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Abstract

The problem of detecting similarities between different genetic sequences is fun-
damental to many research pursuits in biology and genetics. BLAST (Basic
Local Alignment and Search Tool) is the most commonly used tool for identi-
fying and assessing the significance of such similarities. With the quantity of
available genetic sequence data rapidly increasing, improving the performance of
the BLAST algorithm is a problem of great interest. BLAST compares a single
query sequence against a database of known sequences, employing a heuristic
algorithm that consists of three stages arranged in a pipeline, such that the
output of one stage feeds into the input of the next stage. Several recent stud-
ies have successfully investigated the use of Field-Programmable Gate Arrays
(FPGAs) to accelerate the execution of the BLAST algorithm, focusing on the
first and second stages, which account for the vast majority of the algorithms
execution time. While these results are encouraging, translating algorithms like
BLAST that contain somewhat complex and unpredictable control flow and
data access patterns into versions suitable for implementation on coprocessor
accelerators like FPGAs turns out to be quite difficult using currently available
tools. Such architectures are usually programmed using Hardware Description
Languages (HDLs), which are significantly more difficult to learn and use than
standard programming languages. In this paper, an accelerated version of the
BLAST algorithm is presented, written in a new language called Macah, which
is designed to make the task of programming coprocessor accelerators easier for
programmers familiar with the widely-known C language.



1 Introduction

BLAST (Basic Local Alignment Search Tool) is a fast heuristic algorithm used
for approximate string matching against large genetic databases. BLAST takes
as inputs a query string and a database string (usually much longer than the
query), and returns a list of approximate matches between the two, each with
an associated alignment and numeric score. The algorithm was first described
in [1], and since then has become one of the most widely used software tools
by researchers in genetics and bioinformatics – the original BLAST paper was
the most widely cited paper of the 1990’s, with over 10,000 citations. BLAST is
used for a variety of purposes, including matching newly-isolated genes against
databases of known genes in order to make predictions about gene function, and
tracking evolutionary changes in genetic material over time. Figure 1 shows the
format of an example result from a sample BLAST search.

Mus musculus chromosome 2 genomic contig, strain C57BL/6J
Length=36511446

 Features in this part of subject sequence:
   myosin IIIA

 Score =  333 bits (368),  Expect = 2e-88
 Identities = 454/636 (71%), Gaps = 12/636 (1%)
 Strand=Plus/Minus

Query  16     CAAGTAGGTCTACAAGACGCTACTTCCCCTATCATAGAAGAGCTTATCACCTTTCATGAT  75
              ||| | ||| |||||||||| || |||||||| |||||||| || || |  || ||||||
Sbjct  46215  CAACTTGGTTTACAAGACGCCACATCCCCTAtTTATAGAAGAACTAATAAATTTCCATGAT  46156

Query  76     CACGCCCTCATAATCATTTTCCTTATCTGCTTCCTAGTCCTGTATGCCCTTTTCCTAACA  135
              ||| | || |||||  ||||||| ||  ||| | ||||||| |||  | | |  |||| |
Sbjct  46155  CACACACTAATAATTGTTTTCCTAATTAGCTCCTTAGTCCTCTATATCATCTCGCTAATA  46096

Figure 1: A (truncated) sample BLAST result, generated by searching for the
human gene COX2 in the mouse genome (Mus musculus). The name of the
matching sequence from the database is shown (top), along with notable bio-
logical features within the matched portion of the database string, some scoring
information, and the alignment itself between the matched portions of the query
and database strings.

Prior to the development of BLAST, the Smith-Waterman string alignment
algorithm was the primary tool used for doing approximate string matching
against genetic databases. Smith-Waterman is a traditional dynamic-programming
algorithm, and is guaranteed to find the best local alignment of the two input
strings, because it calculates a score for each such possible alignment and choos-
ing the best one. The running time of the Smith-Waterman algorithm is O(mn),
where m is the length of the query string and n is the length of the database
string, as it is with BLAST, but BLAST works by quickly and probabilisti-
cally eliminating the vast majority of potential alignments which do not appear
promising. While the size of query strings has remained relatively constant and
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small (on the order of thousands or tens of thousands of characters), the size
of genetic databases is much larger (typically several gigabytes), and has grown
exponentially, doubling approximately every 18 months and spurring the devel-
opment of heuristics such as BLAST that sacrifice some search sensitivity and
accuracy for greatly reduced running time.

Since the initial development of BLAST in 1990, the size of genetic databases
has continued to grow at an exponential rate, meaning that improving BLAST
performance has remained an important goal. Algorithmic modifications such
as MegaBLAST [15] that make further speed/sensitivity tradefoffs have been
proposed and are used in certain situations where performance is critical and
sensitivity of the search is secondary, however accelerated versions of BLAST
that do not sacrifice sensitivity compared to the original BLAST algorithm are
more desirable.

1.1 Previous Hardware Acceleration Work

Much approximate string matching acceleration work has focused on the sim-
pler Smith-Waterman algorithm, which is more easily accelerated using special-
ized hardware. Numerous FPGA and GPU-based accelerated Smith-Waterman
implementations have been created, many yielding impressive speedups over
the standard software implementation. However, even with good hardware-
acceleration, Smith-Waterman still has trouble competing performace-wise with
unaccelerated software BLAST.

Several multi-threaded BLAST implementations leveraging multiprocessor
systems and scientific computing clusters are available, the most prominent
being mpiBLAST [5] and mpiBLAST-PIO [13] (targeted specifically at the
IBM’s Blue Gene/L). These accelerated BLAST implementations have shown
impressive speedups, but such approaches will not be the focus of this paper.

Coprocessor accelerator architectures offer greatly reduced power consump-
tion and higher spatial density as compared to traditional multi-processor or
cluster systems, making them attractive for accelerated BLAST implementa-
tions . In recent years, several FPGA-accelerated versions of BLAST have been
produced, both commercially and in the research realm. Commercial implemen-
tations include TimeLogic’s Tera-BLAST and the Mitrionics’ Open Bio Project
[9] (the source code of which has been released under an open-source license).
FPGA BLAST implementations in the research realm include, RC-BLAST [10],
Tree-BLAST [7], TUC BLAST [12], and Mercury BLAST [8] [3].

Of these various implementations, Mercury BLAST is perhaps most inter-
esting for several reasons. In addition to the fact that it the authors report a
significant speedup over NCBI BLAST, the functional deviations of Mercury
BLAST from the original BLAST algorithm are minimal, meaning it produces
results that are very similar to if not exactly the same as those of NCBI BLAST.
Also, it is the basis for the Mitrion-C Open Bio Project’s BLAST implementa-
tion, which appears to have gained at least some real-world adoption. For this
reason, the acceleration approach presented in this paper will follow the general
structure of the Mercury BLAST system, albeit with some modifications which
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will be discussed in more detail in later sections.

2 BLAST Overview

The National Center for Biotechnology Information (NCBI) maintains the most
widely-used BLAST software implementation (hereafter referred to as ‘NCBI
BLAST’). NCBI BLAST includes several variants for dealing with searches
over nucleotide sequences, protein sequences, and translated versions of each
of these. All utilize the same basic algorithm, but contain minor variations.
The nucleotide variant of BLAST, called blastn, will be the focus of this paper,
though many of the ideas presented should be applicable to the other variants as
well. The BLAST algorithm utilizes a three-stage filtering pipeline to search for
approximate matches between the query and database strings, with each stage
acting as a filter, eliminating a significant proportion of its input and passing
on promising candidate matches to the next stage.

Stage 1:
Word 

Matching

Stage 2:
Ungapped 
Extension

Stage 3:
Gapped 
Extension

Query string
Approximate
matches (alignments)

Database string

~0.12% ~2.4% ~2.8%

Figure 2: The 3-stage pipeline structure of the BLAST algorithm. Each stage
acts as a filter, selecting a small proportion of its input to be passed on to the
next stage for further investigation. The approximate percentages of the inputs
that are ‘passed’ by each stage are shown below each stage.

Measurements for the pass rates of each stage shown in figure 2 were taken
on the same system and over the same set of query and database strings used
for performance profiling in section 2.2. These pass rates will be discussed in
more detail after an explanation of each of the stages of the BLAST algorithm.

It is also important to note that the database string is pre-processed by
the NCBI formatdb tool in order to compress it so that each nucleotide is
represented using only 2 bits (for the possible values of A, C, T, and G) rather
than a full byte.

Stage 1 consists of word matching, that is, finding short, fixed-length, exact
matches (words) that are common to both the query sequence and the database
sequence. The length of these word matches varies between the different BLAST
variants, and is also configurable, but in nucleotide BLAST, the default length of
such words is 11 nucleotides. Using a longer words will result in fewer matches,
and thus will decrease the running time of the search, but will also decrease the
search’s sensitivity, while using shorter words will increase the number of word
matches, and thus the running time while also increasing the sensitivity of the
search.
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A C T T G C G A T T A G A C C A T G Input String

A C T T G C G A T T A G A C C A T G Word 1

A C T T G C G A T T A G A C C A T G Word 2

A C T T G C G A T T A G A C C A T G Word 3

A C T T G C G A T T A G A C C A T G Word 4

... ...

Figure 3: A diagram showing the decomposition of input strings into words used
in stage 1 of the BLAST algorithm

For each word in the database string, two questions are relevant: does the
word exist in the query string, and if so, at which location(s) in the query
string can it be found? Each nucleotide is represented using 2 bits, meaning
that each word can be represented using 22 bits when the default word length
of 11 nucleotides is used. Because most modern CPUs can operate only on
bytes at a time rather than individual bits, NCBI BLAST splits stage 1 of the
BLAST algorithm into two sub-steps. The database is first scanned along byte-
boundaries, using a word size of 8 nucleotides (2 bytes), then each of these hits
is extended by a small number of nucleotides on either side to bring it up to the
size of a full word.

In order to facilitate this process, NCBI BLAST builds two data structures:
a presence vector and a lookup table. The presence vector is simply a bit vector,
consisting of 216(= 65536) bits, and can quickly answer the question of whether
a given word is present in the query string. The bit positions corresponding
to words that are present within the query string are turned on, and the rest
are left as zeros. If a given word from the database is present within the query
string, the lookup table is then used to extract its location(s) from the query
string. Finally, the short exact matches are extended by several nucleotides on
either side to bring them up to the full word length required.

Each word match consists of a pair of indices, one pointing to the beginning
of the word in the query string, and the other pointing to the start index of the
word within the database string. In stage 2 of the algorithm, each word match
is extended in either direction, aligning corresponding character pairs from the
query and database strings before and after the initial word match, and assigning
each character pairing a score – positive if the paired characters are identical
and negative otherwise. The score of the extension is calculated as the sum of
all individual character pair scores. This ungapped extension is continued until
the current score drops a certain threshold below the highest score seen so far,
and only extensions that achieve scores above a certain threshold are passed on
to stage 3 of the computation.

In stage 3, gapped extension, each successfully extended word match is ex-
tended in either direction using the standard Smith-Waterman alignment algo-
rithm, which allows for gaps in the alignment between the query and database
strings. Matches that yield a final score in this stage above a certain threshold
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are then finally reported to the user.
Recall now the pass rates for each stage given in figure 2. It should be noted

that these pass rates (especially for stages 1 and 2) can vary significantly based
on the size of the query string. In particular, as the length of the query string
increases, the probability of finding within it a particular word increases until
it approaches one (when the number of words in the query string approaches
the number of possible words of the specified length). This has a ripple effect
into stage 2, forcing it to discard a higher proportion of initial word matches
because they do not correspond to biologically significant.

2.1 Common Usage Characteristics

NCBI also maintains a publicly-accessible web interface to BLAST running on
its own servers, and tracks statistics about the number and type of BLAST
searches performed by site visitors. Though they do not give a complete picture
of BLAST usage, these usage statistics are helpful in determining the most
common parameters used in BLAST searches. According to [4], as of 2005,
NCBI processes over 150,000 BLAST searches per day. More than 80% of these
searches are against the ‘nr’ or ‘nt’ databases (for proteins and nucleotides,
respectively). These databases, which contain a compilation of non-redundant
genetic data pulled from a variety sources, are updated frequently and are quite
large – currently abut 1.8 and 6.3 gigabytes, respectively. Additionally, more
than 90% of the nucleotide searches are for query strings of less than 2000
base-pairs.

In summary, the most common usage of BLAST seems to be searching
large databases with relatively short query strings. NCBI has released a set
of databases and queries [4] specifically designed to mimic the characteristics of
the most common BLAST searches, to be used for benchmarking purposes with-
out the practical issues involved in downloading and using the multi-gigabyte
‘nt’ and ‘nr’ databases. This information further emphasizes the importance of
the size of the database string to the running time of BLAST.

2.2 BLAST Profiling

In [8], the authors profile BLAST running with three different query string
lengths (10K, 100K, and 1M bases), finding that stage 1 of the BLAST compu-
tation takes up an average of about 85% of the total pipeline processing time,
while stage 2 takes up an average of about 15% of the running time, and the
amount of time spent in stage 3 is negligible. The authors of [10], doing profiling
on a single query on a small database with an older version of NCBI BLAST,
also concluded that stage 1 of the BLAST algorithm accounts for about 80% of
the program running time.

While the profiling results in [8] are useful for understanding the perfor-
mance of BLAST with larger queries, no benchmarks for query sizes under
10000 base-pairs are reported (recall that according to NCBI statistics, over
90% of nucleotide BLAST searches performed through their website are with
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queries of 2000 base-pairs or less). The results reported in [10] seem to be in
agreement with those in [8], however, they are by no means exhaustive, cover-
ing only a single query on a single database and using an old version of NCBI
BLAST.

In order to confirm these profiling results, and also to get a better picture
of BLAST performance characteristics on smaller queries, I used the oprofile

tool to profile blastn running over the 102 sample queries that comprise the
BLAST benchmarks for blastn released by NCBI [4]. All queries were run
against the benchmark nucleotide database benchmark.nt, also included with
the BLAST benchmarks download. Results for this profiling are given in table
1 below.

Stage 1 Stage 2 Stage 3 I/O and other
67.73% 9.77% 12.48% 10.02%

Table 1: Profiling data collected using oprofile on NCBI blastall while
running 102 benchmark queries against the benchmark.nt database. Profiling
was performed using the blastall executable built from the 3/17/08 release of
the NCBI C Toolkit on a 2.2 GHz AMD Athlon64 processor with 1 gigabyte of
RAM running Ubuntu Linux 8.04.

While these results show broad agreement with the results in [8] and [10],
they do differ somewhat. It should be noted that the profiling results given in
[8] include only ‘pipeline time’, which presumably means that time not spent
in one of the three core stages (the ‘I/O and other’ category in table 1) is not
included in the reported percentages. The most striking difference beyond this
is the much greater significance of stage 3 to the total running time in these
results. The reason for this is unknown, but two factors may have contributed
to the increased proportion of time spent in stage 3. First, the queries tested in
these results are shorter than those used in [8], with lengths ranging from about
100-10000 bp, and an average length of 2068 bp, and these shorter queries may
be computationally less intensive during stages 1 and 2. Second, the proportion
of matches making it to stage 3 may be significantly higher when using the
benchmark data set because of a higher degree of similarity between the queries
and the database string.

It is worth noting that any unusual performance characteristics specific to
short queries may be avoided using a slight algorithmic modification known
as ‘query packing’, wherein multiple short queries are combined into a single
longer query and run through the standard BLAST algorithm, with results
being sorted based on their query of origin after the fact. In any case, all sets of
profiling results suggest that stage 1 (word matching) should be the first target
for hardware acceleration, because of its dominance of the overall running time.
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3 Coprocessor Accelerators

3.1 Abstract Architecture

The abstract architecture targeted by the BLAST implementation presented in
this report comes from the work of Ylvisaker, Van Essen, and Ebeling in [14].
An understanding of this abstract architecture and the constraints it imposes is
crucial to allowing the programmer to evaluate potential acceleration schemes
and optimizations, and determine their suitability for coprocessor acceleration.
The abstract coprocessor accelerator architecture consists of a standard sequen-
tial processor connected to an accelerator engine (see Figure 2). The accelerator
engine may be either an FPGA or another type of hybrid reconfigurable proces-
sor containing many parallel processing elements. The accelerator engine has
direct access to a small amount ot workspace memory (implemented as Block-
RAM on an FPGA) and a number of simple processing elements coordinated
by a small amount of control logic.

Main
Memory

Sequential Processor

Micro-Parallel Engine

BW ~1

BW ~P

Statically
Scheduled

|memory| >> |workspace|

|PE| ~P

Ctrl

Workspace
Memory

  PC

Figure 4: A block diagram of abstract coprocessor accelerator architecture,
consisting of a sequential processor (left) connected to an accelerator engine
consisting of a small amount of workspace memory and a set of processing
elements. Originally presented in [14]

.

3.2 Constraints

There are several important constraints to consider when designing applications
for coprocessor accelerator architectures. Firstly, it is important to recognize
that the accelerator engine does not have direct access to the main memory of
the sequential processor, meaning that before it can operate on a given piece
of data, it must be sent across the I/O channel connecting the two processors.
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The bandwidth of this channel is finite, and it can easily be the limiting factor
in I/O-intensive computations. Because of this fact, it is desirable to make as
much use of a given piece of data as possible once it has been sent across this
channel, maximizing the ratio of computation to communication. Secondly, the
amount of memory directly accessible by the accelerator engine (the workspace
memory) is quite limited in size. While the exact amount varies across target
hardware platforms, the size of the workspace memory will be on the order of
that of an L2 cache on a modern microprocessor.

3.3 Macah

Macah is a new programming language, being developed at the University of
Washington by the authors of [14], with the goal of providing a C-level language
that can be used to write efficient programs taking advantage of the parallelism
offered by coprocessor accelerator architectures. It is implemented as a set
of extensions to the standard C language, and is designed to be easier to use
than hardware description languages (HDLs) such as Verilog, which are the pri-
mary existing solutions for programming coprocessor accelerator architectures.
Macah has also been designed with the goal of being able to target multiple
specific hardware platforms using the same code base, provided that such sys-
tems conform to the abstract system architecture discussed at the beginning of
this section. The Macah compiler provides the programmer with facilities that
abstract many (but not all) of the details involved with scheduling concurrent
operations on the accelerator engine and communicating between the sequential
and parallel processors. Several of these are discussed in more detail below.

Kernel blocks allow the partitioning of application code into portions that
will execute on the standard sequential processor and portions that will exe-
cute on the parallel processor. Each kernel block represents a portion of code
that will execute on the parallel processor, while the rest of the code executes
on the sequential processor. Streams provide an abstraction layer for the I/O
channel connecting the sequential and parallel processors, allowing primitive
types as well as more complex data structures to be serialized and sent back
and forth between the two sides. Reader and writer functions handle incoming
and outgoing data to and from the sequential processor across streams.

The Macah compiler can be configured to output either C code to be fed into
a standard C compiler (for simulation and testing purposes), or a combination
of C and Verilog (with C being used for the sequential parts of the computation,
and Verilog being used to implement the kernel blocks). When compiling code
inside a kernel block into Verilog, Macah will build a data-flow graph for the
variables in the kernel block, and use this graph locate loops within the code
that can be pipelined, or unrolled and executed entirely in parallel. An im-
portant optimization that is performed by the compiler in this process is array
scalarization, in which arrays that are accessed inside of loops are transformed
into multiple scalar variables so that they may be accessed in a parallel fashion.
To assist the compiler, Macah provides the programmer with an uppercase FOR
loop construct, which informs the compiler that a given loop should be unrolled
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and executed in parallel.

4 Accelerated BLAST Structure

The accelerated BLAST implementation presented in this paper consists of a
set of Macah code that interfaces with NCBI BLAST to replace NBCI BLAST’s
implementation of the word matching stage of the BLAST algorithm (see figure
4). The overall structure of the new stage 1 is similar to that of NCBI BLAST
in that two different data structures constructed from the query string are used:
a Bloom filter replaces the presence vector in NCBI BLAST and determines
whether a given word is present within the query string, and a cuckoo hash
table is used to extract the position of a given word from the query string, as
well as to verify the results from the Bloom filter. Stages 2 and 3 (ungapped
and gapped extension, respectively) remain unchanged in this implementation.

Build
Bloom filter 

&
Hash table

Stage 1b:
Hash 
Lookup

Database
string

Stage 1a:
Bloom
Filter 
Lookup

Workspace Memory

Query
string

To NCBI BLAST
stages 2 & 3

Figure 5: An overview of the accelerated BLAST structure. The Bloom filter
and hash table are built from the query string on the sequential processor, and
stored in the workspace memory of the accelerator engine, while the database
string is streamed through, and word matches are streamed back to the se-
quential processor and sent on to stages 2 and 3 of the algorithm, which run
unmodified.

The Bloom filter and hash table are built during program initialization, and
are kept resident in the workspace memory of the accelerator engine throughout
the execution of the program, while the database string is sent through using a
Macah stream. Each successful word match is sent across another stream from
the accelerator engine back to the sequential processor for further investigation
by the later stages of the algorithm. This approach means that the space ef-
ficiency of the Bloom filter and hash table is of crucial importance, as both
of these structures must be able to fit within the limited workspace memory
available.

Currently, a single kernel block is used to implement the entire word match-
ing stage, however a version that separates out the two sub-stages (using the
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Bloom filter and the hash table) into separate kernel blocks connected by streams
so that they may be pipelined and execute on different data concurrently is
planned. The details of the Bloom filter and hash table are presented in the
following sections.

5 Bloom Filter Implementation

The Bloom filter, first described by Burton Bloom in [2], is a space-efficient,
probabilistic data structure used for quickly checking the membership of a given
element within a set of other elements. Krishnamurthy et al. first proposed
applying the Bloom filter as a pre-filter in front of stage 1 of BLAST in [8]
in order to quickly eliminating the vast majority of words from the database
string that do not have exact matches within the query string. This report will
explain the usage and characteristics of a standard Bloom filter, and propose a
small modification to the original structure that will make the structure better
suited to implementation on coprocessor accelerator architectures.

A Bloom filter consists of a bit vector of m bits, along with k unique hash
functions. Initially, all of the bits in the bit vector are set to 0. The Bloom
filter is then built by encoding a set of of elements into the bit vector in the
following manner: for each element, k different indices into the bit vector are
generated using the hash functions h1 − hk and the bit values at each of the
corresponding positions within the bit vector are set to 1. Any collisions are
simply ignored. To check for the presence of an element in the Bloom filter,
k indices for the element are generated using the k hash functions, and each
corresponding position within the bit vector is checked. If all k of the values are
set to one, then the Bloom filter will return true for the given input, meaning
there is a high probability that it exists within the set of encoded elements,
otherwise it will return false, meaning the input element definitely is not a
member of the set of encoded elements.
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word w
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Figure 6: An illustration of Bloom filter operation: initialization (left), encoding
a new word (center), and checking for the presence of a word (right)
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Note that while false positives are possible with the Bloom filter, false nega-
tives are not. False positives result from collisions, and so the probability of false
positives depends on the probability of collisions within the bit vector, which in
turn depends on the size of the bit vector, the number of items encoded, and
the number of hash functions used.

In [2], Bloom calculates the false-positive rate P of a Bloom filter using k
hash functions as:

P = (1 − φ)k

Where φ represents the expected proportion of bits in the bit vector that are
still set to zero. He further defines φ in terms of m, the size of the bit vector,
and n, the number of items that have been inserted into the filter so far:

φ = (1 − k/m)n

Thus giving a final error rate for the Bloom filter as:

P = (1 − (1 − k/m)n)k

A Bloom filter consisting of 218 = 262144 bits (32 kilobytes), utilizing a
k = 6 hash functions therefore can support queries of up to 215 = 32768 words
with a false positive rate of less than 2.2%:

P = (1 − (1 − 6/218)2
15

)6 ≈ 0.022

5.1 Bloom Filter Partitioning

One issue with implementing a Bloom filter in Macah is serialization of the
k memory accesses to the bit vector for each lookup – though the k different
hash functions can be computed in parallel, queries on the bit values at each
corresponding position within the bit vector will be serialized if a single table
is used.

To avoid this serialization, it is desirable to partition the bit vectorinto a
set of k smaller bit vectors, each of size m/k. Each of the k hash functions
is associated with a single bit vector, and will only generate indices into that
array. The set of tables may be stored as a two-dimensional array, and because
each hash function will be generating an index into its own table, the Macah
compiler will be able to scalarize the first dimension of the array, meaning all k
hashes and lookups may be executed in parallel. The design of the partitioned
Bloom filter as compared to the standard Bloom filter can be seen in figure 7.

Recall from the previous section that the false-positive rate P of a Bloom
filter using k hash functions can be calculated as:

P = (1 − φ)k

Where φ represents the expected proportion of bits in the bit vector that
are still set to zero, and is defined in terms of m (the number of bits in the bit
vector) and n, the number of elements encoded in the bit vector as:

φ = (1 − k/m)n
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Figure 7: A standard Bloom filter (left) vs. a partitioned Bloom filter (right)

If m′ is defined to be the size of the smaller tables in a partitioned Bloom
filter, then the proportion of bits in the bit vector that are still set to 0 in the
partitioned Bloom filter, φp, can be similarly defined as:

φp = (1 − 1/m′)n

Recall from above, however, that m′ = m/k, giving:

φp =

(

1 −
1

m/k

)n

= (1 − k/m)n

Meaning that φp = φ, and thus the false positive rate for the partitioned
Bloom filter, Pp, is equal to the false-positive rate for the standard Bloom filter.

5.2 Hash Function Reuse

In [8], the authors chose to use the H3 hash function for both their Bloom filter
and hash table because of its amenability to efficient hardware implementation.
Because it is used so frequently in both parts of stage 1, choosing a fast hash
function is critical to the overall performance of stage 1. The H3 hash function
is described in [?], and consists of a number of terms XORed together (one
term for each bit of the input key). The H3 hash function hq, as defined in [?],
takes an input key x of width i bits, and produces an output index hq(x) that is
j bits wide, making use of q, a randomly-generated i× j matrix in the following
manner:

hq(x) = x(1) · q(1) ⊕ x(2) · q(2) ⊕ . . . ⊕ x(i) · q(i)

Where x(n) represents bit n from the input word repeated j times, and q(n)
represents row n (a string of j bits) from the matrix q. During stage 1 of the
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BLAST algorithm, the Bloom filter and hash table are held in the workspace
memory while the database is streamed through and examined word by word.
As can be seen in figure 3, adjacent words from the database differ by only
two characters (the first and last). Because the database words are always
examined in the order in which they appear in the database during stage 1,
and each word must be examined, this overlap between adjacent words can be
exploited to reduce the amount of work needed to generate hash functions for
each word, as shown in figure 8.

C C A T G A T T C A A

C A T G A T T C A A T

w
1

w
2

x y z

Figure 8: Two adjacent database words, showing the overlapping region y.
Given a hash function h, h(w2) can be calculated from h(w1) by ‘removing’
the old portion (x) and ‘adding’ the new portion, z using the formula h(w2) =
h(w1)⊕ h(x)⊕ h(z), thus reducing the number of bits that must be hashed per
word from 22 to 4 when using the default word size of 11 nucleotides.

6 Hash Table Implementation

Each word from the database string that passes through the Bloom filter must
next be verified against the query string, both to ensure that it is not a false
positive generated by collisions in the Bloom filter, and to discover the posi-
tion(s) of the word within the query string. The standard approach, used in
the NCBI BLAST, Mercury BLAST, and Mitrionics BLAST systems, is to use
a hash table mapping each word from the query string to its position(s) within
the query string.

The authors of [8] use a complex displacement hashing scheme that makes
use of a large primary hash table, a smaller, more sparsely-populated secondary
hash table to resolve collisions efficiently, and a duplicate table to store multiple
query positions for a single word. This scheme seems to work well, but it requires
the use of an significant amount of off-chip SRAM in order to store the hash
table and associated data structures (the authors claim they are able to support
queries of up to 17.5 kbases using a 1MB SRAM with their scheme).

Cuckoo hashing, a relatively new hashing technique first described in 2001
by Pagh et al. in [11] offers much better space efficiency than displacement
hashing without sacrificing any lookup performance, making it more suitable
for BLAST implementations targeted at coprocessor accelerator architectures,
with their limited workspace memory. As will be shown, cuckoo hashing is
also more naturally suited to coprocessor parallelization. Cuckoo hashing as
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originally described makes use of two tables, T1 and T2, along with two hash
functions, h1 and h2. Each hash function is associated with a single table, and
maps input words to positions within its associated table, thus each input word
x can be alternately stored in either T1[h1(x)] or T2[h2(x)].

When attempting to insert a word x into the hash table, T1[h1(x)] and
T2[h2(x)] are first examined to see if they are occupied. If not, x is placed into
one of the unoccupied slots. If, however, T1[h1(x)] is occupied by the key x′, and
T2[h2(x)] is occupied by the key x′′, either x′ or x′′ will be chosen for eviction,
and pushed to its alternate spot in the opposite table, making room for x. If the
evicted key finds its alternate location occupied, it evicts the current occupant,
propagating the chain of evictions down until all keys have been assigned to
one of their two alternate locations, or until a cycle is entered (a very rare case
in which re-hashing with two new hash functions is performed). As in [3], a
separate duplicate table is used to store multiple query positions for a single
word, supporting up 4 distinct query positions for a given word.
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Figure 9: A diagram showing the an example cuckoo hash table before the
insertion of a new word, w4 (left) and afterwards (right). The new word is first
run through the two hash functions (h1 and h2) in order to generate indices
into the tables T1 and T2. Since both of the possible positions for are already
occupied (by w1 and w3), w1 is evicted to its alternate position in T2, in turn
forcing w2 to its alternate position in T1, and leaving a space for w4.

This results in a hashing scheme with worst-case constant lookup time, in
which at most 2 hash lookups must be performed in order to locate a given
key, because each key must reside in one of its two alternate locations if it is
in the table at all. Additionally, because the two hash lookups needed are in-
dependent and generate indices into separate tables, they can be performed in
parallel. Because the size of the query string is usually quite small compared to
the size of the database string, and because the query hash table must only be
built once and not subsequently modified, the somewhat worse insertion perfor-
mance of Cuckoo hashing as compared to more traditional hashing schemes is
unimportant in BLAST.

The standard Cuckoo hashing implementation as described above will ac-
commodate space utilization of up to 50%, however, in [6], the authors gener-
alize binary Cuckoo hashing (using two tables and two hash functions) to d-ary
Cuckoo hashing, utilizing d tables and hash functions in order to achieve much
higher space utilization (91% for d = 3, and 97% for d = 4). Because each
insertion probe or lookup requires d hash table positions to be calculated and
checked, this results in a performance hit for both insertion and lookup on stan-
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dard serial hardware. However, on parallel hardware, the extra hash function
calculation and table lookup can be done in parallel, meaning that increasing
d to a modest value of 4 yields space utilization near 100% with no significant
lookup performance hit.

In summary, the use of 4-way Cuckoo hashing of the words from the query
string makes it possible to fit reasonably-sized queries into a very small workspace
memory. The actual query size that can be supported varies based on the details
of the implementation, but assuming hash table entries of 64 bits each (the value
used in Mitrion-C BLAST), and a space utilization of 95%, a query of 17500
kbases can be accommodated using 4 tables totaling less than 150 kilobytes in
size, leaving 50 kilobytes for a duplicate table while still yielding a 5x space
reduction over Mercury BLAST’s hashing scheme.

7 Conclusions

Because the Macah compiler’s Verilog code path is a work in progress, it is
unfortunately not yet possible to synthesize and run the Macah BLAST version
that has been produced (though it is possible to build compile to C for correct-
ness testing purposes), and so no performance comparisons with NCBI BLAST
can be made. However, the results of this investigation have been encourag-
ing in that they have shown the relative ease with which a new and complex
application can be ported to the Macah language.

Profiling results have supported the conclusion of other researchers that stage
1 of BLAST is the most significant contributor to the overall running time of
the BLAST algorithm, even for the shorter query sizes typical of those that
are submitted to NCBI’s servers. It has been shown that the stage 1 accelera-
tion approach presented by the authors of [8] and [3] of using a Bloom filter
and hash table combination is applicable to the Macah language and abstract
coprocessor accelerator architecture with only minimal modifications to avoid
memory access serialization (Bloom filter partitioning) and reduce workspace
memory utilization (cuckoo hashing). A method of re-using partially computed
hash values during stage 1 has also been proposed. All of these optimizations
are informed by a knowledge of the abstract model for coprocessor accelerator
architectures.

8 Future Work

For the further development of accelerated BLAST in Macah, the most impor-
tant and obvious next step is to use a completed version of the Macah compiler
to synthesize a hardware implementation of the algorithm and measure its per-
formance characteristics in comparison to NCBI BLAST. Performance against
NCBI BLAST should be evaluated using a range of different query lengths, and
query splitting should also be added in order to accommodate long queries that
cannot fit within the workspace memory.
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The acceleration of stage 2 of the algorithm, which accounts for a smaller but
not insignificant amount of the total work, would also be a logical next step. The
authors of [3] have proposed a method of accelerating stage 2 that should be
fairly easy to implement in Macah. Based on the profiling results in section 2.2,
it may also be worthwhile to replace BLAST stage 3 with an accelerated version
as well. Such a modification would not be particularly difficult, given that a
method for accelerating the standard Smith-Waterman alignment algorithm on
FPGAs is well known.

Finally, determining the applicability of the modifications discussed in this
paper to other BLAST variants (most notably blastp, used for protein search-
ing) is another potentially fruitful path for future study.
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