
Automatic Design of
Area-Efficient Configurable ASIC Cores

Katherine Compton, Member, IEEE, and Scott Hauck, Senior Member, IEEE

Abstract—Reconfigurable hardware has been shown to provide an efficient compromise between the flexibility of software and the

performance of hardware. However, even coarse-grained reconfigurable architectures target the general case and miss optimization

opportunities present if characteristics of the desired application set are known. Restricting the structure to support a class or a specific

set of algorithms can increase efficiency while still providing flexibility within that set. By generating a custom array for a given

computation domain, we explore the design space between an ASIC and an FPGA. However, the manual creation of these customized

reprogrammable architectures would be a labor-intensive process, leading to high design costs. Instead, we propose automatic

reconfigurable architecture generation specialized to given application sets. This paper discusses configurable ASIC (cASIC)

architecture generation that creates hardware on average up to 12.3x smaller than an FPGA solution with embedded multipliers and

2.2x smaller than a standard cell implementation of individual circuits.

Index Terms—Reconfigurable architecture, logic design and synthesis.
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1 INTRODUCTION

WHILE FPGAs and reconfigurable systems have been
effective in accelerating DSP, networking, and other

applications [1], the benefit is, in many cases, limited by the

fine-grained nature of many of these devices. Common

operations such as multiplication and addition can be more

efficiently performed by coarse-grained components. A

number of reconfigurable systems have therefore been

designed with a coarse-grained structure, but these designs
target the general case—attempting to fulfill the computation

needs of any application that may be needed. However,

because different application types have different require-

ments, this creates a large degree of wasted hardware (and

silicon area) if the applications run on the system are

constrained to a very limited range of computations. Unused

logic and programming points occupy valuable area and can

slow down computations, contributing to the overhead of the
device without providing benefit. While the flexibility of

general-purpose hardware has its place when computational

requirements are not known in advance, specialized hard-

ware could be used to obtain greater performance for a

specific set of compute-intensive calculations.
Efforts to reduce the amount of “useless” hardware and

increase the efficiency of the computing device have
focused on more customized structures. Architectures such
as RaPiD [2], PipeRench [3], and Pleiades [4] target
multimedia and DSP domains. Commercial devices such as

Morpho [5] and Stretch [6] are also more coarse-grained than
traditional FPGAs. The Totem Project1 [7], [8], [9], [10], [11],
[12] takes specialization a step further, allowing the user to
select the computation domain (such as signal processing,
encryption, scientific data processing, or a subset of applica-
tions within a domain) by providing representative circuits to
an architecture generator, a concept also proposed by the
RaPiD group. These customized devices are ideal for
situations where the category of computation is known, but
the individual circuit set is either not completely known or
not fixed. However, if we know the actual circuits to be
computed, we can create an even more specialized design
called a configurable ASIC (cASIC).

cASICs are intended as accelerators on domain-specific
Systems-on-a-Chip (SoCs), where ASIC-style accelerators
would otherwise be used. cASICs are not intended to
replace entire ASIC-only chips. The cASIC hardware would
accelerate the most compute-intense and most common
applications for which the SoC is intended, acting as
support hardware or coprocessor circuitry to a host
microprocessor. The host would execute software code
and compute-intensive sections would be off-loaded to one
or more cASIC accelerators to increase efficiency. The
cASIC design flow would be part of the design process for
the SoC itself. Ideally, this process would be automated,
with a complete tool flow to process application descrip-
tions in high-level languages and output cASIC designs
based on compute-intense commonly executed code.
Although much work has been published in this general
area of hardware/software codesign and hardware compi-
lation, the most relevant addresses extraction of inner loops
so as to create cASIC-style designs [13]. This paper,
however, focuses on techniques to design the cASIC
hardware after the circuit candidates are known.
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While the circuit set that cASICs can implement is fixed,
they are different from traditional ASICs in that some
hardware programmability is retained [8], [14]. This also
separates cASICs from structured ASICs, where configur-
ability is at the mask level and the design can only be
configured once prior to the final fabrication steps. The eASIC
FlexASIC [15] is somewhat of an exception—the routing is
mask-programmable, but logic is in the form of SRAM-
programmable LUTs. However, it does not appear that
FlexASICs are intended to be runtime reconfigurable like
cASICs. The Flexible ASIC (not related to FlexASIC) is a type
of structured ASIC closer in flavor to cASICs. Automatic
design tools create a base design suitable for a set of
specific related applications and mask programming is
used to complete the design for a single chosen applica-
tion. The goal of this work is to minimize the number of
interconnect layers needed for any one application and
amortize design costs across all applications. Due to mask-
level programmability, Flexible ASICs are not suitable for
runtime reconfiguration.

cASICs use runtime reconfiguration to implement
different circuits at different times. Because the set of
circuits and number of reconfiguration points is limited, not
only is cASIC performance expected to be close to an ASIC,
but the circuit will be significantly smaller than an FPGA
implementation. Furthermore, because we reuse hardware
to implement multiple circuits, cASICs can be smaller than
the sum of the ASIC areas of the individual circuits. The
area benefit of cASICs is critical. For many high-perfor-
mance applications, special hardware accelerators can
become quite large. If each desired accelerator were
implemented separately, this could result in an unreason-
ably large (and expensive) chip. Allowing the accelerators
to share hardware makes their use more attractive to SoC
designers. This will encourage the use of specialized
accelerator circuits, leading to devices with higher perfor-
mance and lower power consumption than ones that rely on
a microprocessor for all computations. Battery-powered
devices in particular would benefit from the low-power
execution.

Specialized cASICs, while beneficial in theory, would be
impractical in practice if they had to be created by hand for
each group of applications. Each of these optimized
reconfigurable structures may be quite different, depending
on the application set desired. One could manually specify
resource sharing in an HDL description or in circuit layout.
Unfortunately, this would contribute significantly to the
design costs of the hardware.

Synthesis tools have some ability to find resource sharing
opportunities, but unfortunately require the designer to
merge the needed circuits into a single design. Simply
instantiating the circuits in a larger framework generally
prevents the synthesis tools from finding sharing opportu-
nities. We verified this problem by attempting to synthesize
a set of four multiply-accumulate (MAC) circuits, each with
a different pipeline depth, designed as separate modules
joined by an outer module that chooses between their
outputs. Both Synopsys and the Xilinx tools synthesized
four separate multiplier units, even on high effort and
optimizing for area.

Flattening the circuit can help, but will dramatically
increase synthesis time and many sharing opportunities
may still be overlooked by tools optimized for sharing
within smaller areas of a single circuit. In our experiments,
automatic flattening did not allow multiplier sharing in
either Synopsis or the Xilinx tools for our MAC test case.
However, by rewriting the code as one HDL module,
Synopsys was able to eliminate two multipliers and the
Xilinx tools eliminated one. Unfortunately, requiring all
code to be contained within a single HDL module for large
designs is counter to good design practices. More research
into automated cASIC sharing is therefore essential to
decrease the cost of customized architecture development.

The Totem Project focuses on the automatic generation of
customized reconfigurable architectures. While most of the
Totem Project research focuses on more flexible architecture
design, this paper describes our work toward a cASIC
generator including experiments and data beyond the initial
preliminary results [16]. This generator takes as input a set
of RaPiD-format netlists and creates as output an architec-
ture capable of implementing any of the provided circuits.
Like RaPiD, the architecture is a 1D bidirectional datapath
composed of coarse-grained computational units and word-
size buses. Although the current version of the cASIC
generator creates RaPiD-style datapaths, many of the
techniques that we will discuss can apply more generally
as well. This possibility is discussed in more depth in
Section 5. As we will show later in this paper, the generated
cASIC architectures are significantly smaller than required
by a traditional FPGA implementation, in some cases using
less than half the area required for a set of separate standard
cell implementations with the same functionality.

2 BACKGROUND

Current efforts in the Totem Project focus on coarse-grained
architectures for compute-intensive application domains
such as digital signal processing, compression, and
encryption. The RaPiD architecture [2], [17] is presently
used as a guideline for the generated architectures due to
its coarse granularity, one-dimensional routing structure,
and compiler. Coarse-grained units match the coarse-
grained computations currently targeted. The one-dimen-
sional structure is efficient for many DSP applications, but
also simplifies the architecture generation process signifi-
cantly. Future work in the Totem Project focuses on the two-
dimensional case, discussed in part in Section 5. Finally, a
compiler [18] for this system is already in place, which aids
in the development of application circuits for Totem. The
compiler takes a description written in RaPiD-C and creates
circuit netlists suitable for RaPiD or Totem implementation.

The RaPiD architecture is composed of a set of repeating
cells (Fig. 1) tiled horizontally. The logic units within the
cells operate on full words of data and include 16-bit ALUs,
16� 16 multipliers, 16-bit wide RAM units, and 16-bit
registers. Each component contains a multiplexer on each of
its inputs that chooses between the signals of each routing
track. Each component also has a demultiplexer on each of
the outputs that allows the unit to directly output to any of
the routing tracks. Inputs are on the left side of a unit, while
the outputs are on the right side of the unit. Global inputs
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also reside on the 1D datapath at the ends of the
architecture.

The routing architecture is one-dimensional and seg-
mented, with each track word-width. The top routing tracks
are local, containing short wires for fast short-distance
communication. The bottom 10 tracks provide longer-
distance routing, allowing wires to be connected to form
longer routes. The bus connectors (small squares in the
figure) also provide optional pipeline delays to mitigate the
delay added through the use of longer wires and more
routing switches.

3 CASIC GENERATION

While the flexibility of traditional FPGA structures is one
of their greatest assets, it is also one of their largest
drawbacks—greater flexibility leads to greater area, delay,
and power overheads. Creating customized reconfigurable
architectures presents the opportunity to greatly reduce
these overheads by discarding excess flexibility. This paper
discusses taking this idea to the extreme end of the
spectrum—removing all unneeded flexibility to produce
an architecture as ASIC-like as possible. We call this style of
architecture “configurable ASIC” or cASIC.

Like RaPiD [2], [17], the cASIC architectures we create
are very coarse-grained, consisting of optimized compo-
nents such as multipliers and adders. Unlike RaPiD, cASICs
do not have a highly flexible routing network—the only
wires and multiplexers available are those required by the
netlists. cASICs are designed for a specific set of netlists and
are not intended to implement netlists beyond the specifica-
tion. In fact, unless a circuit is from the specified input set or
extremely similar to one of the circuits in the set, it is
unlikely to be implementable in the generated hardware.
This hardware is optimized for the exact circuits in the
specification and to be an alternative to a set of separate
ASIC circuit structures.

Hardware resources are still controlled in part by config-
uration bits, though there are significantly fewer present than
in an FPGA, where each LUT and all flexible routing must be
configured. In cASICs, configuration bits control any multi-
plexers needed on the inputs of logic units, as well as ALU
modes. These configuration bits allow for hardware reuse
among the specification netlists. Intelligent sharing of logic
and routing resources keeps the quantity of configuration bits
required extremely small. Each netlist in the specification is
implemented in turn by programming these bits appropri-
ately. Multicontexting could be used to ensure single-cycle

configuration of the hardware [20], though the scarcity of
configuration bits would result in relatively fast reconfigura-
tion times even without multicontexting.

Ideally, the design flow for cASICs would be entirely
automatic. Applications could be written at a high level and
compute-intensive sections of code would be selected for
hardware implementation. A wide variety of research is
ongoing, related to compiling high-level languages to
hardware or mixed hardware and software.

cASIC architecture generation occurs in two phases. The
logic phase determines the computation needs of the
application netlists, creates the computational components
(ALUs, RAMs, multipliers, registers, etc.), and orders the
physical elements along the one-dimensional datapath.
Also, the netlist instances must be bound to the physical
components. The routing phase creates wires and multi-
plexers to connect the logic and I/O components.

3.1 Logic Generation

cASIC logic generation involves first determining the type
and quantity of functional units required to implement the
given netlists. Because the ability to reuse hardware is a key
feature of reconfigurable computing, maximum hardware
reuse between netlists is enforced. The minimum number of
total logic units is chosen such that any one of the netlists
given as part of the architectural specification can operate in
its entirety. In other words, unit use within a netlist is not
modified or rescheduled. Therefore, if netlist A uses
12 multipliers and 16 ALUs, while netlist B uses four
multipliers and 24 ALUs, a cASIC architecture designed for
these two netlists would have 12 multipliers and 24 ALUs.
If a designer were to require some flexibility in the design
beyond the minimum, additional units could be added.
However, this would defeat the purpose of the minimalist
cASIC. Techniques from the Totem Project to generate more
flexible domain-specific reconfigurable hardware have been
published elsewhere [21].

After the unit quantities and types have been selected, they
must be arranged along the horizontal axis. A good ordering
will ensure that the number of signals passing through any
one vertical cut of the architecture is kept low, which reduces
the area consumed by the routing structures. Similarly, units
communicating with one another should be located in close
proximity to reduce the delay on the wires between them.
Therefore, the best physical ordering of the units depends on
the communication between them. The communication
needs between physical units, however, depend on how the
netlists are implemented on that hardware. Although this
specific work targets a 1D architecture, we will later discuss
extensions to support 2D designs.

Before discussing the positioning of logic resources
further, we must define some key terminology. The archi-
tectural components represent physical structures to be
created in silicon. These differ from netlist instances, which
are implemented by the physical components. A netlist
instance represents a “need” for a given type of computation
at a given point of the circuit. In traditional FPGAs, the LUTs
are the physical components, while the netlist instances are
low-level gates or small logic functions. In the Totem Project,
coarser-grained architectures and netlists are currently used.
For example, a multiply-accumulate netlist contains a
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Fig. 1. A single cell of RaPiD [17], [19]. A full architecture is composed of

multiple cells laid end-to-end.



multiplier instance followed by adder and register in-
stances. These instances must be implemented by the
appropriate type of physical components in the hardware.

There may be multiple units appropriate for a circuit
instance, in which case the instance must be matched to a
specific physical unit. When using traditional FPGAs, this
matching is referred to as placement or binding. For this
work, the terms binding or mapping are used to describe the
process of matching an instance to a component. A physical
move describes the act of assigning a physical location to a
physical component. Fig. 2 illustrates the difference between
binding and placement. Using this terminology, traditional
synthesis for FPGAs requires only bindings, whereas place-
ment for standard cells involves only physical moves.

Reconfigurable architecture generation is a unique
situation in which both binding and physical moves must
be considered. Locations of physical units must be known
in order to find the best binding and the binding must be
known to find the best physical moves. Since these
processes are interrelated, both binding and physical moves
are performed simultaneously in this work. The term
placement in Totem architecture generation refers to the
combined process of determining a binding of netlists to
units and determining physical locations for the units.

Placement during cASIC generation utilizes a simulated
annealing algorithm [22], commonly used in FPGA place-
ment (binding) to assign netlist instances to physical
computation units, and standard cell placement to deter-
mine locations for actual physical cells. This algorithm
operates by taking a random initial placement of elements
and repeatedly attempting to move the location of a
randomly selected element. The move is accepted if it
improves the overall cost of the placement. To avoid settling
in a local minima of the placement space, moves that do not
improve the cost of the placement are sometimes accepted.
The probability of accepting a nonimproving move is
governed by the current “temperature.” At the beginning
of the algorithm, the temperature is high, allowing a large
proportion of bad moves to be accepted. As the algorithm
progresses, the temperature decreases and, therefore, the
probability of accepting a bad move also decreases. At the
end of the algorithm, almost no bad moves are permitted.

In the Totem architecture generation, simulated anneal-
ing performs both the binding and physical moves
simultaneously. Therefore, a “move” can be either of these
two possibilities—either rebinding a netlist computational
instance from one physical unit to another compatible
physical unit or changing a physical component’s position
(ordering) along the 1D axis.

In order to create a single architecture optimized for all
of the target netlists, we perform placement and binding of
all netlists simultaneously using a modified simulated
annealing algorithm. The instances of each netlist are
arbitrarily assigned initial bindings to physical components,
which are ordered arbitrarily along the 1D axis. An example
initial placement created for the two netlists presented in
Fig. 3 appears in Fig. 4. Next, a series of moves is used to
improve the placement. However, for cASIC generation,
there are two different types of moves that can be attempted
within the simulated annealing algorithm: rebinding and
physical moves. The probability of attempting a rebinding
when making a simulated annealing move is equal to the
number of netlist instances divided by the sum of the netlist
instances and physical components. In other words, the
ratio of the physical moves to the binding moves is the same
as the ratio of physical components to netlist instances.

The cost metric is based on the cross-section of signals
communicating between the bound instances. At each
physical unit location, the cross-section of signals for each
netlist is determined. The maximum across the netlists
becomes the overall cross-section value at that point. After
the cross-section value is calculated for each location, the
values are squared, then summed across the locations to
yield the overall cost value. By squaring the values before
summing across positions, areas with a high cross-section
are heavily penalized. The goal in reducing these cross-
sections is primarily to minimize the area of the routing
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Fig. 2. Binding versus physical moves. (a) Binding assigns instances of

a netlist to physical components. (b) Physical moves reposition the

physical components themselves.

Fig. 3. Two example netlists for architecture generation. The light netlist

performs a multiply-accumulate (MAC), while the dark netlist is a 2-tap

FIR filter. These two netlists are used in the example placement process

given in the next few figures.

Fig. 4. An initial physical placement and binding for an architecture for

the Fig. 3 netlists. Shading shows component use by netlist, but only

one can be active at a time.



structure that will be created because a larger cross-section
can lead to a taller architecture. A secondary goal is to
decrease the delay of the nets because the longer (and
slower) a wire is, the more likely it is to share a span with

other wires and contribute to a larger cross-section.
The guidelines presented for VPR [23], a place and route

tool for FPGAs, govern the initial temperature calculation,
number of moves per temperature, and cooling schedule.

These values are based on Nblocks, the number of “blocks” in
a netlist. Since both netlist instances and physical compo-
nents are being used, Nblocks is calculated as the sum of the
instances in each netlist provided plus the number of
physical components created. The initial temperature and

number of moves per temperature are derived from this
value. The cooling schedule specified by VPR is also used,
where the new temperature, Tnew, is calculated according to
the percentage of moves that were accepted ðRacceptÞ at the

old temperature Told.

3.2 Routing Generation

While RaPiD uses a series of regular routing tracks,
multiplexers, and demultiplexers to connect the units,

cASIC architectures provide a specialized communication
structure. The only routing resources are those which are
explicitly required by one or more of the netlists. This
section discusses cASIC routing generation techniques.

After the logic structure is created using the techniques of
Section 3.1, the physical locations of the components are
fixed, as are the bindings of netlist instances to the
components. The specification netlists define the signals

that connect the netlist instances to form a circuit. These
instances have been bound in the placement stage, so the
physical locations of the ports of the signals are known. We
then create wires to implement these signals, allowing each
netlist to execute individually on the custom hardware. We

may also create multiplexers and demultiplexers on
component ports to accommodate the different needs of
the specification netlists. For example, if netlist A has a
register receiving an input from an adder, but netlist B

needs that register to input from a multiplier, a multiplexer
is created to choose the register input based on which netlist
is currently active in the architecture.

Fig. 6 continues our example, showing the generated
routing structure for the placement in Fig. 5. Note that

several wires implement signals from both netlists. Like
logic resources, wires are only used by one netlist at a time
—whichever is currently programmed on the architecture.
“Sharing” routing resources between netlists reduces area,

as the routing architecture can become extremely large if
each signal is implemented by a dedicated wire.

The object of routing generation is to minimize area by
sharing wires between netlists while adding as few multi-
plexers/demultiplexers as necessary. Heuristics group
signals with similar connections from different netlists into
wires. To clarify the motivations for the algorithms
presented below, the routing problem itself must first be
discussed. As with the placement problem, creating the
routing is two problems combined into one: creating the
wires and assigning of the signals to wires. In many current
FPGA architectures, wire lengths can be adjusted for each
netlist by taking advantage of programmable connections
(segmentation points) between lengths of wire, potentially
forming a single long wire out of several short wires. For
simplicity, the current Totem cASIC generation algorithms
do not provide this flexibility.

The algorithms must somehow determine which sets of
signals belong together within a wire. One method is to
simply not share at all, which is explored in the No Sharing
algorithm. The remaining algorithms, Greedy, Bipartite,
and Clique, use heuristics to determine how the wires
should be shared between signals. The heuristics operate by
placing signals with a high degree of similarity together into
the same wire. However, “similarity” can be computed
several different ways. In this work, two different defini-
tions of “similarity” were used. Ports refers to the number of
input/output locations the signals or wires have in
common. The raw number of shared ports is the similarity
value in this case. Overlap refers to a common “span,”
where the span of a signal or wire is bounded by the
leftmost source or sink and the rightmost source or sink in
the placed architecture. The range of component indices
overlapped is the similarity value in this case. Results for
each of these similarity types are given in Section 4. The
procedures used by the Greedy, Bipartite, and Clique
heuristics are described in the next sections.

3.2.1 Greedy

The greedy algorithm operates by repeatedly merging wires
that are very similar. To begin, each signal is assigned to its
own wire. Next, a list of correlations between all compatible
wire pairs (wires that are not both used in the same netlist) is
created. A correlation contains references to a pair of wires
and the similarity value between them. The correlation with
the highest similarity value is selected at each iteration and
those two wires are merged. All other correlations related to
either of the two wires that have been merged are updated
according to the characteristics of the new shared wire. If any
of the correlations now contain a conflict due to the new
attributes of the merged wire (i.e., both wires in the
correlation hold a signal from the same netlist), these
correlations are deleted from the list as they are no longer
valid. This process continues until the correlation list is empty
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Fig. 5. Final placement of the architecture created from the initial

placement in Fig. 4. The signal cross-section has been greatly reduced

during the placement process.

Fig. 6. cASIC routing architecture created for the example from

Section 3.1. Shaded wires are used only by the indicated netlist, while

black wires are used by both.



and no further wires may be merged.

3.2.2 Bipartite

The merging of netlists into cASIC architectures is a form of
matching problem. This might naturally lead one to
consider the use of bipartite matching to solve the problem.
One group has already used maximum weight bipartite
matching to match netlist instances together to form
components [14]. However, there are two fundamental
problems with this approach. The first is that this type of
logic construction does not consider the physical locations
of the instances or their components. The physical locations
of components and mapped instances determine the length
of wires needed to make the connections between units and
are therefore critical to effective logic construction. Further-
more, although bipartite matching was used to determine
sharing of logic resources, the routing resources (wires)
were not shared.

Second, the bipartite matching algorithm was used
recursively, matching two netlists together, then matching
a third netlist to the existing matching, and so on. While
any individual matching can be guaranteed to have the
maximum weight, the cumulative solution may not. The
order in which the netlists are matched can affect the
quality of the final solution. This is true even if bipartite
matching is not used for the logic construction but only
for routing construction.

We created a cASIC generation algorithm that uses
recursive maximum weight bipartite matching to compare
against the Clique approach proposed in the next section.
Logic for these architectures is constructed as discussed in
Section 3.1 because of the location issue mentioned
previously, but the routing generation is done via recursive
bipartite matching. In this algorithm, signals are repre-
sented by nodes in the bipartite graph, edge weights are
similarity values between signals, and a matched pair (and
later group) becomes a wire.

3.2.3 Clique

The downside of the Greedy and Bipartite techniques is that
they merge wires based on short-term local benefits without
considering the ramifications. There may be cases where
merging the two most similar wires at one point prevents a
more ideal merging later in the algorithm. Clique partition-
ing more accurately models the routing creation problem,
operating more globally than greedy and avoiding the
netlist ordering problems of bipartite matching.

Clique partitioning is a concept from graph algorithms
whereby vertices are divided into completely connected
groups. In our algorithm, each wire is represented by a
vertex and the “groups,” or cliques, represent physical
wires. The algorithm uses a weighted-edge version of clique
partitioning to group signals with high similarity together
into wires, where the similarity between signals is used as
the edge weight. The cliques are then partitioned such that
the weight of the edges connecting vertices within the same
clique is maximized. Signals that cannot occupy the same
wire (signals from the same netlist) carry an extremely large
negative weight that will prevent them from being assigned
to the same clique. Therefore, although signal A may have a
high similarity value with signal B and signal B may have a
high similarity value with signal C, they will not all be
placed into the same wire (clique) if signal A conflicts with
signal C due to the large negative weight between those
vertices. Fig. 8 shows the clique partitioning solution to the
weighted-edge graph from the example of Fig. 7.

Given that the weighted clique partitioning of a graph
with both negative and positive edge weights is NP-
Complete, we use an ejection chain heuristic based on tabu
search [24]. Vertices are initially assigned to random cliques
(where the number of cliques equals the number of
vertices). Not all cliques must contain vertices, but all
vertices must be assigned to a clique. The algorithm then
iteratively moves each vertex from its current clique to a
different one. This is done by selecting a nontabu vertex
each time and a new clique for that vertex that will produce
the maximum overall (not necessarily positive) gain in total
weight for the graph. Once a vertex is moved, it is marked
tabu until the next iteration. After all the vertices have been
moved in an iteration, the list of cumulative solutions after
each move is examined and the one with the highest total
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Fig. 7. Recursive bipartite matching for these three netlists results in a suboptimal solution. Nodes are signals (shades indicate netlist), circled

groups are wires, and the cost is the sum of the edge weights in the groups. (a) Graph, (b) recursion steps, and (c) solution.

Fig. 8. An improved solution to the graph of Fig. 7 found using clique

partitioning.



weight is chosen. This solution is then used as the base for
the next iteration of moves and all vertices are marked
nontabu. This loop continues until none of the cumulative
solutions in an iteration produces a total weight greater
than the base solution for that iteration.

4 RESULTS

Eight different applications (each composed of two or more
netlists) were used to compare the area results of the Totem
architectures to a number of existing implementation
techniques, including the standard cell, FPGA, and RaPiD
techniques. These applications, along with their member
netlists, are listed in Table 1. Five of these are real
applications used for radar, OFDM, digital camera, speech
recognition, and image processing. The remaining three
applications are sets of related netlists, such as a collection
of different FIR filters. The netlists, composed of multi-
pliers, ALUs, RAMs, and register nodes, were compiled
from RaPiD-C by the RaPiD compiler and were pipelined
and retimed by that tool flow.

4.1 Reference Implementations

The applications listed in Table 1 were implemented using
standard cells, an FPGA, and RaPiD to provide comparative
results for evaluation of cASIC architectures. The following
paragraphs describe the techniques used for these three
comparative implementation methods. The standard cell
layouts of the netlists (converted automatically from RaPiD
netlist format to structural Verilog) were created using
Cadence in a TSMC 0:18�m process with six metal layers.
Generally, the total area for an application set is the sum of
the areas required for the netlists. This is an appropriate
comparison for two reasons. First, the target systems
execute hybrid applications, with compute-intense sections
implemented in hardware. The netlists may come from
different applications or different parts of the same
applications. ASIC accelerators for these applications may
not all be encapsulated in a single hardware description for
the synthesizer to find sharing opportunities. In fact, the
designer (or the tool chain, if processing software code) may
import existing cores to implement the compute-intensive
sections, in which case the cores would be designed
separately. Second, the ability of current commercial
synthesizers to fully exploit potential resource sharing is
still limited, as previously discussed.

That said, for application sets which are collections of
similar netlists (FIR, Matrix, and Sort from Table 1), this
assumption is likely to be incorrect and unfair. Therefore, to
err on the side of caution, the maximum area required by
any one member netlist is used for these cases as a small
amount of additional control circuitry may allow all
member netlists to use the same hardware. I/O area is not
included since I/O area is also not measured for the Totem
architectures.

The FPGA solution is based on the Xilinx Virtex-II FPGA,
which uses a 0:15�m 8-metal-layer process, with transistors
at 0:12�m [25]. In particular, the die area was obtained for
an XC2V1000 device [26]. This FPGA contains not only
LUT-based logic (“slices,” where there are two 4-LUTs per
slice), but also embedded RAM and multiplier units in a
proportion of 128 slices:1 multiplier:1 RAM. We use this
proportion of resources as a tileable atomic unit when
determining the required FPGA area for the designs.
Mmanually designed FPGA cores for SoCs are unlikely to
be very customizable except in terms of the quantity of total
tileable resources. The area of an individual tile, which
corresponds to approximately 25K system “gates” of logic,
was computed (using a photograph of the die) to be
1.141 mm2. This area was then scaled to a 0:18�m process by
multiplying by ð:15=:18Þ2 to yield a final tile size of
1.643 mm2 to compare all solutions using the same
fabrication process. The Verilog files created from indivi-
dual netlists were placed and routed onto a Virtex-II chip
and the number of tiles required for the applications was
measured. In this case, the total area required by an
application is the maximum of the areas required by its
member netlists as the hardware resources are reusable.

The area required to implement the applications on a
static RaPiD architecture [2], [17] was also calculated. The
RaPiD results represent a partially customized FPGA
solution. The RaPiD reconfigurable architecture was de-
signed for the types of netlists used in this testing and
contains specialized coarse-grained computational units
used by those netlists. The number of RaPiD cells can be
varied, but the resource mix and routing structures within
the cell are fixed.

To find the area for each application, the minimum
number of RaPiD cells needed to meet the logic require-
ments of the application was calculated. The application’s
netlists were then placed and routed onto the architecture to
verify that enough routing resources were present. If not,
and the routing failed, the number of cells was increased by
one until either all of the application’s netlists could
successfully place and route or place and route still failed
with 20 percent more cells than the application logic
required.

Manual layouts of each of the units and routing
structures were created in a TSMC 0:18�m process with
five metal layers. The logic area is simply the sum of the
areas of the logic units in the architecture. The routing area
is the sum of the areas of the multiplexers, demultiplexers,
and bus connectors (segmentation points) in the architec-
ture. Routing tracks are directly over the logic units in a
higher layer of metal and are therefore not counted as
contributing to the area. In some cases, the RaPiD
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TABLE 1
Eight Applications, Each Containing

Two or More Distinct Netlists

FIR, Matrix, and Sort are collections of similar netlists, while the others
are actual applications.



architecture did not have sufficient routing tracks to
implement a circuit. The RaPiD cell would have to be
manually redesigned to fit these netlists. This illustrates one
of the primary benefits of an automatic architecture
generator—provided enough die area is allocated, a
solution can always be created.

4.2 cASIC Implementations

Areas of cASIC architectures are computed based on the
manual layouts used for the RaPiD area calculation. The
logic area is computed using the same method, but the
routing area is a more complex computation. The area used
by multiplexers and demultiplexers (including the related
configuration bits) are again computed according to manual
layouts. Unlike RaPiD, wire area can contribute to an
architecture’s total area. A cross-section of up to 24 can be
routed directly over the logic units, so, as with RaPiD, this
routing area is considered “free.” However, when the
routing cross-section is larger, the additional cross-section
adds to the architecture height.

First, the Bipartite technique was examined to determine
the effect of the order in which netlists are merged into the
cumulative solution. Table 2 lists, for each application, the
minimum, average, and maximum areas across the solutions

for each ordering of the netlists. The percent difference
between the minimum and maximum areas is also given.
When there are only two netlists, there is only one
possible ordering and the minimum and maximum values
are identical. However, these results indicate that, for any
cases with more than two netlists, the ordering can affect
the final area. For the circuit sets examined here with
more than two netlists, there is, on average, approximately
a 4.5 percent difference in routing area between the best
and the worst orderings. However, in one case, the
routing area varies by as much as 20 percent. Therefore,
this technique may not be appropriate for cases with more
than two netlists.

Next, we generated architectures using the Greedy,
Clique, and No Sharing techniques. The No Sharing
algorithm creates a separate wire for every signal—a
completely different set of wires is used depending on
which netlist is in operation. This method is included to
demonstrate the importance of sharing routing resources
between netlists. An area comparison of the tested cASIC
methods is given in Fig. 9, which has been normalized to
the area result of Clique Overlap (which, on average,
produces the smallest architectures). Areas are listed for
Greedy, the average Bipartite case, and Clique, each with
two categories: Ports and Overlap. As stated previously,
Ports indicates that the similarity between signals is
computed according to the number of sources and sinks
shared by those signals. Overlap indicates that the
similarity is computed according to common location and
length of the signals.

As expected, all three heuristic techniques of both
similarity types perform better than the No Share algorithm
for all applications. Generally, Clique performs better than
the other methods, with Clique Overlap on average
2 percent smaller than Bipartite Overlap, 6 percent smaller
than Bipartite Ports, and 13 percent smaller than Greedy
Ports or Greedy Overlap. There is clearly room for
improvement in the similarity calculation and, potentially,
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TABLE 2
Areas of the Routing Structures Created by Bipartite Matching

Using Both the Ports and the Overlap Methods

All netlist orderings were tested. The minimum, average, and maximum
areas are given, as is the percent difference between the min and max.

Fig. 9. Comparative area results of the different cASIC routing generation algorithms, normalized to the Clique Overlap result for each application.

The Bipartite results given are the average across orderings.



the heuristic techniques for Clique, as both Greedy and the

average Bipartite produce a smaller area in some situations,

despite the flaws of these algorithms. Additionally, Clique

sometimes performs better using Ports and other times

using Overlap. Neither is consistently better than the other.

An improved similarity (weight) calculation would con-

sider both Ports and Overlap.
Table 3 gives the areas found by the different cASIC

routing generation algorithms, with the corresponding
standard cell, FPGA, and RaPiD areas listed for comparison.

These results are summarized in Table 4. As these tables
indicate, cASIC architectures are significantly smaller than
the corresponding FPGA area for the same netlists. The

heuristics range, on average, from a 10.6x improvement to a
12.3x improvement in area, while even the No Sharing
algorithm results in a 9x improvement. FPGAs without

custom embedded multipliers and RAMs would be ex-
pected to require even more area than the Virtex-II for these

applications. The Virtex-II here is only a factor of 7.2x larger
than standard cells, whereas, with older homogenous

FPGAs, implementations were generally assumed to be
one to two orders of magnitude larger.

Comparisons of cASIC techniques to RaPiD also yield

favorable results, with area improvements of 3.4x to 3.8x for
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TABLE 3
Areas, in mm2, of the Eight Different Applications from Table 1 Implemented in

Standard Cells, a Virtex-II, RaPiD, and the cASIC Techniques

A summary of these results appears in Table 4. Bipartite results are given for the min, max, and average over all orderings.

TABLE 4
Area Improvements Calculated over the Reference

Architectures, then Averaged Across All Applications

The Bipartite results are the average across netlist orderings.



the cASIC heuristics. Because they do not need to be flexible
beyond the specification netlist sets, cASICs also devote
significantly less area to routing resources as a proportion
of the total area. These applications were created for RaPiD
and RaPiD has been hand-optimized for DSP-type opera-
tions, which makes it more efficient (2.8x smaller) than a
generic FPGA for these applications.

Finally, the cASIC heuristic methods also created
architectures, on average, half the size of standard cell
implementations of the applications. One of the reasons the
cASIC architectures are able to achieve such small areas is
because the tools use full-custom layouts for the computa-
tion blocks. The FIR, Matrix, and Sort architectures
demonstrate the value of the full-custom units. In these
applications, the standard cell area is estimated to be the
size of the largest member netlist (as explained in
Section 4.1) to give standard cell design the benefit of the
doubt. Even with the overhead of adding reconfigurability,
these cASIC area results are close to or slightly better than
the standard cell implementation. Using a library of coarse
units in conjunction with a standard cell synthesis tool
would, of course, improve the standard cell results.

However, the largest benefits occur in the cases where an
application has several differently structured netlists and a
separate circuit must be created for each member netlist in a
standard cell implementation. By reusing components for
different netlists, the cASIC architectures achieve areas on
the order of a full-custom implementation (generally
assumed to be 2-3x smaller than standard cells). While the
use of library components in these cases would decrease the
standard cell area to some extent, it would not solve the
problem of hardware reuse.

The cASIC method of architecture creation therefore has
significant area benefits for situations in which standard
cells are generally considered instead of FPGAs for
efficiency reasons. A full-custom manual layout could be
created for these applications that might be smaller than the
cASIC architectures. However, this would require consider-
ably more design time, which can be quite expensive and
may not always be possible due to production deadlines. A
full delay and power analysis of cASIC architectures has not
yet been performed, but based on relative flexibility (where
flexibility is what introduces area, delay, and power
overhead), we would expect results to be between ASIC
and FPGA implementations.

5 FUTURE DIRECTIONS

As mentioned previously, the current cASIC tools are
limited to customized 1D RaPiD-style datapaths. However,
this limitation is an implementation detail, not a necessity
for the idea or techniques themselves. Expanding this
process to 2D would require augmenting the placement
process to use a 2D grid, an easy modification. Routing
would become more difficult, but could be accomplished
using maze routing techniques. It is possible that empty
spaces would need to be inserted to accommodate bends in
wires, which could increase area. But, we would expect this
increase to be minor given that the routing structure is very
limited in cASICs.

The techniques described could also target different
netlist types and logic types beyond what is supported by
the RaPiD hardware and netlists. This would require
creating manual layouts of the new logic units. The majority
of the cASIC tool would remain unchanged as it was
written in a very parameterized manner. The only potential
difficulty would be if the logic units were not of a uniform
height. In this case, macro-cell placement techniques would
be employed to achieve an efficient layout.

Architectures could be generated with a little additional
flexibility in an effort to allow for minor changes to the
specified circuit set. This could be accomplished by
increasing the size of the multiplexers on the logic unit
inputs by a set percent or to a set size. Routing tracks could
then be added to allow routing flexibility. In this case, a
flexible router such as Independence [27] could be used to
map new circuits to the hardware. However, at this point,
we are no longer performing the task targeted by this work.
The design would then approach a domain-flexible archi-
tecture in style and we suggest that other architecture
generation techniques designed for flexible domain-specific
architectures would be more appropriate [21].

Finally, the tool flow for cASIC design must be solidified.
Until this point, we have been concerned only with the
process of creating the cASICs themselves and have
compiled our application netlists using the RaPiD compiler.
A more compelling case could be made for cASIC design if
an entire tool flow could be provided. This flow would
profile a set of applications specified in a high level
language to find compute-intense sections, identify simi-
larity across applications, and synthesize circuits into
netlists used for cASIC creation. This process would include
retiming and automatic time-multiplexing based on area
and speed constraints. The cASIC design techniques
presented here, modified with the improvements listed
above, would then create cASIC structures for the target
SoC. cASIC mappings and placements would be verified
against the original netlists. Furthermore, the created
configuration bitstreams would be analyzed to ensure that
physical wires would only be driven by at most one source.
The final cASIC design would be sent to a layout generator
[11] to create a core for the SoC.

6 CONCLUSIONS

This paper described the cASIC style of architecture and
presented three different heuristics to create these designs.
The first uses a greedy approach, the second uses recursive
maximum weight bipartite matching, while the third uses a
more sophisticated graph-based algorithm called clique
partitioning to merge groups of similar signals into wires.
Two different methods to measure this signal similarity
were discussed, one based on the common ports of the
signals and the other based on the common span (overlap).
Results indicated that a better similarity measurement
would be a combination of the two, incorporating both
ports and signal overlap.

The area comparison also demonstrates the inefficiencies
introduced by the flexibility of FPGAs. While the generic
structure is critical for implementing as wide a variety of
circuits as possible, it is that flexibility that causes it to
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require 12x more area than a cASIC architecture. The
Virtex-II FPGA does, however, perform much better than
earlier FPGA designs, at least in part due to the use of
coarse-grained multiplier and RAM units. The RaPiD
architecture extends the use of coarse-grained units to the
entire architecture, but is customized to DSP as a whole. If
the application set is only a subset of DSP, further
optimization opportunities exist, with cASIC techniques
achieving up to 3.8x area improvements over the RaPiD
solution.

This paper also demonstrated another key benefit cASIC
generation has over the use of a static architecture such as
RaPiD. In cASIC generation, if enough area is allotted on
the SoC die, an architecture can be created for any set of
netlists. On the other hand, the RaPiD resource mix is fixed.
For some applications, this structure may not have the
correct logic mix for the application, leading to copious
wasted area. Alternately, a static structure may not provide
a rich enough routing fabric, as was demonstrated by the
failure of some applications to place and route onto a RaPiD
architecture. Finally, cASIC architectures have been created
that are under half the size of standard cell implementations
of the desired application set. These area results indicate
that cASIC architecture design is not only an excellent
alternative to FPGA structures when the target circuits are
known, but also a viable alternative to standard cell
implementations.
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