
RaPiD-AES:
Developing an Encryption-Specific FPGA Architecture

Kenneth Eguro

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in Electrical Engineering

University of Washington

2002

Program Authorized to Offer Degree: Electrical Engineering

University of Washington

Abstract

RaPiD-AES: Developing Encryption-Specific FPGA Architectures

Kenneth Eguro

Chair of the Supervisory Committee:
Associate Professor, Scott Hauck

Electrical Engineering

Although conventional FPGAs have become indispensable tools due to their versatility and quick design

cycles, their logical density, operating frequency and power requirements have limited their use. Domain-

specific FPGAs attempt to improve performance over general-purpose reconfigurable devices by

identifying common sets of operations and providing only the necessary flexibility needed for a range of

applications. One typical optimization is the replacement of more universal fine-grain logic elements with

a specialized set of coarse-grain functional units. While this improves computation speed and reduces

routing complexity, this also introduces a unique design problem. It is not clear how to simultaneously

consider all applications in a domain and determine the most appropriate overall number and ratio of

different functional units. In this paper we show how this problem manifests itself during the development

of RaPiD-AES, a coarse-grain, domain-specific FPGA architecture and design compiler intended to

efficiently implement the fifteen candidate algorithms of the Advanced Encryption Standard competition.

While we investigate the functional unit selection problem in an encryption-specific domain, we do not

believe that the causes of the problem are unique to the set of AES candidate algorithms. In order for

domain-specific reconfigurable devices to performance competitively over large domain spaces in the

future, we will need CAD tools that address this issue. In this paper we introduce three algorithms that

attempt to solve the functional unit allocation problem by balancing the hardware needs of the domain

while considering overall performance and area requirements.

 i

Table of Contents

 Page

List of Figures ..ii
1 Introduction... 1
2 Background... 2

2.1 Encryption.. 2
2.2 Field Programmable Gate Arrays .. 3
2.3 Previous FPGA-based Encryption Systems ... 4
2.4 RaPiD Architecture .. 5
2.5 RaPiD-C... 6

3 Implications of Domain-Specific Devices... 6
4 Functional Unit Design .. 8
5 Difficulties of Functional Unit Selection .. 10
6 Function Unit Allocation ... 12

6.1 Performance-Constrained Algorithm... 12
6.2 Area-Constrained Algorithm... 14
6.3 Improved Area-Constrained Algorithm ... 15

7 Function Unit Allocation Results ... 16
8 RaPiD-AES Compiler.. 22
9 Future Work .. 22
10 Conclusions... 23
11 Bibliography.. 24
Appendix A - Galois Field Multiplication.. 27
Appendix B – Hardware Requirements.. 28
Appendix C – Results ... 30
Appendix D – RaPiD-AES Components.. 33
Appendix E – Example of RaPiD-AES Implementation: Rijndael.. 39

 ii

List of Figures

 Page

Figure 1 – Advanced Encryption Standard Competition Timeline.. 1
Figure 2 – FPGA Implementations of AES Candidate Algorithms... 5
Figure 3 - Basic RaPiD Cell.. 6
Figure 4 – Required Operators of the AES Candidate Algorithms.. 8
Figure 5 – Functional Unit Description ... 8
Figure 6 – Multi-mode RAM Unit .. 10
Figure 7 – Ratio Complications... 11
Figure 8 – Complexity Disparity... 11
Figure 9 – Scaling Behavior.. 12
Figure 10 – Performance-Constrained Functional Unit Selection ... 13
Figure 11 – Area-Constrained Function Unit Selection.. 15
Figure 12 – Improved Area-Constrained Functional Unit Selection ... 16
Figure 13 – Minimum Throughput Results of Functional Unit Selection.. 17
Figure 14 – Performance Results Across the Domain of Functional Unit Selection 18
Figure 15 – Area Results of Functional Unit Selection .. 19
Figure 16 – Resource Results from Performance-Constrained Analysis ... 20
Figure 17 – Resource Results from Area-Constrained Analysis ... 20
Figure 18 – Resource Results from Improved-Area Constrained Analysis.. 21
Figure 19 – Component Mixture ... 21

 iii

 Acknowledgements

The author would like to thank his advisor, Scott Hauck, for providing both the inspiration for this project

and the opportunity to conduct research under his supportive and insightful guidance.

The author would also like to thank Carl Ebeling and everyone on the RaPiD development team. Their

pioneering work in the exploration of domain-specific reconfigurable devices and high-level language

design compilers made this work possible. The author would like to specifically thank Chris Fisher for his

invaluable assistance dealing with the RaPiD-C compiler.

This research was supported in part by grants from the National Science Foundation.

1

1 Introduction

The Advanced Encryption Standard competition offered a compelling opportunity for designers to exploit

the benefits of domain-specific FPGAs to produce a versatile, fast, and early-to-market encryption device.

Figure 1 provides a brief timeline for the competition. The competition requirements and the candidate

algorithms have several characteristics that make designing specialized, coarse-grain reconfigurable

devices particularly attractive. First, high performance is very important due to today’s large volume of

sensitive electronic traffic. Second, flexibility allows algorithm updates and improvements. In addition,

flexibility was a necessity for pioneering designers since the contest allowed submissions to be modified

during public review to address any security or performance concerns that might be raised. Furthermore,

the control logic and routing structure for the system does not need to be complex since the iterative

dataflow for most of the algorithms conforms to one of three simple styles. Lastly, very few different types

of functional units are needed because all of the required operations can be implemented with a

combination of simple ALUs, multipliers, Galois Field multipliers, bit permutations, memories, and

multiplexors.

January 1997 The National Institute for Standards and Technology issues a public call for symmetric-key block
cipher algorithms that are both faster and more secure than the aging Data Encryption Standard.

August 1998 From around the world, twenty-six submissions are received. Fifteen algorithms are accepted to
compete in an eight-month review period.

August 1999 Based upon brief but careful public analysis and comment about security and efficiency, five
algorithms are selected for further scrutiny.

October 2000 After a nine-month second review period and several public forums, Rijndael is announced as the
new encryption standard.

December 2001 The Secretary of Commerce makes the AES a Federal Information Processing Standard. This makes
AES support compulsory for all federal government organizations as of May 2002.

Figure 1 – Advanced Encryption Standard Competition Timeline
A brief timeline for the Advanced Encryption Standard competition sponsored by the National Institute for
Standards and Technology. Based on information from [23]. Note that modifications to four algorithms were
submitted between August 1998 and August 1999.

This paper describes the development of the RaPiD-AES system – a coarse-grain, encryption-specific

FPGA architecture and design compiler based upon the RaPiD system [11], also developed at the

University of Washington. We will begin with a short introduction to encryption, FPGAs, and a summary

of previous FPGA-based encryption devices. This will be followed by a brief description of the RaPiD

architecture and the RaPiD-C language. We will move on to a discussion of the development of

encryption-specialized functional units and identify some unique architectural design problems inherent to

coarse-grain, domain-specific reconfigurable devices. We will then introduce three approaches that we

have developed to deal with these problems and describe how this guided the formation of our architecture.

Finally we will describe the modifications that were made to the RaPiD-C compiler so that developers can

map designs to our architecture using a high-level, C-like language.

2

2 Background

The popularity of many online services, such as electronic banking and shopping over the Internet, is only

possible today because we have strong encryption techniques that allow us to control our private data while

it is flowing across public networks. Although the concept of secure communication has only become

familiar to the general public within the last decade, its popularity truly began in the late 1970s. In 1972,

the National Institute of Standards and Technology (then known as the Nation Bureau of Standards)

acknowledged the increasing computer use within the federal government and decided that a strong,

standard cryptographic algorithm was needed to protect the growing volume of electronic data. In 1976,

with the help of the National Security Agency (NSA), they officially adopted a modified version of IBM’s

Lucifer algorithm [31] to protect all non-classified government information and named it the Data

Encryption Standard (DES). While there were some unfounded accusations that the NSA may have

planted a “back-door” that would allow them access to any DES-encrypted information, it was generally

accepted that the algorithm was completely resistant to all but brute-force attacks. While the algorithm

later turned out to be much weaker than originally believed [28], the perceived strength and the official

backing of the US government made DES very popular in the private sector. For example, since all

financial institutions needed the infrastructure to communicate with federal banks, they quickly adopted

DES for use in all banking transactions, from cash machine PIN authentication to inter-bank account

transfers. This not only provided them with more secure communication over their existing private

networks, it also allowed them to use faster, cheaper third-party and public networks.

2.1 Encryption
While in the past the security of cryptographic methods relied on the secrecy of the algorithm used to

encrypt the data, this type of cipher is not only inherently insecure but also completely impractical for

public use. Therefore, all modern encryption techniques use publicly known algorithms and rely on

specific strings of data, known as keys, to control access to protected information. There are two classes of

modern encryption algorithms: symmetric, or secret-key, and asymmetric, or public-key. The primary

difference between the two models is that while symmetric algorithms either use a single secret key or two

easily related secret keys for encryption and decryption, asymmetric algorithms use two keys, one publicly

known and another secret.

The AES competition only included symmetric ciphers because they are generally considerably faster for

bulk data transfer and simpler to implement than asymmetric ciphers. However, public-key algorithms are

of great interest for a variety of applications since the security of the algorithm only hinges on the secrecy

of one of the keys. For example, before two parties can begin secure symmetric-key communication they

3

need to agree upon a key over an insecure channel. This initial negotiation can be conducted safely by

using asymmetric encryption. Another reason that public-key algorithms are popular is that by making

small modifications to the way that the algorithms are used, they can often implement a range of

authentication systems. For example, public-key encryption generally uses the public key to encrypt and

the private key to decrypt. While it is not necessarily secure for a party to encrypt a document using its

private key, a receiving party can confirm that the document originated from the sender by decrypting with

the appropriate public key. This can be further extended to provide tamper-resistance, timestamping, and

legally binding digital signatures.

Modern symmetric block ciphers typically iterate multiple times over a small set of core encryption

functions. To make the resulting ciphertext more dependent on the key, each iteration of the encryption

function generally incorporates one or more unique subkeys that are generated from the primary key.

Although some of the AES candidate algorithms allow for on-the-fly subkey generation, many do not. In

order to provide an equal starting point for all of the algorithms, we assume that the subkey generation is

performed beforehand and the subkeys are stored in local memory. For many applications, such as Secure

Shell (SSH), this is a reasonable assumption since a large amount of data is transferred using a single key

once a secure channel is formed. In this case, the startup cost of subkey generation is very minimal

compared to the computation involved in the bulk encryption of transmitted information.

2.2 Field Programmable Gate Arrays
As the volume of secure traffic becomes heavier, encryption performed in software quickly limits the

communication bandwidth and offloading the work to a hardware encryption device is the only way to

maintain good performance. Unfortunately, ASIC solutions are not only expensive to design and build,

they also completely lack any of the agility of software implementations. Advances in hardware

technology and cryptanalysis, the science and mathematics of breaking encryption, constantly pursue all

ciphers. This means that very widely employed algorithms may become vulnerable virtually overnight.

While a software-only encryption system would be very slow, it could easily migrate to a different

algorithm, where an ASIC-based encryption device would need to be completely replaced. However, if a

reconfigurable computing device were used instead, it would provide high performance encryption and, if

needed, it is likely that a new cipher could be quickly applied with no additional hardware and negligible

interruption to service.

Field Programmable Gate Arrays, or FPGAs, successfully bridge the gap between the flexibility of

software and performance of hardware by offering a large array of programmable logic blocks that are

embedded in a network of configurable communication wires. The logic blocks, also known as

4

Configurable Logic Blocks (CLBs), typically use small look-up tables, or LUTs, to emulate standard gate

logic. For example, in the Xilinx 4000 series devices [32], each CLB is capable of producing one to two

independent four or five input functions. Each of the CLBs can then be interconnected with others via a

reconfigurable matrix of routing resources. By using RAM to control the routing configuration and the

content of the LUTs, FPGAs can be quickly programmed and reprogrammed to run many different

applications. Furthermore, since the computations are still performed in hardware, FPGA implementations

often outpace software-based solutions by an order of magnitude or more. Unfortunately, FPGA designs

are also generally several times slower, larger and less energy-efficient than their ASIC counterparts. This

has limited their use in applications where flexibility is not essential.

2.3 Previous FPGA-based Encryption Systems
FPGAs have been shown to be effective at accelerating a wide variety of applications, from image

processing and DSP to network/communication and data processing. Many research efforts have

capitalized on the inherent flexibility and performance of FPGAs; encryption is no exception. The author

of [18] was among the first to efficiently map DES to a reconfigurable device. This effort attained a

relative speedup of 32x as compared to contemporary software implementations while providing roughly

one-quarter of the performance of ASIC solutions. Later, papers such as [19] and [20] used high-speed

FPGA implementations to prove that DES was vulnerable to brute-force attacks from low-cost, massively

parallel machines built from commodity parts.

When the 15 AES candidate algorithms* were announced in 1998, it sparked new interest in FPGA-based

encryption devices. The authors of [12] showed that four of the five finalist algorithms could be executed

on an FPGA an average of over 21x faster than their best known software counterparts. See Figure 2 for

details of these results. However, this required one of the largest FPGAs available at the time and they

were still unable to implement an efficient version of the fifth algorithm due to a lack of resources on the

device. The authors of [13] and [25] encountered much more serious problems since they attempted to

implement the AES candidate algorithms on much smaller FPGAs. In [13], even though the authors

determined that two of the five finalists were too resource-intensive for their device, the three algorithms

that were implemented still failed to perform well. The average throughput of these implementations was

only about 1.3x that of their software equivalents. Even worse, the mappings from [25] only offered an

average of just over one-fifth the throughput of software-based encryption. These research groups stated

that algorithms were either not implemented or implemented poorly due to memory requirements and

difficult operations such as 32-bit multiplication or variable rotations.

* [1, 2, 4, 5, 9, 10, 14, 15, 17, 21, 22, 24, 26, 27, 30]

5

Encryption Algorithm CAST-256 MARS RC6 Rijndael Serpent Twofish
Software Implementation
from [16] (cycles / block)

633 369 270 374 952 376

Software Throughput
(500 MHz processor)

96 Mb/s 165 Mb/s 226 Mb/s 163 Mb/s 64 Mb/s 162 Mb/s

FPGA Throughput from [12] - N/I 2400 Mb/s 1940 Mb/s 5040 Mb/s 2400 Mb/s
FPGA Throughput from [13] - N/I N/I 232.7 Mb/s 125.5 Mb/s 81.5 Mb/s
FPGA Throughput from [25] 26 Mb/s - 37 Mb/s - - -

Relative Speedup
FPGA [12] / Software - - 10.6 x 11.9 x 78.8 x 14.8 x
FPGA [13] / Software - - - 1.43 x 1.95 x 0.50 x
FPGA [25] / Software 0.27 x - 0.16 x - - -

Figure 2 – FPGA Implementations of AES Candidate Algorithms
A summary of three research efforts to produce FPGA implementations of the AES candidate algorithms. This
included the five second-round candidates and the well-known CAST-256 cipher. N/I indicates that the
algorithm was considered in the paper but was not implemented because it was deemed inappropriate for the
target FPGA.

2.4 RaPiD Architecture
The problems that these research groups encountered illustrate some of the inherent limitations of standard

FPGAs. Conventional reconfigurable devices, like those produced by Xilinx and Altera, use fine-grain

CLBs that, while well suited to small or irregular functions, typically suffer a stiff penalty when

implementing wide and complex arithmetic operations. These types of functions need to be built from too

many small logical resources and end up being spread across too general a routing structure to be efficient.

Furthermore, although most modern FPGAs embed dedicated RAM modules into the fabric of the array,

they do not necessarily provide the appropriate size or number of memory blocks.

While flexibility is an integral part of reconfigurable devices, conventional FPGAs are too generic to

provide high performance in all situations. However, if the range of applications that a device is intended

for is known beforehand, a designer can specialize the logic, memory and routing resources to enhance the

performance of the device while still providing adequate flexibility to accommodate all anticipated uses.

Common and complex operations can be implemented much more efficiently on specialized coarse-grain

functional units while routing and memory resources can be tuned to better reflect the requirements. An

example of such a specialized reconfigurable device is the RaPiD architecture [11], which was originally

designed to implement applications in the DSP domain. Since signal processing functions are typically

fairly linear and very arithmetic-intensive, the architecture consists of a tileable cell that includes dedicated

16-bit multipliers, ALUs and RAM modules that are connected through a programmable and pipelined

word-wise data bus. See Figure 3 for a diagram of the RaPiD cell. While this architecture clearly lacks

much of flexibility of a more conventional FPGA, the results in [8] show that it successfully improves

performance while minimally affecting usability since it provides significant speed, area and power

advantages across a range of DSP applications.

6

Figure 3 - Basic RaPiD Cell
A block diagram of the basic RaPiD cell [6]. The complete architecture is constructed by horizontally tiling
this cell as many times as needed. The vertical wires to the left and right of each component represent input
multiplexors and output demultiplexors, respectively. The blocks shown on the long horizontal routing tracks
indicate bus connectors that both segment the routing and provide pipelining resources.

2.5 RaPiD-C
In addition to the hardware advantages of the architecture, the RaPiD researchers show another aspect of

the system that makes it particularly attractive in [7]. This paper describes the specifics of RaPiD-C, a C-

like language that allows developers to map their designs to the RaPiD architecture in a high-level, familiar

way. In addition to the normal C constructs that identify looping, conditional statements, and arithmetic or

logical operations, the language also has specific elements that control off-chip communication, loop

rolling and unrolling, sequential and parallel processing, circuit synchronization, and the pipelining of

signals. These additional constructs make it possible to compile concise hardware descriptions to

implementations that are still faithful to their designer’s original intent.

Furthermore, although the language and compiler were designed for the original RaPiD architecture, the

developers mention in [8] that the system includes enough flexibility to use other special-purpose

functional and memory units. With these extensions, they intended the compiler to be able to map a large

range of computation-intensive applications onto a wide variety of coarse-grain reconfigurable devices.

3 Implications of Domain-Specific Devices

Although domain-specific FPGAs such as RaPiD can offer great advantages over general-purpose

reconfigurable devices, they also present some unique challenges. One issue is that while design choices

that affect the performance and flexibility of classical FPGAs are clearly defined and well understood, the

7

effects that fundamental architecture decisions have on specialized reconfigurable devices are largely

unknown and difficult to quantify. This problem is primarily due to the migration to coarse-grain logic

resources. While the basic logic elements of general-purpose reconfigurable devices are generic and

universally flexible, the limiting portions of many applications are complex functions that are difficult to

efficiently implement using the fine-grain resources provided. As mentioned earlier, these functions

typically consume many flexible, but relatively inefficient, logic blocks and lose performance in overly

flexible communication resources. By mapping these applications onto architectures that include more

sophisticated and specialized coarse-grain functional units, they can be implemented in a smaller area with

better performance. While the device may lose much of its generality, there are often common or related

operations that reoccur across similar applications in a domain. These advantages lead to the integration of

coarse-grain functional elements into specialized reconfigurable devices, as is done in the RaPiD

architecture. However, the migration from a sea of fine-grained logical units to a clearly defined set of

coarse-grained function units introduces a host of unexplored issues. Merely given a domain of

applications, it is not obvious what the best set of functional units would be, much less what routing

architecture would be appropriate, what implications this might have on necessary CAD tools, or how any

of these factors might affect each other.

The first challenge, the selection of functional units, can be subdivided into three steps. First, all

applications in a domain must be analyzed to determine what functions they require. Crucial parts such as

wide multipliers or fast adders should be identified. Next, this preliminary set of functional units can be

distilled to a smaller set by capitalizing on potential overlap or partial reuse of other types of units.

Different sizes of memories, for example, can be combined through the use of multi-mode addressing

schemes. Lastly, based upon design constraints, the exact number of each type of unit in the array should

be determined. For example, if the applications are memory-intensive rather than computationally-

intensive, the relative number of memory units versus ALUs should reflect this.

In Sections 5, 6 and 7 of this paper, we will primarily focus on the problem of determining the most

appropriate quantity and ratio of functional units for our encryption-specialized architecture. While the

Section 4 describes the functional units we included in our system, we did not fully explore the entire

design space. While operator identification and optimization are both complex problems unique to coarse-

grain architectures, we did not address these issues since the algorithms themselves provide an obvious

starting point. Also, since the algorithms use a relatively small number of strongly-typed functional units,

it is fairly simple to perform the logical optimization and technology mapping by hand. Although this may

overlook subtle optimizations, such as the incorporation of more sophisticated operators, this does provide

an acceptable working set.

8

4 Functional Unit Design

Encouraged by the results of the RaPiD project, we decided to build a RaPiD platform specialized for

encryption. While the necessary functional units are different, the RaPiD architecture was designed for

linear, iterative dataflow. However, since it is coarse-grained, there are particular architectural differences

that separate it from general-purpose reconfigurable devices. One major design decision was the bit-width

of the architecture. Since the operations needed by the AES competition algorithms range from single bit

manipulations to wide 128-bit operations, we determined that a 32-bit word size would likely provide a

reasonable compromise between the awkwardness of wide operators and the loss of performance due to

excessive segmenting. In addition, while the algorithms did not preclude the use of 64, 16 or 8-bit

processors, the natural operator width for many of the algorithms was specifically designed to take

advantage of more common 32-bit microprocessors. After defining the bit-width of the architecture, the

next problem was determining a comprehensive set of operators. Analysis identified six primary operation

types required for the AES candidate algorithms. These operation classes lead to the development of seven

distinct types of functional units. See Figure 4 for a list of operation classes and Figure 5 for a description

of the functional unit types implemented in our system.

Class Operations
Multiplexor Dynamic dataflow control
Rotation Dynamic left rotation, static rotation, static logical left/right shift, dynamic left shift
Permutation Static 32-bit permutation, static 64-bit permutation, static 128-bit permutation
RAM 4-bit lookup table, 6-bit lookup table, 8-bit lookup table
Multiplication 8-bit Galois Field multiplication, 8-bit integer multiplication, 32–bit integer multiplication
ALU Addition, subtraction, XOR, AND, OR, NOT

Figure 4 – Required Operators of the AES Candidate Algorithms
Table of the six operator classes used in the AES competition algorithms.

Unit Description
Multiplexor 32 x 2:1 muxes
Rotate/shift Unit 32-bit dynamic/static, left/right, rotate/logical shift/arithmetic shift
Permutation Unit 32 x 32:1 statically controlled muxes
RAM 256 byte memory with multi-mode addressing
32-bit Multiplier 32–bit integer multiplication (32-bit input, 64-bit output)
8-bit Multiplier 4 x 8-bit modulus 256 integer multiplications or 4 x 8-bit Galois Field multiplications
ALU Addition, subtraction, XOR, AND, OR, NOT

Figure 5 – Functional Unit Description
Table of the seven types of functional unit resources in our system.

One peculiarity of a RaPiD-like architecture is the distinct separation between control and datapath logic.

Like the original RaPiD architecture, we needed to explicitly include multiplexors in the datapath to

provide support for dynamic dataflow control. In addition, due to the bus-based routing structure, we

needed to include rotator/shifters and bit-wise crossbars to provide support for static rotations/shifts and bit

9

permutations. Although this seems inefficient since these static operations are essentially free on a general-

purpose FPGA (they are incorporated into the netlist and implemented at compile-time), the AES candidate

algorithms also require dynamic rotations/shifts. These are typically very difficult to implement on

conventional reconfigurable devices. In our architecture, though, the same hardware can be used to provide

support for both static and dynamic rotations/shifts with minimal additional hardware. For future

flexibility, we also decided to add in currently unused operations such as arithmetic shifting. We chose to

implement a dynamically/statically controlled rotation/shift unit separately from a statically controlled

crossbar for two reasons. First, static random bit permutations are needed far less than rotation or shift

operations and we expect the crossbar to be significantly larger than its rotation/shift counterpart. Second,

the additional hardware required to make a crossbar emulate a dynamically controlled rotator/shifter is too

large to be efficient.

Next we considered the logical and arithmetic needs of the algorithms. First, since all of the algorithms

contain addition and subtraction or bit-wise logical operations, we chose to incorporate all of these

functions into one ALU type. For simplicity we decided to extend the 16-bit RaPiD ALU to a 32-bit

version. Second, many of the algorithms require either an 8 or 32-bit integer multiplication or a related

function, an 8-bit Galois Field multiplication. See Appendix A for an explanation of Galois Field

multiplication. Although these operations can be performed using the other functional units that we have

included, the frequency and complex nature of these operations make them ideal candidates for dedicated

functional units. We chose to implement the 32-bit integer multiplier and the 4-way 8-bit integer/Galois

Field multiplier as two separate units for three main reasons. First, the AES algorithms do include

multiplications up to 64 bits. To quickly calculate these multiplications, it was necessary to implement a

wide multiplier. Second, as can be seen from the diagram in Appendix A, it is difficult to make an efficient

multi-mode 32-bit integer/8-bit Galois Field multiplier. Most likely, this unit would only be able to handle

one or possibly two Galois multiplications at a time. This is not efficient in terms of resource utilization or

speed. Lastly, a four-way 8-bit Galois Field multiplier is also able to handle four 8-bit integer

multiplications with minimal modification and little additional hardware.

Finally, we considered the memory resources that our architecture should provide. While one of the AES

candidate algorithms requires a larger lookup table, most of the algorithms use either a 4 to 4, a 6 to 4 or an

8 to 8 lookup table. Instead of separating these out into three distinct types of memory units, we chose to

combine them into one memory that could support all three addressing modes. From this, we developed a

256-byte memory that either contained eight 4 to 4 lookup tables (each with 4 pages of memory), eight 6 to

4 lookup tables, or one 8 to 8 lookup table. See Figure 6 for an illustrated description of these addressing

modes.

10

64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Address Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode

64 nibbles

64 nibbles

4

48 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

32 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Address Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode
64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Address Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode

64 nibbles

64 nibbles

4

48 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

48 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

32 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

64 nibbles

64 nibbles

4

32 Address Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

Figure 6 – Multi-mode RAM Unit
The three lookup table configurations for our RAM unit

5 Difficulties of Functional Unit Selection

Although it is relatively straightforward to establish the absolute minimum area required to support a

domain, determining the best way to allocate additional resources is more difficult. During the functional

unit selection process for RaPiD-AES, we determined the necessary hardware to implement each of the

candidate algorithms for a range of performance levels. Since each of the algorithms iterate multiple times

over a relatively small handful of encryption functions, we identified the resource requirements to

implement natural unrolling points for each, from relatively small, time-multiplexed elements to

completely unrolled implementations. From this data we discovered four factors that obscure the

relationship between hardware resources and performance.

First, although the algorithms in our domain share common operations, the ratio of the different functional

units varies considerably between algorithms. Without any prioritization, it is unclear how to distribute

resources. For example, if we consider the fully rolled implementations for six encryption algorithms, as in

the table on the left in Figure 7, we can see the wide variation in RAM, crossbar, and runtime requirements

among the different algorithms. To complicate matters, if we attempt to equalize any one requirement over

the entire set, the variation among the other requirements becomes more extreme. This can be seen in the

table on the right in Figure 7. In this case, if we consider the RAM resources that an architecture should

provide, we notice that Loki97 requires at least 40 RAM modules. If we attempt to develop an architecture

that caters to this constraint and unroll the other algorithms to take advantage of the available memory, we

see that the deviation in the number of crossbars and runtime increases sharply.

11

Algorithm
(Baseline)

RAM
Blocks

XBars Runtime

CAST-256 (1x) 16 0 48
DEAL (1x) 1 7 96
HPC (1x) 24 52 8
Loki97 (1x) 40 7 128
Serpent (1x) 8 32 32
Twofish (1x) 8 0 16
Average 16.2 16.3 54.7
Std. Dev. 14.1 21.1 47.6

Algorithm
(Unrolling Factor)

RAM
Blocks

XBars Runtime

CAST-256 (2x) 32 0 24
DEAL (32x) 32 104 3
HPC (1x) 24 52 8
Loki97 (1x) 40 7 128
Serpent (8x) 32 32 4
Twofish (4x) 32 0 4
Average 32 32.5 28.5
Std. Dev. 5.6 40.6 49.4

Figure 7 – Ratio Complications
Two examples of the complications caused by varying hardware demands. The table on the left compares the
RAM, crossbar and runtime requirements for the baseline implementations of six encryption algorithms. Notice
that in all three categories the deviation in requirements is comparable to the average value. The table on the
right displays the compounded problems that occur when attempting to normalize the RAM requirements across
algorithms. The other algorithms are unrolled to make use of the memory ceiling set by Loki97. Notice that the
total deviation in crossbars roughly doubles as compared to the baseline comparison and that the deviation in
runtime becomes almost twice the new average value.

The second factor that complicates the correlation between hardware availability and performance is that

the algorithms have vastly different complexities. This means that the hardware requirement for each

algorithm to support a given throughput differs considerably. It is difficult to fairly quantify the

performance-versus-hardware tradeoff of any domain that has a wide complexity gap. In Figure 8 we see

an example of five different encryption algorithms that are implemented to have similar throughput, but

have a wide variation in hardware requirements.

Algorithm (Unrolling Factor) RAM Blocks XBars Runtime
CAST-256 (2x) 32 0 24
DEAL (4x) 4 16 24
Loki97 (8x) 320 7 16
Magenta (4x) 64 0 18
Twofish (1x) 8 0 16
Average 85.6 4.6 22.8
Std. Dev. 133.2 7.1 6.3

Figure 8 – Complexity Disparity
An illustration of the imbalance that occurs when attempting to equalize throughput across algorithms. We
choose Twofish as a baseline and unrolled the rest of the algorithms to best match its throughput. Notice that
the deviation in RAM and crossbar requirements is well above the average value.

The third problem of allocating hardware resources is that the requirements of the algorithms do not

necessarily scale linearly or monotonically when loops are unrolled. This phenomenon makes it difficult to

foresee the effect of decreasing the population of one type of functional unit and increasing another. See

Figure 9 for an example of this non-uniform behavior.

12

Figure 9 – Scaling Behavior
An example of the unpredictable nature of hardware demands when unrolling algorithms.

The last problem of estimating performance from available resources is that if a particular implementation

requires more functional units of a certain type than is available, the needed functionality can often be

emulated with combinations of the other, under-utilized units. For example, a regular bit permutation could

be accomplished with a mixture of shifting and masking. Although this flexibility may improve resource

utilization, it also dramatically increases the number of designs to be evaluated.

6 Function Unit Allocation

To produce an efficient encryption platform for a diverse group of algorithms, an effective solution to the

functional unit allocation problem must have the flexibility needed to simultaneously address the multi-

dimensional hardware requirements of the entire domain while maximizing usability and maintaining hard

or soft area and performance constraints. In the following sections we propose three solutions to this

problem. The first algorithm addresses hard performance constraints. The second and third algorithms

attempt to maximize the overall performance given softer constraints.

6.1 Performance-Constrained Algorithm
The first algorithm we developed uses a hard minimum throughput constraint to guide the functional unit

selection. As described earlier, we began the exploration of the AES domain by establishing the hardware

requirements of all of the algorithms for a variety of performance levels. These results are shown in

Appendix B. First, we determined the hardware requirements for the most reasonably compact versions of

each algorithm. For all algorithms except for Loki97, these fully rolled implementations require very

modest hardware resources. Loki97 is unique because the algorithm requires a minimum of 10KB of

memory. After this, we determined the hardware requirements for various unrolled versions of each

algorithm at logical intervals. We use this table of results to determine the minimum hardware that each

algorithm needs in order to support a given throughput constraint.

Our first algorithm begins by determining the hardware requirements to run each algorithm at a specified

minimum throughput. We then examine these requirements to establish the maximum required number of

each type of functional unit. To calculate the overall performance for this superset of resources, we re-

Algorithm (Unrolling Factor) RAM Blocks Muxes Runtime
FROG (1x) 8 23 512
FROG (4x) 8 72 128
FROG (16x) 8 256 32
FROG (64x) 16 120 8
FROG (256x) 64 30 2

13

examine each algorithm to determine if there are sufficient resources to allow for greater throughput, then

apply the cost function described by this equation:

∑
−

=
=

1

0

N

i
iCCCost

In this equation, N is the total number of algorithms in the domain and CCi is the number of clock cycles

required to encrypt a single 128-bit block of plaintext in the highest throughput configuration of algorithm i

that will fit on the architecture. See Figure 10 for an illustrated example of the performance-constrained

functional unit selection process.

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Determine the slowest implementation for each
algorithm that still satisfies the minimum throughput

requirement, then eliminate implementations below the
performance threshold

of Clock
Cycles

If possible, further unroll the algorithms to better
utilize available resources. Final Cost = 4 + 1 + 3 = 8

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Algorithm X Algorithm Y Algorithm Z
4 4 1 3 1

of
Functional

Units
Required

Based on this subset of implementations, determine the
minimum number of each resource type.

We are given the functional unit requirements of three
encryption algorithms in a range of performance levels.

We are also given a hard throughput constraint –
4 clock cycles / block in this example.

of Clock
Cycles

4 4 1 3 1

of
Functional

Units
Required

Algorithm X Algorithm Y Algorithm Z

unroll

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Determine the slowest implementation for each
algorithm that still satisfies the minimum throughput

requirement, then eliminate implementations below the
performance threshold

of Clock
Cycles

If possible, further unroll the algorithms to better
utilize available resources. Final Cost = 4 + 1 + 3 = 8

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Algorithm X Algorithm Y Algorithm Z
4 4 1 3 1

of
Functional

Units
Required

Based on this subset of implementations, determine the
minimum number of each resource type.

We are given the functional unit requirements of three
encryption algorithms in a range of performance levels.

We are also given a hard throughput constraint –
4 clock cycles / block in this example.

of Clock
Cycles

4 4 1 3 1

of
Functional

Units
Required

Algorithm X Algorithm Y Algorithm Z

unroll

Figure 10 – Performance-Constrained Functional Unit Selection
Illustration of our performance-constrained selection algorithm.

Note that this is a greedy algorithm and, due to the non-linear and non-monotonic behavior of hardware

requirements, does not necessarily find the minimum area or maximum performance for the system.

Because the starting point is chosen solely on the basis of throughput, without considering hardware

requirements, it is possible that higher throughput implementations of a given algorithm may have lower

resource demands for particular functional types. If that algorithm becomes the limiting factor when

determining the number of any resource type, it will likely affect the overall area and performance results.

14

6.2 Area-Constrained Algorithm
The next two algorithms we developed use simulated annealing to provide more sophisticated solutions that

are able to capitalize on softer constraints to improve average throughput. The second algorithm begins by

randomly adding functional units to the architecture until limited by a given area constraint. The quality of

this configuration is evaluated by determining the highest performance implementation for each algorithm,

given the existing resources, then applying the cost function described by this equation:

∑
−

=

=
1

0 ,
N

i

 i

otherwise A* PC
rearchitectu the on fits i algorithm if ,CC

Cost

In this equation, N is the total number of algorithms in the domain and CCi is the number of clock cycles

required to encrypt a single 128-bit block of plaintext in the highest throughput configuration of algorithm i

that will fit on the array. However, if an algorithm cannot be implemented on the available hardware, we

impose an exclusion penalty proportional to A, the additional area necessary to map the slowest

implementation of the algorithm to the array. In all of our evaluations, we used a constant penalty scaling

factor (PC) of 10%. This translated to a very steep penalty since we wanted our system include all of the

candidate algorithms. However, this factor is completely application-dependant and must be tuned

depending on the size of the functional units, how many algorithms are in the domain, what the average

runtime is, and how critical it is that the system is able to implement the entire domain. While this penalty

system does not necessarily guide the simulated annealing to the best solution, since a higher throughput

implementation may be closer to the existing configuration, it does provide some direction to the tool to

help prevent the potentially unwanted exclusion of some of the algorithms in the domain.

After calculating the quality of the configuration we perturb the system by randomly picking two types of

components, removing enough of the first type to replace it with at least one of the second, then adding

enough of the second type to fill up the available area. Finally, the quality of the new configuration is

evaluated in the same manner as before. If the new configuration provides the same or better throughput, it

is accepted. If it does not provide better performance, based on the current temperature and relative

performance degradation, it may or may not be accepted. This process is based on the simple acceptance

function and adaptive cooling schedule described in [3]. See Figure 11 for an illustration of this procedure.

Note that, as described earlier, some operations may be emulated by combinations of other functional units.

For simplicity we did not directly deal with this possibility, but there is no inherent limitation in either of

the area-constrained solutions that would prevent this from being addressed with a larger

hardware/throughput matrix.

15

Unit Type 1 Unit Type 2 Unit Type 3
Unit Type 4 Unit Type 5

1) Starting Config.

2) Remove Unit 4

3) Add Unit 5

4) Evaluate & Accept

5) Remove Unit 5

6) Add Unit 2

7) Evaluate & Reject Maximum
Area

Unit Type 1 Unit Type 2 Unit Type 3
Unit Type 4 Unit Type 5

1) Starting Config.

2) Remove Unit 4

3) Add Unit 5

4) Evaluate & Accept

5) Remove Unit 5

6) Add Unit 2

7) Evaluate & Reject Maximum
Area

Figure 11 – Area-Constrained Function Unit Selection
Illustration of our area-constrained selection algorithm.

6.3 Improved Area-Constrained Algorithm
Our last functional unit selection algorithm attempts to balance performance and area constraints. First, we

eliminate implementations from the hardware/throughput matrix that do not provide enough throughput to

meet a specified minimum performance requirement. Then, we randomly select one of the remaining

implementations of each algorithm for our current arrangement. We determine the minimum hardware and

area requirements necessary to fit all of the algorithms at their current settings, then establish if any

algorithms can be expanded to a higher performance level given the calculated hardware resources. The

quality of this arrangement is determined by the number of clock cycles required to run all of the

algorithms at their current settings and a penalty based on any excessive area needed by the system. The

cost function is described by this equation:

Penalty AreaCCCost
N

i
 i += ∑

−

=

1

0

In this equation, N is the total number of algorithms in the domain and CCi is the number of clock cycles

required to encrypt a single 128-bit block of plaintext in highest throughput configuration of algorithm i

that will fit on the architecture. If the area required for the current configuration is larger than the specified

maximum allowable area, we also add an area penalty that is described by this equation:

)/(* MACAPC Penalty Area =

 In this case, PC is a constant penalty scaling factor, CA is the calculated area requirement of the current

configuration and MA is the specified maximum allowable area. Again, since we wanted a hard area

16

constraint for our evaluation, we set PC to a large value: 2000. However, similar to the previous functional

unit selection algorithm, this term is application-specific and must be tuned depending on how hard or soft

an area constraint is desired. After calculating the quality of the configuration, we then perturb the system

by arbitrarily choosing one algorithm and randomly changing the setting to a different performance level.

Finally, the quality is re-evaluated and compared to the original arrangement in the same simulated-

annealing manner as described in Section 6.2. See Figure 12 for an illustration of this process.

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Maximum
Area

Cost = 6 + 100 = 106

Eliminate any implementations below the given
performance threshold, then randomly choose a

throughput level for each algorithm and
determine the minimum hardware requirements.

Unroll the algorithms further, if possible.

Evaluate the throughput and penalize for any
excessive area required by the resulting

architecture.

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Randomly choose a new implementation for one
algorithm (Z in this case), and determine the

hardware requirements for the new configuration.

Cost = 14 + 20 = 34

Maximum
Area

Despite the lower performance, the new state
will be accepted due to a much lower area

penalty.

Cost = 6 + 100 = 106

unroll

unroll

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Maximum
Area

Cost = 6 + 100 = 106

Eliminate any implementations below the given
performance threshold, then randomly choose a

throughput level for each algorithm and
determine the minimum hardware requirements.

Unroll the algorithms further, if possible.

Evaluate the throughput and penalize for any
excessive area required by the resulting

architecture.

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

of
Functional

Units
Required

of Clock
Cycles

Randomly choose a new implementation for one
algorithm (Z in this case), and determine the

hardware requirements for the new configuration.

Cost = 14 + 20 = 34

Maximum
Area

Despite the lower performance, the new state
will be accepted due to a much lower area

penalty.

Cost = 6 + 100 = 106

unroll

unroll

Figure 12 – Improved Area-Constrained Functional Unit Selection
Illustration of our improved area-constrained selection algorithm. In this example we assume the throughput
threshold is set at 10 cycles/block.

7 Function Unit Allocation Results

The testing of the functional unit selection techniques began by using the performance-constrained

algorithm as a baseline for comparison. We first identified all of the distinct throughput levels between the

AES candidate algorithms. As seen in Appendix B, these ranged between 1 and 512 cycles per data block.

Then, each of these distinct throughput constraints was fed into the performance-constrained functional unit

selection algorithm. The area requirements for each were recorded and then used as inputs to the two area-

constrained techniques. The data retrieved from our testing can be seen in Appendix C.

The three techniques we developed produce very different results when applied to the set of 15 AES

candidate algorithms. As expected, the hard throughput constraint of the performance-driven approach has

17

limitations. In Figure 13 and Figure 14 we plot the results of all three functional unit selection algorithms

over ten area scenarios. Figure 13 shows the maximum number of clock cycles per block required by any

algorithm in the domain as a function of the area of the system. Since the number of clock cycles needed to

encrypt each block of data is inversely proportional to the throughput, we can see from this graph that, for

the majority of the architectures we examined, the performance-constrained algorithm indeed produces the

best minimum performance among the three selection methods. Also, as expected, the limitations of the

performance-driven algorithm regarding non-linear and non-monotonic hardware requirements allow the

improved area-constrained technique to occasionally obtain somewhat better minimum performance.

In contrast, though, when we plot the total number of clock cycles required by all of the algorithms in the

domain as a function of area, as in Figure 14, we see a completely different picture for the performance-

constrained selection method. The results in this graph directly reflect the average performance of the

system for a given configuration. Figure 14 shows that the average performance of the system across the

domain is reduced by as much as almost 50% when using the performance-constrained selection method as

compared to using either of the area-driven techniques. The poor average throughput is particularly

apparent in the larger architectures. This means that if the design constraints allow for some flexibility in

terms of the minimum acceptable performance, better average throughput may be obtained by using either

of the area driven approaches.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

A rea R equ irem en ts

W
or

st
-C

as
e

C
lo

ck
 C

yc
le

s /
 B

lo
ck

P erf. Const .
A rea Co nst.
Im p. Area C onst.

Figure 13 – Minimum Throughput Results of Functional Unit Selection
Graph of maximum number of clock cycles required by any algorithm in the domain as a function of area. The
exact area required by the generated architectures is shown in Figure 15.

18

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

A rea R equ irem en ts

To
ta

l C
lo

ck
s C

yc
le

s /
 B

lo
ck

P erf. Const .
A rea Co nst.
Im p. Area C onst.

Figure 14 – Performance Results Across the Domain of Functional Unit Selection
Graph of the total number of clock cycles required to run all 15 of the AES algorithms as a function of area.
Again, the exact area required by the generated architectures is shown in Figure 15. Notice that the overall
performance of the higher throughput systems produced by the performance-constrained algorithm lag
considerably behind that of the architectures generated by either of the area-constrained techniques.

When comparing the two area-constrained techniques, Figure 14 shows that the average performance

results of the improved area-constrained technique are marginally better than those from the original area-

driven algorithm. In addition, Figure 13 shows that the improved area-constrained method consistently

produces architectures with an equal or lower maximum number of clock cycles for the worst-case

encryption algorithm compared to the basic area constrained technique. Furthermore, when we look at the

area requirements for the generated architectures, as seen in Figure 15, we see that the improved area-

constrained method consistently produces architectures with equal or smaller area requirements. All of

these observations can likely be attributed to the same source: because the original area-constrained

functional unit selection algorithm is based upon randomly adding and subtracting different types of

components to the system, it is likely that none of the encryption algorithms fully utilize any of the

functional unit types in the resultant architecture. Conversely, since the improved area-constrained

technique is based upon choosing groups of particular encryption implementations, it is guaranteed that at

least one algorithm will fully utilize each of the functional unit types. It is likely that this fundamental

difference creates more noise in the original area-constrained selection technique and thus makes it more

difficult for the algorithm to converge. In addition, even if the original area-constrained technique were to

converge on a similar mixture of components as the improved method, it is very possible that there may

19

still be some functional unit types that are not fully utilized by any algorithm. Of course, this will result in

a larger architecture than is necessary.

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9 10

A rea R eq uirements

A
re

a
(1

0
M

ill
io

n
Sq

. U
ni

ts
)

P erf. Const.
A rea Co nst.
Im p. Area C onst.

Figure 15 – Area Results of Functional Unit Selection
Graph of area requirements of the systems examined in Figure 13 and Figure 14.

The three functional unit selection techniques also recommended very different hardware resources. When

we plot the distribution of functional units over the range of architectures that we developed (Figure 16),

we can see that the hard constraints of the performance driven method lead to a very memory-dominated

architecture. This is primarily caused by the quickly growing memory requirements of Loki97 and,

eventually, MAGENTA. See Appendix B for the details of the hardware requirements for all of the

encryption algorithms. While this additional memory may be necessary to allow these algorithms to run at

high speed, it does not adequately reflect the requirements of the other encryption algorithms. As seen in

Figure 17, the original area driven technique has a fairly even response to varying area limitations. Since

only three algorithms benefit from having more than 64KB of memory and only one or two benefit from

large numbers of multiplexors, we see that this algorithm attempts to improve the average throughput of the

system by devoting more resources to the other components. As seen in Figure 18, the improved area-

constrained technique combines these recommendations. Like the original area-constrained technique, it

recognizes the limited usage of multiplexors. However, it also considers the moderate RAM requirements

of many of the high performance implementations of the AES candidate algorithms. This is reflected in the

mild emphasis of RAM units in the medium to large architectures.

20

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.49 0.50 0.53 0 .7 1 1.14 1.79 1.82 3.07 3.07 5 .97 6.1 5 11 .8 9 2 3.7 8

A rea (10 M illion U nits)

%
 o

f T
ot

al
 N

um
be

r
of

 C
om

po
ne

nt
s

R AM
M ux
A LU
X B A R
M ul
G alois
R ot

Figure 16 – Resource Results from Performance-Constrained Analysis
The functional unit distribution recommended by the performance-constrained functional unit selection
technique.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.49 0.50 0.53 0 .7 1 1.14 1.79 1.82 3.07 3.07 5 .97 6.1 5 11 .8 9 2 3.7 8

A rea (10 M illion U nits)

%
 o

f T
ot

al
 N

um
be

r
of

 C
om

po
ne

nt
s

R AM
M ux
A LU
X B A R
M ul
G alois
R ot

Figure 17 – Resource Results from Area-Constrained Analysis
The functional unit distribution recommended by the more flexible area-constrained technique.

21

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.49 0.50 0.53 0 .6 9 1.13 1.79 1.82 3.02 3.06 5 .90 6.0 3 10 .3 8 2 3.7 8

A rea (10 M illion U nits)

%
 o

f T
ot

al
 N

um
be

r
of

 C
om

po
ne

nt
s

R AM
M ux
A LU
X B A R
M ul
G alois
R ot

Figure 18 – Resource Results from Improved-Area Constrained Analysis
The functional unit distribution recommended by the improved area-constrained technique. The selected area is
of most interest because it represents high performance implementations and the relative ratios of the various
components are mostly stable

The results from our tests show that the improved area-constrained method generally best combined area

and performance constraints. Therefore, while taking special consideration for stable, high performance

implementations and the possibility for future flexibility, we arrived at the component mixture shown in

Figure 19 for our RaPiD-AES cell. This mixture was normalized to provide a single multiplier per cell. We

chose to include slightly more multiplexors and ALUs than recommended by the selected area of Figure 18

to add flexibility for future modifications and new encryption algorithms. Although the large number of

components per cell will produce a very sizeable atomic building block and may conflict with the desire to

produce incrementally larger architectures, we believe that this cell will allow encryption algorithms to map

to RaPiD-AES architectures with a minimum of wasted resources and a maximum of performance and

flexibility.

Unit Type Num / Cell % of Num % of Area
MUX 9 18% 6%
RAM 16 32% 46%
Xbar 6 12% 7%
Mul 1 2% 11%
Galois 2 4% 10%
ALU 12 24% 16%
Rot 4 8% 3%

Figure 19 – Component Mixture
Recommended component mixture extrapolated from functional unit analysis

22

As mentioned earlier, the AES algorithms have a relatively simple, linear/iterative dataflow, similar to

those found in DSP applications. Thus, although we needed to add four completely new types of function

units (rotator/shifters, cross bars, multi-mode memory blocks and a 4-issue 8-bit multiplier) into the RaPiD-

AES system, we believe that the bus-based 1-D routing architecture provided by the original RaPiD system

is very suitable to our needs. However, while we use the same overall layout of segmented busses, the

word size of each bus was changed to 32-bits wide in order to match those of our functional units.

8 RaPiD-AES Compiler

In addition to modifying the functional units of the RaPiD architecture, we have made modifications to the

RaPiD-C compiler. While the RaPiD architecture was originally designed with a 16-bit word size and only

four unique DSP-specialized datapath elements, the RaPiD-C language was designed with flexibility in

mind. We took advantage of this versatility and implemented RaPiD-C extensions of the encryption-

specific components we developed. This allowed us to use RaPiD-C to specify our designs and the RaPiD

compiler to map to our custom architecture. See Appendix D for the Verilog code we incorporated into the

RaPiD-AES compiler, and Appendix E for the RaPiD-AES implementation of the Rijndael encryption

algorithm.

9 Future Work

While we expect that our architecture will provide good performance and resource utilization, exact

comparisons with AES implementations on existing FPGAs, in terms of timing, area and power numbers,

require that the RaPiD-AES cell be fully laid out and that existing place and route tools be modified to

incorporate the new features of the architecture. Members of our research group are currently working on

this and the comparisons will be highlighted in future publications.

Another issue that we would like to further investigate is the flexibility of the architecture. While RaPiD-

AES will likely perform well on the limited set of fifteen algorithms that directly affected the design, we

believe that our methodology sufficiently encapsulated the needs of encryption algorithms as a domain.

This means that it is likely that algorithm updates or completely different ciphers would also perform well

on our architecture. In addition to the algorithm modifications that were made during the AES competition,

Japan’s CRYPTREC and the New European Schemes for Signatures, Integrity and Encryption (NESSIE),

two new encryption competitions, are currently analyzing additional sets of symmetric block ciphers for

use as future standards. We intend to map these algorithms to our architecture to verify the adaptability of

RaPiD-AES.

23

10 Conclusions

In this paper we have described the issues we faced during the development of a coarse-grained encryption-

specialized reconfigurable architecture. First, we developed a set of seven versatile functional units that

can implement all of the operations needed by the 15 AES candidate algorithms. Next, we identified a

unique problem inherent to the development of coarse-grained reconfigurable architectures. Finally, based

on the experiments that we performed, we developed a tile-able encryption-specialized cell for a RaPiD-

like reconfigurable array.

We presented three functional unit selection algorithms that attempt to balance vastly different hardware

requirements with performance and area constraints. The first algorithm produces architectures under a

guaranteed hard performance requirement. The second algorithm allows designers to trade versatility for

better average throughput. The third algorithm produces efficient architectures that can take advantage of

softer area constraints. While the performance-constrained algorithm can be used when designers are only

concerned with the minimum performance of a system, the area-constrained algorithms were shown to

produce better average performance given similar area. Although the original area-constrained technique

allows designers to potentially improve overall performance by excluding very demanding algorithms, the

improved area-constrained technique consistently produced better results when considering the entire

domain. It is likely that the improved area-constrained algorithm would be most appropriate choice unless

the minimum performance of the system needs to be absolutely guaranteed.

Although we encountered the difficulties of functional unit selection while exploring an encryption-specific

domain, we believe that the causes of the problem are not exclusive to encryption and can be expected to be

common in many complex groups of applications. The functional unit selection problem will become more

difficult as reconfigurable devices are expected to offer better and better performance over large domain

spaces. Increased specialization of function units and growing domain size combined with the need for

resource utilization optimization techniques such as functional unit emulation will soon complicate

architecture exploration beyond that which can be analyzed by hand. In the future, designers will need

CAD tools that are aware of these issues in order to create devices that retain the flexibility required for

customization over a domain of applications while maintaining good throughput and area characteristics.

24

11 Bibliography

[1] Adams, C. and J. Gilchrist. “The CAST-256 Encryption Algorithm.” First AES Candidate
Conference, Aug. 20-22, 1998.

[2] Anderson, Ross, Eli Biham and Lars Knudsen. “Serpent: A Proposal for the Advanced Encryption
Standard.” First AES Candidate Conference, Aug. 20-22, 1998.

[3] Betz, Vaughn and Jonathon Rose. “VPR: A New Packing, Placement and Routing Tool for FPGA
Research.” International Workshop on Field Programmable Logic and Applications, 1997: 213-
22.

[4] Brown, Lawrie and Josef Pieprzyk. “Introducing the New LOKI97 Block Cipher.” First AES
Candidate Conference, Aug. 20-22, 1998.

[5] Burwick, Carolynn, Don Coppersmith, Edward D'Avignon, Rosario Gennaro, Shait Halevi,
Charanjit Jutla, Stephen M. Matyas Jr., Luke O'Connor, Mohammad Peyravian, David Safford and
Nevenko Zunic. “Mars – A Candidate Cipher for AES.” First AES Candidate Conference, Aug.
20-22, 1998.

[6] Compton, K., A. Sharma, S. Phillips and S. Hauck. “Flexible Routing Architecture Generation for
Domain-Specific Reconfigurable Subsystems.” International Conference on Field Programmable
Logic and Applications, 2002: 59-68.

[7] Cronquist, Darren C., Paul Franklin, Stefan G. Berg and Carl Ebeling. "Specifying and Compiling
Applications for RaPiD." Field-Programmable Custom Computing Machines, 1998: 116 –25.

[8] Cronquist, Darren C., Paul Franklin, Chris Fisher, Miguel Figueroa and Carl Ebeling.
"Architecture Design of Reconfigurable Pipelined Datapaths." Twentieth Anniversary Conference
on Advanced Research in VLSI, 1999:23-40.

[9] Cylink Corporation. “Nomination of SAFER+ as Candidate Algorithm for the Advanced
Encryption Standard (AES).” First AES Candidate Conference, Aug.20-22, 1998.

[10] Daemen, Joan and Vincent Rijmen. “AES Proposal: Rijndael.” First AES Candidate Conference,
Aug. 20-22, 1998.

[11] Ebeling, Carl, Darren C. Cronquist, and Paul Franklin. "RaPiD - Reconfigurable Pipelined
Datapath." The 6th International Workshop on Field-Programmable Logic and Applications,
1996: 126 - 35.

[12] Elbirt, A, W. Yip, B. Chetwynd, and C. Paar. "An FPGA-Based Performance Evaluation of the
AES Block Cipher Candidate Algorithm Finalists." IEEE Transactions on VLSI, August 2001,
Volume 9.4: 545-57.

[13] Fischer, Viktor. “Realization of the Round 2 AES Candidates Using Altera FPGA.” Third AES
Candidate Conference, April 13-14, 2000.

[14] Georgoudis, Dianelos, Damian Leroux, Billy Simón Chaves, and TecApro International S.A. “The
‘FROG’ Encryption Algorithm.” First AES Candidate Conference, Aug. 20-22, 1998.

25

[15] Gilbert, H., M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin, G. Poupard, J. Stern and S.
Vaudenay. “Decorrelated Fast Cipher: An AES Candidate.” First AES Candidate Conference,
Aug. 20-22, 1998.

[16] Gladman, Brian. “Implementation Experience with AES Candidate Algorithms.” Second AES
Candidate Conference, March 22-23, 1999.

[17] Jacobson, M. J. Jr. and K. Huber. “The MAGENTA Block Cipher Algorithm.” First AES
Candidate Conference, Aug. 20-22, 1998.

[18] Kaps, J.P. “High Speed FPGA Architectures for the Data Encryption Standard.” Master's thesis,
ECE Dept., Worcester Polytechnic Institute, May 1998.

[19] Kaps, J. and C. Paar; “Fast DES Implementation for FPGAs and its Application to a Universal
Key-Search Machine.” Selected Areas in Cryptography, 1998: 234-47.

[20] Kean, T. and A. Duncan. “DES Key Breaking, Encryption and Decryption on the XC6216.” IEEE
Symposium on FPGAs for Custom Computing Machines, 1998: 310-311.

[21] Knudsen, Lars R. “DEAL - A 128-bit Block Cipher.” First AES Candidate Conference, Aug. 20-
22, 1998.

[22] Lim, C.H. “CRYPTON: A New 128-bit Block Cipher.” First AES Candidate Conference, Aug.
20-22, 1998.

[23] National Institute of Standards and Technology. Advanced Encryption Standard (AES)
Development Effort. Nov. 11, 2002. <http://csrc.nist.gov/encryption/aes/index2.html>.

[24] Nippon Telegraph and Telephone Corporation. “Specification of E2 – A 128-bit Block Cipher”;
First AES Candidate Conference, Aug. 20-22, 1998.

[25] Riaz, M and H. M. Heys. "The FPGA Implementation of the RC6 and CAST-256 Encryption
Algorithms." Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer
Engineering, Volume 1, 1999.

[26] Rivest, Ron, M. J. B. Robshaw, R. Sidney and Y. L. Yin. “The RC6 Block Cipher.” First AES
Candidate Conference, Aug. 20-22, 1998.

[27] Schneier, B., J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson. “Twofish: A 128-bit
Block Cipher.” First AES Candidate Conference, Aug. 20-22, 1998.

[28] Schneier, Bruce. Applied Cryptography. John Wiley & Sons Inc.

[29] Schneier, Bruce, and Doug Whiting. “A Performance Comparison of the Five AES Finalists.”
Third AES Candidate Conference, April 13-14, 2000.

[30] Schroeppel, Rich. “Hasty Pudding Cipher Specification.” First AES Candidate Conference, Aug.
20-22, 1998.

[31] Sorkin, Arthur. "Lucifer, A Cryptographic Algorithm." Cryptologia, Volume 8.1, 1984, pp 22-41.

26

[32] Xilinx. The Programmable Logic Data Book 1999.

27

Appendix A - Galois Field Multiplication

Manipulating variables in a Galois Field is special in that all operations (addition, subtraction, etc.) begin

with two variables in a field and result in an answer that also lies in the field. One difference between

conventional multiplication and Galois Field multiplication is that an N-bit conventional multiplication

results in a (2N)-bit product while a Galois Field multiplication, as mentioned earlier, must result in an N-

bit product in order to stay in the field.

Galois Field multiplication begins in a similar manner to conventional multiplication in that all partial

products are calculated by AND-ing each bit of B with A. From that point though, there are two key

differences. First, partial sums are calculated using Galois Field addition (bit-wise XOR) instead of

conventional N-bit carry addition. Second, an iterative reduction may be necessary to adjust the output so

that it stays in the N-bit field. If the preliminary sum is greater or equal to 2^N, the result lies outside the

N-bit field and must be XOR-ed with a left justified (N+1)-bit reduction constant. The most significant bit

of the reduction constant is always a 1, so as to eliminate the most significant bit in the preliminary sum.

This process is repeated until the result lies within the N-bit field. For all of the Galois Field

multiplications performed in the AES candidate algorithms, N is 8 and the reduction constant either 0x11B

or 0x169.

1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 1

A
B

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 1 1 1 1 1 0

0 0 0 1 1 0 1 11

X

0 0 1 0 1 0 0 0 0 1 1 1 0

0 0 0 1 1 0 1 11

0 0 1 0 1 1 0 0 0 1 0

0 0 0 1 1 0 1 11

0 0 1 1 1 1 0 0 1

Partial
Products

Sum
Reduction

Left justified to leading 1

1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Left justified to leading 1

Left justified to leading 1

28

Appendix B – Hardware Requirements

Estimated Area of Functional Units
 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift
Estimated Area (units2) 7616 34880 14848 134016 63416 16384 10106

Functional Unit and Area Requirements for AES Candidate Algorithms

Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area (units2)
CAST-256 4 X 12 10 16 0 0 0 5 1 726266
 4 X 6 20 32 0 0 0 10 2 1452532
 2 X 6 16 64 0 0 0 20 4 2722280
 1 X 6 8 128 0 0 0 40 8 5261776
 1 X 1 0 768 0 0 0 240 48 31205088
Crypton 12 8 16 16 0 0 36 0 1446400
 6 4 32 32 0 0 68 0 2735872
 4 4 48 48 0 0 100 0 4025344
 3 4 64 64 0 0 132 0 5375744
 2 4 96 96 0 0 196 0 8015616
 1 0 192 192 0 0 388 0 15904768
Deal 6 X 16 6 1 7 0 0 7 0 299200
 6 X 8 6 2 10 0 0 10 0 427776
 6 X 4 6 4 16 0 0 16 0 684928
 6 X 2 6 8 28 0 0 28 0 1199232
 6 X 1 4 16 52 0 0 52 0 2212608
 3 X 1 4 32 104 0 0 104 0 4394752
 2 X 1 4 48 156 0 0 156 0 6576896
 1 X 1 0 96 312 0 0 312 0 13092864
DFC 8 5 0 0 8 0 26 1 1546298
 4 5 0 0 16 0 52 2 3054516
 2 5 0 0 32 0 104 4 6070952
 1 1 0 0 64 0 208 8 12073360
E2 12 4 16 4 4 0 43 3 1918830
 6 4 32 8 8 0 78 3 3645806
 3 4 64 16 16 0 148 3 7099758
 2 4 128 24 24 0 218 3 11669870
 1 0 256 48 48 0 428 3 23117422
Frog 4 X 16 X 8 23 8 0 0 0 1 0 470592
 4 X 16 X 4 38 8 0 0 0 2 0 601216
 4 X 16 X 2 72 8 0 0 0 4 0 892928
 4 X 16 X 1 128 8 0 0 0 8 0 1384960
 2 X 16 X 1 256 8 0 0 0 16 0 2490880
 1 X 16 X 1 240 8 0 0 0 32 0 2631168
 1 X 8 X 1 120 16 0 0 0 64 0 2520576
 1 X 4 X 1 60 32 0 0 0 128 0 3670272
 1 X 2 X 1 30 64 0 0 0 256 0 6655104
 1 X 1 X 1 15 128 0 0 0 512 0 12967488
HPC 8 4 24 52 0 0 56 4 2597608
 4 4 48 104 0 0 112 8 5164752
 2 4 96 208 0 0 224 16 10299040
 1 0 192 416 0 0 448 32 20537152

* A X B notation indicates nested looping

29

Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area (units2)
Loki97 16 X 8 13 40 7 0 0 14 0 1827520
 16 X 4 11 80 7 0 0 16 0 3240256
 16 X 2 7 160 7 0 0 20 0 6065728
 16 X 1 4 320 7 0 0 28 0 11754752
 8 X 1 4 640 14 0 0 56 0 23479040
 4 X 1 4 1280 28 0 0 112 0 46927616
 2 X 1 4 2560 56 0 0 224 0 93824768
 1 X 1 0 5120 112 0 0 448 0 1.88E+08
Magenta 6 X 3 X 4 12 16 0 0 0 20 4 1017576
 6 X 3 X 2 12 32 0 0 0 22 4 1608424
 6 X 3 X 1 8 64 0 0 0 26 4 2759656
 6 X 1 X 1 8 192 0 0 0 74 12 8091576
 3 X 1 X 1 4 384 0 0 0 148 24 16091760
 2 X 1 X 1 4 576 0 0 0 222 36 24122408
 1 X 1 X 1 0 1152 0 0 0 444 72 48183888
Mars 16 12 24 0 1 0 36 8 1733200
 8 16 32 0 2 0 48 14 2433964
 4 32 64 0 4 0 96 28 4867928
 2 64 128 0 8 0 192 56 9735856
 1 128 256 0 16 0 384 112 19471712
RC6 8 4 0 0 2 0 10 6 522972
 4 4 0 0 4 0 16 12 949944
 2 4 0 0 6 0 28 24 1535856
 1 0 0 0 8 0 52 48 2409184
Rijndael 10 X 16 8 4 0 0 1 12 3 490790
 10 X 8 8 4 0 0 2 12 3 554206
 10 X 4 8 4 0 0 4 12 3 681038
 10 X 2 8 8 0 0 8 12 3 1074222
 10 X 1 4 16 0 0 16 12 3 1830126
 5 X 1 4 32 0 0 32 16 6 3498716
 2 X 1 4 80 0 0 80 28 15 8504486
 1 X 1 0 160 0 0 160 48 30 16816972
Safer+ 8 X 16 8 16 0 0 4 11 0 1052896
 8 X 8 8 16 0 0 8 14 0 1355712
 8 X 4 8 16 0 0 16 20 0 1961344
 8 X 2 8 16 0 0 32 32 0 3172608
 8 X 1 4 16 0 0 64 56 0 5564672
 4 X 1 4 32 0 0 128 104 0 10967808
 2 X 1 4 64 0 0 256 200 0 21774080
 1 X 1 0 128 0 0 512 160 0 39555072
Serpent 32 8 8 32 0 0 16 8 1158096
 16 4 8 32 0 0 28 16 1405088
 8 4 16 32 0 0 52 32 2239040
 4 4 32 32 0 0 100 64 3906944
 2 4 64 32 0 0 196 128 7242752
 1 0 128 32 0 0 388 256 13883904
Twofish 16 4 8 0 0 8 17 3 1125678
 8 4 16 0 0 16 26 6 2089820
 4 4 32 0 0 32 44 12 4018104
 2 4 64 0 0 64 80 24 7874672
 1 0 128 0 0 128 152 48 15557344

* A X B notation indicates nested looping

30

Appendix C – Results

Performance-Constrained Analysis

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Area (units2)
512 902 23 40 52 8 8 56 8 4.92027E+06
256 646 38 40 52 8 8 56 8 5.03451E+06
160 518 72 40 52 8 8 56 8 5.29346E+06
96 360 128 80 52 8 8 56 8 7.11515E+06
48 224 256 160 52 8 16 56 8 1.13877E+07
24 155 240 320 52 8 32 56 16 1.79422E+07
16 129 240 320 52 8 32 74 16 1.82371E+07
12 103 120 640 52 8 64 74 32 3.06758E+07
10 97 120 640 52 8 64 78 32 3.07413E+07
6 58 60 1280 104 16 128 128 64 5.96530E+07
5 43 60 1280 104 16 128 240 64 6.14880E+07
3 25 64 2560 208 32 256 256 128 1.18879E+08
1 15 128 5120 416 64 512 512 256 2.37759E+08

% of Total Number of Components

Max # of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
160 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
96 37.65% 23.53% 15.29% 2.35% 2.35% 16.47% 2.35%
48 46.04% 28.78% 9.35% 1.44% 2.88% 10.07% 1.44%
24 33.15% 44.20% 7.18% 1.10% 4.42% 7.73% 2.21%
16 32.35% 43.13% 7.01% 1.08% 4.31% 9.97% 2.16%
12 12.12% 64.65% 5.25% 0.81% 6.46% 7.47% 3.23%
10 12.07% 64.39% 5.23% 0.80% 6.44% 7.85% 3.22%
6 3.37% 71.91% 5.84% 0.90% 7.19% 7.19% 3.60%
5 3.17% 67.65% 5.50% 0.85% 6.77% 12.68% 3.38%
3 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65%
1 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65%

% of Total Area

Max # of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61%
160 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53%
96 13.70% 39.22% 10.85% 15.07% 7.13% 12.90% 1.14%
48 17.12% 49.01% 6.78% 9.41% 8.91% 8.06% 0.71%
24 10.19% 62.21% 4.30% 5.98% 11.31% 5.11% 0.90%
16 10.02% 61.20% 4.23% 5.88% 11.13% 6.65% 0.89%
12 2.98% 72.77% 2.52% 3.50% 13.23% 3.95% 1.05%
10 2.97% 72.62% 2.51% 3.49% 13.20% 4.16% 1.05%
6 0.77% 74.84% 2.59% 3.59% 13.61% 3.52% 1.08%
5 0.74% 72.61% 2.51% 3.49% 13.20% 6.40% 1.05%
3 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%
1 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%

31

Area-Constrained Analysis

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Area (units2)
512 902 23 40 52 8 8 56 8 4.92027E+06
256 646 38 40 52 8 8 56 8 5.03451E+06
128 518 72 40 52 8 8 56 8 5.29346E+06
128 297 122 40 53 8 16 81 58 7.11515E+06
64 156 73 84 113 8 33 141 74 1.13877E+07
32 92 64 192 105 17 64 135 64 1.79422E+07
32 93 68 192 156 16 32 197 129 1.82371E+07
16 55 64 320 209 16 129 262 129 3.06758E+07
16 55 69 321 208 17 128 256 132 3.07413E+07
16 38 136 387 459 68 258 608 283 5.96530E+07
8 28 146 774 208 64 161 541 261 6.14880E+07
8 23 204 828 521 182 514 1223 364 1.18879E+08
4 18 143 1282 789 930 523 1182 303 2.37759E+08

% of Total Number of Components

Max # of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61%
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53%
128 13.06% 19.61% 11.06% 15.07% 14.26% 18.65% 8.24%
64 4.88% 25.73% 14.73% 9.41% 18.38% 20.29% 6.57%
32 2.72% 37.33% 8.69% 12.70% 22.62% 12.33% 3.60%
32 2.84% 36.72% 12.70% 11.76% 11.13% 17.70% 7.15%
16 1.59% 36.39% 10.12% 6.99% 26.67% 13.99% 4.25%
16 1.71% 36.42% 10.05% 7.41% 26.41% 13.64% 4.34%
16 1.74% 22.63% 11.42% 15.28% 27.43% 16.70% 4.79%
8 1.81% 43.91% 5.02% 13.95% 16.60% 14.42% 4.29%
8 1.31% 24.29% 6.51% 20.52% 27.42% 16.86% 3.09%
4 0.46% 18.81% 4.93% 52.42% 13.95% 8.15% 1.29%

% of Total Area

Max # of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
128 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
128 32.28% 10.58% 14.02% 2.12% 4.23% 21.43% 15.34%
64 13.88% 15.97% 21.48% 1.52% 6.27% 26.81% 14.07%
32 9.98% 29.95% 16.38% 2.65% 9.98% 21.06% 9.98%
32 8.61% 24.30% 19.75% 2.03% 4.05% 24.94% 16.33%
16 5.67% 28.34% 18.51% 1.42% 11.43% 23.21% 11.43%
16 6.10% 28.38% 18.39% 1.50% 11.32% 22.63% 11.67%
16 6.18% 17.60% 20.87% 3.09% 11.73% 27.65% 12.87%
8 6.77% 35.92% 9.65% 2.97% 7.47% 25.10% 12.11%
8 5.32% 21.58% 13.58% 4.74% 13.40% 31.88% 9.49%
4 2.78% 24.88% 15.31% 18.05% 10.15% 22.94% 5.88%

32

Improved Area-Constrained Analysis

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Area (units2)
512 902 23 40 52 8 8 56 8 4.92027E+06
256 646 38 40 52 8 8 56 8 5.03451E+06
128 518 72 40 52 8 8 56 8 5.29346E+06
128 297 120 40 52 8 16 78 48 6.93000E+06
32 156 60 160 52 8 16 128 32 1.13170E+07
16 103 60 320 52 8 32 128 32 1.79130E+07
16 98 60 320 52 8 32 128 64 1.82360E+07
16 57 64 384 104 16 128 196 128 3.01920E+07
16 57 120 384 104 16 128 196 128 3.06180E+07
8 30 128 768 208 32 256 388 128 5.90250E+07
8 29 128 768 208 32 256 388 256 6.03180E+07
4 18 128 1280 416 64 512 512 256 1.03820E+08
1 15 128 5120 416 64 512 512 256 2.37759E+08

% of Total Number of Components

Max # of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61%
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53%
128 13.19% 20.13% 11.14% 15.47% 14.64% 18.44% 7.00%
32 4.04% 49.31% 6.82% 9.47% 8.97% 18.53% 2.86%
16 2.55% 62.31% 4.31% 5.99% 11.33% 11.71% 1.81%
16 2.51% 61.21% 4.23% 5.88% 11.13% 11.50% 3.55%
16 1.61% 44.36% 5.11% 7.10% 26.89% 10.64% 4.28%
16 2.98% 43.75% 5.04% 7.00% 26.51% 10.49% 4.22%
8 1.65% 45.38% 5.23% 7.27% 27.50% 10.77% 2.19%
8 1.62% 44.41% 5.12% 7.11% 26.91% 10.54% 4.29%
4 0.94% 43.00% 5.95% 8.26% 31.27% 8.08% 2.49%
1 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%

% of Total Area

Max # of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
128 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
128 33.15% 11.05% 14.36% 2.21% 4.42% 21.55% 13.26%
32 13.16% 35.09% 11.40% 1.75% 3.51% 28.07% 7.02%
16 9.49% 50.63% 8.23% 1.27% 5.06% 20.25% 5.06%
16 9.04% 48.19% 7.83% 1.20% 4.82% 19.28% 9.64%
16 6.27% 37.65% 10.20% 1.57% 12.55% 19.22% 12.55%
16 11.15% 35.69% 9.67% 1.49% 11.90% 18.22% 11.90%
8 6.71% 40.25% 10.90% 1.68% 13.42% 20.34% 6.71%
8 6.29% 37.72% 10.22% 1.57% 12.57% 19.06% 12.57%
4 4.04% 40.40% 13.13% 2.02% 16.16% 16.16% 8.08%
1 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65%

33

Appendix D – RaPiD-AES Components

4-Issue 8-bit Modulus 256/Galois Field Multiplier
module mul8GalE(
 //Datapath Inputs
 XIn, YIn,
 //Datapath Outputs
 Output,
 //Control Inputs
 Mode,
 //Galois reduction polynomial (assume leading 1)
 GC7, GC6, GC5, GC4, GC3, GC2, GC1, GC0);

 //Performs unsigned %256 and 8-bit Galois field multiplication

 input [`BitWidth-1:0] XIn;
 input [`BitWidth-1:0] YIn;
 output [`BitWidth-1:0] Output;

 //Select Mode
 input Mode;

 //Reduction Polynomial (assume leading 1)
 input GC7;
 input GC6;
 input GC5;
 input GC4;
 input GC3;
 input GC2;
 input GC1;
 input GC0;

 reg [31:0] Output;
 reg [31:0] PP0;
 reg [31:0] PP1;
 reg [31:0] PP2;
 reg [31:0] PP3;
 reg [31:0] PP4;
 reg [31:0] PP5;
 reg [31:0] PP6;
 reg [31:0] PP7;
 reg [31:0] Mod8Result;
 reg [59:0] Galois1;
 reg [55:0] Galois2;
 reg [51:0] Galois3;
 reg [47:0] Galois4;
 reg [43:0] Galois5;
 reg [39:0] Galois6;
 reg [35:0] Galois7;
 reg [31:0] GaloisResult;

 //Field constant is actually 9'b1xxxxxxxx, but we assume leading 1
 wire [7:0] GalConstant;
 assign GalConstant = {GC7, GC6, GC5, GC4, GC3, GC2, GC1, GC0};

always @(XIn or YIn or Mode)
 begin
 PP0 = {XIn[31:24] & {8{YIn[24]}},
 XIn[23:16] & {8{YIn[16]}},
 XIn[15:8] & {8{YIn[8]}},
 XIn[7:0] & {8{YIn[0]}}};

 PP1 = {XIn[31:24] & {8{YIn[25]}},
 XIn[23:16] & {8{YIn[17]}},
 XIn[15:8] & {8{YIn[9]}},
 XIn[7:0] & {8{YIn[1]}}};

 PP2 = {XIn[31:24] & {8{YIn[26]}},
 XIn[23:16] & {8{YIn[18]}},
 XIn[15:8] & {8{YIn[10]}},
 XIn[7:0] & {8{YIn[2]}}};

 PP3 = {XIn[31:24] & {8{YIn[27]}},
 XIn[23:16] & {8{YIn[19]}},
 XIn[15:8] & {8{YIn[11]}},
 XIn[7:0] & {8{YIn[3]}}};

 PP4 = {XIn[31:24] & {8{YIn[28]}},
 XIn[23:16] & {8{YIn[20]}},
 XIn[15:8] & {8{YIn[12]}},
 XIn[7:0] & {8{YIn[4]}}};

 PP5 = {XIn[31:24] & {8{YIn[29]}},
 XIn[23:16] & {8{YIn[21]}},
 XIn[15:8] & {8{YIn[13]}},
 XIn[7:0] & {8{YIn[5]}}};

 PP6 = {XIn[31:24] & {8{YIn[30]}},
 XIn[23:16] & {8{YIn[22]}},

34

 XIn[15:8] & {8{YIn[14]}},
 XIn[7:0] & {8{YIn[6]}}};

 PP7 = {XIn[31:24] & {8{YIn[31]}},
 XIn[23:16] & {8{YIn[23]}},
 XIn[15:8] & {8{YIn[15]}},
 XIn[7:0] & {8{YIn[7]}}};

 //Since we're producing all of the partial products out to 15 bits we could make
 //this a full 8-bit * 8-bit = 16-bit multiply if we want to
 Mod8Result = {(PP0[31:24] + {PP1[30:24], 1'd0} + {PP2[29:24], 2'd0} +
 {PP3[28:24], 3'd0} + {PP4[27:24], 4'd0} + {PP5[26:24], 5'd0} +
 {PP6[25:24], 6'd0} + {PP7[24], 7'd0}),

 (PP0[23:16] + {PP1[22:16], 1'd0} + {PP2[21:16], 2'd0} +
 {PP3[20:16], 3'd0} + {PP4[19:16], 4'd0} + {PP5[18:16], 5'd0} +
 {PP6[17:16], 6'd0} + {PP7[16], 7'd0}),

 (PP0[15:8] + {PP1[14:8], 1'd0} + {PP2[13:8], 2'd0} +
 {PP3[12:8], 3'd0} + {PP4[11:8], 4'd0} + {PP5[10:8], 5'd0} +
 {PP6[9:8], 6'd0} + {PP7[8], 7'd0}),

 (PP0[7:0] + {PP1[6:0], 1'd0} + {PP2[5:0], 2'd0} +
 {PP3[4:0], 3'd0} + {PP4[3:0], 4'd0} + {PP5[2:0], 5'd0} +
 {PP6[1:0], 6'd0} + {PP7[0], 7'd0})};

 //Produces 15-bit "Product"
 Galois1 = {({7'd0, PP0[31:24]} ^ {6'd0, PP1[31:24], 1'd0} ^
 {5'd0, PP2[31:24], 2'd0} ^ {4'd0, PP3[31:24], 3'd0} ^
 {3'd0, PP4[31:24], 4'd0} ^ {2'd0, PP5[31:24], 5'd0} ^
 {1'd0, PP6[31:24], 6'd0} ^ {PP7[31:24], 7'd0}),

 ({7'd0, PP0[23:16]} ^ {6'd0, PP1[23:16], 1'd0} ^
 {5'd0, PP2[23:16], 2'd0} ^ {4'd0, PP3[23:16], 3'd0} ^
 {3'd0, PP4[23:16], 4'd0} ^ {2'd0, PP5[23:16], 5'd0} ^
 {1'd0, PP6[23:16], 6'd0} ^ {PP7[23:16], 7'd0}),

 ({7'd0, PP0[15:8]} ^ {6'd0, PP1[15:8], 1'd0} ^
 {5'd0, PP2[15:8], 2'd0} ^ {4'd0, PP3[15:8], 3'd0} ^
 {3'd0, PP4[15:8], 4'd0} ^ {2'd0, PP5[15:8], 5'd0} ^
 {1'd0, PP6[15:8], 6'd0} ^ {PP7[15:8], 7'd0}),

 ({7'd0, PP0[7:0]} ^ {6'd0, PP1[7:0], 1'd0} ^
 {5'd0, PP2[7:0], 2'd0} ^ {4'd0, PP3[7:0], 3'd0} ^
 {3'd0, PP4[7:0], 4'd0} ^ {2'd0, PP5[7:0], 5'd0} ^
 {1'd0, PP6[7:0], 6'd0} ^ {PP7[7:0], 7'd0})};

 //Reduction Step 15->14
 Galois2 = {(Galois1[58:45] ^ {({8{Galois1[59]}} & GalConstant), 6'd0}),
 (Galois1[43:30] ^ {({8{Galois1[44]}} & GalConstant), 6'd0}),
 (Galois1[28:15] ^ {({8{Galois1[29]}} & GalConstant), 6'd0}),
 (Galois1[13:0] ^ {({8{Galois1[14]}} & GalConstant), 6'd0})};
 //Reduction Step14->13
 Galois3 = {(Galois2[54:42] ^ {({8{Galois2[55]}} & GalConstant), 5'd0}),
 (Galois2[40:28] ^ {({8{Galois2[41]}} & GalConstant), 5'd0}),
 (Galois2[26:14] ^ {({8{Galois2[27]}} & GalConstant), 5'd0}),
 (Galois2[12:0] ^ {({8{Galois2[13]}} & GalConstant), 5'd0})};
 //Reduction Step 13->12
 Galois4 = {(Galois3[50:39] ^ {({8{Galois3[51]}} & GalConstant), 4'd0}),
 (Galois3[37:26] ^ {({8{Galois3[38]}} & GalConstant), 4'd0}),
 (Galois3[24:13] ^ {({8{Galois3[25]}} & GalConstant), 4'd0}),
 (Galois3[11:0] ^ {({8{Galois3[12]}} & GalConstant), 4'd0})};
 //Reduction Step 12->11
 Galois5 = {(Galois4[46:36] ^ {({8{Galois4[47]}} & GalConstant), 3'd0}),
 (Galois4[34:24] ^ {({8{Galois4[35]}} & GalConstant), 3'd0}),
 (Galois4[22:12] ^ {({8{Galois4[23]}} & GalConstant), 3'd0}),
 (Galois4[10:0] ^ {({8{Galois4[11]}} & GalConstant), 3'd0})};
 //Reduction Step 11->10
 Galois6 = {(Galois5[42:33] ^ {({8{Galois5[43]}} & GalConstant), 2'd0}),
 (Galois5[31:22] ^ {({8{Galois5[32]}} & GalConstant), 2'd0}),
 (Galois5[20:11] ^ {({8{Galois5[21]}} & GalConstant), 2'd0}),
 (Galois5[9:0] ^ {({8{Galois5[10]}} & GalConstant), 2'd0})};
 //Reduction Step 10->9
 Galois7 = {(Galois6[38:30] ^ {({8{Galois6[39]}} & GalConstant), 1'd0}),
 (Galois6[28:20] ^ {({8{Galois6[29]}} & GalConstant), 1'd0}),
 (Galois6[18:10] ^ {({8{Galois6[19]}} & GalConstant), 1'd0}),
 (Galois6[8:0] ^ {({8{Galois6[9]}} & GalConstant), 1'd0})};
 //Reduction Step 9->8
 GaloisResult = {(Galois7[34:27] ^ ({8{Galois7[35]}} & GalConstant)),
 (Galois7[25:18] ^ ({8{Galois7[26]}} & GalConstant)),
 (Galois7[16:9] ^ ({8{Galois7[17]}} & GalConstant)),
 (Galois7[7:0] ^ ({8{Galois7[8]}} & GalConstant))};

 casex(Mode)
 //%256 Multiply
 1'b0 : Output = Mod8Result;

 //Galois Multiply
 1'b1 : Output = GaloisResult;

 endcase
 end

endmodule

35

256 Byte Multi-mode RAM Unit
module ramE(AddHi, AddLo, Input, Output, Mode, Clock, Length, Write);
 input Clock, Length, Write;

 input [`BitWidth-1:0] AddHi;
 input [`BitWidth-1:0] AddLo;
 input [`BitWidth-1:0] Input;
 output [`BitWidth-1:0] Output;

 //Select addressing mode
 input Mode;

 //3 addressing mode 256 Byte RAM

 reg [`BitWidth-1:0] Output;
 reg [3:0] ram_array7[63:0];
 reg [3:0] ram_array6[63:0];
 reg [3:0] ram_array5[63:0];
 reg [3:0] ram_array4[63:0];
 reg [3:0] ram_array3[63:0];
 reg [3:0] ram_array2[63:0];
 reg [3:0] ram_array1[63:0];
 reg [3:0] ram_array0[63:0];

 integer i;

 initial
 begin
 for(i=0; i<`MemWidth; i=i+1)
 begin
 ram_array7[i] = {4{1'b0}};
 ram_array6[i] = {4{1'b0}};
 ram_array5[i] = {4{1'b0}};
 ram_array4[i] = {4{1'b0}};
 ram_array3[i] = {4{1'b0}};
 ram_array2[i] = {4{1'b0}};
 ram_array1[i] = {4{1'b0}};
 ram_array0[i] = {4{1'b0}};
 end
 end

 always @(posedge Clock)
 begin

 if({Mode} == 1'b0)
 //8->8 Mode
 begin
 //This needs to be +2 since input may come from RAM which is +1
 #(`ClkToOut + 2)
 Output[31:8] = 24'b0;
 casex(AddLo[7:6])
 2'b00: {Output[7:4], Output[3:0]} = {ram_array1[AddLo[5:0]],ram_array0[AddLo[5:0]]};
 2'b01: {Output[7:4], Output[3:0]} = {ram_array3[AddLo[5:0]],ram_array2[AddLo[5:0]]};
 2'b10: {Output[7:4], Output[3:0]} = {ram_array5[AddLo[5:0]],ram_array4[AddLo[5:0]]};
 2'b11: {Output[7:4], Output[3:0]} = {ram_array7[AddLo[5:0]],ram_array6[AddLo[5:0]]};
 endcase
 end
 if({Mode} == 1'b1)
 //8 X 6->4 Mode
 begin
 #(`ClkToOut + 2)
 Output = {ram_array7[{AddHi[15:14], AddLo[31:28]}],
 ram_array6[{AddHi[13:12], AddLo[27:24]}],
 ram_array5[{AddHi[11:10], AddLo[23:20]}],
 ram_array4[{AddHi[9:8], AddLo[19:16]}],
 ram_array3[{AddHi[7:6], AddLo[15:12]}],
 ram_array2[{AddHi[5:4], AddLo[11:8]}],
 ram_array1[{AddHi[3:2], AddLo[7:4]}],
 ram_array0[{AddHi[1:0], AddLo[3:0]}]};
 end
 end

 always @(negedge Clock)
 begin
 if (Write==1)
 begin
 if({Mode} == 1'b0)
 //Write in 6-bit addressing 32->32
 begin
 ram_array7[AddLo[5:0]] = Input[31:28];
 ram_array6[AddLo[5:0]] = Input[27:24];
 ram_array5[AddLo[5:0]] = Input[23:20];
 ram_array4[AddLo[5:0]] = Input[19:16];
 ram_array3[AddLo[5:0]] = Input[15:12];
 ram_array2[AddLo[5:0]] = Input[11:8];
 ram_array1[AddLo[5:0]] = Input[7:4];
 ram_array0[AddLo[5:0]] = Input[3:0];
 end
 if({Mode} == 1'b1)

36

 //Write in 2+4-bit addressing 32->32
 begin
 ram_array7[{AddHi[1:0], AddLo[3:0]}] = Input[31:28];
 ram_array6[{AddHi[1:0], AddLo[3:0]}] = Input[27:24];
 ram_array5[{AddHi[1:0], AddLo[3:0]}] = Input[23:20];
 ram_array4[{AddHi[1:0], AddLo[3:0]}] = Input[19:16];
 ram_array3[{AddHi[1:0], AddLo[3:0]}] = Input[15:12];
 ram_array2[{AddHi[1:0], AddLo[3:0]}] = Input[11:8];
 ram_array1[{AddHi[1:0], AddLo[3:0]}] = Input[7:4];
 ram_array0[{AddHi[1:0], AddLo[3:0]}] = Input[3:0];
 end
 end
 end

endmodule

Bi-Directional Shifter/Rotator
module rotE(Input, DPSA, Output, SASource, Mode2, Mode1, Mode0, CPSA4, CPSA3, CPSA2, CPSA1, CPSA0);

 input [`BitWidth-1:0] Input;
 //Datapath Shift Amount
 input [`BitWidth-1:0] DPSA;
 output [`BitWidth-1:0] Output;

 //Select Shift Amount;
 input SASource;

 //Select Mode
 input Mode2;
 input Mode1;
 input Mode0;

 //Control Path Shift Amount
 input CPSA4;
 input CPSA3;
 input CPSA2;
 input CPSA1;
 input CPSA0;

 //Performs left/right rotate, logicial shift and arithmetic shift

 wire [4:0] ShiftAmount;

 //Top level has 63, followed by 47, 39, 35, 33, and finally 32 bits
 reg [4:0] Shift;
 reg [62:0] TopLevel;
 reg [46:0] ShiftBy16;
 reg [38:0] ShiftBy8;
 reg [34:0] ShiftBy4;
 reg [32:0] ShiftBy2;
 reg [31:0] Output;

 //SASource == 1 takes address from Control Path input
 assign ShiftAmount = (SASource==1'b1) ? {CPSA4, CPSA3, CPSA2, CPSA1, CPSA0} : DPSA;

always @(Input or ShiftAmount or Mode2 or Mode1 or Mode0)
 begin

 casex({Mode2, Mode1, Mode0})
 //Left Rot
 3'b000 : {Shift, TopLevel} = {ShiftAmount[4:0], {Input[`BitWidth-1:0], Input[`BitWidth-1:1]}};
 //Left Shift in 0's
 3'b001 : {Shift, TopLevel} = {ShiftAmount[4:0], {Input[`BitWidth-1:0], 31'd0}};
 //Left Shift in 1's
 3'b010 : {Shift, TopLevel} = {ShiftAmount[4:0], {Input[`BitWidth-1:0], 31'd4294967295}};
 3'b011 : ;

 //Right Rot
 3'b100 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {Input[`BitWidth-2:0], Input[`BitWidth-1:0]}};
 //Right Logical Shift with 0's
 3'b101 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {31'd0, Input[`BitWidth-1:0]}};
 //Right Logical Shift with 1's
 3'b110 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {31'd4294967295, Input[`BitWidth-1:0]}};
 //Right Arithmetic Shift
 3'b111 : {Shift, TopLevel} = {31 - ShiftAmount[4:0], {{`BitWidth-1{Input[`BitWidth-1]}}, Input[`BitWidth-1:0]}};

 endcase

 //Shift 16
 if(Shift[4])
 ShiftBy16[46:0] = TopLevel[46:0];
 else
 ShiftBy16[46:0] = TopLevel[62:16];

 //Shift 8
 if(Shift[3])
 ShiftBy8[38:0] = ShiftBy16[38:0];
 else
 ShiftBy8[38:0] = ShiftBy16[46:8];

 //Shift 4
 if(Shift[2])

37

 ShiftBy4[34:0] = ShiftBy8[34:0];
 else
 ShiftBy4[34:0] = ShiftBy8[38:4];

 //Shift 2
 if(Shift[1])
 ShiftBy2[32:0] = ShiftBy4[32:0];
 else
 ShiftBy2[32:0] = ShiftBy4[34:2];

 //Shift 1
 if(Shift[0])
 Output[31:0] = ShiftBy2[31:0];
 else
 Output[31:0] = ShiftBy2[32:1];

 end

endmodule

Crossbar
module xBarE(In, Out,
 S159, S158, S157, S156, S155, S154, S153, S152, S151, S150,
 S149, S148, S147, S146, S145, S144, S143, S142, S141, S140,
 S139, S138, S137, S136, S135, S134, S133, S132, S131, S130,
 S129, S128, S127, S126, S125, S124, S123, S122, S121, S120,
 S119, S118, S117, S116, S115, S114, S113, S112, S111, S110,
 S109, S108, S107, S106, S105, S104, S103, S102, S101, S100,
 S99, S98, S97, S96, S95, S94, S93, S92, S91, S90,
 S89, S88, S87, S86, S85, S84, S83, S82, S81, S80,
 S79, S78, S77, S76, S75, S74, S73, S72, S71, S70,
 S69, S68, S67, S66, S65, S64, S63, S62, S61, S60,
 S59, S58, S57, S56, S55, S54, S53, S52, S51, S50,
 S49, S48, S47, S46, S45, S44, S43, S42, S41, S40,
 S39, S38, S37, S36, S35, S34, S33, S32, S31, S30,
 S29, S28, S27, S26, S25, S24, S23, S22, S21, S20,
 S19, S18, S17, S16, S15, S14, S13, S12, S11, S10,
 S9, S8, S7, S6, S5, S4, S3, S2, S1, S0);
 input [31:0] In;
 output [31:0] Out;

 input S159, S158, S157, S156, S155, S154, S153, S152, S151, S150;
 input S149, S148, S147, S146, S145, S144, S143, S142, S141, S140;
 input S139, S138, S137, S136, S135, S134, S133, S132, S131, S130;
 input S129, S128, S127, S126, S125, S124, S123, S122, S121, S120;
 input S119, S118, S117, S116, S115, S114, S113, S112, S111, S110;
 input S109, S108, S107, S106, S105, S104, S103, S102, S101, S100;
 input S99, S98, S97, S96, S95, S94, S93, S92, S91, S90;
 input S89, S88, S87, S86, S85, S84, S83, S82, S81, S80;
 input S79, S78, S77, S76, S75, S74, S73, S72, S71, S70;
 input S69, S68, S67, S66, S65, S64, S63, S62, S61, S60;
 input S59, S58, S57, S56, S55, S54, S53, S52, S51, S50;
 input S49, S48, S47, S46, S45, S44, S43, S42, S41, S40;
 input S39, S38, S37, S36, S35, S34, S33, S32, S31, S30;
 input S29, S28, S27, S26, S25, S24, S23, S22, S21, S20;
 input S19, S18, S17, S16, S15, S14, S13, S12, S11, S10;
 input S9, S8, S7, S6, S5, S4, S3, S2, S1, S0;

 //Allows any of the 32 input bits to be routed to any of the 32 output bits

 mux_32_to_1 mux0(In, {S4, S3, S2, S1, S0}, Out[0]);
 mux_32_to_1 mux1(In, {S9, S8, S7, S6, S5}, Out[1]);
 mux_32_to_1 mux2(In, {S14, S13, S12, S11, S10}, Out[2]);
 mux_32_to_1 mux3(In, {S19, S18, S17, S16, S15}, Out[3]);
 mux_32_to_1 mux4(In, {S24, S23, S22, S21, S20}, Out[4]);
 mux_32_to_1 mux5(In, {S29, S28, S27, S26, S25}, Out[5]);
 mux_32_to_1 mux6(In, {S34, S33, S32, S31, S30}, Out[6]);
 mux_32_to_1 mux7(In, {S39, S38, S37, S36, S35}, Out[7]);
 mux_32_to_1 mux8(In, {S44, S43, S42, S41, S40}, Out[8]);
 mux_32_to_1 mux9(In, {S49, S48, S47, S46, S45}, Out[9]);
 mux_32_to_1 mux10(In, {S54, S53, S52, S51, S50}, Out[10]);
 mux_32_to_1 mux11(In, {S59, S58, S57, S56, S55}, Out[11]);
 mux_32_to_1 mux12(In, {S64, S63, S62, S61, S60}, Out[12]);
 mux_32_to_1 mux13(In, {S69, S68, S67, S66, S65}, Out[13]);
 mux_32_to_1 mux14(In, {S74, S73, S72, S71, S70}, Out[14]);
 mux_32_to_1 mux15(In, {S79, S78, S77, S76, S75}, Out[15]);
 mux_32_to_1 mux16(In, {S84, S83, S82, S81, S80}, Out[16]);
 mux_32_to_1 mux17(In, {S89, S88, S87, S86, S85}, Out[17]);
 mux_32_to_1 mux18(In, {S94, S93, S92, S91, S90}, Out[18]);
 mux_32_to_1 mux19(In, {S99, S98, S97, S96, S95}, Out[19]);
 mux_32_to_1 mux20(In, {S104, S103, S102, S101, S100}, Out[20]);
 mux_32_to_1 mux21(In, {S109, S108, S107, S106, S105}, Out[21]);
 mux_32_to_1 mux22(In, {S114, S113, S112, S111, S110}, Out[22]);
 mux_32_to_1 mux23(In, {S119, S118, S117, S116, S115}, Out[23]);
 mux_32_to_1 mux24(In, {S124, S123, S122, S121, S120}, Out[24]);
 mux_32_to_1 mux25(In, {S129, S128, S127, S126, S125}, Out[25]);
 mux_32_to_1 mux26(In, {S134, S133, S132, S131, S130}, Out[26]);
 mux_32_to_1 mux27(In, {S139, S138, S137, S136, S135}, Out[27]);
 mux_32_to_1 mux28(In, {S144, S143, S142, S141, S140}, Out[28]);
 mux_32_to_1 mux29(In, {S149, S148, S147, S146, S145}, Out[29]);
 mux_32_to_1 mux30(In, {S154, S153, S152, S151, S150}, Out[30]);

38

 mux_32_to_1 mux31(In, {S159, S158, S157, S156, S155}, Out[31]);

endmodule

39

Appendix E – Example of RaPiD-AES Implementation: Rijndael

Primary Encryption code – Rijndael.rc

#include "rijndael.h"

StUnit(ramE, (Output), (), (AddHi, AddLo, Input),
 (Mode = 0, Write = 0));

CombUnit(xBarE, (Out), (), (In),
 (S159 = 0, S158 = 0, S157 = 0, S156 = 0, S155 = 0, S154 = 0, S153 = 0, S152 = 0, S151 = 0, S150 = 0,
 S149 = 0, S148 = 0, S147 = 0, S146 = 0, S145 = 0, S144 = 0, S143 = 0, S142 = 0, S141 = 0, S140 = 0,
 S139 = 0, S138 = 0, S137 = 0, S136 = 0, S135 = 0, S134 = 0, S133 = 0, S132 = 0, S131 = 0, S130 = 0,
 S129 = 0, S128 = 0, S127 = 0, S126 = 0, S125 = 0, S124 = 0, S123 = 0, S122 = 0, S121 = 0, S120 = 0,
 S119 = 0, S118 = 0, S117 = 0, S116 = 0, S115 = 0, S114 = 0, S113 = 0, S112 = 0, S111 = 0, S110 = 0,
 S109 = 0, S108 = 0, S107 = 0, S106 = 0, S105 = 0, S104 = 0, S103 = 0, S102 = 0, S101 = 0, S100 = 0,
 S99 = 0, S98 = 0, S97 = 0, S96 = 0, S95 = 0, S94 = 0, S93 = 0, S92 = 0, S91 = 0, S90 = 0,
 S89 = 0, S88 = 0, S87 = 0, S86 = 0, S85 = 0, S84 = 0, S83 = 0, S82 = 0, S81 = 0, S80 = 0,
 S79 = 0, S78 = 0, S77 = 0, S76 = 0, S75 = 0, S74 = 0, S73 = 0, S72 = 0, S71 = 0, S70 = 0,
 S69 = 0, S68 = 0, S67 = 0, S66 = 0, S65 = 0, S64 = 0, S63 = 0, S62 = 0, S61 = 0, S60 = 0,
 S59 = 0, S58 = 0, S57 = 0, S56 = 0, S55 = 0, S54 = 0, S53 = 0, S52 = 0, S51 = 0, S50 = 0,
 S49 = 0, S48 = 0, S47 = 0, S46 = 0, S45 = 0, S44 = 0, S43 = 0, S42 = 0, S41 = 0, S40 = 0,
 S39 = 0, S38 = 0, S37 = 0, S36 = 0, S35 = 0, S34 = 0, S33 = 0, S32 = 0, S31 = 0, S30 = 0,
 S29 = 0, S28 = 0, S27 = 0, S26 = 0, S25 = 0, S24 = 0, S23 = 0, S22 = 0, S21 = 0, S20 = 0,
 S19 = 0, S18 = 0, S17 = 0, S16 = 0, S15 = 0, S14 = 0, S13 = 0, S12 = 0, S11 = 0, S10 = 0,
 S9 = 0, S8 = 0, S7 = 0, S6 = 0, S5 = 0, S4 = 0, S3 = 0, S2 = 0, S1 = 0, S0 = 0));

CombUnit(mul8GalE, (Output), (), (XIn, YIn), (Mode = 0,
 //Reduction polynomial = 100011011 (assume leading 1)
 GC7 = 0, GC6 = 0, GC5 = 0, GC4 = 1, GC3 = 1, GC2 = 0, GC1 = 1, GC0 = 1));

CombUnit(rotE, (Output), (), (Input, DPSA),
 (SASource = 1, Mode2 = 0, Mode1 = 0, Mode0 = 0,
 CPSA4 = 0, CPSA3 = 0, CPSA2 = 0, CPSA1 = 0, CPSA0 = 0));

void encrypt(Word input[INPUT_SIZE],
 Word cipherText[NUM_BLOCKS * WORDS_PER_BLOCK]){

 Ram subkeysA, subkeysB, subkeysC, subkeysD;
 ramE RAMA3, RAMA2, RAMA1, RAMA0;
 ramE RAMB3, RAMB2, RAMB1, RAMB0;
 ramE RAMC3, RAMC2, RAMC1, RAMC0;
 ramE RAMD3, RAMD2, RAMD1, RAMD0;
 Ram plainTextA, plainTextB, plainTextC, plainTextD;
 Ram outA, outB, outC, outD;

 //Pipeline variables
 Word St0, St1, St2, St3, St4, St5, St6, St7, St8;
 //Constants
 Word constant3s, constant2s;
 Word constantByte3, constantByte2, constantByte1, constantByte0;

 //Internal temp variables
 Word feedBackA, feedBackB, feedBackC, feedBackD;
 //Key Addition temp
 Word KAA, KAB, KAC, KAD;
 //Byte Substitution temp variables
 Word BSIA3, BSIA2, BSIA1;
 Word BSIB3, BSIB2, BSIB1;
 Word BSIC3, BSIC2, BSIC1;
 Word BSID3, BSID2, BSID1;
 Word BSOA3, BSOA2, BSOA1, BSOA0;
 Word BSOB3, BSOB2, BSOB1, BSOB0;
 Word BSOC3, BSOC2, BSOC1, BSOC0;
 Word BSOD3, BSOD2, BSOD1, BSOD0;

 //Shift Row temp variables
 Word SRA, SRB, SRC, SRD;

 //Mix Column temp variables
 Word MCIA3, MCIA2, MCIA1, MCIA0;
 Word MCIB3, MCIB2, MCIB1, MCIB0;
 Word MCIC3, MCIC2, MCIC1, MCIC0;
 Word MCID3, MCID2, MCID1, MCID0;
 Word MCA, MCB, MCC, MCD;

 Word tempAddress;
 Word tempWord;

 For fillBlock, fillStage, fillConstants,
 computeBlock, compute,
 output, outputWord;

 Seq {
 // Load from input stream
 for(fillBlock = 0; fillBlock < 64; fillBlock++){
 for(fillStage = 0; fillStage < 9; fillStage++){
 Datapath{
 if(fillBlock.first && fillStage.first){
 //Initalize

40

 subkeysA.address = 0; subkeysB.address = 0;
 subkeysC.address = 0; subkeysD.address = 0;

 tempAddress = 0;
 RAMA3.AddHi = 0; RAMA2.AddHi = 0; RAMA1.AddHi = 0; RAMA0.AddHi = 0;
 RAMB3.AddHi = 0; RAMB2.AddHi = 0; RAMB1.AddHi = 0; RAMB0.AddHi = 0;
 RAMC3.AddHi = 0; RAMC2.AddHi = 0; RAMC1.AddHi = 0; RAMC0.AddHi = 0;
 RAMD3.AddHi = 0; RAMD2.AddHi = 0; RAMD1.AddHi = 0; RAMD0.AddHi = 0;

 plainTextA.address = 0; plainTextB.address = 0;
 plainTextC.address = 0; plainTextD.address = 0;
 }
 //Fill Pipe
 St0 = St1; St1 = St2;
 St2 = St3; St3 = St4;
 St4 = St5; St5 = St6;
 St6 = St7; St7 = St8;
 St8 = input[(fillBlock * 9) + fillStage];

 if(fillStage.last){
 RAMA3.Write = 1; RAMA2.Write = 1; RAMA1.Write = 1; RAMA0.Write = 1;
 RAMB3.Write = 1; RAMB2.Write = 1; RAMB1.Write = 1; RAMB0.Write = 1;
 RAMC3.Write = 1; RAMC2.Write = 1; RAMC1.Write = 1; RAMC0.Write = 1;
 RAMD3.Write = 1; RAMD2.Write = 1; RAMD1.Write = 1; RAMD0.Write = 1;

 RAMA3.AddLo = tempAddress; RAMA2.AddLo = tempAddress;
 RAMA1.AddLo = tempAddress; RAMA0.AddLo = tempAddress;

 RAMB3.AddLo = tempAddress; RAMB2.AddLo = tempAddress;
 RAMB1.AddLo = tempAddress; RAMB0.AddLo = tempAddress;

 RAMC3.AddLo = tempAddress; RAMC2.AddLo = tempAddress;
 RAMC1.AddLo = tempAddress; RAMC0.AddLo = tempAddress;

 RAMD3.AddLo = tempAddress; RAMD2.AddLo = tempAddress;
 RAMD1.AddLo = tempAddress; RAMD0.AddLo = tempAddress;

 //Load Data
 //First load 128-bit subkey
 subkeysA = St0; subkeysB = St1; subkeysC = St2; subkeysD = St3;

 //Then 8-bit substitution box
 RAMA3.Input = St4; RAMA2.Input = St4; RAMA1.Input = St4; RAMA0.Input = St4;
 RAMB3.Input = St4; RAMB2.Input = St4; RAMB1.Input = St4; RAMB0.Input = St4;
 RAMC3.Input = St4; RAMC2.Input = St4; RAMC1.Input = St4; RAMC0.Input = St4;
 RAMD3.Input = St4; RAMD2.Input = St4; RAMD1.Input = St4; RAMD0.Input = St4;

 //Then 1 128-bit plaintext block
 plainTextA = St5; plainTextB = St6; plainTextC = St7; plainTextD = St8;

 //Update addresses;
 subkeysA.address++; subkeysB.address++; subkeysC.address++; subkeysD.address++;
 tempAddress = tempAddress + 1;
 plainTextA.address++; plainTextB.address++; plainTextC.address++; plainTextD.address++;
 }
 }
 }
 }

 for(fillConstants = 0; fillConstants < 2; fillConstants++){
 Datapath{
 //Fill Pipe
 St0 = St1;
 St1 = input[(64 * 9) + fillConstants];

 if(fillConstants.last){
 constant2s = St0;
 constant3s = St1;
 }
 }
 }

 //Do the computation
 for(computeBlock = 0; computeBlock < NUM_BLOCKS; computeBlock++){
 for(compute = 0; compute < NUM_ROUNDS; compute++){
 Datapath{
 //Initialize input and output memories
 if(computeBlock.first && compute.first){
 outA.address = 0; outB.address = 0; outC.address = 0; outD.address = 0;
 plainTextA.address = 0; plainTextB.address = 0; plainTextC.address = 0; plainTextD.address = 0;
 }

 //First round has Input Whitening
 if(compute.first){
 //Initialize subkey memory
 subkeysA.address = 0; subkeysB.address = 0; subkeysC.address = 0; subkeysD.address = 0;
 feedBackA = plainTextA; feedBackB = plainTextB; feedBackC = plainTextC; feedBackD = plainTextD;
 }

 //Every round has a Key Addition step
 KAA = feedBackA ^ subkeysA; KAB = feedBackB ^ subkeysB;
 KAC = feedBackC ^ subkeysC; KAD = feedBackD ^ subkeysD;

 //Every round except last one has a Byte Substitution step

41

 if(!compute.last){
 //Perform rotations for addresses
 //BSIX3 = KAX >> 24
 ((BSIA3), ()) = rotE((KAA, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0));
 ((BSIB3), ()) = rotE((KAB, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0));
 ((BSIC3), ()) = rotE((KAC, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0));
 ((BSID3), ()) = rotE((KAD, 0), (1, 1, 0, 1, 1, 1, 0, 0, 0));

 //BSIX2 = KAX >> 16
 ((BSIA2), ()) = rotE((KAA, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0));
 ((BSIB2), ()) = rotE((KAB, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0));
 ((BSIC2), ()) = rotE((KAC, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0));
 ((BSID2), ()) = rotE((KAD, 0), (1, 1, 0, 1, 1, 0, 0, 0, 0));

 //BSIX1 = KAX >> 8
 ((BSIA1), ()) = rotE((KAA, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0));
 ((BSIB1), ()) = rotE((KAB, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0));
 ((BSIC1), ()) = rotE((KAC, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0));
 ((BSID1), ()) = rotE((KAD, 0), (1, 1, 0, 1, 0, 1, 0, 0, 0));

 //Perform lookup
 RAMA3.AddLo = BSIA3; RAMA2.AddLo = BSIA2; RAMA1.AddLo = BSIA1; RAMA0.AddLo = KAA;
 RAMB3.AddLo = BSIB3; RAMB2.AddLo = BSIB2; RAMB1.AddLo = BSIB1; RAMB0.AddLo = KAB;
 RAMC3.AddLo = BSIC3; RAMC2.AddLo = BSIC2; RAMC1.AddLo = BSIC1; RAMC0.AddLo = KAC;
 RAMD3.AddLo = BSID3; RAMD2.AddLo = BSID2; RAMD1.AddLo = BSID1; RAMD0.AddLo = KAD;

 BSOA3 = RAMA3.Output; BSOA2 = RAMA2.Output; BSOA1 = RAMA1.Output; BSOA0 = RAMA0.Output;
 BSOB3 = RAMB3.Output; BSOB2 = RAMB2.Output; BSOB1 = RAMB1.Output; BSOB0 = RAMB0.Output;
 BSOC3 = RAMC3.Output; BSOC2 = RAMC2.Output; BSOC1 = RAMC1.Output; BSOC0 = RAMC0.Output;
 BSOD3 = RAMD3.Output; BSOD2 = RAMD2.Output; BSOD1 = RAMD1.Output; BSOD0 = RAMD0.Output;

 //Shift Row
 //A = A3 || B2 || C1 || D0
 ((BSOA3), ()) = rotE((BSOA3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0));
 ((BSOB2), ()) = rotE((BSOB2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0));
 ((BSOC1), ()) = rotE((BSOC1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0));
 SRA = BSOA3 | BSOB2 | BSOC1 | BSOD0;

 //B = B3 || C2 || D1 || A0
 ((BSOB3), ()) = rotE((BSOB3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0));
 ((BSOC2), ()) = rotE((BSOC2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0));
 ((BSOD1), ()) = rotE((BSOD1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0));
 SRB = BSOB3 | BSOC2 | BSOD1 | BSOA0;

 //C = C3 || D2 || A1 || B0
 ((BSOC3), ()) = rotE((BSOC3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0));
 ((BSOD2), ()) = rotE((BSOD2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0));
 ((BSOA1), ()) = rotE((BSOA1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0));
 SRC = BSOC3 | BSOD2 | BSOA1 | BSOB0;

 //D = D3 || A2 || B1 || C0
 ((BSOD3), ()) = rotE((BSOD3, 0), (1, 0, 0, 1, 1, 1, 0, 0, 0));
 ((BSOA2), ()) = rotE((BSOA2, 0), (1, 0, 0, 1, 1, 0, 0, 0, 0));
 ((BSOB1), ()) = rotE((BSOB1, 0), (1, 0, 0, 1, 0, 1, 0, 0, 0));

 SRD = BSOD3 | BSOA2 | BSOB1 | BSOC0;
 }

 //Every round but last two have Mix Column step
 if(compute < NUM_ROUNDS - 2){
 //X = (X <<< 24) + (X <<< 16) + 3(X <<<8) + 2X
 ((MCIA3), ()) = rotE((SRA, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0));
 ((MCIA2), ()) = rotE((SRA, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0));
 ((MCIA1), ()) = rotE((SRA, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0));
 ((MCIA1), ()) = mul8GalE((MCIA1, constant3s), (1));
 ((MCIA0), ()) = mul8GalE((SRA, constant2s), (1));
 feedBackA = MCIA3 ^ MCIA2 ^ MCIA1 ^ MCIA0;

 ((MCIB3), ()) = rotE((SRB, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0));
 ((MCIB2), ()) = rotE((SRB, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0));
 ((MCIB1), ()) = rotE((SRB, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0));
 ((MCIB1), ()) = mul8GalE((MCIB1, constant3s), (1));
 ((MCIB0), ()) = mul8GalE((SRB, constant2s), (1));
 feedBackB = MCIB3 ^ MCIB2 ^ MCIB1 ^ MCIB0;

 ((MCIC3), ()) = rotE((SRC, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0));
 ((MCIC2), ()) = rotE((SRC, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0));
 ((MCIC1), ()) = rotE((SRC, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0));
 ((MCIC1), ()) = mul8GalE((MCIC1, constant3s), (1));
 ((MCIC0), ()) = mul8GalE((SRC, constant2s), (1));
 feedBackC = MCIC3 ^ MCIC2 ^ MCIC1 ^ MCIC0;

 ((MCID3), ()) = rotE((SRD, 0), (1, 0, 0, 0, 1, 1, 0, 0, 0));
 ((MCID2), ()) = rotE((SRD, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0));
 ((MCID1), ()) = rotE((SRD, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0));
 ((MCID1), ()) = mul8GalE((MCID1, constant3s), (1));
 ((MCID0), ()) = mul8GalE((SRD, constant2s), (1));
 feedBackD = MCID3 ^ MCID2 ^ MCID1 ^ MCID0;
 }

 //Second to last round needs to loop shift row result
 if(compute == NUM_ROUNDS - 2){
 feedBackA = SRA; feedBackB = SRB; feedBackC = SRC; feedBackD = SRD;
 }

42

 if(compute.last){
 outA = KAA; outB = KAB; outC = KAC; outD = KAD;
 outA.address++; outB.address++; outC.address++; outD.address++;
 plainTextA.address++; plainTextB.address++; plainTextC.address++;
plainTextD.address++;
 }
 subkeysA.address ++; subkeysB.address ++; subkeysC.address ++; subkeysD.address ++;
 }
 }
 }

 // Output Results
 // We could parallelize this to run as soon as the results are ready
 // but due to ram addressing conflicts, we need to output after the
 // calculations are completely done
 for(output = 0; output < NUM_BLOCKS; output++){
 for(outputWord = 0; outputWord < WORDS_PER_BLOCK; outputWord++){
 Datapath{
 if(output.first && outputWord.first){
 outA.address = 0; outB.address = 0; outC.address = 0; outD.address = 0;
 }
 if(outputWord == 0)
 tempWord = outA;
 else if(outputWord == 1)
 tempWord = outB;
 else if(outputWord == 2)
 tempWord = outC;
 else
 tempWord = outD;

 cipherText[(output * 4) + outputWord] = tempWord;

 if(outputWord.last){
 outA.address++; outB.address++; outC.address++; outD.address++;
 }
 }
 }
 }
 }
}

Header File – Rijndael.h
#define STAGES 1
#include "rapidb.h"

#define NUM_SUBKEYS 11
#define WORDS_PER_KEY 4

#define SBOX_SIZE 256
#define LOOKUP_PER_SBOX 8

#define NUM_BLOCKS 4
#define WORDS_PER_BLOCK 4

#define INPUT_SIZE ((64 * 9) + 2)

#define NUM_ROUNDS 11

#define HEX_PER_WORD 8

#define SBOX_OFFSET NUM_SUBKEYS * WORDS_PER_KEY
#define PLAINTEXT_OFFSET (NUM_SUBKEYS * WORDS_PER_KEY) + (SBOX_SIZE * 8)

C Wrapper Function and Verification Code – testRijndael.cc
#include <assert.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>

#include "rijndael.h"
void encrypt(Word *, Word*);

void render(char* head, Word x, char* tail) {
 unsigned long temp;

 printf("%s", head);
 temp = x & 4294967295;
 printf("%08x", temp);
 printf("%s", tail);
}

void transpose(Word array[4]){
 //Reorganize bytes to be column major, not row major
 //0 1 2 3 0 4 8 12

43

 //4 5 6 7 => 1 5 9 13
 //8 9 10 11 2 6 10 14
 //12 13 14 15 3 7 11 15
 int i, j, temp;
 int byteArray[4][4];

 for(i = 0; i < 4; i++){
 for(j = 0; j < 4; j++){
 byteArray[i][j] = (array[i] >> 24 - (j * 8)) & 255;
 }
 }
 for(i = 0; i < 4; i++){
 array[i] = 0;
 for(j = 0; j < 4; j++){
 array[i] += byteArray[j][i] << 24 - (j * 8);
 }
 }
}

int main()
{
 // These subkeys are were produced from the key
 // 000102030405060708090A0B0C0D0E0F

 const char asciiSubkeys[NUM_SUBKEYS][WORDS_PER_KEY][HEX_PER_WORD + 1] = {
 {"00010203", "04050607", "08090A0B", "0C0D0E0F"},
 {"D6AA74FD", "D2AF72FA", "DAA678F1", "D6AB76FE"},
 {"B692CF0B", "643DBDF1", "BE9BC500", "6830B3FE"},
 {"B6FF744E", "D2C2C9BF", "6C590CBF", "0469BF41"},
 {"47F7F7BC", "95353E03", "F96C32BC", "FD058DFD"},
 {"3CAAA3E8", "A99F9DEB", "50F3AF57", "ADF622AA"},
 {"5E390F7D", "F7A69296", "A7553DC1", "0AA31F6B"},
 {"14F9701A", "E35FE28C", "440ADF4D", "4EA9C026"},
 {"47438735", "A41C65B9", "E016BAF4", "AEBF7AD2"},
 {"549932D1", "F0855768", "1093ED9C", "BE2C974E"},
 {"13111D7F", "E3944A17", "F307A78B", "4D2B30C5"}};

 // This are the 8 S-boxes for the forward encrytion
 const int sBox [SBOX_SIZE] = {
 99, 124, 119, 123, 242, 107, 111, 197,
 48, 1, 103, 43, 254, 215, 171, 118,
 202, 130, 201, 125, 250, 89, 71, 240,
 173, 212, 162, 175, 156, 164, 114, 192,
 183, 253, 147, 38, 54, 63, 247, 204,
 52, 165, 229, 241, 113, 216, 49, 21,
 4, 199, 35, 195, 24, 150, 5, 154,
 7, 18, 128, 226, 235, 39, 178, 117,
 9, 131, 44, 26, 27, 110, 90, 160,
 82, 59, 214, 179, 41, 227, 47, 132,
 83, 209, 0, 237, 32, 252, 177, 91,
 106, 203, 190, 57, 74, 76, 88, 207,
 208, 239, 170, 251, 67, 77, 51, 133,
 69, 249, 2, 127, 80, 60, 159, 168,
 81, 163, 64, 143, 146, 157, 56, 245,
 188, 182, 218, 33, 16, 255, 243, 210,
 205, 12, 19, 236, 95, 151, 68, 23,
 196, 167, 126, 61, 100, 93, 25, 115,
 96, 129, 79, 220, 34, 42, 144, 136,
 70, 238, 184, 20, 222, 94, 11, 219,
 224, 50, 58, 10, 73, 6, 36, 92,
 194, 211, 172, 98, 145, 149, 228, 121,
 231, 200, 55, 109, 141, 213, 78, 169,
 108, 86, 244, 234, 101, 122, 174, 8,
 186, 120, 37, 46, 28, 166, 180, 198,
 232, 221, 116, 31, 75, 189, 139, 138,
 112, 62, 181, 102, 72, 3, 246, 14,
 97, 53, 87, 185, 134, 193, 29, 158,
 225, 248, 152, 17, 105, 217, 142, 148,
 155, 30, 135, 233, 206, 85, 40, 223,
 140, 161, 137, 13, 191, 230, 66, 104,
 65, 153, 45, 15, 176, 84, 187, 22};

 const char asciiPlainText[NUM_BLOCKS][WORDS_PER_BLOCK][HEX_PER_WORD + 1] = {
 {"00010203", "04050607", "08090A0B", "0C0D0E0F"},
 {"100F0E0D", "0C0B0A09", "08070605", "04030201"},
 {"00020406", "01030500", "02040601", "03050002"},
 {"00030609", "0C020508", "0B010407", "0A000306"}};

 const char asciiCipherText[NUM_BLOCKS][WORDS_PER_BLOCK][HEX_PER_WORD + 1] = {
 {"0A940BB5", "416EF045", "F1C39458", "C653EA5A"},
 {"20C2FF67", "36789ECD", "3B81D366", "75DD1442"},
 {"95BFD2DB", "A04F6D98", "4EDCEDBE", "68DC4AB7"},
 {"5033731B", "E0EC208D", "5E3338FF", "19C2CE04"}};

 Word subkeys[NUM_SUBKEYS] [WORDS_PER_KEY];
 Word sBoxMem [SBOX_SIZE / 4];
 Word plainText[NUM_BLOCKS][WORDS_PER_BLOCK];
 Word inputStream[INPUT_SIZE];
 Word cipherText[NUM_BLOCKS * WORDS_PER_BLOCK];
 Word organizedCT[NUM_BLOCKS][WORDS_PER_BLOCK];
 Word checkText[NUM_BLOCKS][WORDS_PER_BLOCK];
 Word tempText;

 int i, j, k, m, errors;

44

 char * tempCharP;

 //Translate subkeys to hex
 for(i = 0; i < NUM_SUBKEYS; i++){
 for(j = 0; j < WORDS_PER_KEY; j++){
 subkeys[i][j] = strtoul(asciiSubkeys[i][j], &tempCharP, 16);
 }
 }

 //Transpose bytes
 for(i = 0; i < NUM_SUBKEYS; i++){
 //transpose(subkeys[i]);
 }

 //Repackage the s-box contents
 for(i = 0; i < SBOX_SIZE/4; i++){
 sBoxMem[i] = 0;
 sBoxMem[i] = sBox[i];
 for(j = 1; j < 4; j++){
 sBoxMem[i] += sBox[i + (64 * j)] << (8 * j);
 }
 }

 //Translate plaintext into hex
 for(i = 0; i < NUM_BLOCKS; i++){
 for(j = 0; j < WORDS_PER_BLOCK; j++){
 plainText[i][j] = strtoul(asciiPlainText[i][j], &tempCharP, 16);
 }
 }

 //Transpose bytes
 for(i = 0; i < NUM_BLOCKS; i++){
 //transpose(plainText[i]);
 }

 //Translate known correct ciphertext into hex
 for(i = 0; i < NUM_BLOCKS; i++){
 for(j = 0; j < WORDS_PER_BLOCK; j++){
 checkText[i][j] = strtoul(asciiCipherText[i][j], &tempCharP, 16);
 }
 }

 //Load into inputStream column-wise, not row-wise (All A's, all B's, etc)
 for(i = 0; i < 64; i++){
 inputStream[i * 9] = subkeys[i % NUM_SUBKEYS][0];
 inputStream[(i * 9) + 1] = subkeys[i % NUM_SUBKEYS][1];
 inputStream[(i * 9) + 2] = subkeys[i % NUM_SUBKEYS][2];
 inputStream[(i * 9) + 3] = subkeys[i % NUM_SUBKEYS][3];

 inputStream[(i * 9) + 4] = sBoxMem[i];

 inputStream[(i * 9) + 5] = plainText[i % NUM_BLOCKS][0];
 inputStream[(i * 9) + 6] = plainText[i % NUM_BLOCKS][1];
 inputStream[(i * 9) + 7] = plainText[i % NUM_BLOCKS][2];
 inputStream[(i * 9) + 8] = plainText[i % NUM_BLOCKS][3];
 }

 //Add constant 2's and 3's
 inputStream[(64 * 9)] = 33686018;
 inputStream[(64 * 9) + 1] = 50529027;

 //Initialize output to easily detect verilog problem
 for(i = 0; i < NUM_BLOCKS * WORDS_PER_BLOCK; i++){
 cipherText[i] = 9;
 }

 for(i = 0; i < NUM_BLOCKS; i++){
 printf("CHECKTEXT [%d] = \t", i);
 for(j = 0; j < WORDS_PER_BLOCK; j++){
 render("", checkText[i][j], " ");
 }
 printf("\n");
 }
 printf("\n");

 encrypt(inputStream, cipherText);

 //Transpose back
 for(i = 0; i < NUM_BLOCKS; i++){
 for(j = 0; j < WORDS_PER_BLOCK; j++){
 organizedCT[i][j] = cipherText[(i * WORDS_PER_BLOCK) + j];
 }
 }

 for(i = 0; i < NUM_BLOCKS; i++){
 //transpose(organizedCT[i]);
 }

 //Check Output
 errors = 0;
 for(i = 0; i < NUM_BLOCKS; i++){
 printf("Ciphertext [%d] = \t", i);
 for(j = 0; j < WORDS_PER_BLOCK; j++){
 render("", organizedCT[i] [j], " ");

45

 if(checkText[i][j] != organizedCT[i][j])
 errors++;
 }
 printf(" --- %d ERRORS\n", errors);
 errors = 0;

 }

}

