and con-

sume more space – for example adding 4 to a 32-bit input with a general purpose 32-bit

adder in a processor will take longer and use more hardware than dedicated increment

by 4 hardware. Also, storing intermediate results in a memory system has space and
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time overheads compared to sending an output value down wires (and possibly through

pipeline registers) to its consumer in an ASIC. Even the word width imposes overhead.

For example, if the width of the computations is 4-bit, then there is a hardware and power

overhead in a 32-bit CPU for computing over the extra 28 bits.

General-purpose processors also increase flexibility in an incredibly powerful way,

but perhaps one that is taken for granted – the ability of the input to alter the instruction

stream and intermediate storage access. Viewing a processor plus instructions as a way to

emulate a hardware instance of a computation, being able to manipulate the input stream

is like performing hardware optimizations on the computation at run-time. By jumping

around a section of code that generates unneeded results, the emulation is being pruned,

as if the hardware was dynamically removed. Additionally, looping can be seen as dy-

namically duplicating hardware, one emulated copy per loop iteration. Altering accesses

to intermediate storage (indirect memory addressing) is essentially dynamically chang-

ing the communication patterns of the emulated hardware. This can change the entire

computation graph. Most programmers probably do not think of unbounded hardware

when writing a while loop, or dynamic re-wiring when accessing an array, but that is the

power of these constructs – they convert the wildly differing costs of hardware to directly

execute these computations into a fixed hardware cost for the processor plus a wildly

differing execution time per computation.

1.2 The Space Between ASICs and CPUs

The design space between ASICs and CPUs in terms of this broadly defined flexibility

is quite large. It is also not a linear space, but multi-dimensional, where the different

types of costs can be traded off against one another, for instance trading amortizable costs

for per-computation costs based on the characteristics of the computations covered. This

section will briefly touch on several architectures that represent different points in this

space and their relations to one another. This is done merely to provide context, as these

broad caricatures of architectures are median values in the design space, and there are
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examples of real-world projects that make trade-offs which blur the boundaries between

these architectures. This list is also not meant to be exhaustive, but illustrative.

1.2.1 FPGA

Field Programmable Gate Arrays (FPGAs) are often thought of as a sea of gates. They have

look-up tables (LUTs) for implementing arbitrary Boolean functions, registers for storing

intermediate results, and configurable wiring to connect them all together. The equivalent

to instructions for an FPGA is a bit-stream, which is all of the bits needed to fill in the LUTs

and set up the configurable wiring. For a particular computation, a circuit design process

similar to that of an ASIC is used to generate a bit-stream, this bit-stream is loaded, and

then the computation is run. Using an FPGA implementation is one of the most literal

programmable ways to emulate an ASIC, and so requires a proportional per-operation

computation cost, inflated by the overhead of reconfigurability. In general, FPGAs do not

do time multiplexing except at the level of re-configuring between computations. Possible

reasons for this are that the bit-stream (instruction) is so large that either the bandwidth

needed to read them at a practical rate for fine-grained multiplexing is impractical or

the storage overhead on-chip makes it impractical to store multiple configurations at one

time. Exceptions to this do exist, but they are rare. FPGAs amortize the fabrication level

design times and tooling costs across different computations, but retain the circuit level

design costs and limitations of bounded hardware size.

1.2.2 VLIW

Very Long Instruction Word architectures (VLIWs) are a step from CPUs towards more

parallel computations. Unlike a single-issue CPU that has one reconfigurable execution

unit, VLIWs combine a small number of execution units that can operate in parallel.

The instruction bandwidth is increased relative to a regular CPU, but if the bandwidth

can be supported, this can lead to faster per-computation execution time at the cost of

some more hardware and more complicated instruction generation. Most VLIWs provide

uniform access to intermediate storage across all execution units through a large crossbar,

which can become a scaling bottleneck. Thus, going past a small number of execution
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units introduces hardware costs and cycle times from the quadratic scaling of a crossbar

renders these wide-issue machines impractical.

1.2.3 Modulo-Scheduled CGRA

Coarse-Grained Reconfigurable Arrays or Architectures (CGRAs) represent a point in the

flexibility space that is between FPGAs and VLIWs. This dissertation explores compiler

techniques for making computation on CGRAs more efficient and flexible. Like a VLIW

or CPU, a CGRA is built at a word-level, hence they are coarse-grained relative to the bit

level of FPGAs. They are intended to have many more execution units than a traditional

VLIW – where an FPGA is a sea of gates, a CGRA is a sea of execution units. They are

usually tiled in some form, and so they have a scalable configurable interconnect more

like an FPGA, and less like the all-to-all crossbar configuration of a VLIW. This large

amount of parallelism and scalable interconnect architecture means that CGRAs are most

appropriate for running computations similar to those placed on an FPGA. Relative to

an FPGA, a CGRA is more appropriate for computations where the natural bit width is

coarse enough that the bit-level configuration overhead of wide computations in FPGAs

outweighs the overhead of using wide units on narrow computations in CGRAs.

Consider devoting equivalent die area to an FPGA or a CGRA. To route a word of data

through the interconnect in an FPGA, each bit of that path will be individually configured

along the entire path. In a CGRA, all the bits of the word will be routed together, so a

single configuration can be used across all of the bit-lines at every configurable junction in

the path. In contrast to this, an FPGA requires a separate configuration for each bit-line.

This provides a word-sized reduction in the amount of configuration memory needed

to route a word of data when moving from the fine-grained FPGA configuration to the

CGRA. Similarly, there will be a large reduction when switching from a word-sized set of

LUTs to a single hard-wired execution unit. Relative to a VLIW, a CGRA instruction/con-

figuration can still be hundreds of times bigger, due to the large number of execution units

and the explicit nature of interconnect control. This means that the instruction bandwidth

that a CGRA can support is likely not large enough to fetch an arbitrary instruction every
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cycle like a CPU, and instead must operate more like an FPGA, where the configuration

is loaded at the beginning and re-used throughout the life of the computation.

Many CGRAs use their relative space advantage over FPGAs to incorporate multiple

configurations on chip at a time. This can be seen as having a few instructions to loop

through in the execution. The baseline for CGRAs used in this dissertation uses the simple

method of directly looping through these configurations, one per cycle, during execution.

This style of execution is common for inner loops in VLIW processors, and research into

these processors developed techniques such as software pipelining and modulo schedul-

ing to extract appropriate parallelism from programs written in high-level languages. The

use of high-level languages can lower the development time of applications relative to the

traditional circuit-level design of FPGAs [XSAH10].

This dissertation focuses on Modulo-Scheduled CGRAs. My work is part of the Mosaic

project to explore this space through coupled high level language design, compiler back-

end design, and architecture exploration, as described in Chapter 2. In this ecosystem, I

want to make the best use of the on-chip instruction space. In this dissertation, I propose

and analyze compiler back-end techniques for extending the flexibility of this on-chip

instruction space. This includes both reducing the amount of on-chip instruction space

needed and supporting flexible resource sharing to exploit the available space that may

otherwise be wasted. In particular, this dissertation makes the following contributions,

evaluating them in the context of SPR, the compiler back-end of the Mosaic tool-chain:

• Practical VLIW/FPGA Algorithm Adaptation – SPR is composed of scheduling

adapted from VLIW compilers and placement and routing adapted from FPGA

tools. Practical coupling of the algorithms is achieved through a novel latency

padding technique, providing feedback between placement/routing and schedul-

ing that yields throughput improvements in the final mappings. In addition, a

dynamic clustering algorithm is proposed for clustering critical loops. This cluster-

ing improves throughput by adapting FPGA placement to the limitations of fixed-

frequency, highly pipelined interconnect. These additions are described and evalu-

ated in Chapter 3.
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• Sharing Static Routing – Reducing the number of bits needed per configuration

can save area and power, or be used to allow for more configurations to increase

flexibility. One way of reducing the number of control bits needed is to provide

only one configuration for a subset of the architecture that will be re-used across

the time-multiplexed configurations of the rest. Towards this goal, I propose an

extension to the PathFinder/QuickRoute routing algorithms for supporting sharing

of statically configured pipelined routing resources in a time-multiplexed system.

This extension is described and evaluated in Chapter 4.

• Predicate Aware Sharing of Compute and Routing Resources – The basic modulo-

scheduled execution model can efficiently pipeline and execute a simple loop. More

complicated control flow is often accomplished by reserving resources to perform

all computations, and then ignoring the results of the untraversed control paths. To

reduce the resource cost of complicated control flow, and thereby increase flexibility,

I propose a Schedule/Place/Route system capable of predicate-aware mapping that

allows sharing of resources across operations executed under mutually-exclusive

predicates. An overview of the abstractions needed to support predicate-aware

mapping is given in Chapter 5. In Chapter 6, I describe the adaptation of VLIW

predicate-aware scheduling to CGRAs. In addition, I explore the trade-offs that

occur when sharing leads to longer loop-carried dependencies, which can reduce

throughput instead of improving it. In Chapter 7 I describe the changes needed

to support predicate aware sharing in Simulated Annealing based placement. In

Chapter 8, I describe a method for adapting both the PathFinder and QuickRoute

algorithms to deal with the added complexity of predicate aware sharing. The mod-

ification to PathFinder is particularly interesting because it comes from a general-

ization of the static route sharing described in Chapter 4. The combined system is

evaluated in Chapter 9.

Finally, Chapter 10 provides a summary of conclusions and future directions.
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Chapter 2

THE MOSAIC PROJECT

The implementation and evaluation work in this dissertation was carried out as part

of a larger research project at the University of Washington. This chapter provides an

overview of the Mosaic project, along with introductory coverage of the different elements

of the toolchain. 1

2.1 Mosaic Tool-chain

The Mosaic project is an exploration of architectures and programming tools with the

goal of quantifying the architectural trade-offs and necessary innovations in tool support

for CGRAs. The project consists of three parts: a new system-level language – Macah; an

architecture-adaptive back-end mapping tool – SPR; and an architecture generation tool

and characterization effort. Figure 2.1 shows a block diagram of the Mosaic project tools.

The final goal is to produce a high-performance, low-power device design and a set of

compiler tools that will ease the programming burden.

2.2 Macah

The front of the tool-chain is a set of benchmarks and a front-end compiler for a language

called Macah that was developed as part of the dissertation work of Benjamin Ylvisaker

[Ylv10]. Macah is a C-like language, borrowing most of its syntax from C. There are

three significant differences between the Macah compiler in Mosaic and traditional C

compilers that are important for the work in this dissertation: support for an explicitly

marked kernel for acceleration, streaming I/O with relaxed re-ordering semantics, and

automated flattening of nested control flow within a kernel.

1The portions excerpted (2.1, 2.4, 3.1-3.4, 4.1-4.2.3) are based on an earlier work: SPR: An Architecture-
Adaptive CGRA Mapping Tool, in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA’09) c�ACM, 2009. http://doi.acm.org/10.1145/1508128.1508158
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Figure 2.1: Mosaic project tool-chain.

In Macah, specific portions of an application that are intended for special hardware ac-

celeration are denoted as a kernel block, demarked by the kernel keyword and enclosed

within curly braces. The execution model assumes a general-purpose processor will exe-

cute the majority of the control heavy code, and upon encountering a kernel block, control

will transfer to the accelerator to execute that kernel quickly and efficiently.

Communication of data between the CGRA and the general-purpose processor’s main

memory occurs through two methods. The run-time system transfers any live variables

or arrays when control is transferred to the accelerator and back. Special streaming op-

erations handle data transfer during kernel execution. A stream accessor is defined for

each stream that specifies how data is read from memory and sent to the kernel, and how

it is written from the kernel back to memory. Within the kernel, stream-receive and send

operations will retrieve and write values to the streams. To allow for more aggressive

loop-pipelining of the kernels, the ordering semantics of the stream accesses are relaxed

from strict program order. Instead, accesses to the same stream will be ordered relative

to each other, but there is no guarantee on the ordering of accesses between different

streams.
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In Mosaic, a kernel executes as a single data-flow graph in a heavily pipelined loop. To

make this possible, Macah applies a generalized form of flattening to turn nested control

flow into a single loop with predicated blocks. This allows the kernel to execute with

a large amount of instruction level parallelism when mapped to a spatially distributed

architecture with many compute units. The research that went into Macah developed

enhanced loop flattening in parallel with the work presented as part of this dissertation.

As a result, the capabilities of the Macah compiler have varied over the course of the

research presented here. In particular, for the work presented in Chapter 3 and Chapter

4, this flattening wasn’t fully developed, so the benchmark programmers hand-flattened

the kernels. In addition, the programmers used manual back-substitution of the induction

variables, as described in [TLS90], to overcome some inefficiencies in the automated loop-

induction logic generation. As the Macah front end matured and the enhanced loop

flattening support came to fruition, the need for hand-flattening was eliminated. The

benchmarks were returned to versions with more traditional, easier to program nested

loops and conditionals. These versions were used to evaluate resource sharing across

mutually exclusive code paths in Chapters 5-9.

Macah currently supports three primary modes of compilation. The first mode is

used for program development and debugging. It is a translation to C code for execution

entirely on a general-purpose processor and debugging with traditional tools. The second

mode creates a data-flow simulation of the kernel. The kernel portion drives a Verilog

simulator in concert with the sequential code compiled for the general-purpose processor.

This simulation exposes the parallelism of the kernel, which may help identify more

concurrency bugs, as the execution semantics are a closer match to the final accelerator

target. The final mode of compilation produces the intermediate data-flow graph that will

be mapped to the CGRA architecture. The back-end CGRA mapping tool, SPR, uses this

data-flow representation to map the program to the CGRA architecture.

As part of this process, Macah can also maintain and output control dependence infor-

mation. This information indicates which operations were control dependent on values

from other operations according to the original nested control flow, and additionally any

control flow synthesized in the compilation process. Once a kernel has been flattened,
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it is difficult to re-construct this information, so maintaining this information has proven

useful in allowing SPR to share resources based on mutually-exclusive control.

2.3 Architecture Generation

The CGRA architectures targeted by this tool-chain are generated from a set of parameters

and basic cells describing the compute units and their organization. The architecture

generator was created as part of the dissertation work of Brian Van Essen [VE10] exploring

power efficiency in CGRAs. The architecture generator is built as a plug-in to the open-

source Electric VLSI Design System [SS].

The use of the Electric system provides a way to define the basic computation units

that will be used in the architecture in a schematic-capture environment with Verilog

annotations. The architecture generation plug-in then reads an architecture configuration

file and uses these base cells to generate a full CGRA.

CGRAs generated in this manner consist of clusters of compute unit cells that are

automatically connected via a full crossbar. These clusters are then connected together

with a top-level grid-style interconnect. Each cluster is connected to a switchbox of the

grid interconnect, and each switchbox is connected to the four neighboring switchboxes

in the grid. A block diagram illustrates this in Figure 2.2.

Figure 2.2: A 2x1 cluster CGRA block diagram.
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2.4 Mapping Applications to CGRAs using SPR

Previously, a number of CGRA architectures have been proposed, including RaPiD [ECF96],

ADRES [MVV+03a], MATRIX [MD96], Tartan [MG07], MorphoSys [SLL+00], and HSRA

[TMJ+99]. These architectures sampled the possible design space and demonstrated the

power, performance, and programmability benefits of using CGRAs.

Each of the previously mentioned CGRA projects required custom mapping tools that

supported a limited subset of architectural features. We developed a new adaptive map-

ping tool to support a variety of CGRAs. We call this architecture-adaptive mapping tool

SPR (Schedule, Place, and Route). SPR’s support for features unique to CGRAs makes

it a valuable tool for architecture exploration and application mapping across the CGRA

devices that have and will be developed.

2.4.1 Related Work

Despite the large number of CGRAs that have been proposed in the literature, little in

the way of flexible tools has been published. Most projects have mapping tools of some

form, but they are tied to a specific architecture and/or are only simple assemblers that

aid mapping by hand. The most flexible are DRESC [MVV+02] and the tool in [LCD03],

both of which only support architectures defined using their limited templates.

Of the existing tools, DRESC is the closest to SPR, as it is also intended as a tool for

architecture exploration and application mapping for CGRAs. DRESC exploits loop-level

parallelism by pipelining the inner loop of an algorithm. Operators are scheduled in time,

placed on a device, and routed simultaneously inside a Simulated Annealing framework.

Their results indicate good quality mappings, but the slowdown from using scheduling,

placement, and routing jointly within annealing makes it unusable for all but the smallest

architectures and algorithms. DRESC only supports fully time-multiplexed resources, not

the more efficient statically configured resources of architectures like RaPiD.

CGRA mapping algorithms draw from previous work on compilers for FPGAs and

VLIW processors, because CGRAs share features with both devices. SPR uses Iterative

Modulo Scheduling [Rau94] (IMS), Simulated Annealing [KGV83] placement with a cool-
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ing schedule inspired by VPR [BR97a], and PathFinder [ME95] and QuickRoute [LE04]

for pipelined routing.

IMS is a VLIW-inspired loop scheduling algorithm. IMS heuristically assigns oper-

ations to a schedule by specifying a start time for each instruction, taking into account

resource constraints in addition to data and control dependencies. SPR uses IMS for

initial operation scheduling, and we have extended IMS to support rescheduling with

feedback from our placement algorithm, letting us handle the configurable interconnects

of CGRAs.

FPGA mapping tools typically use Simulated Annealing for placement and PathFinder

for routing. VPR, which has become the de facto standard for FPGA architecture explo-

ration, is similar to SPR in that it seeks to be a flexible and open mapping tool that can

provide high quality mappings and support a wide spectrum of architectural features.

Unfortunately, it only applies to FPGAs. Given the demonstrate success of VPR, SPR

adopts the same base algorithms for the placement and routing stages, though they have

been extended to CGRAs by supporting multiplexing and solving the placement and

routing issues that arise when using a fixed frequency device.

SPR uses QuickRoute to solve the pipelined routing problem. More recently, Quick-

Route was extended to perform timing-driven routing [EH06] and have reduced memory

complexity [CE06]. SPR does not yet incorporate these extensions, but they may be added

in the future.

As shown by the authors of DRESC [MVV+02], mapping applications to CGRAs has

similarities to the problems of scheduling computations on VLIW architectures and plac-

ing and routing computations on FPGAs. The difficulty comes in making these algorithms

work together and adapting them to the particulars of CGRAs. For mapping, the appli-

cation is represented as a dataflow graph (shown in Figure 2.3) and the architecture as a

datapath graph. We describe our architecture representation in Section 2.5.

In DRESC, the authors chose to implement this mapping process as a monolithic

scheduling, placement, and routing algorithm unified within a Simulated Annealing

framework. Integrating placement and routing this way was shown to be significantly

slower for FPGAs in Independence [SHE05] when compared to the separate stages of
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Figure 2.3: Example of a simple dataflow graph.

VPR [BR97a]. The slowdown could be even worse when including the scheduling for

time-multiplexed coarse-grained devices, so the Mosaic tool-chain avoids the monolithic

approach. Instead, the mapping process is divided into three closely coupled but distinct

algorithms:

• Scheduling - ordering operations in time based on data and control dependencies.

• Placing - assigning operations to functional units.

• Routing - mapping data signals between operations using wires and registers.

To illustrate how these algorithms are combined, the main loop of SPR is shown in

Algorithm 2.1. It uses IMS [Rau94], Simulated Annealing [KGV83] placement, and Path-

Finder [ME95] for negotiated routing. QuickRoute [LE04] provides the signal level rout-

ing for PathFinder to produce pipelined routes. This allows flexible use of interconnect

registers during routing, rather than being limited to fixed register placement in register

files.

The other interesting subroutines are described throughout the rest of this paper. The

subroutine unrollGraph() of the datapath graph handles translating our architecture

description into a graph suitable for placement and routing, and is discussed in Section

2.5.1.

SPR was designed with several assumptions based on the types of programs it will

map and the range of current CGRAs. First, it assumes a kernel consists of a single

loop to be pipelined. Currently, a kernel can be described in the Macah language using

nested and sequenced loops, and the Macah compiler will turn them into a single loop

dataflow graph [CFV+07]. Second, we assume we are mapping to a modulo-counter,
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Algorithm 2.1: Main SPR Control Loop
begin1

while iterate do2

minII ← iterativeModuloSchedule(minII)3

unroll datapath graph by minII4

placeSuccess gets runSimulatedAnnealingPlacement()5

if placeSuccess then6

routeSuccess ← runPathFinderRouting()7

if ¬routeSuccess then8

increment minII9

increment SPRIterations10

iterate ← (¬(placeSuccess ∧ routeSuccess)∧ SPRIterations < maxIterations)11

end12

time-multiplexed architecture. That means the architecture can switch an entire configu-

ration per clock cycle using a modulo-counter. Though some architectures support more

complex control, this simple multiplexing is the most frequently implemented approach

across a range of architectures. Finally, SPR currently assumes a fixed frequency device

where routes cannot be constructed that violate that frequency. These assumptions are

not fundamental, and may be lifted in future work, but they limit the scope of the SPR

compilation problem to a manageable level while still applying to a broad set of CGRAs.

2.5 Abstract Representation

To achieve architecture-adaptability, SPR’s architecture representation remains very ab-

stract. An architecture is represented as a datapath graph, which is defined in Verilog

out of a few primitives. Verilog modules prefixed with primitive are used to represent

arbitrary functional units. The Verilog is flattened into a directed graph. Primitive Verilog

modules form the nodes and wires form the arcs. Two distinguished primitives receive

special treatment:

• primitive register - A registerq to be used by the router to route in time.

• primitive tap - A configurable connection between two wires (pass gate).
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Registers are distinguished so that QuickRoute [LE04] can use them for pipelined

routing. Additionally, they are stored with improved efficiency by not representing them

as nodes, but instead recording them as latency on arcs between nodes.

The connections in the interconnect that are controlled by configuration bits are rep-

resented as tap devices. A primitive tap device is a dynamic connection, meaning it has

an array of bits controlling its configuration allowing time multiplexing. A set of taps

whose outputs are connected to the same wire are aggregated into a logical mux by SPR

to ensure that two taps are never made to drive the same wire at the same time.

The user must do four things to support a new architecture. First, the user must de-

scribe the architecture in Verilog using primitive nodes as outlined above. Second, the

user must create a function to estimate the cost of routing from one node to another. This

is used for placement cost calculations and the A* search in QuickRoute. Additionally,

many architectures support the notion of clusters with cheaper/faster local interconnect

and more expensive global interconnect. SPR represents this by assigning every node a

cluster coordinate, where SPR assumes anything with the same coordinate is in the same

cluster. Third, the user must define a mapping between dataflow graph operation types

and primitive functional unit types. This mapping is a many-to-many relation, for exam-

ple mapping either an ADD or an OR operation onto an ALU functional unit, or mapping

an ADD operation to either an ALU or an ADDER functional unit. Finally, the user must

write a subroutine for translating the abstract internal configuration into an appropriate

form for the architecture, such as a bit-stream. The user writes SPR plug-ins to handle

the second through fourth items. This minimal amount of work to support a new archi-

tecture allows easy adaptation to a variety of CGRAs. The following sections provide a

more detailed explanation of each stage, now that an overview and the abstractions of

SPR have been presented.

2.5.1 Scheduling

The scheduling problem is addressed in SPR using the IMS [Rau94] algorithm. The re-

sult is a complete schedule that specifies when each operation can execute given the data

dependencies and architectural resource constraints. The schedule repeats every II (Initi-
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ation Interval) cycles, with a new iteration of the application loop starting each repetition.

The II is determined by several things, and the reader is directed to [Rau94] for the de-

tails, but one that is important to our discussion is the maximum recurrence loop. When

values from the current iteration are needed by future iterations, those values must be

computed before the future iteration needs them. This is called a recurrence loop or loop

carried dependence, and the largest recurrence loop is a lower bound on the II. This will

be important when we are discussing our CGRA-specific extensions to the placer.

Using IMS allows us to easily trade off between resource constraints and throughput.

To illustrate this, consider the following examples. Table 2.1 shows a possible schedule for

our example dataflow graph from Figure 2.3. The target datapath graph in this example

contains one ALU, one stream-in device, one stream-out device, and one constant device.

This example requires two ALU operations and two constants per iteration. However, the

architecture only has one of each, requiring the schedule to only start an iteration every

other cycle, with a four cycle latency.

Table 2.1: Example schedule with II 2 and length 4.

Cycle alu str i str o cnst

0 in[0] a[0] It0

1 add[0] b[0]

2 sub[0] in[1] a[1] It1

3 add[1] out[0] b[1]

4 sub[1] in[2] a[2] It2

5 add[2] out[1] b[2]

If the resources are increased by adding an ALU and another constant, it is possible to

use the schedule given in Table 2.2. The schedule length for a single iteration is still four

cycles, but a new iteration initiates every cycle. This yields an II of one, thus doubling the

throughput.

Operators that do not fall on the critical scheduling path may have some schedule

slack that allows their start time to change without violating any dependency constraints.

In these simple examples, b has some slack, and could be scheduled 1 cycle earlier. This

schedule slack is preserved and communicated forward to the placer to provide flexibility
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Table 2.2: Example schedule with II 1 and length 4.

Cycle alu0 alu1 str i str o cnst0 cnst1

0 in[0] a[0] It0

1 add[0] in[1] a[1] b[0] It1

2 add[1] sub[0] in[2] a[2] b[1] It2

3 add[2] sub[1] in[3] out[0] a[3] b[2] It3

by allowing moves in time within the slack window. Initially, the schedule is tightly

packed based on dependency and resource count constraints. Later, placement or routing

may not able to find a solution with this optimistic schedule, and re-scheduling will be

done to lengthen it. This lengthening will produce more slack and possibly more virtual

resources via the unrolling process described in the next section. This increases the chance

of a successful place and route, at the cost of latency and/or throughput.

Modulo Graph Unrolling

Once the schedule meets dependency and resource usage constraints, placement and rout-

ing need to determine where operations execute and how they will communicate. How-

ever, there is a mismatch between the assumptions for scheduling and the assumptions

for standard FPGA place and route algorithms. The scheduler assumes that all resources

can be made to do a different operation in each cycle of the II; that is, it has virtualized

the resources by a factor of II. Standard FPGA place and route algorithms do not support

this type of virtualization. To overcome this difference, SPR unrolls the architecture graph

II times, making one copy of the architecture for each cycle of the II. Each cycle within an

II is referred to as a phase. SPR also re-maps connections with non-zero latencies so that

they cross the appropriate number of phases, effectively routing forward in time. Since a

modulo schedule is being used, we create a modulo graph by wrapping any connections

beyond II phases back around to the beginning. This datapath graph transformation is

legal as long as II is less than the depth of the chip’s configuration memory, so the un-

rolling is limited to ensure this. Unrolling the graph turns the CGRA’s time dimension

into a third space dimension from the point of view of the placer and router, as shown
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in Figure 2.4, allowing standard algorithms to be used. This figure illustrates the usual

spatial routing on wires and through switch boxes, but registers actually route forward

in time to the next cycle, shown with dotted lines.

C
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Figure 2.4: Unrolled datapath graph with mapped dataflow graph.

SPR maintains information about the unrolled nodes’ correspondence to physical de-

vices. Each unrolled copy of the graph corresponds to a specific phase of the II. Addi-

tionally, SPR annotates all dataflow graph nodes with their start time and slack from the

schedule. This extra information allows the placement to restrict moves to phases of a de-

vice that preserve a legal schedule, but still generate moves in both space and a window

of time.

At this point, it is important to note the difference between what is termed a stateful

and a stateless device. For stateless devices, such as an ALU, increasing the II adds

another virtual device, because it provides another schedule slot for the physical device.

However, this does not work for some devices, such as memories, and we denote those as

stateful. An example of this would be a small block RAM, because no matter how much

the compiler “unrolls” the graph, the same data will be in the same physical memory.

With an increase in II, the schedule gets more read and write accesses to the block RAM,

but it does not increase the storage capacity of the memory. For these stateful devices, SPR

handles the constraints of keeping only one state element in a device, but can virtualize
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the accesses to the device. It groups these accesses so they are mapped to the same

physical device.

2.5.2 Placement

Like most FPGA tool flows, SPR’s placer uses Simulated Annealing [KGV83]. When

using the Simulated Annealing framework, three key problem-specific components must

be defined: the cooling schedule, move function, and cost function. The cooling schedule

of VPR [BR97a] is used because it was shown to work well for FPGAs, and once we have

unrolled our architecture, it is very close to a standard FPGA placement problem.

The move function in SPR is more complicated than that for an FPGA. The scheduling

and stateful element constraints are enforced through the move function by only gener-

ating moves that respect these constraints. SPR starts generating a move by choosing a

random dataflow node. SPR creates a shuffled list of the physical datapath nodes with a

compatible type, and chooses the first one. After that, it chooses a random phase from

the set of phases in the current schedule slack for the node. As a final check, SPR checks

that the dataflow node at the destination datapath node is compatible with the phase and

type of the current datapath node, and if so, it generates a successful swap move. If not,

it tries different destination datapath nodes until it finds a swap or possibilities in the list

are exhausted. In the latter case, SPR chooses a different initial dataflow node, re-starting

the process. If the entire shuffled list is not used, SPR caches it for use in future move cre-

ation. In addition to this simple swap move, a more complicated clustering move function

has been implemented, and is described in Section 3.3.

The last thing that needs to be defined is the cost function. SPR uses a routability-

driven cost function, with routability estimates defined on a per-architecture basis. For

the architecture used in the evaluations here, this cost function takes a current location, a

destination, and a latency and estimates number of muxes needed to reach that destina-

tion with the exact latency. Given a cost function to estimate the routing cost, the cost of

a placement is the sum of the routing cost over all connections in the architecture, plus a

penalty for each unroutable connection. These unroutable connections arise because SPR

targets fixed frequency devices, and if a route must traverse a large portion of the chip,
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there will be some forced registering along the way to keep clock frequencies high. If a

connection between two operations does not have the latency needed to meet the forced

register delay constraints, it is marked as “broken.” These broken connections incur a

penalty cost proportional to the amount of latency that would need to be added to meet

the delay constraint. The base penalty value is an option that defaults to the maximum

value of an integer divided by 200, to provide some headroom in calculations.

2.5.3 Routing

Routing the signals between the operators in a scheduled and placed dataflow graph

requires finding paths containing zero or more registers. To accomplish this, SPR uses

QuickRoute [LE04], a fast, heuristic algorithm that solves the pipelined routing problem.

By using PathFinder [ME95] with QuickRoute, SPR has a framework that negotiates

resources conflicts. As a general conflict solver, PathFinder can be applied to a range

of problems that can be framed as a negotiation. Originally, PathFinder was used to

optimize FPGA routing by negotiating wire congestion. When applied to our unrolled

architecture graphs, the original PathFinder will work unmodified for dynamically con-

figurable resources, where the configuration can be changed on every tick of the clock.

2.5.4 Resource-Performance Tradeoff

One problem with using a system like an FPGA for an accelerator is that if the compu-

tation doesn’t fit on the particular chip that is available, it won’t run without adjustment

of the application. Because SPR is designed for use in time multiplexed systems, more

virtual hardware resources can be made available at the cost of slower execution. The

benefits of this time multiplexed flexibility are illustrated in Figure 2.5. In this case, the

number of compute-unit clusters are varied across the X axis of the graph. As the same

application is mapped to architectures with fewer resources, there is still a valid mapping,

but the II’s are increased to make more resources available, with a corresponding decrease

in throughput. Similarly, larger applications can be placed on the same size architecture

at the cost of throughput. In the case illustrated in Figure 2.5, the application size is in-



22

creased by using more coefficients in the FIR. The 40 coefficient FIR consists of 255 nodes

and 506 nets.
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Figure 2.5: Scaling across architecture sizes.

This flexibility through virtualization means larger computations can be accomplished

at the cost of time, a common tradeoff for software meant to run on general purpose

processors, but one that is often more difficult in spatial architectures such as FPGAs. In

an FPGA-based system, changing the problem size in terms of what actions are performed

in parallel is often a designer task. With time-multiplexed virtualization support, it can

be transformed into a compiler task. The rest of this dissertation takes its inspiration

from this added flexibility, and explores new ways to allow a compiler to make this trade-

off. In particular, it investigates emulating time multiplexing in routing structures which

do not actually have the hardware to do that time multiplexing, and it also investigates

extending time multiplexing to data dependent multiplexing. If successful, these compiler

extensions can lead to hardware savings and more complex control support, broadening

the application base suitable for CGRA acceleration.

2.6 Simulation

Once an application has been mapped to a generated architecture, a configuration for

that architecture is produced. The generated architectures are created in Verilog, and a

co-simulation system has been built that will allow a Verilog simulator to run a virtual
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CGRA alongside the general purpose processor portions of an application in another

process. The simulation and sequential execution communicate through Verilog PLI calls,

and a full run-time has been built for transferring live values back and forth and allowing

stream based communications. This allows full application simulation. Comparing the

results of this simulation to those obtained by compiling the Macah program to straight

C code provides for functional verification of the mapping results. Additionally, the

simulation can be instrumented to estimate performance and power measurements, as in

[VE10].
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Chapter 3

PRACTICAL SPR

SPR is a combination of a VLIW scheduling algorithm, an FPGA placement algo-

rithm, and an FPGA routing algorithm. The initial implementation simply runs these in

sequence, and if the mapping fails in placement or routing, the minimum II is set one

higher than the II for the failed attempt, and the process starts over from the scheduling

stage. This can rapidly lead to high IIs, yielding poor performance. This chapter intro-

duces two techniques designed to help minimize the number of times the II is increased.

The first is a latency padding technique that provides specific feedback from the placer

to the scheduler indicating which connections are problematic. These problematic areas

are scheduled with more slack in the next iteration to allow the placer more flexibility in

meeting the constraints of a fixed frequency device with configurable interconnect. The

second technique is a new dynamic clustering method used during placement to help

keep the most critical communications local to an architecturally defined cluster.

These techniques were implemented in SPR in Java using the schedule, place, and

route algorithms described in the previous chapter. A suite of 8 benchmarks were used

for the evaluation, which constitute a set of algorithms with loop-level parallelism typ-

ically seen in embedded signal processing and scientific computing applications. With

only a few benchmarks, a two-tailed paired T-test with p = .1 was used for establishing

significance in the results. The list of benchmarks, along with the count of operation

nodes, signaling nets, minimum recurrence II, and minimum latency is given in Table

3.1. Note that [FCVE+09] was printed with an out-of-date table relative to the rest of the

results, the table here contains the corrected values.

The experiments used for these techniques targeted a 2-D grid CGRA architecture

inspired by island-style FPGAs and grid style CGRAs. It is an array of 16 clusters con-

taining 4 ALUs, 4in/4out stream accessors, 4 structures for holding configured constants,
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Table 3.1: Summary of Benchmarks

Kernel Nodes Nets II Latency
Motion Estimation 413 774 5 37
Smith-Waterman 446 993 6 129
2-D Convolution 434 869 5 58
Matched Filter 378 745 5 30
Matrix Multiply 196 402 5 14
CORDIC 157 336 2 33
K-Means Clust. 449 998 7 30
FIR 255 506 3 46

and 2 local block RAMs. Devices in a cluster are connected by a crossbar. The clusters are

connected with a 16-track pipelined grid interconnect using Wilton switchboxes [Wil97].

3.1 Latency Padding

The initial schedule optimistically assumes only operator computation latency and ig-

nores data movement latency to get the tightest schedule possible. Unfortunately, the

placer cannot always meet this optimistic schedule because some longer-range connec-

tions will have forced latency in them due to registering. The placer in SPR is time-aware

– it can move operations in both space and time. If there is slack available in the schedule,

the placer can shift the slack around by moving operations in time. This gives the placer

the flexibility to migrate the slack and use it to handle the forced latency of long wires.

However, if there is not enough slack, it needs to communicate this to the scheduler.

Latency padding performs this communication. Latency padding inserts extra latency

requirements in the dependency graph seen by the scheduler. Padding of n between a

producer and consumer operation forces the scheduler to separate the completion of the

producer operation and the start of the consumer operation by n cycles in the schedule.

Once the placer runs to completion, any connections that the architecture-specific cost

function marks as unroutable are candidates for padding. The placer finds the minimum

amount of extra latency needed route the connection by repeatedly querying the cost

function with higher latencies. SPR adds that amount of latency to the connection as
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padding that the scheduler views as extra forced delay in the dependencies. The scheduler

will create a schedule with the appropriate amount of delay between the source and sink.

Once that schedule is transferred back to the placer, the placer will see the extra time

between the source and sink as slack that it can use to move operations in time. Section

3.2 covers several options for how and where to add padding, along with the their effects.

The pseudo code in Algorithm 3.1 outlines the main iteration loop of SPR, along with the

added padding step, just after the placement.

Algorithm 3.1: Main SPR Control Loop with Padding
begin1

while iterate do2

minII ← iterativeModuloSchedule(minII)3

unroll datapath graph by minII4

placeSuccess gets runSimulatedAnnealingPlacement()5

if ¬placeSuccess then6

pad schedule7

else8

routeSuccess ← runPathFinderRouting()9

if ¬routeSuccess then10

increment minII11

increment SPRIterations12

iterate ← (¬(placeSuccess ∧ routeSuccess)∧ SPRIterations < maxIterations)13

end14

The subroutine padSchedule() implements the latency padding technique which com-

municates the need for extra slack in placement back to the scheduling stage. The goal

of this padding is to directly add slack to problematic areas of the computation. This

added padding will affect the scheduling of all down-stream operations and could af-

fect up-stream operations and the II through recurrence relationships. Thus, once SPR

adds padding, the mapping process must go all the way back to the scheduling stage

and start again. The padding tells the scheduler where to insert more slack, and then the

placer uses that extra slack to span the long latency interconnect. However, the next time

through the placer may need the padding on a different connection due to the random
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nature of simulated annealing. Fortunately, padding appears as slack to the placer. As

the placer moves operations to earlier start times, it effectively propagates the slack to the

operation’s outputs, and as it moves operations later, it propagates the slack to the inputs.

Ideally, the connections that need the slack in this following pass are nearby the newly

inserted slack, so after some annealing, the slack can migrate to where it is needed.

3.2 Latency Padding Effects

Latency padding is an educated guess as to where more latency in the schedule will aid

in placement and routing. It is not an exact guess, because adding latency for a given

placement will result in a new schedule and a new placement, which may have different

latency needs. Additionally, because the placer works in both time and space, the latency

may be moved by the placer to make better use of it.

Given a “broken” connection (a single connection that is unroutable due to forced

latency constraints), there are several possibilities for adding latency that may fix it on

the next scheduling and placement pass. One possibility is to add padding latency only

to the connection that is broken, effectively spreading out the operations on both sides of

the connection. We will call this connection padding.

Another option is to pad by reserving more time for the source operation as a whole.

This has the advantage that there will be slack on all outputs for the operation, which

means the operation will be able to be moved in time easily by shifting slack from all

outputs to all inputs. This gives the placer a little more flexibility in the next pass, but

there is potentially more latency added to the system as a whole. We call this operator

padding.

In addition to choosing what to pad, the placer must decide the amount to pad. Even

though the placer knows amount of latency that is needed for routability in the current

placement, that may not be optimal amount of padding due to the opportunity for re-

scheduling. For example, if there are several broken connections, adding padding to only

one may fix all connections if the placer can move the slack to a common ancestor of the

sinks. Another possibility is that adding less than the full amount of padding may work,
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because in the next pass, the relative scheduling of the operations will change, affecting

the placement and the routing.

To get a minimal amount of padding, one could add only 1 cycle of latency at a time

and re-run the schedule and placement until it succeeds. These extra iterations cost extra

compilation time. To minimize the number of extra iterations, one could pad by the full

amount needed to meet the interconnect minimum delay constraints. This work focuses

on applications where throughput matters more than the overall latency. Thus, it should

be fine to pad by the full amount where the extra latency only affects the overall program

latency, not the throughput. However, padding a recurrence cycle could increase the

II and decrease the throughput. Therefore, conservative padding could be worth extra

compiler run-time for recurrence cycle connections.
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Figure 3.1: II and Latency effects
across different padding settings.

The experiments test two amounts of

padding, which are denoted full and conserva-

tive. For full padding, the placer inserts the

full amount of latency that is needed to make

connections routable according to the cost func-

tion. For conservative padding, the placer only

inserts 1 cycle of padding on any recurrence cy-

cle connections, but still inserts the full amount

on other connections.

Between padding connections or opera-

tors and choosing either conservative or full

padding in recurrence cycles, there are 4 options

for how to do latency padding. The results of

experiments run using these 4 possibilities are

shown in Figure 3.1. Note that some applications do not show up in the bars, and in this

case, the II was not increased over the initially scheduled value.

Connection based padding is the best option for keeping throughput high, with the

conservative padding producing slightly better results, as expected. Conservative con-

nection based padding only results in an average 1.11x increase in II, compared to a 1.74x
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increase with full operator padding. However, if latency is the primary concern, then

conservative operator based padding is the best solution.

3.3 Dynamic Recurrence Clustering

Many architectures group resources into clusters with more flexible and lower latency

interconnect. This is found in architectures like HSRA, MorphoSys, and Tartan. As we

mentioned before, the largest recurrence loop in an application sets a lower bound on the

application’s II. This means that these recurrence loops are effectively the critical path.

In order to keep the throughput high, we want to make sure any critical loops in the

application take advantage of the faster interconnect offered by clustered nodes in the

architecture.

The basic idea behind the clustering is that when attempting to move an operation

from one cluster to another, nodes from the same recurrence loop may need to be moved

to the new cluster as well. This is to avoid higher II’s due to inter-cluster communication

in the critical loop.

The clustering algorithm starts out by marking all edges in recurrence loops as clus-

tering edges. Then, when the placer is generating an inter-cluster move, it checks to see

which neighboring nodes should be moved to the new cluster as well. Here, neighbors

are defined as any other nodes a particular node is directly connected to. If the cluster-

ing edges to any neighboring nodes in this cluster would become unroutable, the placer

attempts to include those neighboring nodes in the move to the destination cluster. To

include the neighboring nodes, the placer attempts to either move the neighbor to the

destination cluster or swap the neighbor with an operation already in the destination

cluster.

Of course, the included neighbor’s neighbors may be part of a recurrence loop and

may need to be moved as well, so this process is repeated recursively until no new nodes

are added. Any operations that have already been added to the move are marked so

a recursively generated move will not try to move the same operation again. The placer

limits consideration of neighbors to nodes that start in the same cluster, and moves/swaps
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are only generated between the original source and destination cluster, so the biggest

move generated will be a full swap of two clusters. The key here is that clustering only

occurs when a connection would otherwise end up being unroutable, which would result

in latency padding and an increase in II. This way, the placer only uses clustering where

necessary, and recurrence loops with enough slack can still spread across clusters.

3.4 Dynamic Recurrence Clustering Effects

To test the effects of the dynamic recurrence clustering, SPR was run across the bench-

marks with it both on and off. The results are shown in Figure 3.2.
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Figure 3.2: Effects of Clustering on II.

Clustering achieves improved IIs, translating into improved throughput, in six of the

benchmarks. For the remaining two, the results were the same for both methods. Av-

eraged across all benchmarks, this translates into a significant improvement of 1.3x in

throughput. The lack of bars for most of the clustering cases in the chart indicates that

for most of the benchmarks the placer and router were able to achieve the minimum

schedulable II when clustering was turned on.

3.5 Conclusion

In this chapter, I demonstrated two extensions to SPR that help bridge the gap be-

tween VLIW and FPGA compilation algorithms. These extensions are needed to couple

them into a practical CGRA architecture-adaptive mapping application for exploring the
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CGRA architecture space. I demonstrated that the latency padding technique is success-

ful coupling the VLIW-style scheduler and FPGA-style placer to meet the constraints of a

fixed frequency device with configurable interconnect. After evaluating several methods

of padding, we found that conservative padding on a per-unroutable connection basis

achieved the best throughput. I also developed a new dynamic clustering method for

placement that achieved an average improvement of 1.3x in throughput of mapped de-

signs.
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Chapter 4

STATIC INTERCONNECT SHARING IN SPR

This chapter introduces an enhancement to the PathFinder algorithm for targeting

architectures with a mix of time-multiplexed and statically configured interconnects. The

enhanced algorithm is able to successfully share statically configured interconnect in a

time-multiplexed way, achieving an average channel width reduction of .5x compared to

non-shared static interconnect.

A mux in the fully time-multiplexed portion of the interconnect will by called a dy-

namic mux. A mux in the statically configured interconnect will be called a static mux.

A dynamic mux has a configuration entry that is switched on every phase of the modulo

schedule, while the static mux only has a single configuration entry that will be used

throughout the lifetime of the application.

Dynamic connections are more flexible, but have higher area and power requirements

for storing and switching the configuration. Static connections can be more area and

power efficient, but at the cost of flexibility. An example that demonstrates the difference

between a static and dynamic muxes is shown in Figure 4.1. Including support for both

static and dynamic muxes allows SPR to route in interconnects with a mixture of these

resources, like those found in the RaPiD [ECF96] and MATRIX [MD96] architectures.

Dynamically time-multiplexed resources are the standard type of routing resources

used by SPR as it has been presented thus far, and are represented using primitive tap

nodes. Muxes constructed of primitive tap devices are unrolled into independent in-

stances, as described in Section 2.5.1. A primitive stap device is a static connection,

meaning it has a single bit controlling its configuration for the life of the application.

It will also be unrolled into independent instances to track signal usage at the output of

a mux on a per-phase basis, but all of the unrolled instances from the same mux will

share a single structure for tracking the desired configuration setting, corresponding to
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the limitation of a single setting in the architecture. With this representation, a mix of

static and dynamic interconnect can be used in SPR architecture descriptions; however, a

single mux must be made either entirely of dynamic or entirely of static taps that share

the same output wire.

[3][3][0][2]

[Phase]

Dynamic Mux Static Mux

[3]

Figure 4.1: Dynamic and static mux representation.

The most straight-forward use of these statically configured resources is to let a single

signal use them once, ensuring there will never be a conflict over which tap (input) should

be active in the multiplexor. However, the work in this chapter will demonstrate that the

negotiated congestion routing framework use by SPR, given the correct congestion metric,

can be used to allow signals in different phases to share the static multiplexor by agreeing

to use the same setting across all phases. This is done by separating costs for signal

usage over time and for the configuration settings, and tracking congestion between the

two separately. This provides the negotiation framework the foothold needed to promote

agreement of tap usage across different phases.

4.1 Static and Dynamic Routing

When applied to the modulo-unrolled architecture graphs, the original PathFinder will

work unmodified for dynamically configurable resources, where the configuration can be

changed on every tick of the clock. Reconfigurable systems such as RaPiD [ECF96] use

more area-efficient and power-efficient interconnect for portions of the system that are

set up statically before a computation. We have extended PathFinder to allow sharing

of both static and dynamic muxes between signals in different clock cycles. To see what
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this sharing means, consider the routes shown in Figure 4.2 across different phases of the

same mux.

Phase 0 Phase 1 Phase 2

Figure 4.2: Routes across different phases of a mux.

If this is a dynamic mux, all three signals can share this mux. A static mux would

allow sharing of the signals in the first two phases because they share the same input,

even though their destinations may be different. The signal attempting to use the mux

in Phase 2 would need to be re-routed. Without enhancement, PathFinder is unable to

support this type of sharing in mixed static/dynamic architectures.

4.1.1 Control-based PathFinder

In the enhanced version of PathFinder presented in this chapter, static and dynamic re-

sources appear the same to the signal level QuickRoute algorithm. The difference lies in

the computation of the congestion costs during the congestion negotiation. The problem

with using standard PathFinder is that virtual copies of static muxes appear as com-

pletely disjoint routing resources to PathFinder. Even though all virtual copies of a static

mux need to have the same input configuration to have a valid mapping, PathFinder

will obliviously route through different inputs in different phases. On the other hand,

dynamic muxes have no constraints on the settings between phases, and so by simply

unrolling the graph, the original PathFinder formulation supports dynamic muxes. A

straightforward PathFinder extention for supporting static muxes is to simply allow only

one signal to ever use a particular static mux, effectively not unrolling it. This can be

accomplished by summing the signal counts across the phases. This will only allow 1

signal to ever use a static resource. However, if signals in different phases can all use the

same setting for the mux – route through the same input – then multiple signals can all

use that mux even though it only supports a single configuration.
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Two observations lead to the new PathFinder formulation which can time-multiplex

signals across static muxes. The first is a simple optimization to PathFinder. Notice that

PathFinder only needs to negotiate between signals for the use of a mux output port,

not all of the individual wire segments and registers driven by that output port. This is

because by choosing which signal will occupy the output port of a mux, we have implicitly

chosen that the same signal will occupy all wire segments connected to the port, either

directly or indirectly through a series of registers. This allows for a dramatic reduction in

the number of resources that must be tracked with PathFinder negotiation information.

The second observation is when routing in an interconnect made up of muxes, wires

and registers, the only routing choices to be made consists of selecting the input of a

mux to pass to the output – what should the value of the configuration be for that mux.

Each available configuration allows the router to choose a different direction of travel for

a signal. This makes the relationship between static and dynamic routing resources more

apparent. In the dynamic case, there is a separate configuration available for each phase

of the II, so the router can choose a different input in every phase. In the static case, the

router can only choose to have one input used for the life of the program. As long as the

route for every signal going through a mux uses the same input, the single configuration

can be “shared” across the signals. Thus, PathFinder must negotiate for use of the shared

configuration across unrolled instances of a static mux.

Now there are two different kinds of congestion to allow for this new negotiation. The

first is the original PathFinder notion of signal congestion: two electrical signals cannot be

sent along the mux output wire at the same time. The second is control congestion: two

signals using a statically configured mux cannot require two different configurations in

different phases, but both can use the output wire in different phases.

In the original PathFinder, congestion led to two types of cost: the immediate sharing

cost and the history sharing cost. Now that there are two different types of congestion,

there are a total of four costs to be monitored. We will begin with the signal and control

immediate sharing costs. The immediate sharing cost for signal congestion remains un-

changed from PathFinder, and is the excess number of signals attempting to use a mux in

a given phase.
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The immediate sharing cost for control congestion is the excess number of configura-

tions used by a mux across all phases. For a dynamic mux, which can have a different

control setting in each phase, this will always be zero. However, for a static mux, only

one setting is available, so any excess settings needed by signals add to the immediate

sharing cost.
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Figure 4.3: Congestion calculation from signal usage.

An example of computing the congestion for the different types of sharing on a 6 input

static mux with an II of 4 is depicted in Figure 4.3. The large table in the middle counts

the signals routed through a particular mux. Each column represents a different mux

input, and each row represents an unrolled phase instance of the mux. The right-most

column shows the results of calculating the congestion, and the bottom-most row is an

intermediate result in the congestion calculation. The top half of the diagram illustrates

the original PathFinder signal congestion costs for each unrolled instance of the mux. By

adding up the number of signals routed through the inputs for a given phase, we see how

many will be on the output in that phase. This leads to signal congestion on the phase

1 mux and the phase 3 mux because in both cases there are two signals trying to use the

mux output simultaneously.
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The bottom half of the diagram illustrates the new control congestion for a static mux.

First, each input is checked across all phases to see if it is ever used, performing a logical

OR across phases. Then the results of the usage check are summed across the inputs to

see how many unique configurations are used over the whole table, obtaining 3 in this

example. Because this is a static mux, a maximum uncongested value is 1 input, so the

value of 3 here indicates control congestion. Using both types of congestion in PathFinder

is straightforward, as PathFinder simply needs to penalize congested resources and iterate

until there is no congestion of either type.

Now consider the signal and control history sharing costs. Again, the history sharing

cost for signal congestion from PathFinder is unchanged. The history cost for control

congestion is a little more subtle. For a fully dynamic mux, there is no control congestion

history to maintain.

Algorithm 4.1: Congested Mux History Update
begin1

foreach sig of signalsOnCongestedMux do2

foreach phase of II do3

foreach input of mux do4

if (sig.input �= input ∨ (sig.input == input ∧ sig.phase == phase))5

then
increment historyControlCost[phase][input]6

end7

The goal of the negotiation process is to encourage the signals using the mux in dif-

ferent phases to use the same inputs for a single static mux. The router must compute

the history cost update by looking at the mapped signals across all phases of a mux with

control congestion. Pseudo code for this update is given in Algorithm 4.1. This update is

only applied to muxes with control congestion. For each signal using one of the unrolled

muxes, there are two basic increases to the control cost. The first is an increase to the cost

of any input other than the one the signal is currently using, represented by the condition
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sig.input �= input. The second is an increase to the cost of the current input and phase that

a signal is using, represented by the condition (sig.input == input∧ sig.phase == phase).

The reasons for these two increases will be discussed in the context of an example

where two signals, A and B, are using a 6 input static mux with an II of 4. The resulting

history cost increases are depicted in Figure 4.4. Inputs with history cost increases from

A are shaded in light red and increases from B are shaded in dark blue. Inputs that are

shaded by both will have their cost increased by twice as much as those shaded by a

single color.
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Figure 4.4: History updates for static control congestion.

For the condition sig.input �= input, each signal increases the cost of using a configu-

ration (or input) other than its own. This makes that same input in other phases relatively

less expensive in future iterations. As the cost increases, either signal A or B could find

a cheaper alternate route through a different mux, or through an input compatible with

the other signal. For example, A might find an alternate route that uses input 3.

For the condition (sig.input == input∧ sig.phase == phase), each of A and B increase

the cost of their input in the phase they use it. To see why, consider what would happen

if signals did not increase the cost of their current input. Suppose the depicted congestion

of A and B is the only congestion in the current routing. At this point, the paths A and

B are taking are the least cost paths from their sources to their respective sinks. When

each signal only increases the cost for inputs it is not using, the cost of the currently used
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inputs will increase at the same rate. The cost of all others will increase at twice that rate.

Since the currently used inputs are penalized by the same amount, neither signal has

incentive to take a longer path to use compatible inputs. The only way this congestion

will be resolved is if A or B move to a different mux altogether, not by both using the

same input.

When A and B do increase the cost of their input in the phase they use it, each signal

will notice that “the grass is greener” on the input the other signal is using. Whichever

signal has a cheaper alternate route to the other input will eventually move first, and the

congestion will be resolved, sharing the same input of the static mux in different phases.

In this way, we can have several signals sharing the static resources cooperatively.

Note that if the router only considered history costs, the routes could oscillate, with

A and B both switching each iteration. However, the immediate sharing cost avoids this

oscillation – as soon as the first signal moves, the immediate sharing cost is eliminated.

Either the second signal must choose the same path it currently uses, or pay a significant

immediate sharing cost to switch to another input. This use of history costs to negotiate

long-term congestion, and immediate costs to eliminate oscillations is a major feature

of the original PathFinder algorithm. A more thorough treatment of the convergence of

PathFinder can be found in [CS00, CSEM00]. SPR re-routes only congested signals and

QuickRoute always chooses the cheapest path, which corresponds to the combination of

ReassignAll = FALSE and SelectCheapest where the authors of [CS00, CSEM00] show

the negotiated-congestion technique converges.

4.2 Evaluation

To evaluate the enhancements, and to provide a tool for the Mosaic architecture explo-

ration [EH11], these techniques were implemented in SPR in Java using the schedule,

place, and route algorithms described in the previous sections. SPR is tested on a suite of

8 benchmarks, which are algorithms with loop-level parallelism typically seen in embed-

ded signal processing and scientific computing applications. With only a few benchmarks,

a two-tailed paired T-test with p = .1 was used for establishing significance in the results.
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The architectures are defined as structural Verilog suitable for simulation, generated by

the Mosaic Architecture Generator plug-in to the Electric [SS] VLSI Design System.

4.2.1 Architecture

The experiments targeted a 2-D grid CGRA architecture inspired by island-style FPGAs

and grid style CGRAs. It is made up of a 2-D array of clusters containing 4 ALUs,

4in/4out stream accessors, 4 structures for holding configured constants, and 2 local block

RAMs. Internally, devices in a cluster are connected by a crossbar. The clusters are

connected to each other with a pipelined grid interconnect that can vary in the number

of static and dynamic channels. The grid interconnect employs Wilton style switchboxes

[Wil97]. An architecture made up of 16 clusters with a 16 track interconnect was used

unless otherwise indicated. In total, the test architecture contains 288 functional units,

though the SPR algorithms should scale to thousands of functional units on the basis

of their lineage from existing VLIW and FPGA algorithms. SPR will eventually support

pipelined functional units which take multiple clock cycles for computation, but single

cycle operations are assumed for the simple test architecture.

4.2.2 Benchmarks

The benchmarks were written in Macah with the main loops designated as kernels. These

kernels were translated by the Macah compiler into a dataflow graph [CFV+07]. The

dataflow graph nodes are primitive operations. The nets are either routable connections

or dependency constraints, such as sequential memory accesses, that must be respected

by the scheduler. A tech mapper translates compiler-specific nodes into SPR readable

generics and maps from dataflow graph node types to devices in the architecture.

The benchmarks include three simple signal processing kernels: fir, convolution, and

matrix multiply, and five more complex kernels from the multimedia and scientific com-

puting space: K-Means Clustering, Smith-Waterman, Matched Filter, CORDIC and Heuristic

Block Motion Estimation. Relevant statistics for the benchmarks were given in Table 3.1.
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4.2.3 Static Interconnect Sharing

This section evaluates the new static congestion negotiation algorithm. In the experiments

in this section, the applications from the benchmark suite are mapped to two different

architectures, one with a fully dynamic global interconnect, and one with a fully static

global interconnect. In both architectures, the cluster crossbar is fully dynamic, providing

a way to multiplex signals onto and off of the global interconnect. The experiments

measure sharing by counting the number of signals mapped to a physical mux in different

phases.

The fully dynamic run gives the baseline for the amount of sharing that would happen

in the most flexible system possible, given the application. With a fully dynamic inter-

connect, there are no constraints put on signals sharing a mux in different phases. It is

sharing neutral, and should neither encourage nor discourage sharing. On the other hand,

the static interconnect has two forces at work to perturb the amount of sharing. They

both originate from the constraint that two signals who share a mux in different phases

must use the same input. The extra costs that encourage signals to use the same input can

work to lower the amount of sharing in routing rich architectures, because when there is

a conflict, it is easier for one signal to use a slightly longer but alternate route through

empty muxes than to use the same input as the competing signal. As the routing re-

sources become more scarce, there will be fewer empty muxes to use and some sharing

will be required. Once two signals have negotiated to use the same input for one mux,

that means both signals are also using the same upstream mux. In fact, this holds transi-

tively, so if a mux is shared, the same amount of sharing will be forced on all upstream

static muxes until a dynamic mux is reached. This will tend to increase sharing.

The baseline dynamic sharing is an average of 1.35 signals/mux for the benchmarks at

a fixed channel width of 16. As a check to ensure this number is reasonable, we calculated

the expected value of sharing given the II, global interconnect utilization, and assuming a

uniform distribution of sources and sinks, and found it to be 1.21 signals/mux. The mea-

sured sharing should be slightly higher because the actual distribution is not uniform.

The fully static run achieves an impressive 1.32 signals/mux, which is not a significant
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difference from the dynamic case according to the paired T-test. This demonstrates that

with a fixed amount of interconnect, possibly over-provisioned, the new sharing algo-

rithm is able to achieve a signal density on restricted hardware which is on par with what

is achieved on a more flexible architecture.
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Figure 4.5: Histogram of dynamic and static sharing. The channel width for these tests
was set at the minimum routable channel width for the static sharing algorithm.

Examining sharing at the stress case of minimum routable channel width begins to

differentiate more between static and dynamic resources. In this case, a higher utiliza-

tion should lead to higher amounts of sharing. When the channel width is reduced to

the minimum routable width per benchmark, there is an increase in sharing in the static

interconnect to 1.52. This can be compared to the sharing obtained by running the bench-

marks with a dynamic interconnect sized to the same per-benchmark minimum static

channel widths. The dynamic case has lower sharing at 1.47, a significant difference from

the static case according to the paired T-test. A possible explanation for this is that in

the stress case, the upstream chaining is causing the higher sharing when using static

resources. A histogram of the number of signals sharing a mux is plotted for two ap-

plications on both static and dynamic interconnect in Figure 4.5. Plotting the results for

all of the benchmarks results in a very cluttered graph, so only the two benchmarks that

provide a rough upper and lower bound on the sharing are presented here.
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Figure 4.6: Channel width across the benchmarks for hardware, software, and no time
multiplexing.

Experiments were run to find the minimum routable channel width across three con-

figurations of SPR and architecture:

• Regular SPR mapping to an architecture with a fully dynamic interconnect.

• SPR with the static sharing enabled mapping to an architecture with a static global

interconnect.

• SPR with static sharing disabled mapping to an architecture with a static global

interconnect. Each static resource could only be used by one signal.

The results across the benchmarks are shown in Figure 4.6, along with the average.

The average minimum channel width when using a dynamic interconnect is 7.13 chan-

nels. Using a static interconnect with no sharing increased the width all the way to 20.1

channels. By allowing sharing, the width greatly reduces to 10.5 channels on a fully static

interconnect. This means that employing sharing provides all of the power and area sav-

ings of a statically configured interconnect while reducing the associated channel width

to .5x of what is required when sharing is not allowed.



44

4.3 Conclusion

In this chapter, I demonstrated that a new sharing enhancement to PathFinder [ME95]

can effectively exploit static interconnect in a time-multiplexed system. Given an archi-

tecture with statically configured routing resources, using the sharing algorithm provides

clear benefits over statically allocating a single signal to statically configured resources,

obtaining results that are closer to that of a fully dynamic system.

However, this does not indicate when an architecture should use static resources over

fully dynamic ones. An investigation of this for the grid portion of the CGRA interconnect

is presented in [VEWC+09]. The area-energy product was measured while sweeping

the ratio of statically configured to dynamically time-multiplexed channels in the global

interconnect across several architecture configurations. The results from that work are

shown in Figure 4.7. These results indicate that shallow time-multiplexing depths and

large word sizes favor fully time-multiplexed interconnects. As the word size is reduced

and the time multiplexing depth is increased, eventually it becomes profitable to include

statically configured channels.
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45

As observed in [VEWC+09], one of the reasons that the statically configured resources

are less efficient energy-wise is that any signals that share a particular static multiplexor

will also share all downstream multiplexors, even if the signals are intended for separate

destinations. This leads to a larger energy load for shared signals, which is significant in

the global interconnect with large drivers. It may be that static resources are more benefi-

cial in local communication and single-bit control oriented data-paths, but quantification

of this benefit is left for future work.

The focus in this dissertation will now change to a different dimension of sharing.

In spatial architectures like CGRAs and FPGAs, control flow is often handled through a

form of if-conversion, computing both branches and selecting the appropriate result at

the end. However, the program structure indicates that at run-time certain sets of these

paths are mutually-exclusive – only one result of the set will ever need to be computed

at a time. The following chapters explore what is required to share resources across these

mutually-exclusive paths for a performance benefit. The next chapter will lay the founda-

tions needed for extending SPR to support this sharing. Chapters 6-8 will introduce the

extensions to scheduling, placement and routing respectively, which will be evaluated in

Chapter 9.
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Chapter 5

PREDICATE AWARE RESOURCE SHARING IN SPR

The previous chapters covered the primary algorithms behind SPR, how they are in-

tegrated, and how to extend them to share routing resources when full time-multiplexing

hardware is only available in portions of the architecture. This chapter is the beginning

of a shift towards supporting a different type of sharing in SPR. The next few chapters

will focus on sharing resources across operations whose execution is guaranteed to be

mutually exclusive at run-time.

A variety of ways to effectively apply modulo-scheduling to CGRAs have been ex-

plored [MVV+03a, PFM+08, OEPM09, FCVE+09]. With modulo-scheduled spatial archi-

tectures, the same configurations/instructions are repeated in a cycle, and any control is

handled through some form of if-conversion, with parallelism extracted through software

pipelining. This leads to two inefficiencies. The first is that resources are reserved to

compute all control paths, even though only one path can be taken for a given iteration

of a loop. The second deals with producing hardware that will span a variety of applica-

tions. Some applications will have a large initiation interval, leading to deep configuration

memories that can support their large II. However, high throughput applications are those

with a small II. For these applications, the over-provisioned configuration memory is sim-

ply wasted. It would be nice to be able to put that extra memory to use, perhaps to better

handle more complex control flow in high-throughput kernels.

The goal of the next few chapters is to mitigate these inefficiencies. By extending an

approach for VLIWs to CGRAs (predicate aware scheduling [SMDL03]), and introducing

new constraints, abstractions and algorithms for placement and routing, I will demon-

strate that it is possible to share resources across control paths by taking advantage of this

otherwise wasted configuration memory. In predicate aware scheduling, the compiler is

aware of the predication used to convert control dependencies to data dependencies. It
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uses this information to schedule operations that are mutually exclusive at run-time onto

the same physical resource, effectively sharing it across the control paths.

This chapter will provide the foundations for exploring predicate aware sharing in

CGRAs. It begins with an example to illustrate predicate aware sharing on a simple

program, and contrasts this sharing with execution in a general purpose processor and

the typical modulo-scheduled scheme of CGRAs. Then it discusses an extension to the

hardware model that will allow for run-time alterations of the modulo scheduled con-

figurations. Finally, it describes how the predicate relationships are represented in SPR.

Chapters 6, 7, and 8 will cover adding predicate awareness to the scheduling, placement

and routing stages of SPR respectively.

5.1 Predicate Aware Sharing

Conditional execution is the ability of the hardware to choose which operations to execute

based on run-time data. There are lots of useful signal processing applications that do not

require conditional execution, such as a simple filter that always outputs a linear func-

tion of its input. However, we are interested in supporting a broader set of applications,

including those that use heuristics. Even very simple applications can benefit from condi-

tional execution. The example we will use is computing the sum of absolute differences.

Pseudo-code can be found in Algorithm 5.1.

Algorithm 5.1: Sum of absolute differences example.
for i=0; i < n; i++ do1

diff ← a[i]− b[i];2

if diff > 0 then3

sum ← sum + diff;4

else5

sum ← sum - diff;6

Program Counter – In the Von Neumann model, the program counter for sequencing

gives us the ability to handle conditional execution. In the case of Algorithm 5.1, that

means conditionally executing either the then or else blocks of the if statement. Using run-
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time data to update the program counter allows the processor to skip past any portion of

code. An example in pseudo-assembly is shown in Figure 5.1(a) for the conditional if-else

statement in Program 5.1.

jump to skip if diff<0
sum' = sum + diff
jump to end
sum' = sum - diff
....

skip :
end :

(a) Branching

sum

sum'

+ -

<0?
diff diff

diff

e
n

e
n

(b) Predication

ALU

sum

sum'

0: SUB

1: ADD

<0?
diff

diff

(c) Predicate aware sharing

Figure 5.1: Examples of Program 5.1 using different conditional execution methods. Note:
sum’ refers to the new value of sum.

Predication – When moving to a statically defined modulo-schedule in a CGRA, the

instruction stream is no longer easily altered. This is because for CGRAs, the equivalent

of one instruction can be a very large configuration. In order to maintain scalability, it

is better to have locally generated modulo counters instead of a global broadcast. This

means there is no longer a central program counter that can easily be modified.

For spatial architectures, a common method of supporting conditional execution is

through predication, sometimes combined with speculative execution. This method is

illustrated in Figure 5.1(b). For predication, the operations for both paths of execution are

set up to run in parallel. A control line indicating whether the difference is positive or

negative is routed to enable inputs on both operations, so only the appropriate operation

will execute. Then, the same control line is sent to a mux responsible for choosing the

appropriate result to pass forward in the computation. A common optimization in spatial

architectures is to remove the guard condition from any operations that have no external

side effects, such as the add and subtract in this example [MLC+92, Cal02]. This allows
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them to be scheduled earlier, effectively being speculatively executed with the result being

selected from the computed alternatives.

Predicate aware sharing – Predication can be seen as having a particular resource

choosing between two operations at run-time, a useful one and a no-operation. The func-

tional units would be used more efficiently if they could instead switch between two use-

ful operations. An example of this for a particular CGRA, RaPiD, is given in [ECF+97a],

in the section that discusses mapping motion estimation to the hardware. As part of mo-

tion estimation, a sum-of-absolute-difference is calculated. In the example netlist, the sign

result from the difference calculation is used to control whether the next ALU performs

an add or a subtract. In this case, specifying that a datapath signal directly controls the

type of operation of the functional unit is done by the programmer.

This method is illustrated in Figure 5.1(c). Here, the square extension to the ALU

represents the local configuration memory for that ALU, with the subtract opcode stored

at the 0 entry, and add stored at 1. The result of the comparison of diff to 0 is used to

select between these instructions. By making the compiler aware of the mutual exclusion

between the add and subtract that is controlled by the comparison, we can lift the burden

of creating configurations like the RaPiD example from the programmer, and automati-

cally generate them. This method can be extended to choose between more than just two

conditional paths of execution.

The benefit of this method over predication is that functional units are not wasted for

the control paths that are not used. However, it increases the compiler complexity, as

the compiler must find compatible mutually exclusive code paths to map onto the same

hardware. It also increases demand for configuration memory. The next few chapters will

propose ways to allow the compiler to exploit the over-provisioned configuration memory

in high throughput applications to enable this type of sharing.

5.2 Representing Predicate Relationships - The CDT

In order for SPR to manage sharing of mutually exclusive operations, it requires a way

of representing the predicate relationships that define the mutual exclusion. In this work,
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the extra information needed to determine the compatibility of operations for sharing

purposes is provided in the form of a Control Dependence Graph (CDG). More specif-

ically, there are several places where a tree structure is assumed, as opposed to a more

general directed acyclic graph. Restricting the graph to a tree structure allows one to ex-

press the same hierarchical control structures as the predicate regions from [FO83], with

sub regions constructed as children of enclosing regions. This representation corresponds

to predicate dependencies in code structured entirely out of nested blocks.

This dissertation will refer to the structure as the Control Dependence Tree (CDT) to

indicate that the structure is limited to a tree. The Macah front end used in this work

directly tracks and creates the CDT defined by the structured code when performing

enhanced loop flattening on the kernels. This is the representation used by SPR.

The work of [FO83] was later extended to a more general form, which was presented

as a Program Dependence Graph [FOW87], combining control and data dependencies

for arbitrary programs. Further extension to incorporate single-static assignment was

presented in [OBM90], where it is called the Program Dependence Web. Efficient ways

of representing the control dependencies in this more general framework is presented

in [CFS90]. In [MLC+92], the authors used a similar graph structure for tracking the

predicates in hyper-blocks and called it the Predicate Hierarchy Graph. General systems

have been created for extracting and answering queries about the predicate structure of

code [JS96, SHA00]. With the exception of [FO83], all of this previous work was done

using a more general DAG structure. In this work, the use of a tree structure does not

significantly limit available sharing, as described in Section 5.2.3, and adds opportunities

for optimizing the algorithms, so it is more appropriate than the more general DAG

structures.

5.2.1 CDT Structure

In a CDT, operations are associated with the run-time enable signal that indicates whether

or not that operation should execute in this iteration – the predicating signal. This is a

one-hot representation, where operations in the then portion of an if-then-else structure

are controlled by one signal, and the else portion is controlled by a second signal that is
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Cond: TRUE
Ops

R1,R8 Partition Partition

Cond: a

PartitionOps
R2

Cond: b

PartitionOps
R5

Cond: ag'

Ops
R4

Cond: ag

Ops
R3

Cond: bh

Ops
R6

Cond: bh'

Ops
R7

  R1
  IF (a)
    R2
    IF (g) R3
    ELSE R4
  IF (b)
    R5
    IF (h) R6
    ELSE R7
  R8

Figure 5.2: A simple example of a Control Dependence Tree for sequenced and nested IF

statements.

never asserted at the same time as the first. However, they may both be un-asserted for

an iteration where the entire if-then-else structure is not reached. This one-hot represen-

tation is beneficial in spatial architectures – especially with a multi-way branch such as

a case structure with no fall through – because it allows the predicates to be spread and

computed close to the locations where they are needed.

An example CDT along with the code structure it comes from is given in Figure 5.2.

Each of the predicate signals that enable a control-flow block correspond to a condition

node in the CDT. In Figure 5.2, condition nodes are drawn with rectangular sides. Within

a condition node, there will be operations that execute “under” that predicate – executing

only when that predicate is true. This is represented in the CDT by having operation nodes

in the CDT that are children of the predicate node they execute under – the nodes with

circular sides and marked with Ops in Figure 5.2. There will also be further partitions,

for example a nested if-then-else. These are partition nodes, shown as the circular-sided

nodes in Figure 5.2 labeled Partition. The then and else conditions of a nested if-then-else

will each represent a nested predicate signal – and so each will have a condition node in

the tree that is mutually exclusive with the other’s. The condition nodes labeled ag and

ag’ are an example of this. A single condition may guard the execution of several if-then-

else partitions, representing sequenced nested structures, such as the two if statements

in Figure 5.2. Instead of being executed under a particular condition, they are always

executed, so their partition nodes are in a special condition node labeled TRUE. The
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children condition nodes of separate partition nodes are not guaranteed to be mutually

exclusive with each other.

This node structure gives rise to depths in the CDT with alternating types, condition

node levels and operation/partition node levels. The root of the tree is the “uncondi-

tional” condition node, represented as TRUE. This is a condition level. The next level

down will have operations that run on every iteration of the kernel, and the top level

partitions of the kernel. This is an operation/partition level. Each partition will have a set

of children condition nodes, yielding the next condition level, and so on. In Figure 5.2,

the operation/partition node level is drawn within each parent condition node level. This

fundamental two level structure was present in the graphs of [FO83], with partition nodes

represented by the adjacency of related sub regions, and the condition level represented

by the enclosure of region boxes. Through similar mappings, the same two level structure

can be demonstrated in the work of [FOW87, CFS90, MLC+92, JS96].

The partition nodes are the source of the mutual exclusion information used for re-

source sharing. They represent the nesting of code blocks guarded by mutually exclusive

predicates. A child and all the descendants of that child will be mutually exclusive with

the other children/descendants from the same partition node, as only one of the corre-

sponding code paths will be chosen at run-time. As shown in [JS96], determining that two

operations, X, Y are mutually exclusive can be done by finding a partition node P, such

that X and Y are descendants of P’s children condition nodes Ca and Cb, respectively,

such that Ca �= Cb. For example, in Figure 5.2, operations from R3 and R4 are mutu-

ally exclusive with each other because they are children of different condition nodes, ag

and ag’, who’s common ancestry begins at the partition node under shown within the

condition node a. Pairs of operations that execute and signals that communicate under

mutually exclusive condition nodes in the CDT are themselves mutually exclusive, and

will sometimes be referred to as being compatible because they may share resources in

the architecture without fear of collision at run-time.

With the CDT limited to a tree structure, determining whether such a partition exists

is reduced to finding the least common ancestor of X and Y and determining if it is a

partition node or a condition node. To see this, consider node L as the least common
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ancestor of X and Y. This means that the paths from X and Y to the root of the tree are

disjoint from X and Y up to the children of L, and are equivalent from L on to the root. If

L is a partition node, then clearly X and Y are mutually exclusive because they share the

partition L as an ancestor, but they are descendants of disjoint paths below L, and must

be descendants of different condition nodes, C1 and C2. If L is a condition node, then X

and Y are descendants of the same condition nodes from L up to the root, so there can be

no common partition node above L with differing children condition nodes. Additionally,

below L, X and Y will be descendants of disjoint children nodes, but they will also be

descendants of disjoint partition nodes, so there can be no common partition node with

differing children condition nodes below L, so there is no partition for X and Y. Without

some alternate semantic analysis, we must conclude that X and Y may not be mutually

exclusive at run-time. For example, in Figure 5.2, the least common ancestor of R3 and R4

is a partition node, so they are mutually exclusive. However, the least common ancestor of

R3 and R5 is the condition node at the root of the tree, so they are not mutually exclusive.

5.2.2 Altering the CDT

If an operation’s execution is to be dynamically controlled at run-time, the signal that

controls the execution must be communicated to the hardware performing the execution.

In a large architecture, this communication may be expensive and limited. Due to spatial

locality, some controlling signals may be more readily available than others. For these

reasons, it is useful to be able to alter the conditions that an operation executes under, but

it must be done in a way that preserves correctness.

If an operation’s controlling signal is not available, one solution is to execute the oper-

ation unconditionally. This will maintain correct execution, but prevent predicate aware

sharing with other operations. This is reasonable because it corresponds to the execution

model supported by a non-predicate aware version of SPR. This method of operation pro-

motion was first presented in [TLS90] as eager execution through predicate lifting, and

later used in [MLC+92] where it was referred to as promotion. It is referred to as promo-

tion here to reflect the movement of operations towards the root of the CDT. All operations

promoted to unconditional execution are executed speculatively, and the required result
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is chosen from the speculative results to be passed forward in the computation. Any

operations with external side effects, such as memory writes, must be guarded by the

control predicate that indicates whether or not the control path of that operation is being

followed on this iteration.

This promotion can be generalized to partial promotion as long as there is a method

of guarding the execution of operations with side-effects. An operation can be promoted

in the CDT to any condition node on the path from where it currently resides to the root

node. This is because ancestors in the CDT represent a superset of the dynamic execution

conditions for operations. For example, in Figure 5.2, The code block guarded by a will be

executed in any loop iteration where the code block guarded by g executes, and possibly

more. In [TLS90] this is referred to as lifting, and can be done from any predicate to one

that dominates it. Any time the operation would have originally executed, it still will,

though it may execute in more instances as well. If R3 is promoted to condition a in

the CDT, this is equivalent to moving the R3 code up next to the R2 code under the if

statement guarded by a. As long as any side effects are prevented when g is not true,

this is a safe transformation. Note that this dissertation deals with dataflow graphs that

were constructed for unconditional spatial execution, so all operations with side-effects

already have a predicate input to ensure they only execute when it is appropriate.

This generalized promotion will reduce opportunities for sharing, but not necessarily

down to no sharing as in the case of promoting to unconditional execution. When an

operation is promoted, it will rise above some partition nodes. Unfortunately, SPR can

no longer use any sharing that was facilitated by those partition nodes. For example, in

Figure 5.2, if R3 is promoted to the operation node under a, it can no longer share with

R4 because their least common ancestor is now the condition node a.

The flexibility of promoting operations, and the resulting elimination of the depen-

dence between a predicate and the promoted operation, can be exploited by SPR in several

ways. It can be used to reduce the critical recurrence II during scheduling. It can be used

during placement to reduce the need to communicate a predicate across an architecture.

It can be used during routing to share routes even when the appropriate predicate signals

are not locally available. In general, it gives the compiler the ability to make trade-offs
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between the resources to route the predicate signals across the architecture and the re-

sources needed to speculatively execute operations when the predicates are not available

for sharing.

5.2.3 Tree Restrictions

Restricting the representation of condition dependencies to a tree structure does limit the

relationships that can be expressed. The directed-acyclic graph (DAG) representation gen-

eralization allows re-convergence of paths from the root to a descendant node, whereas a

tree does not. In a CDT, the run-time condition an operation runs under is described by

the logical and of all of the conditions from the operation’s parent condition node to the

root. Allowing re-convergence in this graph represents the logical or of the conditions

along the converging paths. This means that the operations will execute in the union of

these conditions.

According to [FOW87], the hierarchical tree representation of [FO83] is limited to

“structured” programs, those “built of blocks, loops, and conditionals, each of which is

single entry and single exit.” In this section, I will examine what this limitation implies

in the context of sharing resources in CGRAs. I will do this by examining the sharing

available in a full DAG-based CDG, and showing the loss of sharing opportunity when

converting the DAG to a tree while maintaining program correctness.

Simplified example program codes requiring a DAG-based CDG are shown in Figure

5.3(a) and Figure 5.4(a). Blocks of statements are abstracted to regions labeled R1 through

R7. Predicate conditions are represented by lower case letters a, b, g, and h. The condi-

tions for alternate branches of a partition are denoted with an apostrophe (’), and logical

AND and OR operations are denoted in the CDT with multiply/add notation. Jump tar-

get labels are given by X and Y. In the example, GOTO statements are used to create the

control flow that will require a full DAG.

These two figures represent the two possibilities for having re-convergent paths in a

CDG. In Figure 5.3(a), the paths diverge going from a single condition node to separate

partition nodes. In Figure 5.4(a), the paths diverge from a single partition node to separate

condition nodes. In both examples, the paths re-converge at a condition node. This is the
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  R1
  IF (a)
    R2
    IF (g) GOTO Y
    ELSE R3
G:g = false
  IF (b)
    R4
    IF (h) GOTO Y
    ELSE R5
H:GOTO X
Y:
  R6
  IF(a & g) GOTO G
  IF(a & h) GOTO H
X:
  R7

(a) Code requiring
CDG

Cond: TRUE
Ops

R1,R7 Partition Partition

Cond: a

PartitionOps
R2

Cond: b

PartitionOps
R4

Cond: ag + bh

Ops
R6

Cond: bh'

Ops
R5

Cond: ag'

Ops
R3

(b) Corresponding CDG

Cond: TRUE
Ops

R1,R7 Partition Partition

Cond: a

PartitionOps
R2

Cond: b

PartitionOps
R4

Cond: ag'
Ops
R3

Cond: ag
Ops
R61

Cond: bh
Ops
R62

Cond: bh'

Ops
R5

(c) Conversion to CDT via Duplica-
tion

Figure 5.3: Example of unstructured code requiring a full DAG CDG with divergence in
a condition node.

only reconvergence possible, as it corresponds to regions that are executed under the

union of run-time execution conditions. The reconvergent CDGs are shown in Figure

5.3(b) and Figure 5.4(b).

In a reconvergent CDG, determining what operations may share resources is no longer

a simple matter of determining if their least common ancestor is a partition node or not.

This can be seen by examining the R6 region. When the paths diverge at a condition

node, the code in region R6 will not be mutually exclusive with any other region. It is

possible that conditions a, g, b and h are all true in the same iteration, so even though

the LCA of R6 and R5 is a partition node, they may execute in the same iteration. The

same applies to R6 and R3. In fact, this is a problematic construction for standard spatial

speculative execution because R6 may need to be executed twice in a single iteration. The

pipelined modulo-scheduled execution assumes each operation executes only once per

iteration, so the region would need to be inlined, effectively duplicating it for each of the

GOTO statements.

The CDG that results from this duplication is shown in Figure 5.3(c). The modifica-

tions required to allow for pipelined modulo-scheduling will likely split these reconver-

gences and eliminate them from the CDG, turning it into a tree. In fact, after duplication,

R61 is mutually exclusive with R3 and R62 is mutually exclusive with R5, allowing the
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  R1
  IF (a)
    R2
    IF (g) GOTO Y
    ELSE R3
  ELSE 
    R4
    IF (h) GOTO Y
    ELSE R5
  GOTO X
Y:
  R6
X:
  R7

(a) Code requiring
CDG

Cond: TRUE
Ops

R1,R7 Partition

Cond: a

PartitionOps
R2

Cond: a'

PartitionOps
R4

Cond: ag + a'h
Ops
R6

Cond: a'h'

Ops
R5

Cond: ag'

Ops
R3

(b) Corresponding CDG

Cond: TRUE
Ops

R1,R7 Partition

Cond: a

PartitionOps
R2

Cond: a'

PartitionOps
R4

Cond: ag'

Ops
R3

Cond: ag

Ops
R61

Cond: a'h
Ops
R62

Cond: a'h'

Ops
R5

(c) Conversion to CDT via Duplica-
tion

Cond: gOps
R61

Cond: h
Ops
R62

Cond: TRUE
Ops

R1,R6,R7 Partition

Cond: a

PartitionOps
R2

Cond: a'

PartitionOps
R4

Cond: ag'

Ops
R3

Cond: a'h'

Ops
R5

(d) Conversion to CDT via Pro-
motion

Figure 5.4: Example of unstructured code requiring a full DAG CDG with divergence in
a partition node.

respective pairs to share resources. If they are not split, simply checking the type of the

LCA no longer determines if two conditions are mutually exclusive, as the previous ex-

ample illustrates. Instead, the set of all common ancestors that act as divergence points

on paths to conditions determine what is mutually exclusive. In order to guarantee only

one of the conditions is true in an iteration, all of the divergence points must be partition

nodes to ensure that only one of the paths below each is true in a given iteration. In the

case shown in Figure 5.4(b), one of the divergent nodes is a condition node, eliminating

the possibility of sharing R6 with either R3 or R5. Thus, we can be sure we are not giving

up any opportunity for sharing by restricting our sharing algorithms to trees. Whenever
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one of the divergence nodes on a set of reconvergent paths is a condition node, sharing

is not possible even in the full CDG representation, so the CDT is not losing any sharing

opportunity.

When the paths diverge at a partition node, as in Figure 5.4(b), sharing becomes pos-

sible. The method of determining mutual exclusion in [MLC+92] can be used in these

more general graphs to find possible sharing. Mutual exclusion is indicated by construct-

ing an unsatisfiable Boolean equation by ANDing together the predicate Boolean expres-

sions for two operations. The Boolean expression for a particular operation is formed

by ANDing together all conditions on the path from the root to the operation. For mul-

tiple paths, each path expression is ORed together. For example, in the CDG given in

Figure 5.4(b), R6 is mutually exclusive with R5, where the corresponding equation is

((a ∧ g) ∨ (a� ∧ h)) ∧ (a� ∧ h�) and is unsatisfiable.

For this example, R6 is mutually exclusive with R3 and R5, but not R1, R2, R4, or R7.

Additionally, R6 can be promoted up to the TRUE condition, but not to the a condition or

the a’ condition. These relationships are important to resource sharing and scheduling,

placement and routing. If it were possible to retain these relationships in a tree structure

with no other drawbacks, then the restriction to a tree structure would not pose a signif-

icant limitation. To the best of my knowledge, there is no such tree structure, so instead

I present two alternative ways of turning a general DAG of this form into a tree, along

with the relative drawbacks.

The first solution is to duplicate the subtree below the reconvergence as before, shown

in Figure 5.4(c). This retains the mutually exclusive relationships, and preserves the most

potential for sharing. It increases the promotion flexibility because each duplicate of R6

can be promoted to the corresponding a or a’ condition, as well as all the way to the un-

conditional case. The drawback to this method is extra resource usage if the opportunities

for sharing cannot be exploited.

The second solution is to preemptively promote R6 up to the divergence point, as

shown in Figure 5.4(d). This eliminates all sharing below the promotion, but avoids the

extra resource usage from duplication of R6.
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Characterization of the practical trade-offs between these two options is beyond the

scope of this work. To exploit the algorithmic simplifications of a tree representation,

this work will only consider structured programs where the CDG is limited to a tree.

Algorithms for handling general DAGs or choosing the appropriate tree simplifications

are left as future work.

5.2.4 Integrating CDT and Modulo Scheduled Pipelining

The CDT indicates which operations may share resources within the same iteration. How-

ever, modulo scheduling imposes more constraints on what may share and adds more

flexibility at the same time. The insights described in this section are important to design-

ing appropriate algorithms for using the CDT to share resources in a modulo-scheduled

system.

Modulo Schedule Phase and the CDT

The CDT specifies the run-time control signals generated in the datapath that predicate

each operation. Adding a schedule further constrains when the operation may execute.

In a modulo-scheduled system, this can be viewed as adding the phase of the counter

in as a new root partition of the CDT. This is because each node only executes when the

original condition is true AND the phase counter matches the scheduled phase for the

node. This is illustrated in Figure 5.5.

It is this top level partitioning that allows the time-multiplexed resource sharing in

a modulo-scheduled system. Because the phase condition is the top level condition and

it fully partitions all operations, the only test needed to see if two operations are mutu-

ally exclusive based on the phase partition is to check that their phases are not equal,

effectively binning the operations by phase. This is why the modulo-graph unrolling for-

mulation works so well for sharing physical resources. In fact, it is such a simple test

relative to the more general case of checking mutual exclusion in the CDT that it is prob-

ably worth keeping the modulo-graph unrolling. In the future, SPR could potentially just

treat the phase as any other condition to be used in the predicate aware framework. The

potential of the latter idea is briefly explored at the end of Chapter 10.
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Figure 5.5: Combining time into the Control Dependence Tree

The illustration of Figure 5.5 assumes that the schedule length is the same as the II.

A schedule that is longer than the II leads to further duplication of the CDT within each

phase, once for each start time that aliases to that phase. This duplication is not a partition,

and operations from these duplicates cannot share except in special circumstances. This

is explained in more detail along with an example in the next section.

Modulo Variable Expansion for Predicates

Modulo-Scheduled pipelining increases parallelism by pipelining executions of the kernel

loop body. As a result, what was originally a single variable in the kernel will have

multiple live copies, up to one per loop iteration in the pipeline. This is known as modulo-

variable expansion [Lam88]. Conditions in the CDT represent the currently live control

flow blocks. Just like variables, there is conceptually a separate live CDT associated with

each loop iteration in the pipeline, and each condition can take on different values for

each live iteration.

This is illustrated in the following example, where the CDT and schedule are shown

in Figure 5.6 and two possibilities for sharing that are affected by the modulo-variable
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Cond:1[0] Cond:6[0]

Cond: TRUE

Operations
1,2,3,4,6,7,11,14 

15,17,18,20

Operations
5,9,10

13,16,19
Operations

8, 12

1 2

3 4 5 6

7 8 9 10

11 12 13

14

15 16

17 18 19 20

0 0

01 1

2 2

3 0

4 1 1

5 2

6 0 3

s p w Iteration Start

Figure 5.6: Base CDT and example schedule for a kernel iteration.

expansion are examined in Figure 5.7. First, consider the CDT shown in Figure 5.6(a), and

the associated scheduled loop iteration in Figure 5.6(b). The CDT has an unconditional

node at the root in white, with a list of operations that execute unconditionally. Below

that there is a partition into conditions 1[0] and 6[0] . The conditions are named by

an operation number, a delay in brackets, and a color marker. The operation number is

for the operation that generates the predicate representing the condition. The delay is the

number of iteration initiations between the loop body execution where the predicate is

generated and the loop body execution where the value is used. Often, this is zero, when

the test immediately guards the control flow block. Sometimes the value is stored for

several iterations before being used as the test in a control flow block. This latter case will

not be considered until the next section. The color marker is used to associate conditions

with operations in the schedule for easy reference.

The schedule on the right represents operations as numbered circles, and the schedule

can be seen on the scale, where s denotes start time, p denotes phase, and w indicates

wave. This example is a schedule of a loop with 20 operations with an II of 3. A mul-

tiplicity of operations in a row means that they are scheduled at the same time, and the

columns have no particular meaning. The predicate-generating operations are shown as

filled circles of the appropriate color in the schedule, and the circle of any conditionally

executed operations are colored according to the condition under which it executes. Since

the length of this schedule is longer than the II, there will be multiple iterations of the
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Figure 5.7: Even though red and blue operations can share within an iteration, they cannot
share across iterations. Operation 8 may share with 9, but not 16.

loop live at the same time in different stages of completion. The number of waves in the

schedule tells us the number of iterations that will be live at any given phase, here three

live iterations for phase 0 and two for phases 1 and 2.

To show how the modulo-variable expansion of predicates affects sharing, two of the

iterations are shown in Figure 5.7. The local time scales are next to each set of operations,

with the global time scale on the left illustrating that this is an excerpt from some time

into the computation. In the global timescale, c represents total cycles from the beginning

of the computation, p is the phase, and i is the count of iterations that have been initiated.

Iterations 7, 8, and 11 will also have operations live during the time period shown, but

they are left out of the diagram for clarity. Operation 16 from iteration 9 and operations 8

and 9 from iteration 10 are highlighted, along with the operations that generate the pred-

icates for them. The dependencies from predicate generating operations to operations

16, 8 and 9 are shown, along with the iteration delays on that dependence. The iteration

delays are all zero, which means the operations depend on the predicates from the same

iteration.

In this example, if operation 1 from iteration 9, denoted Op19, generated a value of

true, then Op169 should execute. However, there are at least two live copies of the result

of operation 1 available when Op169 will execute – the result of Op19 and the result of

Op110. The compiler must ensure that the proper live value controls the execution of
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Figure 5.8: Calculations showing where sharing can and cannot happen.

Op169, which is Op19. The CDT in Figure 5.6 indicates that the predicates generated by

operations 1 and 6 will never be true in the same iteration, however it says nothing about

their relationship across iterations. This means that Op110 and Op610 cannot both be true,

and so operations 8 and 9 can share the same resources. However, Op19 and Op610 may

both be true, which means both Op169 and Op810 would execute in the same cycle, so

operations 16 and 8 cannot share resources.

To accurately determine which operations may or may not share resources in a modulo

scheduled system, the compiler must take into account the modulo-expansion of pred-

icates in addition to the relationships of those predicates in the CDT. This calculation

must be done carefully, taking into account the relative offsets in local schedules between

pipelined iterations. This can be done by considering the local predicate use time relative

to the iteration when it was generated. This will be called the predicate’s age. For the

example in Figure 5.6(b), operation 16 uses the predicate generated by operation 1 at an

age of 5, and operation 8 uses the predicate generated by 6 at an age of 2. To put it

mathematically, if the start time of the dependent operation relative to that operation’s

iteration start is sop, the current scheduled initiation interval is I I, and the number of
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Figure 5.9: Base CDT and example schedule for cross-iteration sharing.

iteration delays between the predicate definition and use is id, then the predicate age, ap,

is given by Equation (5.1).

ap = sop + I I ∗ id (5.1)

When two operations have the same predicate age, then their conditions can be compared

in the CDT for mutual-exclusivity. To simplify the implementation, all of the work here

only shares when id and sop are identical between the conditions of the two operations

being shared. The results of applying Equation (5.1) to the example in Figure 5.6(b) are

shown in Figure 5.8. The predicate ages of Op169 and Op810 do not match, so they

cannot share resources. The ages of Op810 and Op910 match and they are executed under

mutually exclusive conditions in the CDT, so they may share resources.

Cross-Iteration Sharing

Due to the overlapped execution of iterations in a pipelined modulo schedule, sharing is

also possible with operations from different iterations that will execute in the same cycle

with the right condition relationships. This is called cross-iteration sharing. However,

the relationships that enable cross-iteration sharing are not immediately obvious from the

structure of the CDT, and require the math of Equation 5.1 plus some reasoning about the

operations generating the predicates. An extension of the example from Figure 5.6 used

to demonstrate cross-iteration sharing is shown in Figure 5.9. Here, another condition has



65

1 2

3 4 5 6

7 8 9 10

11 12 13

14

15 16

17 18 19 20

1 2

3 4 5 6

7 8 9 10

11 12 13

14

15 16

17 18 19 20

27 0

928 1

29 2

c p i

30 0

1031 1

32 2

33 0

1134 1

35 2

0 0

01 1

2 2

3 0

4 1 1

5 2

6 0 3

s p w Iteration 9 Start

0 0

01 1

2 2

3 0

4 1 1

5 2

6 0 3

s p w Iteration 10 Start

16 7

1

6

1

6

0

1

16 7

1

6

1

6

0

1

5+0*3 = 2+1*3

II

Figure 5.10: Calculations showing where cross-iteration sharing can happen.

been added to the CDT that uses the predicate from condition 6[0] , but delayed by one

iteration. This new condition, condition 6[1] is represented by a blue dashed outline.

Some of the operations in the schedule have also been marked with this condition.

The key to enabling this sharing is observing that condition 6[0] and condition 6[1]

use the same predicate values, simply at different times. Since the predicates generated

by operation 6 are never true in the same iteration as those generated by operation 1, it is

possible to share anything that depends on condition 6[1] from a given iteration with

anything that depends on condition 1[0] from the previous generation. An example

with the math of Equation 5.1 is shown in Figure 5.10.

a = false;

for(i=0;i<100;i++){

if(a)

X

a = (i%2 == 1)

if(!a)

Y

else

Z

}

Figure 5.11: A loop with
cross-iteration sharing.

For a more intuitive idea of when cross-iteration shar-

ing is possible, it is helpful to understand where iteration

delays come from in source code. Essentially, they are a

representation of loop-carried dependencies – the use of

a variable in an iteration that was defined in a prior itera-

tion of a loop. The number of iterations between the def-

inition and the use is the iteration delay. Example code

is given in Figure 5.11, where blocks X, Y and Z generate

operations under conditions 6[1] , 1[0] , and 6[0] ,

respectively. The if guarding Y comes after the update
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of a, so it uses the value from the same iteration. However, the if guarding X will use the

value of a that is stored from the previous iteration, leading to a loop-carried dependence

and a corresponding iteration delay of 1. In this example, the update of a is operation

6 from the previous example. For a loop executing a digital-signal processing filter, an

iteration delay is equivalent to a delay element. For recursive filters, it will be common to

have operations dependent on values across different iteration delays.

The final results of combining the CDT and schedule of Figure 5.9 are shown in the

top of Figure 5.12. This includes the duplication of the CDT per start time, annotated

with @[start time]. This full expansion is quite complicated, and aside from this example,

the CDT combined with scheduling information will be presented in the simplified form

used in Figure 5.5. Below the expanded CDT, enough iterations of the loop are shown

to highlight the steady state modulo-schedule. The work in this dissertation will take

advantage of the within-iteration sharing – operation 12 with 13 and operation 8 with 9

or 10. It is left for future work to investigate cross iteration sharing – operation 16 with 7

and 11 with 19.

5.2.5 CDT Pruning and Verification

As currently implemented, SPR runs two pre-passes on the CDT to clean it up. First,

it removes any nodes that do not provide partitioning. This is common, for example,

where there is an if structure with no else. An example of this is shown in Figure 5.13

where the simple example CDT from Figure 5.2 has been pruned of the partition nodes

that do not provide any mutual-exclusion. The a and b conditions come from sequenced

if statements without a corresponding else, so they are pruned and their operations

promoted to their parent, in this case TRUE.

Second, because operations with side effects may be promoted, we need to ensure the

predicate signals are always valid and are always computed unconditionally. The Macah

front end currently ensures this, but the SPR tool will double check that any operation

providing a CDT predicate executes unconditionally. In future work, it may be possible to

examine the operations that generate the predicates and have SPR automatically promote
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(b) Pruned CDT

Figure 5.13: Example of pruning partition nodes that do not provide any mutual-
exclusion.

the necessary operations to run unconditionally, but for now it simply generates an error

message when this situation is encountered.

SPR also assumes that the predicates in the architecture are absolute instead of relative.

This means that predicates represent the result of ANDing together all conditions in the

full path from the root to the operation, instead of just the last condition. This is needed

because we assume operations are mutually exclusive if there is some partition between

them, at any depth, and so the actual expression representing that partition must be

ANDed in at run-time to ensure the proper control signaling for execution.

5.3 Representing Predicates

The CDT provides a method for reasoning about the conditions under which operations

and communication will happen at run-time. However, a quick and efficient method of

answering the simpler question of whether two operations can share resources at run-time

is valuable for use in the inner loops of scheduling, placement and routing.

If multiple operations are attempting to share a resource, the execution of each opera-

tion must be mutually exclusive with all other operations using that resource. Often, the

algorithms will be attempting to add a single operation to a group of other operations

that are already sharing a resource. The most straightforward approach to this would be

to check the operation to be added with each of the existing operations to see if a conflict

exists. However, a more efficient approach is to create a union representation of the op-
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Figure 5.14: Example of a CDT and the conflict relation it embodies.

erations already sharing the resource, check once against the union representation, and

then if the new operation can be added, include it in the union for future checks.

The key element in the efficient approach is a conflict representation that has an ef-

ficient union operation. The work presented here uses a conflict bit vector, constructed

as follows. If any two nodes in the CDT are not mutually exclusive (that is they are not

separated by a common ancestor partition node) then we say they conflict. The conflict

graph can be generated by creating a vertex for each condition in the CDT and adding

edges between all pairs of conflicting conditions. This graph can be represented as a bi-

nary matrix, where there is a row and column for each vertex, and a 1 represents an edge

between the row vertex and the column vertex. The conflict relation is reflexive, so the

edges are undirected, yielding a symmetric matrix. An example of a CDT and the cor-

responding conflict graph and matrix are shown in Figure 5.14. Each row of this matrix

can be considered the conflict bit-vector for the condition corresponding to that row. This

representation is similar to the 1dnf form used in [JS96]. This representation is useful

because it is easy to test for conflicts and it is easy to represent the conflicts from multiple

operations mapped to a single resource. To test for a conflict between two conditions, the

compiler simply has to check if the bit of one condition is set in the conflict vector of the

other.

When multiple operations are mapped to a single resource, the bit vectors can be

ORed together to obtain the union of conflicts. When attempting to add a new operation,
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the bit corresponding to that operation’s condition can be checked against the union to

determine if it conflicts with any of the operations already assigned to that resource.

Note that removal of a conflict vector from the union is generally not possible, so when a

condition is removed, the union must be regenerated from the bit vectors of the remaining

conditions.

Once scheduling has been completed, the modulo variable expansion of all the predi-

cates also needs to be taken into account. This is accomplished by annotating each pred-

icate with the start time of their use relative to the iteration where the predicate is gen-

erated. While it is possible for two operations to be compatible if they are scheduled in

different waves and they depend on the same predicate with different iteration delays, as

described in Section 5.2.4, supporting this is left as future work. For this implementation,

the predicates are simply checked for differing delay annotations that would make them

incompatible. We will call this logical union of the existing sharing constraints coupled

with scheduling delays the aggregate execution condition. An example is illustrated in Fig-

ure 5.15. The rows from the conflict matrix of Figure 5.14(c) for conditions a and a’h’

are annotated with delay information to represent the individual conditions. The conflict

bit for a is checked in the vector for a’h’, where a 0 represents no conflict. Similarly, the

conflict bit for a’h’ in the vector for a is 0 by the reflexivity of the conflict relation. Finally,

if the delays that come from scheduling match, the conditions are compatible and can

be combined into an aggregate execution condition, which is represented as the list of

[a,a’h’], the logical OR of the conflict bit-vectors, and the common delay between them.

Here we can see that the only condition that could be added later would be a’h with a

delay of 3. The conflict relation is reflexive, which means both directions do not need to

be checked for conflicts. With single conditions, one condition can be arbitrarily chosen

to check against the other. When checking a single condition against an aggregate, the bit

position corresponding to the single condition can be checked in the aggregate conflict

vector or each condition bit from the list of conditions in the aggregate should be checked

against the single condition. Similarly, when checking for conflicts between two aggregate

execution conditions, checking the bit positions of the aggregate with the smaller list of

conditions will minimize the number of checks. In practice, if the conflict vector can fit
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Figure 5.15: Illustration of an aggregate execution condition. Two conflict vectors plus
their delay are checked for conflicts then combined into an aggregate execution condition.

in a machine word, the entire check can be made through a single AND operation, so the

direction of the check does not matter.

This representation is efficient for testing conflicts and adding to a set of operations

sharing a resource. If an operation is removed from the set sharing a resource, removing

the associated conflicts from the aggregate execution condition requires more work. The

aggregate execution condition will track all of the conditions that are added to it as a set.

A condition is removed from the aggregate by removing it from the set and re-creating the

conflict bit-vector by ORing together the conflict bit-vectors of the remaining conditions

in the set.

This imbalance between checking for conflicts and removing a condition from the ag-

gregate execution condition is an optimization for the common case of the algorithms

that will be using this aggregate representation. The Simulated Annealing and Quick-

Route algorithms both require checking for conflicts to estimate costs before committing

the changes that those checks are done for. In both cases, more checks will be made

than actual additions of conditions to the aggregate execution condition. This also holds

for removals, since they are bounded by the number of additions made. Thus, having

the aggregate execution condition support fast checking at the expense of removals is

appropriate for the algorithms that use it.

5.4 Hardware Support for Mutual Exclusion

The final background element needed for predicate-aware resource sharing before moving

on to the algorithms is a reasonable hardware model. This section will introduce some
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of the design concerns and options, but it is not meant to be a thorough exploration and

quantification of architectural choices. Instead, it is meant to plant ideas and provides a

reasonable abstraction that predicate-aware algorithms can target.
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Figure 5.16: A basic configuration
hardware design.

A straightforward implementation of the

configuration storage for these time-multiplexed

architectures is shown in Figure 5.16. In this di-

agram, the phase counter is provided to a de-

coder for the memory array. This selects the

word-line to be read from a memory array. The

memory array stores the actual configuration

bits. After being read out of the array, the bits

are split up and distributed out to configure the

reconfigurable datapath.

5.4.1 Regions of Control

In a large array, the configuration may be divided up across several such memory struc-

tures for scalability. The modulo-counter based configuration selection can be accom-

plished through similar duplication, with each memory structure maintaining its own

Figure 5.17: CGRA colored by con-
figuration regions.

local copy of the counter. As long as these

distributed copies run off synchronized clocks

and are reset to the same values at some point

before the program starts executing, such as a

global reset, the counters will remain synchro-

nized throughout the execution of the program.

This enables scalability, since the counter can be

replicated as needed and does not depend on a

central value that must be broadcast across the

chip.

There is no central value that must be broad-

cast, so the compiler should not assume there is
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a central modification point that will alter loaded configuration. Each configuration mem-

ory will be in control of the configuration for a certain subset of computational resources.

This motivates the first new hardware abstraction needed in a predicate-aware SPR. Each

of these areas will be called a configuration region, and are illustrated in Figure 5.17.

It is important for the compiler to know about these regions, because they specify re-

sources with configurations that must be constructed together – altering the configuration

for one resource may alter the configuration for others in the region. This is the first step

in providing the architectural abstraction for predicate-aware mapping; it specifies where

predicates may alter the configuration. The next step is to specify how the predicates may

alter the configuration.

5.4.2 Modifying Configuration Retrieval
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Figure 5.18: Configuration hard-
ware diagram with potential mod-
ification points marked in blue

To support predicate-aware execution, the sim-

ple configuration memory design must be mod-

ified so that live predicates may be used to al-

ter the run-time configuration selection. There

are several candidate modification points in this

design where predicates could be used to alter

the configuration. These are indicated in Figure

5.18 by the light-blue highlights. In a typical

general-purpose processor, the modification for control is made to the program counter.

The closest equivalent in these reconfigurable architectures is the modulo phase counter.

The scalable nature of the modulo phase counter is important to these spatial architec-

tures. If control was implemented via adjustment of the base counter sequence, such as in

a program counter in a CPU, the modification would need to be broadcast to all regions

to keep them synchronized, which leads to global signaling that does not scale well. For

this reason, modifying the sequence itself is excluded from consideration for this work,

and so it is not highlighted in Figure 5.18.

Predicates may alter the behavior in any of these highlighted areas, but with differ-

ent trade-offs. The highlight in the lower-left of Figure 5.18 represents the distribution
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of the configuration values to the reconfigurable logic across the chip. This will be re-

ferred to as modifying the configuration at distribution time. It would be possible to pass

the output configuration bits through some reconfigurable logic and combine that with

predicates from the computation to alter the configuration. This would require that the

compiler algorithms synthesize this extra logic to transform the configurations that are be-

ing generated with the predicate bits. This technique is one that has been demonstrated in

the RaPiD architecture [ECF+97a]. To enable completely general predicate control could

require extra hardware at the granularity of every bit of the configuration for the recon-

figurable hardware. This is on par with the reconfigurable logic itself.

The next area for possible modifications is the memory array that holds the config-

urations, highlighted in the upper right of Figure 5.18. This array can be viewed as the

embodiment of a function mapping the decoded address to a configuration word. Instead

of retrieving values from an SRAM array, there could be a configurable logic circuit that

computes the configuration as a function of the decoded modulo-counter address and

the predicate bits. If this can be an arbitrary function implemented by a full look-up

table, then the memory array remains the same and the actual modification simply in-

cludes the predicate bits in the address to the configuration memory. If the function is

restricted in some other way, representing those restrictions in the mapping algorithms

will be architecture dependent and potentially very complicated.

The final area highlighted in the diagram is the decoder that translates between the

current phase counter and the configuration that will be retrieved from the memory array.

Modifications to this portion of the design have a high amount of leverage. The counter

bits are used as address bits for the configuration memory, and modifying a single address

bit here will result in retrieval of an entirely different configuration memory line. This

can be accomplished by the addition of a few multiplexers on the address lines to choose

between a phase counter bit or a control datapath bit.

When compared to the other two options for modification, altering the address decod-

ing stage is appealing for this initial study. It has a low hardware overhead and provides

a simple abstraction compared to the other two options. Additionally, having phase and

predicate bits interact with the configuration system in similar ways maps well to our
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Figure 5.19: Combining counter and predicate bits.

abstraction of treating the phases as top-level conditions in the CDT. For these reasons,

this is the method used in this study, with the others left for future exploration.

5.4.3 Exposing Configuration Control

An abstraction of the interaction between predicate bits and the configuration retrieval

needs to be provided to the compiler to allow the compiler to properly allocate and route

the predicate bits. The decoding stage of configuration retrieval is the focus for modifica-

tions, so the bits of the phase counter and the predicate bits that will be decoded can be

viewed as address bits for selecting a configuration. There are two straightforward op-

tions for combining predicate bits and phase bits in the decoding stage that are illustrated

in Figure 5.19. The first, Figure 5.19(a), is to simply extend the address bits generated by

the modulo counter with the predicate bits. This modification leads to a large increase in

size of the configuration memory array.

The second option, Figure 5.19(b), is to replace the modulo counter bits in a recon-

figurable way. For applications requiring a large II, the entire configuration memory is

usable. For high-throughput applications that would otherwise waste much of the config-

uration memory, the unused space can be dedicated to supporting more complex control

flow. Note that in both cases, the predicate bits come from signals routed through the in-

terconnect of the array, so a different set of predicate bits can be used in each phase of the

schedule. This will allow the compiler to use these extension bits more efficiently, map-

ping predicates to them only when those predicates are needed. This hardware model

allows the compiler to trade-off between applications with large initiation interval re-
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quirements and applications with more complex control. This supports the motivating

case of using wasted configuration memory in high throughput kernels to allow more

complicated control flow.

From the point of view of the compiler, there are limits on the number of predicate

bits that can be used in both cases. The predicate bit usage will have to be tracked by

the compiler to ensure that they are not oversubscribed. For Figure 5.19(a), this capacity

is directly defined by the number of predicate bit paths that run to the decoder. The

configurable trade-off shown in Figure 5.19(b) between modulo counter bits and predicate

bits means the amount of control flow that can be supported and the maximum II will be

interrelated. With the scheduling preceding placement and routing in the tool-chain, the

II for the kernel will be set during scheduling. Once the II is set, the number modulo-

counter bit lines required to support that II are reserved. At that point, the number of

predicate bits available during placement and routing is determined. For Figure 5.19(a),

this is simply the number of predicate bits designed into the architecture. For Figure

5.19(b), this is determined by reserving exactly the number of bits required to support the

II, and allowing any remaining configurable lines to act as predicate bits.

In addition to allocating predicate resources in the configuration hardware, a predicate-

aware version of SPR will need to ensure that the predicates are communicated from the

spatio-temporal location they are computed to the configuration hardware for regions

where they are needed. At some point in this communication, the predicate signals will

need to cross from the configurable interconnect resources into the configuration hard-

ware. This location in the architecture will be known as a predicate gateway. A predicate

gateway will be used by the router as a target sink for routing predicate signals to a region

that needs them. For simplicity, a one-to-one correspondence between regions predicate

gateways is assumed, though this could be lifted in future work.

5.5 Supported Abstractions

This chapter has explored the concepts and representations that lay the groundwork for

creating predicate-aware scheduling, placement and routing algorithms. This section
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summarizes the representations that will be used to develop the compiler algorithms

in the subsequent chapters.

5.5.1 Control Dependence Tree

The control dependence tree of Section 5.2 provides a way of communicating the con-

trol structure of the program to the compiler. Information about the run-time mutually-

exclusive nature of operations is directly provided, avoiding the need to extract this infor-

mation through inference as in [JS96, SHA00]. Additionally, awareness of the hierarchical

nature of conditions allows us to exploit partial promotion.

5.5.2 Aged and Aggregate Conditions

The operations of the program will need to be scheduled and grouped for sharing re-

sources. As part of the scheduling process, the conditions under which operations execute

will go through a modulo-expansion process to differentiate conditions from overlapping

loop iterations, as described in Section 5.2.4. To support efficient conflict testing, condi-

tions will be represented internally as the conflict bit vector of the condition along with

an age representing the condition’s modulo-expansion, as shown in the left side of Figure

5.15 in Section 5.3. These are combined into aggregate execution conditions as shown in

the right side of Figure 5.15 to represent a group of conditions.

5.5.3 Regions

The configuration for large CGRAs will likely be divided up spatially to support scalabil-

ity. For a predicate aware compiler, these divisions become visible, and are represented

as different configuration regions to the compiler. The abstraction of regions is described

in Section 5.4.1, and is used to indicate the resources that all have their configuration re-

trieved by the same modulo-counter and predicate bits. Up to this point SPR has treated

each configurable element independently programmable within each phase of the mod-

ulo schedule. If a predicate bit is used to change the configuration of a single element, it

will alter the configuration that is retrieved for all elements in that region. Different ele-

ments in different areas of the region could require completely unrelated predicates. In
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this case, the full cross-product of those predicate values could occur at run-time, each re-

trieving a different configuration word. It is up to the compiler to ensure that all of those

configuration words are constructed in a way that provides the proper configuration to

each element in the region.

5.5.4 Predicate Gateway

With CGRAs divided into regions, the predicates representing which conditions are true

at run-time will need to be distributed from their origin to the regions that depend on

them for choosing a configuration. In order to ensure these signals get to the regions

at the right time, they will be routed from their origin to a sink target for the region

called a predicate gateway, as described in Section 5.4.3. For simplicity in the initial

implementation, a one-to-one relationship is assumed between configuration regions and

predicate gateways. These predicate gateways will also represent the number of predicate

bits that can be used in the region. It is up to the compiler to be aware of this capacity

and ensure it is not over-subscribed.

5.6 Predicate Aware SPR Overview

The next three chapters will build on the foundational concepts laid out here to present a

formulation for predicate-aware scheduling, placement, and routing in modulo-scheduled

CGRAs. Chapter 6 presents predicate-aware scheduling. The predicate-aware scheduling

used for CGRAs builds on the work of [SMDL03] for predicate-aware modulo scheduling

of VLIW architectures. Additionally, it takes into account the modulo-expansion of pred-

icate signals by using aggregate execution conditions to represent resource sharing in the

resource table used to track allocations.

Chapter 7 covers predicate-aware placement. Starting from the Simulated Annealing

based placement originally used in SPR, the placer is extended to represent multiple

occupancy of resources using aggregate execution conditions, and will turn any conflicts

between the conditions of co-located operations into a cost that can be optimized by

annealing. Additionally, costs are created for tracking over-subscription of the predicate

bits available for configuration switching in each region of the architecture.
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Chapter 8 details the most complex changes made to create the predicate-aware SPR,

the predicate-aware routing. The conditions that apply to operations from the CDT are

extended to include the routes of data values between operations. These routes take on the

condition of the source operation at the beginning and the sink operation at the end. If the

source and sink conditions differ, it is up to the router to choose the best condition to route

under at intermediate points. Additionally, as a route traverses different configuration

regions of the architecture, the source or sink conditions may not be available. To make

progress and limit the loss of sharing opportunity, partial promotion is used to assign an

alternate condition to route under.

The PathFinder congestion negotiation is made predicate-aware in separate ways for

control congestion and signal congestion. Predicate-aware signal congestion is tracked

using an aggregate execution condition per routing resource, which allows co-routing

of signals routed under mutually exclusive conditions in the same way as co-location is

allowed in placement. Predicate-aware control congestion is tracked using a generaliza-

tion of the control congestion presented in Chapter 4, with conditions that are unavailable

within the region taking the place of the phase signals that are unavailable in static muxes.

The QuickRoute pipelined routing algorithm is extended to support predicate-aware

sharing through careful separation of signal fan-outs into separate routing queues based

on the destination routing condition. Once signal routes are completed, they are only used

to seed other fan-outs that are routed under a compatible set of conditions. Along the

way, the actual conditions of a route are tracked, along with the transition from source-

condition to sink-condition routing and any partial promotion needed to cross regions

without certain predicates available.

Finally, in Chapter 9, the benefits of predicate-aware mapping will be evaluated across

a set of benchmarks. The performance will be compared against both the standard

SPR mapping and upper bounds derived through relaxing constraints on the mapping,

demonstrating the benefits of sharing for control heavy, resource constrained applications.
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Chapter 6

PREDICATE AWARE SCHEDULING IN CGRAS

In SPR, mapping an application to the CGRA is done in three stages – scheduling,

placement and routing. The following chapters explore adding predicate awareness to

these stages, beginning here with scheduling. The predicate-aware version of SPR, will

be referred to as PA-SPR.

Adding predicate awareness to scheduling means two things. Primarily, it means

being able to share resources between operations that are on mutually-exclusive control

paths. Secondarily, it means managing the proper trade-off between being able to share

resources once a predicate signal has been generated, and being able to speculatively

execute operations before the predicate signal is available.

The original SPR scheduling algorithm of Iterative Modulo Scheduling comes from

the VLIW community. Following the evolution of scheduling algorithms for VLIWs leads

to work for predicate-aware scheduling found in [SMDL03, SMD04]. That work will form

the basis of SPR’s predicate-aware CGRA scheduling stage, as it presents a method for

addressing the primary concern of sharing resources between mutually-exclusive opera-

tions. Earlier work on optimizations that enable more parallelism for modulo-scheduling

[TLS90] introduced promotion for speculative execution as a way to reduce the minimum

recurrence II. That idea is integrated with using sharing to reduce the minimum resource

II to support the secondary goal of finding the proper trade-off between sharing and

speculation.

This chapter will provide an overview of predicate aware scheduling in VLIWs and

then describe how it has been applied to CGRAs in PA-SPR. In addition to combining

predicate aware scheduling and promotion, the notion of predicate ages is used to deal

with modulo-variable expansion of the predicates.
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6.1 Predicate Aware VLIW Scheduling 1: for (
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6: else
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8:

(a) Source code

op1: t1 = load if ;

op2: prod = mult if ;

op3: p1,p2 = cmpp.lt.uu if ;

op4: t2 = sub if ;

op5: t2 = add if ;

op6: store if ;

op7: if goto if ;

(b) Assembly code after if-conversion (p0=True)

Figure 1: Example code segment

2 2

0

11

3

op1
M

B
op7

3

A
op2

A
op3

A
op5

M
op6

op4
A

1 or 21 or 2

Figure 2: Data dependence graph for code segment

assume that the instruction set supports post-increment load and

store operations. In this example, the if-then-else statement is re-

placed by the corresponding predicate defining operation (p1,p2 =

cmpp.lt.uu if ). Predicate is set to True and is set

to False when the condition ( ) evaluates to True; whereas

condition False sets False and True. The detailed semantics

of the cmpp operations are described in [9].

The data dependence graph of the if-converted loop segment is

presented in Figure 2. Each node is annotated with the type of the

operation (A=ALU, M=memory, B=branch). Each edge is marked

with the latency of that edge. Note that the edges in the graph are

all flow dependences with the exception of the edge from op6 to

op7 which is a control dependence.

2.2 Applying Predicate-Aware Scheduling
As stated above, the reservation table enforces resource con-

straints for both LS and IMS. That is, operations that use the same

resource cannot be scheduled in the same cycle. Predicate-aware

scheduling relaxes this constraint by allowing operations guarded

by disjoint predicates (from here on referred to as disjoint oper-

ations) to reserve (or share) the same resource in the same clock
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cycle. The if-converted code shown in Figure 1(b) is used to illus-

trate LS and its counterpart predicate-aware list scheduling (PALS)

along with IMS and its counterpart predicate-aware modulo schedul-

ing (PAMS).

LS versus PALS

The application of LS to the example results in the 8 cycle sched-

ule presented in Figure 3(a). This schedule is optimal for this ma-

chine model. op4 is scheduled at cycle 5 which is the earliest time

at which it can be scheduled. The earliest schedule time for op5 is

also cycle 5, but due to resource conflict with op4, it gets scheduled

at the next cycle. Hence, the earliest schedule time for op6, which

depends on both op4 and op5, is cycle 7. Note that both op4 and

op5 are executed conditionally but reserve the ALU uncondition-

ally. In fact, only one of these operations is executed at run-time;

the other is nullified. As a result, we effectively waste either cycle

5 or cycle 6 for each iteration of the loop because the ALU is not

utilized during the cycle in which it executes a nullified operation.

With PALS, a 7 cycle schedule can be achieved, as shown in Fig-

ure 3(b). Operations op4 and op5 (from the then and else paths,

respectively) can now be scheduled at their earliest schedule time;

both operations may reserve the ALU in cycle 5 because they are

provably disjoint, so only one will execute at run-time. In the SRT

of Figure 3(b), each resource conceptually has two slots. This

allows up to two disjoint operations to occupy the same resource

at the same time. Two slots is not a restriction of this technique.

Rather, for this example, there are only 2 control paths, thus we

know that there can be at most two disjoint operations.

The overall result of the PALS schedule is that the ALU resource

is always utilized in cycle 5 and the achieved schedule length is 7

cycles, a 14% speedup over the 8 cycle LS schedule shown in Fig-

ure 3(a). Note that for this basic block, a schedule of length 7 is op-

timal for any machine configuration. Since the latency-constrained

lower bound (critical path length) is 7 cycles (in Figure 2).

IMS versus PAMS

The application of IMS to the example results in the II=4 sched-

ule presented in the MRT shown in Figure 4(a). Since each of the

four ALU operations (op2, op3, op4, op5) must reserve the ALU

resource at a different cycle to avoid conflict, ResMII=4 and this

schedule is optimal. Note that RecMII=1.

With PAMS, an II=3 schedule can be achieved as shown in Fig-

ure 4(b). Again, this improvement is achieved by enabling the

provably disjoint operations, op4 and op5, to reserve the ALU in

the same cycle. Note that even though up to two disjoint opera-

tions can simultaneously reserve each function unit, the processor
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placed by the corresponding predicate defining operation (p1,p2 =

cmpp.lt.uu if ). Predicate is set to True and is set

to False when the condition ( ) evaluates to True; whereas

condition False sets False and True. The detailed semantics

of the cmpp operations are described in [9].
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with the latency of that edge. Note that the edges in the graph are
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both operations may reserve the ALU in cycle 5 because they are

provably disjoint, so only one will execute at run-time. In the SRT

of Figure 3(b), each resource conceptually has two slots. This

allows up to two disjoint operations to occupy the same resource

at the same time. Two slots is not a restriction of this technique.

Rather, for this example, there are only 2 control paths, thus we

know that there can be at most two disjoint operations.

The overall result of the PALS schedule is that the ALU resource

is always utilized in cycle 5 and the achieved schedule length is 7

cycles, a 14% speedup over the 8 cycle LS schedule shown in Fig-

ure 3(a). Note that for this basic block, a schedule of length 7 is op-

timal for any machine configuration. Since the latency-constrained

lower bound (critical path length) is 7 cycles (in Figure 2).
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ule presented in the MRT shown in Figure 4(a). Since each of the

four ALU operations (op2, op3, op4, op5) must reserve the ALU

resource at a different cycle to avoid conflict, ResMII=4 and this

schedule is optimal. Note that RecMII=1.

With PAMS, an II=3 schedule can be achieved as shown in Fig-

ure 4(b). Again, this improvement is achieved by enabling the

provably disjoint operations, op4 and op5, to reserve the ALU in

the same cycle. Note that even though up to two disjoint opera-
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assume that the instruction set supports post-increment load and

store operations. In this example, the if-then-else statement is re-

placed by the corresponding predicate defining operation (p1,p2 =

cmpp.lt.uu if ). Predicate is set to True and is set

to False when the condition ( ) evaluates to True; whereas

condition False sets False and True. The detailed semantics

of the cmpp operations are described in [9].

The data dependence graph of the if-converted loop segment is

presented in Figure 2. Each node is annotated with the type of the

operation (A=ALU, M=memory, B=branch). Each edge is marked

with the latency of that edge. Note that the edges in the graph are

all flow dependences with the exception of the edge from op6 to
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op5 are executed conditionally but reserve the ALU uncondition-
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5 or cycle 6 for each iteration of the loop because the ALU is not

utilized during the cycle in which it executes a nullified operation.
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ure 3(b). Operations op4 and op5 (from the then and else paths,
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both operations may reserve the ALU in cycle 5 because they are

provably disjoint, so only one will execute at run-time. In the SRT

of Figure 3(b), each resource conceptually has two slots. This

allows up to two disjoint operations to occupy the same resource

at the same time. Two slots is not a restriction of this technique.

Rather, for this example, there are only 2 control paths, thus we

know that there can be at most two disjoint operations.

The overall result of the PALS schedule is that the ALU resource
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ure 3(a). Note that for this basic block, a schedule of length 7 is op-
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ule presented in the MRT shown in Figure 4(a). Since each of the
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schedule is optimal. Note that RecMII=1.

With PAMS, an II=3 schedule can be achieved as shown in Fig-

ure 4(b). Again, this improvement is achieved by enabling the
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placed by the corresponding predicate defining operation (p1,p2 =
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to False when the condition ( ) evaluates to True; whereas
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Rather, for this example, there are only 2 control paths, thus we
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cycle. The if-converted code shown in Figure 1(b) is used to illus-

trate LS and its counterpart predicate-aware list scheduling (PALS)

along with IMS and its counterpart predicate-aware modulo schedul-

ing (PAMS).

LS versus PALS

The application of LS to the example results in the 8 cycle sched-

ule presented in Figure 3(a). This schedule is optimal for this ma-

chine model. op4 is scheduled at cycle 5 which is the earliest time

at which it can be scheduled. The earliest schedule time for op5 is

also cycle 5, but due to resource conflict with op4, it gets scheduled

at the next cycle. Hence, the earliest schedule time for op6, which

depends on both op4 and op5, is cycle 7. Note that both op4 and

op5 are executed conditionally but reserve the ALU uncondition-
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provably disjoint, so only one will execute at run-time. In the SRT
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Figure 6.1: Fig. 1 of [SMDL03]: Ex-
ample code segment

This section will provide a basic overview of

predicate-aware VLIW scheduling; for a more

detailed discussion see [SMDL03]. For clarity,

the specific algorithm presented in [SMDL03]

will be referred to by the acronym used by

the authors – PAMS (predicate-aware modulo

scheduling).

PAMS is based on iterative-modulo schedul-

ing (IMS), the same scheduling used in SPR.

PAMS is based on iterative-modulo scheduling

(IMS), the same scheduling used in SPR. Figure

6.1 shows the motivating example for PAMS, which is similar to the SAD example from

Chapter 5. PAMS is designed to work on predicated code, which is shown in part (b) of

Figure 6.1. Here, predicates p1 and p2 are mutually exclusive, so the goal is to schedule

the operations that depend on those predicates on the same resources. This is shown

in Figure 6.2, comparing the longer II=4 schedule obtained with IMS to the shorter II=3

schedule that is possible when operations can share resources.
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Figure 4: IMS kernel (a) versus PAMS kernel (b) schedule
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Figure 5: Ratio of operations predicated True

can only fetch a maximum of three operations per cycle. Thus, the

scheduler must also ensure that the fetch width constraint is not vi-

olated. Overall, PAMS results in a 33% speedup over IMS for this

example. Note, for this particular loop, an II=3 is optimal for any

compiler strategy, because there is only one ALU and three opera-

tions that require it on each control path.

This example shows that by allowing disjoint operations to re-

serve the same resource in the same time-slot, the resource re-

quirement for a code segment can be reduced. For code that is

resource constrained, this results in a tighter schedule and hence

performance improvement. Of course, if resources are not a limit-

ing factor, the benefit of predicate-aware scheduling is lessened. If

the example processor had two ALUs instead of one, both LS and

IMS would achieve the optimal schedules for this example, 7 and 3

cycles, respectively.

2.3 Characteristics of Predicated Code
The previous section showed that an isolated example can derive

benefit from predicate-aware scheduling. The central issue to mo-

tivate further discussion of this technique is whether applications

in general have the properties that make them amenable to the ap-

proach. There are 3 interrelated questions to address: the number of

predicated operations that are nullified at run-time, the fraction of

time spent in regions with disjoint operations, and the potential to

combine disjoint operations. For details related to the experimental

methodology, the reader is referred to Section 4.3.

Figure 5 presents the percent of dynamic operations whose pred-

icates evaluate to True during the program execution. Thus, 100

minus the height of the bar is the percent of nullified operations. On

average, 26% of all dynamic operations are nullified. This means

that 26% of the time that a function unit is reserved, it does no

useful work.

Figure 6 addresses the last two questions. The left bar shows
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Figure 6: Optimal predicate-aware scheduling

the percent of dynamic operations that lie a regions with at least

two disjoint operations. On average, 69% of the operations are

from such regions. Of course, the overall benefit of the predicate-

aware technique depends not only on the frequency of the improved

region, but also on the number of disjoint operations in the region

which indicates the potential for the improvement.

The right bar shows the dynamic combining potential. To de-

rive the right bar, we optimistically assume maximal combining of

the predicated code (regardless of operation type and latency) and

count each group of combined operations as one operation. The bar

shows the dynamic operation count after combining as a percentage

of the count without combining. On average, optimal combining

can reduce the total operation count by 13%. Note that this is not

an upper bound on performance with predicate-aware scheduling;

the actual performance benefits can be higher or lower as shown in

the prior example.

3. PREDICATE-AWARE SCHEDULING
In this section, the details of the two predicate-aware scheduling

algorithms are presented. Predicate-aware list scheduling (PALS)

and predicate-aware modulo scheduling (PAMS) are extensions of

conventional LS and IMS, respectively. As discussed in the pre-

vious section, both techniques aim to decrease schedule length by

relaxing resource constraints, specifically by allowing disjoint op-

erations to reserve the same resources in the same cycle.

LS and IMS share much of the same underlying scheduling in-

frastructure. Thus, we begin this section with a unified discus-

sion of both algorithms, referred to as unified scheduling or simply

scheduling. The term reservation table (RT) is used in a generic

sense to represent either an SRT for LS or an MRT for IMS.

3.1 Baseline Unified Scheduling Algorithm
The heart of typical instruction scheduling algorithms employs

two important functions to identify a conflict-free time for each op-

eration to be scheduled. The central data structure used to identify

resource conflicts is the RT. The general realization of an RT (sim-

ilar to Figure 3(a)) is a two-dimensional matrix in which columns

correspond to resources and rows correspond to schedule slots.

In our implementation, the scheduler selects an operation from

the pool of unscheduled operations and calls the FindTimeSlot func-

tion (see pseudo code shown in Figure 7(a)). This function scans

forward from to looking for the first con-

flict free slot in RT to schedule the operation. MinTime is the ear-

BMA

Figure 6.2: Fig. 4 of [SMDL03]: IMS kernel (a) versus PAMS kernel (b) schedule

In the PAMS formulation, the Predicate Query System (PQS) [JS96] infers the relation-

ships between predicates in predicated code. A predicate being true is a concrete run-time
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representation of the abstract idea that a condition has enabled a control path. To keep

the terminology clear, predicates will always refer to a run-time signal, and condition will

refer to the abstract execution state that signal represents.

The relationships that are inferred by PQS are stored as Boolean expressions. To

determine whether two predicates are mutually-exclusive, or disjoint as they are referred

to in [SMDL03], the expressions are ANDed together. If the result is unsatisfiable, then

the predicates will never be true at the same time, and operations predicated by them

may use the same resource.

These predicate expressions are first used to compute the resource minimum II (resII).

In IMS, all the operations are added to a usage count for the resources they use, and the

largest count sets the resII. For PAMS, this would over-count, so the predicate expressions

are used to find ways of combining usage in the counting process. A list of predicate

expressions is kept for each resource in the architecture, with each expression representing

a single use of that resource. For each operation, the list of predicate expressions for the

resource that operation maps to is examined in order. If the operation is disjoint with any

of the existing expressions in the list, it is added to that expression by ORing together

the expressions - representing the sharing. If there are no existing expressions that an

operation can combine with, its expression is added to the end of the list, representing an

increment in the usage count. At the end, the length of the longest list sets the resII.

FINDTIMESLOT

/* Successively try each time in the range */

for (

)

while ( there are remaining resource alternatives) do

= next resource alternative for

if ResourceConflict

== FALSE

return ;

...

(a) FindTimeSlot() function

RESOURCECONFLICT

while (there are remaining resources in resource alt) do

= next resource from ;

if IS EMPTY(ReservationTable

return TRUE;

return FALSE;

(b) ResourceConflict() function

Figure 7: Baseline scheduling functions

liest start time that the operation can have as constrained by its

scheduled predecessors. MaxTime (which can be infinity) is the

latest time at which the scheduler will try to schedule the operation

before giving up. Frequently, an operation may execute on any of

multiple function units; in this case, the operation is said to have

multiple alternatives. All operation alternatives are tried inside the

while loop, and for each alternative, the function ResourceConflict

is called.

The ResourceConflict function, shown in Figure 7(b), checks if

the operation can be scheduled without conflict on the resource re-

source alt at time CurrTime. Each resource alt is a set of resources

that one particular realization of the operation needs during execu-

tion. Therefore, each corresponding entry in the ReservationTable

must be checked. If there are any conflicts, then the operation can-

not be scheduled on this resource alternative at this time; otherwise,

it can. Scheduling is accomplished at this level by reserving the ap-

propriate entries in the RT.

3.2 Predicate-aware Extensions
Predicate-aware scheduling is accomplished by using the Predi-

cate Query System (PQS) [8] to determine the disjointness of two

operations based on their predicates. The PQS analyzes opera-

tions to determine relations between predicate values. These re-

lations (or facts) are stored as Boolean expressions which can be

efficiently manipulated. For a set of predicates, the Boolean ex-

pression essentially represents the disjunction of all the paths on

which these predicates evaluate to True. For example, the predicate

expression that represents p0 in from Figure 1 is True, since the

predicate evaluates to True on all the paths. To check if a predi-

cate is disjoint from another predicate, the corresponding predicate

expressions are ANDed. If the result is False, the predicates are

disjoint, meaning that regardless of the execution path at most one

of the predicates will be True at any given time. Otherwise, the

predicates are not disjoint.

Predicate-aware scheduling uses a predicate-aware RT, as shown

in Figure 8. Each entry in the predicate aware RT has two fields:

a list of disjoint operations which have already reserved the entry,

and a predicate expression (pred expr), which represents the union

of the predicates of the reserving operations.

In predicate-aware scheduling, FindTimeSlot calls the predicate-
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... ...

... ...

... ...

... ...

... ...

op5 pred_exprn2

... ...

op1 op2 pred_expr01
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Res 2Time
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Figure 8: Predicate-aware reservation table

RESOURCECONFLICT

get predicate

while (there are remaining resources in resource alt) do

= next resource from ;

if IS DISJOINT FALSE

return TRUE;

return FALSE;

Figure 9: Predicate-aware ResourceConflict() function

aware ResourceConflict function (see Figure 9) which does the

following. First, the operation’s guarding predicate pred is ob-

tained. For each entry ReservationTable[CurrTime][resource] of

the predicate-aware RT, a call is made to the IS DISJOINT func-

tion. This function takes two arguments: pred and the predicate

expression pred expr for this entry in the RT. If the conjunction

of the two arguments is FALSE, the value returned is TRUE, then

the operation is disjoint from every other operation in the list, and

therefore it can also reserve the resource resource at timeCurrTime.

Otherwise the value returned is FALSE and the operation is not dis-

joint from one or more operations currently in the list. Therefore,

this operation cannot reserve this resource at .

If there are no resource conflicts, the operation is placed into the

operation list of the corresponding entry in the RT. The operation’s

predicate is ORed into the current pred expr in the RT entry to

reflect the new condition under which the resource is busy.

The predicate-aware scheduler divides machine resources into

two categories: may-use and must-use. May-use resources can be

reserved in the same cycle by disjoint operations. Must-use re-

sources can only be reserved by one particular operation in a given

cycle, as on the baseline machine. The categorization rule is that

every resource that is after the predicate nullification point in the

pipeline is may-use. May-use resources can be reserved by dis-

joint operations because the operations whose predicates evaluate

to False are discarded before those resources are used. Conversely,

resources before the nullification point are must-use, and only one

operation can reserve them at any time as these resources are used

regardless of the operations’s predicate value.

For our implementation, we add a pseudo must-use resource

called the fetch width (or ) resource. This resource limits the

maximum number of operations that can be fetched in a given clock

cycle. Note that in general the fetch width can differ from the exe-

cution width, which is the number of operations that can be simul-

taneously issued to function units in a given clock cycle. On all our

processor models, these width are the same.

3.3 Additional Extension for PAMS
Up to this point, the predicate-aware extensions are common

to both PALS and PAMS. However, to support PAMS, we must

compute ResMII in a predicate-aware manner. IMS computes the

resource-constrained lower bound (ResMII) by adding the number

of times that each operation uses a particular type of resource to

that resource’s usage count. The cumulative usage count for the

Figure 6.3: Fig. 8 of [SMDL03]: Predicate-aware reservation table

PAMS augments the individual reservations in the IMS resource table with these

Boolean expressions to make IMS predicate aware, as shown in Figure 6.3. When at-

tempting to find a slot in the resource table for an operation, that operation’s predicate
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expression can be tested with the reservation’s expression for disjointness. If they are dis-

joint, the operation can share the slot with the other operations that have already reserved

it. It is added to the list of operations in the reservation, and its predicate expression is

ORed with the expression in the reservation to represent the union of the operations in

that reservation slot.

With this enhanced resource table and the appropriate access and update routines, the

rest of the scheduling proceeds in the conventional IMS manner. The authors were able

to use PAMS to demonstrate an average performance gain of 18% and 7% on 4-issue and

6-issue VLIW processors, respectively, across the benchmarks they used.

6.2 Applying Predicate Aware Scheduling to CGRAs

The same general approach is taken making the IMS portion of SPR predicate aware,

though some of the implementation details differ. In particular, PA-SPR extends the re-

source table with predicate-aware sharing information. PA-SPR also includes the appro-

priate access and update routines to maintain the sharing information, as in [SMDL03].

However, PA-SPR uses an improved method for computing a resII, and the predicate

expressions are replaced with aggregate execution conditions. Additionally, PA-SPR bal-

ances the resII against the recurrence minimum II (recII) to achieve the best possible

performance. These differences are detailed in this section.

6.2.1 Computing the Resource Minimum II

IMS is an iterative algorithm, attempting to schedule heuristically at lower II values, and

trying incrementally higher II values after a budgeted number of scheduling operations.

A minimum II is determined at the beginning of this process to avoid needless iteration

at unschedulable II values.

The PAMS scheduler creates the resII by greedily packing operations together when

their predicate expressions are disjoint. Consider the compatibility graph operations that

use the same resource type, defined as a graph G = (V, E), where V is the set of opera-

tions that use a given resource type and an edge eu,v ∈ E where u, v ∈ V if and only if

the predicate expressions of u and v are disjoint. Operations v1, . . . , vn ∈ V are able to
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share a resource if they are all compatible with one another, e.g. they form a clique in G.

To determine a lower bound on the resource minimum II, we want to find the minimum

number of resources the operations can be packed into, which is equivalent to finding the

minimum clique cover of G.

Given that the CLIQUE PARTITION is problem 13 in Karp’s original list of NP-

complete problems [Kar72], it is clearly intractable to find the optimal resII for large

kernels. The PAMS greedy approach will either find the correct minimum II or over-

estimate it. However, when computing a lower bound for an iterative algorithm that will

work upwards, the proper approach is to underestimate the resII.

PA-SPR will compute an under-estimate by assuming perfect sharing between opera-

tions that are partitioned into mutually-exclusive subsets in the CDT. A count of opera-

tions by type will be created by starting with the counts at the leaves and performing a

reduction up the CDT to the root. When combining counts at partition nodes, the per-

type maximum value will be passed up the tree. Combining counts at condition nodes

is done by per-type addition. The maximum operation reflects the resource count if all

of the operations in the sub-trees could be perfectly shared. The addition operation cap-

tures the property that ancestors and sub-trees joined at condition nodes cannot share

resources. Once the reduction is completed, the resource minimum II can be computed

from the resulting per-type operation counts using the original IMS method.

6.2.2 Alternative to PQS

The PAMS algorithm targets scheduling predicated code. As a result, PAMS uses the

PQS to extract the relationships between the predicates and store them as predicate ex-

pressions. In PA-SPR, the predicate relationships are provided directly by the front-end

compiler in the form of the CDT. PA-SPR generates conflict vectors from this representa-

tion and uses aggregate execution conditions to replace the union predicate expressions

in the predicate-aware resource table.

One issue that is not clearly addressed in the PAMS work is the potential problem of

predicates that are live for more than II cycles. As was discussed in Section 5.2.4, when

predicates are live for multiple waves, operations that depend on them are only compara-
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ble if they are using predicates generated in the same iteration. The execution conditions

and aggregate execution conditions used by PA-SPR include the extra scheduling infor-

mation necessary to deal with this issue. This ensures that operations from different

iterations are not accidentally shared on the same resources, even though the predicate

expressions (or conflict bit-vector) alone may indicate this is possible.

6.2.3 Promotion for Dependence Trimming

In a spatial architecture, the then and else branches of an if statement are often executed

simultaneously before the condition of the if is resolved, with the correct result selected

once the condition has been computed. This is called eager execution and predicate lifting

in [TLS90]. They found it to be very useful for extracting enough parallelism for speedups

on their benchmarks.

Predicate-aware sharing of resources re-introduces the dependence between the pred-

icate computation and the operations that are sharing; the predicate is needed to choose

which operation to execute. These extra dependencies may create larger recurrence loops.

In a highly resource-constrained situation, this may not be an issue because the resII con-

straint will be larger than the recII. However, in cases that are marginally resource con-

strained, the resII may be reduced at the expense of a larger recII. The larger of the two

sets a lower bound on the II, so a large increase in recII will squander any gains from

resource sharing.

PA-SPR handles this situation by using promotion to balance the recII against the resII

prior to scheduling, while the minimum II is still being resolved. Initially, all operation

conditions are set by the CDT, and an implicit dependence is created between an opera-

tion and the operation that computes the predicate for its condition. The scheduler first

computes the resII and recII bounds. If the recII is greater than the resII and there are

implicit dependencies from predicate computations on the largest recurrence loops, the

scheduler trims those dependencies using promotion. The scheduler removes the depen-

dence between the predicate computation and the predicated operation by promoting the

operation to unconditionally execute under the TRUE condition. It repeats this process

until the recII is calculated to be less than or equal to the resII, or there are no more of
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these predicate dependencies on the critical recurrence loops. The benefits of this balanc-

ing process are evaluated in Chapter 9.

6.2.4 The Region Abstraction and Scheduling

One aspect of predicate-aware CGRA mapping that is notably not handled during schedul-

ing is the region and predicate capacity limits discussed in Chapter 5. PA-SPR assumes

perfect resource sharing when computing the resII. Operations are greedily packed to-

gether in the resource table during scheduling, but with the eviction and iteration inher-

ent in the IMS algorithm. Both of these ignore the limitations on the number of predicates

that can be used to switch between operations and where those predicates are distributed.

Properly optimizing for these limitations requires deciding where the predicates are

computed and where they are distributed to – a decision that requires a spatial awareness

of the architecture. To maintain the separation of concerns of the original SPR between

scheduling, placement and routing, this spatial optimization is left to the placement and

routing stages in PA-SPR. If the resulting schedule cannot be realized, more constraints

on the scheduling will be provided to the scheduler and the process will iterate. The next

chapter begins the discussion of the spatially aware stages of PA-SPR, covering predicate

aware placement.
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Chapter 7

PREDICATE AWARE PLACEMENT

This chapter details the changes needed to add predicate awareness to SPR in the

placement stage of PA-SPR. The placement of SPR is based on the Simulated Annealing

optimization framework [KGV83]. The modifications focus on providing the proper costs

and constraints to include resource sharing in the optimization process.

Predicate-aware placement requires changes that can be divided into two main con-

ceptual categories. The first category is made up of changes that allow for more than one

operation per device, which can be thought of as the local sharing concerns. The second

category contains changes that are needed to optimize routing predicates to region gate-

ways and the associated limits on the number of predicates available in the region. Many

devices fall within the same region, so these will be considered region costs.

The adaptations to the Simulated Annealing cost model for these two categories will

be discussed in Section 7.2 and Section 7.3, after the goals of predicate aware placement

are covered in Section 7.1. This chapter concludes with a description of the process of

moving on after either a successful or failed placement.

7.1 The Problem

The goal of predicate aware placement in PA-SPR is to take an initial schedule and spa-

tially place the operations across the architecture in a way that will be routable by the

routing stage. The initial schedule already contains some operations that are assigned to

the same resources. This schedule will be turned into an initial placement by randomly as-

signing reservation slots to resources in the architecture and then annealing that random

placement. The schedule includes operations that are packed together, but the packing

was performed only considering compatibility and dependence constraints. Once this

schedule is converted to an initial placement, the gateways of the regions may be over-
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subscribed, requiring more predicates to accomplish the sharing than there are predicate

ports in the gateway. The predicates may also not be routable from the places they are

computed to all of the gateways where they are needed. During the annealing process,

these issues must be resolved by moving operations or else the routing stage will not be

able to successfully complete.

Simulated annealing works by repeatedly generating random changes to the system,

in this case operation moves or swaps, and probabilistically accepting that change based

on the difference in system energy, or cost. In SPR, the optimization is formulated as a

cost reduction, so moves that reduce cost are always accepted, and moves that increase

the cost are accepted based on a cooling schedule. Early in the process, the simulated

temperature is high, which means the probability of accepting a move that increases the

cost is high. The temperature is reduced according to the adaptive process used by VPR

[BR97a], and at lower temperatures, the probability of accepting a move is reduced. Since

generating a routable placement is the primary goal, the costs of moves are formulated in

terms of routability.

The first obstacle to predicate-aware resource sharing in placement is the assumption

of a one-to-one mapping of operations to devices in SPR. The move generation in SPR

assumes that there is never more than one operation mapped to a device, and never

generates moves that cause multiple operations to be mapped to a device. Instead, a

swap happens when any operation is moved to a device with an existing operation.

The initial schedule will have already grouped compatible operations on devices.

However, that sharing may over-subscribe the predicate resources for the associated re-

gion. In order to alleviate this over-subscription, PA-SPR must be able to generate moves

that can change the sharing initially set up by the scheduler. This implies that PA-SPR

must track the individual operations and the compatibility between them, maintaining a

many-to-one mapping of operations to devices. The approach used to accomplish this is

covered in Section 7.2.

The second obstacle to predicate-aware mapping is the limitation in SPR of only con-

sidering signals that route to or from an operation in that operation’s cost. In order

to support predicate-aware mapping and new costs need to be created that reflect the



89

routability of the predicates that enable sharing. These signals are routed from their pro-

ducer to the gateway of the region an operation is in, not the device where an operation is

placed. Additionally, the predicates only need to be routed once per region, but multiple

operations in the same region may all require the predicate for sharing. Finally, opera-

tions that execute under a particular condition may not be sharing a device with other

operations. In this case, the predicate is not required by that operation any more, so it

should not be included in the estimate of the routing cost.

The local nature of cost computations in SPR enables an important optimization. As

moves are generated, the effect that move will have on the total cost can be computed

incrementally by only considering the delta in the cost of operations and the signals

attached to them. This keeps the complexity of computing the cost of a move limited

to the average degree of nodes in the computation graph. If the total cost needed to be

recomputed at each move, the complexity would grow to the order of the computation

graph. When incorporating the non-local costs, especially those that are affected by all

operations in a region, it is important to find a way of computing the cost incrementally

to preserve the efficiency of adjusting the cost at each move. The method used in PA-SPR

to accomplish this is detailed in Section 7.3.

7.2 Local Sharing

The first step in making resource sharing possible in PA-SPR placement is to allow many-

to-one mapping of operations to devices. The placer is provided with an initial schedule

that contains groups of compatible operations sharing the reservation entries of the re-

source table. There are three possible choices for the amount of regrouping the placer

may perform to adjust this sharing:

• None – each set of operations in a reservation entry are treated as a single operation

by the placer, maintaining the view of a one-to-one mapping.
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• Valid sharing – operations may be moved between sharing groups, as long as the

operations mapped to a single resource execute under conditions that will make

them mutually exclusive at run-time.

• Conflicted sharing – operations may be moved between sharing groups, and if op-

erations that are not mutually exclusive are mapped to the same resource, a large

cost is incurred to make this an unlikely state at the end of the annealing process.

The first option of None is not feasible, because the placer must reconcile any over-

subscription in the initial placement. The scheduler allowed sharing in reservation entries

without any notion of regions or the limitations they put on predicate availability. PA-SPR

sets up the initial placement by assigning the sets of operations that share a reservation

in the schedule to a random resource of the appropriate type. The predicates required

for the sharing may not be routable to the region within the latency constraints of the

schedule, or the amount of sharing within a region may require more predicates than the

capacity of the region gateway. Therefore, the placer must reconcile these limitations us-

ing routability estimates and a description of the architecture which includes the regions.

To do so, it must move operations to remove sharing where the predicate gateways are

over-subscribed, and it may need to move sharing based on certain predicates closer to

where those predicates are generated.

Before deciding between maintaining valid sharing and allowing conflicted sharing,

it is enlightening to consider how SPR handles other constraints within the simulated

annealing framework. In SPR, the placer is allowed to alter the scheduled time of oper-

ations, but only within the limits of the schedule slack. This means that the validity of

the schedule is an invariant throughout placement. An alternative would be to allow the

placer to change the scheduled time in ways that produce an invalid schedule, but at very

high cost. Then, it is up to the annealing process to eliminate all of the scheduling viola-

tions through optimization of the cost. However, simulated annealing is an optimization

framework, not a constraint satisfaction framework. It is possible that violating the sched-

ule for one operation could allow a lower cost placement for enough other operations to
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offset the chosen cost for a single schedule violation. In this case, it is more optimal to re-

tain the violation from the point of view of the optimization problem. Unfortunately, this

is not a viable mapping solution because any violation of scheduling constraints means

that an operation will either happen before its inputs are ready or after consumers of its

output have started execution.

This pathological case can be avoided by either choosing a high enough cost such that

no combination of other benefits can outweigh it, or by simply maintaining the invariant

of a valid schedule over all moves. SPR is designed to enable architectural exploration

by making few assumptions about the architecture, so choosing an appropriate cost may

not be possible, and the latter approach is used instead. The scheduler provides a valid

schedule to the placer, and the placer only generates moves that respect the scheduling

constraints. This way, the schedule remains valid throughout placement.

The same reasoning applies to the options of maintaining valid sharing or allowing

conflicted sharing in PA-SPR. This initial exploration of predicate aware sharing will use

the method that has proven successful for scheduling and maintain valid sharing through-

out placement. Initially, groups of operations that share the same slot in the resource table

of the scheduler will be mapped to a random device of the appropriate type in the archi-

tecture. The placer maintains a list of operations mapped to a single device, along with

an aggregate execution condition that can be used for tracking operation compatibility,

allowing the placer to ensure operations will be compatible when generating moves.

There is also a small change that needs to be made to the procedure of calculating the

change in an individual operation cost when it is moved. The original SPR counts the

change in routing cost for all of the operation’s input and output signals. For PA-SPR,

the change in the routing cost of sending a predicate to the region gateway is included as

well.

A predicate only needs to be routed to the region once per phase to be usable by oper-

ations on all devices in the region. As a result, counting the cost of routing the predicate

for each operation may seem like over-counting. However, this gives the simulated an-

nealing algorithm a toe-hold for moving a set of operations that use the same predicate to

a region that is closer to the predicate generation. The placer does not generate moves for
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all operations using a given predicate at once. The entire set must be moved by individ-

ual moves. In order for this to happen with reasonable likelihood, individual moves that

may eventually lead to a better placement must show some benefit in the cost function.

In general, this will tend to pull operations that execute under a particular condition to-

wards the operation that generates the predicate for that condition, or the operation that

generates the predicate towards the regions which have the most operations using it.

These changes give the placer stage in PA-SPR the ability to manage the sharing of a

device by multiple compatible operations. The added cost calculations can still be exe-

cuted incrementally per operation move. However, none of these changes will help with

the problem of an over-committed region gateway if too many predicates are required in

the region. The next section covers the changes that are needed to cope with this aspect

of placement.

7.3 Region Costs

The region and predicate gateway of the region were introduced in Section 5.5.3 and

Section 5.5.4 as a way of providing a scalable abstraction of hardware modifications to

support predicate aware sharing. The difference in cardinality between regions and de-

vices is the key aspect that support scalability and abstraction across architectures. The

architect is free to set the region of influence of a predicate signal and describe where and

how many can connect to the data interconnect.

The difference in cardinality also means that tracking region over-subscription cannot

be easily done locally on a per-device basis. Instead, PA-SPR includes per-region place-

ment information in addition to the per-device information. The union of required predi-

cates is tracked per-region. Each region has a list of predicates that are needed within the

region, along with a count of how many operations in the region require the predicate.

The counts are used to manage the incremental updates. As the last operation that re-

quires a predicate is moved out of the region, the count for the predicate will reach zero

and it is clear it is no longer needed. If an operation using a particular predicate is moved

out of the region, but there are still some left using it in the region, the count will reflect
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this and the predicate will still be tracked in the region. Without the counts, all of the

operations in the region would need to be checked to ensure a complete and up-to-date

set of predicates were being accounted for in the region after each modification.

Once the per-region accounting is in place, it is easy to detect when a region is over

its predicate capacity by checking the length of the list of required predicates. In PA-SPR,

predicate bits are assumed to replace modulo counter bits, so the capacity of the regions

is dependent on the current II of the schedule. PA-SPR is provided with a maximum II

for the architecture, and it is assumed that there are log2(maxII) counter bits available for

indexing the configuration memory. In each region, there is a predicate gateway device

with several input ports. Each input port represents a bit that may be used by a predicate,

and each port can be used to replace one of the high order modulo counter bits. For a

given scheduled II, the capacity in the region for predicate bits, p is given by Equation

(7.1):

p = min
�
log2(maxII)− log2(schedI I), np

�
(7.1)

The log2(schedI I) term sets aside the bits that are needed to index through the phases,

providing a global heartbeat to keep the architecture in sync, while the remaining bits are

available for use as predicates. The number of ports in the gateway is represented by np.

The capacity can never be higher than the number of ports or the number of remaining

bits once the phase bits have been reserved.

PA-SPR can track predicate usage and determine that a region is over its capacity, but

resolving the issue requires a cost model that will bias the annealing towards placements

that are at or below capacity. Resolving an over-capacity conflict requires operations

to be moved in a way that reduces the number of predicates needed for sharing. To

accomplish this, an extra cost will be assigned for any region that is over capacity, but

regions that are at or below capacity will incur no cost. Additionally, because the capacity

is a constraint and a valid mapping is not possible with any over-capacity regions, each

predicate required over the capacity will be tracked as a broken constraint the same way
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unroutable connections are tracked. If there are any over-capacity regions at the end of

the annealing process, it will be considered a failed placement.

A single predicate may be required by a single operation or many operations in the

region. If given the choice of removing a predicate that supports sharing for few opera-

tions versus removing one that supports many, it is clearly better to remove the predicate

that supports fewer. Any operations that are supported by the predicate will need to

be moved to new locations, either no longer sharing resources or sharing resources in

another location.

To reflect this, there should be a greater benefit to moving an operation, and potentially

removing its condition, that has the fewest other operations under the same condition –

the ones that get the least benefit from having the condition available in the region. This

is akin to the principle of diminishing returns, in this case the principle of diminishing

costs. As more operations are added to an existing condition in an over capacity region,

they should increase the cost, but by a decreasing amount because they are increasing the

virtualization that particular condition provides. Conversely, if there are only a couple of

operations in a region, removing them will greatly decrease the placement cost, until the

point of removing the overcapacity problem, where the cost will drop a great deal. The

cost, c, for an over-capacity region is given in Equation (7.2):

c = ∑
pred

no

∑
i=1

max
�
(base ∗ ratei), cmin

�
(7.2)

Where base represents the initial base cost for over-provisioning, no is the number

of operations using the predicate pred in the region, and rate is the rate of diminishing

costs. The cost is clamped at cmin so that there is a minimum cost to any over-capacity

predicates. In this work, base = 1023, cmin = 1 and rate = .95.

The difference in cardinality between regions and operations also means that incre-

mental cost updates during placer moves must be done carefully. If each move was

limited to one operation or a swap of two operations, it would be a simple matter of

checking whether the cost needed adjustment based on one or two regions. However, the

clustering covered in Section 3.3 can increase a move to include many operations across a
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cluster. If regions are defined at a smaller size than clusters, this could lead to a move in-

volving many regions. It may also involve many operations per region. To ensure that the

costs are properly maintained in an incremental fashion, the set of operations for a move

is iterated through to build a set of regions requiring updates. The over-capacity cost is

calculated (or retrieved) once per region before the operations move, and re-calculated

once per region after the operations move, with the individual operation moves updating

the predicate usage counts in the interim. Once the before and after costs are calculated,

the difference is taken and added to the total cost to complete the incremental update.

7.4 Finalizing the Placement

The annealing process uses an adaptive temperature schedule, and once the cost improve-

ment rate has slowed down enough, the process terminates. For a normal optimization

problem, this would be the final result. However, there are additional constraints involved

for placement in PA-SPR.

• All routes must be routable according to the cost function, including the routes of

predicates to the regions where sharing depends upon those predicates.

• The number of predicates required in a region must not exceed the capacity.

If any of these constraints are not satisfied, it is clear that routing will not succeed. The

iterative nature of SPR and PA-SPR handles this by relaxing the problem and re-starting

from the scheduling stage. The latency padding technique from Section 3.1 was shown to

handle any failures in the first constraint, and is applied to the predicate routes as well

in PA-SPR. To deal with violation of the second constraint, the minimum II is set to one

more than the currently scheduled II before iterating. This effectively adds more virtual

resource slots, but at a performance cost. A finer grained approach may be possible, for

instance promoting all operations from the condition that has the fewest, but incrementing

the II provides an easily implemented alternative for this initial study. By incrementing

the II, more virtual resources are provided, which reduces the amount of sharing needed

to fit within the alloted resources.



96

If all constraints are satisfied, then PA-SPR can prepare to move on to the routing

stage. The routes for predicates must be finalized before moving on. Whereas all data

connections between operations must be routed, the predicate connections between the

operations that generate them and the region gateways should be routed only if they

are needed. Predicate routes are generated for the predicates of any operations that are

sharing resources. For the current implementation of PA-SPR, the ports of the gateway are

assumed to have equivalent connectivity, so predicates that require routes to a gateway

are chosen at random and assigned to the ports of the gateway in increasing port number.

This means the lowest port number should correspond to the most significant counter

bit to ensure a proper trade-off between bits used for the phase and bits used for the

predicates.

Once these dynamic routes have been generated, PA-SPR can start the routing process.

The modifications that enable predicate-aware routing are described in the next chapter,

and are far more extensive than those of either scheduling or placement.
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Chapter 8

PREDICATE AWARE ROUTING

CGRAs use compiler controlled routing interconnects that must be configured to en-

able communication between operations. Once the placer has determined the locations

in the CGRA where operations will execute, the router must create the configurations

that will allow that communication. The routing problem consists of finding an assign-

ment of settings for configurable switch points in the architecture that ensures signals

will travel from the generating operation’s spatio-temporal location, or source, to the

appropriate consuming operations’ spatio-temporal locations, or sinks. The problem of

predicate aware routing adds the extra dimension of sharing routing resources based on

the condition compatibility of the sources and sinks. The approach taken in PA-SPR limits

the hardware modifications to those already described and extends the current routing

algorithms used by SPR to be predicate-aware.

This chapter presents the modifications of the PathFinder and QuickRoute algorithms

used by SPR to support predicate-aware routing. For PathFinder, the notion of congestion

will need to be refined to take into account sharing opportunities between signals that are

mutually exclusive at run-time. Mutually exclusive signals should be allowed to share

resources – instead of assuming co-location in the unrolled architecture graph means

there is congestion. The costs for both control and signal congestion will be examined

separately, each for both present sharing and historical sharing, as they were in Chapter

4. These modifications are presented in Section 8.2.

PA-SPR must route predicate signals to any regions where operations are sharing

compute resources based on the mutual-exclusivity of those conditions. This enables

switching between the appropriate configurations at run-time. Operation sharing within

a region defines the minimum set of predicates that must be routed to the region. These

are in addition to signals that must be routed between operations, as required by the
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program data flow. During the routing process, the router may need other predicate

signals in certain regions to enable mutually-exclusive signal sharing of routing resources.

This means that the process of signal routing may create more sinks for predicate signals

that must also be routed, implying that the routing problem itself is dependent on the

current partial routing solution. To handle this dependence, a method that updates the

predicate routes at the granularity of PathFinder iterations is proposed in Section 8.3.

The single-sink routing portion of QuickRoute can remain largely unchanged. Quick-

Route uses the PathFinder costs during routing, so properly adjusting those costs will

result in predicate-aware routing decisions. However, the source and the sink of a par-

ticular signal may execute under different conditions. This means that a predicate aware

signal router must choose the appropriate condition under which to reserve resources

along the route, ensuring the signal will have a complete path at run-time. This choice

will be covered in Section 8.4.5.

The multi-sink portion of PathFinder that combines single-sink QuickRoute results

requires more modification to become predicate-aware. In the SPR router, QuickRoute

routes each sink individually. Subsequent sinks for a common source are able to start from

the routing resources of prior sinks with zero initial cost, using those resources to provide

seed paths. This allows and encourages re-use of routing resources for multi-terminal

networks, helping reduce routing requirements. Extending this re-use to multiple sinks

under multiple conditions, multiple sources under multiple conditions, and even multiple

sinks in the same physical locations is not an easy task. It requires carefully filtering the

seed routes so they are only re-used under the proper conditions. There are even cases

where seeds must be used to avoid false congestion between different sinks of the same

net. The modifications needed to effectively handle these cases are explored in detail in

Section 8.4.

The next section will explain the predicate-aware routing problem in detail. The prob-

lem formulation assumes that the predicate-aware scheduling and placement have been

completed as described in the prior chapters.
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8.1 The Problem

This section will describe the assumptions, important requirements and observations nec-

essary to develop the predicate-aware routing algorithms. In general, the problem pre-

sented to the predicate-aware router is the same pipelined-routing problem as before,

with the addition of predicate annotations on the signals that allow the router to share

resources between compatible signals. There are three important considerations to take

into account when designing a predicate-aware routing algorithm:

• Each source and sink of a signal is marked with the corresponding operation’s con-

dition. – The router must be aware of the predicates that control any given commu-

nication in order to share resources between signals. Whenever two communicating

operations both execute, the corresponding signal between them must have a route

to ensure the communication happens properly. If only one or neither executes,

then the communication is not necessary. This implies that the route need only be

complete in iterations where both the source and sink conditions are true.

• The conditions may differ between each source and sink pair. – The router will

be responsible for managing what conditions under which each portion of a route

is reserved, which in turn determines which configurations use a resource. An

alternative would be to define routing resources that represent transition points

between conditions and have their location defined by the placer. However, this does

not allow the router to be as flexible in routing around congested areas because there

are more fixed locations that the router must reach. PA-SPR leaves the complexity

of managing the routing condition to the signal level router to maintain flexibility.

Note that with operations sharing resources, there may be multiple sources and

multiple sinks at the same physical resources, so the conditions may differ between

sources, the conditions may differ between sinks, and the conditions may differ

between any source and any sink.



100

• Multiple sources/sinks may be at the same spatio-temporal location under mutually

exclusive conditions. – The placement done prior to routing will be predicate-aware,

and will allow mutually exclusive operations to share what appears as a single time-

slice of a physical device in a modulo schedule. All operation conflicts must be

resolved by placement before transitioning to routing, because the router will not

be adjusting the placement of operations. This means all co-located sources and

sinks must occur under mutually exclusive conditions in order for the co-location

to be valid.

In addition to the proceeding considerations, there are some important assumptions

required by the solution presented in this chapter. The following is a list of the assump-

tions that are a result of the hardware execution model or are used to simplify the problem

for this initial investigation into providing predicate aware execution in CGRAS:

• Limited predicates are available. – Only predicate signals routed to the controller

for a region are available for switching configurations. At a minimum, the predicates

available to a region will be those necessary to support the predicate-aware sharing

of devices that the placement requires.

• The available predicates will change along the route. – A route can cross an arbi-

trary number of regions, even leaving and returning to the same region. The predi-

cate availability at any point along the route will be dictated by the predicates that

are routed to the region controller for the current routing resource. Some regions

may have no predicates available.

• Predicate availability is fixed. – The set of regions acting as sinks for predicate sig-

nals is assumed to be fixed within an iteration of the PathFinder algorithm. This

assumption eliminates the need for creation and destruction of routes to send pred-

icate signals to region controllers in the inner loop of the QuickRoute algorithm.

Between PathFinder iterations, the router may change the set of predicates available

to a region, but it may be costly to do so. The router calculates costs incrementally
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to reduce routing time. Routing decisions are made using topology and costs at-

tributed to the routing resources. In order to allow predicate-aware sharing, these

costs will become dependent upon predicate availability for sharing, and changing

the availability of predicates in a region could require recalculation of the costs for

all routes throughout the region, or potentially a complete re-route.

• Routing resources have no side effects other than passing values from input to out-

put, with possible delay. – The routing resources of an architecture will be signal-

transport devices, such as wires, multiplexers, bus connections, registers, and in

some cases, ALUs or other compute units set for a pass-through operation. Assum-

ing that use of these routing resources will have no side effects allows the router to

speculatively route values, whether they need to be communicated or not.

• Operations that cannot be speculatively executed will have a distinguished predi-

cate input. – Operations that have side effects cannot be speculatively executed. The

input data flow graph was meant to be spatially executed, so it is assumed that any

such operations should have a predicate signal to prevent unintended execution.

This predicate input must be distinguished so that the router may ensure that the

corresponding signal is unconditionally available to the device.

In addition to these assumptions, there are several implications that are important

to be aware of when attempting to solve this problem. The first is that the source and

sink condition of any given route cannot be mutually exclusive at the latency of the

communication. For example, if A communicates with B with an iteration delay of 2,

the compiler can assume that at run-time, there may be a situation where A executes

and then B executes two iterations later. A source-sink pair represents communication

between operations, and if the source operation never produced a value when the sink

operation needed to consume a value, they would never be able to communicate. This

fact will be used to trim down the number of source-sink condition relations that need to

be accounted for during routing in Section 8.4.3.
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The next important observation is that partial promotion is a way to generalize the

predicates that govern a route’s source and sink to those that are available in the re-

gion without resorting to unconditional speculation. Partial promotion was introduced

in Chapter 5 as it related to an operation’s position in the CDT. Ancestors of condition

nodes represent the super-set of executions, so promoting a portion of a route means that

the routing resource will be configured to allow the communication more often than is

necessary. If the predicate for the current route is not available in the region of a routing

resource, then the route can be promoted to execute locally under an available predi-

cate. In the worst case, it may be promoted all the way up to run unconditionally, where

no predicate is needed. This worst case unconditional routing corresponds to routing

without predicates, so it conveniently reduces to the original SPR routing problem.

Promoting portions of routes to more general conditions does carry an opportunity

cost with it. Conditions that are more general are not mutually exclusive with as many

other conditions, so there is an impact on the potential for sharing resources. However,

this situation is not as bad as it first appears. The limited predicate availability only

requires promotion for configuration switching purposes. Promotion is not required for

sharing signal level resources such as wiring and registers. Here, the notion of sharing

configuration space and physical hardware are split just as they were in Chapter 4 for

supporting time-multiplexed routes on resources limited to a single configuration.

Figure 8.1 shows an example where local promotion does not limit sharing. There

are two mutually exclusive routes shown, one represented by a red dotted line, and the

other represented by a blue solid line, each traveling between a pair of operations repre-

sented by red and blue squares, respectively. One could view this as routes for an image

processing application, where the red and blue components of an image are processed in

separate passes, leading to the opportunity to share the processing resources for the red

and blue image components. For this example, assume the data values are being routed

from the top left to the bottom right. The CGRA is divided up into regions represented

by the light colored gradients outlined by the finely dotted line. The diagonal marks in-

dicate the regions where the red and blue predicates are available. Any areas without the

diagonal marks have no predicates available, so everything must execute unconditionally.
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Pred 1                 Red
Pred 2                 Blue

Operation

Region with 
Pred 1 & 2 
Available

Route

Pred 1 Mutually 
Exlcusive with Pred 2

Mutually exclusive routes can 
join in regions with predicates 
available for switching.

Matching paths share 
without predicates.

Figure 8.1: Joining and tunneling for mutually exclusive routes.

The time-dimension of the time multiplexing has been left out of the diagram to provide

a simplified presentation.

In the upper-left region, the predicates for the two routes are unavailable, so they

must both be considered to be routing under the unconditional predicate for control

generation purposes. They cannot join routes in this region, because doing so would

require a routing mux to switch between two possible routes at run-time based on an

available predicate. Once both signals are in a region with the predicates available to

switch, they can be joined and route along a common path to the destination. The signals

can continue to share routing resources even when the routed path strays into a region

without the red and blue predicates, as long as the paths go the same direction, requiring

the same configuration. The two routes seem to “tunnel” through the unconditionally

configured region. Because they will never occur at run-time together, they will never

collide in that tunnel. This example makes it clear that for switching control purposes,

signals will need to be promoted to conditions available in the region. For signal level



104

resource sharing, the promotion is not necessary, and signals can always share resources

based on the original source or sink conditions.

Since a route may be promoted to use an ancestor condition, it is logical to consider

demoting the route locally where an entire set of child conditions are available. Instead

of choosing a single condition higher in the tree, is it possible to move down the CDT,

distributing a route to execute under all of the predicates at a lower level? Unfortunately,

this will not ensure correct execution. While the partition nodes of the tree divide the

run-time execution into disjoint subsets, there is nothing to guarantee that they are a

complete covering of their ancestor’s executions. As an example, pseudo-code and the

associated Euler diagram for the space of possible conditions for one iteration is shown

in Figure 8.2. Assume that the case statements are fully separated by break statements,

and so there is no fall-through. Note that the space for am and an are completely disjoint

and lie entirely within the space for a, but they do not completely cover the space for a.

This is because there may be a third case that is not handled, so am and an would could

both be false with a true. While at most one child condition of a partition may be true

for a given iteration, it is possible that none are true at run-time, even when an ancestor

condition is true. If a portion of a route was demoted, the routing resource may not be

configured correctly when all the children conditions are false, leading to an incomplete

route and failed communication at run-time. This is because the union of the children is

not equivalent to the parent.

Signals with source and sink under different conditions present more opportunity for

sharing, because the entire route only needs to be complete when both the source and

sink operation would execute. Therefore, any portion of the route may be valid under the

source condition, the sink condition, or any generalization thereof, to ensure the entire

route will be valid when the source and sink actually need to communicate.

8.2 Predicate-Aware PathFinder Costs

The goal of routing is to find a configuration of the interconnect that enables all operation-

to-operation communication at run-time. Without predicate aware routing, this task is
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    R2
    SWITCH
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    R5
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     CASE(q) R6
     CASE(r) R7

Figure 8.2: Code and Euler diagram of the space of possible conditions.

limited to finding a valid setting for each phase of the II, effectively time-multiplexing

the routing resources across phases. As presented in Chapter 4, routing multiple sig-

nals through static resources is possible when they all use a common configuration. By

viewing resources requiring different settings in different phases as congested, applying

a congestion negotiation algorithm will resolve the conflicts and allow routes to share if

they use the same configuration on the same device in different phases. By re-defining

congestion again, a negotiation-based algorithm can also be used for mutually-exclusive

predicate based sharing.

The new formulations of congestion for predicate-aware routing are divided into two

categories: signal-based and control based. The signal based notion of congestion is

simpler and presented first, in Section 8.2.1. The new notion of control based congestion

builds on the formulations used in Chapter 4, and is presented in Section 8.2.2.

8.2.1 Predicate-Aware Signal Congestion

The aggregate execution condition representation used during placement is also used for

tracking signal level congestion in the routing. Each unrolled instance of a routing re-

source maintains an aggregate execution condition for all signals that are routed through

it. The aggregate execution condition indicates when there are multiple signals that will

require a resource at the same time during execution, and this is used to create a present
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signal congestion cost. As each signal is added to the aggregate condition, it incurs a sig-

nal congestion cost proportional to the number of existing signals with which it conflicts.

This cost allows for differentiation between resources where there are conflicting sig-

nals that can be partitioned into compatible sub-sets and resources where all signals con-

flict with each other. In terms of negotiated routing, this is done so that signals are routed

through resources that have better potential for becoming uncongested by re-routing the

fewest signals to alternate paths.

8.2.2 Predicate-Aware Control Congestion

Tracking control congestion in a predicate-aware manner is not as easy as tracking signal

congestion. In Chapter 4, control congestion was used to represent two signals conflicting

over the required settings for the single available configuration word – specifically, signals

in different phases using different routing multiplexer inputs. A similar conflict arises

from the limited availability of predicates throughout the architecture. Predicates routed

to regions of the architecture are able to select between different configuration words,

allowing signals routed under those predicates to use different settings. If predicates that

distinguish between two mutually-exclusive signals are not available to the region at run-

time, then the signals can still share the routing resource, but only by using the same

configuration setting.

In Chapter 4, a table was introduced that tracks control congestion and encourages

the same settings for signals in different phases. It is possible to extend that idea to

sharing settings across conditions and use the same table structure to track predicate-

aware control congestion. In the case of single configuration sharing, the phases are a set

of mutually-exclusive conditions under which the operations will execute at run-time. If

the condition signals (phase counter bits) are not able to switch the configuration – in this

case because there is only one configuration – the configuration must be shared across

them. The rest of this section will show how to use the same techniques that allowed

sharing of static resources in Chapter 4 to aid in predicate-aware sharing. The difference

is that with static sharing, the conditions are defined by scheduling and in predicate-aware

sharing the conditions are defined by program control flow.



107

This sharing is presented in Figure 8.3 with the added context of the CDT. Without

control conditions, the CDT consists of the single unconditional node. This is dupli-

cated across the mutually exclusive phases created through time multiplexing. Figure

8.3(a) presents some example routes through a 4-input mux across three phases of time-

multiplexing, while Figure 8.3(b) and Figure 8.3(c) represent the dynamic and static con-

trol congestion tracking presented in Chapter 4.

Figure 8.3(b) presents control congestion in the original case of fully time-multiplexed

interconnect. In the top half of Figure 8.3(b), we see the CDT for this case. There is a

new root for the CDT which splits out to the unconditional node for each of the phases

of time multiplexing, which will be indicated as Condition 0 .1 In this figure, each

of these nodes is fully visible to represent that the phase signal is available to switch

between configurations for the routing mux. In the bottom half of Figure 8.3(b), we see

the tables that would be used for tracking input usage of the mux. Control congestion

happens when multiple inputs are required by signals in the same table. The phase

signals are available to switch between configurations, so each phase gets a separate table.

In this case, only one signal can be in each table; any more would cause signal congestion

(Section 8.2.1) on the mux. Therefore, there will never be any control congestion without

signal congestion, so these tables are not needed.

Figure 8.3(c) presents control congestion when there is a single configuration avail-

able. This is analogous to not having the phase signals available to switch between differ-

ent configurations, and so the nodes for the unconditional CDT node in each phase are

dimmed. In this case, there is a single table where signals from all phases are tracked for

control sharing, and each signal from Figure 8.3(a) is counted in the table. Even though

the signals are mutually exclusive in time, they all must share the single configuration

available for the mux, and so there is a conflict if they require different mux inputs. The

signals in phases 0 and 1 are compatible with each other, but the signal from phase 3

uses a different input. Doing an OR reduction across the phases yields a vector indicating

the inputs required. If the sum reduction across this vector is greater than 1, it indi-

1The box symbol is intentional, and will be use in more complicated examples to provide a visual cue for
the condition being discussed. The unconditional case will always be a white box.



108

Phase 0

Phase 1

Phase 2

(a)

Ph
as

e

0

1

2

0 1 2 3

1

1 0

1

1

1 0 2

OR

+
 C

on
tro

l
Co

ng
es

tio
n

Input

Phase 0
0

Modulo Scheduled 
CDT root

Phase 1
0 Phase 2

0

(b)

Phase 0
0

Modulo Scheduled 
CDT root

Phase 1
0 Phase 2

0

Ph
as

e

0

1

2

0 1 2 3

1

1

1

Input

(c)

Figure 8.3: Revisiting the control congestion from Chapter 4 with the context of the CDT

cates the need for more than one setting for the single configuration, and there is control

congestion.

Now consider the case of signals under mutually-exclusive conditions sharing a single

phase of a time-multiplexed mux. If the predicate signals representing those conditions

are not available in the region, this is analogous to the phase signals being unavailable

when sharing a single configuration slot. It logically follows that to share the single phase

configuration, the same table structure can be used as before, with mux inputs forming

the columns, but replacing the phases with the conditions that the signals are routed

under for the rows.

This observation is powerful because it re-uses existing mechanisms to enable predicate-

aware sharing when the predicates are not available. This broadens the amount of sharing

available in a scalable, distributed design like CGRAs because it means that signals can

even share resources in areas of the chip that are beyond the distribution range for the

predicate. The local ability to share compatible signals with identical settings will lead
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to the global behavior of routes sharing paths in regions without predicates, as shown in

Figure 8.1.

 1  if     (red) {
 2    if      (light) { ... }
 3    else if (dark)  { ... }}
 4  else if(blue){
 5    switch(pattern){
 6       case (grid)    {...break;}
 7       case (diagonal){...break;}
 8       case (striped) {
 9         if     (greenBk) {...}
10         else if(redBk)   {...}
11         ...
12         if    (linearFade)  {...}
13         elseif(circularFade){...}
14         break;}
15    }
16  }

(a)
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Figure 8.4: An example CDT and routing using texture and color.

A small example that will be useful in exploring this idea is presented in Figure 8.4.

A nested if/case structure is given in example code in Figure 8.4(a). Each condition rep-

resents a color or texture choice. The corresponding CDT can be found in Figure 8.4(b),

presented in a compact form. The operations at each level are left out, each condition

is represented as a colored/textured rectangle, and partition nodes are represented as

small circles within the appropriate rectangle. The conditions are numbered, and will be

referred to in the text by both the number and an icon with the corresponding color/tex-

ture – for example conditions 1 , 2 and 5 . Finally, Figure 8.4(c) presents a sample

set of signals routed through the different phases of a 4-input mux, where the color of

the heavy line represents the condition that the signal is routed under. This is similar

to the example routes presented in Figure 8.3(a). The signal in phase 0 is routed under

condition 1 , the signal in phase 2 uses condition 0 , and in phase 3 the mux is shared

by mutually exclusive signals routed under conditions 2 and 4 .

The CDT of Figure 8.4(b) is the raw version generated from Figure 8.4(a) before

scheduling. After scheduling, there will be a new root node, and the CDT will be du-

plicated for each phase. In this case, each phase will be shown as a different layer, as
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Figure 8.5: Predicate-aware control congestion with only the phase available.

in Figure 8.3. Figure 8.5 shows this for a predicate aware version of Figure 8.3(b). The

CDT from Figure 8.4(b) is used, and the phase signals are available in the region, but no

predicate signals are available, leaving all but the 0 node dimmed. What was only a

single entry in Figure 8.3(b) becomes a full table with a separate row for each condition

without a predicate available. This is because the tables are used to negotiate between

signals that must share a configuration at run-time. The phase signals allow for switching

the configuration, so any signals in different phases are accounted for in separate tables,

yielding one table per phase. Each signal routing in a condition from a specific phase

will have to negotiate with other signals from conditions in the same phase. Thus, each

phase gets a separate set of rows for each phase-duplicate of the conditions in the CDT.

In Figure 8.5, the example routes from Figure 8.4(c) are accounted for in the appropriate

tables, and it is clear that even though the two routes in phase 2 exist under mutually ex-

clusive conditions, there is no predicate to switch the input at run-time. This is indicated
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after running the reductions across the tables, leading to control congestion value of 2 for

phase 2.

Phase 0

3

1

0

Phase 1

3

1

0

3

7

10

11

1

11

6

0

2

1

9

0

1

0

1

1

4

11

5

1

1

4

3

8

Phase 2

3 4

1 2

0

7

5 6

8 9 10 11

Modulo Scheduled 
CDT root

Ph
as

e 
0

Ph
as

e 
1

Ph
as

e 
2

1 1 1 0 3+ Co
nt

ro
l

Co
ng

es
tio

n

OR

Figure 8.6: Predicate-aware control congestion without the phase signals available.

Similarly, if the phase signals are also unavailable, the tables can be joined into a

single table representing the single configuration word, as was done in Figure 8.3(c).

This is illustrated in Figure 8.6 where the condition 0 nodes for each phase have been

dimmed, and the three tables have been concatenated into a single long table. Now all

four signals from the example routes in Figure 8.4(c) will be negotiating for the single

configuration, and the reductions across the table lead to the larger control congestion

measure of 3.

Tracking control congestion in this manner will work when there are no predicates

available in the region; however, the routing problem to be solved allows regions where

a limited set of predicates are available. If a particular predicate needed for sharing is



112

Phase 0

3

1

0

Phase 1

3

1

0

Phase 2

Modulo Scheduled 
CDT root

9

2

11
10

8

5

7
6

3
1

4

0

Phase 0 Phase 1 Phase 2

Available Predicates:

Available Predicates:

Available Predicates:

3 4

1 2

0

7

5 6

8 9 10 11

3

5

10

6

9

1
4

8

2

0

7

11

6

0
2
5

8
9

11

7

10

1
3
4

Figure 8.7: Predicate-aware control congestion with tables for partial promotion with
limited predicate availability.

not available in the region, the notion of partial promotion can be used to find a valid

predicate in the region to use in place of the original. This promotion is only done

for control congestion purposes, as the signal congestion calculation can use a condition

whose predicate is not available within the region. That is, if two signals are routed under

mutually exclusive conditions, when the signal congestion is calculated, it always uses the

original routing condition. However, when calculating control congestion, the router will

promote the condition to one that is available in the region before computing congestion.

For control purposes, the signal is promoted to the closest (most specific) ancestor

condition that has a predicate available in the region. This promotion moves a signal

up past partition nodes that do not have the predicate signals available to enable the

corresponding partitioning of configurations at run-time. Signals that must negotiate to

use the same configurations can easily be identified in this way because they are promoted

up to the same conditions.
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The use of the CDT guarantees a hierarchical structure to the run-time conditions,

which means that ancestor conditions will be true whenever the descendant conditions

are true, and possibly more. Thus, if a signal route is valid under the more general

condition of the ancestor, it will always be valid when the condition it is actually being

routed under is true. This form of partial promotion will be referred to as finding the most

precise ancestor. If there are no ancestor predicates available in the region, the router will

simply promote all the way to the unconditional case. Each available predicate in the

region, plus the unconditional case, represents a valid partial promotion target for signals

routed through the region.

In the first two examples, each table had a one-to-one correspondence with a config-

uration available in the architecture. However, in this more complicated case with partial

promotion, each predicate available in the region corresponds to a table. Each phase can

have a separate set of predicates available, and so the partitioning of conditions into tables

will be different per phase. This is because the available predicates represent a way to

switch the configuration at run-time, and this switching allows us to partition the con-

trol negotiation into separate tables. An example with limited predicates available and

the resulting tables per phase is shown in Figure 8.7. In this example, the predicates

that are available in each phase are shown in the upper-right hand corner of each phase

in the CDT. The corresponding tables are shown on the right-hand side of the diagram.

The large tab on the left of the table is colored according to the available predicate it

represents, and each condition that will be promoted to that table has a row.

Instead of a single configuration word, each promotion target corresponds to a set of

configuration words, one of which will be be selected when the predicate is true, and

correspondingly to a set of configuration words that must be programmed for any signal

routed under the condition for that predicate. This predicate available in a region plus

its expansion to a set of configuration words will be called a configuration slot. Examples

to illustrate this are shown in Figure 8.8. On the left of the diagrams is a table of the

possible addresses generated by the predicate signals. The phase portion of the address

is left out for simplicity. Because certain sets of predicates will be mutually exclusive

with each other, there are certain combinations of predicates that will never occur, and
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Figure 8.8: Configuation slot expansion to configuration words.

their corresponding addresses will never be accessed at run-time. These addresses are

grayed out in the diagram. The grayed out addresses illustrate one of the drawbacks of

our simple hardware model. Some ideas for reducing this waste are discussed in Chapter

10. Each predicate represents a configuration slot that was negotiated for with a table,

and once that table is congestion free, it represents the value that should be stored. The

right side of the diagram shows the addresses where each condition is true, marked by a

colored box. This corresponds to where the configuration value should be stored in the

configuration memory.

Before moving on, I will show that tracking congestion at the slot level – that is, a

table per predicate that is available in the region – will lead to correct routes. Conceptu-

ally, the control congestion term allows PathFinder to negotiate for sharing configuration

words. However, having a separate table for each possible configuration word allocated

to a routing device will lead to a memory footprint that scales linearly with the maximum
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supported initiation interval of the hardware, instead of the scheduled initiation interval

of the application. Instead, congestion is tracked per configuration slot and the final con-

figuration settings are generated by expanding the slot configuration to the configuration

words that it represents. This reduces the memory footprint from one table per config-

uration word (or maximum II of the architecture) to one table per predicate. Predicates

are used to choose configuration words, so this can provide a logarithmic decrease in

memory usage assuming predicates are directly used as address bits.

To show that the router will still either produce a legal mapping or fail due to unre-

solvable congestion even when using only one table per predicate, I need to exploit the

separation of control and signal congestion. Signal congestion is tracked by the aggregate

execution condition, just as it tracks compatibility for operations in placement. To ensure

a valid final mapping, the tables created need to indicate there is no control congestion

only if a valid mapping can be made or there is other congestion to indicate an invalid

mapping. Extra aliasing of the signal congestion may happen, but this will not affect the

validity of the final mapping, and so it is allowed. Because the aggregate execution con-

dition will track the signal congestion, we can assume without loss of generality that all

signal congestion has been resolved and the control congestion tables are for negotiating

between a set of mutually-exclusive signals.

There are three possibilities for where each of these mutually-exclusive signals are

counted for control-congestion purposes on a given resource:

1. If the predicate for the condition the signal is routed under is available in the region,

there will be no partial promotion of that signal. The signal will be accounted for in

the table of the slot corresponding to the signal the condition is routed under, and it

will be the only signal using that slot’s configuration. Any other signal in the table

would have to be routed under the same condition, or have been originally routed

under a descendant condition and promoted to the slot’s condition. For both of

these cases, this hypothetical second signal is not mutually-exclusive with the first,

by construction of the CDT, and would cause signal congestion. This violates the
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assumption that there is no signal congestion, so there cannot be a second signal,

and so the single signal may choose any configuration it requires.

2. If the predicate is not available, and no ancestor predicates are available, the signal

will be counted in the unconditional table, corresponding to the top node in the

original CDT. This may have happened for several signals, but they must be mutu-

ally exclusive once there is no signal congestion. This table will track the control

congestion between them until they are using the same routing setting, at which

point they can safely share the resource.

3. If the predicate that a signal is routed under is not available, but it has been pro-

moted to the predicate of an existing slot, it will be counted in that slot’s table. This

case is similar to that of the unconditional table, where multiple mutually-exclusive

signals are promoted to the same slot. Again, the slot’s table will track the control

congestion between them until they are using the same routing setting.

It is clear for all three cases that any signals in a single slot will be able to share the

resource once there is no congestion. Finally, I need to show that once there is no conges-

tion, signals using different slots will never require conflicting configuration settings, and

at run-time the appropriate configuration setting will be used. This requires a method to

map from the configuration setting that is used in a slot to the configuration words that

will be programmed with that setting.

There are three possible run-time relationships between slots that need to be consid-

ered to decide if conflicts will ever happen. These relationships are based on the relative

positions of the conditions of each slot in the CDT. The first possibility is that the con-

ditions of two slots are mutually exclusive, and so the setting of both slots will never be

needed at the same time. The second possibility is that the condition of one slot is the

ancestor of the condition of the other. Here, the condition of the ancestor is true in a

super-set of the executions where the descendant is true, leading to possible times when

both settings will be needed at run-time. The third possibility is a catch all-for everything

else, so both settings may or may not be needed simultaneously at run-time.
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Case 1 Non-intersecting: Assuming that there was no partial-promotion needed and

that there is no signal congestion, the signals mapped to a given resource will be mutually

exclusive and fall into mutually-exclusive slots. Even with partial-promotion, if none of

the signals were promoted past the partition node separating them from the others, then

all of the slots with signals will still be for mutually exclusive conditions. Each slot

will be expanded to the configuration words where the slot’s predicate is true, each of

the mutually-exclusive predicates are false, and all possible settings of the remaining

predicates. The setting for a slot will be written to all of the configuration words of a

slot’s expansion. A different predicate bit must be true for each slot’s set of configuration

words, so each set will be disjoint and there will be no conflict for setting any given

configuration word. At run-time, whenever the routed signal’s condition is true, the

corresponding predicate bit will be set and the appropriate setting will be selected from

the set of configuration words.

Case 2 Super-set: If there was some partial promotion, a signal may have been promoted

up past the partition that separates it from other mutually exclusive routes, leading to

an ancestor-descendant relationship between two slots with signals in them. A simple

example of this is when only the else predicate of an if-then-else construct is available

in the region, and there are routes under both the then and else conditions going through

the same multiplexer. The route under the then condition will be promoted past the

partition up to the next ancestor with an available predicate, or the unconditional case if

none is available. Since the then route was promoted past the partition, there is now an

ancestor-descendant relationship between the slots that have routes in them, even though

the signals themselves are mutually exclusive. The ancestor predicate is not mutually

exclusive with the descendant, leading to an overlap of the configuration word expansions

of the two slots.

The descendant slot is more specific, so the configuration settings for the descendant

should override the configurations for the ancestor. Partial promotion for routing stops at

the most precise ancestor, so any routes in the ancestor slot are guaranteed not to be from

a condition below the descendant slot. The promoted routes cannot be from a condition
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above the descendant slot, otherwise they would not be mutually exclusive with routes

that were promoted to that descendant slot. Any promoted routes must be from branches

that are mutually exclusive with the descendant slot. Therefore, whenever the descendant

slot condition holds true at run-time, it is guaranteed that the original conditions for

routes promoted to the ancestor slot must be false, and the configuration can be safely set

by the descendant. Any remaining configuration words in the expansion of the ancestor

should be set according to the configuration of the ancestor slot. An example is shown

in Figure 8.9. Consider a set of signals routing under Conditions 5 , 6 , 10 and 11

. They are all mutually exclusive, but the predicates available for switching them are

2 , 10 and 11 . The routes for 5 and 6 will be promoted up to 2 , who’s

slot expansion conflicts with that of 10 and 11 . Because 10 and 11 are more

specific, their configuration will be written to any locations where a conflict with 2

exists. This will ensure that the appropriate setting is used at run-time for these routes.

Note that 5 and 6 are both promoted to 2 , and there is no predicate available

to distinguish them. This means they will negotiate to share the same configuration, and

this is what will be written in the non-overridden 2 configuration words.

Case 3 Partial-overlap: The final case is one that cannot happen once all of the signals

on a resource are from mutually-exclusive conditions. Any pair of signals being routed

through a single resource will be mutually exclusive if there is no signal congestion. This

means they started in mutually exclusive conditions and upon promotion, one of three

things may happen:

• They will be promoted to slots that are below the original partitions and thus are

mutually exclusive.

• They can both be promoted past all partitions to the same slot.

• One may be promoted past all partitions to an ancestor slot of the other.

Each of these three possibilities is covered by the prior two cases – non-intersecting

slot expansion and super-set expansion – and so once all signal congestion has been
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Figure 8.9: Child slot override when there are partial promotion conflicts.

resolved there is simply no way for there to be a partial-overlap in the configurations

that need to be written for different signals on a device. In summary, to generate a valid

configuration from congestion free slots on a device, each slot is expanded to the set

of configurations where that slot’s predicate is true, any mutually exclusive predicates

are false, and all other predicates are set to all possible values – for ancestor predicates

this may be reduced to only the true case. For any pairs of slots that form an ancestor-

descendant relationship, the setting for the descendant slot is used. This will ensure that

at run-time, the appropriate configuration setting is chosen for any signals that need to

be routed under the current run-time conditions. Notice that the same configuration is

duplicated for all possible values of the predicates unrelated to the slot used by signals

on the device. This duplication is used to ensure that the configuration for the current

device is constant while the predicates used for sharing on other devices can change their

configuration.

As a final note, it is important to remember the examples presented here have been

simplified for presentation. Each phase only shows one copy of the CDT, where there
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is actually a full copy per wave of the schedule, each of which is not mutually exclusive

with the other copies in the same phase. This is the same simplification that was made

when the time-based duplicates of the CDT were introduced in Figure 5.5. All of the same

reasoning still applies; there is just a larger tree in each phase based on the length of the

schedule.

8.2.3 Negotiated Routing Costs

The last two sections covered predicate-aware signal and control congestion in PA-SPR.

These represent how problematic situations are tracked during the routing. This conges-

tion must be turned into present sharing and history costs to be used by PathFinder to

accomplish the negotiation for routing resources. The control congestion uses the same

representation as presented in Chapter 4, and so the same costs will be used as well. The

signal congestion now is based on the compatibility of multiple signals routing through

the same mux at the same time, and so the costs need to be reconsidered.

In the regular SPR implementation, no signals can share a routing resource in the

unrolled graph, so the amount of congestion is directly used as the present sharing cost.

This is the number of extra signals that are trying to use the resource.

In PA-SPR, the amount of congestion is not as simple to calculate. If two compatible

signals are on the same resource, that should not incur any present sharing. If two in-

compatible signals are on a resource, it should incur a present sharing cost. If the router

is trying to decide between sending a signal through a resource that has one compatible

signal and two incompatible signals, or a resource that has three incompatible signals, the

cost should steer the signal toward the resource with only two incompatible signals. To

gain this level of discrimination, the signal present sharing cost in PA-SPR is calculated as

the number of edges in the conflict graph between signals using the resource. The history

cost update remains a single increment for any resources that are congested at the end of

an iteration.
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8.2.4 Simple Optimizations

There are a couple of simple optimizations that have been added into the implementation

of PA-SPR over the course of development and are briefly described here. The first is a

partial-promotion cache for accelerating the lookup of the appropriate slot given a sig-

nal’s condition. The second is a method of lazy construction for the slot tables to avoid

excessive memory usage.

Once the router knows the set of predicates that are available in a region, it can de-

termine the partial promotion used for control congestion of any given condition. This

partial promotion is used to find the appropriate table for tracking congestion and com-

puting routing costs every time a node is reached in the routing process. Instead of

tracing through the CDT every time this happens, PA-SPR retains a hash based map from

all conditions to those available in a given phase and region. This map is used to provide

amortized constant time translation between the condition a signal is currently routed

under and the condition it should be promoted to due to predicate availability. This

optimization simplifies and accelerates the innermost loop of the routing process.

The control congestion tables used for each slot require a separate row for every con-

dition that maps to that slot via partial promotion. There can be far more conditions than

were in the original CDT once scheduling information is taken into account. There is a

virtual duplicate of the CDT for every single start time in the schedule. This leads to

many conditions. Instead of pre-allocating the rows for all of those conditions, they are

only added to the slot tables of routing resources as a signal is routed through the re-

source using that condition. As implemented, there is no “garbage collection” to remove

rows once they are empty, since that may result in a loss of the history values for that row,

and thus it should be avoided if possible. However, when a new row is added, the router

must create new values for the history costs of that row. For each input of the new row,

the minimum value across all of the other rows is used for initialization. This will capture

the relative contour of the existing history, so that signals under the new condition will

be guided toward agreement with the signals that have previously used the resource.
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8.3 Routing Predicates

The predicates are datapath signals themselves, and must be routed as well. There are two

approaches to routing predicate signals that may have drastic effects on the applicability

of mutually exclusive sharing.

The first is to only route predicates to locations they are needed by the placement

before routing starts. This allows the router to include the routes of the predicates with

all of the rest of the signals by setting up their routing requirements between placement

and routing. However, this does not allow the router to change the predicates available

in a region based on routing need. This means that regions without any sharing based on

placed devices will not have predicates available for sharing routes.

The second is to allow the router to request predicates that are not available initially

in a region. This means that the routes for predicates will be determined dynamically

during routing based on other routes, complicating the routing algorithms.

Limiting the predicates to those required by the placement is more problematic than

it may seem at first. The placement tries to avoid over-subscribing region gateways by not

requiring predicates when they do not enable sharing of a device in the region. This can

greatly reduce the required predicates, but it also means that they may not be available in

the region in the cycles preceding and following the cycle where operations are shared.

These are important clock cycles for sharing routes under the same predicates. Initial in-

vestigations indicated that when the router could only use the predicates directly needed

by shared placements, routing would congest and fail due to a lack of predicates in the

cycle just before or after the sharing operations that needed the results. This motivated

including a predicate request mechanism in the router to provide the sharing that would

alleviate such congestion.

8.3.1 When to Request Predicates

There are several levels of granularity that predicates could be requested at, correspond-

ing to the depth of the algorithmic loop that the request happens in. At the finest granu-

larity, the router could attempt to route different predicates to regions at each exploration
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step in QuickRoute. As a signal goes through a mux, if a needed predicate is not there,

we could try to route it and roll this into the cost of that resource on the route. This would

require significant work in the innermost loop of the router, in addition to creating very

complicated interactions with the QuickRoute algorithm itself. This is likely impractical

in both coding and execution complexity.

Another approach would be to attempt to route required predicates for a signal with

conditional dependence right after the signal itself is routed. This way, the signal itself

has tried to find the cheapest route without requiring any new predicates. Routing the

predicate signals after a PathFinder iteration to only the places they are actually needed

should lead to significantly less routing. The savings would be highly architecture depen-

dent, as the router may need to explore more in an architecture with broad, uniform cost

than an architecture with highly variable costs for different routes.

Coarsening the granularity further, the router can attempt to re-allocate predicates for

routing after some number n iterations of the PathFinder algorithm. If n = 1, the require-

ments for predicates are unlikely to change unless a conflict was created by moving one

signal and later relaxed by moving a second within the same iteration. For n > 1, n may

either be a fixed value or an adaptive choice made during routing. One possible extreme

choice for adaptive re-routing is to only attempt to change predicate availability once

other options are exhausted. This happens when the remaining congestion is only control

congestion due to not having predicates available for sharing. In this case, the predicates

needed and the regions that need them are clearly indicated by the congestion. If it is pos-

sible to route the needed predicates, then congestion will be immediately resolved. Even

in cases where the congestion is not entirely due to lack of predicate availability, sending

predicates to areas with high history costs in slots that could be split by providing that

predicate could generally ease routing and allow other areas of congestion to be relieved.

Depending upon the relative costs of different types of congestion, the routing may

never reach a point where all congestion is limited to control congestion. Additionally,

routing predicates to a region does not always simply reduce the control congestion. It

may also increase both the control and signal congestion, because now there is more

signal-routing overall that needs to be accomplished. Immediately following the intro-
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duction of new predicate routes, the history costs will not reflect the congestion due to

these new routes. It may take several iterations for appropriate history costs to build to

adapt to the change in the routing problem. For these reasons, the implementation of

routing in PA-SPR requests new routes after i initial PathFinder iterations, and then again

every n PathFinder iterations after that, where i and n can be set in the configuration file.

The values used here are i = 5 and n = 10. PA-SPR only requests predicates based on

routing resources that only have control congestion. This allows the router to use new

predicates to alleviate some of the congestion in areas that will clearly benefit from it. For

resources that include signal congestion as well, some subset of the signals will need to

be re-routed through other resources to clear the congestion. This re-routing may clear

the control congestion as well, so the router should not prematurely waste region-wide

predicate resources attempting to resolve control congestion where there is also signal

congestion.

The modified predicate-aware PathFinder iterations used in PA-SPR is given in Al-

gorithm 8.1. Within the while loop, the first for loop represents the usual PathFinder

execution. The second for loop represents the new procedure for adding new predicate

routes as they are needed to each region for every phase. This is guarded to only execute

every nth iteration, with some offset number of initial iterations i. This describes when

new predicate routes will be chosen, the next section will cover the inner portion of the

new for loops, which handles choosing the new predicates.

8.3.2 Finding Needed Predicates

There are two interesting and related choices to make when creating new routes that

will provide predicates to regions. They both center around the question “What is the

most needed predicate?” At the most abstract level, the most needed predicate is the one

that will lend the globally optimal amount of flexibility in the routing – yielding the best

route possible. This is handled by PA-SPR by separating the process into two separate

problems. The first is deciding which predicates are needed, and the second is finding a

way to decide which subset will provide the most flexibility. This section covers the first,

followed by the second in the next section.
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Algorithm 8.1: Predicate Aware PathFinder
begin1

Clear sink and visit marks2

Setup routes for predicates to regions as required by the placement3

while iterate do4

for routeable signal do5

if congested then6

rip-up signal7

re-route signal8

if after i iterations, on every nth iteration then9

for region do10

for phase do11

for routing resource do12

Find control only congestion13

Determine needed predicates and relative ranking14

Choose predicates based on ranking and region capacity15

Setup new predicate routes as capacity permits16

iterate ← isCongestion ∧ (iteration < limit) ∧ progress17

end18

To make tackling this problem more tractable, the router begins by using a local view.

Each routing resource will have a set of congestion tables, as described in Section 8.2.2,

that is responsible for tracking sharing. Each table will be tracking sharing for a different

slot representing each predicate available in the region. As mentioned previously, if the

router is attempting to choose new predicates to route to the region, the only congestion

on the resource will be control congestion.

In each slot, there will be entries for signals under multiple conditions, one row per

condition. The congestion on that resource would be fully resolved if the predicate for

each occupied row were successfully routed to that region. Each of those rows would

then be given a slot of their own. There could be a way to choose predicates that would

partition the rows to eliminate the congestion using fewer predicates, but for the initial

implementation, all predicates for occupied rows are used. When this is done across

all routing resources in a region that only have control congestion, it provides a list of
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predicates that could be used to resolve all of that congestion. However, this may require

more signals in a region than there is capacity to support, so choosing a subset is the topic

of the next section.

8.3.3 Selecting Predicates with Capacity Limitations

The previous section demonstrates a way of obtaining a set of predicates that could reduce

congestion in the region if successfully routed. However, each region gateway has a finite,

likely small capacity for predicates. Given only a set of predicates that will reduce control

congestion and a capacity limit for the region, it is difficult to decide on the subset that

should be chosen for routing.

Instead of simply collecting the set of predicates, the router can count the number of

resources that need each predicate. The predicates with the highest counts will resolve

the most congestion if they are successfully routed, so the predicates are ranked by this

count. Also note that a predicate can only resolve the congestion if it can be successfully

routed to the region. The router already has access to an architecture-specific plug-in that

estimates routability and routing cost. Applying this estimator to the potential predicate

routes allows the router to eliminate predicates that cannot be routed to the region due to

either latency or connectivity constraints.

After this ranking and filtering process, the router now can choose the top predicates

from the list, up to the capacity of the predicate gateway. The router assigns these new

predicates to un-used ports in the gateway and makes the appropriate updates so they

will be routed on the next iteration. Additionally, all of the congestion tables in the region

need to be re-built to reflect the new predicates. Predicates are only added, creating new

slots with their own congestion tables. This process requires creating the new tables and

splitting off the row entries of the existing tables and re-assigning them to the appropriate

newly created tables. Additionally, the mappings in the promotion cache need to be

updated. This process can be expensive, so it is much better that it is done once every few

PathFinder iterations, rather than once for every visit of a congested node.
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8.4 Predicate-Aware Signal Tree Routing

With the topics of predicate-aware PathFinder and routing predicates covered by the pre-

vious sections, this section will detail the final major change – making the signal tree rout-

ing predicate aware. Fortunately, the predicate-aware nature of the congestion costs pro-

vided by PathFinder allows the core QuickRoute algorithm to remain largely unchanged.

The minor changes needed are covered in Section 8.4.1 using the context of a single route

where the source and sink both execute under the same condition. However, the problem

becomes more complex when multi-fanout signals are coupled with the case of source and

sink executing under different conditions. The methods used to deal with this complexity

are described in Section 8.4.2.

8.4.1 QuickRoute

The single fan-out pipelined routing problem is stated in [LE04] as: “Given a source node

and a sink node in a directed circuit graph and N > 0, find the shortest path from source

to sink that includes exactly N registers.” The predicate-aware variant is: Given a source

node, source condition, sink node and sink condition in a directed circuit graph and

N > 0, find the shortest path from source to sink, using conditions that will be true at

least whenever both source and sink condition are true, that includes exactly N registers.

The changes to QuickRoute to create the predicate-aware version are outlined in Fig-

ure 8.10(b), with the original algorithm listed in Figure 8.10(a). The first change is a choice

of condition to route under as each routing resource is explored, as seen on line 12 of Fig-

ure 8.10(b). The choice requires knowledge of the source and sink operation conditions in

order to ensure the route is done under a condition that will ensure the proper configura-

tion whenever the communication between the two operations should happen. When the

same condition is given for both, that is the condition that is chosen. That is the most spe-

cific valid condition for the route, so it will afford the most sharing opportunities. When a

different condition is used at the source and sink of a route, one of the two will be chosen

along the way, but making the correct choice is a difficult decision. An alternate condition

could be chosen using partial promotion, but that would only increase the possibility of
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QuickRoute (source, sink, N)
1  for all nodes n, 
     for all i<=N, n.visited[i] = 0 do
2     initialize the priority queue PQ
3     insert the path [source] into PQ
4     while PQ is not empty do
5       remove the shortest path P from PQ
6       if P.end == sink and P.latency == N then return P
8       else
9         for every neighbor n of P.end at latency < N do
10          if n.visited[P.latency] < k and 
11                  n is not in P then
13             add new path P' = [P, n] to PQ 
                        with cost = P.cost + n.cost
14             increment n.visited[P.latency]
15          endIf
16        endFor
17      endIf
18    endWhile
19  endForAlls
20 return failed

(a) QuickRoute of [LE04]

PAQuickRoute (source, srcCond,
                        sink, snkCond, N)
1  for all nodes n, 
     for all i<=N, n.visited[i] = 0 do
2     initialize the priority queue PQ
3     insert the path [source] into PQ
4     while PQ is not empty do
5       remove the shortest path P from PQ
6       if P.end == sink and P.latency == N then return P
8       else
9         for every neighbor n of P.end at latency < N do
10          if n.visited[P.latency] < k and 
11                  n is not in P then
12             n.cond = chooseCond(srcCond, snkCond)
13             n.cost  = cost(n, n.cond)
14             add new path P' = [P, n] to PQ 
                        with cost = P.cost + n.cost
15             increment n.visited[P.latency]
16          endIf
17        endFor
18      endIf
19    endWhile
20  endForAlls
21 return failed

(b) Predicate-Aware QuickRoute

Figure 8.10: Comparison of original and predicate-aware versions of QuickRoute.

conflicts, as it pushes up past partition nodes in the CDT. The choice between routing

under source or sink condition will be explored further in the next section.

The second change is shown on line 13 of Figure 8.10(b). This change computes the

cost of using the routing resource based on the chosen condition. This represents re-

trieving the cost according to the current predicate-aware PathFinder costs. The chosen

condition will be used with signal congestion tracking to indicate whether there will be

any conflicts with other signals routed through that resource. The chosen condition will

also indicate the configuration slot that should be used for computing the control con-

gestion cost. The translation process from the chosen condition to the appropriate slot

represents a partial promotion to a condition that is available in the region. This means

routing can proceed through different regions with varying predicate availability without

needing to take that into account in the chooseCond procedure of PAQuickRoute.

With these two changes in place, the costs used by QuickRoute will be predicate aware.

This allows QuickRoute to take advantage of the sharing allowed by predicate-based con-
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figuration switching through the control congestion costs. The run-time mutual exclusion

that supports the tunneling illustrated in Figure 8.1 is supported through the aggregate

execution condition based signal congestion costs. However, QuickRoute is only for-

mulated to handle a single source to sink route. In SPR, this limitation is overcome in

PathFinder by stitching together multiple single-source routes into a tree for signals with

multiple destinations. In addition to doing this stitching in a predicate-aware manner,

PA-SPR must allow multiple signal trees both starting and ending at the same location

due to operations sharing a device (e.g. Figures 8.11-8.13). The next section covers the

methods for handling these complications.

8.4.2 Predicate Aware Multi-source/-sink Routing

In the description of predicate-aware PathFinder given in Algorithm 8.1, a significant

portion of the PathFinder and QuickRoute integration is covered by the simple statement

re-route signal. The PathFinder/QuickRoute integration used in original SPR is shown in

Algorithm 8.2, where QuickRoute replaces the Djikstra’s shortest path/A* search from

the original PathFinder formulation. The re-route signal step has been expanded to show

the per-sink routing loop, with si representing the source of the route, tij representing the

sinks that are ordered by their estimated distance from the source, and cn representing

the PathFinder cost for node n.

Note that an initialized priority queue is provided to QuickRoute instead of simply

specifying a source and sink pair. For brevity, the portion of a signal that needs to be

routed between a particular source-sink pair will be called a fanout. The priority queue

initialization is important for routing multi-sink signals. If each sink were treated as

a separate fanout, the first sink to be routed would occupy the resources immediately

following the source device. The next sink would need to use these resources as well, and

the costs would reflect false congestion with the first fanout route.

An important consideration now that resources are being shared is whether or not

signals from different operations that are sharing the same device will interfere with each

other with similar false congestion costs. For the simple case of a pair of single-condition

routes from a pair of operations sharing a resource destined for the same sink resource,
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Algorithm 8.2: PathFinder (Negotiated Congestion)/QuickRoute
begin1

while iterate do2

for routeable signal do3

if congested then4

Rip up routing tree RTi5

RTi ← si6

while ∃ unrouted sink tij do7

Initialize priority queue PQ to RTi at cost 08

Run QuickRoute search for tij using PQ9

forall nodes n in path tij to si /∈ RTi do10

Update cn11

Add n to RTi12

iterate ← isCongestion ∧ iteration < limit ∧ progress13

end14
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Figure 8.11: Compatible signal tunneling.

the conditions of the fanouts will be set to match the operations. Since the operations

are mutually exclusive, the signals will be as well. If the signals follow the same path or

diverge, they will not interfere through congestion. An example of this is illustrated in

Figure 8.11. The green, gold and purple dotted areas represent separate regions, while the

red and blue tint represents operations and the associated signals routed under mutually

exclusive conditions 1 and 2 from our example CDT in Figure 8.4(b). The red and
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blue predicates must be available in the regions with the operations in them, but the

center gold region might not have any predicates available. This is indicated by the small

color patches in the upper corner, similar to the way available predicates were indicated

per phase in Section 8.2.2. The illustration is simplified by omitting the time dimension.

The signals can tunnel through the gold region without interfering with one another like

the previous illustration in Figure 8.1. Routing in different directions on wires requires

no control switching, so the blue signal heading up and the red signal heading down also

incur no congestion costs.
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Figure 8.12: Single signal divergence and re-convergence with control congestion.

In this example, the signals clearly do not interfere with each other through false con-

gestion costs. Generalizing, mutually exclusive signals that either follow the same path or

diverge will not interfere with one another, even in regions without the predicates avail-

able for sharing configurations between them. What this example does not demonstrate is

re-convergence after divergence. The reconvergence will require the use of two different

inputs of a mux. In this case, there will be no signal congestion, however, there could still

be control congestion in nearby regions. An example is illustrated in Figure 8.12. Here,

two muxes have been added in the green region where signals routed under 1 and 2

may share.

The predicates needed for switching are available in the green and purple dotted

regions, but not the gold region. Additionally, there is another signal routing under 1
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that appears at the top of the diagram. The top mux may be shared by both the signal

routed under 1 coming from above and the signal routed under 2 coming from

the operation in the green region because the predicates are available for making the

configuration switch. However, the input mux in the gold region requires a configuration

change to route from the different inputs. Without the predicates being available, these

will have control congestion. Assuming the bottom mux has a base cost that is higher

than the top mux plus the cost incurred from control congestion, this is a plausible set of

initial routes.
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(a) resolution via tunneling
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(b) resolution via new predicate routing

Figure 8.13: Example conflict resolution for routes.

If the routes under 1 and 2 from the operations shown on the left of Figure

8.12 are treated as independent signal trees, then the mechanisms that have already been

introduced will serve to resolve the congestion. The control congestion will increase the

history cost associated with the mux in the gold region, eventually causing the route

under 2 to take the lower path as shown in Figure 8.13(a). Alternatively, this may be

prevented by another signal under 2 routing through the lower mux, in which case

the congestion could be resolved by routing the predicates for 1 and 2 to the gold

region, illustrated in Figure 8.13(b).

Even though there is control congestion, and the signals are routing from the same

physical resource, it is not false congestion. It is not valid for the router to simply start
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the route under 2 with the route under 1 like in the multi-sink regular PathFind-

er/QuickRoute. Any portions routed using 1 will only be guaranteed to exist during

executions where the condition 1 is true. Since the portion routed under 2 is needed

only when condition 1 is false, if the route under 2 were to assume the use of part of

the route without reserving it, that portion of the route may not be properly configured at

run-time. In this simple case of source and sink conditions matching, signal trees from co-

located operations may be routed independently without concern for unresolvable false

sharing (discussed below).

This extends to the case where there are multiple sinks for the routing trees of each

shared source, where the sink conditions match the corresponding source condition. Each

tree may be routed independently using the priority queue initialization of Algorithm 8.2

for each branch.

8.4.3 Predicate Aware Multi-condition/-source/-sink Routing

The source and sink conditions will be the same for any signals between operations within

the same control flow block. However, the signals representing live values being trans-

ferred into and out of a control flow block generally have different conditions for their

source and sink operations. In fact, with multi-sink signals, each sink could be executed

under a different condition. How those conditions relate to each other dictates which

portions of the routes may be re-used in the priority queue initialization across fanouts.

There are several possibilities for how different conditions relate to one another at run-

time based on their relationship in the CDT. Here they are given in terms of conditions A

and B, and the � symbol will be used to denote the relationship. Here are the possible

relationships of A � B:

• Ancestor – When A is on the path from B to the root, A is an ancestor of B and will

be true in a superset of the iterations where B is true.

• Descendant – When B is on the path from A to the root, A is a descendant of B and

will be true in a subset of the iterations where B is true.
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• Mutually Exclusive – The least common ancestor of A and B is a partition node, and

so A and B will never be true in the same iteration.

• Unrelated – The least common ancestor of A and B is a condition node, and so there

is no known correlation between the iterations where A is true and the iterations

where B is true.

Note that this relation is not reflexive, because if A � B is Ancestor, then B � A is

Descendant. Of those four relationships, only three are possible for the conditions of a

given fanout. Let Cs denote the source condition and Ct denote the sink condition. Cs

will be the ancestor of Ct when the sink operation is in a block nested within the block

where the source operation occurs. Cs will be a descendant of Ct when this nesting is

reversed. Cs and Ct will be unrelated when each operation is nested in a separate control

construct, each of which occur within the same block, for example conditions 9 and

11 from the sequenced if-then-else constructs in Figure 8.4. Cs and Ct will not

be mutually exclusive, relative to the latency of the communication. This means that

if the communication between the source and sink is within the same iteration, Cs and

Ct will not have a partition node as their least common ancestor in the original CDT. If

the communication is across iterations, the router does not know about any relationship

between Cs and Ct, as currently implemented (though this could change, as per Section

5.2.4). This is because the CDT is constructed for a loop body, representing a single

iteration. If the source and sink operations were to execute under mutually exclusive

conditions, whenever the source executes, the sink would not, and vice versa, meaning

no communication between the two could take place. A corollary to the fact that a source

is never mutually exclusive with the sink is that for a given source condition, there are

no sinks from co-located (mutually exclusive) sources with the same condition. That is to

say, for two source operations sharing a device, s1 and s2, under conditions Cs1 and Cs2,

respectively, there is no sink of s1 under condition Cs2, and there is no sink of s2 under

condition Cs1.

Now consider the possible relationships between the conditions of source operations

of multiple fanouts emanating from same physical source. The fanouts may be from the
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same operation, in which case the source conditions are the same. They may instead be

from co-located operations that are sharing the physical resource, in which case the con-

ditions will be mutually exclusive. These are the only possible cases, because operations

may not share a physical resource when their conditions have any other relationship.

Source1 Sink1 Fanout1

Source2 Sink2 Fanout2

S,M

S,A,D,U S - Same
A - Ancestor
D - Decendent
M - Mutually Exclusive
U - UnrelatedS,A,D,U

Figure 8.14: Possible condition relationships between fanouts with the same source de-
vice.

These source-source and source-sink condition relationships are illustrated in Figure

8.14. Two fanouts are shown with red arrows representing pairs of conditions whose

relationships are important to routing. The limitations described in the previous two

paragraphs are given as annotations on the appropriate arrows, where each letter rep-

resents a valid relationship for that pair out of the five possibilities on the right. These

limitations are independent of each other. The limitations for the remaining relationships

may be derived given the within-fanout source-sink and cross-fanout source-source rela-

tionships. If Fanout1 is routed first, these relationships will determine which portions of

the route may be re-used by Fanout2. The limitations lead to 32 possible combinations of

relationships between the four conditions.

A particular fanout may be routed using either its source or sink condition at any point

in time, because the route only needs to be complete when both operations will execute.

Once the route is completed, each location along the route will be reserved under either

the source condition or the sink condition. These will be referred to as s-routed or t-

routed, respectively, reflecting the common use of s and t to denote source and sink in

routing algorithms. A fanout can re-use a portion of an existing route starting at the

source as long as that portion was contiguously routed under a condition that can serve

as a surrogate for the current fanout. Acceptable surrogate conditions are the same as or

ancestors of either the source or sink condition of a fanout. This definition of surrogate



136

ensures that the proper configuration will be retrieved at run-time for the current fanout.

It must be specified as a contiguous portion because the route may switched back and

forth between being s-routed and t-routed. If only the source condition is a valid surrogate

for the current fanout, there are s-routed portions that cannot be used as a starting point

for the current fanout because there are t-routed portions of the partial-route that will not

be valid for the current fanout at run-time.

   
     
  

   
  Broken Route

Valid Route

Fanout

Fanout

Figure 8.15: Illustration of broken and valid route re-use.

An example of a valid route and a broken route that can occur from re-using a prior

route is illustrated in Figure 8.15. There are two fanouts, the first routed under conditions

0 and 2 , the second routed under 0 and 1 from the example CDT in Figure

8.4(b). Condition 0 is an ancestor for condition 1 , so it is a valid surrogate for the

entire second fanout (source to sink). However, condition 2 is not. This means the

initial contiguous s-routed portion of the 0 2 fanout can be used as a starting point

for the 0 1 fanout, given by the marked valid route. The intervening t-routed section

under condition 2 is not guaranteed to be valid when condition 1 is true, so the

route marked as broken may not be complete at run-time. The process that generates

alternating s- and t-routed partial paths will be covered in Section 8.4.5; for now it is just

important to recognize that it is a possibility.

Consider the relationships between two fanouts from the same source. The 16 possi-

bilities are listed in Table 8.1. In the table, conditions for sources 1 and 2 are denoted s1

and s2, respectively, and conditions for sinks 1 and 2 are denoted t1 and t2, respectively.
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The letters S, A, D, M, and U stand for the possible relationships between conditions as

given in Figure 8.14. The heading indicates which relationship in Figure 8.14 that column

represents, and there is a separate row for each possible combination of the independent

relationships of s1 � s2, s1 � t1 and s2 � t2. For example, the A entry under column

s1 � t1 in the second row indicates that the condition for source 1 is an ancestor of the

condition for sink 1. Remember that the CDT only tells us about the relationships be-

tween things that are in the same iteration. Therefore, the relative iteration delay between

two uses of a condition needs to be determined to be able to correctly determine the rela-

tionship in cases like t1 � t2. If the relative iteration delay between t1 and t2 is zero, then

they can be compared using the CDT, otherwise they receive the default relationship of U.

These relative iteration delays must be determined in some common frame of reference,

and since everything here shares a common source, that can serve as a default frame of

reference. Therefore, determining the relative delays between t1 and t2 is simply a matter

of finding the iteration delays from the common source to each sink operation and taking

the difference.

Given Derived
s1 � s2 s1 � t1 s2 � t2 s1 � t2 s2 � t1 t1 � t2

1 S S S S S S
2 S A S S A D
3 S D S S D A
4 S U S S U U
5 S S A A S A
6 S A A A A A,S,D,M,U
7 S D A A D A
8 S U A A U U
9 S S D D S D
10 S A D D A D
11 S D D D D A,S,D
12 S U D D U D,U
13 S S U U S U
14 S A U U A U
15 S D U U D A,U
16 S U U U U A,D,M,U

Table 8.1: Table of possible condition relationships for fanouts from the same source.
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For any pair of fanouts with the same source condition, the second routed fanout

may always re-use the initial s-routed contiguous portion from the first. The condition

relationships in Table 8.1 need to be examined to determine when t-routed portions may

be re-used. The s2 � t1 and t1 � t2 are the columns relevant to applying t-routed

portions to the second fanout because they represent the relationship between when the

t-routed section is valid and when the second fanout will need them.

A value of S or D in the s2 � t1 column indicates that the t-routed portion was routed

under a condition that is either the same as or an ancestor of the second source condition.

This means that any t-routed portions were routed under a condition that serves as a

surrogate of the second source. Since both the s- and t-routed portions are fit for re-use,

the entire route may be added to the initial priority queue for the second fanout.

A value of S or A in the t1 � t2 column indicates the t-routed portion was routed

under the same/ancestor condition of the second sink condition. Thus, it was routed

under a surrogate of the second sink. The entire route may be re-used in these cases as

well.

Observe that an D in the t1 � t2 column indicates that the t1 condition is the decedent

of the t2 condition, so swapping the routing order of the fanouts turns this relationship

into an A. If the fanouts are sorted by the depth of their conditions for routing, then

the router is guaranteed to never see any D relationships between t1 and t2. All fanouts

of a particular condition will have been routed before any fanouts with a descendant

condition. This sorting can be accomplished using either a breadth-first or pre-order

depth-first ordering. Using a breadth-first ordering will also guarantee that all fanouts

with a sink condition that is an ancestor of the source condition are routed before any

others. This will ensure the most re-use due to D entries in the s2 � t1 column, and this

is what is implemented in PA-SPR.

Using these relationships, Table 8.1 can be reorganized. Assuming sink-condition-

depth sorted routing, the entries with a D in the t1 � t2 column may be removed entirely.

The remaining entries are separated into two tables. The first is given in Table 8.2, and

represents all of the situations where the entire route of the first fanout can be used to

initialize the priority queue for the second fanout. The entries from Table 8.1 that were
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Given Derived
s1 � s2 s1 � t1 s2 � t2 s1 � t2 s2 � t1 t1 � t2

1 S S S S S S
2 S S A A S A
3 S S U U S U
4 S D S S D A
5 S D A A D A
6 S D D D D A,S
7 S D U U D A,U
8 S A A A A A,S
9 S U U U U A

Table 8.2: Table of condition relationships that support sink- and source-routed re-use.

Given Derived
s1 � s2 s1 � t1 s2 � t2 s1 � t2 s2 � t1 t1 � t2

1 S U S S U U
2 S U D D U U
3 S U A A U U
4 S A U U A U
5 S U U U U M,U
6 S A A A A M,U

Table 8.3: Table of condition relationships that support only source-routed re-use.

not either placed in Table 8.2 or removed entirely enumerate the situations where only the

initial contiguous s-routed portion of the first fanout may be used to initialize the priority

queue for the second fanout. These entries are gathered in Table 8.3.

The entries in Table 8.2 that indicate the full route may be re-used are emphasized in

bold. Note that in line 3 and 7, there is a plain U entry in the t1 � t2 column. For these

situations, the t-routed portion is only re-usable because it was routed under an ancestor

of or the same condition as s2. The opportunity for sharing under these cases can be

maximized by routing any sinks under the common source condition or any ancestor

before any other conditions at the same depth.

Having covered fanouts that share the same source condition, it is now time to con-

sider the other 16 cases, where the source conditions are mutually exclusive between
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fanouts. When the sources are mutually exclusive, the s-routed portion of the route can-

not be re-used. Note that re-using a portion of a route through priority queue initialization

requires that portion of the route to start at the source. Since the fanouts are from two

mutually exclusive operations on the same resource, at least the first wire will need to be

shared because the routes need some space to diverge; thus, they will likely be routed

under the source conditions. This means that there is no opportunity to share between

fanouts with mutually exclusive sources if they are routed independently.

   
  

   
  

   
     
  

Independent Route

Re-used Route

Fanout

Fanout

Extra Reservations
for Re-use
   

  

Figure 8.16: Illustration of re-used versus independently routed mutually exclusive source
fanouts.

The s-routed portions of the fanouts may be routed jointly under a union of the mu-

tually exclusive predicates. This simply reserves the routing resources for the source

conditions of all fanouts that are routed together for the s-routed portions. An example

of the difference is illustrated in Figure 8.16. Any portion that is not re-used is effec-

tively over-reserved, preventing other signals from routing through later. If the fanouts

in Figure 8.16 are routed independently, with the 2 0 fanout routed first, the 1

0 fanout will need to reserve an entirely separate set of resources under 0 , marked

by the independent route path in the figure. However, if the s-routed portion is routed

jointly under the combination of 1 2 , then the entire path will be provided in the

priority queue initialization for the second fanout. The second fanout can then branch off

of that route much later, requiring fewer resources under condition 0 .

This method of jointly reserving resources for a route under the union of source con-

ditions effectively turns the mutually exclusive source conditions into the same merged
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source condition for routing purposes. This means the same reasoning that applied to

the same-source-condition routing applies here, including Table 8.2 and Table 8.3 for re-

using routes across fanouts. It is possible to release the reservations for the over-reserved

portions that are not actually re-used by the time all the fanouts for a physical device

are completed. If this is done before moving on to the next set of fanouts, the over-

reservation will not interfere with subsequent routes. However, it will have affected the

costs that those over-reserved portions have seen. In the version implemented in PA-SPR

for evaluation s-routed sections are jointly reserved, but over-reserved sections are not

released.

8.4.4 Predicate Aware Route Re-use

In light of these relationships between the conditions of multiple sinks, the priority queue

initialization used to re-use routes across fanouts on Lines 10-12 in Algorithm 8.2 can

now be re-formulated to allow predicate-aware route re-use across fanouts. Initially, the

router in PA-SPR takes all of the fanouts for mutually-exclusive operations mapped to a

single source and groups them by their sink condition. Each of these groups also receives

a separate priority queue initialization set. This set will be used to initialize the priority

queue as each fanout from the associated group is routed, and any routes that should be

re-used will be added to the appropriate sets as they are created.

Next, the router collects the union of source operation conditions, which are jointly

set as the source condition for all of the fanouts. The router then processes the groups

in breadth-first order of the sink conditions as they appear in the CDT. The initial router

implementation in PA-SPR does not include the optimization to route the ancestors of

the source conditions before other conditions at the same depth. This may reduce the

amout of route re-use, because all fanouts can re-use routes under ancestors of the source

condition, but those routed early will not get the chance at this re-use.

The router will go through the fanouts within a group in arbitrary order, using the

predicate aware version of QuickRoute to obtain a route for each fanout. After a route for

a fanout is completed, the resources are reserved under the appropriate conditions – the

set of source conditions for s-routed portions and the sink condition for t-routed portions.
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Finally, portions of the route are added to the appropriate priority queue initialization

sets. The first contiguous s-routed portion is added to all of the initialization sets. The

entire route is added to any initialization set for any sink conditions where the current

sink condition can serve as a surrogate, as defined by Table 8.2. This process is shown in

Algorithm 7. This algorithm can be sped up by trading execution time for memory space

by pre-evaluating and storing the results of Lines 8-12 before the outermost loop begins;

however, it is implemented in PA-SPR as shown for simplicity.

Algorithm 8.3: Predicate Aware PathFinder/QuickRoute integration
begin1

while iterate do2

for co-sourced sets of signals i do3

if congested(RTi) ∨¬ routed(RTi) then4

Rip-up routing tree RTi5

RTi ← sources of signals si6

cu ← ∪ source conditions of si7

forall fanouts stij ∈ i do8

add stij to gcond(t)9

set s-routed condition to cu10

foreach fanout group gc do11

init PQgc with si12

foreach group gc in BFS CDT order of c do13

while ∃ unrouted fanout stij ∈ gc do14

Initialize priority queue PQ to PQgc at cost 015

Run QuickRoute search for stij using PQ16

forall nodes n in path stij /∈ RTi do17

Update PathFinder costn18

Add n to RTi19

foreach Unfinished group g f do20

if n is s-routed or cond(t) is surrogate for f then21

Add n to PQg f22

if on every nth iteration then23

setup new predicate routes24

iterate ← isCongestion ∧ (iteration < limit) ∧ progress25

end26
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This section detailed the handling of routes that change the condition they are routed

under as they are routed. An algorithm for combining multiple source-sink routes into

a routing tree was crafted through an understanding of the relationships between those

conditions when they change along the route. Examining the relationships led to two fea-

tures of the algorithm that increase the opportunity to share resources within the routing

tree – routing in breadth-first CDT order of the sink conditions and routing all fanouts

with a source condition that is the union of source operation conditions. With the ability

to re-use partial routes in place, the final incomplete portion of the predicate-aware router

will be explained in the next section.

8.4.5 Choosing the Routing Condition

In Figure 8.10(b), the first modification to QuickRoute is to choose between either the

source or sink condition for each step of the route. This section will cover how that choice

is made. Near the beginning of the route, the most natural choice is the source condition.

The predicates needed to share routing resources are guaranteed to be available as long

as the route is in the source region and phase because they are being used by the source

operations for sharing. However, as soon as the route leaves that region or passes through

a register, the available predicates may change. Similarly, once the route gets to the sink

region at the appropriate latency from the source, the predicates for the sink operations

will be available.

There are many possible strategies to choosing which condition to route under. For

example:

• As Soon As Possible – The route can start under the source condition and switch to

the sink condition as soon as the predicate for it is available.

• As Late As Possible – The router can try to route under the source condition for as

long as possible before it must switch to the sink condition to avoid conflicting with

other routes sharing the same sink via mutually-exclusive operations.
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• Spatial Midpoint – The router may try to balance the distance routed under the

source and sink conditions by changing to the sink condition when the A* distance

estimate to the sink becomes smaller than the currently routed distance when an

architecture-specific distance estimate is provided.

• Temporal Midpoint – The router may try to make a similar temporal balance by

waiting to changing to the sink condition until after half of the required latency for

a route has been passed.

• Locally Cheapest – The router retrieves the estimated cost of routing through a

resource under each of the conditions and chooses the cheapest at each stage of the

route.

It is not clear which of these options will achieve the closest to globally optimal rout-

ing results. In this initial investigation, the one chosen for implementation in PA-SPR is

the as-soon-as-possible option. Taking coding considerations into account and the struc-

ture of the existing SPR code-base, this was one of the simplest options to implement.

Additionally, it will skew the routes towards more t-routing, which reduces the penalty

from over-reserving resources in the s-routed portions. This also affords the router the

most opportunity to find a location for the route to begin sharing with any other signals

that will end up at the same sink for mutually exclusive operations. Note that the router

does not switch to routing under the sink condition until after the predicate for it has been

generated. It is possible that the source operation was scheduled before the operation that

generates the predicate, so there will be a portion of the time where the only predicate

available to support resource sharing is the source predicate. Investigating other methods

of choosing the condition to route under is left for future work.

One final note is that the choice of conditions must be latency aware. As the route

accumulates latency, the source condition must be adjusted to represent the appropriate

scheduled time relative to the source operation scheduled time. Once the router is exe-

cuting, it must use the appropriate conditions from the CDT that has been expanded with

time information, as presented in Section 5.2.4. When the route is switched to using the



145

sink condition, it must do the reverse calculation, using the latency left to go on the route

and subtracting it from the sink schedule time.
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Chapter 9

EVALUATION OF PREDICATE AWARE MAPPING

This chapter will cover a brief empirical evaluation of the new approaches presented

in Chapters 5-8. The evaluation will be done using PA-SPR, an extension of the original

back-end for the Mosaic tool-chain, SPR. The goal of the evaluation is to show that is

possible to improve the performance of kernels through sharing, and attempt to identify

how much of this potential PA-SPR can realize.

The evaluation uses a suite of 7 benchmarks that are algorithms with loop-level par-

allelism typically seen in embedded signal processing and scientific computing applica-

tions. The benchmarks are written in the Macah language, and the kernels were com-

piled to an intermediate form suitable for PA-SPR using the enhanced loop-flattening

techniques described in [Ylv10]. Those kernels were then mapped to simulation CGRA

architectures. I modified the architecture simulation to support predicate based configu-

ration switching suitable for the abstractions in Chapter 5. The architectures are defined

as structural Verilog, generated by the Mosaic Architecture Generator plug-in to the Elec-

tric [SS] VLSI Design System. The mapped kernels were validated in Verilog simulation

to verify the correctness of the mappings.

The next section will describe the architecture model. Section 9.2 will cover the set of

benchmarks used in the experiments. Section 9.3 will use the scheduling results across

the benchmarks to quantify the potential benefit of predicate-aware mapping. Finally,

Section 9.4 will present the results of running a full predicate-aware mapping for all of

the benchmarks across a range of architectural sizes.

9.1 Evaluation Architecture

The architecture used for the evaluation of PA-SPR is generated using the Mosaic ArchGen

plug-in for the Electric VLSI system. The initial Mosaic architecture explorations done



147

in [VE10] developed a clustered CGRA that were suitable for targeting with SPR. This

evaluation uses a simplified version of those clustered architectures, augmented with

support for predicate-based resource sharing. The simplifications were made either to

overcome technical limitations of the current implementation of PA-SPR or to eliminate

complications that may interfere with PA-SPR’s ability to share resources. The reasoning

behind individual simplifications will be provided as they are described below.

The general clustered architecture is maintained with clusters of compute elements

connected together with a grid style interconnect. The switch-boxes of the interconnect are

the same Wilton style switch-boxes described in [VE10]. The structure within the cluster

has been simplified relative to [VE10]. The interconnect and clusters are divided into

word-wide and bit-wide elements. Each cluster contains a set of compute elements plus

some delay elements all connected directly to either the word-wide or bit-wide crossbar.

The word-wide elements in the cluster are the ALU, stream-in, stream-out, constant

generator, live-out, and a shiftable memory with a read, a write, and a shift port. The main

compute element is an ALU, which can handle all word-wide computation operations

in a single cycle for simplicity. The constant generator produces constants and live-in

values to the kernel. Macah streams are mapped to the stream-in and stream-out ports

to handle the main communication of data with the kernel. The values of live variables

are transferred back to the main computation thread through the live-out devices upon

kernel completion. In addition to these compute elements, retiming-chains are included

as delay elements connected to the crossbar. They provide the storage and pipelining of

live values during kernel execution.

The bit-wide elements are the look-up table (3-LUTs), bit-wide constant generator,

bit-wide live-out, kernel-completion indicator, and predicate gateway. The LUTs carry

out the bit-wise calculations required by the kernel. The run-time signal that indicates a

kernel has finished running is routed to kernel-completion indicator so that control can

be properly passed back to the main sequential thread at the appropriate time. Finally,

the predicate gateway is the new device used by PA-SPR that acts as the sink for any

predicate signals being routed to the configuration hardware of the region. The constant

generator, live-outs, and retiming-chains operate like their word-wide counterparts.
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The simulation infrastructure for these architectures was modified to support predicate-

based configuration retrieval. The ports of the predicate gateway can be configurably con-

nected to the most significant bits of the configuration array address lines, using the model

presented in Figure 5.19(b). This configurable connection can change on a per-phase ba-

sis. The configuration for connecting either the modulo-counter lines or predicate lines

to the configuration memory cannot itself be modified by predicates. The region that a

predicate gateway connects to covers a whole cluster and the associated switch-box. The

architectures are configured to support an II of up to 256, with a 4 predicate-port gate-

way. Since the predicates are inherently 1-hot encoded, and no re-encoding is supported

currently in PA-SPR, that means a maximum 4-way sharing of each device up to an II of

16, then 3-way sharing at an II of 32, and so on.

Aside from the support for predicate-based configuration retrieval, the main differ-

ences between the architecture described in [VE10] and the one used here are the lack of

rotating register files and the simplification of the processing elements (PEs). The reason-

ing behind these changes follows in the next two sections.

9.1.1 Register File Limitations

The use of structures with a strict demultiplexor is not currently supported in SPR or PA-

SPR. Prior work has shown support could be added [HD08], but it was not done for this

evaluation. In particular, this limits the use of SRAM based register files, as their write

ports are usually strict demultiplexors, i.e. the register file may only store a new value

to a single register at a time. In the original SPR, this limitation is worked-around when

the final configuration is generated. All signals written to multiple registers in a register

file can be collapsed to the register that will go the longest before being overwritten. Any

reads of that signal can all be serviced by that register. After this post-processing, all the

stores to register files only need to write to a single register and standard register files or

rotating register files may be used.

In PA-SPR, the added complication of mutually-exclusive signals sharing paths through

a register file, this post-processing is no longer a viable way to legalize a mapping. An

example set of routes that cannot be turned into an equivalent set of single register writes
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Figure 9.1: Diagram illustrating conditional routing through a register file that cannot be
fixed through post processing.

is illustrated in Figure 9.1. The blue signal enters in the first phase and is broadcast to

two registers. The solid blue and the dotted blue represent the signal traveling to two

destinations under different conditions. Dotted blue is mutually exclusive with solid red,

which allows the signals to share resources. However, solid blue and solid red are not

compatible. Once these routes are chosen, there is no way to resolve the broadcast of

the blue signal into a single register write. If the solid blue signal is transferred to the

dotted signal’s original register, it will be overwritten by the red signal at times. If the

dotted signal is transferred to the solid signal’s original register, the read port will need

to be changed at execution time based on whether the dotted blue or solid red condition

is active. If the predicate needed to do this is unavailable in the current predicate control

region, the port will not be able to switch properly. This will render the post-processing

invalid, and the program will not execute as intended.

To work around this limitation, the rotating register files and other signal delay re-

sources are replaced with retiming chains. A simple retiming chain is illustrated in Figure

9.2. It is a cascaded set of delay registers with a mux that acts as an output to read the

value from any point along the chain. The retiming chains used in this evaluation have

two output ports and are 24 registers deep. The retiming chains are able to delay a value
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Figure 9.2: Diagram illustrating a simple retiming chain.

up to the maximum depth of the chain no matter what the II of the executing application

is.

9.1.2 Simplified Processing Elements

The processing elements (PEs) in the Mosaic architecture can roughly be defined as the

computation units plus any support structure that does not include the cluster crossbar.

Sending signals across a large crossbar can be costly in terms of power, and as a result

the architectural exploration in [VE10] added a large amount of local interconnect re-

sources to the PEs to keep values locally and avoid sending them through the crossbar.

An example of one of these complex PE’s is shown in Figure 9.3(a). Additionally, the

compute units were heterogeneous, with some able to perform the full complement of

word-width arithmetic and logical computations available in Macah, and others where

the multiplication or the multiplication and shifting had been removed.

In order to maximize the opportunity for sharing, the architectures used in this eval-

uation forgo compute unit heterogeneity and resort to the original model of an ALU that

can process all arithmetic and logical computations. This will allow an addition and a

multiplication to share anywhere there is an ALU, instead of only at the locations of the

Universal Functional Units as in [VE10].

Initial development of PA-SPR used the complex PE interconnect in testing and de-

bugging. The rotating register files were replaced with deep retiming chains due to the

problem from the previous section, and the clock-gated registers on the in puts were

replaced with short retiming chains. Often, mappings in PA-SPR would fail due to con-

gestion at the bottlenecks where the PE interconnect is attached to the crossbar. The
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Figure 9.3: Complex and simplified Mosaic architecture processing element designs.

complex PE interconnect was removed to avoid these bottlenecks, connecting the ports of

the ALU directly to the bit-wide or word-wide crossbar, as shown in Figure 9.3(b). The

number of long retiming chains attached to the crossbar was also increased to compensate

for the reduced resources for holding live signals. These changes immediately resolved

the failures due to long-standing congestion.

Directly connecting the computation units to the crossbar appeared to increase the

success rate of PA-SPR, and so this is the structure that was used for the evaluations

presented here. It would be interesting to do a detailed investigation of how bottlenecks

such as those introduced with the complex PE structure affect routing success in PA-SPR

and SPR, but that is left for future work.

9.1.3 Intra-connect Capacity

Directly connecting all of the compute units to the crossbar separately from all of the

storage elements also has another benefit: it provides a simple way to control the capacity

of the within-cluster intra-connect. The capacity of the intra-connect, measured either by

the number of live values that can be stored or the number of alternate routing paths

between units, can be scaled up or down simply by adjusting the number of retiming

chains attached to the crossbar. While this may not be the most area- or energy-optimal
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architecture design, it does provide a useful control for increasing or decreasing the diffi-

culty of the local routing problem that the router is trying to solve, which is important to

evaluating the new mapping methods in PA-SPR.

9.1.4 Test Architecture Configurations

The experiments in this chapter use a sweep of architecture sizes. There are 4 important

parameters that are changed in this sweep. A specific architecture is described in the form

C:aXsYdZ. The number of clusters is given by the leading value C. The cluster compo-

sition follows, with X representing the number of computation units, Y representing the

number of stateful units, and Z representing the number of storage or delay units attached

to the crossbar. For a given value of X, there are X ALUs and word-wide constant gener-

ators. Half of that number is used for the bit-wide computation elements, yielding �X/2�

LUTs and bit-wide constant generators in the cluster. For a stateful value of Y, there are

Y ∗ 3 memories, each with a single read, single write, and single shift port. There are

Y ∗ 2 stream-in/out devices. The final value, Z, indicates the number of retiming chains

included in the cluster – Z word-wide and Z bit-wide per cluster.

The primary values of interest are C and X. The number of clusters and compute

units are varied to test PA-SPR across a range of resource constraints. Predicate-aware

sharing is meant to improve performance in resource-constrained situations and allow

for more complex control flow while maintaining high performance. This evaluation is

aimed at measuring that performance improvement. The other values are chosen to avoid

interfering with measuring PA-SPR’s effectiveness at addressing this main goal.

The amount of intra-cluster and inter-cluster communication and storage is set at a

large value relative to the computation resources to provide a mapping success rate that

allows comparison between PA-SPR and SPR. The grid inter-connect is set at a width of

24 fully time-multiplexed channels, both in bit- and word-wide sizes. The channel length

is set at 2, which means that a signal can be routed through up to 2 switch-boxes before

being registered. The number of retiming chains in the clusters is set at a ratio of 5 chains

per 2 ALUs.



153

For each cluster size, enough stateful devices are provided to support all of the bench-

marks. Only one stateful element can be mapped to each stateful device in the archi-

tecture, such as a single Macah stream per stream-in or a single Macah array per local

memory. In the future, the hardware model and SPR algorithms may be extended to

support stateful packing, such as combining multiple small Macah arrays into a single

local memory, but for this evaluation insufficient stateful elements results in immediate

mapping failure. As a result, as the number of clusters shrinks, the number of stateful

elements is increased to keep an approximately constant number available in the archi-

tecture.

9.2 Evaluation Benchmarks

The benchmarks and Macah have both undergone additional development from what was

used in Chapter 4. Enhanced loop flattening was developed in Macah [Ylv10] to take arbi-

trary control flow within the kernel and flatten it to a set of guarded blocks within a single

loop. For the experiments in Chapter 4, this was done in a manual process in the kernel

source code itself. The manual flattening process hides a lot of the relationships between

the blocks that were inherent in the original control flow. The enhanced loop flattening

process in Macah tracks these relationships and represents them in the CDT. As a result,

the CDTs for the manually flattened kernels may not offer as much sharing potential as

those that were written with more natural control flow. Not all of the benchmarks were

updated to use natural control flow, but where it is possible both the manually flattened

and the Macah flattened versions are tested.

The evaluation of PA-SPR uses a suite of 7 benchmarks. These benchmarks were

developed by members of the Mosaic research group in the Macah language. Of the 7,

6 are the same as those used in Chapter 4 for evaluating static interconnect sharing –

motion estimation, matrix multiply, Smith-Waterman sequence alignment, FIR filter, k-

means clustering, and 2D convolution. These 6 are the benchmarks that were updated

with more natural control flow that Macah transforms into a single loop using enhanced

loop flattening. However, the Macah compiler generates an invalid CDT for Matched
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Filter for an unresolved reason. It is excluded from the tests here since the CDT is a

central component that affects how resources may be shared in PA-SPR. A PET scanner

event detection benchmark has been added to the suite, bringing the total used here to

7 different applications. The PET benchmark was developed after the experiments in

Chapter 4 were completed.

Each of these benchmarks has a set of tuning knobs programmed into it that can ad-

just the sizing of various aspects of the algorithm. These allow tuning the application’s

implementations to the available architectural resources. The values used in this evalu-

ation are given in Table 9.1, along with a few other interesting statistics. In addition to

the tuning knob settings (found in the last column), there are columns to quantify the

size and maximum theoretical performance of each benchmark. The Nodes column indi-

cates the number of data flow operation nodes that are in the kernel. The Nets column

indicates the number of source-to-sink data connections that occur between the data flow

operations. The Dependencies column is the sum of source-to-sink data connections and

all possible predicate connections that could be required for sharing. The Recurrence II is

the minimum recurrence II possible if all operations are executed speculatively.

The old manually flattened versions have little opportunity to benefit from predicate

aware sharing. Most of them have all operations execute unconditionally in the loop.

Those with a tiny bit of sharing were CORDIC with the potential for sharing 16 out of

222 operations, K-Means with a potential 8 out of 398 operations, and Smith-Waterman

with a potential of sharing 4 out of 381 operations. Initial tests on a highly constrained

architecture showed only K-means had potential improvement after running the mini-

mum II computation, so it was included in the benchmark set. The manually flattened

version of K-means is marked with an (m). Using the tuning knobs, Matrix Multiply and

Smith-Waterman were used in two different sizes, small (s) and large (l).

The mappings generated by PA-SPR were validated by running them through full

simulation. Each benchmark was simulated on one of the 2- or 4-cluster architectures

after mapping to test in situations with high sharing. Simulation was successful for all

benchmarks except for the large Smith-Waterman, the large Matrix Multiply, and the 2-

D convolution. In those applications, the Verilog simulator would process indefinitely
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for an unknown reason. The simulation infrastructure is setup to identify erroneous

computation or communication and fail with an appropriate error message, which was

utilized extensively along with checks internal to PA-SPR during the development process

to identify erroneous mappings. Given that no such error message was produced, it is

possible that the failure is due to some other problem in the toolchain or simulator. The

results are included here for completeness, with the caveat that the mappings were not

fully verified for functional correctness.

Table 9.1: Summary of Benchmarks

Kernel Nodes Nets Deps. RecII Knob Settings
Motion Estimation 664 979 1519 4 Block=8x8,Parallelism=4
Smith-Waterman (s) 367 634 878 5 Stripe Width=4
Smith-Waterman (l) 643 1138 1566 5 Stripe Width=8
2-D Convolution 493 772 1164 5 Kernel Radius=2, Stripe

Width=4, Parallelism=2
Matrix Multiply (s) 258 425 652 3 Block=4x4
Matrix Multiply (l) 778 1337 24076 3 Block=8x8
K-Means Clust. 249 422 610 3 K=8, Channels=8
K-Means Clust. (m) 347 592 608 7 K=8, Channels=8
Blocked FIR 194 291 474 3 Coeffs=64, Banks=8
PET Event Detection 613 948 1300 4 Datasets=4

9.3 Scheduling Speculation versus Sharing

The portion of the evaluation presented in this section focuses on scheduling. The exper-

imental results presented here serve two main purposes. First, they serve as a scouting

measurement, identifying the situations where predicate-aware mapping has the poten-

tial to improve final performance. The scheduling algorithms run very quickly, and so

covering a broad sweep of applications and architectures by only running the scheduling

stage is much easier and faster than running a full schedule, place and route cycle. The

initial scheduling sets an upper bound on the throughput (lower bound on the II), so run-

ning the scheduling provides an indicator of the best performance that a fully mapped

design could achieve.
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Second, the results here will test the resII/recII balancing algorithm described in Sec-

tion 6.2.3. When predicate signals are used to share resources and thereby reduce the

resII, they may introduce a large recurrence loop, increasing the recII. The scheduler can

identify the predicate signal dependencies that are on the large recurrence loops and

eliminate (trim) them by promoting the dependent operations to run unconditionally,

trading-off resource usage for shorter recurrence loops. This balancing algorithm is easily

disabled by disallowing any dependence trimming, thus allowing the maximum amount

of sharing possible.

The results in this section are collected from running the scheduler in three configura-

tions so the resulting IIs can be compared:

• SPR - In this configuration, the standard SPR scheduling provides the baseline II

measurements.

• PA-SPR no-trim - In this configuration, predicate aware sharing is enabled, but no

dependence trimming is done in the face of inflated recII values.

• PA-SPR - In this configuration, the scheduling phase of PA-SPR is run using the

algorithm described in Chapter 6 to enable predicate aware sharing and dependence

trimming to maintain the resII/recII balance.

The application configurations in Table 9.1 were run across a large sweep of archi-

tecture sizes, ranging from 2 to 42 clusters, using the three scheduler configurations.

Predicate-aware sharing is most useful in resource-constrained situations, so the archi-

tecture sweep is intended to cover a range of architectures that tends towards smaller

sizes.

9.3.1 The Potential of PA-SPR

The results in Figure 9.4 provide a theoretical bound on the performance improvement

that can be achieved using predicate-aware mapping. This figure compares the minimum

II values calculated using both standard SPR scheduling and the full PA-SPR scheduling.
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Figure 9.4: Plot of the minimum II estimate across the tests for both the full PA-SPR with
dependence trimming enabled and the standard SPR, with the potential advantage of
PA-SPRhighlighted in the middle plot.

Applications are indicated along the Y-axis, and architecture sizes along the X-axis. In this

figure, there are three sub-graphs. The left and right sub-graphs represent the minimum

II measurements for PA-SPR with trimming enabled and SPR, respectively. The value of

the minimum II is represented by the color of the box at a given application/architecture

coordinate. The scale is provided in the colorbar on the right side of each sub-graph; note

that for the left and right graphs this scale is logarithmic. The middle sub-graph presents

the comparison of these two values, demonstrating the performance difference. The color

of each box in the middle sub-graph is generated by taking the minimum II from the

corresponding coordinate in the PA-SPR graph and dividing it by the minimum II from

the SPR graph, and using that to choose the color from the middle scale. For example, the

large matrix multiply kernel run on the 2:a2s4d5 architecture yields a minimum II of 66

and 122 from PA-SPR and SPR, respectively. This represents a .54x reduction in minimum

II, or a potential throughput improvement of almost 2x. The II reduction of .54x appears

at the top of the middle sub-graph scale, so the resulting box is colored green. The color
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scale is constructed so that any reductions in II will be in the yellow to green spectrum,

any increases in II will be in the red to black spectrum, and a match in II is colored white.

The results in Figure 9.4 show similar trends between PA-SPR and SPRin the left and

right sub-graphs. These trends reflect the expected space/time trade-off across different

sizes of applications and architectures. The values of minimum II increase towards the

left of the graphs as the architectural resources are reduced and the II must increase to

compensate. The larger kernels have higher minimum IIs relative to the smaller kernels.

Even with their similarities in trends, the corresponding values can be very different

between the two scheduler configurations, as highlighted by the middle sub-graph. There

is potential improvement for all of the kernels on architectures with 4 or fewer clusters,

and the large matrix multiply shows potential improvement all the way up to 36 clusters.

The white beyond these points reflect that the minimum II calculated by both algorithms

will be the same once the application is no longer resource constrained. The variability

in the inflection points makes it difficult to summarize these results in a single II versus

architecture size graph.

Smith-Waterman and matrix multiply were both run in small and large versions be-

cause the amount of computation they do scales well with tuning knob settings. Here we

see that scaling up the amount of compute done changes the point in architecture sizes

where the PA-SPR begins to have potential benefit. However, looking between the two

benchmarks, it appears that matrix multiply has inherently more potential for improve-

ment than Smith-Waterman, as evidenced by the darker green of the matrix multiply

rows. The difference in minimum II between Smith-Waterman and matrix multiply is

much more pronounced than the difference within applications between the two sizes.

The variety of light and dark green maximum values indicates that the CDTs across ap-

plications vary in the maximum amount of sharing they enable.

It will be interesting to see how well the final improvement follows this variability

across applications, so the results will continue to be presented broken out across appli-

cation. The variability in the architecture size inflection points (the white-green transitions

within an application row) makes it difficult to summarize these results in a single II ver-

sus architecture graph, so the full grid will be presented in the remaining results.
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Figure 9.5: Plot of the II advantage of PA-SPR after the scheduling has been completed.

The next set of results presents a similar II comparison after running the full schedul-

ing stage for both PA-SPR and SPR. These appear in Figure 9.5. The full scheduling starts

at the minimum II estimate, which ignores all dependency information, and creates a full

modulo-schedule that respects all dependencies in the data-flow graph. It is a heuristic

scheduling process, so there is a bit of noise which can be seen in Figure 9.5, but overall

the scheduler is able to realize most of the potential seen in Figure 9.4.

The actual losses are presented for each of the two algorithms in Figure 9.6. Given that

the minimum II estimate in the PA-SPR algorithm is optimistic in two ways – ignoring

dependencies and assuming anything that can share will share – while SPR is only opti-

mistic in ignoring the dependencies, it is not surprising to see more II increase in PA-SPR

than in SPR. However, the extra increases do not eliminate the advantage that sharing

provides to PA-SPR.

9.3.2 Balancing Sharing and Speculation

This section will examine how the dependence trimming discussed in Section 6.2.3 ben-

efits scheduling. The first test simply compares PA-SPR with the trimming turned off

to stock SPR. The results of scheduling are shown in Figure 9.7, with the difference be-
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Figure 9.6: Comparison of the schedule II to the minimum II for both predicate aware
and regular scheduling.

tween the two shown in the middle sub-graph. In the plots in this section, PA-SPR with

trimming is denoted PA-SPR and PA-SPR without trimming is denoted PA-SPR no-trim.

Without trimming, PA-SPR is still able to achieve reduced IIs on smaller architectures.

However, the large amounts of red and black to the right of the graphs indicate that the

final schedule of SPR is much better on larger architectures. This happens because on as

the architectures grow, more resources are available and the resII shrinks to be smaller

than the recII. The predicate dependencies that allow sharing increase this recII, so on

larger architectures, PA-SPR has a larger lower II limit when these dependencies can’t be

trimmed.

A simple way to overcome this limitation would be to run scheduling using both PA-

SPR without trimming and SPR and choose the result with the better scheduled II to

continue on to place and route. This would turn any of the red and black in Figure 9.7 to

white, as the result would default to that of SPR, and for the remainder it would maintain

the improvements.
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Figure 9.7: Comparison of the scheduled II between PA-SPR with dependence trimming
disabled and SPR.

Figure 9.8 uses this hybrid of PA-SPR without trimming and SPR results as a baseline

and compares it against the results of PA-SPR with trimming enabled. The results indicate

that there is a benefit to using trimming over the simple hybrid method. From Figure

9.8(a), these benefits appear at the larger sizes of architectures where the advantages

of PA-SPR begin to taper off. The effect is the most pronounced in the large matrix

multiply benchmark, and a graph for this benchmark of the scheduled IIs across the three

configurations of scheduling is shown in Figure 9.8(b). From this graph it is apparent that

PA-SPR without trimming bottoms-out before regular PA-SPR or SPR. This is caused by

the higher recII that comes from the extra dependencies that allow sharing. SPR never

shares and so never encounters the higher recII. On larger architectures, PA-SPR is able to

recognize that the recII dependencies are inflating the recII beyond what is necessary, and

they can be trimmed. This trimming can continue until PA-SPR reaches the same natural

recII that SPR uses throughout.

The work on predicate aware scheduling for VLIW processors [SMDL03] didn’t appear

to use trimming to balance the recII against the resII, so it is natural to consider applying it

there. However, the width of VLIW processors tends to be small compared to the number
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(a) Graph of PA-SPR benefit. (b) Example showing the scheduled II curves together.

Figure 9.8: Comparison of PA-SPR with dependence trimming to choosing the best of
either PA-SPR with no trimming or SPR.

of compute elements in CGRAs. In Figure 9.8(a), the smallest architecture that benefits

from the trimming is a 4 cluster, 4 ALU system, for a total of 16 ALUs, but the work of

[SMDL03] was looking at 4 and 6-way VLIWs. Larger VLIWs may benefit from trimming

in any predicate-aware scheduling, but it appears that it is most helpful in systems that

can scale to large numbers of compute units.

This section has presented an optimistic theoretical potential for predicate-aware per-

formance improvement. The results show that the adaptation and improvement of the

predicate-aware scheduling technique used for VLIWs effectively produces schedules that

maintain that potential. However, these schedules do not take into account the spatial re-

gion restrictions and the explicit routing needed for scalable CGRAs. Now that a clear

opportunity for performance improvement has been established, the next section will

evaluate the placement and routing process by presenting end-to-end results.

9.4 Performance Improvement in PA-SPR

Once all is said and done, the main measurement that reflects the performance of a kernel

mapping is the II. The II is the inverse of the throughput, so reducing the final II will
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increase the final throughput by the corresponding amount. The previous section already

demonstrated that there is potential for improving the II on smaller architectures. The

real question now becomes whether or not the adaptations made to the placement and

routing algorithms detailed in Chapters 7-8 can carry that potential all the way through

to the final mapping.

The results in Figure 9.9 show the final improvements in II using PA-SPR versus SPR.

There was no potential speedup shown for architectures of 42 clusters, so they were left

out of the final runs. In these graphs, there are *, x and + markers to indicate mappings

that did not complete. The * marker indicates that the mapping stopped due to hitting

the maximum number of iterations in the outermost schedule/place/route loop, set at

40 for these tests. The x markers indicate that the mapping was killed after 8 hours

of running. The + marker indicates the compile ran out of memory, with the limit set

at 2.8GB. The boxes in the middle sub-graph are not drawn when a comparison between

two runs cannot be made. There is high variability in the results of placement and routing

tools using the algorithms that have been adapted in SPR and PA-SPR, so three runs of

Figure 9.9: Plots showing the final advantage in II of PA-SPR over SPR.
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each configuration were run and the best result is used, which is a standard practice in

evaluating these algorithms in the FPGA community.

There are more time-out failures in the PA-SPR results than the SPR results, reflecting

the slower mapping process due to both the more complex algorithms and the more

immature and under-optimized code base. There are a few cases where PA-SPR generates

a mapping with a higher II. However, in these cases one can always revert to using the

SPR mapping. Overall, when PA-SPR generates a successful mapping, it succeeds in

exploiting most of the potential improvement.

Among the runs where PA-SPR reduced the II – the green squares in the middle of

Figure 9.9 – there was an average reduction to .68x the baseline SPR II. If this is broad-

ened to all runs where the minimum II indicated there was potential for improvement –

averaging the values in the middle of Figure 9.9 wherever there is a green square in the

middle of Figure 9.5 – the average reduction is only .75x the baseline. However, the aver-

age potential improvement as measured by the minimum II – averaging the green squares

in the middle of Figure 9.5 – is .69x the baseline. This means that PA-SPR is able to realize

about three-quarters of the potential improvement from predicate-aware sharing. There is

probably still some room for improvement, but considering that the minimum II estimate

is constructed to be an underestimate of the actual minimum II, the full reduction to .69x

may not be possible.

The II losses for the placement/routing portion of PA-SPR and SPR are given in Fig-

ure 9.10. There is generally more loss in PA-SPR, which is not surprising given the

placement and routing have to satisfy the additional constraints and resource usage of

spatio-temporal predicate availability. In the majority of cases, both manage to achieve

the initially scheduled II. The cumulative loses from the minimum estimated II to the final

mapped II are shown in Figure 9.11. This shows where the losses occurred that result in

only a .75x II reduction instead of the full .69x reduction. The losses for PA-SPR that occur

in similar configurations as SPR – such as PET event detection, convolution, and motion

estimation on larger architectures – are likely to just be situations that are challenging to

map. The rest may be either underestimates in the minimum II or opportunities for future

algorithmic improvements.
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Figure 9.10: Comparison of the increase in II during the placement and routing process
between PA-SPR and SPR.

Figure 9.11: Comparison of the total increase in II during mapping in PA-SPR and SPR.
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Figure 9.12: Plot of the sharing of compute elements in PA-SPR.

9.5 Sharing in PA-SPR

PA-SPR achieves performance improvement through resource sharing. This section exam-

ines the sharing that is the key to PA-SPR boosting the throughput in resource-constrained

situations. In this section, the amount of sharing for a resource is counted as the number

of operations using a set of device instances divided by the number of device instances

being used, where each instance is one phase of a time multiplexed device. Sharing can

only happen between operations that can be mapped to the same device, so it is natural

to break out the sharing results according to device type. Across many of the devices,

there was not much sharing at all. For the bit-wide constants and LUTs, the maximum

sharing value was never above 1.02. This is likely because the main source of bit-wide

operations in Macah is the compiler synthesized control code for managing the loop flat-

tening – the operations that generate the predicates. Since PA-SPR requires the predicate

generation to be unconditional, there is little opportunity for sharing. For the stateful de-

vices, there were never more than 4 instances of sharing a device in any given benchmark.
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It is likely the accesses to each resource were easily searializable within the II set by the

resource-constrained ALUs.

The sharing for the remaining devices – the ALUs and constant generators – is shown

in Figure 9.12. The plots show the sharing for each test with the colors set on a log scale.

Note that the top of the scale for ALU sharing is much larger than constant sharing, with

ALUs obtaining 200% utilization for the 2:a2s4d5 small matrix multiply test.

Figure 9.13: Plot of the sharing of routing muxes in the interconnect.

A feature of interest is the sharing beyond where the benchmarks demonstrated a

performance improvement. The tests where there was no performance improvement are

highlighted in Figure 9.12 and Figure 9.13 to make this easier to see. Even when it was

not necessary to reduce the resource usage, PA-SPR is packing operations together on

the same devices. As long as the interconnect can support switching the signal routes,

packing operations into the same area can help reduce route lengths and latencies between

operations. Examining the routing mux sharing, shown in Figure 9.13, also shows the

sharing beyond where the II is reduced.

Careful observation of the sharing here shows that there is no ALU or constant sharing

on the smallest architecture for PET event detection run. This is because the II rose beyond
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64, at which point there is only one predicate line available. It is possible to share with

only one predicate line, however, the current implementation of the placer requires a

predicate wire for every operation that is sharing a device because it does not handle

partial promotion. The router implementation can take advantage of a single predicate

bit by sharing with other signals through partial promotion, which is why the large Smith-

Waterman exhibits routing mux sharing.

Overall, the performance improvements and sharing results of these experiments

demonstrate that the algorithms used in PA-SPR are capable taking advantage of mutually-

exclusive control flow to improve performance in resource constrained situations. When

compared to an aggressive lower bound, PA-SPR is able to realize roughly three-quarters

of the potential reduction in II. Now that PA-SPR provides a strong baseline, future work

can focus on gaining the remaining potential improvement. Possibilities for these future

improvements are presented in the next chapter.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

This dissertation explores different types of resource sharing for modulo-scheduled

reconfigurable systems. It has used compiler techniques to share resources in situations

at opposite ends of a spectrum – when the configuration memory is limited to a single

entry, and when it is abundant. I hope that this exploration helps pave the way for easier

and more flexible application acceleration in future reconfigurable systems.

10.1 Summary

The initial back-end compiler that was augmented with the algorithms and techniques

presented in this dissertation was built in collaboration with other researchers as part of

the Mosaic CGRA tool-chain, described in Chapter 2. This provided the opportunity to

evaluate the contributions of the dissertation in a context that provided support for the

entire process of accelerating an application, from high-level code compilation all the way

to hardware simulation.

The clustering and latency padding techniques introduced in Chapter 3 represent the

first novel contribution of this dissertation. While not directly related to resource shar-

ing, they improved the baseline back-end compiler performance by better integrating the

VLIW style scheduling with the FPGA oriented placement and routing to create a system

that applied well to CGRAs. These created a state of the art platform to use as a starting

point for resource sharing and for use by other researchers [VE10, Ylv10].

From there Chapter 4 introduces a way of sharing routing resources that have only

a single fixed configuration. Sufficient time multiplexing in the surrounding resources

can share the single configuration on the limited resources, as long as they agree on the

configuration. By separating the configuration congestion from signal congestion, it be-

comes possible to use a congestion negotiation process to produce agreement and enable
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run-time sharing of these statically configured resources. This sharing process tends to

construct larger broadcast networks in place of the more directed communication possi-

ble with fully dynamic connections. It also tends to require more interconnect capacity.

Thus, the architect must be aware of the trade-off between static and dynamic connections

when designing the routing resources. Static resources have reduced configuration area

and energy, but increased interconnect area and energy relative to dynamic resources.

This makes static resources beneficial in interconnects with narrower bit-widths, such as

time-multiplexed FPGAs and the control networks of CGRAs. In larger bit-width inter-

connects, such as the datapaths of CGRAs, the configuration memory costs have already

been amortized across a large bit-width, so maintaining the fully dynamic interconnect is

likely the best option.

The most often used method for dealing with control flow when accelerating applica-

tions on spatial architectures is to use predicated execution. This is inefficient because it

effectively computes the results for all possible control paths and chooses between them at

the end. Even though only one of the results will be used at a time, resources are reserved

and energy is wasted computing all the alternatives. By informing the compiler of alter-

natives that are mutually exclusive, the compiler has the opportunity to share resources

between the computations, reducing this inefficiency. Chapter 5 combines ideas and tech-

niques from work on optimizing compilers and modulo-scheduling for VLIWs to produce

a framework for representing mutually exclusive control flow. Certain choices in the rep-

resentation, such as limiting consideration to a tree structure, were made to produce a

representation that allows the compiler to identify and manage sharing opportunities

throughout the compilation process. The tree-structure is particularly fruitful because it

allows the router to adaptively move a signal up the tree for configuration negotiation,

but retain its original mutual-exclusion properties to share wiring with other signals. This

chapter also covered the integration of the CDT and time information, which is critical in

a modulo-scheduled system where software pipelining introduces interactions between

operations that are scheduled to start at different times. Additionally, this chapter in-

troduces an abstraction that will allow the compiler to manage the distribution of the
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predicate signals needed to manage the control flow based sharing without introducing

any global resources that would create scaling bottlenecks.

With the framework of ideas clearly defining predicate-aware sharing in place, the

changes needed to support such sharing are presented in Chapters 6-8, relying heavily

on the abstractions from Chapter 5. The scheduling is an adaptation of VLIW predicate-

aware scheduling. In order to support the maximum gains in marginally resource con-

strained situations, a dependence trimming technique is introduced that balances sharing

operations against speculatively executing them to ensure that new iterations of the loop

can be initiated as fast as possible.

Supporting predicate-aware sharing in the placement process requires adding the

proper costs and constraints to the existing simulated-annealing placer. The aggregate

execution condition developed in Chapter 5 is used to allow compatible placement of

multiple operation on the same devices. A carefully constructed cost model tracks the

costs of routing the predicates for sharing into the regions where they are needed within

the capacity limitations of the architecture. The cost model is carefully constructed to

allow incremental cost updates, maintaining the run-time efficiency of the placer.

Several new techniques are introduced for managing predicate-aware sharing dur-

ing routing. The separation of signal and configuration congestion from Chapter 4 is

used to separate the conditions used for configuration selection from those used to track

mutually-exclusive signaling. This enables the negotiation-based router to use partial

promotion to negotiate for configuration settings when the predicates needed for con-

figuration switching are not available, while still ensuring that signals can use the most

specific conditions for tracking routing resource usage. This makes it possible for sig-

nals to follow the same path or diverge anywhere in the architecture as long as they are

mutually exclusive, but their paths are allowed to converge only in regions where pred-

icates are available to do the appropriate predicate switching. Routing signal trees in a

predicate-aware manner introduces complications for partial route re-use, especially in

the cases where the source and sink conditions differ. A new algorithm for partial route

re-use is introduced to handle these complications, allowing re-use not only between

paths from the same source, but also between paths from mutually-exclusive source op-
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erations mapped to the same physical device. This re-use is based on careful creation and

initialization of separate search queues based on relationships between signals from the

topological positions of their conditions in the CDT.

All of these sharing techniques were evaluated in the context of the Mosaic tool-chain,

demonstrating performance improvements for clustering, latency padding, and predicate-

aware sharing, as well as channel-width improvements for static sharing.

10.2 Conclusions

The biggest contributions of this dissertation often hinged on simply choosing the right

the point of view for a given problem. Once the proper framing for the problem is

found, the solution almost presents itself. For example, being able to separate resource

contention into the two facets of configuration and time-multiplexed usage was valuable

in both the static sharing of Chapter 4 and the predicate-aware “tunneling” of Chapter

8. In fact, because the problems could be seen from the same point of view, the mech-

anisms for solving them could be easily adapted across two very different concepts of

sharing.

Making the decision to identify mutual-exclusion using the limited control-dependence

tree instead of the more general control-dependence graph or the more complicated

Predicate-Query System enabled flexibility in the predicate-aware placement and rout-

ing algorithms. Reasoning over the simpler tree structure allows the compiler to rapidly

make safe decisions about changing predicate dependence, which enables placement to

adjust where predicates must be distributed to and allows routing to accomplish “tun-

neling” when predicates are not available locally. While the algorithms and techniques

presented provide demonstrated benefit, the abstractions themselves hold the potential

for future advances through a novel point of view.

Now that many of the complexities and limitations of sharing have been revealed over

the course of the work behind this dissertation, it is a good point to look back and try to

decipher when the benefits of sharing are worth the costs. The actual benefits that any of

these algorithms provide are highly dependent on their context. For example, the static
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sharing in Chapter 4 is able to route using statically configured interconnect of almost

the same channel width as the fully dynamic interconnect. This is a major improvement

over simply using each static resource once, and provides savings in the configuration

memory. However, if the optimization metric is area-energy for the top-level 32-bit grid

interconnect, overall it is cheaper to just use a fully dynamic interconnect. This is because

the shared static configurations broadcast values to all destinations that will be using the

static route, instead of only the places that the current signal needs to go. In the top level

32-bit interconnect, that is a significant energy cost that overwhelms the configuration

memory savings. This means that static route sharing is much more valuable where the

configuration memory costs are higher than the signal broadcast costs. If a CGRA is being

designed with a deep configuration memory and a portion of single-bit wide configurable

logic, it makes sense to use the static sharing. In a completely 32-bit bus system with long

wires and a shallow configuration depth, the sharing is probably not worth the extra

compile time, CAD complexity, and architecture design complexity of implementing the

sharing algorithms and static configurations.

The context used for evaluation of predicate-aware sharing is very optimistic. The

architecture sizing provided ample sharing opportunity, which helps to highlight how

well the algorithms realize that opportunity. Predicate-aware sharing is only effective

when the following criteria are met:

• The application is resource constrained – the resII is higher than the recII.

• The application has opportunity for mutually-exclusive sharing – there must be

enough control flow such that a large fraction of the computation does not need to

be performed on each iteration.

• The hardware has the configuration memory to support the sharing – with the hard-

ware organization chosen in this evaluation, a large portion of it may be wasted.
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• Compute elements should be able to share operations – the evaluation used a uni-

versal ALU as a base computation unit, maximizing the pool of operations that

could be mapped together on the same devices.

• The predicates can be distributed in a timely manner – using predicate aware shar-

ing removes the ability to speculatively execute some operations, increasing the

recurrence II.

With many high-performance kernels, it is not difficult to find a resource-constrained

problem. Often it is simply a matter of dialing up a tuning knob to work on more of the

problem in parallel. Ensuring the kernel has the proper control flow is another matter.

Alternatively, there may be situations where many kernels are in use in a system at the

same time, each relegated to a small portion of the chip. Predicate-aware sharing will

allow more kernels to share the same chip, with less wasted computation.

Almost none of the manually flattened benchmarks were used because they simply did

not have any opportunity for sharing. On the other hand, the enhanced loop flattening

in Macah tends to build a large partition at the top of the CDT by flattening nested

loops into individually mutually-exclusive blocks. This means that kernels that need

to adapt and adjust online can be written with natural control flow, and the tool-chain

will exploit sharing across that control flow. Another common pattern is setup-compute-

reduce/write-back, and if the compute is in a for loop, enhanced loop flattening will split

these into three mutually exclusive stages. Predicate-aware sharing can then hide some

of the setup and tear-down costs.

One big weakness of the predicate-aware sharing as presented in this dissertation is

the simple hardware model it uses for switching configurations. The one-hot nature of

predicates being directly piped into address bits makes a large portion of the configura-

tion array unusable, as seen in Figure 8.8. I believe a different hardware design could

alleviate some of this problem, but would lead to increased complexity in the hardware.

Some options are discussed in Section 10.3.2.

Mapping all word-wide computations onto a single-cycle ALU element is also a very

optimistic assumption, as it included operations with significant hardware cost such as
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multiply and shift in the same unit. This makes the pool for operations that can share a

device bigger, amplifying the opportunity for sharing. In a more heterogeneous architec-

ture, the operations will be forced into separate pools, adding more constraints on what

can share. If area utilization is a primary optimization metric, a heterogeneous architec-

ture is a likely starting point, diminishing the opportunity for predicate-aware sharing.

However, digital logic scaling is starting to reach a utilization wall, where many more

transistors can be put on a chip than can be effectively cooled at full speed and power

[VSG+10]. This leads to the existence of “dark silicon,” portions of the chip that are

not powered or switching. This dark silicon could be exploited in a CGRA by includ-

ing all operations in a single large ALU where the configuration effectively only powers

the needed functionality. While there has been recent research into ways of including

the best mix of heterogeneous compute units [AYP+06, VE10], the unified ALU design

may be more beneficial in the face of this new utilization wall. As long as there is not a

significant interconnect power overhead, predicate-aware sharing will be able to exploit

these large ALUs and reduce the amount of computation that is speculatively executed

and thrown away, wasting power and heating the chip. Unfortunately, route tunneling

through regions without predicates can lead to the same signal over-broadcast that hap-

pens with static sharing, so it remains to be seen whether or not the computational power

savings would outweigh the broadcast costs.

If the predicate delivery is too slow, the resulting increase in recurrence II can offset the

benefits of sharing. In the hardware model used for this evaluation the path from the last

register a predicate is stored in, through the configuration memory, to a device that needs

to be configured will likely be a critical path, setting the maximum clock frequency of the

architecture. This critical path can be reduced by inserting a register between the config-

uration array output and the compute elements, but this requires predicates be available

a cycle earlier in order to support sharing. Forcing this extra cycle on predicates is not a

problem for operations off the critical recurrence loop. However, this will increase the size

of any recurrence loops with predicate signals in them. This will lead to the dependence

trimming algorithm needing to adjust the recII/resII balance on smaller architectures,

potentially limiting the benefits demonstrated in Figure 9.8 to smaller architectures.
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10.3 Future Work

Moving forward, there are many unexplored potential avenues of investigation. The

algorithms described in this dissertation were put together to create a complete end-

to-end system. This provided a solid demonstration that there is a benefit to PA-SPR.

However, instead of finding the optimal solution from a set of alternatives, the easiest

solution was often used to simply move forward. This section looks back to present

some of those possible alternatives, along with looking forward towards new areas for

exploration.

10.3.1 Reducing Predicate Pressure

The hardware model used in this work uses predicate signals to directly control the ad-

dressing of configuration memory. This means that only a few predicates will be sup-

ported in each region before the size of configuration memory grows to impractical sizes.

It is important to make the best use of any predicates required in the region, and to reduce

the demand for predicates in a region when possible.

One possible way to reduce the predicate demand is by not requiring predicates when

all operations mapped to the same device require the same configuration – for example,

they are all AND operations in an ALU. This is similar to an idea presented in [MLC+92],

where the same instruction in mutually exclusive segments is merged into one instruc-

tion that executes unconditionally. This can be supported when transitioning from the

placement to the routing phase by not requiring a predicate to be routed when the op-

erations match. This is a straight-forward test, as long as the configuration encoding for

operations is known between placement and routing. In PA-SPR, this information is only

available in a plug-in configuration generator that runs after the mapping is completed.

It is likely that if operations are sharing a resource – even if the operations require the

same configuration – then the routes leading to those operations may need the predicates

to share the incoming routing resources anyway. Because of this, the extra coding effort

required to provide the configuration information earlier did not seem to be worth the

potential predicate reduction for this initial study.
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The evaluation in Chapter 9 showed that there is a large amount of II increase in the

placement and routing sections. Some of this increase is initiated by the placer incre-

menting the II when it cannot successfully reduce the predicate requirements to within

the capacity of the region. In SPR, the local adjustment of latency padding proved to be

successful at dealing with constraint violations without resorting to a global II increase.

A similar local method might be found for dealing with predicate gateway congestions,

such as promoting individual operations from the least useful predicates within a region,

or promoting all operations from the least useful predicate, for some yet-to-be-defined

notion of “least useful.”

10.3.2 Alternate Hardware Implementations

In the illustration for slot expansion, Figure 8.8, it is apparent that the mutual-exclusivity

of the predicates renders many of the configuration memory locations unusable. It may

be possible to use an alternate hardware structure for supporting predicate-based config-

uration switching that will reduce this waste. One possibility is to support more predicate

lines than there are address bits, but use some configurable hardware to encode the one-

hot predicates into binary encoded values for denser access to the configuration array.

Another possibility is to replace the address indexed configuration memory with a con-

tent addressable memory (CAM). This allows a configuration to be directly addressed by

the predicate values that require it. An even more exotic option would be to allow a par-

titionable trade-off between the configuration array and local memories. Unfortunately,

properly choosing the trade-off would probably either involve a complicated balancing

algorithm or programmer allocation.

10.3.3 Optimizing Predicate Usage

In both the placement and the routing, there is the opportunity to choose the predicates

that are used within the region to enable sharing. Once the placer has finished and

is transitioning to the routing, it establishes routes for the predicates representing the

conditions of any operations that are sharing resources. When the router is trying to

resolve control congestion, it will examine the signals that have control congestion and
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attempt to bring their predicates into the region to support switching configurations.

However, in both of these cases, there may be a more optimal choice of predicates that

will accomplish the same sharing.

In both of these cases, the goal is to find a set of predicates that will partition a given

set of mutually-exclusive operations (or signals) with the least burden on the enclosing

region’s predicate gateway. The difficult part of this problem is that multiple sets of

operations/signals co-exist in the same region and must share the gateway predicate

lines. The optimal solution for the whole region may not be the same as the locally

optimal solution for each resource.

Finding the locally optimal solution is straightforward once the problem is set up

properly. Begin by considering the set of operations on a given resource belonging to

mutually-exclusive CDT condition nodes. For routing resources, the operation could be

seen as something such as “pass input 2 to the output”. All of the operations are mutually

exclusive, so the least common ancestor of each pair is a partition node. The CDT can

be pruned down so that the nodes with operations in them are leaves, and the greatest

least-common ancestor is the root. Any condition or partition node branch that does not

contain one of the operations of interest can be pruned as well.

This pruning process greatly simplifies the tree structure. The least common ancestors

for any pairs of leaves – the branching points in the simplified tree – are all partition

nodes. Every condition node will be left with exactly one child. The operations are

mutually exclusive, so no operation will ever be in a condition that is the ancestor of

another operations condition, resulting in exactly one operation per leaf.

Each operation will require a specific setting in the configuration word. Some of these

settings may be the same, and so operations can be colored by the setting they require.

For example, all additions could be colored red, while subtractions are colored yellow,

or routing from input 1 is blue and input 2 is green. Operations with the same color,

and therefore setting, do not need a predicate to switch between them at run-time, while

different colors do. When a predicate is available in the region, it allows all operations

below its associated condition to have a different setting than the rest of the tree, which

can be seen as cutting the edge from the parent to the condition in the tree. The current
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solution used by the placer and the router simply chooses the predicates for all of the

leaves, but it may be possible to partition the tree with fewer predicates by taking them

from farther up the tree.

A minimum cut that partitions the colored nodes where each of these edges is weighted

1 is equivalent to choosing a minimum number of predicates. This is the Multi-terminal

Cut Problem [DJP+92, DJP+94], which was shown to be NP-hard in the general case.

However, Erdős and Székely [ES94] provided an optimal polynomial time algorithm for

trees, which is applicable to these simplified graphs. Once again, the decision to limit the

mutual-exclusion representation to a tree provides an unexpected benefit when reasoning

about the conditions.

This provides an elegant solution to choosing the optimal set of predicates locally.

Unfortunately, the union of all of these locally optimal solutions across the region may

be far from optimal. The algorithm given in [ES94] is a two pass process that calculates

and then uses penalty weights across the tree. It may be possible to communicate weight

information across the trees that fall within a region, either through simultaneously pro-

cessing the trees or through an iterative process that finds local solutions and updates

global weights, but that is left for future exploration.

10.3.4 Merging Select Operations Into Routing

As part of the if-conversion and flattening process in Macah, select operations are inserted

into the data-flow to choose between the results of two different control paths. These

operations take three inputs – the two values to select between and a predicate signal

that represents a condition in the CDT. These select operations are essentially routing the

appropriate value on in the data-flow. With a predicate-aware router, the router already

will use routing muxes as needed, along with a predicate value in the region, to switch

between values based on the current control-flow condition. Currently, select operations

are performed by an ALU, but it should be possible to take those select operations out

and allow the router to manage passing the proper signal along. This would free up the

ALUs to perform more useful computations. The select operations that are candidates for

merging can be identified by first checking the source operation providing the select input
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to see if it is one of the operations providing a predicate in the CDT. If the corresponding

CDT condition partitions the conditions of the source values that the select operation

is choosing between, then the select operation can be removed, with the source values

routed directly to the destinations of the select operation. The router would need to allow

a port to have multiple routes to the same input, and set the sink conditions to be the same

as the source conditions for the two new routes, but the existing negotiation mechanisms

should take care of the rest of the sharing process.

10.3.5 Power Implications of Predicate-Aware Sharing

It would be interesting to investigate the effect that predicate-aware sharing has on power

usage. Predicate-aware sharing is effectively eliminating the speculation that a spatial

execution would otherwise be performing. This may decrease the power to perform a

particular computation because less is speculatively computed and thrown away. How-

ever, it can increase computational density, and may have unexpected power implications

in terms of routing. Since routing is a significant source of power usage in CGRAs [VE10],

it is unclear whether predicate-aware sharing would be a net gain or loss.

10.3.6 Cross-iteration Mutual Exclusion

Currently, PA-SPR is only aware of mutual-exclusion relationships between operations

within the same loop iteration. The cross-iteration mutual exclusion discussed in Section

5.2.4 is one possible future source of sharing. A related notion of cross-iteration mutual

exclusion may come from the flattening process in Macah. Consider a kernel that consists

of three loops in sequence, A, B, and C – perhaps setup, compute, and tear-down loops

for the kernel. Macah will turn these three loops into three mutually exclusive blocks, and

synthesize the appropriate logic to switch between them at run-time. If B is guaranteed

to execute for n iterations, then we know that C will never execute in the same iteration

as A, nor within n iterations of the last time that A executed. Instead of being limited

to sharing operations from A and C that have the same start time within an iteration, an

operation in C with a start time of s can share with an operation in A with start times

s, s + I I, . . . , s + n ∗ I I. This widened range will increase the opportunities for sharing, if
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the information can be effectively communicated to PA-SPR, and the compatibility checks

in the aggregate execution condition can be adapted to track the ranges.

10.3.7 The Counter is Dead – Long Live the Counter!

Predicate-aware sharing can be pushed to the extreme by viewing the phases of the mod-

ulo schedule as a set of partitioning conditions, and the modulo-counter as encoded pred-

icates for that set of conditions. The dedicated modulo-counter can be removed from the

configuration hardware and replaced with a computed counter in the data-path. In the

transition from placement to routing, if the same operations are used across phases, the

phase predicates are not needed in the region, and the starting situation from the router’s

point of view becomes that depicted in Figure 8.6, where all of the phases end up in the

same configuration slot. It is more likely that at least some of the settings will differ within

the region, at which point the minimum partitioning set of predicates (including the new

phase predicates) should be chosen for the region. This will lead to irregular slot tables

like those depicted in Figure 8.5, except that there may not be a full partitioning across

the phases. After a few iterations of routing, new predicates can be selected for routing

to the region, which can also include the phase predicates as candidates. In the end, each

region will be able to use its own independent mixture of phase bits and predicate bits

to switch between configurations. This can be seen as a form of configuration compres-

sion. In fact, with enough similarity across routes and operations within the region, and

a way to pack the configurations together such as a CAM, it may be possible to generate

a valid mapping for a kernel with an II that is greater than the depth of the configuration

memory. Getting this to all work out efficiently is a big challenge and not likely to be

practical, especially once you try to start including stateful operations in all of this, but it

an interesting thought experiment to try and understand all of the implications.

10.4 Epilogue

In the end, all of this resource sharing is trying to take advantage of the available hard-

ware in the most efficient way possible. The algorithms in this dissertation have been able

to take advantage of flexibility where it is available, and negotiate for cooperation other-
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wise. This trade-off is important for allowing the programmer the flexibility to program

the natural control flow for a program, but implement it efficiently within the bounds of

flexibility that allow fast and scalable architectures. The sharing introduced in this disser-

tation is not the final solution in striking this balance, but it is certainly a step in the right

direction.
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