
 
 
 

 
 

synFPGA 
Application-Specific FPGA Synthesis 

 
Kenneth Eguro 

Professor Scott Hauck 
 

 



  
 

Acknowledgments 
 
We are indebted to Hasani Steele for helping with the development of the interconnect 
algorithms. 



1 

1. Abstract 
 

FPGAs play a major role in the implementation of many applications because 
reconfigurable logic allows for rapid prototyping, short time-to-market, and convenient 
upgradability.  Currently, it is common to use general-purpose commodity FPGA 
components due to the large time and monetary investment required to produce more 
appropriate application-specific reconfigurable logic.  A means of quickly and easily 
producing application-specific designs might change this trend, as it would make high 
performance devices much more accessible. 

Furthermore, much work has been done on investigating the usefulness of 
reconfigurable processing units built on the same chip as conventional general-purpose 
processors.  This system-on-a-chip methodology is highly attractive because it allows 
near custom logic performance for infinite applications while requiring limited area.  
This type of architecture becomes even more attractive as off and on-line 
reconfigurable logic placement, routing and scheduling algorithms become more 
efficient and effective.  New design methods and tools akin to those available for 
general-purpose processor designs are necessary for such architectures to become 
popular. 

Design automation through the use of standard cells is an option, but the results are 
typically not impressive, as such a system cannot optimize for structural regularities 
found in reconfigurable arrays.  An effective automation system must be able to 
aggressively utilize structural regularities while maintaining the flexibility to 
incorporate the large logic cores, heterogeneous logic units, and heterogeneous routing 
resources that application-specific FPGAs require to maximize usability and processing 
power. 

 

2. Project Context 
 
For many applications, industry demands a way to receive, with minimal effort, a 

layout ready for fabrication.  Thus, for application-specific FPGAs to become a 
mainstream reality, it is necessary to provide quick, effective CAD tools.  Otherwise, 
the cost in time-to-market and resources needed for custom design and layout is simply 
too large.  Furthermore, any improvement over the typical area requirements of 
standard cells is welcome.  Our solution is layout generation.  synFPGA will take the 
specifications of a design and create a layout of the overlaying structure.  With minimal 
user intervention it will produce a viable, efficient application-specific, reconfigurable 
logic array. 

 

3. Implementation 
 
An island style FPGA consists of four basic types of components: logic blocks, 

routing channels, switchboxes, and local connection blocks.  A typical arrangement of 
the components is shown in Figure 1.  The function of a logic block is to perform 
computational operations.  The sizes of these components may differ greatly depending 



  
 

upon intended usage and design.  A small, simple logic block may be designed to 
perform only two input logical operations while a large, complex logic core may be 
designed to perform fast 32 bit multiplication.  The function of a routing channel is to 
allow different logic blocks to communicate between themselves quickly.  The function 
of a switchbox is to provide useful routing by allowing different routing channels to 
interconnect.  Finally, the function of a local connection block is to provide both the 
connections between a logic block and a routing channel and between a logic block and 
its neighboring logic blocks.   

Switchbox

Logic Block

Switchbox Switchbox

Switchbox

Logic Block

Switchbox

Switchbox

 
Figure 1 - Simple island style FPGA layout 

 
Most FPGA designs contain a great deal of regularity.  Routing channels are 

organized between logic blocks, switchboxes are organized between routing channels, 
etc.  If conventional standard cell techniques were used, much of this order would 
disappear in the final layout.  Logic blocks would intermingle with local connection 
blocks, which in turn would intermix with switching resources.  This would lead to 
wasted space as routing channels and common signal such as power and ground would 
need to twist and turn.  Instead, to take advantage of the typical grid structure of an 
FPGA, we assume straight routing channels and adjust spacing to ensure a regular grid 
pattern. 

synFPGA will take all of the vital information that is necessary to build the support 
structure, but the matters of reasonable specifications, efficient floorplanning and 
practical design is left to the user as a part of the design process. 

 
4. Layout Generation  

 
Much of the area and, thus, much of the time required to design a custom FPGA is 

taken by routing resources.  Therefore, it is wise to focus efforts in the automation of 
these components.  Routing resources account for more than 90% of the total area of 



  
 

modern FPGAs.  Thus, less than 10% of the total area consists of logic resources.  
When one takes this into account, the area contribution of logic resources is very small.  
In addition, in itself, the creation of logic unit designs is relatively simple as the logic 
units typically calculate functions of only a few inputs. [1], [2]  The user may design 
such small parts in full custom or, in the interest of time, in standard cells.  Therefore, 
synFPGA does not build logic blocks but assumes that the user already has layouts and 
dimensions for logic blocks. 

A defining characteristic of application-specific FPGA design is the intelligent use 
of sparse routing resources where signals are likely to travel linearly, to save space, and 
dense routing resources where signal are likely to be complex, to provide adequate 
routability.  Similarly, some logic blocks should be small where sophisticated functions 
are not necessary and some should be large to allow common complex functions to be 
calculated quickly.  Therefore, an effective CAD tool would necessarily support 
heterogeneous components such as those shown in Figure 2.  synFPGA supports nearly 
complete heterogeneous components and will be discussed later. 

2x4-LUT,
2xDFF,

Carry Chain

2x4-LUT,
2xDFF,

Carry Chain15
xL

oc
al

,
8x

le
ng

th
 2

,
5x

lo
ng

lin
e

10
xL

oc
al

,
5x

le
ng

th
 2

,
2x

lo
ng

lin
e

10
xL

oc
al

,
5x

le
ng

th
 2

,
2x

lo
ng

lin
e

10xlocal,
5xlength 2,
2xlongline

10xlocal,
5xlength 2,
2xlongline

25%
Connect

Switchbox

50%
Connect
Switch

box

50%
Connect
Switch

box

5xlocal,
2xlength 2

5xlocal,
2xlength 2

100%
Con. SwB

100%
Con. SwB

100%
Con. SwB

3-LUT,
DFF

Local

L
O

C
A

L

L
L

Local
L
L

3-LUT,
DFF

Local

L
O

C
A

L

L
L

Local
L
L

3-LUT,
DFF

Local

L
O

C
A

L

L
L

Local
L
L

3-LUT,
DFF

Local

L
O

C
A

L

L
L

Local
L
L

3-LUT,
DFF

Local

L
O

C
A

L

L
L

Local
L
L

L
\O

C
A

L

L
L

L
L

 
Figure 2 - Heterogeneous FPGA architecture 

 
The automation process consists of four basic steps: specification input, component 

generation, grid sizing and component placement, and design output.  The design flow 
is shown in Figure 3.  With simple input files the user will enter specification 
information such as the number of routing channels desired or the specific types of 
switchboxes wanted.  Once this information is obtained, the individual components are 
created to determine relative dimensions. The component generation consists of two 
sub-generation functions: switchbox generation and connection block / routing channel 
generation.  Then, using the sizes calculated from the prior step, the grid sizing 
algorithm will set overall dimensions for the grid in order to get the most space efficient 



  
 

layout possible.  This step will also give relative global placements for all of the 
components.  From this, output files for the Mentor Graphics IC tool package will be 
created.  To complete the design cycle the user simply runs the output files through an 
IC tool design. 

General

Logic

Switchbox

Data Input
Component Generation

I. Switchbox Generation

II. Connection Block 
     Generation

$addshape...
$addshape...
$addshape...
$addshape...
$addshape...
$addshape...
$addshape...
$addshape…

Grid Sizing and Placement Layout Creation

Connection

 
Figure 3 - synFPGA Design Flow  

 

4.1 Specification Input 
 

Specification input comes from four files: general information, logic block 
information, switchbox information, and connection block information. Assuming a 
grid containing X logic blocks horizontally and Y logic blocks vertically, a complete 
grid contains (X + 1) by (Y + 1) switchboxes, (X) by (Y + 1) horizontal connection 
blocks, and (X + 1) by (Y) vertical connection blocks.  See Appendix 1 for example 
input files. 

At this time, the only function of the general information file is to specify overall 
grid size.  As will be explained later, this could expand.  Each of the other information 
files is used to input specifications and global location of all respective block types 
used in the design.  See Appendix 1 for a table of keywords.  Please notice that the 
routing channel specification is included in the connection block input and thus, routing 
channels with different numbers of wires are required to have separate definitions 
regardless of connectivity, and vice-versa. 
 

4.2.1 Switching Resource Generation 
 

FPGA switching resources consist of two main components: a memory unit and a 
pass transistor.  Any switching architecture can be built using some combination of 
these components.  The key difference between layout generation and standard cell 
automated design is the grain size or complexity of the library components.  In our 
system we chose to use a dual clock, shift chain-based memory unit and an n-mos pass 
transistor, but the design theory still holds true for other technologies.  A traditional 
standard cell implementation would have two components: one memory and one n-mos 
transistor. A 2 x 2 switch, as shown in Figure 4, would contain 24 standard cell library 
components - 12 memory units and 12 n-mos transistors.  synFPGA has one library 
component: an optimized, tileable six memory, six n-mos transistor unit as shown in 
Appendix 2. The same 2 x2 switch implemented through layout generation would only 



  
 

contain 2 modules tiled together.  While the total number of memory units and 
transistors is the same, much guesswork and thus much intra-component routing is 
eliminated.  Thus our switch will have better performance with a smaller design.  See 
Figure 5. 
 

 
Figure 4 – 2x2 Switch Schematic 

Standard Cell Implementation Layout Generator Implementation

 
Figure 5 – Automated Switchbox Generation 

The standard cell implementation requires many wires to successfully interconnect its basic 
components while the layout generator implementation needs only the basic global lines with 
minimal additions 
 
synFPGA creates switching resources of any size specification by tiling together the 

6 input library module.  First, the largest number of inputs that the switchbox takes 
determines the overall number of modules.  Then the appropriate number of switching 
modules are tiled and internal signal lines are routed to each side depending upon the 
number of inputs that the side takes.  Finally, these internal signal lines are 
appropriately connected to the external input lines.  A switchbox that takes six inputs 
from three sides and four from the fourth will require 6 library modules.  See Figure 6.  
These modules are tiled into a roughly square configuration and internal signal lines are 
routed to each of the sides, ready to connect to external signal lines.  Please notice that 
each side has an additional bank of wires to allow a single external signal to be easily 
routed to multiple internal wires. 



  
 

Internal Signal
Connections

External Signal
 Connections

Overall X Dimensions

Overall
Y Dimensions

6 memory
6 n-mos
transistor
module

6 memory
6 n-mos
transistor
module

6 memory
6 n-mos
transistor
module

6 memory
6 n-mos

transistor
module

6 memory
6 n-mos

transistor
module

6 memory
6 n-mos

transistor
module

 
Figure 6 – Heterogeneous Switchbox Generation 

 
An important feature to maximize the efficiency of application-specific 

architectures is adaptive connectivity.  To fully realize the gains of heterogeneous 
routing resources, it is necessary to implement high or full connectivity switches in 
crucial areas and low connectivity switches in low traffic areas.  In addition, to adapt to 
various architecture design requirements, it would be advantageous to allow for various 
switchbox types. Typical connectivity graphs are shown in Figure 7.  At this time, only 
Xilinx 4000 heterogeneous switches are integrated into synFPGA.  However, because 
the internal bank of wires created on each side of the switchbox, it is easily seen how 
with additional switching modules and/or slight modulation in the internal routing 
scheme it is possible to support multiple switchbox types with various connectivities. 

An additional characteristic feature of application-specific FPGA design is long 
distance routing resources.  Areas of complex routing often require signals to travel 
long distances.  In a design that only contains single length routing resources, the signal 
must travel through multiple switchboxes and routing segments.  This decreases 
performance because of increased signal latency.  To solve this problem, modern 
commodity FPGA designs integrate routing resources that span multiple switchboxes.  
That is, in a design that incorporates double length lines, some lines in its routing 
channels do not connect to every switchbox, but instead skip over some and connect to 
every other switchbox.  synFPGA does not currently support such long distance 
connection architectures.  However, again it is easily seen how with the removal of 
some switching modules and simply short-circuiting across the intermediate 
switchboxes, it is possible to support long distance connection architectures.  The 
single-length Xilinx switchboxes that are supported do demonstrate that this layout 
technique has merit. 

 



  
 

0     1     2    1     0

0

1

2

1

0

0

1

2

1

0

0     1     2    1     0

0     1     2    3     4

4

3

2

1

0

4

3

2

1

0

0     1     2    3     4

0     1     0    1     0

1

0

2

1

0

4

3

2

1

0

0     1     2    3     0

Xilinx 4000 Style [2] Universal Style [2]

Wilton Style [2] Heterogeneous Xilinx 4000 Style

 
Figure 7 – Different Styles of Switch Blocks  

3 different styles of switchboxes which all offer 20% connectivity.  Notice the routing scheme 
and signal duplication in the heterogeneous Xilinx 4000 style switchbox.  It is implemented with 
3 inputs to the left, 2 inputs to the top, 4 inputs to the bottom and 5 inputs to the right. 
 

4.2.2 Connection Resource Generation 
 
FPGA connection resources consist of three types of components: multiplexors, 

demultiplexors and routing channel wires.  To form the switching components, 
connection block units consist of 2 pieces: memory and tri-state buffers.  Multiplexors 
consist of memory units combined with multiple tri-state buffers which have all of their 
outputs tied together.  They serve to allow a single logic block input to receive a signal 
from multiple routing channel wires adaptively.  Demultiplexors are simply a similar 
arrangement with all of the tri-state buffer inputs tied together.  They serve to allow a 
single logic block output to drive a signal onto multiple routing channel wires 
adaptively.  Akin to switchbox generation, synFPGA has an area-optimized, tileable 
memory and tri-state buffer module for connection block generation.  This module is 
shown in Appendix 2.  Again, similar to switchbox generation, this larger grain library 
component reduces the costly intra-component wiring present in standard cell 
implementations. 

synFPGA creates multiplexors and demultiplexors of any specification by tiling 
together the appropriate number of tri-state buffer/memory units; one module for each 
input or output of a component.  For example, a four to one multiplexor and a four to 
one demultiplexor would each consist of four library modules.  Such a system 
continues until components larger than eight to one are created.  After this point, in the 
interest of speed, a multi-level implementation is created.  For example, a 32 to one 



  
 

multiplexor actually consists of four eight to one multiplexors side by side that each 
feed into an additional four to one multiplexor.  Thus, 36 modules are needed.  
However, this does not disturb the tiling nature of the system. 

Architectures utilizing fewer memory units combined with decoders were explored, 
but as described in Appendix 2, this design was eventually chosen.  After all of the 
appropriate switching components are formed, they are further tiled together to form 2 
long chains - one for each side of the routing channel.  Then, the appropriate number of 
routing wires are laid and the respective inputs and outputs of the switching 
components are connected to the channel wires.  A “passthrough” module is simply a 
special case one to one multiplexor in which neither the input nor the output is 
connected to a routing channel wire but instead routed directly to either side of the 
connection resource.  synFPGA leaves logic block input and output connection to the 
user.  See Figure 8. 

 
Figure 8 - Diagram of Connection Resource 

The top row consists of a 1:8 demultiplexor and an 8:1 multiplexor.  The bottom row consists of 
two 1:4 demultiplexors, two 4:1 multiplexors, and a “passthroughin” component.  

 

4.2.3 Grid Sizing and Placement 
 
The primary goal of this procedure is to fully exploit the structural regularity of 

island style FPGAs.  Towards this goal, we implement a constraint on the entire array – 
all routing channels will be completely aligned in the final layout.  After the component 
generation, we have all of the dimension information that we need.  From this we begin 
to calculate the global dimensions of the array.  Each row is forced to take the height of 
its tallest member and each column is forced to take the width of its widest member.  
Thus each component, regardless of actual dimensions, will have the respective global 
height and global width of the tallest member in its row and widest member in its 
column. 

As Figure 9 shows, this can potentially lead to wasted area.  Mostly this occurs in 
heterogeneous designs in which there are items of vastly different specification, such as 
narrow routing channel combined with extremely wide routing channels or small logic 
blocks combined extremely large logic blocks.  This would cause problems in designs 



  
 

with large logic cores as it would waste considerable space above, below and to each 
side of the core.  However, partitioning areas of vastly different feature size into 
separate groups can solve much of this problem.  See Figure 10.  In most designs this 
type of segmentation is logical, such as the difference between control logic and 
datapath logic.   
 

3x3 SB 3x3 SB

4x4 SB
5x5 SB 5x5 SB

3x3 SB 3x3 SB

4x4 SB

CLB 0
CLB 1

3x3 SB

CLB 0

4x4 SB

CLB 1

CLB 1

CLB 1

CLB 1

CLB 1
CLB 0

CLB 0

CLB 0

CLB 0

3x3 SB

5x5 SB 5x5 SB

3x3 SB 3x3 SB 3x3 SB 3x3 SB

4x4 SB 4x4 SB4x4 SB

 
Figure 9 – Grid Sizing Algorithm 

Notice that each row and column marked with an arrow has wasted area. 
 



  
 

After the separate layouts are created they can be manually merged into a single 
design.  Between regions of different feature size some amount of transition routing 
structures will be needed.  If the user is not pleased with the results due to unanticipated 
switchbox or connection block sizing, floorplanning can be repeated using the feature 
sizes calculated previously as an approximate guide.  A second run should produce 
better results.  A logical place to incorporate this partitioning would be to indicate 
relative region locations in the general information file.  This feature could be included 
in future work with a minimum of problems.  This optimization technique does have 
limitations, though, because it will not work in a design that is uniformly 
heterogeneous, as partitioning would be difficult. 
 

 
Figure 10 – Region partitioning 

In this design, partitioning by feature size is logical.  Currently the design and layout of the 
transition routing structures is not automated. 

 
 

4. 3 Layout Output 
 

After the grid-sizing algorithm has completed, each feature has both its own 
dimensions and its global dimensions.  Producing the layout is simply a matter of 
placing library components at the proper relative locations and adding some small 
amount of material to interconnect the individual components and to make up any 
difference between its own dimensions and its global dimensions.  The output is in the 
“dofile” format from the Mentor Graphics CAD tool, IC.  Finally, this output file can 
be run from within any IC design.  It will place the entire array, which can be moved at 
will to integrate into any other design. 

 



  
 

5. Conclusion 
 

The areas in the most critical need of further work are switchbox design and 
multiple specification region integration.  As mentioned previously, more flexible 
switching resources that can support multiple types of switchboxes, adaptable 
connectivity, and long distance routing lines are needed to truly implement the 
complexity found in application-specific reconfigurable arrays.  In addition, to produce 
more area-optimized layouts and lessen the impact of improper design, the intelligent 
use of component clustering to further the concept of layout partitioning has to be 
explored.  An aggressive technique would employ module movement and automated 
partitioning.  At the very least, synFPGA needs to possess an easy way to allow region 
definition and automated transition routing structure implementation. 

Despite the need for further work, synFPGA is able to produce finished, functional 
reconfigurable logic arrays more efficiently than conventional standard cell 
implementations.  Although it is unable to do so without user interaction and must be 
made within certain constraints, this does prove that the method of layout generation 
can drastically reduce design time and make high-performance FPGAs accessible with 
minimal area sacrifice.  As this technique matures, the constraints will lessen and the 
automation of true heterogeneous designs will become a reality. 

 
Appendix 1 -Input specification 
 

4x4 SB
5x5 SB 5x5 SB

CLB 0
400 x 200

CLB 1
500 x 200

5x5 SB 5x5 SB
4x4 SB

I/O pad

I/O pad

I/O pad

I/O pad

I/O pad

I/O pad

 
 

Figure 11 - Example design 
 



  
 

General Information File - 
Xsize 2 
Ysize 1 
 
Logic Block Information File – 
Types 2 
type 0 
xsize 400 
ysize 200 
instances 1 
0, 0 
type 1 
xsize 500 
ysize 200 
instances 1 
1, 0 
 
Switchbox Information File – 
types 3 
type 0 
leftConnections 4 
rightConnections 4 
topConnections 4 
bottomConnections 4 
instances 2 
0, 0 
0, 1 
type 1 
leftConnections 4 
rightConnections 5 
topConnections 5 
bottomConnections 5 
instances 2 
1, 0 
1, 1 
type 2 
leftConnections 5 
rightConnections 5 
topConnections 5 
bottomConnections 5 
instances 2 
2, 0 
2, 1 
 
 
 

Connection Block Information File – 
horizontal types 4 
type 0 
numLines 4 
numTop 2 
type out 4 
0, 1, 2, 3 
type in 4 
0, 1, 2, 3 
numBottom 1 
type in 4 
0, 1, 2, 3 
instances 1 
0, 0 
type 1 
numLines 4 
numTop 1 
type in 4 
0, 1, 2, 3 
numBottom 2 
type out 4 
0, 1, 2, 3 
type in 4 
0, 1, 2, 3 
instances 1 
0, 1 
type 2 
numLines 5 
numTop 2 
type out 5 
0, 1, 2, 3, 4 
type in 5 
0, 1, 2, 3, 4 
numBottom 1 
type in 5 
0, 1, 2, 3, 4 
instances 1 
1, 0 
type 3 
numLines 5 
numTop 1 
type in 5 
0, 1, 2, 3, 4 
numBottom 2 



  
 

(Connection Block Informa tion File cont.) 
type out 5 
0, 1, 2, 3, 4 
type in 5 
0, 1, 2, 3, 4 
instances 1 
1, 1 
vertical types 3 
type 0 
numLines 4 
numRight 1 
type in 4 
3, 2, 1, 0 
numLeft 2 
type out 4 
3, 2, 1, 0 
type in 4 
3, 2, 1, 0 
instances 1 
0, 0 
type 1 
numLines 5 

(Connection Block Information File cont.) 
numRight 1 
type in 5 
4, 3, 2, 1, 0 
numLeft 2 
type out 5 
4, 3, 2, 1, 0 
type passthroughout 
instances 1 
0, 1 
type 2 
numLines 5 
numRight 2 
type out 5 
4, 3, 2, 1, 0 
type in 5 
4, 3, 2, 1, 0 
numLeft 1 
type out 5 
4, 3, 2, 1, 0 
instances 1 
0, 2 

 
 

Keyword Function 
general :: xsize (int num) Indicates number of logic blocks horizontally 
general :: ysize (int num) Indicates number of logic blocks vertically 
all :: types (int num) Defines total number of types used in design 
all :: type (int index) Indicates beginning of singular type definition 
all :: instances (int num) Indicates total number of given type – followed by num 

x,y coordinates to indicate locations 
logic :: xsize (int size) Indicates horizontal dimension 
logic :: ysize (int size) Indicates vertical dimension 
connection :: 
horizontaltypes (int num) 

Indicates total number of horizontal connection block 
types 

connection :: verticaltypes 
(int num) 

Indicates total number of vertical connection block types 

connection :: numLines (int 
num) 

Indicates number of routing lines intersected by 
connection block 

connection :: numTop (int 
num) 

Indicates number of connection units on top; followed by 
num types of units 

connection :: numBottom 
(int num) 

Indicates number of connection units on bottom; followed 
by num types of units 

connection :: numRight (int 
num) 

Indicates number of connection units on right; followed 
by num types of units 
 



  
 

connection :: numLeft (int 
num) 

Indicates number of connection units on left; followed by 
num types of units 

connection :: type in (int X) This unit type takes one of X possible inputs from routing 
channel; followed by X integers indicating wire indexes 
for input 

connection :: type out (int 
X) 

This unit type can output a signal to up to X wires from 
routing channel; followed by X integers indicating wire 
indexes for output 

connection :: type 
passthroughin 

This unit type allows neighboring logic blocks to connect 
without utilizing a routing channel wire; in designation 
indicates unit side is the source of signal 

connection :: type 
passthroughout 

This unit type allows neighboring logic blocks to connect 
without utilizing a routing channel wire; out designation 
indicate unit side is the reciever of signal 

switchbox :: 
leftConnections (int num) 

Indicates number of wires entering left side of switchbox 

switchbox :: 
rightConnections (int num) 

Indicates number of wires entering right side of switchbox 

switchbox :: topConnections 
(int num) 

Indicates number of wires entering top side of switchbox 

switchbox :: 
bottomConnections (int 
num) 

Indicates number of wires entering bottom side of 
switchbox 

 

Appendix 2 – Alternative Connection Block Design 
 

As described earlier, under our current design theory, a four to one multiplexor or a 
one to four demultiplexor would each consist of four connection library modules.  That 
translates to four tri-state buffers and four memory units.  Another implementation, to 
reduce the number of memories required, could use two memory units and a two to four 
decoder to drive the four tri-state buffers.  See Figure 12.  While such a system could 
improve reconfiguration time, we chose our current system because of area 
considerations.  Figure 13 shows a comparison of different multiplexor arrangements.  
The chart shows both the area required to construct certain multiplexors using a one to 
one tri-state buffer to memory ratio and the area required to construct the same 
multiplexors using an x to log (x) tri-state buffer to memory ratio.  These numbers 
should also provide reasonable area estimation for demultiplexing components. 

Clearly, in every case besides the two to one, 28 to one, and 32 to one multiplexors, 
the area of the synFPGA components is smaller than the more traditional x to log (x) 
ratio components.  This is primarily due to the area needs of the decoder. In addition, 
when switching components of intermediate size are required, such as 12 to one or, 
worse yet, twenty to one, the synFPGA implementation is able to produce an exact 
intermediate multiplexing or demultiplexing component.  The implementation utilizing 
decoders is forced to produce a component sized almost as large as one the next largest 
power of two.  This leads to considerable amounts of wasted area. This is quite 



  
 

acceptable, as it is expected that most of the components actually used in the designs 
will be larger than two to one components and smaller than 32 to one components.   

1-Bit 
RAM

1-Bit 
RAM

1-Bit 
RAM

1-Bit 
RAM

1-Bit 
RAM

1-Bit 
RAM

2:4 Decoder

 
Figure 12 – Two Implementations of Tri-state Buffer Control 

 

 
 Utilizing synFPGA Modules Utilizing Decoders 

2:1 Mux 13632 Λ2 7770 Λ2 
4:1 Mux 27264 Λ2 38763 Λ2 
8:1 Mux 54528 Λ2 80400 Λ2 
12:1 Mux  95424 Λ2 110427 Λ2 
16:1 Mux  122688 Λ2 121627 Λ2 
20:1 Mux  102240 Λ2 190035 Λ2 
24:1 Mux  184032 Λ2 201235 Λ2 
28:1 Mux 218112 Λ2 212435 Λ2 
32:1 Mux  245376 Λ2 223635 Λ2 

 
Figure 13 – Area Considerations for Two Implementations 

The calculations for all components 12:1 and larger were made based upon 2-level implementations.  
 

In addition, the calculations for the decoder implementation are very conservative 
because no area penalty was given for the possibly awkward shapes that would be 
produced.  That is, the calculations were mostly based upon simple area addition 
regardless of what bounding box would actually result.  The inter-component routing 
and complicated memory shift-chain would add considerable area.  Further, these 
designs, regardless of size beyond purely homogeneous components, would not fit 
nicely into a regular arrangement as shown in Figure 8.  
However, this is not to say that the design is not without drawbacks.  While the eight to 
one component saves 32% of area, it includes five more programming bits.  Due to the 
shifting nature of the current architecture, while this does increase reconfiguration time, 
the area savings are considerable enough to possibly ignore this fact.  However, if in the 



  
 

future we were to attempt to create a parallel loading system, this would not be the 
case.  Doubling of the number of programming bits would greatly increase the area as 
the number of loading lines would also have to double.  In the 16:1 case and above, this 
would only get worse.  The area gains from the missing decoder would quickly be 
overshadowed by the area penalties caused by the extra programming bits. 



  
 

Appendix 3 - Library Module Layouts 
 

 
 

Figure 1 – Basic Switching Module (rotated 90°) 
 



  
 

 
 
 

Figure 2 – Basic Connection Block Module 



  
 

References 
 
[1]  Wilton, Steven J. E. “Architecture and Algorithms For Field-Programmable 

Gate Arrays with Embedded Memory,” Ph.D. Thesis, University of Toronto, 
1997. 

 
[2] Xilinx Inc. “The Programmable Logic Data Book”, 1994. 
 

 
Further Reading 
 
1. Chang, Y. W., D. Wong and C. Wong, “Universal Switch Modules for FPGA 

Design,” ACM Transactions on Design Automation of Electronic Systems, vol. 
1, pp. 80 – 101, January 1996. 

 
 
 

 


