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Although conventional FPGAs have become indispensable tools due to their versatility and quick design 

cycles, their logical density, operating frequency and power requirements have limited their use.  Domain-

specific FPGAs attempt to improve performance over general-purpose reconfigurable devices by 

identifying common sets of operations and providing only the necessary flexibility needed for a range of 

applications.  One typical optimization is the replacement of more universal fine-grain logic elements with 

a specialized set of coarse-grain functional units.  While this improves computation speed and reduces 

routing complexity, this also introduces a unique design problem.  It is not clear how to simultaneously 

consider all applications in a domain and determine the most appropriate overall number and ratio of 

different functional units.  In this paper we show how this problem manifests itself during the development 

of RaPiD-AES, a coarse-grain, domain-specific FPGA architecture and design compiler intended to 

efficiently implement the fifteen candidate algorithms of the Advanced Encryption Standard competition.   

While we investigate the functional unit selection problem in an encryption-specific domain, we do not 

believe that the causes of the problem are unique to the set of AES candidate algorithms.  In order for 

domain-specific reconfigurable devices to performance competitively over large domain spaces in the 

future, we will need CAD tools that address this issue.  In this paper we introduce three algorithms that 

attempt to solve the functional unit allocation problem by balancing the hardware needs of the domain 

while considering overall performance and area requirements. 
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1 Introduction  

The Advanced Encryption Standard competition offered a compelling opportunity for designers to exploit 

the benefits of domain-specific FPGAs to produce a versatile, fast, and early-to-market encryption device.  

Figure 1 provides a brief timeline for the competition.  The competition requirements and the candidate 

algorithms have several characteristics that make designing specialized, coarse-grain reconfigurable 

devices particularly attractive.  First, high performance is very important due to today’s large volume of 

sensitive electronic traffic.  Second, flexibility allows algorithm updates and improvements. In addition, 

flexibility was a necessity for pioneering designers since the contest allowed submissions to be modified 

during public review to address any security or performance concerns that might be raised.  Furthermore, 

the control logic and routing structure for the system does not need to be complex since the iterative 

dataflow for most of the algorithms conforms to one of three simple styles.  Lastly, very few different types 

of functional units are needed because all of the required operations can be implemented with a 

combination of simple ALUs, multipliers, Galois Field multipliers, bit permutations, memories, and 

multiplexors. 

January 1997 The National Institute for Standards and Technology issues a public call for symmetric-key block 
cipher algorithms that are both faster and more secure than the aging Data Encryption Standard. 

August 1998  From around the world, twenty-six submissions are received.  Fifteen algorithms are accepted to 
compete in an eight-month review period. 

August 1999 Based upon brief but careful public analysis and comment about security and efficiency, five 
algorithms are selected for further scrutiny.  

October 2000 After a nine-month second review period and several public forums, Rijndael is announced as the 
new encryption standard. 

December 2001 The Secretary of Commerce makes the AES a Federal Information Processing Standard.  This makes 
AES support compulsory for all federal government organizations as of May 2002. 

 
Figure 1 – Advanced Encryption Standard Competition Timeline 
A brief timeline for the Advanced Encryption Standard competition sponsored by the National Institute for 
Standards and Technology.  Based on information from [23].   Note that modifications to four algorithms were 
submitted between August 1998 and August 1999. 

This paper describes the development of the RaPiD-AES system – a coarse-grain, encryption-specific 

FPGA architecture and design compiler based upon the RaPiD system [11], also developed at the 

University of Washington.  We will begin with a short introduction to encryption, FPGAs, and a summary 

of previous FPGA-based encryption devices.  This will be followed by a brief description of the RaPiD 

architecture and the RaPiD-C language.  We will move on to a discussion of the development of 

encryption-specialized functional units and identify some unique architectural design problems inherent to 

coarse-grain, domain-specific reconfigurable devices.   We will then introduce three approaches that we 

have developed to deal with these problems and describe how this guided the formation of our architecture.  

Finally we will describe the modifications that were made to the RaPiD-C compiler so that developers can 

map designs to our architecture using a high-level, C-like language. 
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2 Background 

The popularity of many online services, such as electronic banking and shopping over the Internet, is only 

possible today because we have strong encryption techniques that allow us to control our private data while 

it is flowing across public networks.  Although the concept of secure communication has only become 

familiar to the general public within the last decade, its popularity truly began in the late 1970s.  In 1972, 

the National Institute of Standards and Technology (then known as the Nation Bureau of Standards) 

acknowledged the increasing computer use within the federal government and decided that a strong, 

standard cryptographic algorithm was needed to protect the growing volume of electronic data.  In 1976, 

with the help of the National Security Agency (NSA), they officially adopted a modified version of IBM’s 

Lucifer algorithm [31] to protect all non-classified government information and named it the Data 

Encryption Standard (DES).  While there were some unfounded accusations that the NSA may have 

planted a “back-door” that would allow them access to any DES-encrypted information, it was generally 

accepted that the algorithm was completely resistant to all but brute-force attacks.   While the algorithm 

later turned out to be much weaker than originally believed [28], the perceived strength and the official 

backing of the US government made DES very popular in the private sector.  For example, since all 

financial institutions needed the infrastructure to communicate with federal banks, they quickly adopted 

DES for use in all banking transactions, from cash machine PIN authentication to inter-bank account 

transfers.  This not only provided them with more secure communication over their existing private 

networks, it also allowed them to use faster, cheaper third-party and public networks.   

2.1 Encryption 
While in the past the security of cryptographic methods relied on the secrecy of the algorithm used to 

encrypt the data, this type of cipher is not only inherently insecure but also completely impractical for 

public use.  Therefore, all modern encryption techniques use publicly known algorithms and rely on 

specific strings of data, known as keys, to control access to protected information.  There are two classes of 

modern encryption algorithms: symmetric, or secret-key, and asymmetric, or public-key.  The primary 

difference between the two models is that while symmetric algorithms either use a single secret key or two 

easily related secret keys for encryption and decryption, asymmetric algorithms use two keys, one publicly 

known and another secret. 

The AES competition only included symmetric ciphers because they are generally considerably faster for 

bulk data transfer and simpler to implement than asymmetric ciphers.  However, public-key algorithms are 

of great interest for a variety of applications since the security of the algorithm only hinges on the secrecy 

of one of the keys.  For example, before two parties can begin secure symmetric-key communication they 
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need to agree upon a key over an insecure channel.  This initial negotiation can be conducted safely by 

using asymmetric encryption.  Another reason that public-key algorithms are popular is that by making 

small modifications to the way that the algorithms are used, they can often implement a range of 

authentication systems.  For example, public-key encryption generally uses the public key to encrypt and 

the private key to decrypt.  While it is not necessarily secure for a party to encrypt a document using its 

private key, a receiving party can confirm that the document originated from the sender by decrypting with 

the appropriate public key.  This can be further extended to provide tamper-resistance, timestamping, and 

legally binding digital signatures. 

Modern symmetric block ciphers typically iterate multiple times over a small set of core encryption 

functions.  To make the resulting ciphertext more dependent on the key, each iteration of the encryption 

function generally incorporates one or more unique subkeys that are generated from the primary key.   

Although some of the AES candidate algorithms allow for on-the-fly subkey generation, many do not.  In 

order to provide an equal starting point for all of the algorithms, we assume that the subkey generation is 

performed beforehand and the subkeys are stored in local memory.  For many applications, such as Secure 

Shell (SSH), this is a reasonable assumption since a large amount of data is transferred using a single key 

once a secure channel is formed.  In this case, the startup cost of subkey generation is very minimal 

compared to the computation involved in the bulk encryption of transmitted information. 

2.2 Field Programmable Gate Arrays 
As the volume of secure traffic becomes heavier, encryption performed in software quickly limits the 

communication bandwidth and offloading the work to a hardware encryption device is the only way to 

maintain good performance.  Unfortunately, ASIC solutions are not only expensive to design and build, 

they also completely lack any of the agility of software implementations.  Advances in hardware 

technology and cryptanalysis, the science and mathematics of breaking encryption, constantly pursue all 

ciphers.  This means that very widely employed algorithms may become vulnerable virtually overnight.  

While a software-only encryption system would be very slow, it could easily migrate to a different 

algorithm, where an ASIC-based encryption device would need to be completely replaced.  However, if a 

reconfigurable computing device were used instead, it would provide high performance encryption and, if 

needed, it is likely that a new cipher could be quickly applied with no additional hardware and negligible 

interruption to service.   

Field Programmable Gate Arrays, or FPGAs, successfully bridge the gap between the flexibility of 

software and performance of hardware by offering a large array of programmable logic blocks that are 

embedded in a network of configurable communication wires.  The logic blocks, also known as 
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Configurable Logic Blocks (CLBs), typically use small look-up tables, or LUTs, to emulate standard gate 

logic.  For example, in the Xilinx 4000 series devices [32], each CLB is capable of producing one to two 

independent four or five input functions.  Each of the CLBs can then be interconnected with others via a 

reconfigurable matrix of routing resources.  By using RAM to control the routing configuration and the 

content of the LUTs, FPGAs can be quickly programmed and reprogrammed to run many different 

applications.  Furthermore, since the computations are still performed in hardware, FPGA implementations 

often outpace software-based solutions by an order of magnitude or more.  Unfortunately, FPGA designs 

are also generally several times slower, larger and less energy-efficient than their ASIC counterparts.   This 

has limited their use in applications where flexibility is not essential.  

2.3 Previous FPGA-based Encryption Systems 
FPGAs have been shown to be effective at accelerating a wide variety of applications, from image 

processing and DSP to network/communication and data processing.  Many research efforts have 

capitalized on the inherent flexibility and performance of FPGAs; encryption is no exception.  The author 

of [18] was among the first to efficiently map DES to a reconfigurable device.  This effort attained a 

relative speedup of 32x as compared to contemporary software implementations while providing roughly 

one-quarter of the performance of ASIC solutions.  Later, papers such as [19] and [20] used high-speed 

FPGA implementations to prove that DES was vulnerable to brute-force attacks from low-cost, massively 

parallel machines built from commodity parts. 

When the 15 AES candidate algorithms* were announced in 1998, it sparked new interest in FPGA-based 

encryption devices.  The authors of [12] showed that four of the five finalist algorithms could be executed 

on an FPGA an average of over 21x faster than their best known software counterparts.  See Figure 2 for 

details of these results.  However, this required one of the largest FPGAs available at the time and they 

were still unable to implement an efficient version of the fifth algorithm due to a lack of resources on the 

device.  The authors of [13] and [25] encountered much more serious problems since they attempted to 

implement the AES candidate algorithms on much smaller FPGAs.  In [13], even though the authors 

determined that two of the five finalists were too resource-intensive for their device, the three algorithms 

that were implemented still failed to perform well.  The average throughput of these implementations was 

only about 1.3x that of their software equivalents.  Even worse, the mappings from [25] only offered an 

average of just over one-fifth the throughput of software-based encryption.  These research groups stated 

that algorithms were either not implemented or implemented poorly due to memory requirements and 

difficult operations such as 32-bit multiplication or variable rotations. 

                                                
* [1, 2, 4, 5, 9, 10, 14, 15, 17, 21, 22, 24, 26, 27, 30] 
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Encryption Algorithm CAST-256 MARS RC6 Rijndael Serpent Twofish 
Software Implementation 
from [16] (cycles / block)  

633 369 270 374 952 376 

Software Throughput 
(500 MHz processor) 

96 Mb/s 165 Mb/s 226 Mb/s 163 Mb/s 64 Mb/s 162 Mb/s 

FPGA Throughput from [12] - N/I 2400 Mb/s 1940 Mb/s 5040 Mb/s 2400 Mb/s 
FPGA Throughput from [13] - N/I N/I 232.7 Mb/s 125.5 Mb/s 81.5 Mb/s 
FPGA Throughput from [25] 26 Mb/s - 37 Mb/s - - - 
       
Relative Speedup       
FPGA [12] / Software - - 10.6 x 11.9 x 78.8 x 14.8 x 
FPGA [13] / Software - - - 1.43 x 1.95 x 0.50 x 
FPGA [25] / Software 0.27 x - 0.16 x - - - 

 
Figure 2 – FPGA Implementations of AES Candidate Algorithms 
A summary of three research efforts to produce FPGA implementations of the AES candidate algorithms.  This 
included the five second-round candidates and the well-known CAST-256 cipher.  N/I indicates that the 
algorithm was considered in the paper but was not implemented because it was deemed inappropriate for the 
target FPGA. 

2.4 RaPiD Architecture 
The problems that these research groups encountered illustrate some of the inherent limitations of standard 

FPGAs.  Conventional reconfigurable devices, like those produced by Xilinx and Altera, use fine-grain 

CLBs that, while well suited to small or irregular functions, typically suffer a stiff penalty when 

implementing wide and complex arithmetic operations.  These types of functions need to be built from too 

many small logical resources and end up being spread across too general a routing structure to be efficient.  

Furthermore, although most modern FPGAs embed dedicated RAM modules into the fabric of the array, 

they do not necessarily provide the appropriate size or number of memory blocks. 

While flexibility is an integral part of reconfigurable devices, conventional FPGAs are too generic to 

provide high performance in all situations.  However, if the range of applications that a device is intended 

for is known beforehand, a designer can specialize the logic, memory and routing resources to enhance the 

performance of the device while still providing adequate flexibility to accommodate all anticipated uses.  

Common and complex operations can be implemented much more efficiently on specialized coarse-grain 

functional units while routing and memory resources can be tuned to better reflect the requirements.  An 

example of such a specialized reconfigurable device is the RaPiD architecture [11], which was originally 

designed to implement applications in the DSP domain.  Since signal processing functions are typically 

fairly linear and very arithmetic-intensive, the architecture consists of a tileable cell that includes dedicated 

16-bit multipliers, ALUs and RAM modules that are connected through a programmable and pipelined 

word-wise data bus.  See Figure 3 for a diagram of the RaPiD cell.  While this architecture clearly lacks 

much of flexibility of a more conventional FPGA, the results in [8] show that it successfully improves 

performance while minimally affecting usability since it provides significant speed, area and power 

advantages across a range of DSP applications. 
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Figure 3 - Basic RaPiD Cell 
A block diagram of the basic RaPiD cell [6].  The complete architecture is constructed by horizontally tiling 
this cell as many times as needed.  The vertical wires to the left and right of each component represent input 
multiplexors and output demultiplexors, respectively.  The blocks shown on the long horizontal routing tracks 
indicate bus connectors that both segment the routing and provide pipelining resources. 

2.5 RaPiD-C 
In addition to the hardware advantages of the architecture, the RaPiD researchers show another aspect of 

the system that makes it particularly attractive in [7].  This paper describes the specifics of RaPiD-C, a C-

like language that allows developers to map their designs to the RaPiD architecture in a high-level, familiar 

way.  In addition to the normal C constructs that identify looping, conditional statements, and arithmetic or 

logical operations, the language also has specific elements that control off-chip communication, loop 

rolling and unrolling, sequential and parallel processing, circuit synchronization, and the pipelining of 

signals.  These additional constructs make it possible to compile concise hardware descriptions to 

implementations that are still faithful to their designer’s original intent.   

Furthermore, although the language and compiler were designed for the original RaPiD architecture, the 

developers mention in [8] that the system includes enough flexibility to use other special-purpose 

functional and memory units.  With these extensions, they intended the compiler to be able to map a large 

range of computation-intensive applications onto a wide variety of coarse-grain reconfigurable devices. 

3 Implications of Domain-Specific Devices 

Although domain-specific FPGAs such as RaPiD can offer great advantages over general-purpose 

reconfigurable devices, they also present some unique challenges.  One issue is that while design choices 

that affect the performance and flexibility of classical FPGAs are clearly defined and well understood, the 



 

 

7 

effects that fundamental architecture decisions have on specialized reconfigurable devices are largely 

unknown and difficult to quantify.  This problem is primarily due to the migration to coarse-grain logic 

resources.  While the basic logic elements of general-purpose reconfigurable devices are generic and 

universally flexible, the limiting portions of many applications are complex functions that are difficult to 

efficiently implement using the fine-grain resources provided.  As mentioned earlier, these functions 

typically consume many flexible, but relatively inefficient, logic blocks and lose performance in overly 

flexible communication resources.  By mapping these applications onto architectures that include more 

sophisticated and specialized coarse-grain functional units, they can be implemented in a smaller area with 

better performance.  While the device may lose much of its generality, there are often common or related 

operations that reoccur across similar applications in a domain.  These advantages lead to the integration of 

coarse-grain functional elements into specialized reconfigurable devices, as is done in the RaPiD 

architecture.  However, the migration from a sea of fine-grained logical units to a clearly defined set of 

coarse-grained function units introduces a host of unexplored issues.  Merely given a domain of 

applications, it is not obvious what the best set of functional units would be, much less what routing 

architecture would be appropriate, what implications this might have on necessary CAD tools, or how any 

of these factors might affect each other. 

The first challenge, the selection of functional units, can be subdivided into three steps.  First, all 

applications in a domain must be analyzed to determine what functions they require.  Crucial parts such as 

wide multipliers or fast adders should be identified. Next, this preliminary set of functional units can be 

distilled to a smaller set by capitalizing on potential overlap or partial reuse of other types of units.  

Different sizes of memories, for example, can be combined through the use of multi-mode addressing 

schemes.  Lastly, based upon design constraints, the exact number of each type of unit in the array should 

be determined.  For example, if the applications are memory-intensive rather than computationally-

intensive, the relative number of memory units versus ALUs should reflect this.   

In Sections 5, 6 and 7 of this paper, we will primarily focus on the problem of determining the most 

appropriate quantity and ratio of functional units for our encryption-specialized architecture.  While the 

Section 4 describes the functional units we included in our system, we did not fully explore the entire 

design space.  While operator identification and optimization are both complex problems unique to coarse-

grain architectures, we did not address these issues since the algorithms themselves provide an obvious 

starting point.  Also, since the algorithms use a relatively small number of strongly-typed functional units, 

it is fairly simple to perform the logical optimization and technology mapping by hand.  Although this may 

overlook subtle optimizations, such as the incorporation of more sophisticated operators, this does provide 

an acceptable working set. 
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4 Functional Unit Design 

Encouraged by the results of the RaPiD project, we decided to build a RaPiD platform specialized for 

encryption.  While the necessary functional units are different, the RaPiD architecture was designed for 

linear, iterative dataflow.  However, since it is coarse-grained, there are particular architectural differences 

that separate it from general-purpose reconfigurable devices.  One major design decision was the bit-width 

of the architecture.  Since the operations needed by the AES competition algorithms range from single bit 

manipulations to wide 128-bit operations, we determined that a 32-bit word size would likely provide a 

reasonable compromise between the awkwardness of wide operators and the loss of performance due to 

excessive segmenting.  In addition, while the algorithms did not preclude the use of 64, 16 or 8-bit 

processors, the natural operator width for many of the algorithms was specifically designed to take 

advantage of more common 32-bit microprocessors.  After defining the bit-width of the architecture, the 

next problem was determining a comprehensive set of operators.  Analysis identified six primary operation 

types required for the AES candidate algorithms.  These operation classes lead to the development of seven 

distinct types of functional units.  See Figure 4 for a list of operation classes and Figure 5 for a description 

of the functional unit types implemented in our system.  

Class Operations 
Multiplexor Dynamic dataflow control
Rotation Dynamic left rotation, static rotation, static logical left/right shift, dynamic left shift 
Permutation Static 32-bit permutation, static 64-bit permutation, static 128-bit permutation
RAM 4-bit lookup table, 6-bit lookup table, 8-bit lookup table
Multiplication 8-bit Galois Field multiplication, 8-bit integer multiplication, 32–bit integer multiplication 
ALU Addition, subtraction, XOR, AND, OR, NOT
 
Figure 4 – Required Operators of the AES Candidate Algorithms 
Table of the six operator classes used in the AES competition algorithms. 

Unit Description 
Multiplexor 32 x 2:1 muxes 
Rotate/shift Unit 32-bit dynamic/static, left/right, rotate/logical shift/arithmetic shift
Permutation Unit 32 x 32:1 statically controlled muxes
RAM 256 byte memory with multi-mode addressing
32-bit Multiplier 32–bit integer multiplication (32-bit input, 64-bit output)
8-bit Multiplier 4 x 8-bit modulus 256 integer multiplications or 4 x 8-bit Galois Field multiplications 
ALU Addition, subtraction, XOR, AND, OR, NOT
 
Figure 5 – Functional Unit Description 
Table of the seven types of functional unit resources in our system. 

One peculiarity of a RaPiD-like architecture is the distinct separation between control and datapath logic.  

Like the original RaPiD architecture, we needed to explicitly include multiplexors in the datapath to 

provide support for dynamic dataflow control.  In addition, due to the bus-based routing structure, we 

needed to include rotator/shifters and bit-wise crossbars to provide support for static rotations/shifts and bit 
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permutations.  Although this seems inefficient since these static operations are essentially free on a general-

purpose FPGA (they are incorporated into the netlist and implemented at compile-time), the AES candidate 

algorithms also require dynamic rotations/shifts.  These are typically very difficult to implement on 

conventional reconfigurable devices.  In our architecture, though, the same hardware can be used to provide 

support for both static and dynamic rotations/shifts with minimal additional hardware.  For future 

flexibility, we also decided to add in currently unused operations such as arithmetic shifting.  We chose to 

implement a dynamically/statically controlled rotation/shift unit separately from a statically controlled 

crossbar for two reasons.  First, static random bit permutations are needed far less than rotation or shift 

operations and we expect the crossbar to be significantly larger than its rotation/shift counterpart.  Second, 

the additional hardware required to make a crossbar emulate a dynamically controlled rotator/shifter is too 

large to be efficient. 

Next we considered the logical and arithmetic needs of the algorithms.  First, since all of the algorithms 

contain addition and subtraction or bit-wise logical operations, we chose to incorporate all of these 

functions into one ALU type.  For simplicity we decided to extend the 16-bit RaPiD ALU to a 32-bit 

version.  Second, many of the algorithms require either an 8 or 32-bit integer multiplication or a related 

function, an 8-bit Galois Field multiplication.  See Appendix A for an explanation of Galois Field 

multiplication.  Although these operations can be performed using the other functional units that we have 

included, the frequency and complex nature of these operations make them ideal candidates for dedicated 

functional units.  We chose to implement the 32-bit integer multiplier and the 4-way 8-bit integer/Galois 

Field multiplier as two separate units for three main reasons.  First, the AES algorithms do include 

multiplications up to 64 bits.  To quickly calculate these multiplications, it was necessary to implement a 

wide multiplier.  Second, as can be seen from the diagram in Appendix A, it is difficult to make an efficient 

multi-mode 32-bit integer/8-bit Galois Field multiplier.  Most likely, this unit would only be able to handle 

one or possibly two Galois multiplications at a time.  This is not efficient in terms of resource utilization or 

speed.  Lastly, a four-way 8-bit Galois Field multiplier is also able to handle four 8-bit integer 

multiplications with minimal modification and little additional hardware. 

Finally, we considered the memory resources that our architecture should provide.  While one of the AES 

candidate algorithms requires a larger lookup table, most of the algorithms use either a 4 to 4, a 6 to 4 or an 

8 to 8 lookup table.  Instead of separating these out into three distinct types of memory units, we chose to 

combine them into one memory that could support all three addressing modes.  From this, we developed a 

256-byte memory that either contained eight 4 to 4 lookup tables (each with 4 pages of memory), eight 6 to 

4 lookup tables, or one 8 to 8 lookup table.  See Figure 6 for an illustrated description of these addressing 

modes. 



 

 

10  

64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Address Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode

64 nibbles

64 nibbles

4

48 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

32 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Address Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode
64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Address Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode

64 nibbles

64 nibbles

4

48 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

48 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

32 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

64 nibbles

64 nibbles

4

32 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

 
 
Figure 6 – Multi-mode RAM Unit 
The three lookup table configurations for our RAM unit 

5 Difficulties of Functional Unit Selection 

Although it is relatively straightforward to establish the absolute minimum area required to support a 

domain, determining the best way to allocate additional resources is more difficult.  During the functional 

unit selection process for RaPiD-AES, we determined the necessary hardware to implement each of the 

candidate algorithms for a range of performance levels.  Since each of the algorithms iterate multiple times 

over a relatively small handful of encryption functions, we identified the resource requirements to 

implement natural unrolling points for each, from relatively small, time-multiplexed elements to 

completely unrolled implementations.  From this data we discovered four factors that obscure the 

relationship between hardware resources and performance.   

First, although the algorithms in our domain share common operations, the ratio of the different functional 

units varies considerably between algorithms.  Without any prioritization, it is unclear how to distribute 

resources.  For example, if we consider the fully rolled implementations for six encryption algorithms, as in 

the table on the left in Figure 7, we can see the wide variation in RAM, crossbar, and runtime requirements 

among the different algorithms.  To complicate matters, if we attempt to equalize any one requirement over 

the entire set, the variation among the other requirements becomes more extreme.  This can be seen in the 

table on the right in Figure 7.  In this case, if we consider the RAM resources that an architecture should 

provide, we notice that Loki97 requires at least 40 RAM modules.  If we attempt to develop an architecture 

that caters to this constraint and unroll the other algorithms to take advantage of the available memory, we 

see that the deviation in the number of crossbars and runtime increases sharply. 
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Algorithm 
(Baseline) 

RAM 
Blocks 

XBars Runtime 

CAST-256 (1x) 16 0 48 
DEAL (1x) 1 7 96 
HPC (1x) 24 52 8 
Loki97 (1x) 40 7 128 
Serpent (1x) 8 32 32 
Twofish (1x) 8 0 16 
Average 16.2 16.3 54.7 
Std. Dev. 14.1 21.1 47.6 
 

Algorithm 
(Unrolling Factor) 

RAM 
Blocks 

XBars Runtime 

CAST-256 (2x) 32 0 24 
DEAL (32x) 32 104 3 
HPC (1x) 24 52 8 
Loki97 (1x) 40 7 128 
Serpent (8x) 32 32 4 
Twofish (4x) 32 0 4 
Average 32 32.5 28.5 
Std. Dev. 5.6 40.6 49.4 

  
Figure 7 – Ratio Complications 
Two examples of the complications caused by varying hardware demands.  The table on the left compares the 
RAM, crossbar and runtime requirements for the baseline implementations of six encryption algorithms.  Notice 
that in all three categories the deviation in requirements is comparable to the average value.  The table on the 
right displays the compounded problems that occur when attempting to normalize the RAM requirements across 
algorithms.  The other algorithms are unrolled to make use of the memory ceiling set by Loki97.  Notice that the 
total deviation in crossbars roughly doubles as compared to the baseline comparison and that the deviation in 
runtime becomes almost twice the new average value. 

The second factor that complicates the correlation between hardware availability and performance is that 

the algorithms have vastly different complexities.  This means that the hardware requirement for each 

algorithm to support a given throughput differs considerably.  It is difficult to fairly quantify the 

performance-versus-hardware tradeoff of any domain that has a wide complexity gap.  In Figure 8 we see 

an example of five different encryption algorithms that are implemented to have similar throughput, but 

have a wide variation in hardware requirements.   

Algorithm (Unrolling Factor) RAM Blocks XBars Runtime 
CAST-256 (2x) 32 0 24 
DEAL (4x) 4 16 24 
Loki97 (8x) 320 7 16 
Magenta (4x) 64 0 18 
Twofish (1x) 8 0 16 
Average 85.6 4.6 22.8 
Std. Dev. 133.2 7.1 6.3 

 
Figure 8 – Complexity Disparity 
An illustration of the imbalance that occurs when attempting to equalize throughput across algorithms.  We 
choose Twofish as a baseline and unrolled the rest of the algorithms to best match its throughput.  Notice that 
the deviation in RAM and crossbar requirements is well above the average value. 

The third problem of allocating hardware resources is that the requirements of the algorithms do not 

necessarily scale linearly or monotonically when loops are unrolled.  This phenomenon makes it difficult to 

foresee the effect of decreasing the population of one type of functional unit and increasing another.  See 

Figure 9 for an example of this non-uniform behavior.   
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Figure 9 – Scaling Behavior 
An example of the unpredictable nature of hardware demands when unrolling algorithms. 

The last problem of estimating performance from available resources is that if a particular implementation 

requires more functional units of a certain type than is available, the needed functionality can often be 

emulated with combinations of the other, under-utilized units.  For example, a regular bit permutation could 

be accomplished with a mixture of shifting and masking.  Although this flexibility may improve resource 

utilization, it also dramatically increases the number of designs to be evaluated. 

6 Function Unit Allocation 

To produce an efficient encryption platform for a diverse group of algorithms, an effective solution to the 

functional unit allocation problem must have the flexibility needed to simultaneously address the multi-

dimensional hardware requirements of the entire domain while maximizing usability and maintaining hard 

or soft area and performance constraints.  In the following sections we propose three solutions to this 

problem.  The first algorithm addresses hard performance constraints.  The second and third algorithms 

attempt to maximize the overall performance given softer constraints. 

6.1 Performance-Constrained Algorithm 
The first algorithm we developed uses a hard minimum throughput constraint to guide the functional unit 

selection.  As described earlier, we began the exploration of the AES domain by establishing the hardware 

requirements of all of the algorithms for a variety of performance levels.  These results are shown in 

Appendix B.  First, we determined the hardware requirements for the most reasonably compact versions of 

each algorithm.  For all algorithms except for Loki97, these fully rolled implementations require very 

modest hardware resources.  Loki97 is unique because the algorithm requires a minimum of 10KB of 

memory.  After this, we determined the hardware requirements for various unrolled versions of each 

algorithm at logical intervals.  We use this table of results to determine the minimum hardware that each 

algorithm needs in order to support a given throughput constraint.   

Our first algorithm begins by determining the hardware requirements to run each algorithm at a specified 

minimum throughput.  We then examine these requirements to establish the maximum required number of 

each type of functional unit.  To calculate the overall performance for this superset of resources, we re-

Algorithm (Unrolling Factor) RAM Blocks Muxes Runtime 
FROG (1x) 8 23 512 
FROG (4x) 8 72 128 
FROG (16x) 8 256 32 
FROG (64x) 16 120 8 
FROG (256x) 64 30 2 
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examine each algorithm to determine if there are sufficient resources to allow for greater throughput, then 

apply the cost function described by this equation: 

∑
−

=
=

1

0

N

i
iCCCost  

In this equation, N is the total number of algorithms in the domain and CCi is the number of clock cycles 

required to encrypt a single 128-bit block of plaintext in the highest throughput configuration of algorithm i 

that will fit on the architecture.  See Figure 10 for an illustrated example of the performance-constrained 

functional unit selection process.   
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Figure 10 – Performance-Constrained Functional Unit Selection 
Illustration of our performance-constrained selection algorithm. 

Note that this is a greedy algorithm and, due to the non-linear and non-monotonic behavior of hardware 

requirements, does not necessarily find the minimum area or maximum performance for the system.  

Because the starting point is chosen solely on the basis of throughput, without considering hardware 

requirements, it is possible that higher throughput implementations of a given algorithm may have lower 

resource demands for particular functional types.  If that algorithm becomes the limiting factor when 

determining the number of any resource type, it will likely affect the overall area and performance results. 
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6.2 Area-Constrained Algorithm 
The next two algorithms we developed use simulated annealing to provide more sophisticated solutions that 

are able to capitalize on softer constraints to improve average throughput.  The second algorithm begins by 

randomly adding functional units to the architecture until limited by a given area constraint.  The quality of 

this configuration is evaluated by determining the highest performance implementation for each algorithm, 

given the existing resources, then applying the cost function described by this equation: 

∑
−

= 



=
1

0 ,
N

i

 i

otherwise A*  PC
rearchitectu the on fits i algorithm if ,CC

Cost  

In this equation, N is the total number of algorithms in the domain and CCi is the number of clock cycles 

required to encrypt a single 128-bit block of plaintext in the highest throughput configuration of algorithm i 

that will fit on the array.  However, if an algorithm cannot be implemented on the available hardware, we 

impose an exclusion penalty proportional to A, the additional area necessary to map the slowest 

implementation of the algorithm to the array.  In all of our evaluations, we used a constant penalty scaling 

factor (PC) of 10%.  This translated to a very steep penalty since we wanted our system include all of the 

candidate algorithms.  However, this factor is completely application-dependant and must be tuned 

depending on the size of the functional units, how many algorithms are in the domain, what the average 

runtime is, and how critical it is that the system is able to implement the entire domain.  While this penalty 

system does not necessarily guide the simulated annealing to the best solution, since a higher throughput 

implementation may be closer to the existing configuration, it does provide some direction to the tool to 

help prevent the potentially unwanted exclusion of some of the algorithms in the domain. 

After calculating the quality of the configuration we perturb the system by randomly picking two types of 

components, removing enough of the first type to replace it with at least one of the second, then adding 

enough of the second type to fill up the available area.  Finally, the quality of the new configuration is 

evaluated in the same manner as before.  If the new configuration provides the same or better throughput, it 

is accepted.  If it does not provide better performance, based on the current temperature and relative 

performance degradation, it may or may not be accepted.  This process is based on the simple acceptance 

function and adaptive cooling schedule described in [3].  See Figure 11 for an illustration of this procedure.  

Note that, as described earlier, some operations may be emulated by combinations of other functional units.  

For simplicity we did not directly deal with this possibility, but there is no inherent limitation in either of 

the area-constrained solutions that would prevent this from being addressed with a larger 

hardware/throughput matrix. 
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Figure 11 – Area-Constrained Function Unit Selection 
Illustration of our area-constrained selection algorithm. 

6.3 Improved Area-Constrained Algorithm 
Our last functional unit selection algorithm attempts to balance performance and area constraints.  First, we 

eliminate implementations from the hardware/throughput matrix that do not provide enough throughput to 

meet a specified minimum performance requirement.  Then, we randomly select one of the remaining 

implementations of each algorithm for our current arrangement.  We determine the minimum hardware and 

area requirements necessary to fit all of the algorithms at their current settings, then establish if any 

algorithms can be expanded to a higher performance level given the calculated hardware resources.  The 

quality of this arrangement is determined by the number of clock cycles required to run all of the 

algorithms at their current settings and a penalty based on any excessive area needed by the system.  The 

cost function is described by this equation: 

Penalty AreaCCCost
N

i
 i += ∑

−

=

1

0
 

In this equation, N is the total number of algorithms in the domain and CCi is the number of clock cycles 

required to encrypt a single 128-bit block of plaintext in highest throughput configuration of algorithm i 

that will fit on the architecture.  If the area required for the current configuration is larger than the specified 

maximum allowable area, we also add an area penalty that is described by this equation: 

)/(* MACAPC Penalty  Area =  

 In this case, PC is a constant penalty scaling factor, CA is the calculated area requirement of the current 

configuration and MA is the specified maximum allowable area.  Again, since we wanted a hard area 
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constraint for our evaluation, we set PC to a large value: 2000.  However, similar to the previous functional 

unit selection algorithm, this term is application-specific and must be tuned depending on how hard or soft 

an area constraint is desired.  After calculating the quality of the configuration, we then perturb the system 

by arbitrarily choosing one algorithm and randomly changing the setting to a different performance level.  

Finally, the quality is re-evaluated and compared to the original arrangement in the same simulated-

annealing manner as described in Section 6.2.  See Figure 12 for an illustration of this process. 
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Figure 12 – Improved Area-Constrained Functional Unit Selection 
Illustration of our improved area-constrained selection algorithm. In this example we assume the throughput 
threshold is set at 10 cycles/block.  

7 Function Unit Allocation Results 

The testing of the functional unit selection techniques began by using the performance-constrained 

algorithm as a baseline for comparison.  We first identified all of the distinct throughput levels between the 

AES candidate algorithms.  As seen in Appendix B, these ranged between 1 and 512 cycles per data block.  

Then, each of these distinct throughput constraints was fed into the performance-constrained functional unit 

selection algorithm.  The area requirements for each were recorded and then used as inputs to the two area-

constrained techniques.  The data retrieved from our testing can be seen in Appendix C. 

The three techniques we developed produce very different results when applied to the set of 15 AES 

candidate algorithms.  As expected, the hard throughput constraint of the performance-driven approach has 
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limitations.  In Figure 13 and Figure 14 we plot the results of all three functional unit selection algorithms 

over ten area scenarios.  Figure 13 shows the maximum number of clock cycles per block required by any 

algorithm in the domain as a function of the area of the system.  Since the number of clock cycles needed to 

encrypt each block of data is inversely proportional to the throughput, we can see from this graph that, for 

the majority of the architectures we examined, the performance-constrained algorithm indeed produces the 

best minimum performance among the three selection methods.  Also, as expected, the limitations of the 

performance-driven algorithm regarding non-linear and non-monotonic hardware requirements allow the 

improved area-constrained technique to occasionally obtain somewhat better minimum performance. 

In contrast, though, when we plot the total number of clock cycles required by all of the algorithms in the 

domain as a function of area, as in Figure 14, we see a completely different picture for the performance-

constrained selection method.  The results in this graph directly reflect the average performance of the 

system for a given configuration.  Figure 14 shows that the average performance of the system across the 

domain is reduced by as much as almost 50% when using the performance-constrained selection method as 

compared to using either of the area-driven techniques.  The poor average throughput is particularly 

apparent in the larger architectures.  This means that if the design constraints allow for some flexibility in 

terms of the minimum acceptable performance, better average throughput may be obtained by using either 

of the area driven approaches. 

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

A rea R equ irem en ts

W
or

st
-C

as
e 

C
lo

ck
 C

yc
le

s /
 B

lo
ck

P erf. Const .
A rea Co nst.
Im p. Area  C onst.

 
Figure 13 – Minimum Throughput Results of Functional Unit Selection 
Graph of maximum number of clock cycles required by any algorithm in the domain as a function of area.  The 
exact area required by the generated architectures is shown in Figure 15. 
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Figure 14 – Performance Results Across the Domain of Functional Unit Selection  
Graph of the total number of clock cycles required to run all 15 of the AES algorithms as a function of area.  
Again, the exact area required by the generated architectures is shown in Figure 15.  Notice that the overall 
performance of the higher throughput systems produced by the performance-constrained algorithm lag 
considerably behind that of the architectures generated by either of the area-constrained techniques. 

When comparing the two area-constrained techniques, Figure 14 shows that the average performance 

results of the improved area-constrained technique are marginally better than those from the original area-

driven algorithm. In addition, Figure 13 shows that the improved area-constrained method consistently 

produces architectures with an equal or lower maximum number of clock cycles for the worst-case 

encryption algorithm compared to the basic area constrained technique.  Furthermore, when we look at the 

area requirements for the generated architectures, as seen in Figure 15, we see that the improved area-

constrained method consistently produces architectures with equal or smaller area requirements.  All of 

these observations can likely be attributed to the same source: because the original area-constrained 

functional unit selection algorithm is based upon randomly adding and subtracting different types of 

components to the system, it is likely that none of the encryption algorithms fully utilize any of the 

functional unit types in the resultant architecture.  Conversely, since the improved area-constrained 

technique is based upon choosing groups of particular encryption implementations, it is guaranteed that at 

least one algorithm will fully utilize each of the functional unit types.  It is likely that this fundamental 

difference creates more noise in the original area-constrained selection technique and thus makes it more 

difficult for the algorithm to converge.  In addition, even if the original area-constrained technique were to 

converge on a similar mixture of components as the improved method, it is very possible that there may 
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still be some functional unit types that are not fully utilized by any algorithm.  Of course, this will result in 

a larger architecture than is necessary.  
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Figure 15 – Area Results of Functional Unit Selection 
Graph of area requirements of the systems examined in Figure 13 and Figure 14. 

The three functional unit selection techniques also recommended very different hardware resources.  When 

we plot the distribution of functional units over the range of architectures that we developed (Figure 16), 

we can see that the hard constraints of the performance driven method lead to a very memory-dominated 

architecture.  This is primarily caused by the quickly growing memory requirements of Loki97 and, 

eventually, MAGENTA.  See Appendix B for the details of the hardware requirements for all of the 

encryption algorithms.  While this additional memory may be necessary to allow these algorithms to run at 

high speed, it does not adequately reflect the requirements of the other encryption algorithms. As seen in 

Figure 17, the original area driven technique has a fairly even response to varying area limitations.  Since 

only three algorithms benefit from having more than 64KB of memory and only one or two benefit from 

large numbers of multiplexors, we see that this algorithm attempts to improve the average throughput of the 

system by devoting more resources to the other components.  As seen in Figure 18, the improved area-

constrained technique combines these recommendations.  Like the original area-constrained technique, it 

recognizes the limited usage of multiplexors.  However, it also considers the moderate RAM requirements 

of many of the high performance implementations of the AES candidate algorithms.  This is reflected in the 

mild emphasis of RAM units in the medium to large architectures. 
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Figure 16 – Resource Results from Performance-Constrained Analysis 
The functional unit distribution recommended by the performance-constrained functional unit selection 
technique. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.49 0.50 0.53 0 .7 1 1.14 1.79 1.82 3.07 3.07 5 .97 6.1 5 11 .8 9 2 3.7 8

A rea  (10  M illion U nits)

%
 o

f T
ot

al
 N

um
be

r 
of

 C
om

po
ne

nt
s

R AM
M ux
A LU
X B A R
M ul
G alois
R ot

 
Figure 17 – Resource Results from Area-Constrained Analysis 
The functional unit distribution recommended by the more flexible area-constrained technique. 
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Figure 18 – Resource Results from Improved-Area Constrained Analysis 
The functional unit distribution recommended by the improved area-constrained technique. The selected area is 
of most interest because it represents high performance implementations and the relative ratios of the various 
components are mostly stable 

The results from our tests show that the improved area-constrained method generally best combined area 

and performance constraints.  Therefore, while taking special consideration for stable, high performance 

implementations and the possibility for future flexibility, we arrived at the component mixture shown in 

Figure 19 for our RaPiD-AES cell.  This mixture was normalized to provide a single multiplier per cell. We 

chose to include slightly more multiplexors and ALUs than recommended by the selected area of Figure 18 

to add flexibility for future modifications and new encryption algorithms.  Although the large number of 

components per cell will produce a very sizeable atomic building block and may conflict with the desire to 

produce incrementally larger architectures, we believe that this cell will allow encryption algorithms to map 

to RaPiD-AES architectures with a minimum of wasted resources and a maximum of performance and 

flexibility. 

Unit Type Num / Cell % of Num % of Area
MUX 9 18% 6%
RAM 16 32% 46%
Xbar 6 12% 7%
Mul 1 2% 11%
Galois 2 4% 10%
ALU 12 24% 16%
Rot 4 8% 3%

 
Figure 19 – Component Mixture 
Recommended component mixture extrapolated from functional unit analysis 
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As mentioned earlier, the AES algorithms have a relatively simple, linear/iterative dataflow, similar to 

those found in DSP applications.  Thus, although we needed to add four completely new types of function 

units (rotator/shifters, cross bars, multi-mode memory blocks and a 4-issue 8-bit multiplier) into the RaPiD-

AES system, we believe that the bus-based 1-D routing architecture provided by the original RaPiD system 

is very suitable to our needs.  However, while we use the same overall layout of segmented busses, the 

word size of each bus was changed to 32-bits wide in order to match those of our functional units. 

8 RaPiD-AES Compiler 

In addition to modifying the functional units of the RaPiD architecture, we have made modifications to the 

RaPiD-C compiler.  While the RaPiD architecture was originally designed with a 16-bit word size and only 

four unique DSP-specialized datapath elements, the RaPiD-C language was designed with flexibility in 

mind.  We took advantage of this versatility and implemented RaPiD-C extensions of the encryption-

specific components we developed.  This allowed us to use RaPiD-C to specify our designs and the RaPiD 

compiler to map to our custom architecture.  See Appendix D for the Verilog code we incorporated into the 

RaPiD-AES compiler, and Appendix E for the RaPiD-AES implementation of the Rijndael encryption 

algorithm. 

9 Future Work 

While we expect that our architecture will provide good performance and resource utilization, exact 

comparisons with AES implementations on existing FPGAs, in terms of timing, area and power numbers, 

require that the RaPiD-AES cell be fully laid out and that existing place and route tools be modified to 

incorporate the new features of the architecture.  Members of our research group are currently working on 

this and the comparisons will be highlighted in future publications. 

Another issue that we would like to further investigate is the flexibility of the architecture.  While RaPiD-

AES will likely perform well on the limited set of fifteen algorithms that directly affected the design, we 

believe that our methodology sufficiently encapsulated the needs of encryption algorithms as a domain.  

This means that it is likely that algorithm updates or completely different ciphers would also perform well 

on our architecture.  In addition to the algorithm modifications that were made during the AES competition, 

Japan’s CRYPTREC and the New European Schemes for Signatures, Integrity and Encryption (NESSIE), 

two new encryption competitions, are currently analyzing additional sets of symmetric block ciphers for 

use as future standards. We intend to map these algorithms to our architecture to verify the adaptability of 

RaPiD-AES.   
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10 Conclusions 

In this paper we have described the issues we faced during the development of a coarse-grained encryption-

specialized reconfigurable architecture.  First, we developed a set of seven versatile functional units that 

can implement all of the operations needed by the 15 AES candidate algorithms.  Next, we identified a 

unique problem inherent to the development of coarse-grained reconfigurable architectures.  Finally, based 

on the experiments that we performed, we developed a tile-able encryption-specialized cell for a RaPiD-

like reconfigurable array. 

We presented three functional unit selection algorithms that attempt to balance vastly different hardware 

requirements with performance and area constraints.  The first algorithm produces architectures under a 

guaranteed hard performance requirement.  The second algorithm allows designers to trade versatility for 

better average throughput.  The third algorithm produces efficient architectures that can take advantage of 

softer area constraints.  While the performance-constrained algorithm can be used when designers are only 

concerned with the minimum performance of a system, the area-constrained algorithms were shown to 

produce better average performance given similar area.  Although the original area-constrained technique 

allows designers to potentially improve overall performance by excluding very demanding algorithms, the 

improved area-constrained technique consistently produced better results when considering the entire 

domain.  It is likely that the improved area-constrained algorithm would be most appropriate choice unless 

the minimum performance of the system needs to be absolutely guaranteed. 

Although we encountered the difficulties of functional unit selection while exploring an encryption-specific 

domain, we believe that the causes of the problem are not exclusive to encryption and can be expected to be 

common in many complex groups of applications.  The functional unit selection problem will become more 

difficult as reconfigurable devices are expected to offer better and better performance over large domain 

spaces.  Increased specialization of function units and growing domain size combined with the need for 

resource utilization optimization techniques such as functional unit emulation will soon complicate 

architecture exploration beyond that which can be analyzed by hand.  In the future, designers will need 

CAD tools that are aware of these issues in order to create devices that retain the flexibility required for 

customization over a domain of applications while maintaining good throughput and area characteristics. 
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Appendix A - Galois Field Multiplication 

Manipulating variables in a Galois Field is special in that all operations (addition, subtraction, etc.) begin 

with two variables in a field and result in an answer that also lies in the field.  One difference between 

conventional multiplication and Galois Field multiplication is that an N-bit conventional multiplication 

results in a (2N)-bit product while a Galois Field multiplication, as mentioned earlier, must result in an N-

bit product in order to stay in the field. 

Galois Field multiplication begins in a similar manner to conventional multiplication in that all partial 

products are calculated by AND-ing each bit of B with A.  From that point though, there are two key 

differences.  First, partial sums are calculated using Galois Field addition (bit-wise XOR) instead of 

conventional N-bit carry addition.  Second, an iterative reduction may be necessary to adjust the output so 

that it stays in the N-bit field.  If the preliminary sum is greater or equal to 2^N, the result lies outside the 

N-bit field and must be XOR-ed with a left justified (N+1)-bit reduction constant.  The most significant bit 

of the reduction constant is always a 1, so as to eliminate the most significant bit in the preliminary sum.  

This process is repeated until the result lies within the N-bit field.  For all of the Galois Field 

multiplications performed in the AES candidate algorithms, N is 8 and the reduction constant either 0x11B 

or 0x169. 

1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 1

A
B

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 1 1 1 1 1 0

0 0 0 1 1 0 1 11

X

0 0 1 0 1 0 0 0 0 1 1 1 0

0 0 0 1 1 0 1 11

0 0 1 0 1 1 0 0 0 1 0

0 0 0 1 1 0 1 11

0 0 1 1 1 1 0 0 1

Partial
Products

Sum
Reduction

Left justified to leading 1

1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Left justified to leading 1

Left justified to leading 1
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Appendix B – Hardware Requirements 

Estimated Area of Functional Units 
 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift 
Estimated Area (units2) 7616 34880 14848 134016 63416 16384 10106 

 
Functional Unit and Area Requirements for AES Candidate Algorithms 

Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area (units2) 
CAST-256 4 X 12 10 16 0 0 0 5 1 726266 
 4 X 6 20 32 0 0 0 10 2 1452532 
 2 X 6 16 64 0 0 0 20 4 2722280 
 1 X 6 8 128 0 0 0 40 8 5261776 
 1 X 1 0 768 0 0 0 240 48 31205088 
Crypton 12 8 16 16 0 0 36 0 1446400 
 6 4 32 32 0 0 68 0 2735872 
 4 4 48 48 0 0 100 0 4025344 
 3 4 64 64 0 0 132 0 5375744 
 2 4 96 96 0 0 196 0 8015616 
 1 0 192 192 0 0 388 0 15904768 
Deal 6 X 16 6 1 7 0 0 7 0 299200 
 6 X 8 6 2 10 0 0 10 0 427776 
 6 X 4 6 4 16 0 0 16 0 684928 
 6 X 2 6 8 28 0 0 28 0 1199232 
 6 X 1 4 16 52 0 0 52 0 2212608 
 3 X 1 4 32 104 0 0 104 0 4394752 
 2 X 1 4 48 156 0 0 156 0 6576896 
 1 X 1 0 96 312 0 0 312 0 13092864 
DFC 8 5 0 0 8 0 26 1 1546298 
 4 5 0 0 16 0 52 2 3054516 
 2 5 0 0 32 0 104 4 6070952 
 1 1 0 0 64 0 208 8 12073360 
E2 12 4 16 4 4 0 43 3 1918830 
 6 4 32 8 8 0 78 3 3645806 
 3 4 64 16 16 0 148 3 7099758 
 2 4 128 24 24 0 218 3 11669870 
 1 0 256 48 48 0 428 3 23117422 
Frog 4 X 16 X 8 23 8 0 0 0 1 0 470592 
 4 X 16 X 4 38 8 0 0 0 2 0 601216 
 4 X 16 X 2 72 8 0 0 0 4 0 892928 
 4 X 16 X 1 128 8 0 0 0 8 0 1384960 
 2 X 16 X 1 256 8 0 0 0 16 0 2490880 
 1 X 16 X 1 240 8 0 0 0 32 0 2631168 
 1 X 8 X 1 120 16 0 0 0 64 0 2520576 
 1 X 4 X 1 60 32 0 0 0 128 0 3670272 
 1 X 2 X 1 30 64 0 0 0 256 0 6655104 
 1 X 1 X 1 15 128 0 0 0 512 0 12967488 
HPC 8 4 24 52 0 0 56 4 2597608 
 4 4 48 104 0 0 112 8 5164752 
 2 4 96 208 0 0 224 16 10299040 
 1 0 192 416 0 0 448 32 20537152 

 
* A X B notation indicates nested looping 



 

 

29 

 
Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area (units2) 
Loki97 16 X 8 13 40 7 0 0 14 0 1827520 
 16 X 4 11 80 7 0 0 16 0 3240256 
 16 X 2 7 160 7 0 0 20 0 6065728 
 16 X 1 4 320 7 0 0 28 0 11754752 
 8 X 1 4 640 14 0 0 56 0 23479040 
 4 X 1 4 1280 28 0 0 112 0 46927616 
 2 X 1 4 2560 56 0 0 224 0 93824768 
 1 X 1 0 5120 112 0 0 448 0 1.88E+08 
Magenta 6 X 3 X 4 12 16 0 0 0 20 4 1017576 
 6 X 3 X 2 12 32 0 0 0 22 4 1608424 
 6 X 3 X 1 8 64 0 0 0 26 4 2759656 
 6 X 1 X 1 8 192 0 0 0 74 12 8091576 
 3 X 1 X 1 4 384 0 0 0 148 24 16091760 
 2 X 1 X 1 4 576 0 0 0 222 36 24122408 
 1 X 1 X 1 0 1152 0 0 0 444 72 48183888 
Mars 16 12 24 0 1 0 36 8 1733200 
 8 16 32 0 2 0 48 14 2433964 
 4 32 64 0 4 0 96 28 4867928 
 2 64 128 0 8 0 192 56 9735856 
 1 128 256 0 16 0 384 112 19471712 
RC6 8 4 0 0 2 0 10 6 522972 
 4 4 0 0 4 0 16 12 949944 
 2 4 0 0 6 0 28 24 1535856 
 1 0 0 0 8 0 52 48 2409184 
Rijndael 10 X 16 8 4 0 0 1 12 3 490790 
 10 X 8 8 4 0 0 2 12 3 554206 
 10 X 4 8 4 0 0 4 12 3 681038 
 10 X 2 8 8 0 0 8 12 3 1074222 
 10 X 1 4 16 0 0 16 12 3 1830126 
 5 X 1 4 32 0 0 32 16 6 3498716 
 2 X 1 4 80 0 0 80 28 15 8504486 
 1 X 1 0 160 0 0 160 48 30 16816972 
Safer+ 8 X 16 8 16 0 0 4 11 0 1052896 
 8 X 8 8 16 0 0 8 14 0 1355712 
 8 X 4 8 16 0 0 16 20 0 1961344 
 8 X 2 8 16 0 0 32 32 0 3172608 
 8 X 1 4 16 0 0 64 56 0 5564672 
 4 X 1 4 32 0 0 128 104 0 10967808 
 2 X 1 4 64 0 0 256 200 0 21774080 
 1 X 1 0 128 0 0 512 160 0 39555072 
Serpent 32 8 8 32 0 0 16 8 1158096 
 16 4 8 32 0 0 28 16 1405088 
 8 4 16 32 0 0 52 32 2239040 
 4 4 32 32 0 0 100 64 3906944 
 2 4 64 32 0 0 196 128 7242752 
 1 0 128 32 0 0 388 256 13883904 
Twofish 16 4 8 0 0 8 17 3 1125678 
 8 4 16 0 0 16 26 6 2089820 
 4 4 32 0 0 32 44 12 4018104 
 2 4 64 0 0 64 80 24 7874672 
 1 0 128 0 0 128 152 48 15557344 

* A X B notation indicates nested looping 
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Appendix C – Results 

Performance-Constrained Analysis 

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Area (units2) 
512 902 23 40 52 8 8 56 8 4.92027E+06 
256 646 38 40 52 8 8 56 8 5.03451E+06 
160 518 72 40 52 8 8 56 8 5.29346E+06 
96 360 128 80 52 8 8 56 8 7.11515E+06 
48 224 256 160 52 8 16 56 8 1.13877E+07 
24 155 240 320 52 8 32 56 16 1.79422E+07 
16 129 240 320 52 8 32 74 16 1.82371E+07 
12 103 120 640 52 8 64 74 32 3.06758E+07 
10 97 120 640 52 8 64 78 32 3.07413E+07 
6 58 60 1280 104 16 128 128 64 5.96530E+07 
5 43 60 1280 104 16 128 240 64 6.14880E+07 
3 25 64 2560 208 32 256 256 128 1.18879E+08 
1 15 128 5120 416 64 512 512 256 2.37759E+08 
 

% of Total Number of Components 

Max # of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % 
512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10% 
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81% 
160 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28% 
96 37.65% 23.53% 15.29% 2.35% 2.35% 16.47% 2.35% 
48 46.04% 28.78% 9.35% 1.44% 2.88% 10.07% 1.44% 
24 33.15% 44.20% 7.18% 1.10% 4.42% 7.73% 2.21% 
16 32.35% 43.13% 7.01% 1.08% 4.31% 9.97% 2.16% 
12 12.12% 64.65% 5.25% 0.81% 6.46% 7.47% 3.23% 
10 12.07% 64.39% 5.23% 0.80% 6.44% 7.85% 3.22% 
6 3.37% 71.91% 5.84% 0.90% 7.19% 7.19% 3.60% 
5 3.17% 67.65% 5.50% 0.85% 6.77% 12.68% 3.38% 
3 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 
1 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 
 

% of Total Area 

Max # of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % 
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 
160 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 
96 13.70% 39.22% 10.85% 15.07% 7.13% 12.90% 1.14% 
48 17.12% 49.01% 6.78% 9.41% 8.91% 8.06% 0.71% 
24 10.19% 62.21% 4.30% 5.98% 11.31% 5.11% 0.90% 
16 10.02% 61.20% 4.23% 5.88% 11.13% 6.65% 0.89% 
12 2.98% 72.77% 2.52% 3.50% 13.23% 3.95% 1.05% 
10 2.97% 72.62% 2.51% 3.49% 13.20% 4.16% 1.05% 
6 0.77% 74.84% 2.59% 3.59% 13.61% 3.52% 1.08% 
5 0.74% 72.61% 2.51% 3.49% 13.20% 6.40% 1.05% 
3 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09% 
1 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09% 
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Area-Constrained Analysis 

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Area (units2) 
512 902 23 40 52 8 8 56 8 4.92027E+06 
256 646 38 40 52 8 8 56 8 5.03451E+06 
128 518 72 40 52 8 8 56 8 5.29346E+06 
128 297 122 40 53 8 16 81 58 7.11515E+06 
64 156 73 84 113 8 33 141 74 1.13877E+07 
32 92 64 192 105 17 64 135 64 1.79422E+07 
32 93 68 192 156 16 32 197 129 1.82371E+07 
16 55 64 320 209 16 129 262 129 3.06758E+07 
16 55 69 321 208 17 128 256 132 3.07413E+07 
16 38 136 387 459 68 258 608 283 5.96530E+07 
8 28 146 774 208 64 161 541 261 6.14880E+07 
8 23 204 828 521 182 514 1223 364 1.18879E+08 
4 18 143 1282 789 930 523 1182 303 2.37759E+08 
  

% of Total Number of Components     

Max # of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % 
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 
128 13.06% 19.61% 11.06% 15.07% 14.26% 18.65% 8.24% 
64 4.88% 25.73% 14.73% 9.41% 18.38% 20.29% 6.57% 
32 2.72% 37.33% 8.69% 12.70% 22.62% 12.33% 3.60% 
32 2.84% 36.72% 12.70% 11.76% 11.13% 17.70% 7.15% 
16 1.59% 36.39% 10.12% 6.99% 26.67% 13.99% 4.25% 
16 1.71% 36.42% 10.05% 7.41% 26.41% 13.64% 4.34% 
16 1.74% 22.63% 11.42% 15.28% 27.43% 16.70% 4.79% 
8 1.81% 43.91% 5.02% 13.95% 16.60% 14.42% 4.29% 
8 1.31% 24.29% 6.51% 20.52% 27.42% 16.86% 3.09% 
4 0.46% 18.81% 4.93% 52.42% 13.95% 8.15% 1.29% 
 

% of Total Area 

Max # of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % 
512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10% 
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81% 
128 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28% 
128 32.28% 10.58% 14.02% 2.12% 4.23% 21.43% 15.34% 
64 13.88% 15.97% 21.48% 1.52% 6.27% 26.81% 14.07% 
32 9.98% 29.95% 16.38% 2.65% 9.98% 21.06% 9.98% 
32 8.61% 24.30% 19.75% 2.03% 4.05% 24.94% 16.33% 
16 5.67% 28.34% 18.51% 1.42% 11.43% 23.21% 11.43% 
16 6.10% 28.38% 18.39% 1.50% 11.32% 22.63% 11.67% 
16 6.18% 17.60% 20.87% 3.09% 11.73% 27.65% 12.87% 
8 6.77% 35.92% 9.65% 2.97% 7.47% 25.10% 12.11% 
8 5.32% 21.58% 13.58% 4.74% 13.40% 31.88% 9.49% 
4 2.78% 24.88% 15.31% 18.05% 10.15% 22.94% 5.88% 
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Improved Area-Constrained Analysis 

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Area (units2) 
512 902 23 40 52 8 8 56 8 4.92027E+06 
256 646 38 40 52 8 8 56 8 5.03451E+06 
128 518 72 40 52 8 8 56 8 5.29346E+06 
128 297 120 40 52 8 16 78 48 6.93000E+06 
32 156 60 160 52 8 16 128 32 1.13170E+07 
16 103 60 320 52 8 32 128 32 1.79130E+07 
16 98 60 320 52 8 32 128 64 1.82360E+07 
16 57 64 384 104 16 128 196 128 3.01920E+07 
16 57 120 384 104 16 128 196 128 3.06180E+07 
8 30 128 768 208 32 256 388 128 5.90250E+07 
8 29 128 768 208 32 256 388 256 6.03180E+07 
4 18 128 1280 416 64 512 512 256 1.03820E+08 
1 15 128 5120 416 64 512 512 256 2.37759E+08 
  

% of Total Number of Components    

Max # of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % 
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 
128 13.19% 20.13% 11.14% 15.47% 14.64% 18.44% 7.00% 
32 4.04% 49.31% 6.82% 9.47% 8.97% 18.53% 2.86% 
16 2.55% 62.31% 4.31% 5.99% 11.33% 11.71% 1.81% 
16 2.51% 61.21% 4.23% 5.88% 11.13% 11.50% 3.55% 
16 1.61% 44.36% 5.11% 7.10% 26.89% 10.64% 4.28% 
16 2.98% 43.75% 5.04% 7.00% 26.51% 10.49% 4.22% 
8 1.65% 45.38% 5.23% 7.27% 27.50% 10.77% 2.19% 
8 1.62% 44.41% 5.12% 7.11% 26.91% 10.54% 4.29% 
4 0.94% 43.00% 5.95% 8.26% 31.27% 8.08% 2.49% 
1 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09% 
  

% of Total Area  

Max # of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % 
512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10% 
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81% 
128 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28% 
128 33.15% 11.05% 14.36% 2.21% 4.42% 21.55% 13.26% 
32 13.16% 35.09% 11.40% 1.75% 3.51% 28.07% 7.02% 
16 9.49% 50.63% 8.23% 1.27% 5.06% 20.25% 5.06% 
16 9.04% 48.19% 7.83% 1.20% 4.82% 19.28% 9.64% 
16 6.27% 37.65% 10.20% 1.57% 12.55% 19.22% 12.55% 
16 11.15% 35.69% 9.67% 1.49% 11.90% 18.22% 11.90% 
8 6.71% 40.25% 10.90% 1.68% 13.42% 20.34% 6.71% 
8 6.29% 37.72% 10.22% 1.57% 12.57% 19.06% 12.57% 
4 4.04% 40.40% 13.13% 2.02% 16.16% 16.16% 8.08% 
1 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 
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Appendix D – RaPiD-AES Components 

4-Issue 8-bit Modulus 256/Galois Field Multiplier 
module mul8GalE( 
  //Datapath Inputs 
  XIn, YIn,  
  //Datapath Outputs 
  Output,  
  //Control Inputs 
  Mode,  
  //Galois reduction polynomial (assume leading 1) 
  GC7, GC6, GC5, GC4, GC3, GC2, GC1, GC0); 
 
   //Performs unsigned %256 and 8-bit Galois field multiplication 
    
   input [`BitWidth-1:0] XIn; 
   input [`BitWidth-1:0] YIn; 
   output [`BitWidth-1:0] Output; 
    
   //Select Mode 
   input     Mode; 
 
   //Reduction Polynomial (assume leading 1) 
   input     GC7; 
   input     GC6; 
   input     GC5; 
   input     GC4; 
   input     GC3; 
   input     GC2; 
   input     GC1; 
   input     GC0; 
 
   reg [31:0]     Output; 
   reg [31:0]     PP0; 
   reg [31:0]     PP1; 
   reg [31:0]     PP2; 
   reg [31:0]     PP3; 
   reg [31:0]     PP4; 
   reg [31:0]     PP5; 
   reg [31:0]     PP6; 
   reg [31:0]     PP7; 
   reg [31:0]     Mod8Result;      
   reg [59:0]     Galois1; 
   reg [55:0]     Galois2; 
   reg [51:0]     Galois3; 
   reg [47:0]     Galois4; 
   reg [43:0]     Galois5; 
   reg [39:0]     Galois6; 
   reg [35:0]     Galois7; 
   reg [31:0]     GaloisResult; 
 
   //Field constant is actually 9'b1xxxxxxxx, but we assume leading 1 
   wire [7:0]     GalConstant; 
   assign     GalConstant = {GC7, GC6, GC5, GC4, GC3, GC2, GC1, GC0}; 
      
        
always @(XIn or YIn or Mode) 
  begin 
     PP0 = {XIn[31:24] & {8{YIn[24]}},  
     XIn[23:16] & {8{YIn[16]}}, 
     XIn[15:8]  & {8{YIn[8]}}, 
     XIn[7:0]  & {8{YIn[0]}}}; 
   
     PP1 = {XIn[31:24] & {8{YIn[25]}},  
     XIn[23:16] & {8{YIn[17]}}, 
     XIn[15:8]  & {8{YIn[9]}}, 
     XIn[7:0]  & {8{YIn[1]}}}; 
      
     PP2 = {XIn[31:24] & {8{YIn[26]}},  
     XIn[23:16] & {8{YIn[18]}}, 
     XIn[15:8]  & {8{YIn[10]}}, 
     XIn[7:0]  & {8{YIn[2]}}}; 
  
     PP3 = {XIn[31:24] & {8{YIn[27]}},  
     XIn[23:16] & {8{YIn[19]}}, 
     XIn[15:8]  & {8{YIn[11]}}, 
     XIn[7:0]  & {8{YIn[3]}}}; 
      
     PP4 = {XIn[31:24] & {8{YIn[28]}},  
     XIn[23:16] & {8{YIn[20]}}, 
     XIn[15:8]  & {8{YIn[12]}}, 
     XIn[7:0]  & {8{YIn[4]}}}; 
      
     PP5 = {XIn[31:24] & {8{YIn[29]}},  
     XIn[23:16] & {8{YIn[21]}}, 
     XIn[15:8]  & {8{YIn[13]}}, 
     XIn[7:0]  & {8{YIn[5]}}}; 
      
     PP6 = {XIn[31:24] & {8{YIn[30]}},  
     XIn[23:16] & {8{YIn[22]}}, 
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     XIn[15:8]  & {8{YIn[14]}}, 
     XIn[7:0]  & {8{YIn[6]}}}; 
      
     PP7 = {XIn[31:24] & {8{YIn[31]}},  
     XIn[23:16] & {8{YIn[23]}}, 
     XIn[15:8]  & {8{YIn[15]}}, 
     XIn[7:0]  & {8{YIn[7]}}}; 
 
     //Since we're producing all of the partial products out to 15 bits we could make  
     //this a full 8-bit * 8-bit = 16-bit multiply if we want to 
     Mod8Result = {(PP0[31:24] + {PP1[30:24], 1'd0} + {PP2[29:24], 2'd0} +  
      {PP3[28:24], 3'd0} + {PP4[27:24], 4'd0} + {PP5[26:24], 5'd0} + 
      {PP6[25:24], 6'd0} + {PP7[24], 7'd0}), 
      
     (PP0[23:16] + {PP1[22:16], 1'd0} + {PP2[21:16], 2'd0} +  
      {PP3[20:16], 3'd0} + {PP4[19:16], 4'd0} + {PP5[18:16], 5'd0} + 
      {PP6[17:16], 6'd0} + {PP7[16], 7'd0}),  
      
     (PP0[15:8] + {PP1[14:8], 1'd0} + {PP2[13:8], 2'd0} +  
      {PP3[12:8], 3'd0} + {PP4[11:8], 4'd0} + {PP5[10:8], 5'd0} + 
      {PP6[9:8], 6'd0} + {PP7[8], 7'd0}), 
      
     (PP0[7:0] + {PP1[6:0], 1'd0} + {PP2[5:0], 2'd0} +  
      {PP3[4:0], 3'd0} + {PP4[3:0], 4'd0} + {PP5[2:0], 5'd0} + 
      {PP6[1:0], 6'd0} + {PP7[0], 7'd0})}; 
 
     //Produces 15-bit "Product" 
     Galois1 = {({7'd0, PP0[31:24]} ^ {6'd0, PP1[31:24], 1'd0} ^ 
   {5'd0, PP2[31:24], 2'd0} ^ {4'd0, PP3[31:24], 3'd0} ^ 
   {3'd0, PP4[31:24], 4'd0} ^ {2'd0, PP5[31:24], 5'd0} ^ 
   {1'd0, PP6[31:24], 6'd0} ^ {PP7[31:24], 7'd0}), 
   
  ({7'd0, PP0[23:16]} ^ {6'd0, PP1[23:16], 1'd0} ^ 
   {5'd0, PP2[23:16], 2'd0} ^ {4'd0, PP3[23:16], 3'd0} ^ 
   {3'd0, PP4[23:16], 4'd0} ^ {2'd0, PP5[23:16], 5'd0} ^ 
   {1'd0, PP6[23:16], 6'd0} ^ {PP7[23:16], 7'd0}), 
 
  ({7'd0, PP0[15:8]} ^ {6'd0, PP1[15:8], 1'd0} ^ 
   {5'd0, PP2[15:8], 2'd0} ^ {4'd0, PP3[15:8], 3'd0} ^ 
   {3'd0, PP4[15:8], 4'd0} ^ {2'd0, PP5[15:8], 5'd0} ^ 
   {1'd0, PP6[15:8], 6'd0} ^ {PP7[15:8], 7'd0}), 
 
  ({7'd0, PP0[7:0]} ^ {6'd0, PP1[7:0], 1'd0} ^ 
   {5'd0, PP2[7:0], 2'd0} ^ {4'd0, PP3[7:0], 3'd0} ^ 
   {3'd0, PP4[7:0], 4'd0} ^ {2'd0, PP5[7:0], 5'd0} ^ 
   {1'd0, PP6[7:0], 6'd0} ^ {PP7[7:0], 7'd0})}; 
 
     //Reduction Step 15->14 
     Galois2 = {(Galois1[58:45] ^ {({8{Galois1[59]}} & GalConstant), 6'd0}), 
  (Galois1[43:30] ^ {({8{Galois1[44]}} & GalConstant), 6'd0}), 
  (Galois1[28:15] ^ {({8{Galois1[29]}} & GalConstant), 6'd0}), 
  (Galois1[13:0] ^ {({8{Galois1[14]}} & GalConstant), 6'd0})}; 
     //Reduction Step14->13 
     Galois3 = {(Galois2[54:42] ^ {({8{Galois2[55]}} & GalConstant), 5'd0}), 
  (Galois2[40:28] ^ {({8{Galois2[41]}} & GalConstant), 5'd0}), 
  (Galois2[26:14] ^ {({8{Galois2[27]}} & GalConstant), 5'd0}), 
  (Galois2[12:0] ^ {({8{Galois2[13]}} & GalConstant), 5'd0})}; 
     //Reduction Step 13->12 
     Galois4 = {(Galois3[50:39] ^ {({8{Galois3[51]}} & GalConstant), 4'd0}), 
  (Galois3[37:26] ^ {({8{Galois3[38]}} & GalConstant), 4'd0}), 
  (Galois3[24:13] ^ {({8{Galois3[25]}} & GalConstant), 4'd0}), 
  (Galois3[11:0] ^ {({8{Galois3[12]}} & GalConstant), 4'd0})}; 
     //Reduction Step 12->11 
     Galois5 = {(Galois4[46:36] ^ {({8{Galois4[47]}} & GalConstant), 3'd0}), 
  (Galois4[34:24] ^ {({8{Galois4[35]}} & GalConstant), 3'd0}), 
  (Galois4[22:12] ^ {({8{Galois4[23]}} & GalConstant), 3'd0}), 
  (Galois4[10:0] ^ {({8{Galois4[11]}} & GalConstant), 3'd0})}; 
     //Reduction Step 11->10 
     Galois6 = {(Galois5[42:33] ^ {({8{Galois5[43]}} & GalConstant), 2'd0}), 
  (Galois5[31:22] ^ {({8{Galois5[32]}} & GalConstant), 2'd0}), 
  (Galois5[20:11] ^ {({8{Galois5[21]}} & GalConstant), 2'd0}), 
  (Galois5[9:0] ^ {({8{Galois5[10]}} & GalConstant), 2'd0})}; 
     //Reduction Step 10->9 
     Galois7 = {(Galois6[38:30] ^ {({8{Galois6[39]}} & GalConstant), 1'd0}), 
  (Galois6[28:20] ^ {({8{Galois6[29]}} & GalConstant), 1'd0}), 
  (Galois6[18:10] ^ {({8{Galois6[19]}} & GalConstant), 1'd0}), 
  (Galois6[8:0] ^ {({8{Galois6[9]}} & GalConstant), 1'd0})}; 
     //Reduction Step 9->8 
     GaloisResult = {(Galois7[34:27] ^ ({8{Galois7[35]}} & GalConstant)), 
  (Galois7[25:18] ^ ({8{Galois7[26]}} & GalConstant)), 
  (Galois7[16:9] ^ ({8{Galois7[17]}} & GalConstant)), 
  (Galois7[7:0] ^ ({8{Galois7[8]}} & GalConstant))}; 
    
     casex(Mode) 
       //%256 Multiply        
       1'b0 : Output = Mod8Result; 
        
       //Galois Multiply 
       1'b1 : Output = GaloisResult; 
        
     endcase 
  end 
 
endmodule 
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256 Byte Multi-mode RAM Unit 
module ramE(AddHi, AddLo, Input, Output, Mode, Clock, Length, Write); 
   input Clock, Length, Write; 
    
   input [`BitWidth-1:0] AddHi; 
   input [`BitWidth-1:0] AddLo; 
   input [`BitWidth-1:0] Input; 
   output [`BitWidth-1:0] Output; 
 
   //Select addressing mode 
   input     Mode; 
 
   //3 addressing mode 256 Byte RAM 
 
   reg [`BitWidth-1:0] Output; 
   reg [3:0] ram_array7[63:0]; 
   reg [3:0] ram_array6[63:0]; 
   reg [3:0] ram_array5[63:0]; 
   reg [3:0] ram_array4[63:0]; 
   reg [3:0] ram_array3[63:0]; 
   reg [3:0] ram_array2[63:0]; 
   reg [3:0] ram_array1[63:0]; 
   reg [3:0] ram_array0[63:0]; 
    
   integer    i; 
 
   initial 
     begin 
 for(i=0; i<`MemWidth; i=i+1) 
   begin       
      ram_array7[i] = {4{1'b0}}; 
      ram_array6[i] = {4{1'b0}}; 
      ram_array5[i] = {4{1'b0}}; 
      ram_array4[i] = {4{1'b0}}; 
      ram_array3[i] = {4{1'b0}}; 
      ram_array2[i] = {4{1'b0}}; 
      ram_array1[i] = {4{1'b0}}; 
      ram_array0[i] = {4{1'b0}}; 
   end 
     end 
    
   always @(posedge Clock) 
     begin 
  
 if({Mode} == 1'b0) 
   //8->8 Mode 
   begin 
      //This needs to be +2 since input may come from RAM which is +1 
      #(`ClkToOut + 2) 
      Output[31:8] = 24'b0; 
      casex(AddLo[7:6]) 
        2'b00: {Output[7:4], Output[3:0]} = {ram_array1[AddLo[5:0]],ram_array0[AddLo[5:0]]}; 
        2'b01: {Output[7:4], Output[3:0]} = {ram_array3[AddLo[5:0]],ram_array2[AddLo[5:0]]}; 
        2'b10: {Output[7:4], Output[3:0]} = {ram_array5[AddLo[5:0]],ram_array4[AddLo[5:0]]}; 
        2'b11: {Output[7:4], Output[3:0]} = {ram_array7[AddLo[5:0]],ram_array6[AddLo[5:0]]}; 
      endcase 
   end 
 if({Mode} == 1'b1) 
   //8 X 6->4 Mode 
   begin 
      #(`ClkToOut + 2) 
      Output = {ram_array7[{AddHi[15:14], AddLo[31:28]}], 
         ram_array6[{AddHi[13:12], AddLo[27:24]}], 
         ram_array5[{AddHi[11:10], AddLo[23:20]}], 
         ram_array4[{AddHi[9:8], AddLo[19:16]}], 
         ram_array3[{AddHi[7:6], AddLo[15:12]}], 
         ram_array2[{AddHi[5:4], AddLo[11:8]}], 
         ram_array1[{AddHi[3:2], AddLo[7:4]}], 
         ram_array0[{AddHi[1:0], AddLo[3:0]}]}; 
   end 
     end 
    
   always @(negedge Clock) 
     begin 
 if (Write==1) 
   begin 
      if({Mode} == 1'b0) 
        //Write in 6-bit addressing 32->32 
        begin 
    ram_array7[AddLo[5:0]] = Input[31:28]; 
    ram_array6[AddLo[5:0]] = Input[27:24]; 
    ram_array5[AddLo[5:0]] = Input[23:20]; 
    ram_array4[AddLo[5:0]] = Input[19:16]; 
    ram_array3[AddLo[5:0]] = Input[15:12]; 
    ram_array2[AddLo[5:0]] = Input[11:8]; 
    ram_array1[AddLo[5:0]] = Input[7:4]; 
    ram_array0[AddLo[5:0]] = Input[3:0]; 
        end 
      if({Mode} == 1'b1) 
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        //Write in 2+4-bit addressing 32->32 
        begin 
    ram_array7[{AddHi[1:0], AddLo[3:0]}] = Input[31:28]; 
    ram_array6[{AddHi[1:0], AddLo[3:0]}] = Input[27:24]; 
    ram_array5[{AddHi[1:0], AddLo[3:0]}] = Input[23:20]; 
    ram_array4[{AddHi[1:0], AddLo[3:0]}] = Input[19:16]; 
    ram_array3[{AddHi[1:0], AddLo[3:0]}] = Input[15:12]; 
    ram_array2[{AddHi[1:0], AddLo[3:0]}] = Input[11:8]; 
    ram_array1[{AddHi[1:0], AddLo[3:0]}] = Input[7:4]; 
    ram_array0[{AddHi[1:0], AddLo[3:0]}] = Input[3:0]; 
        end 
   end 
     end 
    
endmodule 

 
Bi-Directional Shifter/Rotator 
module rotE(Input, DPSA, Output, SASource, Mode2, Mode1, Mode0, CPSA4, CPSA3, CPSA2, CPSA1, CPSA0); 
    
   input [`BitWidth-1:0] Input; 
   //Datapath Shift Amount 
   input [`BitWidth-1:0] DPSA; 
   output [`BitWidth-1:0] Output; 
 
   //Select Shift Amount; 
   input     SASource;     
    
   //Select Mode 
   input     Mode2; 
   input     Mode1; 
   input     Mode0;   
 
   //Control Path Shift Amount 
   input     CPSA4; 
   input     CPSA3; 
   input     CPSA2; 
   input     CPSA1; 
   input     CPSA0; 
 
   //Performs left/right rotate, logicial shift and arithmetic shift 
 
   wire [4:0]     ShiftAmount;   
    
   //Top level has 63, followed by 47, 39, 35, 33, and finally 32 bits 
   reg [4:0]     Shift; 
   reg [62:0]     TopLevel; 
   reg [46:0]     ShiftBy16; 
   reg [38:0]     ShiftBy8; 
   reg [34:0]     ShiftBy4; 
   reg [32:0]     ShiftBy2; 
   reg [31:0]     Output; 
 
   //SASource == 1 takes address from Control Path input 
   assign     ShiftAmount = (SASource==1'b1) ? {CPSA4, CPSA3, CPSA2, CPSA1, CPSA0} : DPSA; 
       
always @(Input or ShiftAmount or Mode2 or Mode1 or Mode0) 
  begin 
        
     casex({Mode2, Mode1, Mode0}) 
       //Left Rot 
       3'b000 : {Shift, TopLevel} = {ShiftAmount[4:0], {Input[`BitWidth-1:0], Input[`BitWidth-1:1]}}; 
       //Left Shift in 0's 
       3'b001 : {Shift, TopLevel} = {ShiftAmount[4:0], {Input[`BitWidth-1:0], 31'd0}}; 
       //Left Shift in 1's 
       3'b010 : {Shift, TopLevel} = {ShiftAmount[4:0], {Input[`BitWidth-1:0], 31'd4294967295}}; 
       3'b011 : ; 
        
       //Right Rot 
       3'b100 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {Input[`BitWidth-2:0], Input[`BitWidth-1:0]}}; 
       //Right Logical Shift with 0's 
       3'b101 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {31'd0, Input[`BitWidth-1:0]}}; 
       //Right Logical Shift with 1's 
       3'b110 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {31'd4294967295, Input[`BitWidth-1:0]}}; 
       //Right Arithmetic Shift 
       3'b111 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {{`BitWidth-1{Input[`BitWidth-1]}}, Input[`BitWidth-1:0]}}; 
        
     endcase 
      
     //Shift 16 
     if(Shift[4]) 
       ShiftBy16[46:0] = TopLevel[46:0]; 
     else 
       ShiftBy16[46:0] = TopLevel[62:16]; 
      
     //Shift 8 
     if(Shift[3]) 
       ShiftBy8[38:0] = ShiftBy16[38:0]; 
     else 
       ShiftBy8[38:0] = ShiftBy16[46:8]; 
      
     //Shift 4 
     if(Shift[2]) 
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       ShiftBy4[34:0] = ShiftBy8[34:0]; 
     else 
       ShiftBy4[34:0] = ShiftBy8[38:4]; 
      
     //Shift 2 
     if(Shift[1]) 
       ShiftBy2[32:0] = ShiftBy4[32:0]; 
     else 
       ShiftBy2[32:0] = ShiftBy4[34:2]; 
      
     //Shift 1 
     if(Shift[0]) 
       Output[31:0] = ShiftBy2[31:0]; 
     else 
       Output[31:0] = ShiftBy2[32:1]; 
      
  end 
 
endmodule 
 

Crossbar 
module xBarE(In, Out, 
      S159, S158, S157, S156, S155, S154, S153, S152, S151, S150, 
      S149, S148, S147, S146, S145, S144, S143, S142, S141, S140, 
      S139, S138, S137, S136, S135, S134, S133, S132, S131, S130, 
      S129, S128, S127, S126, S125, S124, S123, S122, S121, S120, 
      S119, S118, S117, S116, S115, S114, S113, S112, S111, S110, 
      S109, S108, S107, S106, S105, S104, S103, S102, S101, S100, 
      S99,   S98,  S97,  S96,  S95,  S94,  S93,  S92,  S91,  S90, 
      S89,   S88,  S87,  S86,  S85,  S84,  S83,  S82,  S81,  S80, 
      S79,   S78,  S77,  S76,  S75,  S74,  S73,  S72,  S71,  S70, 
      S69,   S68,  S67,  S66,  S65,  S64,  S63,  S62,  S61,  S60, 
      S59,   S58,  S57,  S56,  S55,  S54,  S53,  S52,  S51,  S50, 
      S49,   S48,  S47,  S46,  S45,  S44,  S43,  S42,  S41,  S40, 
      S39,   S38,  S37,  S36,  S35,  S34,  S33,  S32,  S31,  S30, 
      S29,   S28,  S27,  S26,  S25,  S24,  S23,  S22,  S21,  S20, 
      S19,   S18,  S17,  S16,  S15,  S14,  S13,  S12,  S11,  S10, 
      S9,     S8,   S7,   S6,   S5,   S4,   S3,   S2,   S1,   S0); 
   input [31:0] In; 
   output [31:0] Out; 
    
   input   S159, S158, S157, S156, S155, S154, S153, S152, S151, S150; 
   input   S149, S148, S147, S146, S145, S144, S143, S142, S141, S140; 
   input   S139, S138, S137, S136, S135, S134, S133, S132, S131, S130; 
   input   S129, S128, S127, S126, S125, S124, S123, S122, S121, S120; 
   input   S119, S118, S117, S116, S115, S114, S113, S112, S111, S110; 
   input   S109, S108, S107, S106, S105, S104, S103, S102, S101, S100; 
   input   S99,   S98,  S97,  S96,  S95,  S94,  S93,  S92,  S91,  S90; 
   input   S89,   S88,  S87,  S86,  S85,  S84,  S83,  S82,  S81,  S80; 
   input   S79,   S78,  S77,  S76,  S75,  S74,  S73,  S72,  S71,  S70; 
   input   S69,   S68,  S67,  S66,  S65,  S64,  S63,  S62,  S61,  S60; 
   input   S59,   S58,  S57,  S56,  S55,  S54,  S53,  S52,  S51,  S50; 
   input   S49,   S48,  S47,  S46,  S45,  S44,  S43,  S42,  S41,  S40; 
   input   S39,   S38,  S37,  S36,  S35,  S34,  S33,  S32,  S31,  S30; 
   input   S29,   S28,  S27,  S26,  S25,  S24,  S23,  S22,  S21,  S20; 
   input   S19,   S18,  S17,  S16,  S15,  S14,  S13,  S12,  S11,  S10; 
   input   S9,     S8,   S7,   S6,   S5,   S4,   S3,   S2,   S1,   S0; 
 
   //Allows any of the 32 input bits to be routed to any of the 32 output bits 
 
  
  mux_32_to_1 mux0(In, {S4, S3, S2, S1, S0}, Out[0]); 
  mux_32_to_1 mux1(In, {S9, S8, S7, S6, S5}, Out[1]); 
  mux_32_to_1 mux2(In, {S14, S13, S12, S11, S10}, Out[2]); 
  mux_32_to_1 mux3(In, {S19, S18, S17, S16, S15}, Out[3]); 
  mux_32_to_1 mux4(In, {S24, S23, S22, S21, S20}, Out[4]); 
  mux_32_to_1 mux5(In, {S29, S28, S27, S26, S25}, Out[5]); 
  mux_32_to_1 mux6(In, {S34, S33, S32, S31, S30}, Out[6]); 
  mux_32_to_1 mux7(In, {S39, S38, S37, S36, S35}, Out[7]); 
  mux_32_to_1 mux8(In, {S44, S43, S42, S41, S40}, Out[8]); 
  mux_32_to_1 mux9(In, {S49, S48, S47, S46, S45}, Out[9]); 
  mux_32_to_1 mux10(In, {S54, S53, S52, S51, S50}, Out[10]); 
  mux_32_to_1 mux11(In, {S59, S58, S57, S56, S55}, Out[11]); 
  mux_32_to_1 mux12(In, {S64, S63, S62, S61, S60}, Out[12]); 
  mux_32_to_1 mux13(In, {S69, S68, S67, S66, S65}, Out[13]); 
  mux_32_to_1 mux14(In, {S74, S73, S72, S71, S70}, Out[14]); 
  mux_32_to_1 mux15(In, {S79, S78, S77, S76, S75}, Out[15]); 
  mux_32_to_1 mux16(In, {S84, S83, S82, S81, S80}, Out[16]); 
  mux_32_to_1 mux17(In, {S89, S88, S87, S86, S85}, Out[17]); 
  mux_32_to_1 mux18(In, {S94, S93, S92, S91, S90}, Out[18]); 
  mux_32_to_1 mux19(In, {S99, S98, S97, S96, S95}, Out[19]); 
  mux_32_to_1 mux20(In, {S104, S103, S102, S101, S100}, Out[20]); 
  mux_32_to_1 mux21(In, {S109, S108, S107, S106, S105}, Out[21]); 
  mux_32_to_1 mux22(In, {S114, S113, S112, S111, S110}, Out[22]); 
  mux_32_to_1 mux23(In, {S119, S118, S117, S116, S115}, Out[23]); 
  mux_32_to_1 mux24(In, {S124, S123, S122, S121, S120}, Out[24]); 
  mux_32_to_1 mux25(In, {S129, S128, S127, S126, S125}, Out[25]); 
  mux_32_to_1 mux26(In, {S134, S133, S132, S131, S130}, Out[26]); 
  mux_32_to_1 mux27(In, {S139, S138, S137, S136, S135}, Out[27]); 
  mux_32_to_1 mux28(In, {S144, S143, S142, S141, S140}, Out[28]); 
  mux_32_to_1 mux29(In, {S149, S148, S147, S146, S145}, Out[29]); 
  mux_32_to_1 mux30(In, {S154, S153, S152, S151, S150}, Out[30]); 
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  mux_32_to_1 mux31(In, {S159, S158, S157, S156, S155}, Out[31]); 
 
endmodule 
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Appendix E – Example of RaPiD-AES Implementation: Rijndael 

Primary Encryption code – Rijndael.rc 
 
#include "rijndael.h" 
 
StUnit(ramE, (Output), (), (AddHi, AddLo, Input), 
       (Mode = 0, Write = 0)); 
 
CombUnit(xBarE, (Out), (), (In), 
  (S159 = 0, S158 = 0, S157 = 0, S156 = 0, S155 = 0, S154 = 0, S153 = 0, S152 = 0, S151 = 0, S150 = 0, 
   S149 = 0, S148 = 0, S147 = 0, S146 = 0, S145 = 0, S144 = 0, S143 = 0, S142 = 0, S141 = 0, S140 = 0, 
   S139 = 0, S138 = 0, S137 = 0, S136 = 0, S135 = 0, S134 = 0, S133 = 0, S132 = 0, S131 = 0, S130 = 0, 
   S129 = 0, S128 = 0, S127 = 0, S126 = 0, S125 = 0, S124 = 0, S123 = 0, S122 = 0, S121 = 0, S120 = 0, 
   S119 = 0, S118 = 0, S117 = 0, S116 = 0, S115 = 0, S114 = 0, S113 = 0, S112 = 0, S111 = 0, S110 = 0, 
   S109 = 0, S108 = 0, S107 = 0, S106 = 0, S105 = 0, S104 = 0, S103 = 0, S102 = 0, S101 = 0, S100 = 0, 
   S99 = 0,   S98 = 0,  S97 = 0,  S96 = 0,  S95 = 0,  S94 = 0,  S93 = 0,  S92 = 0,  S91 = 0,  S90 = 0, 
   S89 = 0,   S88 = 0,  S87 = 0,  S86 = 0,  S85 = 0,  S84 = 0,  S83 = 0,  S82 = 0,  S81 = 0,  S80 = 0, 
   S79 = 0,   S78 = 0,  S77 = 0,  S76 = 0,  S75 = 0,  S74 = 0,  S73 = 0,  S72 = 0,  S71 = 0,  S70 = 0, 
   S69 = 0,   S68 = 0,  S67 = 0,  S66 = 0,  S65 = 0,  S64 = 0,  S63 = 0,  S62 = 0,  S61 = 0,  S60 = 0, 
   S59 = 0,   S58 = 0,  S57 = 0,  S56 = 0,  S55 = 0,  S54 = 0,  S53 = 0,  S52 = 0,  S51 = 0,  S50 = 0, 
   S49 = 0,   S48 = 0,  S47 = 0,  S46 = 0,  S45 = 0,  S44 = 0,  S43 = 0,  S42 = 0,  S41 = 0,  S40 = 0, 
   S39 = 0,   S38 = 0,  S37 = 0,  S36 = 0,  S35 = 0,  S34 = 0,  S33 = 0,  S32 = 0,  S31 = 0,  S30 = 0, 
   S29 = 0,   S28 = 0,  S27 = 0,  S26 = 0,  S25 = 0,  S24 = 0,  S23 = 0,  S22 = 0,  S21 = 0,  S20 = 0, 
   S19 = 0,   S18 = 0,  S17 = 0,  S16 = 0,  S15 = 0,  S14 = 0,  S13 = 0,  S12 = 0,  S11 = 0,  S10 = 0, 
   S9 = 0,     S8 = 0,   S7 = 0,   S6 = 0,   S5 = 0,   S4 = 0,   S3 = 0,   S2 = 0,   S1 = 0,   S0 = 0)); 
 
CombUnit(mul8GalE, (Output), (), (XIn, YIn), (Mode = 0,  
 //Reduction polynomial = 100011011 (assume leading 1) 
 GC7 = 0, GC6 = 0, GC5 = 0, GC4 = 1, GC3 = 1, GC2 = 0, GC1 = 1, GC0 = 1)); 
 
CombUnit(rotE, (Output), (), (Input, DPSA), 
  (SASource = 1, Mode2 = 0, Mode1 = 0, Mode0 = 0, 
   CPSA4 = 0, CPSA3 = 0, CPSA2 = 0, CPSA1 = 0, CPSA0 = 0)); 
 
void encrypt(Word input[INPUT_SIZE], 
 Word cipherText[NUM_BLOCKS * WORDS_PER_BLOCK]){ 
 
  Ram subkeysA, subkeysB, subkeysC, subkeysD; 
  ramE RAMA3, RAMA2, RAMA1, RAMA0; 
  ramE RAMB3, RAMB2, RAMB1, RAMB0; 
  ramE RAMC3, RAMC2, RAMC1, RAMC0; 
  ramE RAMD3, RAMD2, RAMD1, RAMD0; 
  Ram plainTextA, plainTextB, plainTextC, plainTextD; 
  Ram outA, outB, outC, outD; 
 
  //Pipeline variables 
  Word St0, St1, St2, St3, St4, St5, St6, St7, St8; 
  //Constants 
  Word constant3s, constant2s; 
  Word constantByte3, constantByte2, constantByte1, constantByte0; 
 
  //Internal temp variables 
  Word feedBackA, feedBackB, feedBackC, feedBackD; 
  //Key Addition temp 
  Word KAA, KAB, KAC, KAD; 
  //Byte Substitution temp variables 
  Word BSIA3, BSIA2, BSIA1; 
  Word BSIB3, BSIB2, BSIB1; 
  Word BSIC3, BSIC2, BSIC1; 
  Word BSID3, BSID2, BSID1; 
  Word BSOA3, BSOA2, BSOA1, BSOA0; 
  Word BSOB3, BSOB2, BSOB1, BSOB0; 
  Word BSOC3, BSOC2, BSOC1, BSOC0; 
  Word BSOD3, BSOD2, BSOD1, BSOD0; 
 
  //Shift Row temp variables 
  Word SRA, SRB, SRC, SRD; 
 
  //Mix Column temp variables 
  Word MCIA3, MCIA2, MCIA1, MCIA0; 
  Word MCIB3, MCIB2, MCIB1, MCIB0; 
  Word MCIC3, MCIC2, MCIC1, MCIC0; 
  Word MCID3, MCID2, MCID1, MCID0; 
  Word MCA, MCB, MCC, MCD; 
 
  Word tempAddress; 
  Word tempWord; 
 
  For fillBlock, fillStage, fillConstants, 
    computeBlock, compute, 
    output, outputWord; 
   
  Seq { 
    // Load from input stream 
    for(fillBlock = 0; fillBlock < 64; fillBlock++){ 
      for(fillStage = 0; fillStage < 9; fillStage++){ 
 Datapath{ 
   if(fillBlock.first && fillStage.first){ 
     //Initalize 



 

 

40  

     subkeysA.address = 0;   subkeysB.address = 0; 
     subkeysC.address = 0;   subkeysD.address = 0; 
      
     tempAddress = 0; 
     RAMA3.AddHi = 0;     RAMA2.AddHi = 0;     RAMA1.AddHi = 0;    RAMA0.AddHi = 0; 
     RAMB3.AddHi = 0;     RAMB2.AddHi = 0;     RAMB1.AddHi = 0;    RAMB0.AddHi = 0; 
     RAMC3.AddHi = 0;     RAMC2.AddHi = 0;     RAMC1.AddHi = 0;    RAMC0.AddHi = 0; 
     RAMD3.AddHi = 0;     RAMD2.AddHi = 0;     RAMD1.AddHi = 0;    RAMD0.AddHi = 0; 
      
     plainTextA.address = 0;   plainTextB.address = 0; 
     plainTextC.address = 0;   plainTextD.address = 0; 
   } 
   //Fill Pipe 
   St0 = St1;   St1 = St2; 
   St2 = St3;   St3 = St4; 
   St4 = St5;   St5 = St6; 
   St6 = St7;   St7 = St8; 
   St8 = input[(fillBlock * 9) + fillStage]; 
 
   if(fillStage.last){ 
     RAMA3.Write = 1;     RAMA2.Write = 1;     RAMA1.Write = 1;     RAMA0.Write = 1; 
     RAMB3.Write = 1;      RAMB2.Write = 1;     RAMB1.Write = 1;     RAMB0.Write = 1; 
     RAMC3.Write = 1;     RAMC2.Write = 1;     RAMC1.Write = 1;     RAMC0.Write = 1; 
     RAMD3.Write = 1;     RAMD2.Write = 1;     RAMD1.Write = 1;    RAMD0.Write = 1; 
      
     RAMA3.AddLo = tempAddress;     RAMA2.AddLo = tempAddress;      
              RAMA1.AddLo = tempAddress;      RAMA0.AddLo = tempAddress; 
 
     RAMB3.AddLo = tempAddress;      RAMB2.AddLo = tempAddress;      
              RAMB1.AddLo = tempAddress;      RAMB0.AddLo = tempAddress; 
 
     RAMC3.AddLo = tempAddress;      RAMC2.AddLo = tempAddress;      
              RAMC1.AddLo = tempAddress;      RAMC0.AddLo = tempAddress; 
 
     RAMD3.AddLo = tempAddress;      RAMD2.AddLo = tempAddress; 
     RAMD1.AddLo = tempAddress;      RAMD0.AddLo = tempAddress;   
      
     //Load Data          
     //First load 128-bit subkey 
     subkeysA = St0;     subkeysB = St1;     subkeysC = St2;     subkeysD = St3; 
      
     //Then 8-bit substitution box 
     RAMA3.Input = St4;     RAMA2.Input = St4;     RAMA1.Input = St4;  RAMA0.Input = St4; 
     RAMB3.Input = St4;     RAMB2.Input = St4;     RAMB1.Input = St4;  RAMB0.Input = St4; 
     RAMC3.Input = St4;     RAMC2.Input = St4;     RAMC1.Input = St4;  RAMC0.Input = St4; 
     RAMD3.Input = St4;     RAMD2.Input = St4;     RAMD1.Input = St4;  RAMD0.Input = St4; 
      
     //Then 1 128-bit plaintext block 
     plainTextA = St5;       plainTextB = St6;     plainTextC = St7;   plainTextD = St8; 
      
     //Update addresses; 
     subkeysA.address++;     subkeysB.address++;     subkeysC.address++; subkeysD.address++; 
     tempAddress = tempAddress + 1; 
     plainTextA.address++;     plainTextB.address++;     plainTextC.address++;   plainTextD.address++; 
   } 
 } 
      } 
    } 
 
    for(fillConstants = 0; fillConstants < 2; fillConstants++){ 
      Datapath{ 
 //Fill Pipe 
 St0 = St1;    
 St1 = input[(64 * 9) + fillConstants]; 
 
 if(fillConstants.last){ 
   constant2s = St0; 
   constant3s = St1; 
 } 
      } 
    }  
 
    //Do the computation 
    for(computeBlock = 0; computeBlock < NUM_BLOCKS; computeBlock++){ 
      for(compute = 0; compute < NUM_ROUNDS; compute++){ 
 Datapath{ 
   //Initialize input and output memories 
   if(computeBlock.first && compute.first){ 
     outA.address = 0;           outB.address = 0;           outC.address = 0;         outD.address = 0; 
     plainTextA.address = 0;   plainTextB.address = 0; plainTextC.address = 0;   plainTextD.address = 0; 
   } 
    
   //First round has Input Whitening 
   if(compute.first){ 
     //Initialize subkey memory 
     subkeysA.address = 0;   subkeysB.address = 0; subkeysC.address = 0;     subkeysD.address = 0; 
     feedBackA = plainTextA;   feedBackB = plainTextB; feedBackC = plainTextC;   feedBackD = plainTextD; 
   } 
    
   //Every round has a Key Addition step 
   KAA = feedBackA ^ subkeysA;   KAB = feedBackB ^ subkeysB;  
            KAC = feedBackC ^ subkeysC;   KAD = feedBackD ^ subkeysD;    
    
   //Every round except last one has a Byte Substitution step    
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   if(!compute.last){   
     //Perform rotations for addresses 
     //BSIX3 = KAX >> 24 
     ((BSIA3), ()) = rotE((KAA, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSIB3), ()) = rotE((KAB, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSIC3), ()) = rotE((KAC, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSID3), ()) = rotE((KAD, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0)); 
      
     //BSIX2 = KAX >> 16 
     ((BSIA2), ()) = rotE((KAA, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSIB2), ()) = rotE((KAB, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSIC2), ()) = rotE((KAC, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSID2), ()) = rotE((KAD, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0)); 
      
     //BSIX1 = KAX >> 8 
     ((BSIA1), ()) = rotE((KAA, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0)); 
     ((BSIB1), ()) = rotE((KAB, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0)); 
     ((BSIC1), ()) = rotE((KAC, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0)); 
     ((BSID1), ()) = rotE((KAD, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0)); 
      
     //Perform lookup 
     RAMA3.AddLo = BSIA3;     RAMA2.AddLo = BSIA2;     RAMA1.AddLo = BSIA1;  RAMA0.AddLo = KAA; 
     RAMB3.AddLo = BSIB3;     RAMB2.AddLo = BSIB2;     RAMB1.AddLo = BSIB1;  RAMB0.AddLo = KAB; 
     RAMC3.AddLo = BSIC3;     RAMC2.AddLo = BSIC2;     RAMC1.AddLo = BSIC1;  RAMC0.AddLo = KAC; 
     RAMD3.AddLo = BSID3;     RAMD2.AddLo = BSID2;     RAMD1.AddLo = BSID1;  RAMD0.AddLo = KAD; 
      
     BSOA3 = RAMA3.Output;     BSOA2 = RAMA2.Output;     BSOA1 = RAMA1.Output;   BSOA0 = RAMA0.Output; 
     BSOB3 = RAMB3.Output;     BSOB2 = RAMB2.Output;     BSOB1 = RAMB1.Output;   BSOB0 = RAMB0.Output; 
     BSOC3 = RAMC3.Output;     BSOC2 = RAMC2.Output;     BSOC1 = RAMC1.Output;   BSOC0 = RAMC0.Output; 
     BSOD3 = RAMD3.Output;     BSOD2 = RAMD2.Output;     BSOD1 = RAMD1.Output;   BSOD0 = RAMD0.Output; 
 
     //Shift Row 
     //A = A3 || B2 || C1 || D0 
     ((BSOA3), ()) = rotE((BSOA3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSOB2), ()) = rotE((BSOB2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSOC1), ()) = rotE((BSOC1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0)); 
     SRA = BSOA3 | BSOB2 | BSOC1 | BSOD0; 
 
     //B = B3 || C2 || D1 || A0 
     ((BSOB3), ()) = rotE((BSOB3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSOC2), ()) = rotE((BSOC2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSOD1), ()) = rotE((BSOD1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0)); 
     SRB = BSOB3 | BSOC2 | BSOD1 | BSOA0; 
 
     //C = C3 || D2 || A1 || B0 
     ((BSOC3), ()) = rotE((BSOC3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSOD2), ()) = rotE((BSOD2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSOA1), ()) = rotE((BSOA1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0)); 
     SRC = BSOC3 | BSOD2 | BSOA1 | BSOB0; 
      
     //D = D3 || A2 || B1 || C0 
     ((BSOD3), ()) = rotE((BSOD3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0)); 
     ((BSOA2), ()) = rotE((BSOA2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0)); 
     ((BSOB1), ()) = rotE((BSOB1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0)); 
 
     SRD = BSOD3 | BSOA2 | BSOB1 | BSOC0; 
   } 
 
   //Every round but last two have Mix Column step 
   if(compute < NUM_ROUNDS - 2){ 
     //X = (X <<< 24) + (X <<< 16) + 3(X <<<8) + 2X  
     ((MCIA3), ()) = rotE((SRA, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0)); 
     ((MCIA2), ()) = rotE((SRA, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0)); 
     ((MCIA1), ()) = rotE((SRA, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0)); 
     ((MCIA1), ()) = mul8GalE((MCIA1, constant3s), (1)); 
     ((MCIA0), ()) = mul8GalE((SRA, constant2s), (1)); 
     feedBackA = MCIA3 ^ MCIA2 ^ MCIA1 ^ MCIA0;  
     
     ((MCIB3), ()) = rotE((SRB, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0)); 
     ((MCIB2), ()) = rotE((SRB, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0)); 
     ((MCIB1), ()) = rotE((SRB, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0)); 
     ((MCIB1), ()) = mul8GalE((MCIB1, constant3s), (1)); 
     ((MCIB0), ()) = mul8GalE((SRB, constant2s), (1)); 
     feedBackB = MCIB3 ^ MCIB2 ^ MCIB1 ^ MCIB0;  
 
     ((MCIC3), ()) = rotE((SRC, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0)); 
     ((MCIC2), ()) = rotE((SRC, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0)); 
     ((MCIC1), ()) = rotE((SRC, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0)); 
     ((MCIC1), ()) = mul8GalE((MCIC1, constant3s), (1)); 
     ((MCIC0), ()) = mul8GalE((SRC, constant2s), (1)); 
     feedBackC = MCIC3 ^ MCIC2 ^ MCIC1 ^ MCIC0;  
 
     ((MCID3), ()) = rotE((SRD, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0)); 
     ((MCID2), ()) = rotE((SRD, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0)); 
     ((MCID1), ()) = rotE((SRD, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0)); 
     ((MCID1), ()) = mul8GalE((MCID1, constant3s), (1)); 
     ((MCID0), ()) = mul8GalE((SRD, constant2s), (1)); 
     feedBackD = MCID3 ^ MCID2 ^ MCID1 ^ MCID0;  
   } 
    
   //Second to last round needs to loop shift row result 
   if(compute == NUM_ROUNDS - 2){ 
     feedBackA = SRA;     feedBackB = SRB;     feedBackC = SRC;    feedBackD = SRD; 
   } 
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   if(compute.last){ 
     outA = KAA;     outB = KAB;     outC = KAC;     outD = KAD; 
     outA.address++;     outB.address++;     outC.address++;     outD.address++; 
     plainTextA.address++;     plainTextB.address++;     plainTextC.address++;     
plainTextD.address++; 
   } 
   subkeysA.address ++;   subkeysB.address ++;   subkeysC.address ++;       subkeysD.address ++; 
 } 
      } 
    } 
     
    // Output Results 
    // We could parallelize this to run as soon as the results are ready 
    // but due to ram addressing conflicts, we need to output after the 
    // calculations are completely done 
    for(output = 0; output < NUM_BLOCKS; output++){ 
      for(outputWord = 0; outputWord < WORDS_PER_BLOCK; outputWord++){ 
 Datapath{ 
   if(output.first && outputWord.first){ 
     outA.address = 0;     outB.address = 0;     outC.address = 0;   outD.address = 0; 
   } 
   if(outputWord == 0) 
     tempWord = outA; 
   else if(outputWord == 1) 
     tempWord = outB; 
   else if(outputWord == 2) 
     tempWord = outC; 
   else 
     tempWord = outD; 
 
   cipherText[(output * 4) + outputWord] = tempWord; 
 
   if(outputWord.last){ 
     outA.address++; outB.address++; outC.address++; outD.address++;  
   } 
 } 
      } 
    } 
  } 
} 

 

Header File – Rijndael.h 
#define STAGES 1 
#include "rapidb.h" 
 
#define NUM_SUBKEYS 11 
#define WORDS_PER_KEY 4 
 
#define SBOX_SIZE 256 
#define LOOKUP_PER_SBOX 8 
 
#define NUM_BLOCKS 4 
#define WORDS_PER_BLOCK 4 
 
#define INPUT_SIZE ((64 * 9) + 2) 
 
#define NUM_ROUNDS 11 
 
#define HEX_PER_WORD 8 
 
#define SBOX_OFFSET NUM_SUBKEYS * WORDS_PER_KEY 
#define PLAINTEXT_OFFSET  (NUM_SUBKEYS * WORDS_PER_KEY) + (SBOX_SIZE * 8) 

 

C Wrapper Function and Verification Code – testRijndael.cc 
#include <assert.h> 
#include <stdio.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <iomanip.h> 
#include <stdlib.h> 
 
#include "rijndael.h"  
void encrypt(Word *, Word*); 
 
void render(char* head, Word x, char* tail) { 
  unsigned long temp; 
 
  printf("%s", head); 
  temp = x & 4294967295; 
  printf("%08x", temp); 
  printf("%s", tail); 
} 
 
void transpose(Word array[4]){ 
  //Reorganize bytes to be column major, not row major 
  //0  1  2  3       0 4 8  12  
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  //4  5  6  7   =>  1 5 9  13 
  //8  9  10 11      2 6 10 14 
  //12 13 14 15      3 7 11 15 
  int i, j, temp; 
  int byteArray[4][4]; 
   
  for(i = 0; i < 4; i++){ 
    for(j = 0; j < 4; j++){ 
      byteArray[i][j] = (array[i] >> 24 - (j * 8)) & 255; 
    } 
  } 
  for(i = 0; i < 4; i++){ 
    array[i] = 0; 
    for(j = 0; j < 4; j++){ 
      array[i] += byteArray[j][i] << 24 - (j * 8); 
    } 
  } 
} 
 
int main()  
{ 
  // These subkeys are were produced from the key 
  // 000102030405060708090A0B0C0D0E0F 
  
  const char asciiSubkeys[NUM_SUBKEYS][WORDS_PER_KEY][HEX_PER_WORD + 1] = { 
    {"00010203", "04050607", "08090A0B", "0C0D0E0F"},  
    {"D6AA74FD", "D2AF72FA", "DAA678F1", "D6AB76FE"}, 
    {"B692CF0B", "643DBDF1", "BE9BC500", "6830B3FE"}, 
    {"B6FF744E", "D2C2C9BF", "6C590CBF", "0469BF41"}, 
    {"47F7F7BC", "95353E03", "F96C32BC", "FD058DFD"},  
    {"3CAAA3E8", "A99F9DEB", "50F3AF57", "ADF622AA"}, 
    {"5E390F7D", "F7A69296", "A7553DC1", "0AA31F6B"}, 
    {"14F9701A", "E35FE28C", "440ADF4D", "4EA9C026"}, 
    {"47438735", "A41C65B9", "E016BAF4", "AEBF7AD2"},  
    {"549932D1", "F0855768", "1093ED9C", "BE2C974E"},  
    {"13111D7F", "E3944A17", "F307A78B", "4D2B30C5"}};  
 
  // This are the 8 S-boxes for the forward encrytion 
  const int sBox [SBOX_SIZE] = { 
     99,  124, 119, 123, 242, 107, 111, 197, 
     48,    1, 103,  43, 254, 215, 171, 118, 
     202, 130, 201, 125, 250,  89,  71, 240, 
     173, 212, 162, 175, 156, 164, 114, 192, 
     183, 253, 147,  38,  54,  63, 247, 204, 
     52,  165, 229, 241, 113, 216,  49,  21, 
     4,   199,  35, 195,  24, 150,   5, 154, 
     7,    18, 128, 226, 235,  39, 178, 117, 
     9,   131,  44,  26,  27, 110,  90, 160, 
     82,   59, 214, 179,  41, 227,  47, 132, 
     83,  209,   0, 237,  32, 252, 177,  91, 
     106, 203, 190,  57,  74,  76,  88, 207, 
     208, 239, 170, 251,  67,  77,  51, 133, 
     69,  249,   2, 127,  80,  60, 159, 168, 
     81,  163,  64, 143, 146, 157,  56, 245, 
     188, 182, 218,  33,  16, 255, 243, 210, 
     205,  12,  19, 236,  95, 151,  68,  23, 
     196, 167, 126,  61, 100,  93,  25, 115, 
     96,  129,  79, 220,  34,  42, 144, 136, 
     70,  238, 184,  20, 222,  94,  11, 219, 
     224,  50,  58,  10,  73,   6,  36,  92, 
     194, 211, 172,  98, 145, 149, 228, 121, 
     231, 200,  55, 109, 141, 213,  78, 169, 
     108,  86, 244, 234, 101, 122, 174,   8, 
     186, 120,  37,  46,  28, 166, 180, 198, 
     232, 221, 116,  31,  75, 189, 139, 138, 
     112,  62, 181, 102,  72,   3, 246,  14, 
     97,   53,  87, 185, 134, 193,  29, 158, 
     225, 248, 152,  17, 105, 217, 142, 148, 
     155,  30, 135, 233, 206,  85,  40, 223, 
     140, 161, 137,  13, 191, 230,  66, 104, 
     65,  153,  45,  15, 176,  84, 187,  22}; 
 
  const char asciiPlainText[NUM_BLOCKS][WORDS_PER_BLOCK][HEX_PER_WORD + 1] = { 
    {"00010203", "04050607", "08090A0B", "0C0D0E0F"}, 
    {"100F0E0D", "0C0B0A09", "08070605", "04030201"}, 
    {"00020406", "01030500", "02040601", "03050002"}, 
    {"00030609", "0C020508", "0B010407", "0A000306"}}; 
 
  const char asciiCipherText[NUM_BLOCKS][WORDS_PER_BLOCK][HEX_PER_WORD + 1] = { 
    {"0A940BB5", "416EF045", "F1C39458", "C653EA5A"}, 
    {"20C2FF67", "36789ECD", "3B81D366", "75DD1442"}, 
    {"95BFD2DB", "A04F6D98", "4EDCEDBE", "68DC4AB7"}, 
    {"5033731B", "E0EC208D", "5E3338FF", "19C2CE04"}}; 
 
  Word subkeys[NUM_SUBKEYS] [WORDS_PER_KEY]; 
  Word sBoxMem [SBOX_SIZE / 4]; 
  Word plainText[NUM_BLOCKS][WORDS_PER_BLOCK]; 
  Word inputStream[INPUT_SIZE]; 
  Word cipherText[NUM_BLOCKS * WORDS_PER_BLOCK]; 
  Word organizedCT[NUM_BLOCKS][WORDS_PER_BLOCK]; 
  Word checkText[NUM_BLOCKS][WORDS_PER_BLOCK]; 
  Word tempText; 
 
  int i, j, k, m, errors; 
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  char * tempCharP; 
 
  //Translate subkeys to hex 
  for(i = 0; i < NUM_SUBKEYS; i++){ 
    for(j = 0; j < WORDS_PER_KEY; j++){ 
      subkeys[i][j] = strtoul(asciiSubkeys[i][j], &tempCharP, 16); 
    } 
  } 
 
  //Transpose bytes 
  for(i = 0; i < NUM_SUBKEYS; i++){ 
    //transpose(subkeys[i]); 
  } 
 
  //Repackage the s-box contents 
  for(i = 0; i < SBOX_SIZE/4; i++){ 
    sBoxMem[i] = 0; 
    sBoxMem[i] = sBox[i]; 
    for(j = 1; j < 4; j++){ 
      sBoxMem[i] += sBox[i + (64 * j)] << (8 * j); 
    } 
  } 
 
  //Translate plaintext into hex 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    for(j = 0; j < WORDS_PER_BLOCK; j++){ 
      plainText[i][j] = strtoul(asciiPlainText[i][j], &tempCharP, 16); 
    } 
  } 
   
  //Transpose bytes 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    //transpose(plainText[i]); 
  } 
 
  //Translate known correct ciphertext into hex 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    for(j = 0; j < WORDS_PER_BLOCK; j++){ 
      checkText[i][j] = strtoul(asciiCipherText[i][j], &tempCharP, 16); 
    } 
  } 
 
  //Load into inputStream column-wise, not row-wise (All A's, all B's, etc) 
  for(i = 0; i < 64; i++){ 
    inputStream[i * 9] = subkeys[i % NUM_SUBKEYS][0]; 
    inputStream[(i * 9) + 1] = subkeys[i % NUM_SUBKEYS][1]; 
    inputStream[(i * 9) + 2] = subkeys[i % NUM_SUBKEYS][2]; 
    inputStream[(i * 9) + 3] = subkeys[i % NUM_SUBKEYS][3]; 
 
    inputStream[(i * 9) + 4] = sBoxMem[i]; 
     
    inputStream[(i * 9) + 5] = plainText[i % NUM_BLOCKS][0]; 
    inputStream[(i * 9) + 6] = plainText[i % NUM_BLOCKS][1]; 
    inputStream[(i * 9) + 7] = plainText[i % NUM_BLOCKS][2]; 
    inputStream[(i * 9) + 8] = plainText[i % NUM_BLOCKS][3]; 
  } 
 
  //Add constant 2's and 3's 
  inputStream[(64 * 9)] = 33686018; 
  inputStream[(64 * 9) + 1] = 50529027; 
 
  //Initialize output to easily detect verilog problem 
  for(i = 0; i < NUM_BLOCKS * WORDS_PER_BLOCK; i++){ 
    cipherText[i] = 9; 
  } 
 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    printf("CHECKTEXT [%d] = \t", i); 
    for(j = 0; j < WORDS_PER_BLOCK; j++){ 
      render("", checkText[i][j], " "); 
    } 
    printf("\n"); 
  } 
  printf("\n"); 
 
  encrypt(inputStream, cipherText); 
   
  //Transpose back 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    for(j = 0; j < WORDS_PER_BLOCK; j++){ 
      organizedCT[i][j] = cipherText[(i * WORDS_PER_BLOCK) + j]; 
    } 
  } 
 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    //transpose(organizedCT[i]); 
  } 
 
  //Check Output 
  errors = 0; 
  for(i = 0; i < NUM_BLOCKS; i++){ 
    printf("Ciphertext [%d] = \t", i); 
    for(j = 0; j < WORDS_PER_BLOCK; j++){ 
      render("", organizedCT[i] [j], " "); 
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      if(checkText[i][j] != organizedCT[i][j]) 
 errors++; 
    } 
    printf(" --- %d ERRORS\n", errors); 
    errors = 0; 
 
  } 
 
} 
 
 


