
Copyright 2005

Akshay Sharma

Place and Route Techniques for FPGA Architecture

Advancement

Akshay Sharma

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

2005

Program Authorized to Offer Degree: Electrical Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Akshay Sharma

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

 Chair of Supervisory Committee:

 __

Scott Hauck

 Reading Committee:

 __

Scott Hauck

 __

Carl Ebeling

 __

Larry McMurchie

 Date: ____________________________

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the

University of Washington, I agree that the Library shall make its copies freely available for inspection. I

further agree that extensive copying of the dissertation is allowable only for scholarly purposes,

consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or

reproduction of this dissertation may be referred to Proquest Information and Learning, 300 North Zeeb

Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right to reproduce and sell (a)

copies of the manuscript in microform and/or (b) printed copies of the manuscript made from

microform.”

 Signature_______________________________

 Date___________________________________

University of Washington

Abstract

Place and Route Techniques for FPGA Architecture Advancement

Akshay Sharma

Chair of the Supervisory Committee:

Associate Professor Scott Hauck

Electrical Engineering

Efficient placement and routing algorithms play an important role in FPGA architecture research.

Together, the place-and-route algorithms are responsible for producing a physical implementation of an

application circuit on the FPGA hardware. The quality of the place-and-route algorithms has a direct

bearing on the usefulness of the target FPGA architecture. The benefits of including powerful new

features on an FPGA might be lost due to the inability of the place-and-route algorithms to fully exploit

these features. Thus, the advancement of FPGA architectures relies heavily on the development of

efficient place-and-route algorithms.

The subject of this dissertation is the development of place and route techniques that could play an

important role in FPGA architecture advancement. The work presented in this dissertation is divided

into two topics:

Architecture-Adaptive FPGA Placement - The first topic deals with the development of a universal

placement algorithm (Independence) that adapts to the target FPGA architecture. We have successfully

demonstrated Independence’s adaptability to three different architectures. Our results also show that

Independence is able to adapt to a class of routing-poor FPGA architectures.

Pipelined Routing - The second topic focuses on the development of a routing algorithm (PipeRoute)

that can be used to route application circuits on high-speed, pipelined FPGA architectures. In our

experiments, PipeRoute was able to successfully route netlists on a coarse-grained pipelined

architecture. The algorithm incurred a 20% overhead when compared to a realistic lower bound. We

also used PipeRoute in an exploratory flow to find an architecture that was up to 19% better than a

hand-architected pipelined architecture.

i

TABLE OF CONTENTS

Page

List of Figures ... iii
List of Tables...vii
Chapter 1 : Introduction...1
Chapter 2 : FPGA Architectures..5

2.1 Island-Style FPGAs...5
2.2 Non Island-Style FPGAs ...11

2.2.1 Hierarchical FPGAs..11
2.2.2 RaPiD ...13
2.2.3 FPGA Fabrics for Sytems-on-a-Chip (SoC)...13

Chapter 3 : FPGA Placement and Routing ..16
3.1 FPGA Routing...16
3.2 FPGA Placement ...18

Chapter 4 : Architecture Adaptive FPGA Placement – Motivation and Related Work...........................21
4.1 VPR Targets Island-Style FPGAs ...21
4.2 Previous Work in Integrated Placement and Routing..24

4.2.1 Partitioning-based Techniques..24
4.2.2 Cluster-growth Placement ..26
4.2.3 Simulated Annealing Placement...26

Chapter 5 : Independence – Architecture Adaptive Routability Driven Placement for FPGAs29
5.1 Placement Heuristic and Cost Formulation ...29
5.2 Integrating Pathfinder ..32

Chapter 6 : Validating Independence ..35
6.1 Island-Style Architectures ...35

6.1.1 Experiment 1 ..35
6.1.2 Experiment 2 ..36

6.2 Hierarchical Architectures – Experiment 3 ...39
6.3 RaPiD – Experiment 4...42
6.4 The Effect of Congestion Weighting Parameter λ...43
6.5 Runtime ...45
6.6 Summary ...46

Chapter 7 : Accelerating Independence Using the A* Algorithm ...47
7.1 The Heuristic Estimate ..48
7.2 The K-Means Algorithm ...50
7.3 Applying the K-Means Algorithm to Produce Interconnect Clusters..54
7.4 Results ...56

7.4.1 Experiment 1 ..57
7.4.2 Experiment 2 ..61
7.4.3 Experiment 3 ..62
7.4.4 Experiment 4 ..65

7.5 Summary ...66
Chapter 8 : Pipelined FPGA Architecture ...68

8.1 Pipelined FPGA Architectures ..70
8.1.1 Coarse-grained Architectures ...70

ii

8.1.2 Fixed-frequency FPGA Architectures ..71
8.1.3 General-purpose FPGA Architectures ..74

Chapter 9 : PipeRoute – A Pipelining-Aware Router for FPGAs ...77
9.1 One-Delay (1D) Router ..78

9.1.1 Proof of Optimality...84
9.2 N-Delay (ND) Router ...87
9.3 Multi-Terminal Router ..88
9.4 Multiple Register-Sites ..91

9.4.1 Logic Units with Registered Outputs ...91
9.4.2 Logic Units with Registered Inputs ..92
9.4.3 Multiple-Register Sites in the Interconnect Structure...93

9.5 Timing-Aware Pipelined Routing ...94
9.6 Placement Algorithm...95
9.7 Experimental Setup and Benchmarks..97
9.8 Results ...98

9.8.1 Experiment 1 ..98
9.8.2 Experiment 2 ..100
9.8.3 Experiment 3 ..100

9.9 Summary ...101
Chapter 10 : Exploring RaPiD’s Interconnect Structure..102

10.1 Characterizing Pipelined Interconnect Structures..102
10.1.1 Registered IO Terminals...104
10.1.2 Bus Connectors (BCs) ..106
10.1.3 Multiple-Register Bus Connectors ...109
10.1.4 Short / Long Track Ratio ..111
10.1.5 Datapath Registers (GPRs)...114

10.2 Quantitative Evaluation ...116
10.3 Summary ...117

Chapter 11 : Conclusions and Future Work ..118
11.1 Independence...118
11.2 PipeRoute ..125

Bibliography..129

iii

LIST OF FIGURES

Figure Number Page

Figure 1-1: A conceptual illustration of an SRAM programmable FPGA [21]. Logic blocks are

shown as bold black boxes, and routing wires are shown as black intersecting horizontal
and vertical lines. ...1

Figure 1-2: A typical FPGA CAD tool flow. ..3
Figure 2-1: An illustration of an island-style FPGA. The white boxes represent logic blocks. The

horizontal (red) and vertical (blue) intersecting lines represent routing wires. The logic
blocks connect to surrounding wires using programmable connection-points (shown as
crosses), and individual wires connect to each other by means of programmable routing
switches (shown as gray lines). ..5

Figure 2-2: [3] A functional overview of Altera’s Stratix-II device. The LABs represent clustered
lookup table-based logic blocks. The optimized DSP blocks are provided to enhance the
performance of signal processing applications. The IOEs are used to connect the fabric to
external devices..7

Figure 2-3: [3] The structure of a Stratix II LAB. Each LAB consists of eight ALMs. The local
interconnect structure is used to provide intra-LAB communication, and local connectivity
amongst adjacent LABs. The local interconnect structure can also be driven by the row and
column routing resources in the general interconnect structure. ..8

Figure 2-4: [3] R4 interconnect structure. (1) C4 and C16 column interconnects can drive R4
interconnects. (2) This pattern is repeated for every LAB in the row. (3) All 16 possible
outputs of a LAB are shown...8

Figure 2-5: [3] C4 interconnect structure. Each C4 interconnect can drive either up or down four
LAB rows...10

Figure 2-6: [16] An illustration of HSRA’s interconnect structure. The leaves of the interconnect
tree represent logic blocks, the crosses represent connection points, the hexagon-shaped
boxes represent non-compressing switches, and the diamond-shaped boxes represent
compressing switches. The base channel width of this architecture is three (c=3), and the
interconnect growth rate is 0.5 (p=0.5). ...12

Figure 2-7: An example of a RaPiD architecture cell. Several RaPiD cells can be tiled together to
create a representative architecture. ...13

Figure 2-8: [22] Gradual, directional architecture. The interconnect structure is directional, and
gradually increases from left to right. The primary inputs of the architecture are on the left,
and the primary outputs are on the right. ...14

Figure 3-1: The horizontal and vertical spans of a hypothetical 10-terminal net [6]. The semi-
perimeter of the net is bbx + bby. ..19

Figure 4-1: An illustration of an island-style FPGA. The white boxes represent logic blocks. The
horizontal (red) and vertical (blue) intersecting lines represent routing wires. The logic
blocks connect to surrounding wires using programmable connection-points (shown as
crosses), and individual wires connect to each other by means of programmable routing
switches (shown as gray lines). ..22

Figure 4-2: Non island-style FPGA architectures. (a) HSRA [16], (b) Triptych [8], (c) directional
architecture from [22], and (d) a U-shaped FPGA core [58]..23

Figure 5-1: Pseudo code for the Independence algorithm. Brief comments accompany the code,
and are shown in gray. ...30

iv

Figure 5-2: Logic block E is moved to the location immediately to the right of D. Its input branch
(shown in gray) is ripped up, and a new route is found from the partial route-tree that
connects logic blocks A, B, C and D..32

Figure 5-3: Logic block A is moved to the location between B and C. If we reroute from A to the
partial route-tree, the resultant route requires far more routing than is necessary. Ripping up
and rerouting the entire net produces a better routing..33

Figure 6-1: A placement produced by VPR for alu2 on a 34x34 array (top left). VPR needed 5
tracks to route this placement. Placements produced by Independence for alu2 on a 34x34
array that has 5 (top right), 4 (bottom left) and 3 (bottom right) tracks respectively.37

Figure 6-2: [16] An illustration of HSRA’s interconnect structure. The leaves of the interconnect
tree represent logic blocks, the crosses represent connection points, the hexagon-shaped
boxes represent non-compressing switches, and the diamond-shaped boxes represent
compressing switches. The base channel width of this architecture is three (c=3), and the
interconnect growth rate is 0.5 (p=0.5). ...40

Figure 6-3: Although there are only eight logic blocks (black boxes) in the netlist, HSRA’s
placement tool spreads placements out to match the interconnect requirements of the netlist
with the interconnect bandwidth provided by the architecture. In this example, the
placement has an lsize = 11 and requires log216 = 4 interconnect levels. In medium-to-high
stress cases, both lsize and num levels are inversely proportional to the base channel width
of the device. ..41

Figure 6-4: RaPiD’s interconnected structure consists of segmented 16-bit buses. The small
square boxes represent bidirectional switches called bus connectors. ...42

Figure 6-5: The effect of weighting parameter λ on the quality of the placements produced by
Independence. ..44

Figure 7-1: The number of wires between wn and t is estimated using interconnect level numbers.
In this case, there are 4 – 2 wires from wn to the root switchbox plus 4 – 0 wires from the
root switchbox to t..49

Figure 7-2: Calculating the cost-to-target estimates for a set of wires that share a table entry. The
set of wires is collectively shown as the dotted region, and the small squares represent sink
terminals in the interconnect structure. The cost-to-target estimate for a given sink terminal
is the cost of a shortest path from the wire that is closest to the sink terminal...............................50

Figure 7-3: An example of a tree-based, hierarchical interconnect structure. Assume that the wires
shown in black belong to the same cluster. ..52

Figure 7-4: Psuedocode for the K-Means clustering algorithm. When the algorithm completes
execution, every data-point in the set D is assigned to a cluster. ...53

Figure 7-5: The effect of sub-sampling the number of sink nodes on routing runtime.58
Figure 7-6: Using a small number of sink nodes may produce clustering solutions of acceptable

quality. ...59
Figure 7-7: Cluster resolution on an island-style device as the number of sink terminals is

increased from one to three. ...60
Figure 7-8: Cluster resolution on HSRA when using only one (top) and two (bottom) sink

terminals in the sub-sample set S. The logic units shown in black represent the sink
terminals in the sub-sample set S. ..61

Figure 7-9: The effect of K on routing runtime. ..62
Figure 8-1: The circuit on top has a critical path delay of 3 units. A retiming operation (red

arrows) moves registers from the inputs of the leftmost AND gate to its output. The critical
path delay is reduced to 2 units. A second operation moves the register from the output of
the rightmost AND gate to its inputs, further reducing the critical path to 1 unit. Note that
the latency of the circuit remains unchanged. ..69

Figure 8-2: An example of a RaPiD architecture cell. Several RaPiD cells can be tiled together to
create a representative architecture. ...71

v

Figure 8-3: [52] The HSRA architecture. Each logic unit consists of a single 4-LUT. There is a
retiming register chain provided at the inputs of the logic unit (top left), and a single
register at the output of the logic unit. Registers are also provided in each switch in the
interconnect structure (top right)..72

Figure 8-4: [56] The SFRA architecture. The interconnect structure (top) consists of capacity-
depopulated corner turn switchboxes. Bidirectional pipelining registers are provided in the
corner-turn switchboxes. Each logic unit (called an LE) consists of two slices. The structure
of a slice (bottom) is similar to the slice of a Virtex [60] device. Note the retiming banks at
the inputs of the slice. ..73

Figure 9-1: A multi-terminal pipelined signal. The register separation between S and the sinks
K1, K2, K3 must be three, four and five respectively..77

Figure 9-2: A step-by-step illustration of Combined-Phased-Dijkstra. ...80
Figure 9-3: A case in which phased exploration fails. Observe how the phase 1 exploration has

got isolated from the phase 0 exploration. ...81
Figure 9-4: D1 is explored at phase 0 from R1, thus precluding the discovery of the 1D path to the

sink K...82
Figure 9-5: Pseudo code for the 2Combined-Phased-Dijkstra algorithm. ...83
Figure 9-6: The initial assumption is that the most explored lowest cost 1D route between S and K

goes through D-node DL. ...84
Figure 9-7: Representation of a path from S to node R shown in gray..85
Figure 9-8: The path from S to R could actually intersect with the paths S-DL and DL-K.85
Figure 9-9: The case in which an R-node on the path S-DL gets explored at phase 0 along some

other path. ..85
Figure 9-10: DL gets explored at phase 0 along paths S-G1-DL and S-G2-R2-DL.86
Figure 9-11: Node X can get explored at phase 1 along either S-G2-D-X or S-G1-R1-D-X.86
Figure 9-12: Building a 3D route from 1D routes. ..87
Figure 9-13: (a) 2D route to K2 using the two-terminal ND router. S-D1-D2-K2 is the

partial_routing_tree. (b) 1D route to K3. P1-DA-K3 is found by launching a 1D exploration
that starts with segment S-D1 at phase 0 and segment D1-D2 at phase 1. P1-DA-K3 is the
surviving_candidate_tree. (c) 2D route to K3. P2-K3 is now the surviving_candidate_tree.
(d) P3-DB-K3 is the final surviving_candidate_tree, and this tree is joined to the
partial_routing_tree S-D1-D2-K2 to complete the route to K3...89

Figure 9-14: Pseudo code for the multi-terminal routing algorithm..91
Figure 9-15: Assuming that S can provide up to three registers locally, both the registers between

S and K1 can be picked up at S..92
Figure 9-16: Assuming that the sinks K1 and K2 can locally provide up to three registers, both

registers between S and K1 and three of the five registers between S and K2 can be picked
up locally at the respective sinks..92

Figure 9-17: Finding a 9D route between S and K can effectively be transformed into a 3D
pipelined routing problem. ...93

Figure 9-18: Pushing registers from the interconnect structure into functional unit inputs
sometimes results in long, unpipelined track segments..94

Figure 9-19: The route between source S and sink K of a signal may go through different D-
nodes at the end of successive routing iterations. Also, since each D-node on the route is
used to pick up a register, different segments on the route may be at different criticalities...........95

Figure 9-20: Unpipelining a pipelined signal. The pipelined signal (top) is transformed into an
unpipelined signal (bottom). ..99

Figure 9-21: Experiment 3 – The variation of PIPE-COST vs. fraction pipelined signals.101
Figure 10-1: Area and delay numbers for architectures with registered outputs, registered inputs

and unregistered IO terminals. The “Unregistered” point on the x-axis represents logic units
that have no IO registers, the “RegInputs” point represents logic units that have registers at

vi

the input terminals, and the “RegOutputs” point represents logic units that have registers at
the output terminals..105

Figure 10-2: Track counts for architectures that have registered input, registered output and
unregistered IO terminals. The “Unregistered” point on the x-axis represents logic units that
have no IO registers, the “RegInputs” point represents logic units that have registers at the
input terminals, and the “RegOutputs” point represents logic units that have registers at the
output terminals. ..105

Figure 10-3: A RaPiD cell that has 1 BC per track (top), and a RaPiD cell that has 2 BCs per
track (bottom)...106

Figure 10-4: The effect of varying number of BCs per track on area and delay.107
Figure 10-5: The effect of varying number of BCs per track on track count...108
Figure 10-6: The effect of varying number of BCs per track on the area-delay product.......................108
Figure 10-7: The effect of varying number of registers per BC on area and delay.109
Figure 10-8: The effect of varying number of registers per BC on track count.....................................110
Figure 10-9: Pushing registers from the interconnect structure into logic unit inputs sometimes

results in long, unpipelined track segments. ..110
Figure 10-10: The effect of varying number of registers per BC on the area-delay product.111
Figure 10-11: The effect of varying fraction of short tracks on area and delay.....................................112
Figure 10-12: The effect of varying fraction of short tracks on track count..113
Figure 10-13: The effect of varying fraction of short tracks on the area-delay product.113
Figure 10-14: The effect of increasing the number of extra GPRs / RaPiD cell on area and delay.......114
Figure 10-15: The effect of increasing the number of extra GPRs / RaPiD cell on track count............115
Figure 10-16: The effect of increasing the number of extra GPRs / RaPiD cell on area-delay

product. ..115
Figure 10-17: A RaPiD cell. Several cells can be tiled together to form a representative

architecture...116
Figure 11-1: The effect of weighting parameter λ on the quality of the placements produced by

Independence. The Island-Style curve shows the results of our experiments on an island-
style architecture, the RaPiD curve shows results on the RaPiD architecture, the HSRA7,0.5
curve shows results on HSRA, and the HSRA8,0.5 curve shows results on a high-stress
instance of the HSRA architecture. The x-axis represents increasing values of the
congestion weighting parameter λ, and the y-axis represents normalized track-counts...............120

Figure 11-2: Runtime distributions for the ten largest netlists in our island-style benchmark set.
The x-axis shows the percentage of the total number of annealing iterations required by
Independence to place an individual netlist. The y-axis shows the fraction of the total
annealing runtime spent in an annealing iteration..123

vii

LIST OF TABLES

Table Number Page

Table 6-1: A comparison of the placements produced by VPR and Independence.36
Table 6-2: Quantifying the extent to which Independence adapts to routing-poor island-style

architectures. ..38
Table 6-3: Independence compared to HSRA's placement tool. ...41
Table 6-4: A comparison of the track-counts required by a placement tool targeted to RaPiD and

Independence. ..43
Table 6-5: A comparison of placement runtimes on island-style structures. ...46
Table 7-1: A comparison of the memory requirements of a clustering implementation that sub-

samples the sink terminals with a table that stores estimates for every sink terminal in the
target device. The sub-sample set S contains 6% of the sink terminals in the target device.
Each entry in columns 3, 4 and 5 is in Giga Byte. ...55

Table 7-2: A comparison of routing runtimes on an island-style architecture. For each netlist, the
entries in columns 5 (clustering-based estimates), 7 (undirected search) and 8 (cluster with
logic blocks) are normalized to the entry in column 6 (heuristic estimates).63

Table 7-3: A comparison of routing runtimes on HSRA. For each netlist, the entries in columns 5
(clustering-based estimates), 7 (undirected search), and 8 (cluster with logic blocks) are
normalized to the entry in column 6 (heuristic estimates). ..64

Table 7-4: The difference between cost-to-target estimates and actual shortest-path costs on the
island-style architecture ...65

Table 7-5: The difference between cost-to-target estimates and actual shortest-path costs on
HSRA...66

Table 9-1: Overhead incurred in using a pipelining-unaware router (Pathfinder) to route netlists.96
Table 9-2: Benchmark application netlist statistics. ..97
Table 9-3: Experiment 1 – Area comparison between pipelining-aware and pipelining-unaware

place and route flows. ..99
Table 9-4: Experiment 2 – Delay comparison between timing-aware and timing-unaware

PipeRoute...100
Table 10-1: A quantitative comparison of RaPiD with the post-exploration architecture.....................117

viii

ACKNOWLEDGEMENTS

A number of people and organizations played important roles during my tenure in graduate school. The

National Science Foundation (NSF) and Altera Inc provided financial support while I was conducting

the research presented in this dissertation. The NSF’s and Altera’s generous support played a crucial

role in making this dissertation a reality.

I would like to thank the RaPiD group (notably Chris Fisher), Katherine Compton, and Shawn Phillips

for providing the infrastructure for my work on the development of pipelined FPGA routing algorithms.

My research on architecture-adaptive FPGA placement relied on software tools provided by Vaughn

Betz and Andre DeHon. In addition to providing software tools, Andre DeHon patiently answered a

number of technical questions on getting the tools up and running.

Graduate school can be an intellectually lonely experience. Thanks are due to Ken Eguro, Chandra

Mulpuri, and Mark Holland for being very effective sounding boards. I appreciate every moment spent

standing at a white board and discussing research ideas with them, and am grateful for the time they

took out of their busy schedules to help me out. I would also like to thank Larry McMurchie for sharing

his valuable insight and experience with me. Larry’s comments and observations went a long way in

improving the quality of my research work.

The role played by my research advisors cannot be overemphasized. Together, Scott Hauck and Carl

Ebeling were the most effective advisors any graduate student could possibly hope for. They single-

handedly transformed me from a wide-eyed, novice graduate student (who knew very little) to a

seasoned researcher who can confidently propose and defend research ideas. Scott’s and Carl’s constant

belief in me, coupled with their patience and understanding, made my experience in graduate school

truly fulfilling.

Finally, I don’t think enough can ever be said in appreciation of my family’s support. My stint in

graduate school was largely a selfish endeavor and yet, Mary Ann and my parents always stood by me

and tried to make every day worthwhile. Their love and unwavering support kept me stable and

focused, and without them I would have probably pressed the eject button on my doctoral studies a long

time ago.

ix

DEDICATION

To the millions of underprivileged women, children and men the world over. I hope this work benefits

you some day.

1

Chapter 1: Introduction

A Field Programmable Gate Array (FPGA) is a pre-fabricated silicon device that can be reconfigured to

implement different applications. The reconfigurability of an FPGA is derived from reprogrammable

Static Random Access Memory (SRAM) cells (Figure 1-1). By programming the SRAM cells, the

functionality of FPGA logic units can be tailored to implement a particular computation.

Interconnections between logic units are established by programming SRAM cells to connect

prefabricated routing wires together. Thus, any given application can be mapped to an FPGA by

programming the functionality and connectivity of logic units based on the specific characteristics of

the application.

RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM

RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM
RAM RAM RAM

Figure 1-1: A conceptual illustration of an SRAM programmable FPGA [21]. Logic blocks are shown as
bold black boxes, and routing wires are shown as black intersecting horizontal and vertical lines.

2

The reconfigurability of FPGAs is fundamentally different from that of traditional general-purpose

microprocessors. An application is implemented on a microprocessor by compiling the application to a

stream of hardware instructions that are sequentially decoded and executed by fixed, general-purpose

logic resources. Unlike FPGAs, the functionality of a microprocessor’s logic resources cannot be

modified on a per-application basis. Instead, each application is compiled to a unique stream of

instructions that are executed on the microprocessor. Since it is possible to express almost any

application as a sequence of instructions, microprocessors are arguably the most flexible computational

devices today. However, microprocessors often incur a performance penalty due to the very flexibility

that is their claim to fame. To support flexibility, the fixed logic resources in a microprocessor are

deliberately designed to efficiently execute certain basic computations. Consequently, applications that

would benefit from customized, tailor-made logic resources often take a performance hit when executed

on general-purpose microprocessors.

While microprocessors are attractive for their flexibility, an Application Specific Integrated Circuit

(ASIC) is a computational device that is customized to a specific application. Since the exact nature of

the application is known beforehand, the hardware resources in an ASIC are designed to provide the

highest performance implementation of the application. The price paid by ASICs because of their

superlative performance characteristics is flexibility. Once an ASIC has been fabricated, it is generally

not possible to modify the ASIC to implement any other application other than the one it was intended

for. Further, since the Non-Recurring Engineering (NRE) costs involved in designing and fabricating an

ASIC are comparatively high, it is generally infeasible to design and fabricate ASICs in low volumes.

Since their introduction in the mid eighties, FPGAs have evolved from a simple, low-capacity gate

array technology to devices [2,3,59,60] that provide a mix of coarse-grained datapath units,

microprocessor cores, on-chip A/D conversion, and gate counts in the millions. Today, FPGAs are

firmly ensconced in the space of computational devices that was originally dominated by

microprocessors and ASICs. Much like microprocessors, FPGA-based systems can be reprogrammed

on a per-application basis. At the same time, FPGAs offer significant performance benefits over

microprocessor implementations for a number of applications. Although these performance benefits are

still generally an order of magnitude less than equivalent ASIC implementations, the low NRE costs,

fast time-to-market, and flexibility of FPGAs make them an attractive choice for low-to-medium

volume applications.

3

Realizing that FPGA performance levels lag ASICs, FPGA architectures have been intensely researched

over the past two decades. A major aspect of FPGA architecture research is the development of

Computer Aided Design (CAD) tools for mapping applications to FPGAs. It is well established that the

quality of an FPGA-based implementation is largely determined by the effectiveness of the

accompanying suite of CAD tools. The benefits of an otherwise well designed, feature rich FPGA

architecture might be diminished if the CAD tools are not able to take advantage of the features that the

FPGA provides. Thus, CAD algorithm research is crucial to the architectural advancement that is

necessary to narrow the performance gaps between FPGAs and other computational devices like

ASICs.

Circuit Specification

Tech. Mapping

Synthesis

Gate-level Netlist

Mapped Netlist

Placement

Placed Netlist

Routing

Config. Bitstream

Figure 1-2: A typical FPGA CAD tool flow.

A typical FPGA CAD tool-flow is shown in Figure 1-2. Initially, a circuit specification of the

application is produced either by means of schematic capture, or a high-level description in a Hardware

Description Language (HDL). The appropriate circuit specification serves as the input to a Synthesis

tool. The Synthesis tool synthesizes the circuit specification into a circuit (we will use the terms circuit

and netlist interchangeably from this point on) that consists of basic logic gates and their

interconnections (hereafter called ‘nets’). In the Technology Mapping phase, the gate-level netlist is

4

transformed into a functionally equivalent netlist that is expressed in terms of the logic units that are

provided by the FPGA device. The mapped netlist serves as an input to the Placement tool1, which

determines the actual physical location of each netlist logic block in the FPGA layout. After the

physical location of each logic block has been determined, the Routing tool2 determines the FPGA

routing resources that are needed to route the nets that connect the placed logic blocks. At the end of a

successful routing phase, a stream of configuration bits is produced. The configuration bitstream is used

to program SRAM cells in the FPGA fabric so that the target application can be implemented.

The subject of this dissertation is the development of placement and routing (together termed ‘place-

and-route’) algorithms for the advancement of FPGA architectures. The research presented in this work

is divided into two topics. The first deals with the development of a universal placement algorithm that

adapts to the interconnect structure of the target FPGA device. The second topic focuses on the

development of a routing algorithm for pipelined FPGAs.

1 The phrases “placement tool”, “placement algorithm” and “placer” will be used interchangeably from this point
on.
2 The phrases “routing tool”, “routing algorithm” and “router” will be used interchangeably from this point on.

5

Chapter 2: FPGA Architectures

In this chapter, we describe different FPGA architectural paradigms. The goal is to provide the reader

with a high-level background of both commercial and academic FPGA technologies. We use individual

case studies to describe features of selected architectures that have clearly different logic and/or

interconnect structures.

2.1 Island-Style FPGAs
Currently, island-style architectures (Figure 2-1) represent the dominant FPGA architectural style.

State-of-the-art devices [3,59] offered by commercial vendors like Xilinx and Altera have island-style

architectures.

Figure 2-1: An illustration of an island-style FPGA. The white boxes represent logic blocks. The horizontal
(red) and vertical (blue) intersecting lines represent routing wires. The logic blocks connect to surrounding
wires using programmable connection-points (shown as crosses), and individual wires connect to each other
by means of programmable routing switches (shown as gray lines).

6

The logic structure of an island-style FPGA consists of configurable logic blocks (CLBs). In the

simplest case, a CLB may be composed from a single programmable four-input lookup table (4-LUT)

coupled with a D flip-flop (D-FF). The 4-LUT is used to implement any four-input combinational

function, and the D-FF provides the option of registering the output of the 4-LUT. The CLBs in

commercial devices generally consist of multiple 4-LUT / D-FF pairs that are clustered together. Intra-

cluster communication between the 4-LUT / D-FF pairs is accomplished using a localized high-speed

interconnect scheme.

Island-style FPGAs are characterized by a routing-rich interconnect structure in which each CLB is an

‘island’ in a sea of routing resources. CLBs are interconnected using prefabricated segmented routing

wires that run in the horizontal and vertical direction. A connection between a routing wire and a CLB

terminal is established using a programmable connection point. A routing wire can be connected to

another routing wire using a programmable switch. Routing switches can be either buffered or

unbuffered, while connection points are generally buffered. In Figure 2-1, routing wires are represented

as intersecting red and blue lines, connection points are represented as crosses, and switches are shown

in gray.

Altera’s Stratix II [3] architecture is a commercial example of an island-style FPGA (Figure 2-2). The

logic structure consists of LABs (which is Altera’s term for CLBs), memory blocks, and digital signal

processing (DSP) blocks. LABs are used to implement general-purpose logic, and are symmetrically

dispersed in rows and columns throughout the device fabric. The DSP blocks are custom designed to

implement full-precision multipliers of different granularities, and are grouped into columns. Input- and

output-only elements (IOEs) represent the external interface of the device. IOEs are located along the

periphery of the device.

Each Stratix II LAB consists of eight Adaptive Logic Modules (ALMs). An ALM consists of two

adaptive LUTs (ALUTs) that have eight inputs altogether. The construction of an ALM allows the

implementation of two separate four-input Boolean functions. Further, an ALM can also be used to

implement any six-input Boolean function, and some seven-input functions. In addition to lookup

tables, an ALM provides two programmable registers, two dedicated full-adders, a carry chain, and a

register-chain. The full-adders and carry chain can be used to implement arithmetic operations, and the

register-chain is used to build shift registers. The outputs of an ALM drive all types of interconnect

provided by the Stratix II device. Figure 2-3 illustrates a LAB’s interconnect interface.

7

Figure 2-2: [3] A functional overview of Altera’s Stratix-II device. The LABs represent clustered lookup
table-based logic blocks. The optimized DSP blocks are provided to enhance the performance of signal
processing applications. The IOEs are used to connect the fabric to external devices.

Interconnections between LABs, RAM blocks, DSP blocks and the IOEs are established using the

MultiTrack interconnect structure. The interconnect structure consists of wire segments of different

lengths and speeds. The interconnect wire-segments span fixed distances, and run in the horizontal (row

interconnects) and vertical (column interconnects) directions. The row interconnects (Figure 2-4) can be

used to route signals between LABs, DSP blocks, and memory blocks in the same row. Row

interconnect resources are of the following types:

• Direct connections between LABs and adjacent blocks

• R4 resources that span four blocks to the left or right.

• R24 resources that provide high-speed access across the width of the device.

Each LAB owns its set of R4 interconnects. A LAB has approximately equal numbers of driven-left and

driven-right R4 interconnects. An R4 interconnect that is driven to the left can be driven by either the

primary LAB (Figure 2-4) or the adjacent LAB to the left.

8

Figure 2-3: [3] The structure of a Stratix II LAB. Each LAB consists of eight ALMs. The local interconnect
structure is used to provide intra-LAB communication, and local connectivity amongst adjacent LABs. The
local interconnect structure can also be driven by the row and column routing resources in the general
interconnect structure.

Figure 2-4: [3] R4 interconnect structure. (1) C4 and C16 column interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the row. (3) All 16 possible outputs of a LAB are shown.

9

Similarly, a driven-right R4 interconnect may be driven by the primary LAB or the LAB immediately to

its right. Multiple R4 resources can be connected to each other to establish longer connections within

the same row. R4 interconnects can also drive C4 and C16 column interconnects, and the R24 high-

speed row resources.

The column interconnect structure is similar to the row interconnect structure. Column interconnects

include:

• Carry chain interconnects within a LAB, and from LAB to LAB in the same column.

• Register chain interconnects.

• C4 resources that span four blocks in the up and down directions

• C16 resources for high-speed vertical routing across the height of the device.

The carry chain and register chain interconnects are separate from the local interconnect (Figure 2-3) in

a LAB. Each LAB has its own set of driven-up and driven-down C4 interconnects. The C4

interconnects can also be driven by the LABs that are immediately adjacent to the primary LAB.

Multiple C4 resources can be connected to each other to form longer connections within a column, and

C4 interconnects can also drive row interconnects to establish column-to-column interconnections. C16

interconnects are high-speed vertical resources that span sixteen LABs. A C16 interconnect can drive

row and column interconnects at every fourth LAB. A LAB’s local interconnect structure cannot be

directly driven by a C16 interconnect; only C4 and R4 interconnects can drive a LAB’s local

interconnect structure. Figure 2-5 shows the C4 interconnect structure in the Stratix II device.

10

Figure 2-5: [3] C4 interconnect structure. Each C4 interconnect can drive either up or down four LAB rows.

11

2.2 Non Island-Style FPGAs
Island-style architectures are probably the most popular FPGA architectural style today. However,

island-style FPGAs have certain shortcomings. Some FPGA architecture researchers believe that the

interconnect structure of an FPGA is best utilized when the logic utilization of the device is relatively

low [8,16]. This high-interconnect / low-logic utilization approach is in direct contrast to the high logic

utilization approach that has been adopted for island style FPGAs. Other research-groups believe that

the fine-to-medium grained structure of island-style FPGAs is not suited to streaming, compute-

intensive applications [15,19]. All in all, while island-style FPGAs continue to be developed for

commercial applications, FPGA architecture research is also conducted in parallel in the hope of

improving performance. This section briefly surveys examples of non island-style FPGA architectures.

2.2.1 Hierarchical FPGAs
The interconnect structure of an island-style FPGA is generally designed to maximize logic utilization.

Hierarchical FPGAs belong to the class of routing-poor FPGA architectures that are designed to

increase interconnect utilization at the expense of logic utilization. The philosophy behind routing-poor

architectures is increased silicon utilization through efficient use of the interconnect structure (which

may account for ~ 80 – 90 % of the total area in island-style FPGAs).

A well-known academic hierarchical FPGA is the Hierarchical Synchronous Reconfigurable Array

(HSRA) [16]. HSRA has a strictly hierarchical, tree-based interconnect structure (Figure 2-6). As a

result, HSRA’s logic and interconnect structures are not as closely coupled as the logic and interconnect

structures of island-style FPGAs. Recall that each LAB in Altera’s Stratix II device ‘owns’ R4 and C4

interconnects. In HSRA, the only wire-segments that directly connect to the logic units are at the leaves

of the interconnect tree. All other wire-segments are decoupled from the logic structure.

An HSRA logic unit consists of a single 4-LUT / D-FF pair. The input-pin connectivity is based on a c-

choose-k strategy [16], and the output pins are fully connected. The richness of HSRA’s interconnect

structure is defined by its base channel width and interconnect growth rate. The base channel width ‘c’

is the number of tracks at the leaves of the interconnect tree (in Figure 2-6, c=3). The growth rate ‘p’ is

the rate at which the interconnect grows towards the root (in Figure 2-6, p=0.5). The growth rate is

realized using the following types of switch-blocks:

• Non-compressing (2:1) switch blocks - The number of root-going tracks is equal to the sum of

the number of root-going tracks of the two children.

12

• Compressing (1:1) switch blocks – The number of root-going tracks is equal to the number of

root-going tracks of either child.

A repeating combination of non-compressing and compressing switch blocks can be used to realize any

value of p less than one. For example, a repeating pattern of (2:1 1:1) switch blocks realizes p=0.5,

while the pattern (2:1 2:1 1:1) realizes p=0.67. An HSRA that has only 2:1 switch blocks provides

maximum interconnection bandwidth (i.e. a value of p=1).

Figure 2-6: [16] An illustration of HSRA’s interconnect structure. The leaves of the interconnect tree
represent logic blocks, the crosses represent connection points, the hexagon-shaped boxes represent non-
compressing switches, and the diamond-shaped boxes represent compressing switches. The base channel
width of this architecture is three (c=3), and the interconnect growth rate is 0.5 (p=0.5).

13

2.2.2 RaPiD
The RaPiD [15] architecture is targeted to high-throughput, compute-intensive applications like those

found in DSP. RaPiD is a domain-specific architecture that is designed to provide high-performance

implementations of applications that fall within the DSP domain. The logic and interconnect structures

are customized to the domain, and RaPiD does not support general-purpose combinational logic like

commercial island-style devices.

RaPiD (Figure 2-7) has a coarse-grained, 1-dimensional structure (Figure 2-7). The logic structure

contains 16-bit registers, ALUs, multipliers and small SRAM blocks. RaPiD’s interconnect structure

consists entirely of segmented 16-bit buses. There are two types of buses; short buses provide local

communication between logic units, while long buses can be used to establish longer connections using

bidirectional switches called bus-connectors (shown as the small square boxes in Figure 2-7).

G
PR

G
PR

R
A

M

R
A

M

M
U

L
T

A
L

U

G
PR

A
L

U

G
PR

G
PR

R
A

M

A
L

U

G
PR

Figure 2-7: An example of a RaPiD architecture cell. Several RaPiD cells can be tiled together to create a
representative architecture.

Since DSP applications are generally pipelined, RaPiD’s logic and interconnect structures include an

abundance of registers. Register banks are provided at the outputs of logic units and in the interconnect

bus-connectors. Each register bank can be used to pick up between 0 – 3 pipelining registers.

2.2.3 FPGA Fabrics for Sytems-on-a-Chip (SoC)
Programmable logic cores are an important component of current SoC devices. Generally,

programmable logic cores are implemented using vendor-supplied IP blocks that closely resemble the

fabric of the vendor’s island-style FPGA devices. However, the tools used to integrate the IP blocks

14

with the rest of the SoC toolflow (which usually resembles an ASIC toolfow) are still relatively

immature. A solution presented in [22] uses the concept of soft programmable logic cores. The

architecture of the soft core is represented in terms of a Hardware Description Language (HDL) like

Verilog. This allows a customizable programmable core to be synthesized using an ASIC toolflow, thus

eliminating the problems associated with integrating IP-specific tools with the SoC toolflow.

Figure 2-8: [22] Gradual, directional architecture. The interconnect structure is directional, and gradually
increases from left to right. The primary inputs of the architecture are on the left, and the primary outputs
are on the right.

An example of a soft programmable core is shown in Figure 2-8. The logic structure is purely

combinational, and is similar to the logic structure of LUT-based island-style FPGAs. The interconnect

structure is clearly different from an island-style interconnect structure. Conventional synthesis tools are

unable to handle combinational loops, and thus the interconnect structure in Figure 2-8 is directional.

Since programmable logic cores are intended for relatively simple computations, the highly flexible

switchblock-based interconnect structure of an island-style FPGA is replaced with a relatively simple

structure that consists entirely of programmable routing multiplexors. Finally, the richness of the

15

interconnect structure increases from left to right to allow internal 3-LUTs to drive the primary outputs

of the fabric.

Our main goal in this chapter was to provide a snapshot of current commercial and academic FPGA

architectures. In the next chapter, we separately describe the FPGA placement and routing problems,

and discuss popular algorithms used to solve these problems.

16

Chapter 3: FPGA Placement and Routing

The most important architectural feature of an FPGA is arguably the interconnect structure. Since any

FPGA has a finite number of discrete routing resources, a large share of architectural research effort is

devoted to determining the composition of an FPGA’s interconnect structure. During architecture

development, the effectiveness of an FPGA’s interconnect structure is evaluated using placement and

routing tools (collectively termed place-and-route tool). The place-and-route tool is responsible for

producing a physical implementation of an application netlist on the FPGA’s prefabricated hardware.

Specifically, the placer determines the actual physical location of each netlist logic block in the FPGA

layout, and the router assigns the signals that connect the placed logic blocks to routing resources in the

FPGA’s interconnect structure. Due to the finite nature of an FPGA’s interconnect structure, the success

of the router is heavily reliant on the quality of the solutions produced by the placer. Not surprisingly,

the primary objective of the placer is to produce a placement that can indeed be routed by the router.

In this chapter, we separately discuss the FPGA placement and routing problems. Further, we also

describe the most popular algorithm that is used to solve each problem. The algorithms that we describe

in this chapter form the basis of our work on architecture adaptive FPGA placement and pipelined

routing.

3.1 FPGA Routing
The FPGA routing problem is to assign nets to routing resources such that no routing resource is shared

by more than one net. Pathfinder [33] is the current, state-of-the-art FPGA routing algorithm. Pathfinder

operates on a directed graph abstraction (G(V,E)) of the routing resources in an FPGA. The set of

vertices V in the graph represents the IO terminals of logic units and the routing wires in the

interconnect structure. An edge between two vertices represents a potential connection between the two

vertices. Given this graph abstraction, the routing problem for a given net is to find a directed tree

embedded in G that connects the source terminal of the net to each of its sink terminals. Since the

number of routing resources in an FPGA is limited, the goal of finding unique, non-intersecting trees

(hereafter called “routes”) for all the nets in a netlist is a difficult problem.

Pathfinder uses an iterative, negotiation-based approach to successfully route all the nets in a netlist.

During the first routing iteration, nets are freely routed without paying attention to resource sharing.

17

Individual nets are routed using Dijkstra’s shortest path algorithm [14]. At the end of the first iteration,

resources are congested because multiple nets have used them. During subsequent iterations, the cost of

using a resource is increased based on the number of nets that share the resource, and the history of

congestion on that resource. Thus, nets are made to negotiate for routing resources. If a resource is

highly congested, nets that can use lower congestion alternatives are forced to do so. On the other hand,

if the alternatives are more congested than the resource, then a net may still use that resource. The cost

of using a routing resource ‘n’ during a routing iteration is given by Equation 3.1.

Equation 3.1: nnnn phbc *)(+=

bn is the base cost of using the resource n, hn is related to the history of congestion during previous

iterations, and pn is proportional to the number of nets sharing the resource in the current iteration. The

pn term represents the cost of using a shared resource n, and the hn term represents the cost of using a

resource that has been shared during earlier routing iterations. The latter term is based on the intuition

that a historically congested node should appear expensive, even if it is currently lightly shared.

An important measure of the quality of the routing produced by an FPGA routing algorithm is critical

path delay. The critical path delay of a routed netlist is the maximum delay of any combinational path in

the netlist. The maximum frequency at which a netlist can be clocked has an inverse relationship with

critical path delay. Thus, larger critical path delays slow down the operation of netlist. Delay

information is incorporated into Pathfinder by redefining the cost of using a resource n (Equation 3.2).

Equation 3.2: nijnij cAdACn *)1(* −+=

The cn term is from Equation 3.1, dn is the delay incurred in using the resource, and Aij is the criticality

given by Equation 3.3.

Equation 3.3: maxijij DDA /=

Dij is the maximum delay of any combinational path that goes through the source and sink terminals of

the net being routed, and Dmax is the critical path delay of the netlist. Equation 3.2 is formulated as a

sum of two cost terms. The first term in the equation represents the delay cost of using resource n, while

18

the second term represents the congestion cost. When a net is routed, the value of Aij determines

whether the delay or the congestion cost of a resource dominates. If a net is near critical (i.e. its Aij is

close to 1), then congestion is largely ignored and the cost of using a resource is primarily determined

by the delay term. If the criticality of a net is low, the congestion term in Equation 3.2 dominates, and

the route found for the net avoids congestion while potentially incurring delay.

Pathfinder has proved to be one of the most powerful FPGA routing algorithms to date. Pathfinder’s

negotiation-based framework that trades off delay for congestion is an extremely effective technique for

routing signals on FPGAs. More importantly, Pathfinder is a truly architecture-adaptive routing

algorithm. The algorithm operates on a directed graph abstraction of an FPGA’s routing structure, and

can thus be used to route netlists on any FPGA that can be represented as a directed routing graph.

3.2 FPGA Placement
The FPGA placement problem is to determine the physical assignment of the logic blocks in a netlist to

locations in the FPGA layout. The primary goal of any FPGA placement approach is to produce a

placement that can be successfully routed using the limited routing resources provided by the FPGA.

Versatile Place and Route [5,6] (VPR) is the current, public-domain state-of-the-art FPGA placement

tool. VPR consistently produces high-quality placements, and at the time of this writing, the best

reported placements for the Toronto20 [7] benchmark netlists are those produced by VPR.

VPR uses a simulated annealing algorithm [26] that attempts to minimize an objective cost function.

The algorithm operates by taking a random initial placement of the logic blocks in a netlist, and

repeatedly moving the location of a randomly selected logic block. The move is accepted if it improves

the overall cost of the placement. In order to avoid getting trapped in local minima, non-improving

moves are also sometimes accepted. The temperature of the annealing algorithm governs the probability

of accepting a “bad” move at that point. The temperature is initially high, causing a large number of bad

moves to be accepted, and is gradually decreased until no bad moves are accepted. A large number of

moves are attempted at each temperature. VPR provides a cooling schedule that is used to determine the

number of moves attempted at each temperature, the maximum separation between logic blocks that can

be moved at a given temperature, and the rate of temperature decay.

VPR’s objective cost function is a function of the total wirelength of the current placement. The

wirelength is an estimate of the routing resources needed to completely route all nets in the netlist.

Reductions in wirelength mean fewer routing wires and switches are required to route nets. This is an

19

important consideration because the number of routing resources in an FPGA is limited. Fewer routing

wires and switches typically also translate to reductions in the delay incurred in routing nets between

logic blocks. The total wirelength of a placement is estimated using a semi-perimeter metric, and is

given by Equation 3.4. N is the total number of nets in the netlist, bbx(i) is the horizontal span of net i,

bby(i) is its vertical span, and q(i) is a correction factor. Figure 3-1 illustrates the calculation of the

horizontal and vertical spans of a hypothetical net that has ten terminals.

Equation 3.4: ∑
=

+=
N

i

yx ibbibbiqWireCost
1

))()((*)(

bb x

bb y

Figure 3-1: The horizontal and vertical spans of a hypothetical 10-terminal net [6]. The semi-perimeter of
the net is bbx + bby.

The cost function in Equation 3.4 does not explicitly consider timing information. Wirelength is a weak

estimate of the delay of a net, especially when the net is routed on FPGAs that have a mix of segmented

routing resources. In [30], VPR’s placement algorithm is enhanced to include both wirelength and

timing information. The enhanced algorithm (called TVPlace) starts out with a preprocessing step that

creates a delay lookup table for the FPGA. This lookup table holds the delay of a minimum-delay route

for every source-sink terminal pair in the FPGA’s interconnect structure. During the placement process,

20

the lookup table is used to quickly estimate the delay of a net given a placement of its terminals. The

timing cost of a placement is calculated using the cost functions in Equation 3.5 and Equation 3.6.

Equation 3.5: yExponentCriticalitj)y(i,Criticalit*j)Delay(i,j),mingCost(iTi =

Equation 3.6: ∑
⊂∀

=
circuitji,

j)(i,TimingCostingCostTim

In Equation 3.5, TimingCost(i,j) represents the timing cost of a net that connects a source-sink pair (i,j),

Delay(i,j) is the delay of the net, and Criticality(i,j) is the criticality of the net. During the placement

process, the delay of a net is obtained from the lookup table, while the criticality of a net is calculated

using a static timing analysis. The CriticalityExponent is a parameter that can be tuned to control the

relative importance of the criticality of a net. The formulation of the timing cost in Equation 3.5

encourages the placement algorithm to seek solutions that reduce Delay(i,j) for critical nets.

TVPlace’s cost function is determined by both wirelength and timing cost, and is given by Equation 3.7.

Equation 3.7:

st)prevWireCo / WireCost(*)-(1 Cost)prevTiming / TimingCost(C ∆+∆=∆ λλ *

Equation 3.7 calculates the change in cost of a placement using an auto-normalizing cost function that

depends on changes in WireCost and TimingCost. The parameter λ is used to vary the relative

importance of changes in TimingCost and WireCost during the placement process. The two

normalization variables prevWireCost and prevTimingCost are updated at the beginning of a

temperature iteration as per Equation 3.4 and Equation 3.6. The main benefit of using normalization

variables is that changes in the cost of the placement do not depend on the actual magnitude of

TimingCost and WireCost. This makes the cost function adaptive, since the size of a netlist or the target

architecture does not skew cost calculations. Further, since prevTimingCost and prevWireCost are

recalculated every temperature iteration, inaccuracies due to mismatched rates of change of the two cost

components are minimized.

21

Chapter 4: Architecture Adaptive FPGA Placement –
Motivation and Related Work

Currently, the modus operandi used in the development of placement algorithms is to use architecture-

specific metrics to heuristically estimate the routability of a placement. For example, the routability of a

placement on island-style FPGAs is estimated using the ever-popular semi-perimeter metric (Equation

3.4), while the routability of a placement on tree-based architectures [16] is estimated using cutsize-

based metrics. Architecture-specific routability estimates limit the adaptability of a placement

algorithm. To the best of our knowledge, there is no single placement approach that can adapt

effectively to the interconnect structure of every FPGA in the architecture spectrum. This often proves

to be an impediment in the early stages of FPGA architecture development, when the targeted

placement algorithm is not well defined due to a lack of architectural information. We feel that research

in FPGA architectures would stand to benefit from a universal placement algorithm that can quickly be

retargeted to relatively diverse FPGA architectures.

4.1 VPR Targets Island-Style FPGAs
In Section 3.2 we described VPR, the state-of-the-art academic FPGA placement tool. Due to a strong

prevalence of routing rich island-style FPGA architectures, VPR’s placement algorithm is primarily

targeted to island-style FPGAs (Figure 4-1). The semi-perimeter based cost function relies on certain

defining features of island-style FPGAs:

Two-dimensional Geometric Layout – An island-style FPGA is laid out as a regular two-dimensional

grid of logic units surrounded by a sea of routing wires and switches. As a result, VPR’s cost function is

based on the assumption that the routability of a net is proportional to the Manhattan distance

(measured by semi-perimeter) between its terminals. A net with terminals that are far apart needs more

routing resources than a net with terminals close to each other.

Uniform Connectivity – Island-style architectures provide uniform connectivity. The number and type

of routing resources available for a net with a given semi-perimeter are independent of the actual

placement of the terminals of the net. Thus, VPR determines the cost of a net based purely on its semi-

perimeter, and not the actual location of the terminals of the net.

22

Figure 4-1: An illustration of an island-style FPGA. The white boxes represent logic blocks. The horizontal
(red) and vertical (blue) intersecting lines represent routing wires. The logic blocks connect to surrounding
wires using programmable connection-points (shown as crosses), and individual wires connect to each other
by means of programmable routing switches (shown as gray lines).

VPR’s dependence on island style FPGA architectures limits its adaptability to architectures that do not

provide features of island-style FPGAs. For instance, the interconnect structure of an FPGA architecture

may not conform to the Manhattan distance estimate of routability. One example is the hierarchical

interconnect structure found in tree-based FPGA architectures [16] (Figure 4-2 (a)). In tree-based

FPGAs, there is no way of estimating the number of routing resources between two logic units based on

layout positions. In fact, for an architecture like HSRA [16], the number of routing resources required to

connect a logic unit in one half of the interconnect tree to a logic unit in the other half does not depend

on the actual locations of the logic units. A strictly semi-perimeter based cost function does not

accurately capture the routability characteristics of tree-based FPGAs.

Another class of non-island style FPGA architectures provide heterogeneous interconnect structures.

Triptych [8] (Figure 4-2 (b)) is an example of an FPGA architecture that provides only segmented

vertical tracks. There are no segmented horizontal tracks; horizontal routes are built using directional,

nearest-neighbor connections. A second example of an FPGA architecture that has non-uniform routing

23

resources can be found in [22] (Figure 4-2 (c)). The horizontal channels in this architecture gradually

increase in width from left to right. For a given semi-perimeter, the amount of routing available to a net

at the far right edge of this architecture exceeds the amount available at the far left edge. For both

Triptych and the architecture presented in [22], the types and number of routing resources available to

route a net clearly depends on the placement of the net’s terminals. VPR’s semi-perimeter based cost

function is oblivious of the heterogeneity of such architectures.

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Manhattan Distance

source sink

actual shortest path

(a)

(b)

(c)

(d)

Figure 4-2: Non island-style FPGA architectures. (a) HSRA [16], (b) Triptych [8], (c) directional
architecture from [22], and (d) a U-shaped FPGA core [58].

Finally, efforts to incorporate FPGA-like logic in System-on-Chip designs have motivated non-

rectangular FPGA fabrics. In [22], the authors investigate a directional FPGA fabric that resembles the

shape of a trapezoid. The FPGA fabrics proposed in [50] are built by abutting smaller, rectangular

24

fabrics of different aspect ratios (Figure 4-2 (d)). In both cases, the semi-perimeter metric is an

inaccurate estimate of the resources available to route signals.

The primary feature that distinguishes the non-island style FPGAs discussed so far is the nature of the

interconnect structure. The composition, flexibility, and heterogeneity of the routing resources directly

influence the placement process. For every FPGA that has a unique interconnect structure, a placement

cost function is formulated in terms of architecture specific parameters that accurately capture the cost

of a placement. The architectural examples cited in this section clearly show that a semi-perimeter

placement cost function does not adapt well to non-island style FPGAs. A cost function’s adaptability

lies in its ability to guide a placement algorithm to a high-quality solution across a range of

architecturally diverse FPGAs.

The first major topic of this dissertation is the development of Independence, an architecture adaptive

FPGA placement algorithm. The core of the Independence algorithm is tightly integrated placement and

routing. The algorithm’s adaptability is a direct result of using the Pathfinder algorithm to calculate the

cost of a placement. Specifically, we use Pathfinder in the inner loop of a simulated annealing

placement algorithm to maintain a fully routed solution at all times. Thus, instead of using architecture-

specific routability estimates, we use the routing produced by an architecture adaptive router to guide

the algorithm to a routable placement.

4.2 Previous Work in Integrated Placement and Routing
Since Independence is rooted in a simultaneous3 place-and-route approach, we briefly survey existing

research in integrated FPGA placement and routing in this section. Research in integrated place and

route for FPGAs can be broadly categorized into three categories.

4.2.1 Partitioning-based Techniques
Partitioning-based FPGA placement is used to obtain a global routing of the netlist as a direct result of

the partitioning process. Note that partitioning-based FPGA placement algorithms are not truly

simultaneous place-and-route algorithms, since no explicit routing step is attempted during placement.

However, since partitioning-based placement naturally produces the global routing of a netlist, we

briefly survey partitioning-based techniques in the hope of identifying an approach that might aid in the

development of Independence. Further, partitioning-based placement is a well-known divide-and-

conquer approach to solving placement problems.

3 We use the words ‘integrated’ and ‘simultaneous’ interchangeably from this point on.

25

Iterative k-way partitioning techniques are particularly well suited to tree-based FPGA architectures,

and have been used to place and globally route netlists on HSRA [16] and k-HFPGA [55]. During

recursive k-way partitioning, logic blocks are recursively clustered together into k smaller subtrees

while reducing cutsize and/or area. At the end of the partitioning phase, the leaves of the netlist’s

partitioning tree are mapped to logic unit clusters in the tree-based architecture. Since there is a unique

global route between any two logic unit clusters in a tree-based architecture, the global routing for the

entire netlist is easily found from the placement.

Partitioning-based techniques have also been considered for simultaneously placing and routing netlists

on island-style FPGA architectures. In [51], a recursive bipartitioning technique is used to place and

globally route netlists on an island-style FPGA architecture. At the end of a bi-partitioning stage, if a

net crosses the cutline, a pseudo-block is generated on the cutline to preserve a connection. Each

psuedo-block corresponds to a track, and a sequence of pseudo-blocks between the terminals of a net

corresponds to a global route for that net. When the bipartitioning is complete, each partition consists of

a single switch-block with pseudo-blocks allocated at the partition edges. The global routing for the

netlist is directly implied by the placed netlist.

A similar approach to integrated place-and-route for island-style FPGAs is presented in [1]. The FPGA

is divided into m x n rectangular regions, and a partitioning heuristic is used to assign the logic blocks

in a netlist to the regions. The assignment is improved using simulated annealing. A greedy congestion

reduction heuristic is then used to select a Rectilinear Steiner Arborescence for each net such that

cutsize is reduced. Finally, the nets that cross each edge of a region are assigned to switch-blocks

located on the edge. This process is recursively carried out until each region consists of a single logic

block.

Partitioning-based placement techniques can be used to simultaneously place and globally route netlists

on FPGA architectures. However, since FPGAs have a finite number of discrete routing resources,

heuristic estimates of the global routing requirements of a netlist during the placement process might

not be the most accurate measure of the actual routing requirements of the netlist. A tighter coupling

between partitioning-based placement and the interconnect structure of the FPGA might be obtained by

finding detailed routes for signals during partitioning. However, the actual placement of a netlist is only

known at the end of the partitioning-phase, and hence a complete detailed routing is not possible during

the partitioning process.

26

4.2.2 Cluster-growth Placement
Cluster-growth placement is a technique that has been used to simultaneously place and route netlists on

different FPGA architectures. In cluster-growth placement, signals are considered one at a time in a

sequential manner. The terminals of the signal under consideration are placed based on a cost function

derived from heuristic force-directed estimates [4], or global routing estimates [10]. Once a signal’s

terminals have been placed, it is not possible to change their placement to accommodate the demands of

later signals.

Combining cluster-growth placement with detailed routing may seem like a good choice for

architecture-adaptive placement. However, the quality of the placements produced by a cluster-growth

approach is sensitive to the order in which signals are considered. Since determining an optimal

ordering of the signals is a difficult task, cluster-growth placement is usually an iterative process. The

signal ordering at the beginning of each pass is either random, or determined heuristically from netlist

or architectural features.

4.2.3 Simulated Annealing Placement
Simulated Annealing [26] is one of the most powerful placement techniques for both FPGA [6] and

ASIC [38] technologies. As mentioned in Section 3.2, VPR’s placement algorithm uses simulated

annealing to minimize wirelength and timing estimates. The quality of the resultant placements has

proven to be consistently superior.

Simulated Annealing based simultaneous place-and-route techniques are presented in [35]. Fast global

and detailed routing heuristics are used in the simulated annealing inner loop to estimate the routability

and critical path delay of a placement. Separate techniques for row-based and island-style FPGAs are

presented. A brief description of the techniques follows:

Row-based FPGAs (PRACT) [35]: The PRACT algorithm is targeted to row based FPGAs. The cost of

a placement is a weighted, linear function of the number of globally unrouted nets, the number of nets

that lack a complete detailed routing, and the critical path delay of the placement. For every move that

is attempted during the annealing process, the nets that connect the moved logic blocks are ripped up

and added to a queue of unrouted nets. After a move is made, fast heuristics attempt to find global and

detailed routes for the ripped up nets. The global route for a net is found using geometric information

specific to row-based FPGAs. The detailed route for a net in a channel is found using a greedy heuristic

that tries to reduce segment wastage and the number of segments used. Critical path delays are updated

using incremental static timing analysis. PRACT yielded up to a 29% improvement in delay and 33%

27

improvement in channel widths when compared to a place-and-route flow used at Texas Instruments

(circa 1995).

Island style FPGAs (PROXI) [35]: The PROXI algorithm uses a cost function that is a linear, weighted

function of the number of unrouted nets, and the critical path delay of the placement. No global routing

is attempted. The interconnect structure of the FPGA is represented as a routing graph similar to the

directed graph used by Pathfinder. For each placement move, the nets connecting the moved logic

blocks are ripped up and added to a global queue of unrouted nets. Nets are rerouted using a maze

routing algorithm augmented with a cost-to-target predictor. To keep runtime under control, the depth

of the maze search is modulated as the annealing placement proceeds. The segmented nature of the

routing resources is addressed by means of an explicit weighting scheme that encourages high fanout

nets to use long segments, and low fanout nets to used shorter segments. This weighting scheme relies

on the bounding box of the net being routed. Critical path delays are incrementally updated in a manner

similar to PRACT. The placements produced by PROXI exhibited 8 – 15% delay improvement

compared to Xilinx’s XACT5.0 place-and-route flow.

The quality of the placement solutions produced by PRACT and PROXI was noticeably superior to

commercial, state-of-the-art CAD flows at that time (circa 1995). The results were a strong validation of

a simulated annealing based FPGA placement algorithm that is tightly coupled with routing heuristics.

However, both algorithms have potential shortcomings from adaptability as well as CAD perspectives:

• The cost functions developed for the algorithms do not explicitly consider total wirelength or

congestion. The only metric used to estimate the routability of a placement is the total number

of unrouted nets. It can easily be seen that the total wirelength and congestion of a placement

may change without affecting the number of unrouted nets. A cost function that is insensitive

to such changes may allow wirelength and/or congestion to increase undesirably.

• The routing heuristics used by PRACT are tied to row-based FPGAs, and may be difficult to

adapt to FPGA architectures that have different interconnect structures. At the same time,

PROXI uses bounding box estimates to dynamically weight nodes of the routing graph when

routing nets. This dynamic weighting approach is targeted at island-style architectures that

have segmented routing resources.

• PROXI’s routing algorithm does not allow sharing of routing nodes by multiple signals.

Disallowing sharing prevents PROXI from leveraging the negotiation-based congestion

resolution heuristics from the Pathfinder algorithm.

28

The approaches and techniques surveyed in this section are either targeted to certain architectural styles,

or use relatively weak estimates of routability during the placement process. No clear cost formulation

or technique emerges that can be used to produce high quality placements across a range of

architecturally unique FPGAs. Research in FPGA architectures would stand to benefit from a placement

algorithm that can quickly be retargeted to relatively diverse FPGA architectures, while producing high

quality results at the same time.

29

Chapter 5: Independence – Architecture Adaptive
Routability Driven Placement for FPGAs

In Chapter 4, we demonstrated that VPR’s cost formulation might not adapt to non island-style FPGAs.

We then postulated that an integrated place-and-route approach that tightly couples placement with an

architecture-adaptive router (Pathfinder) is probably a more appropriate architecture-adaptive placement

approach. In this chapter we describe Independence, an architecture-adaptive routability-driven FPGA

placement algorithm. Pseudo code for the algorithm appears in Figure 5-1. The remainder of this

chapter is a consolidated explanation of the pseudo code shown in Figure 5-1.

5.1 Placement Heuristic and Cost Formulation
Since simulated annealing has clearly produced some of the best placement results reported for FPGAs

[7], we chose to use simulated annealing as Independence’s placement heuristic. Independence’s

cooling schedule is largely an adoption of VPR’s cooling schedule. This is because VPR’s cooling

schedule is adaptive, and incorporates some of the most powerful features from earlier research in

cooling schedules. For similar reasons, we chose an auto-normalizing formulation for Independence’s

cost function. The main benefit of using normalization variables is that changes in cost of a placement

do not depend on the actual magnitude of the cost variables. This makes the cost function adaptive,

since the size of a netlist or the target architecture does not skew cost calculations. Independence’s cost

function is described in Equation 5.1

Equation 5.1: ∆ C = ∆ WireCost / prevWireCost + λ * ∆ CongestionCost / CongestionNorm

WireCost – The wire cost of a placement (Equation 5.2) is calculated by summing the number of

routing resources used by each signal in the placed netlist. Routing resource usage is measured by

simply traversing the route-tree of each signal and increasing WireCost. In Equation 5.2, N is the

number of signals in the netlist, and NumRoutingResourcesi is the number of routing resources in the

route tree of signal i. The normalization variable prevWireCost in Equation 5.1 is equated to the

WireCost of a placement before a placement move is attempted.

30

 Independence(Netlist, G(V,E)){
// Create an initial random placement.
createRandomPlacement(Netlist, G(V,E));

N = set of all nets in Netlist;

// Freely route all nets in N; similar to Pathfinder’s first routing iteration. R contains the complete, current routing of the
// nets in N at any time during the placement.
R = routeNets(N, G(V,E));

// Calculate the cost of the placement.
C = calculateCost(R, G(V,E));

// Calculate the starting temperature of the anneal.
T = StartTemperature(Netlist, G(V,E), R);

while(terminatingCondition() == false){

 while(innerLoopCondition() == false){
// Randomly generate the two locations involved in the move.
(x0,x1) = selectMove(G(V,E));

// Get the nets connected to the logic blocks mapped to x0 and/or x1.
Nx = getNets(x0, x1);

// Cache the routes of the nets connected to the logic blocks mapped to x0 and/or x1.
CacheR = getRoutes(Nx);

// Rip up the nets connected to the logic blocks mapped to x0 and/or x1.
R = R – cacheR;
// Swap the logic blocks mapped to x0 and/or x1. Update the source/sink terminals of the nets in Nx to
// reflect the new placement.
swapBlocks(x0, x1);

// Reroute the nets connected to the logic blocks that are now mapped to x0 and/or x1.
R = R + routeNets(Nx, G(V,E));

// Calculate the change in cost due to the move
newC = calculateCost(R, G(V,E));
∆ C = newC – C;
if(acceptMove(∆C, T) == true){

// Accept the move.

 C = newC;
}
else{

// Restore the original placement and routing

 swapBlocks(x0, x1);

 R = R – getRoutes(Nx) + cacheR;
}

 }
// Upda te temperature T.
T = updateTemp();

// Update history costs.
updateHistoryCosts(R, G(V,E));

// Refresh routing.
R= Φ ;
R=routeNets(N, G(V,R));

}
}

Figure 5-1: Pseudo code for the Independence algorithm. Brief comments accompany the code, and are
shown in gray.

31

Equation 5.2: ∑
=

=
N

1i
iesourcesRNumRoutingWireCost

CongestionCost – The congestion cost (Equation 5.3) represents the extent to which the routing

resources are congested in a given placement, and is calculated by summing the number of signals that

overuse each congested resource. The congestion cost of a placement is calculated by traversing the

routing graph and increasing CongestionCost when a shared resource is encountered. In Equation 5.3,

Occupancyi is the number of signals that are currently using routing resource i, Capacityi is the capacity

of routing resource i, and R is the total number of vertices in the routing graph of the target architecture.

It could be argued that CongestionCost renders WireCost redundant, since the objective of an FPGA

placement algorithm is to produce a routable netlist. However, a cost function that is unaware of

changes in wire cost will not recognize moves that might improve future congestion due to reductions

in routing resource usage.

Equation 5.3: ∑
=

−=
R

1i
ii 0) ,CapacityOccupancymax(CostCongestion

CongestionNorm: This is the auto-normalization term for the CongestionCost of a placement. Note that

the congestion cost of the placement cannot be used as a normalizing factor, since CongestionCost

might be zero towards the end of the annealing process. In our current implementation of Independence,

we equate CongestionNorm to prevWireCost.

λ – This weighting parameter (Equation 5.1) controls the relative importance of changes in wire and

congestion costs. Since CongestionNorm is continuously recalculated as the placement algorithm

progresses, the collective λ / CongestionNorm term also changes dynamically. As a result, the relative

importance of changes in congestion cost varies with time. This behavior is similar to that of the cost

function presented in [50], in which the weighting parameter of an individual cost term (overlap

penalty) was dynamically varied during the annealing process. This dynamic parameter tuning approach

proved very effective in eliminating overlap penalty while minimizing increases in wirelength.

32

5.2 Integrating Pathfinder
FPGA routing is a computationally intensive process. Admittedly, it is infeasible to reroute all the

signals in a netlist after each placement move. Our solution is to start out with an initially complete

routing, and then incrementally reroute signals during placement. Specifically, only the signals that

connect to the logic blocks involved in a move are ripped up and rerouted. This is based on the intuition

that for any given move, major changes in congestion and delay will be primarily due to the rerouting of

signals that connect moved logic blocks.

A

D

B

C

E

A

D

B

C

E E

A

D

B

C

E

Figure 5-2: Logic block E is moved to the location immediately to the right of D. Its input branch (shown in
gray) is ripped up, and a new route is found from the partial route-tree that connects logic blocks A, B, C
and D.

Signals that sink at the moved logic blocks are handled differently from signals that originate at the

moved logic blocks. When a logic block is moved during the placement process, only the branch that

connects an input nets to the logic block is ripped up and rerouted. This approach is similar to

Pathfinder’s signal router, which uses the entire partially routed net as a starting point for the search for

a new sink terminal. Ripping up and rerouting only branches is based on the assumption that the

relocation of a single terminal of a multi-terminal net will not drastically alter the net’s route. The

runtime benefits of only routing branches are compelling, especially because FPGA logic units

generally have a relatively large number of inputs. Figure 5-2 illustrates the process of ripping up and

rerouting the input branches of moved logic blocks.

While input nets are partially ripped up and rerouted, the output nets of moved logic blocks are

completely rerouted. Merely routing the output of a moved logic block to the nearest point in the partial

route-tree could produce a poor route. Figure 5-3 illustrates the benefits of completely rerouting the

output net of a moved logic block.

33

A

B

C

B

A

C

B

A

C

Figure 5-3: Logic block A is moved to the location between B and C. If we reroute from A to the partial
route-tree, the resultant route requires far more routing than is necessary. Ripping up and rerouting the
entire net produces a better routing.

Since we only attempt an incremental rip-up and reroute after every move, the routes found for signals

during the early parts of an annealing iteration may not accurately reflect the congestion profile of the

placement at the end of an iteration. Hence, we periodically refresh the netlist’s routing by ripping up

and rerouting all signals. This ripup-and-reroute step is equivalent to performing the final iteration of a

Pathfinder run. Currently, the netlist is ripped up and rerouted at the end of every temperature iteration.

In light of the fact that the placement of a netlist is constantly changing during simulated annealing, it is

necessary to examine whether Pathfinder’s cost function is directly applicable to finding routes during

incremental rip-up and reroute. When routing a signal, Pathfinder uses the number of signals currently

sharing a routing node (presentSharing), and the history of congestion on the node (historyCost) to

calculate the cost of the routing node. Since the netlist is completely routed at any given point in the

placement process, the current sharing of routing nodes can easily be calculated, and thus we directly

adopt Pathfinder’s presentSharing cost term.

Pathfinder’s history cost term is motivated by the intuition that routing nodes that have been historically

congested during the routing process probably represent a congested area of the placed netlist. Thus, if a

routing node is shared at the end of a routing iteration, its history cost is increased by a fixed amount to

make the node more expensive during subsequent iterations. Note that the process of updating history

costs during a Pathfinder run makes history cost an increasing function. An increasing history cost

formulation is inappropriate for Independence. An increasing history cost would reflect the congestion

on a routing node during the entire placement process. However, since placements are in constant flux

during the placement process, the congestion on a routing node during the early stages of the annealing

process (when placements are very different) might not be relevant to the routing process towards the

end.

34

Independence uses a decaying function to calculate history costs during incremental rip-up and reroute.

Specifically, we use a mathematical formulation that decreases the relevance of history information

from earlier parts of the placement process. Currently, we update history costs once every temperature

iteration based on the assumption that the number of signals ripped up and rerouted during a

temperature iteration is roughly equivalent to the number of signals routed during a single or small

number of Pathfinder iterations. The history cost of a routing node during a temperature iteration ‘i+1’

is presented in Equation 5.4.

 Equation 5.4:

if (shared)
historyCosti+1 = α * historyCosti + β

else
historyCosti+1 = α * historyCosti

In Equation 5.4, i is a positive integer, and α and β are empirical parameters. Currently, α = 0.9 and β

= 0.5. Thus, the history cost of a shared routing node during a new iteration is determined by 90% of the

history cost during earlier iterations plus a small constant. As an example, the history cost of a node that

is shared during the first five iterations progressively goes from 0 to 0.5, to 0.95, to 1.36, and to 1.72. In

cases where a routing node is not shared during a temperature iteration, its history cost is allowed to

decay as per Equation 5.4.

As a final note, we would like to point out that congestion plays two roles in the Independence

algorithm. First, the total congestion cost of a placement plays a direct role in contributing to the overall

cost of a placement (Equation 5.1). We make the task of eliminating congestion an explicit goal of the

placement process. At the same time, we also use Pathfinder’s congestion resolution mechanism during

incremental rip-up and reroute, and at the end of every temperature iteration to eliminate sharing. Thus,

Independence uses a two-pronged approach to eliminate congestion during the placement process.

In the next chapter, we demonstrate Independence’s adaptability to three architectures that have clearly

different interconnect structures. Further, we also present an empirical study of the effect of the

congestion weighting parameter λ on the quality of the solutions produced by the Independence

algorithm.

35

Chapter 6: Validating Independence

The objective of our validation strategy is to demonstrate Independence’s adaptability to different

interconnect styles. Our experiments target three interconnect structures; island-style, tree-based

(HSRA), and a one-dimensional architecture that has limited inter-track switching capabilities (RaPiD).

The main reasons for selecting these as target architectures are:

• Each of the three architectures have clearly different interconnect structures. Targeting

Independence to architectures with different interconnect structures will assess its adaptability.

• The existence of place-and-route tools for all three architectures. This allows us to directly

compare the quality of the placements produced by Independence with those produced by

architecture specific placement techniques.

6.1 Island-Style Architectures

6.1.1 Experiment 1
Our first experiment compares the placements produced by Independence with VPR when targeted to a

clustered, island-style architecture. Each logic block cluster in this architecture has eighteen inputs,

eight outputs, and eight 4-LUT/FF pairs per cluster. The interconnect structure consists of staggered

length four track segments and disjoint switchboxes. The input pin connectivity of a logic block cluster

is 0.4*W (where W is the channel width) and output pin connectivity is 0.125*W. The island-style

architecture described here is similar to the optimal architecture reported in [31].

Table 6-1 lists minimum track counts obtained on routing placements produced by VPR and

Independence. Column 1 lists the netlists used in this experiment, column 2 lists the total number of

logic blocks plus IO blocks in the netlist, column 3 lists the total number of nets in the netlist, column 4

lists the size of the minimum square array required to just fit the netlist, column 5 lists the minimum

track counts required to route the placements produced by VPR, and column 6 reports the minimum

track counts needed to route4 placements produced by Independence. The final row in Table 6-1 lists

the sum of the minimum track counts (which is our quality metric for all experiments presented in this

chapter) required by VPR and Independence across the benchmark set.

4The placements produced by VPR and Independence are both routed using VPR’s implementation of the Pathfinder algorithm.

36

Table 6-1: A comparison of the placements produced by VPR and Independence.

Netlist Nblocks Nets Size VPR Ind
s1423 51 165 6x6 17 18
term1 77 144 6x6 17 17
vda 122 337 9x9 33 33
dalu 154 312 8x8 25 26
x1 181 352 10x10 22 23

apex4 193 869 13x13 60 61
i9 195 214 7x7 19 19

misex3 207 834 14x14 45 48
ex5p 210 767 12x12 60 60
alu4 215 792 14x14 39 41
x3 290 334 8x8 26 25
rot 299 407 8x8 27 29

tseng 307 780 12x12 34 36
pair 380 512 9x9 36 36
dsip 598 762 14x14 31 31
SUM 491 503

The track-counts listed in Table 6-1 show that the quality of the placements produced by Independence

is within 2.5% of those produced by VPR. We consider this a satisfactory result, since it demonstrates

that Independence can target island-style FPGAs and produce placements that are close in quality to an

extensively tuned, state-of-the-art placement tool.

6.1.2 Experiment 2
Our second experiment studies Independence’s adaptability to routing-poor island-style architectures.

The philosophy behind routing-poor architectures [8,16] is increased silicon utilization through efficient

use of the interconnect structure (which often accounts for ~90% of the total area in current FPGA

families). Routing-poor architectures attempt to increase interconnect utilization at the expense of logic

utilization. This is in direct contrast to VPR’s exploratory style that fixes logic utilization, and then

increases interconnect richness until a netlist’s placement is successfully routed. Figure 6-1 (top left)

shows a placement produced by VPR for the netlist alu2 on a target architecture5 that has four times as

many logic blocks as a minimum size square array required to fit the netlist. VPR’s router needs five

tracks to route this placement. Our first observation is the tightly packed nature of the placement in

Figure 6-1 (top left), and our second observation is that the placement produced by VPR does not

5Each logic block has a single LUT/FF pair, and the interconnect structure contains only length-one wire segments. This is the
VPR “challenge” architecture [3].

37

change with the actual number of tracks in the target architecture. As a result, VPR is unable to produce

routable placements for alu2 on target architectures that have less than five tracks. VPR’s limited

adaptability to routing-poor architectures is a direct consequence of VPR’s semi-perimeter based cost

formulation that has no knowledge of the actual number of routing resources in the target device.

Figure 6-1: A placement produced by VPR for alu2 on a 34x34 array (top left). VPR needed 5 tracks to route
this placement. Placements produced by Independence for alu2 on a 34x34 array that has 5 (top right), 4
(bottom left) and 3 (bottom right) tracks respectively.

38

Unlike VPR, Independence’s integrated approach that tightly couples the placement algorithm with an

architecture adaptive router is in fact able to produce routable placements on routing-poor island-style

architectures. Figure 6-1 shows successfully routed placements produced by Independence on 34x34

arrays that have five (Figure 6-1 top right), four (Figure 6-1 bottom left) and three tracks (Figure 6-1

bottom right) respectively.

Table 6-2: Quantifying the extent to which Independence adapts to routing-poor island-style architectures.

Netlist Nblocks WVPR 1.0*WVPR 0.9*WVPR 0.8*WVPR 0.7*WVPR 0.6*WVPR 0.5*WVPR

s1423 51 17 17 16 14 12 11 9
vda 122 33 33 30 27 24 20 17
rot 299 30 30 27 24 21 18 15

alu4 215 37 37 34 30 26 23 19
misex3 207 43 43 39 35 31 26 22
ex5p 210 52 52 47 42 37 32 26
tseng 307 33 33 30 27 24 20 17
apex4 193 52 52 47 42 37 32 26
diffeq 292 31 31 28 25 22 19 16
dsip 598 34 34 31 28 24 21 17

Table 6-2 shows the extent to which Independence is able to adapt to routing-poor island-style FPGAs.

The parameters of the target array are identical to those used in Experiment 1 (Section 6.1.1). The only

exception is the logic capacity, which is four times (the width and height of the target array are each 2X

the minimum required to fit the netlist) that of a minimum size square array. Column 1 lists the netlists

used in the experiment, column 2 lists the number of logic blocks plus IO blocks in the netlist, and

column 3 lists the minimum track counts needed by VPR to route each netlist. Let the minimum track

count needed by VPR to route a netlist be WVPR. Columns 4 through 9 list the number of tracks in a

target architecture that has 1.0*WVPR, 0.9*WVPR, 0.8*WVPR, 0.7*WVPR, 0.6*WVPR, and 0.5*WVPR tracks

respectively. In Columns 4 – 9, a lightly shaded table entry (black text) means that Independence

produces a routable placement on that architecture, while a dark shaded entry (white text) means that

Independence is unable to produce a routable placement. So, for example, the lightly shaded table entry

37 for the netlist ex5p means Independence produces a routable placement for ex5p on a 37-track

(0.7*52) architecture. Similarly, the dark shaded entry 32 for ex5p means that Independence fails to

produce a routable placement for ex5p on a 32-track (0.6*52) architecture. The results in Table 6-2

show that Independence produces up to 40% better placements than VPR on routing-poor island-style

interconnect structures. Note that VPR does not possess the ability to adjust to routing-poor

architectures, and thus cannot use the extra space to reduce track count.

39

Finally, since the height and width of a target array in Experiment 2 is approximately twice the

minimum required, the bandwidth6 of any target array in Experiment 1 is approximately equal to the

bandwidth of the corresponding target array in Experiment 2 at 0.5*WVPR. Coincidentally, 0.5*WVPR is

also the point at which Independence is not able to produce any further reductions in track count. Thus,

although the target arrays are of different sizes, both VPR and Independence produce placements that

require comparable bandwidths.

6.2 Hierarchical Architectures – Experiment 3
Our third experiment targets an architecture (HSRA) that has a hierarchical, tree-based interconnect

structure (Figure 6-2). The richness of HSRA’s interconnect structure is defined by its base channel

width and interconnect growth rate. The base channel width ‘c’ is the number of tracks at the leaves of

the interconnect tree (in Figure 6-2, c=3). The growth rate ‘p’ is the rate at which the interconnect

grows towards the root (in Figure 6-2, p=0.5). The growth rate is realized using the following types of

switch-blocks:

• Non-compressing (2:1) switch blocks - The number of root-going tracks is equal to the sum of

the number of root-going tracks of the two child switch blocks.

• Compressing (1:1) switch blocks – The number of root-going tracks is equal to the number of

root-going tracks of either child switch block.

A repeating combination of non-compressing and compressing switch blocks can be used to realize any

value of p less than one. A repeating pattern of 2:1 1:1 switch blocks realizes p=0.5, while the

pattern 2:1 2:1 1:1 realizes p=0.67.

In HSRA, each logic block has a single LUT/FF pair. The input-pin connectivity is based on a c-

choose-k strategy [16], and the output pins are fully connected. The base channel width of the target

architecture is eight, and the interconnect growth-rate is 0.5. The base channel width and interconnect

growth rate are both selected so that the placements produced by HSRA’s CAD tool are noticeably

depopulated.

6 The bandwidth is measured by the number of routing tracks that cut a horizontal or vertical partition of the target array.

40

Figure 6-2: [16] An illustration of HSRA’s interconnect structure. The leaves of the interconnect tree
represent logic blocks, the crosses represent connection points, the hexagon-shaped boxes represent non-
compressing switches, and the diamond-shaped boxes represent compressing switches. The base channel
width of this architecture is three (c=3), and the interconnect growth rate is 0.5 (p=0.5).

Table 6-3 compares the minimum base channel widths required to route7 placements produced by

HSRA’s placement tool and Independence. Column 1 lists the netlists used in this experiment, column 2

lists the number of LUTs in each netlist, column 3 lists the minimum base channel widths required to

route placements produced by HSRA’s placement tool, and column 4 lists the minimum base channel

widths required to route placements produced by Independence. To ensure a fair comparison,

Independence is targeted to architectures with the same horizontal span (lsize as defined in [16]) and

interconnect levels as required by HSRA’s placement tool (Figure 6-3). Overall, Independence is able

to produce placements that require 21% fewer tracks compared to HSRA’s placement tool.

7The placements produced by HSRA’s CAD tool and Independence were both routed using HSRA’s router (arvc).

41

Table 6-3: Independence compared to HSRA's placement tool.

Netlist NLUTs HSRA Ind

mm9b 120 10 9

cse 134 11 8

s1423 162 10 8

9sym 177 11 8

ttt2 198 10 8

keyb 209 12 9

clip 243 11 9

term1 246 11 10

apex6 258 10 10

vg2 277 11 9

frg1 282 12 10

sbc 332 11 8

styr 341 12 9

i9 347 11 9

C3540 382 11 8

sand 406 12 9

x3 441 11 10

planet 410 12 9

rd84 405 12 8

dalu 502 12 8

SUM 223 176

lsize = 11

num levels = 4

Figure 6-3: Although there are only eight logic blocks (black boxes) in the netlist, HSRA’s placement tool
spreads placements out to match the interconnect requirements of the netlist with the interconnect
bandwidth provided by the architecture. In this example, the placement has an lsize = 11 and requires log216
= 4 interconnect levels. In medium-to-high stress cases, both lsize and num levels are inversely proportional
to the base channel width of the device.

42

6.3 RaPiD – Experiment 4
Our fourth experiment targets the RaPiD architecture. RaPiD’s interconnect structure consists of

segmented 16-bit buses. There are two types of buses; short buses provide local communication

between logic blocks, while long buses can be used to establish longer connections using bidirectional

switches called bus-connectors (shown as the small square boxes in Figure 6-4). RaPiD’s interconnect

structure is relatively constrained because there is no inter-bus switching capability in the interconnect

structure. A bus-connector can only be used to connect the two bus-segments incident to it. Thus,

RaPiD’s interconnect structure is an interesting candidate for a routability-driven placement algorithm.

G
PR

G
PR

R
A

M

R
A

M

M
U

L
T

A
L

U

G
PR

A
L

U

G
PR

G
PR

R
A

M

A
L

U

G
PR

Figure 6-4: RaPiD’s interconnected structure consists of segmented 16-bit buses. The small square boxes
represent bidirectional switches called bus connectors.

Table 6-4 presents the results of Experiment 4. Column 1 lists the netlist, column 2 lists the number of

RaPiD cells in the target array, column 3 lists the minimum track-count required by placements

produced by the placer described in [40], and column 4 lists the minimum track-count required to route

placements produced by Independence. Overall, the min track-counts required by RaPiD’s placer and

Independence were within 0.7%.

43

Table 6-4: A comparison of the track-counts required by a placement tool targeted to RaPiD and
Independence.

Netlist Ncells RaPiD Ind
matmult4 16 12 11

firtm 16 9 11
sort_rb 8 11 11
sort_g 8 11 11

firsymeven 16 8 9
cascade 16 10 10

sobel 18 15 13
fft16 12 11 12

imagerapid 14 12 11
fft64 24 29 28
log8 48 12 14
SUM 140 141

6.4 The Effect of Congestion Weighting Parameter λ
Independence’s cost function depends on the wire cost and congestion cost of a placement (Equation

5.1, Equation 5.2, and Equation 5.3). The wire cost is the number of routing resources required by a

fully routed placement, and the congestion cost is a measure of the total congestion. Independence’s

cost function is reproduced in Equation 6.1.

Equation 6.1: ∆ C = ∆WireCost / prevWireCost + λ * ∆ CongestionCost / CongestionNorm

In this section, we empirically study the effect of the weighting parameter λ on the quality of the

placements produced by Independence. Figure 6-5 shows the variation in placement quality vs. the

weighting parameter λ. The x-axis represents different values of λ, and the y-axis represents minimum

track counts normalized to the lowest track-count produced by Independence across the λ values.

44

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10 12 14 16

λ

N
or

m
al

iz
ed

 T
ra

ck
 C

ou
nt

Island-Style
RaPiD
HSRA7,0.5
HSRA8,0.5

Figure 6-5: The effect of weighting parameter λ on the quality of the placements produced by
Independence.

The setup and parameters that we used to obtain the four curves in Figure 6-5 are as follows:

• Island-Style – The Island-Style curve represents normalized track-counts obtained on using

Independence to place netlists on a clustered, island-style architecture. The parameters of the

target devices are identical to the devices used in Experiment 1 and Experiment 2 (Section 6.1).

Each netlist is placed on a minimum size square array.

• RaPiD – The RaPiD curve represents normalized track counts obtained on using Independence

to place netlists on the RaPiD architecture. Each netlist was placed on a RaPiD array that had

the minimum number of cells required to just fit the netlist.

• HSRA8,0.5 – This curve represents the minimum track counts obtained when using the

parameters in Experiment 3 (Section 6.2). Specifically, Independence is targeted to an

architecture that has a base channel width of eight, and an interconnect growth rate of 0.5.

Further, Independence is constrained to produce placements that do not exceed the lsize or

number of levels reported by HSRA’s placement tool.

45

• HSRA7,0.5 – This curve represents the minimum track counts obtained on using Independence

to place netlists on an architecture that has a base channel width of seven, and an interconnect

growth rate of 0.5. Note that we target Independence to a complete binary tree that has twice

the minimum number of logic units required by the netlist. For example, if there are 150 logic

blocks in the netlist, then the size of the target array is 2*256 = 512 logic units. Further, we

relax the lsize constraint to allow Independence to use the entire target device during

placement.

In Figure 6-5, a non-zero value of λ produces placements of better quality than λ = 0 on three out of the

four cases that we investigated. The island-style curve has minimum at λ = 0.5, the RaPiD curve

asymptotically approaches a minimum at λ = 8, and the HSRA7,0.5 curve’s minima occur at λ = 1 and

λ = 2. The fourth case (HSRA8,0.5) is insensitive to λ. We suspect that the parameters that we used in

the HSRA8,05 study may represent a aggressively high-stress case, which might be the reason for the

HSRA8,0.5 curve’s insensitivity to λ. On the other hand, the HSRA7,0.5 curve is sensitive to λ. The

HSRA7,0.5 case is probably lower stress because of the relaxed lsize constraint and size of the target

array.

The primary message of this study is that a non-zero value of λ will probably produce better placements

than a cost function that depends on only wire cost. No strong conclusions can be made about a “magic”

value for λ, or whether it is even possible to guess a ballpark value for λ given prior knowledge of the

FPGA’s interconnect structure. In view of these conclusions, a strong candidate for future work is the

development of heuristics that auto-determine λ based on the characteristics of the netlist and the target

interconnect structure.

6.5 Runtime
A comparison of placement runtimes on island-style interconnect structures is shown in Table 6-5.

Column 1 lists benchmark netlists, column 2 lists the number of logic plus IO blocks in the netlist,

column 3 lists the number of nets, column 4 lists the size of the target array, column 5 lists VPR’s

runtime, column 6 lists Independence’s runtime, and column 7 lists the ratio between Independence’s

and VPR’s runtime. All runtimes are in seconds. The most current version of our implementation

requires between approximately three minutes (s1423) and seven hours (dsip). The implementation

includes runtime enhancements based on the A* algorithm (Chapter 7). Note that dsip is one of the

smaller netlists in the Toronto20 set. For larger netlists, Independence’s runtime might be on the order

46

of days. Clearly, there is a compelling need to explore techniques that might reduce Independence’s

runtime.

Table 6-5: A comparison of placement runtimes on island-style structures.

Netlist Nblocks Nets Size VPR Ind Norm
s1423 51 165 6x6 0.3 192 640
term1 77 144 6x6 0.34 193 568

i9 195 214 7x7 0.71 555 782
dalu 154 312 8x8 0.95 1124 1183
vda 122 337 9x9 1 1187 1187
x3 290 334 8x8 1.25 1354 1083
rot 299 407 8x8 1.39 1925 1385
x1 181 352 10x10 1.29 2257 1750

pair 380 512 9x9 1.85 3365 1819
ex5p 210 767 12x12 2.6 5924 2278
apex4 193 869 13x13 2.82 7670 2720
tseng 307 780 12x12 2.75 8725 3173

misex3 207 834 14x14 3.08 10054 3264
alu4 215 792 14x14 3.1 10913 3520
dsip 598 762 14x14 4.95 24719 4994

6.6 Summary
The results of our experiments in Sections 6.1, 6.2 and 6.3 demonstrate Independence’s adaptability to

three different interconnect styles. The quality of the placements produced by Independence are within

2.5% of VPR, 0.7% of RaPiD’s placement tool, and 21% better than HSRA’s placement tool. Further,

our experiment with routing-poor island-style structures shows that Independence is appropriately

sensitive to the richness of interconnect structures. When considered together, the results presented in

Sections 6.1, 6.2 and 6.3 are a clear validation of using an architecture-adaptive router to guide FPGA

placement.

Finally, the empirical study presented in Section 6.4 shows that a congestion-aware placement cost

function produces better results than a cost function that depends solely on wire cost. However, the

exact value of the congestion weighting parameter λ differs across architectures.

47

Chapter 7: Accelerating Independence Using the A*
Algorithm

The Independence algorithm integrates an adaptive, search-based router with a simulated annealing

placement algorithm. Using a router in the simulated annealing inner loop is clearly a computationally

expensive approach. In this chapter we discuss the A* algorithm, a technique that has been used to

speed up Pathfinder with a negligible degradation in quality [33,49]. We also describe an adaptive

technique that can be used to speed up Pathfinder (and consequently Independence) when routing

netlists on FPGAs that have different interconnect structures.

The A* algorithm speeds up routing by pruning the search space of Dijkstra’s algorithm. The search

space is pruned by preferentially expanding the search wavefront in the direction of the target node.

Thus, when the search is expanded around a given node, the routing algorithm expands the search

through the neighbor node that is nearest the target node. This form of directed search is accomplished

by augmenting the cost of a routing node with a heuristically calculated estimate of the cost to the target

node.

Consider Equation 7.1, in which gn is the cost of a shortest path from the source to node n, and hn is a

heuristically calculated estimate of the cost of a shortest path from n to the target node (hereafter, we

refer to this estimate as a ‘cost-to-target’ estimate). The value fn is the estimated cost of a shortest path

from the source to the target that contains the node n. The A* algorithm uses fn to determine the cost of

expanding the search through node n. Note that Dijkstra’s algorithm uses only gn to calculate the cost of

node n.

Equation 7.1: nnn hgf +=

To guarantee optimality, the cost-to-target estimate hn at a given node n must be less than or equal to the

actual cost of the shortest path to the target. Overestimating the cost to the target node may provide

even greater speedups, but then the search is not guaranteed to find an optimal path to the target.

48

7.1 The Heuristic Estimate
The heuristic cost-to-target estimator plays a crucial role in accelerating A* search. Two factors that

influence the efficacy of the cost-to-target estimator are:

• Accuracy: The accuracy of the estimator directly influences the quality of the solutions

produced by the A* algorithm. In the ideal case, a cost-to-target estimator will always return

the exact cost of a shortest path from a node n to the target node. An estimator that returns the

exact cost of the shortest path marches the A* search directly towards the target node, and no

redundant nodes are expanded during this search. Thus, in the ideal case, we can find a lowest

cost path to the target node in the shortest possible time.

• Cost: The cost of calculating the cost-to-target estimate may affect the speedups produced by

the A* algorithm. A cost-to-target calculation is done for every node involved in the A*

search, and thus cost-to-target estimates should be relatively simple to calculate. If the

computational effort required to calculate the estimates is high, then the A* search may slow

down. A cost-to-target estimator might deliberately mis-estimate costs to keep calculations

simple, despite the fact that exact estimates can indeed be obtained.

In island-style FPGAs, the cost-to-target estimate of an interconnect wire wn is the Pathfinder-based

cost of a shortest path from wn to the target sink terminal [6]. The estimate calculation requires a count

of the number of wires on the shortest path. The number of wires is calculated using the coordinates of

the logic units that are located at the extremities of wn, the length of the wire wn, and the coordinates of

the target sink terminal. The length of wire wn is measured in terms of the number of logic units

spanned by wn. In case the interconnect structure consists of wires that have different lengths, then the

shortest path is assumed to consist entirely of wires of length wn.

The calculation of cost-to-target estimates in island-style architectures relies on geometric information.

As discussed in Section 4.1, non island-style interconnect structures might not conform to a two-

dimensional geometric layout, and geometric information may not be useful in estimating the number of

wires between a wire wn and a target sink terminal. In the hierarchical tree-based interconnect structure

shown in Figure 7-1, the number of wires between wn and the target t is estimated using interconnect

level numbers. The wire wn’s level number is 2, t’s level number is 0, and the root switchbox’s level

number is 4. Thus, an estimate of the number of wires between wn and t is equal to the sum of the

number of wires from wn to the root switchbox (4 – 2 = 2) and the number of wires from the root

switchbox to t (4 – 0 = 4). This estimate is equal to six wires in all.

49

t

wn

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 7-1: The number of wires between wn and t is estimated using interconnect level numbers. In this
case, there are 4 – 2 wires from wn to the root switchbox plus 4 – 0 wires from the root switchbox to t.

The central calculation in computing cost-to-target estimates is determining the shortest path to the

target in the absence of routing congestion. On island-style interconnect structures, geometric

information is used to calculate the shortest path. Interconnect level information is used to calculate the

shortest path in tree-based interconnect structures. In general, a cost-to-target estimator uses features

that are specific to the interconnect structure. Our goal in this chapter is to develop a cost-to-target

estimation technique that adapts to the target FPGA’s interconnect structure. There are multiple reasons

for the potential usefulness of an adaptive cost-to-target estimation scheme:

• Usability Considerations: Our vision of a production version of Independence is a stand-alone

tool that will require minimal user intervention. An architecture-specific cost-to-target

estimator may necessitate source code modifications and possible changes to Independence’s

interface on a per-architecture basis. We feel that users should not be expected to provide any

architecture-specific enhancements to speed up Independence.

• Cost of Computing Estimates: Our approach to adaptive cost-to-target estimation requires

minimal computation during the routing process. For each interconnect wire, we provide a pre-

computed table of cost-to-target estimates for each sink terminal in the target device. Thus,

every time a wire is expanded during A* search, the cost of obtaining a cost-to-target estimate

is simply the cost of a table lookup. Note that the estimates produced by our technique are also

guaranteed to be exact or underestimates.

• Automatically Generated Architectures: During domain-specific reconfigurable architecture

generation [12,13], the nature of the reconfigurable device’s interconnect structure may be

significantly different across application domains. If an Independence and Pathfinder place-

and-route flow is used to map applications to such architectures, then the cost-to-target

estimator used by this flow must adapt to different interconnect structures. Expecting the user

50

to modify the flow to produce cost-to-target estimates goes against the underlying philosophy

of automatic architecture generation.

7.2 The K-Means Algorithm
The ideal approach to an adaptive estimator is to simply use Dijkstra’s algorithm to pre-compute and

tabulate the cost of a shortest path from each wire to every sink terminal in the interconnect structure.

This approach guarantees an exact estimate of the shortest path in the absence of routing congestion.

However, while the computational complexity of this approach is manageable, the space requirements

for routing-rich structures may explode. Assuming an island-style, 10-track, 100x100 FPGA that has

only single-length segments, the memory required to store the cost-to-target lookup table would be

measured in GigaBytes. Memory requirements of this size are probably impractical.

Figure 7-2: Calculating the cost-to-target estimates for a set of wires that share a table entry. The set of wires
is collectively shown as the dotted region, and the small squares represent sink terminals in the interconnect
structure. The cost-to-target estimate for a given sink terminal is the cost of a shortest path from the wire
that is closest to the sink terminal.

Sharing a table entry among multiple wires that have similar cost-to-target estimates can reduce the

memory requirement of the lookup table. For example, if a hundred wires share a table entry, the size of

the table can be reduced by a hundred times. The cost-to-target estimate for a given sink terminal is the

same for all wires that share the table entry, and can be calculated using a Dijkstra search that begins at

the wire closest to the target (Figure 7-2). Specifically, the entire set of wires that share a table entry

51

constitutes a “super” source node for the Dijkstra search. In this manner, we ensure that the shortest-

path estimate to a given sink terminal is the cost of the shortest path from the wire that is closest to the

sink terminal.

The important question now is how to identify wires that should share a table entry. Clearly, we would

like to identify clusters of wires that have similar cost-to-target estimates, so that we can collect them

together in a set that points to a single entry in the cost-to-target lookup table. Clustering an island-style

structure can be accomplished by associating each wire with its closest logic unit, and then clustering all

wires associated with the same logic unit together. Since the logic and interconnect structures of an

island-style FPGA are closely coupled, this approach may produce clusters of wires that have

reasonably similar cost-to-target estimates.

On hierarchical structures, the accuracy of an associate-with-closest-logic-unit approach may not be

quite as good. For example, consider the tree-like interconnect structure in Figure 7-3. The routing wire

that is topmost in the interconnect hierarchy is equally close to all logic units, while the wires in the

next level are equally close to half the logic units, and so on. Associating wires with individual logic

units in a strictly hierarchical interconnect structure may result in large cost-to-target underestimates.

In Figure 7-3, assume that the wires shown in black are associated with the black logic unit, and that the

cost-to-target estimates for the cluster wires have been calculated using the method illustrated in Figure

7-2. The wire that directly connects to the black logic unit will have a cost-to-target estimate of five for

the logic units in the northeast, southeast and southwest quadrants of the architecture. Note that the

actual cost is nine wires for the northeast quadrant, and ten for the southeast and southwest quadrants.

Estimates that are a factor of two below exact might slow down the router considerably. However,

every wire in the cluster shown in Figure 7-3 does not suffer from the same problem. The cluster wire

that is topmost in the interconnect hierarchy (black vertical line down the middle of Figure 7-3) will

have exact cost-to-target estimates for all logic units in the northeast, southeast and southwest

quadrants, and underestimates for logic units in the northwest quadrant.

To summarize, one would expect the associate-with-closest-logic-unit approach to work well for island-

style structures. However, due to the approach’s potential limitations on hierarchical structures, we feel

that a more sophisticated technique might be necessary to produce reasonably accurate cost-to-target

estimates across different interconnect styles.

52

Figure 7-3: An example of a tree-based, hierarchical interconnect structure. Assume that the wires shown in
black belong to the same cluster.

Our solution to the architecture adaptive clustering problem is to use the K-means algorithm [28]. K-

means clustering is an iterative heuristic that is used to divide a dataset into K non-overlapping clusters

based on a proximity metric. The proximity metric is used to calculate the similarity between data-

points, and is designed based on the properties of the dataset. The user specifies the value of K and the

nature of the proximity metric. In the beginning, the centroid8 of each cluster is initialized to a randomly

selected data-point. Next, the distance from each data point to the centroid of every cluster is calculated,

and the data-point is assigned to the cluster with the closest centroid. At the end of a clustering iteration,

when every data-point has been assigned to a cluster, the centroids of each cluster are recalculated and

cluster assignments are removed. This process is carried out in an iterative fashion until a terminating

condition is met. Pseudo code for the K-Means algorithm appears in Figure 7-4.

8 The centroid of a cluster is the statistical mean of the coordinates of the data-points that belong to the cluster.

53

// D is the set of data-points in n-dimensional space that have to be divided into K clusters.
// The co-ordinates of a data-point di ∈ D are contained in the vector di.vec.
// di.vec is an n-dimensional vector.

K-Means {

for i in 1…K {
randomly select a data-point di from the set D.
initialize the centroid of cluster clusi to di.vec.

}

while (terminating condition not met) {
for each di ∈ D {

remove di’s cluster assignment.
}

for each di ∈ D {

for j in 1…K {
diffij = vectorDifference (di.vec,clusj.centroid)

}
assign di to the cluster clusy such that diffiy is minimum.

}

for j in 1…K {
recalculate clusj.centroid using the data-points currently assigned to
clusj.

}
}

}

Figure 7-4: Psuedocode for the K-Means clustering algorithm. When the algorithm completes execution,
every data-point in the set D is assigned to a cluster.

There are several compelling reasons to use the K-means algorithm to adaptively cluster FPGA

architectures. First, the algorithm is relatively easy to implement. Second, the performance of the K-

means algorithm improves if the initial selection of K is roughly the same as the number of the natural

clusters in the dataset. Third, the performance of the algorithm may be further improved if the initial

cluster centers correspond to the centers of the natural clusters of the dataset. The regularity of FPGA

architectures can be exploited to determine the number of clusters, and the center of each cluster. For

example, a good starting point for cluster centers in an FPGA may be the logic units in the architecture,

and an equal number of randomly selected routing wires in the interconnect structure.

54

7.3 Applying the K-Means Algorithm to Produce Interconnect Clusters
In this section we briefly describe our choices for the algorithmic parameters that characterize the K-

Means algorithm.

Dataset (D): The dataset D simply consists of all the routing wires in the interconnect structure of the

target device.

Number of Clusters (K): We experimentally determined that a value of K greater than or equal to the

number of logic units in the target device is a reasonable choice. Section 7.4 describes the effect of K on

the quality of clustering solutions.

Initial Seed Selection: The initial seeds consist of K/2 randomly selected logic-block output wires and

K/2 randomly selected routing wires.

Coordinate Space and Proximity Metric: The most important consideration in applying the K-Means

algorithm to solve the interconnect clustering problem is the proximity metric. Specifically, we need to

determine a coordinate space that is representative of the A* cost-to-target estimate at each wire in the

dataset. In our implementation, the coordinates of a routing wire represent the cost of the shortest path

to a randomly chosen subset S of the sink terminals in the interconnect structure. The coordinates of

each routing wire are pre-calculated using Dijkstra’s algorithm and stored in a table.

If the number of sink terminals in S is n, then the coordinates of a routing wire di ∈ D are represented

by an n-dimensional vector di.vec. Each entry cij (j ∈ 1…n) in the vector di.vec is the cost of a shortest

path from the routing wire di to the sink terminal j. For a given wire di, the entire vector di.vec is

computed using a single pass of Dijkstra’s algorithm. The vector di.vec is used by the K-Means

algorithm to calculate the “distance” between the wire di and the centroid of each cluster. The distance

between di and a cluster centroid is defined as the vector difference between di.vec and the cluster

centroid.

Note that the size of S directly influences the memory requirements of our clustering implementation.

In the extreme case when S contains every sink terminal in the target device, the memory requirements

would match the prohibitively large requirements of a table that stores the cost of the shortest path from

each routing wire to every sink terminal. This would clearly defeat the purpose of using a clustering

55

algorithm to reduce the memory requirements of an A* estimate table. It is thus necessary to sub-

sample the number of sink terminals in the target device when setting up the set S.

Table 7-1: A comparison of the memory requirements of a clustering implementation that sub-samples the
sink terminals with a table that stores estimates for every sink terminal in the target device. The sub-sample
set S contains 6% of the sink terminals in the target device. Each entry in columns 3, 4 and 5 is in Giga Byte.

Size ChanWidth Full SubSample Estimates

10 10 0.0012 0.0001 0.0001
20 10 0.0151 0.0009 0.0007
30 10 0.0707 0.0043 0.0035
40 10 0.2152 0.0130 0.0106
50 10 0.5132 0.0310 0.0253
60 10 1.0474 0.0631 0.0518
70 10 1.9185 0.1155 0.0949
80 10 3.2449 0.1951 0.1607
90 10 5.1629 0.3103 0.2559
100 10 7.8268 0.4703 0.3882
110 10 11.4087 0.6854 0.5662
120 10 16.0986 0.9669 0.7994
130 10 22.1044 1.3275 1.0980
140 10 29.6517 1.7805 1.4735
150 10 38.9842 2.3406 1.9380
160 10 50.3636 3.0236 2.5045
170 10 64.0690 3.8462 3.1869
180 10 80.3979 4.8262 4.0001
190 10 99.6654 5.9825 4.9599
200 10 122.2044 7.3351 6.0828

Table 7-1 compares the memory requirements of a clustering-based implementation that sub-samples

the sink terminals with a table that stores the cost of a shortest path from each routing wire to every sink

terminal in the target device. The target architecture is assumed to be a square island-style array that has

only single-length wire segments. In our calculations, we assume that the sizes of a floating point

number, integer number, and a pointer are all four bytes. Column 1 lists the number of rows (and

columns) in the target array, and column 2 lists the channel width of the target array. Let the total

number of sink terminals in the target array be NT. Column 3 lists the memory requirements of a table

that stores the cost of a shortest path from each wire to every sink terminal in the target device (i.e. |S| =

NT), column 4 lists the size of a table that stores costs to only 6% of the sink terminals (|S| = 0.06*NT),

56

and column 5 lists the size of a table that holds cost-to-target estimates for the clusters produced by a K-

Means implementation where K = number of logic units in the target device. All memory requirements

are reported in Gigabyte. It is clear from Table 7-1 that the memory requirements of a table that stores

costs to every sink terminal in the target device quickly become impractical when compared to a sub-

sampling based K-Means clustering approach.

Terminating Condition: The K-Means algorithm is terminated when less than 1% of the dataset changed

clusters during the previous clustering iteration.

On completion of the clustering algorithm, the actual A* estimates for a cluster are calculated using

Dijkstra’s algorithm. To guarantee exact or under-estimates, the entire set of cluster members

constitutes a “super” source node for the Dijkstra search. In this manner, we ensure that the shortest-

path estimate to a given sink terminal is the cost of the shortest path from the cluster member that is

closest to the sink terminal.

7.4 Results
We conduct four experiments to test the validity of using the K-Means algorithm to cluster the

interconnect structure of an FPGA. The first experiment studies the effect of sub-sampling the sink

terminals in the target device on the quality of clustering solutions. The second experiment studies the

effect of the number of clusters (K) on quality, and the third experiment compares the quality of

clustering-based A* estimates with heuristically calculated estimates. The fourth experiment quantifies

the difference between the cost-to-target estimates produced by our clustering technique and actual

shortest-path costs. To evaluate the adaptability of our techniques, we conduct the experiments on an

island-style interconnect architecture and HSRA. Since the truest measure of the quality of an A*

estimate is routing runtime, our quality metric is defined to be the runtime per routing iteration when

routing a placement on the target device. The placements for our experiments on island-style

architectures are obtained using VPR, and placements for experiments on HSRA are produced using

Independence.

In Experiment 1 and Experiment 2, we use a subset of the benchmark netlists in Table 6-1 (island-style)

and Table 6-3 (HSRA). In Experiment 3 and Experiment 4, we use an expanded set of benchmark

netlists for both island-style structures and HSRA. The parameters of the target architecture used in

island-style experiments are identical to the architecture used in Section 6.1.1, and the HSRA

parameters are identical to those used in Section 6.2.

57

Before describing the results of our experiments, we briefly discuss the methods we used to calculate

heuristic estimates on the island-style architecture and HSRA:

Island-Style: On the island-style architecture, the cost-to-target estimate of an interconnect wire wn is

the Pathfinder-based cost of a shortest path from wn to the target sink terminal [6]. The estimate

calculation requires a count of the number of wires on the shortest path. The number of wires is

calculated using the coordinates of the logic units that are located at the extremities of wn, the length of

the wire wn, and the coordinates of the target sink terminal. The length of wire wn is measured in terms

of the number of logic units spanned by wn. In case the interconnect structure consists of wires that have

different lengths, then the shortest path is assumed to consist entirely of wires of length wn.

HSRA: On HSRA, the number of wires on a shortest path between wn and the target t is estimated using

interconnect level numbers. In Figure 7-1, the wire wn’s level number is 2, t’s level number is 0, and the

root switchbox’s level number is 4. Thus, an estimate of the number of wires between wn and t is equal

to the sum of the number of wires from wn to the root switchbox (4 – 2 = 2) and the number of wires

from the root switchbox to t (4 – 0 = 4). This estimate is equal to six wires in all.

7.4.1 Experiment 1
This experiment studies the effect of sub-sampling the number of sink terminals in the target device.

The value of K in this experiment is equal to the number of logic units in the target device. Figure 7-5

shows the variation in quality of clustering solutions. The x-axis represents the fraction of sink nodes

that are used to represent the coordinates of each wire during K-Means clustering. The subset of sink

nodes used in the experiment is randomly generated. The y-axis represents routing runtime measured in

seconds per routing iteration. The blue curves show the variation in routing runtimes when using A*

estimates produced by the clustering algorithm. The flat pink line shows the routing runtime when using

architecture-specific heuristic A* estimates.

58

Island-Style

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3

Sub-Sample (Fraction of sink nodes in target device)

R
un

tim
e

(s
 /

ite
ra

tio
n)

Clustering
Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

Sub-sample (Fraction of sink nodes in target device)

R
un

tim
e

(s
 /

ite
ra

tio
n)

Clustering
Heuristic

Figure 7-5: The effect of sub-sampling the number of sink nodes on routing runtime.

Figure 7-5 shows that using as little as 5% of the sink terminals during clustering may be sufficient to

produce estimates that are comparable to heuristic estimates. This is not a surprising result. Due to the

regularity of an FPGA’s interconnect structure, a small subset of sink terminals may be sufficient in

resolving the interconnect wires into reasonably formed clusters.

59

Island-Style

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18

Sub-sample (sink nodes in target device)

R
un

tim
e

(s
 /

ite
ra

tio
n)

Clustering
Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

SubSample (sink nodes in target device)

R
un

tim
e

(s
 /

ite
ra

tio
n)

Clustering
Heuristic

Figure 7-6: Using a small number of sink nodes may produce clustering solutions of acceptable quality.

Note that 5% of the sink terminals represents a variable number of sink terminals across the set of

benchmarks. Depending on the size of the netlist, 5% of the sink terminals could be anywhere between

two and fifty sink terminals. Figure 7-6 shows the results of a second study that evaluates the quality of

clustering solutions when using a small, fixed number of sink terminals. Figure 7-6 shows that using a

small number (say 16) of randomly selected sink nodes may be enough to produce clustering solutions

that are within approximately 15% of heuristic estimates.

60

At first glance, the charts shown in Figure 7-6 might seem surprising. Using only sixteen sink terminals

to resolve an interconnect structure into reasonably well-formed clusters might appear too good to be

true. However, we think the reason for this behavior is the regularity of island-style architectures and

HSRA. In Figure 7-7, if we were to use only one sink terminal in an island-style device, then we would

get roughly circular clusters centered at the sink logic block. Increasing the number of sinks to two

would cluster the routing wires at the intersection of the two circles together. This would result in

“spotty” disconnected clusters. On increasing the number of sink terminals to three, it might be possible

to separate routing wires into tighter clusters. This behavior has parallels with the triangulation method

that is used to localize the position of a point in multi-dimensional space.

Figure 7-7: Cluster resolution on an island-style device as the number of sink terminals is increased from
one to three.

In a similar fashion, merely increasing the number of sink terminals from one to two on HSRA

improves the tightness of the clusters noticeably (Figure 7-8). In both top and bottom figures, the gray

blobs encompass a single cluster. In the top figure, the number represents the coordinates of the

corresponding interconnect wire. Recall that the coordinates of an interconnect wire correspond to the

cost of a shortest path to the sink terminals in the set S. In the bottom figure, each pair of numbers

represents the coordinates of the corresponding interconnect wire. Note the improvement in cluster

tightness as the number of sink terminals is increased from one to two.

61

0

1

1

2

2

3
3

3

3

44

4

5

5

5 5
5

5

6 6

7 7 7 7 7 7 7 7

6 6

4,3

5,2

6,1

7,0 7,1 7,3 7,3 7,5 7,5 7,5 7,5 5,7 5,7 5,7 5,7 3,7 3,7 1,7 0,7

6,2 6,4 6,4 4,6 4,6 2,6 1,6

5,3 2,5 3,5

3,4

Figure 7-8: Cluster resolution on HSRA when using only one (top) and two (bottom) sink terminals in the
sub-sample set S. The logic units shown in black represent the sink terminals in the sub-sample set S.

7.4.2 Experiment 2
Experiment 2 studies the effect of the number of clusters (K) on the quality of clustering solutions. We

use a sub-sample value of 6% for island-style architectures, and 14% for HSRA. Figure 7-9 shows the

effect of K on routing runtime. The x-axis shows the value of K as a fraction of the number of logic

units in the target device, and the y-axis shows routing runtime in seconds per routing iteration. The

charts in Figure 7-9 show that a value of K equal to or greater than the number of logic units in the

target device produces clustering solutions of qualities similar (less than 10%) to heuristic estimates.

62

Island-Style

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

K (Fraction of logic blocks in target device)

R
un

tim
e

(s
 /

ite
ra

tio
n)

Clustering
Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

K (Fraction of logic blocks in target device)

Ru
nt

im
e

(s
 /

ite
ra

tio
n)

Clustering
Heuristic

Figure 7-9: The effect of K on routing runtime.

7.4.3 Experiment 3
Our final experiment is a quantitative comparison of the quality of the A* estimates produced by our

clustering technique vs. heuristically calculated estimates. We use a sink sub-sample value of 6%, and

the value of K is equal to the number of logic units in the architecture. Table 7-2 shows the results we

obtained on an island-style interconnect structure. Column 1 lists the netlist, column 2 lists the size of

the smallest square array needed to just fit the netlist, column 3 lists the sum of the logic blocks and IO

blocks in the netlist, and column 4 lists the number of nets in the netlist. Columns 5, 6, and 7 list routing

runtimes for clustering-based A* estimates, heuristic estimates, and undirected (no A* estimates)

search. Column 8 lists routing runtimes obtained clustering the interconnect wires directly with the

63

logic units in the target device (Section 7.2). In this “low-effort” clustering step, we run only the first

iteration of K-Means clustering with K equal to the number of logic units in the target device. Further,

the initial seeds are chosen to be logic unit outputs. Running K-Means with these parameters has the

effect of associating each interconnect wire with its closest logic unit. The entries in columns 5, 6, 7 and

8 are normalized to the routing runtimes produced by heuristic estimates.

Table 7-2: A comparison of routing runtimes on an island-style architecture. For each netlist, the entries in
columns 5 (clustering-based estimates), 7 (undirected search) and 8 (cluster with logic blocks) are

normalized to the entry in column 6 (heuristic estimates).

Netlist Size NBlocks Nets Clus Heur no A* assocLB
term1 6x6 74 144 1.44 1.00 4.22 0.89
s1423 6x6 51 165 1.57 1.00 3.86 1.57

i9 7x7 195 214 1.30 1.00 3.40 1.30
dalu 8x8 154 312 0.93 1.00 4.04 0.93
vda 9x9 122 337 1.08 1.00 4.78 1.20
x1 10x10 181 352 0.94 1.00 4.66 1.13
rot 8x8 299 407 1.11 1.00 3.32 0.95
pair 9x9 380 512 0.94 1.00 4.83 0.89

apex1 11x11 192 566 0.96 1.00 6.03 0.97
dsip 14x14 598 762 1.06 1.00 8.21 1.13
ex5p 12x12 210 767 1.12 1.00 7.30 1.03
s298 16x16 253 767 1.37 1.00 10.38 1.58
tseng 12x12 307 780 1.07 1.00 6.30 1.05
alu4 14x14 215 792 1.14 1.00 7.48 1.09

misex3 14x14 207 834 1.08 1.00 9.80 1.16
apex4 13x13 193 869 1.02 1.00 5.04 1.10
diffeq 14x14 292 1033 1.13 1.00 5.29 1.19
bigkey 15x15 640 1040 1.18 1.00 8.95 1.38

seq 15x15 297 1055 1.10 1.00 7.22 1.19
des 15x15 701 1178 1.17 1.00 4.35 1.20

apex2 16x16 281 1249 1.09 1.00 8.19 1.08
frisc 22x22 582 2022 1.02 1.00 8.56 1.08

elliptic 22x22 699 2247 1.00 1.00 10.73 1.23
ex1010 25x25 621 3129 1.15 1.00 9.66 0.92

s38584.1 29x29 1148 4174 1.20 1.00 17.07 1.07
clma 33x33 1199 5269 1.02 1.00 15.25 1.03

1.11 1.00 6.59 1.12

Across the set of benchmarks, our clustering-based technique is approximately 11% slower than the

runtimes achieved by heuristically estimating A* costs. Both heuristic and clustering-based estimates

are approximately 6.6X faster than an undirected search-based router. Finally, the geometric average of

the estimates produced by K-Means clustering (column 5) is almost identical to the estimates produced

by a “low-effort” clustering step (column 8). The near identical averages show that the associate-with-

64

closest-logic-unit approach presented in Section 7.2 works as well as a more sophisticated clustering

approach on an island-style architecture.

Table 7-3 shows the results we obtained on HSRA. Column 1 lists the netlist, column 2 lists the number

of logic units in the target device, column 3 lists the number of 4-LUTs in the netlist, and column 4 lists

the number of nets in the netlist. Columns 5, 6, 7 and 8 list routing runtimes for clustering-based A*

estimates, heuristic estimates, undirected (no A* estimates) search, and A* estimates based on

clustering the interconnect wires directly with the logic units in the target device (Section 7.2). The

entries in columns 5, 6, 7 and 8 are normalized to the routing runtimes produced by heuristic estimates.

Across the set of benchmarks, our clustering-based technique is approximately 7% faster than the

runtimes achieved by heuristically estimating A* costs. Both heuristic and clustering-based estimates

are approximately ten times faster than an undirected search-based router. The estimates produced by a

low-effort clustering step (column 8) are approximately 16% slower than the estimates produced by K-

Means clustering. This is consistent with our intuition (Figure 7-3) that associating interconnect wires

with logic units in a hierarchical structure will probably produce cost-to-target underestimates.

Table 7-3: A comparison of routing runtimes on HSRA. For each netlist, the entries in columns 5 (clustering-
based estimates), 7 (undirected search), and 8 (cluster with logic blocks) are normalized to the entry in

column 6 (heuristic estimates).

Netlist Size NLUTs Nets Clus Heur no A* assocLB
mm9b 256 120 133 1.16 1.00 3.87 1.48

cse 256 134 141 1.03 1.00 4.39 1.22
s1423 256 162 180 0.92 1.00 5.23 1.00
9sym 512 177 186 0.81 1.00 15.42 1.20
ttt2 256 198 222 1.06 1.00 13.58 1.25

keyb 256 209 216 1.16 1.00 4.25 1.16
clip 512 243 252 1.02 1.00 21.38 1.14

term1 512 246 280 0.83 1.00 19.56 1.11
apex6 1024 258 393 1.24 1.00 6.53 1.26
vg2 512 277 302 0.96 1.00 16.81 1.16
frg1 1024 282 310 0.81 1.00 26.73 0.85
sbc 1024 332 373 0.87 1.00 12.41 1.13
styr 1024 341 350 0.83 1.00 13.60 1.06
i9 512 347 435 1.01 1.00 12.12 1.32

C3540 1024 382 432 0.79 1.00 5.89 0.79
sand 1024 406 417 0.80 1.00 10.67 0.88

x3 1024 441 576 0.80 1.00 3.60 0.88
planet 2048 410 417 0.81 1.00 13.67 1.14
rd84 2048 405 413 1.09 1.00 21.04 1.08
dalu 2048 502 577 0.82 1.00 16.62 0.84

0.93 1.00 10.39 1.08

65

7.4.4 Experiment 4
Our final experiment quantifies the difference between the cost-to-target estimates produced by our

clustering technique and actual shortest-path costs. We use a sink sub-sample value of 6%, and the

value of K is equal to the number of logic units in the architecture.

Table 7-4: The difference between cost-to-target estimates and actual shortest-path costs on the island-style
architecture

Netlist Size
Fraction Sinks

Underestimated
Avg Cost-to-Target

Underestimate
term1 6x6 0.39 0.26
s1423 6x6 0.41 0.26

i9 7x7 0.41 0.24
dalu 8x8 0.37 0.24
vda 9x9 0.31 0.23
x1 10x10 0.35 0.22
rot 8x8 0.43 0.24
pair 9x9 0.35 0.23

apex1 11x11 0.36 0.22
dsip 14x14 0.33 0.19
ex5p 12x12 0.32 0.21
s298 16x16 0.32 0.19
tseng 12x12 0.35 0.2
alu4 14x14 0.32 0.19

misex3 14x14 0.35 0.19
apex4 13x13 0.28 0.2
diffeq 14x14 0.32 0.19
bigkey 15x15 0.34 0.19

seq 15x15 0.34 0.19
des 15x15 0.33 0.19

apex2 16x16 0.3 0.18
frisc 22x22 0.33 0.16

elliptic 22x22 0.33 0.16
ex1010 25x25 0.3 0.15

s38584.1 29x29 0.3 0.14
clma 33x33 0.29 0.13

Geomean 0.34 0.20

Table 7-4 shows the results we obtained on the island-style architecture. Column 1 lists the benchmark

netlists and column 2 lists the size of the target device. Column 3 lists the fraction of the total number of

sinks in the target device that are underestimated. For example, the 0.39 entry for the netlist term1

means that – on average – the cost-to-target estimates at a routing wire in the target device are less than

the cost of a shortest path from the wire to 39% of the sinks. Column 4 quantifies the actual difference

in costs between the cost-to-target estimates and actual shortest paths. The 0.26 entry for term1 means

66

that the difference between the cost-to-target estimates at a routing wire and actual shortest path costs is

26% when averaged across all underestimated sinks. Overall, our clustering technique underestimates

34% of the sinks in a target device, and the difference between estimated costs and actual shortest path

costs is 20%. Similarly, on HSRA (Table 7-5) our clustering technique underestimates 9% of the sinks

in a target device, and the difference between estimated costs and actual shortest paths is 23%.

Table 7-5: The difference between cost-to-target estimates and actual shortest-path costs on HSRA.

Netlist Size
Fraction Sinks

Underestimated
Avg Cost-to-Target

Underestimate
mm9b 256 0.29 0.2

cse 256 0.25 0.18
s1423 256 0.25 0.19
9sym 512 0.1 0.27
ttt2 256 0.23 0.18

keyb 256 0.24 0.18
clip 512 0.08 0.28

term1 512 0.14 0.21
apex6 1024 0.05 0.29
vg2 512 0.07 0.28
frg1 1024 0.06 0.24
sbc 1024 0.07 0.23
styr 1024 0.05 0.27
i9 512 0.13 0.18

C3540 1024 0.05 0.27
sand 1024 0.05 0.22

x3 1024 0.06 0.23
planet 2048 0.04 0.25
rd84 2048 0.03 0.27
dalu 2048 0.03 0.27

Geomean 0.09 0.23

7.5 Summary
The results of our experiments show that K-Means clustering produces A* estimates that are

comparable to architecture-specific heuristic estimates. A sink sub-sample value of 6%, coupled with a

value of K that is equal to the number of logic units in the target device, produces estimates that are 7%

better than heuristically calculated estimates for HSRA, and within 11% of heuristic estimates for

island-style interconnect structures. Experiment 1 also shows that a small number of sink terminals

might be sufficient to produce estimates that are comparable to heuristic estimates. Finally, the quality

of the clustering solutions produced by a low-effort clustering step is surprisingly good when compared

to a more sophisticated K-Means clustering approach. All in all, we feel that either the low-effort or

67

more sophisticated clustering approach presented in this section may be a compelling candidate for

producing A* estimates of good quality across different interconnect styles.

68

Chapter 8: Pipelined FPGA Architecture

Current commercial offerings from FPGA vendors like Xilinx [59,60] and Altera [2,3] provide a wide

range of capabilities. Recall from Chapter 2 that Altera’s StratixII device has dedicated arithmetic

circuitry, embedded DSP blocks that can be configured to implement high-speed multipliers and filters,

and distributed RAM blocks. These custom-designed features can be coupled with the LUT-based logic

structure and rich routing fabric to implement entire systems at a time. However, improvements in

FPGA clock cycle times have consistently lagged behind advances in device functionality and

capacities. Even the simplest circuits cannot be clocked at more than a few hundred megahertz.

In the world of microprocessors and ASICs, pipelining is widely used to reduce the clock-cycle time of

a netlist. Pipelining is the process of inserting registers in a netlist so that the maximum combinational

path delay between successive register stages is less than that of the original unpipelined netlist. If the

computation implemented by a netlist can be divided into ‘N’ successive stages, then registers are

inserted at stage boundaries. In this manner, the clock cycle time of a netlist may potentially be reduced

by a factor of N. However, the latency (or total execution time) of the computation increases due to

imbalanced path delays and register setup times.

Sequential Retiming [27] is a powerful heuristic that can be used to pipeline a circuit while preserving

its functionality. The most basic retiming operation involves moving registers from the inputs of a gate

to its output(s), or vice versa. Consider the example shown in Figure 8-1. Assuming a unit gate-delay

model, the circuit on top has a critical path delay of three units. Moving the registers across the leftmost

AND gate reduces the delay to two units. The delay is further reduced to one unit when the registers at

the output of the rightmost AND gate are moved to its inputs.

69

A

B
C D

Y

A

B
C D

Y

A

B
C D

Y

A

B
C D

Y

Figure 8-1: The circuit on top has a critical path delay of 3 units. A retiming operation (red arrows) moves
registers from the inputs of the leftmost AND gate to its output. The critical path delay is reduced to 2 units.
A second operation moves the register from the output of the rightmost AND gate to its inputs, further
reducing the critical path to 1 unit. Note that the latency of the circuit remains unchanged.

An important limitation of classical retiming is that the number of registers around a cycle cannot be

changed during the retiming process. While it is possible to move the registers around within the cycle,

no new registers can be included. In [36], the authors proved that the minimum achievable clock period

for a netlist that includes such cycles is at least the maximum average delay of a cycle. The average

delay is defined as the total combinational path delay of the cycle divided by the number of registers on

the cycle.

70

An extension of classical retiming called C-slow retiming is used to increase the number of registers

around a cycle. In C-slow retiming, ‘C’ registers replace each register in the netlist, and the netlist is

then retimed. Since there are C times as many registers available on a cycle, the minimum achievable

clock period may be significantly reduced. However, C-slow retiming alters the functionality of a

circuit, with a new output available only every C clock cycles. Consequently, C-slow retiming offers

real benefits only when it is possible to multiplex the data from ‘C’ independent data sets at the rate of a

new input datum every clock cycle.

8.1 Pipelined FPGA Architectures
Different research groups have tried to improve clock cycle times by proposing pipelined FPGA

architectures. The main distinguishing feature of a pipelined FPGA is the possible location of registers

in the architecture. To support pipelining and retiming, pipelined FPGAs provide pre-fabricated

registers in both the logic and interconnect structures. Applications mapped to pipelined FPGAs are

often retimed to take advantage of a relatively large number of registers in the logic and interconnect

structures.

In this section, we briefly survey pipelined FPGA architectures and the heuristics used to allocate

pipelining registers during the place-and-route phase. Our goal is to focus on the architectural and

algorithmic support provided by FPGA architects in order to support pipelined and retimed application

netlists.

8.1.1 Coarse-grained Architectures
RaPiD [15] is one example of a coarse-grained pipelined architecture. The RaPiD architecture is

targeted to high-throughput, compute-intensive applications like those found in DSP. Since such

applications are generally pipelined, the RaPiD datapath and interconnect structures include an

abundance of registers. The 1-Dimensional (1-D) RaPiD datapath (Figure 8-2) consists of coarse-

grained logic units such as ALUs, multipliers, small SRAM blocks, and general purpose registers

(hereafter abbreviated GPRs). Each logic unit is 16 bits wide. To support pipelining in the logic

structure, a register bank is provided at each output of a logic unit. The output register bank can be used

to acquire between 0 – 3 registers.

The interconnect structure consists of 1-D routing tracks that are also 16 bits wide. There are two types

of routing tracks: short tracks and long tracks. Short tracks are used to achieve local connectivity

between logic units, whereas long tracks traverse longer distances along the datapath. In Figure 8-2, the

71

uppermost five tracks are short tracks, while the remaining tracks are long tracks. A separate routing

multiplexer is used to select the track that drives each input of a logic unit. Each output of a logic unit

can be configured to drive multiple tracks by means of a routing demultiplexer.

G
PR

G
PR

R
A

M

R
A

M

M
U

L
T

A
L

U

G
PR

A
L

U

G
PR

G
PR

R
A

M

A
L

U

G
PR

Figure 8-2: An example of a RaPiD architecture cell. Several RaPiD cells can be tiled together to create a
representative architecture.

The long tracks in the RaPiD interconnect structure are segmented by means of bus connectors (shown

as empty boxes in Figure 8-2 and abbreviated BCs). BCs serve two roles in the RaPiD interconnect

structure. First, a BC serves as a buffered, bidirectional switch that facilitates the connection between

two long-track segments. Second, a BC serves the role of an interconnect register site. RaPiD provides

the option of picking up between 0 – 3 registers at each BC. The total number of BCs determines the

number of registers that can be acquired in the interconnect structure.

In the next chapter, we describe heuristics that can be used to efficiently allocate pipelining registers

when mapping applications to a RaPiD array.

8.1.2 Fixed-frequency FPGA Architectures
HSRA [52] and SFRA [56] are two examples of fixed-frequency architectures that guarantee the

execution of an application at a fixed clock frequency. HSRA has a strictly hierarchical, tree-like

routing structure (Figure 8-3), while SFRA (Figure 8-4) has a capacity depopulated island style routing

structure. Applications mapped to HSRA and SFRA are aggressively C-slowed to reduce clock cycle

times. An important consequence of C-slowing is that the register count in a netlist increases by a factor

of C. Since an FPGA has limited resources, finding pipelining registers in the interconnect and/or logic

structure without adversely affecting the routability and delay of a netlist is a difficult problem. Both

72

HSRA and SFRA circumvent this problem by providing deep retiming register-banks at the inputs of

logic units, as well as registered switch-points.

Since fixed-frequency FPGAs provide register-rich logic and routing structures, there is no need to

efficiently locate pipelining registers during placement and routing. Consequently, the place & route

flows developed for SFRA and HSRA are unaware of pipelining registers. However, the area overhead

incurred by these architectures due to their heavily pipelined structure is high. HSRA incurs

approximately a 2X area overhead and a 5X latency overhead, and SFRA takes a 4X area hit. While

these overheads might be justifiable for certain classes of applications (those that are amenable to C-

slowing and/or heavy pipelining), they might be prohibitive for conventional, general-purpose FPGAs.

Figure 8-3: [52] The HSRA architecture. Each logic unit consists of a single 4-LUT. There is a retiming
register chain provided at the inputs of the logic unit (top left), and a single register at the output of the logic
unit. Registers are also provided in each switch in the interconnect structure (top right).

73

Figure 8-4: [56] The SFRA architecture. The interconnect structure (top) consists of capacity-depopulated
corner turn switchboxes. Bidirectional pipelining registers are provided in the corner-turn switchboxes.
Each logic unit (called an LE) consists of two slices. The structure of a slice (bottom) is similar to the slice of
a Virtex [60] device. Note the retiming banks at the inputs of the slice.

74

8.1.3 General-purpose FPGA Architectures
A number of researchers have attempted to integrate pipelining with place and route flows for general-

purpose FPGAs. An early effort (circa 1995) that made use of fine-grain pipelining to achieve a pre-

determined target clock frequency is presented in [54]. In this work, the author achieved an operating

frequency of 250 MHz by carefully hand mapping a DSP block to a Xilinx XC3000 series device. The

hand-mapping technique was centered on the concept of an “event horizon”. Given a target clock

frequency, an event horizon defined the maximum distance a signal could travel in the interconnect

structure in a single clock cycle. Von Herzen used a hand-tuned constructive placement approach to

build circuits from the middle of the circuit out.

Since Von Herzen’s early work, many researchers have attempted to integrate retiming with automatic

place-and-route toolflows. The techniques presented in [39] use post place-and-route delay information

to accurately retime netlists mapped to the Virtex family of FPGAs. To preserve the accuracy of delay

information, the authors do not attempt to re-place-and-route the netlist after the completion of the

retiming operation. Since the logic units (called ‘slices’) in Virtex devices have a single output register,

the edges in the retiming graph are constrained to allow no more than a single register. This constraint

might be overly restrictive, especially for applications that might benefit from a more aggressive

retiming approach like C-slowing.

In [57], a post-placement C-slow retiming technique for the Virtex family of FPGAs is presented. Since

C-slowing increases the register count of a netlist by a factor of C, a post-retiming heuristic is used to

place registers in unused logic units. A search for unused logic units is begun at the center of the

bounding box of a net. The search continues to spiral outward until an unused register location is found.

When an unused register location is found, it is allocated. This process is repeated until all retiming

registers have been placed. A significant shortcoming of this heuristic is its dependence on the pre-

retiming placement of a netlist. If the placement of the netlist is dense, then the heuristic may not be

able to find unused register locations within the net’s bounding box. Instead, unused locations that are

far removed from the net’s terminals may be allocated. The resultant routes between the net’s terminals

and the newly allocated registers might become critical and thus destroy the benefits of C-slowing.

An alternative approach to locate post-placement retiming registers is presented in [47]. The newly

created registers are initially placed into preferred logic units even if the logic units are occupied. A

greedy iterative improvement technique then tries to resolve illegal overlaps by moving non-critical

logic blocks to make space for registers. The cost of a placement is determined by the cumulative

75

illegality of the placement, overall timing cost, and wirelength cost. The timing cost is used to prevent

moves that would increase critical path delay, while the wirelength cost is used to estimate the

routability of a placement.

The retiming-aware techniques for general-purpose FPGAs presented so far use heuristics to place

retiming registers in the logic units of the FPGA. An alternative to placing registers in the logic

structure of a general-purpose FPGA is to allocate the registers in the routing structure. In [46], the

authors propose a routing algorithm that attempts to move long (and hence critical) routes onto tracks

that have registered routing switches. The algorithm exploits the planarity of the target architecture to

permute the routes on a registered / unregistered track with those on a compatible unregistered /

registered track. An architecturally constrained retiming algorithm is coupled with the routing step to

identify tracks that are used by critical routes. All routes on a given critical track are then permuted with

a compatible registered track, so that critical routes can go through registered routing switches. After

the completion of retiming-aware routing, a final retiming step is performed to achieve a target clock

period.

There are two important shortcomings of the retiming-aware routing algorithm presented in [46]. First,

the process of permuting routes on to registered tracks may be overly restrictive, since all routes on a

registered track must go through registered routing switches. While long routes may benefit from an

assignment to a registered routing track, other less-critical routes on the track will use up registered

switches unnecessarily. Second, the routing algorithm relies on planar FPGA architectures to enable

track permutation. Consequently, the algorithm cannot be used to route netlists on non-planar FPGA

architectures that have registered routing switches.

In summary, it is clear from our discussion on fixed-frequency architectures that the area overhead

incurred in eliminating the problem of locating pipelining registers is high. At the same time, the

heuristic techniques used to allocate pipelining registers in general purpose pipelined FPGAs are

architecture-specific solutions that may not be applicable to a range of architecturally diverse pipelined

FPGAs.

The next chapter describes the development of a pipelining-aware router (called PipeRoute) for the

RaPiD architecture. When developing the PipeRoute algorithm, we tried to minimize reliance on

RaPiD-specific features by using architecture independent abstractions and heuristics. Specifically, we

represented RaPiD’s interconnect structure as a routing graph, which allowed us to leverage

76

Pathfinder’s congestion resolution mechanism. Furthermore, since PipeRoute’s heuristics operate on a

routing graph, the algorithm could potentially be used to route netlists on other pipelined FPGA

architectures.

77

Chapter 9: PipeRoute – A Pipelining-Aware Router for
FPGAs

The traditional FPGA routing problem is to determine an assignment of signals to limited routing

resources while trying to achieve the best possible delay characteristics. In the case of pipelined netlists,

the routing problem is different from the conventional FPGA routing problem. This is because a

significant fraction of the signals in a netlist are deeply pipelined, and merely building a Minimum

Spanning Tree (MST) for a pipelined signal is not enough. For example, consider the pipelined signal

sig in Fig. 1 that has a source S and sinks K1, K2 and K3. The signal is pipelined in such a way that

sink K1 must be delayed 3 clock cycles relative to S, sink K2 must be 4 clock cycles away, and sink K3

must be 5 clock cycles away. A route for sig is valid only if it contains enough pipelining resources to

satisfy the clock cycle constraints at every sink. Due to the fact that there are a fixed number of sites in

the interconnect where a signal can go through a register, it can be easily seen that a route found for sig

by a conventional, pipelining-unaware FPGA router may not go through sufficient registers to satisfy

the clock cycle constraint at every sink. Thus, the routing problem for pipelined signals is different from

that for unpipelined signals.

sig
S

K1

K2

K3

Figure 9-1: A multi-terminal pipelined signal. The register separation between S and the sinks K1, K2, K3
must be three, four and five respectively.

For a two-terminal pipelined signal, the routing problem is stated as:

Two-terminal ND Problem: Let G=(V,E) be an undirected graph, with the cost of each node v in the

graph being wv >= 1. The graph consists of two types of nodes: D-nodes and R-nodes. Let S, K∈V be

two R-nodes. Find a path PG(S,K) that connects nodes S and K, and contains at least N (N ≥ 1) distinct

78

D-nodes, such that w(PG(S,K)) is minimum, where

∑
∈

=
K)(S,P v

vG

G

w K))(S,w(P

Further, impose the restriction that the path cannot use the same edge to both enter and exit any D-node.

We call a route that contains at least ‘N’ distinct D-nodes an ‘ND’ route. R-nodes represent interconnect

wire-segments and the IO pins of logic units in a pipelined FPGA architecture, while D-nodes represent

registered switch-points. A registered switch-point (from this point on, we will use the terms ‘registered

switch-points’ and ‘registers’ interchangeably) can be used to pick up 1 clock cycle delay, or no delay

at all. Every node is assigned a cost, and an edge between two nodes represents a physical connection

between them in the architecture. The cost of a node is a function of congestion, and is identical to the

cost function developed for Pathfinder’s NC algorithm. Under this framework, the routing problem for

a simpler two-terminal signal is to find the lowest cost route between source and sink that goes through

at least N (N ≥ 1) distinct D-nodes (N is the number of clock cycles that separates the source from the

sink). Note that in this version a lowest cost route can be self-intersecting i.e. R-nodes can be shared in

the lowest cost route. In [42], we show that the two terminal ND problem is NP-Complete via a

reduction from the Traveling Salesman Problem with Triangle Inequality.

9.1 One-Delay (1D) Router
Although the general two terminal ND problem is NP-Complete, we now show that a lowest cost route

between a source and sink that goes through at least one D-node can be found in polynomial time. On a

weighted undirected graph, Dijkstra’s algorithm is widely used to find the lowest cost route between a

source and sink node. The remainder of this section evaluates several modifications of Dijkstra’s

algorithm that can be used to find a lowest cost 1D route. Our first modification is Redundant-Phased-

Dijkstra. In this algorithm, a phase 0 wavefront is launched at the source. When the phase 0 exploration

hits a D-node, it is locally terminated there (i.e. the phase 0 exploration is not allowed to continue

through the D-node, although the phase 0 exploration can continue through other R-nodes and runs

simultaneously with the phase 1 search), and an independent phase 1 wavefront is begun instead. When

commencing a phase 1 wavefront at a D-node, we impose a restriction that disallows the phase 1

wavefront from exiting the D-node along the same edge that was used to explore it at phase 0. This is

based on the assumption that it is architecturally infeasible for the D-node that originates the phase 1

wavefront to explore the very node that is used to discover it at phase 0. When a phase 1 wavefront

explores a D-node, the D-node is treated like an R-node, and the phase 1 wavefront propagates through

the D-node.

79

If the number of D-nodes that can be explored at phase 0 from the source is ‘F’, up to F independent

phase 1 wavefronts can co-exist during Redundant-Phased-Dijkstra. The search space of the phase 1

wavefronts can overlap considerably due to the fact that each R-node in the graph can be potentially

explored by up to F independent phase 1 wavefronts. Consequently, the worst-case run-time of

Redundant-Phased-Dijkstra is F+1 times that of the conventional Dijkstra’s algorithm. Since F could

potentially equal the total number of interconnect registers in a pipelined FPGA, the worst-case run-

time of Redundant-Phased-Dijkstra may get prohibitive.

An alternative to Redundant-Phased-Dijkstra that can be used to find a lowest cost 1D route is

Combined-Phased-Dijkstra. This algorithm attempts to reduce run-time by combining the search space

of the phase 1 wavefronts that originate at D-nodes. The only difference between Redundant-Phased-

Dijkstra and Combined-Phased-Dijkstra is that the latter algorithm allows each R-node to be visited

only once by a phase 1 wavefront. As a consequence, the run-time of Combined-Phased-Dijkstra is

only double that of Dijkstra’s algorithm. In both Redundant-Phased-Dijkstra and Combined-Phased-

Dijkstra, the phase 1 search begins at a cost equal to the path up to the D-node that starts the wavefront.

The final route is found in two steps. In the first step, the phase 1 segment of the route is found by

backtracing the phase 1 wavefront to the D-node that initiated the wavefront. The phase 0 segment of

the route is then found by backtracing the phase 0 wavefront from the D-node back to the source.

A step-by-step illustration of how Combined-Phased-Dijkstra works is shown in Figure 9-2. For the

sake of simplicity, assume all nodes in the example graph have unit cost. The source S is explored at

phase 0 at the start of the phased exploration. The number 0 next to S in Figure 9-2 (a) indicates that S

has been explored by a phase 0 wavefront. In Figure 9-2 (b), the neighbors of S are explored by the

phase 0 wavefront initiated at S. The 2nd-level neighbors of S are explored by phase 0 in Figure 9-2 (c),

one of which is D-node D1. Note that we make a special note of D1’s phase 0 predecessor here, so that

we do not explore this predecessor by means of the phase 1 wavefront that is commenced at D1. In

Figure 9-2 (d), the neighbors of D1 (excluding R1) are explored at phase 1. The phase 0 exploration

also continues simultaneously, and note how both phase 0 and phase 1 wavefronts have explored nodes

R4 and R7. Finally, in Figure 9-2 (e), the sink K is explored by the phase 1 wavefront initiated at D1.

The route found by Combined-Phased-Dijkstra is shown in boldface in Figure 9-2 (e), and is in fact an

optimal route between S and K.

80

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K
0

(a)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K
0

0

0

0

(b)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K
0

0

0

0

0

0

0
prevR1

(c)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K
0

0

0

0

0

0

0
prevR1

0
prevR5

1
0

1

0

0

(d)

S

R1

R3

R2

R5

R4

R6

D1

D2

R7

R8

K
0

0

0

0

0

0

0
prevR1

0
prevR5

1
0

1

0

0

1

1

1

1

1

(e)

Figure 9-2: A step-by-step illustration of Combined-Phased-Dijkstra.

81

Unfortunately, Combined-Phased-Dijkstra fails to find a lowest cost route on some graph topologies.

An example of a failure case is shown in Figure 9-3. Here the node S is both the source and sink of a

signal, and each node is unit cost. Combined-Phased-Dijkstra will fail to return to S at phase 1 because

R-nodes on each possible route back to S have already been explored by the phase 1 wavefront. In

effect, Combined-Phased-Dijkstra isolates nodes S, R1, R2, D1 and D2 from the rest of the graph, thus

precluding the discovery of any route back to S at all.

S

R1

R2

D1

D2

R3

R4

R5
0

0

0

0

0

1

1

1

Figure 9-3: A case in which phased exploration fails. Observe how the phase 1 exploration has got isolated
from the phase 0 exploration.

The reason for the failure of Combined-Phased-Dijkstra is that a node on the phase 1 segment of the

lowest cost route is instead explored by a phase 1 wavefront commenced at another D-node. For

example, in Figure 9-3 we consider the route S-R1-D1-R3-R5-R4-D2-R2-S to be lowest cost. Node R4

is explored by the phase 1 wavefront commenced at D2, thus precluding node R4 from being explored

by the phase 1 wavefront started at D1. However, if we slightly relax Combined-Phased-Dijkstra to

allow each node in the graph to be explored by at most two phase 1 wavefronts that are independently

started at different D-nodes, then the phase 1 wavefronts started at D1 and D2 will now be able to

overlap, thus allowing the lowest cost route to be found.

An important consequence of the nature of the transition from phase 0 to phase 1 at a D-node is shown

in Figure 9-4. In this case, S is the source of the signal, and K is the sink. Observe that a phase 0

exploration explores D1 from R1. Consequently, the phase 0 exploration is precluded from exploring

D1 from R4. This prevents the optimal 1D route to K from being found. To address this problem, we

allow any D-node to be explored at most two times at phase 0. In Fig. 4, D1 can be explored at phase 0

from R1 and R4, thus allowing the optimal 1D path S-R2-R3-R4-D1-R1-K to be found.

82

S

R1

R2

D1

R3

R4
0

0

0

0

0

K
0

Figure 9-4: D1 is explored at phase 0 from R1, thus precluding the discovery of the 1D path to the sink K.

Figure 9-5 shows pseudo code for the algorithm 2Combined-Phased-Dijkstra that finds an

optimal 1D route between a source S and sink K. At the start of the algorithm, a phase 0 exploration is

commenced at the source by initializing the priority queue PQ to S at phase 0. The phase 0 wavefront is

expanded in a manner similar to that of Dijkstra’s algorithm. Each time a node lnode is removed from

PQ, its phase is recorded in the variable phase. The cost of the path from S to lnode is stored in

path_cost. The variable node_type indicates whether lnode is an R-node or D-node. The fields

lnode.num_ex0 and lnode.num_ex1 record the number of times lnode has been explored at

phase 0 and 1 respectively, and are both initialized to 0. A node is marked finally_explored at a

given phase when it is no longer possible to expand a wavefront through that node at the given phase.

For each lnode that is removed from PQ, the following possibilities exist:

• phase==0 and node_type is R-node: R-nodes can be explored at phase 0 only once, and

thus lnode is marked finally_explored if x0==1. The routine

AddNeighbors(PQ,lnode,path_cost,p) is used to add the neighbors of lnode to

PQ at phase p, where p==0 in this case.

• phase==0 and node_type is D-node: D-nodes can be explored at phase 0 twice, and thus

lnode is marked finally_explored if x0==2. A phase 1 exploration is begun at this D-

node by adding its neighbors to PQ at phase 1.

• phase==1: Since both R-nodes and D-nodes can be explored twice at phase 1, lnode is

marked finally_explored at phase 1 if x1==2. If we are not done (i.e. lnode is not the

sink K) the neighbors of lnode are added to PQ at phase 1.

83

2Combined-Phased-Dijkstra(S,K){
Init PQ to S at phase 0;
LOOP{
Remove lowest cost node lnode from PQ;
if(lnode == NULL){
1D path between S and K does not exist;
return 0;

}
if(lnode is finally_explored at phase 0 and phase 1)
continue;

path_cost = cost of path from S to lnode;
phase = phase of lnode;
node_type = type of lnode;
if(phase == 0){
lnode.num_ex0++;
x0 = lnode.num_ex0;

}
else{
lnode.num_ex1++;
x1 = lnode.num_ex1;

}
if(phase == 0){
if(node_type == R-node){
if(x0 == 1)
Mark lnode finally_explored at phase 0;

AddNeighbors(PQ,lnode,path_cost,0);
}
else{
if(x0 == 2)
Mark lnode finally_explored at phase 0;

AddNeighbors(PQ,lnode,path_cost,1);
}

}
else{
if(lnode == K)
return backtraced 1D path from S to K;

else{
if(x1 == 2)
Mark lnode finally_explored at phase 1;

AddNeighbors(PQ,lnode,path_cost,1);
}

}
}END LOOP

}

AddNeighbors(PQ,lnode,path_cost,p){
Foreach neighbor neb_node of lnode{
neb_cost = cost of neb_node;
neb_path_cost = neb_cost + path_cost;
Add neb_node to PQ with phase p at cost neb_path_cost;

}
}

Figure 9-5: Pseudo code for the 2Combined-Phased-Dijkstra algorithm.

84

9.1.1 Proof of Optimality
The optimality of 2Combined-Phased-Dijkstra can be demonstrated by means of a proof by

contradiction in which we show that 2Combined-Phased-Dijkstra will always find an optimal

1D path between S and K, if one exists. Before presenting a sketch of the proof, we introduce some

terminology. 2Combined-Phased-Dijkstra explores multiple paths through the graph via a

modification to Dijkstra's algorithm. We state that the algorithm explores a path "P" up to a node "N" if

the modified Dijkstra's search, in either phase 0 or phase 1, reaches node "N" and the search route to

this node is identical to the portion of the path P from the source to node N. Further, a path A is “more

explored” than path B if the cost of the path on A from the source to A's last explored point is greater

than the cost of the path on B from the source to B's last explored point. For purposes of the proof

sketch, we define the "goodness" of a path in the following way:

• If the cost of one path is lower than another’s, it is "better" than the other. Thus, an optimal

path is always better than a non-optimal path.

• If the costs of two paths C and D are the same, then C is "better" than D if C is more explored

than D.

From these definitions, the “best” path is an optimal path. If there is more than one optimal path, the

best path is the most explored optimal path.

Initial Assumption: Assume that Figure 9-6 shows the most explored optimal 1D path between S and K.

In other words, the path shown in the figure is the best 1D path between S and K, with a single clock-

cycle delay picked up at D-node DL. Note that there are no D-nodes on the path S-DL, although there

could be multiple D-nodes on DL-K. This is because we assume that in case the best 1D path between S

and K goes through multiple D-nodes, then the D-node nearest S is used to pick up one clock-cycle

delay.

S KDL

Figure 9-6: The initial assumption is that the most explored lowest cost 1D route between S and K goes
through D-node DL.

Although it appears that the paths S-DL and DL-K in Figure 9-6 are non-intersecting, note that the R-

nodes on the path S-DL can in fact be reused in the path DL-K. In all diagrams in this section, we use

the convention of showing paths without overlaps (Figure 9-7), even though they may actually overlap

85

(Figure 9-8). Our proof does not rely on the extent of intersection between hypothetical paths (which

are always shown in gray) and the known best 1D path.

S KDL

R

Figure 9-7: Representation of a path from S to node R shown in gray.

S KDL

R

Figure 9-8: The path from S to R could actually intersect with the paths S-DL and DL-K.

There are three distinct cases in which 2Combined-Phased-Dijkstra could fail to find the best

path S-DL-K shown in Figure 9-6:

CASE 1: An R-node on the path S-DL gets explored at phase 0 along a path other than S-DL.

CASE 2: The D-node DL gets explored at phase 0 along two paths other than S-DL.

CASE 3: A node on the path DL-K gets explored at phase 1 along two paths other than DL-K.

Figure 9-9 shows why CASE 1 can never occur. For CASE 1 to occur, the cost of the gray path S-G-R

would have to be less than or equal to the cost of path S-R. In this case, the path S-G-R-DL-K would be

better than the known best path, which is a contradiction of our initial assumption.

S KDL

R

G

Figure 9-9: The case in which an R-node on the path S-DL gets explored at phase 0 along some other path.

Figure 9-10 shows an instance of CASE 2. The cost of each of the paths S-G1-DL and S-G2-R2-DL is

less than or equal to the cost of path S-DL. In this case, the path S-G1-DL-R2-K would be better than the

known best path S-DL-K, thus contradicting our initial assumption.

86

S KDL

G2

R2

G1

Figure 9-10: DL gets explored at phase 0 along paths S-G1-DL and S-G2-R2-DL.

Figure 9-11 illustrates an example of CASE 3, in which a node X on the path DL-K gets explored at

phase 1 along two paths other than DL-K. There are two possibilities here:

The cost of path S-G1-R1-D-X is less than or equal to the cost of the path to X along the known best

path. In this case, the path S-G1-R1-D-X-K would be better than the known best path, which is a

contradiction of our initial assumption.

The cost of path S-G2-D-X is less than or equal to the cost of the path to X along the known best path.

This means that the path S-G2-D-X-K is better than the known best path, which contradicts our initial

assumption.

S KDL

D

G1

G2

R1
X

Figure 9-11: Node X can get explored at phase 1 along either S-G2-D-X or S-G1-R1-D-X.

A more detailed case-by-case analysis of the proof of optimality of 2Combined-Phased-Dijkstra can be

found in [43]. In this study, we enumerate all the possible sub-cases of CASE 1, CASE 2 and CASE 3

and separately show that each of the sub-cases contradicts our initial assumption. Consequently, none of

CASE 1, CASE 2 or CASE 3 can occur, implying that 2Combined-Phased-Dijkstra is optimal.

87

9.2 N-Delay (ND) Router
In this section, we present a heuristic that uses the optimal 1D router to build a route for a two terminal

ND signal. This heuristic greedily accumulates D-nodes on the route by using 1D routes as building

blocks. In general, an ND route is recursively built from an (N-1)D route by successively replacing each

segment of the (N-1)D route by a 1D route and then selecting the lowest cost ND route. Figure 9-12 is an

abstract illustration of how a 3D route between S and K is found. In the first step, we find a 1D route

between S and K, with D11 being the D-node where we pick up a register. At this point, we increase the

sharing cost [33] of all nodes that constitute the route S-D11-K. In the second step, we find two 1D

routes, between S and D11, and D11 and K. The sequence of sub-steps in this operation is as follows:

• Decrease sharing cost of segment S-D11.

• Find 1D route between S and D11 (S-D21-D11). Store the cost of route S-D21-D11-K.

• Restore segment S-D11 by increasing the sharing cost of segment S-D11.

• Decrease sharing cost of segment D11-K.

• Find 1D route between D11 and K (D11-D22-K). Store the cost of route S-D11-D22-K.

• Restore segment D11-K by increasing the sharing cost of segment D11-K.

• Select the lowest cost route, either S-D21-D11-K or S-D11-D22-K.

S K

D11

D21

D22
D31

D32

Figure 9-12: Building a 3D route from 1D routes.

Suppose the lowest cost 2D route is S-D11-D22-K. We rip up and decrease sharing due to the segment

D11-K in the original route S-D11-K, and replace it with segment D11-D22-K. Finally, we increase

sharing of the segment D11-D22-K. The partial route now is S-D11-D22-K. The sequence of sub-steps

in step three is similar. Segments S-D11, D11-D22 and D22-K are successively ripped up, replaced

with individual 1D segments, and for each case the cost of the entire 3D route between S and K is stored.

88

The lowest cost route is then selected. In Fig. 12, the 3D route that is found is shown in dark lines, and is

S-D11-D31-D22-K.

The number of 1D explorations launched for the 3D route that we just discussed is 1 + 2 + 3 = 6. For the

general ND case, the number of 1D explorations launched is 1 + 2 + ... + N = N(N+1)/2.

9.3 Multi-Terminal Router
The previous section described a heuristic that uses optimal 1D routes to build a two-terminal ND route.

The most general type of pipelined signal is a multi-terminal pipelined signal. A multi-terminal

pipelined signal has more than one sink, and the number of registers separating the source from each

sink could differ across the set of sinks. A simple example of a multi-terminal pipelined signal sig was

shown in Figure 9-1. The sinks K1, K2 and K3 must be separated from the source S by 3, 4 and 5

registers respectively. We now demonstrate how a route for a multi-terminal signal can be found by

taking advantage of the 1D and ND routers.

In a manner similar to the Pathfinder algorithm, the routing tree for a multi-terminal pipelined signal is

built one sink at a time. Each sink is considered in non-decreasing order of register separation from the

source of the signal. The multi-terminal router starts by finding a route to a sink that is the least number

of registers away from the source. Since finding a route to the first sink is a two-terminal case, we use

the two-terminal ND router to establish a route between the source and first sink. The remainder of this

section examines the task of expanding the route between the source and the first sink to include all

other sinks.

We explain the multi-terminal router via a simple example. Assume a hypothetical signal that has a

source S and sinks K2 and K3. K2 must be separated from S by 2 registers, whereas K3 must be

separated by 3 registers. Sink K2 is considered first, and the ND router is used to find a 2D route

between S and K2. In Figure 9-13 (a), the route S-D1-D2-K2 represents the 2D route between S and K2,

and constitutes the partial_routing_tree of the signal. In general, the partial_routing_tree of a multi-

terminal pipelined signal can be defined as the tree that connects the source to all sinks that have

already been routed.

After a route to K2 is found, the router considers sink K3. As was the case in the ND router, we

accumulate registers on the route to K3 one register at a time. Thus, we start by finding a 1D route to

K3, then a 2D route, and finally a 3D route to K3. It can be seen that a 1D route to K3 can be found either

89

from the 0D segment S-D1 by going through another D-node, or from the 1D segment D1-D2 directly.

However, it is not necessary to launch independent wavefronts from segments S-D1 and D1-D2. This is

because both wavefronts can be combined into a single 1D search in which segment S-D1 constitutes the

starting component of the phase 0 wavefront, and segment D1-D2 constitutes the starting component of

the phase 1 wavefront. Setting up the 1D search in such a way could find a 1D path from S-D1 or a 0-

delay path from D1-D2, depending on which is of lower cost. Assume that P1-DA-K3 is the 1D route

found to K3 (Figure 9-13 (b)). After the 1D route to K3 is found, the sharing cost of the nodes that

constitute P1-DA-K3 is increased. The segment P1-DA-K3 is called the surviving_candidate_tree. The

surviving_candidate_tree can be defined as the tree that connects the sink (K3 in this case) under

consideration to some node in the partial_routing_tree every time an ND route (1≤N≤3 in this case) to

the sink is found. Thus, a distinct surviving_candidate_tree results immediately after finding the 1D, 2D,

and 3D routes to K3.

S K2

D1 D2

K3

(a)

S K2

D1 D2

K3

DA

P1

(b)

S K2

D1 D2

K3

P2

(c)

S K2

D1 D2

K3

DB

P3

(d)

Figure 9-13: (a) 2D route to K2 using the two-terminal ND router. S-D1-D2-K2 is the partial_routing_tree. (b)
1D route to K3. P1-DA-K3 is found by launching a 1D exploration that starts with segment S-D1 at phase 0
and segment D1-D2 at phase 1. P1-DA-K3 is the surviving_candidate_tree. (c) 2D route to K3. P2-K3 is now
the surviving_candidate_tree. (d) P3-DB-K3 is the final surviving_candidate_tree, and this tree is joined to the
partial_routing_tree S-D1-D2-K2 to complete the route to K3.

90

Next, we attempt to find a 2D route to K3. Before explaining specifics, it is important to point out here

that while finding an ND route to a sink we try two options. The first is to alter the

surviving_candidate_tree to include an additional D-node as was done in the two terminal ND router.

The second option is to use the ND and (N-1)D segments in the partial_routing_tree together to start a

1D exploration. The lower cost option is chosen, and this becomes the new surviving_candidate_tree.

For finding a 2D route to K3, we first modify P1-DA-K3 to include another D-node much in the same

way that a two terminal 2D route is built from an already established 1D route. The segments P1-DA and

DA-K3 are each separately replaced by optimal 1D routes, and the lowest cost route is stored. To

evaluate the second option, we rip up the segment P1-DA-K3 (Figure 9-13 (b)) and launch a 1D search

using segments D1-D2 at phase 0 and D2-K2 at phase 1. The cost of the resultant 1D route is also

stored. The lower cost route amongst the two options is chosen, and the sharing cost of the nodes that

constitute this route is increased. This selected route becomes the new surviving_candidate_tree. In

Figure 9-13 (c), assume that the lower cost route that is selected is the segment P2-K3 shown in gray.

Finally, the segment P2-K3 is ripped up and a 1D exploration from the segment D2-K2 is launched at

phase 0 to complete the 3D route to K3 (Figure 9-13 (d)). Figure 9-14 presents pseudo code for the

multi-terminal routing algorithm. Net is the multi-terminal signal that is to be routed. Without loss of

generality, we assume that Net has at least two sinks, and each sink is separated from Net’s source by

at least one D-node. PRT contains the partial_routing_tree during the execution of the algorithm, and

CRT contains the surviving_candidate_tree. SrcNet is the source of the signal Net, while SK is an array

that contains Net’s sinks. ND-Router is the N-Delay router presented in the previous section.

91

Multi-Terminal-Router (Net){
PRT = φ; CRT = φ;
Sort elements of SK in non-decreasing order
of Dnode-separation from SrcNet;

Use the two-terminal ND-Router to find
route R from SrcNet to SK[1];

Add R to the partial routing tree PRT;
Foreach i in 2…|SK| {
ki = SK[i];
di = num Dnodes between SrcNet and ki;
Foreach j in 1…di {
Use the two-terminal ND-Router to find
a jD route called RNj by altering the
(j-1)D route contained in CRT;

Use 2Combined-Phased-Dijkstra to build
a jD route called RDj from the (j-1)D
and jD segments of the route contained
in PRT;

if cost(RDj) < cost(RNj) {
CRT = RDj;

}
else {
CRT = RNj;

}
}
Add surviving candidate tree CRT to partial
routing tree PRT;

}
return the route contained in PRT;

}

Figure 9-14: Pseudo code for the multi-terminal routing algorithm.

9.4 Multiple Register-Sites
The PipeRoute algorithm described in Sections 9.1, 9.2 and 9.3 assumes that register sites (D-nodes) in

the interconnect structure can only provide zero or one register. Also, the algorithm does not address the

fact that the IO terminals of logic units may themselves be registered. Since pipelined FPGA

architectures [15,52] do in fact provide registered IO terminals and multiple-register sites in the

interconnect structure, we developed a greedy pre-processing heuristic that attempts to maximize the

number of registers that can be acquired at registered IO terminals and multiple-register sites. We

present the details of this heuristic in three parts:

9.4.1 Logic Units with Registered Outputs
We try to greedily pick up the maximum allowable number of registers at the source of each pipelined

signal. The maximum number of registers that can be picked up at the source is capped by the sink that

is separated by the least number of registers from the source. Consider the example in Figure 9-15. The

pipelined signal shown has a source S and two sinks K1 and K2 that must be separated from S by two

92

and five registers respectively. Assuming that up to three registers can be acquired at S, both registers

that separate S and K1 can be picked up at S itself, thus eliminating the need to find a 2D route between

S and K1 in the interconnect structure. Instead, we now only need to find a simple lowest-cost route

from S to K1, and a 3D route to K2.

S 1 1 1 1 1

S

S

K1 K2

1 1 1 1 1

K1 K2

1 1 1

K1 K2

Figure 9-15: Assuming that S can provide up to three registers locally, both the registers between S and K1
can be picked up at S.

9.4.2 Logic Units with Registered Inputs
In this case, we push as many registers as possible into each sink of a pipelined signal. In Figure 9-16, if

we again assume that each sink can provide up to three registers locally, both registers between S and

K1 can be moved into K1, while three registers between S and K2 can be moved into K2. This leaves us

with the task of finding a simple lowest-cost route to K1 and a 2D route to K2.

S 1 1 1 1 1

S

S

K1 K2

1 1 1 1 1

K1 K2

1 1

K1 K2

Figure 9-16: Assuming that the sinks K1 and K2 can locally provide up to three registers, both registers
between S and K1 and three of the five registers between S and K2 can be picked up locally at the respective
sinks.

93

9.4.3 Multiple-Register Sites in the Interconnect Structure
Multiple-register sites in the interconnect structure provide an opportunity to significantly improve the

routability of pipelined signals. In Figure 9-17 for example, if we assume that each register site (D-

node) in the interconnect can provide up to three registers, the task of finding a two terminal 9D route

simplifies to finding a route that with at least three D-nodes. For a multi-terminal pipelined signal,

every time an ND route to the new sink is to be found, we use all existing ND, (N-1)D, (N-2)D, and (N-

3)D segments in the current partially built routing tree to start an exploration that finds a single D-node.

Since each D-node can be used to pick up between zero and three registers, we use all segments within

the current, partially built routing tree that are less than or equal to three registers away from the new

sink.

S 1 1 1 K1 1 1 1 1 1

S 3 K3 3

Figure 9-17: Finding a 9D route between S and K can effectively be transformed into a 3D pipelined routing
problem.

The intuition behind the development of the greedy heuristics in this section is to aggressively reduce

the number of register-sites that need to be found in the interconnect structure. The heuristic is clearly

routability-driven, since reductions in the number of interconnect registers favorably impact the

routability of pipelined signals. Due to the finite nature of an FPGA’s interconnect structure, any place-

and-route heuristic must consider routability to ensure that a placement can be successfully routed.

A shortcoming of the greedy heuristic is that long segments of a pipelined signal may get unpipelined

because of the removal of registers from the interconnect structure. This phenomenon is illustrated in

Figure 9-18. Assume that a maximum of four registers can be picked up at the sinks K1 – K8. In this

case, one interconnect register will be moved into K1, two into K2, three into K3, and four into K4-K8.

This process effectively unpipelines a long segment, which in turn may increase the critical path delay

of a netlist.

94

S 1 1 1 1 1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

Long, unpipelined track segment

S

Figure 9-18: Pushing registers from the interconnect structure into functional unit inputs sometimes results
in long, unpipelined track segments.

9.5 Timing-Aware Pipelined Routing
Since the primary objective of pipelined FPGAs is the reduction of clock cycle time, it is imperative

that a pipelined routing algorithm maintains control over the criticality of pipelined signals during

routing. In making PipeRoute timing aware, we draw inspiration from the Pathfinder algorithm. While

routing a signal, Pathfinder uses the criticality of the signal in determining the relative contributions of

the congestion and delay terms to the cost of routing resources. If a signal is near critical, then the delay

of a routing resource dominates the total cost of that resource. On the other hand, if the signal’s

criticality is considerably less than the critical path, the congestion on a routing resource dominates.

In the case of pipelined routing, the signal’s route may go through multiple D-nodes. Consequently, the

routing delay incurred in traversing the route from source to sink may span multiple clock cycles. Also,

the location of D-nodes on the route may be different across routing iterations. This is because

PipeRoute may have to select different routes between the source and sink of a signal to resolve

congestion. In Figure 9-19 for example, the 2D route between S and K may go through different D-

nodes at the end of iterations i, i+1 and i+2 respectively.

To address these problems, we treat D-nodes like normal registers during the timing analysis at the end

of a routing iteration. Once the timing analysis is complete, we are faced with making a guess about the

overall criticality of a pipelined signal. Note that different segments of a pipelined signal’s route could

be at different criticalities (Figure 9-19). Our solution is to make a pessimistic choice. Since we know

the individual criticalities of signals sourced at each D-node, we make the criticality of the pipelined

signal equal to the criticality of the most critical segment on the route. Thus, when the pipelined signal

95

is routed during the next iteration, the most critical segment of the signal’s previous route determines

the delay cost of routing resources.

S KD D

D

D

D

D

D

D

D

Routing iteration ‘i’
Routing iteration ‘i+1’
Routing iteration ‘i+2’

Figure 9-19: The route between source S and sink K of a signal may go through different D-nodes at the end
of successive routing iterations. Also, since each D-node on the route is used to pick up a register, different
segments on the route may be at different criticalities.

9.6 Placement Algorithm
The placement of a netlist is determined using a Simulated Annealing [26,38] algorithm. The cost of a

placement is formulated as a linear function of the maximum and average cutsize, where cutsize is the

number of signals that need to be routed across a vertical partition of the architecture for a given

placement. Since the RaPiD interconnect structure provides a fixed number of routing tracks, the cost

function must be sensitive to changes in maximum cutsize. At the same time, changes in average

cutsize also influence the cost of a placement. This is because average cutsize is a measure of the total

wirelength of a placement.

Pipelining information is included in the cost of a placement by mapping each pipelining register (a

pipelining register is a register that must be mapped to an interconnect register) in the netlist to a unique

BC in the interconnect structure. Our high-level objective in mapping pipelining registers to BCs is to

place netlist components such that the router is able to find a sufficient number of BCs in the

interconnect structure while routing pipelined signals. A more detailed discussion of the placement

algorithm can be found in [40] and [43].

96

Since pipelining registers are explicitly placed, it might be possible to solve the register allocation

problem during placement. The pipelining registers in a netlist could be mapped to registered switch-

points in the architecture, and a simulated annealing placement algorithm could determine a placement

of the pipelining registers. After the placement phase, a conventional FPGA router (Pathfinder) could

be used to route the signals in the netlist. While this approach is attractive for its simplicity and ease of

implementation, it has a serious shortcoming. A placement of a netlist that explicitly maps pipelining

registers to registered switch-points eliminates portions of the routing graph. This is because a

registered switch-point that is occupied by a particular pipelining register cannot be used by signals

other than the signals that connect to that pipelining register. As a consequence, the search space of a

conventional FPGA router is severely limited, and this results in solutions of poor quality.

To validate our hypothesis, we ran an experiment on a subset of the benchmark netlists. The objective

of the experiment was to find the size of the smallest RaPiD array needed to route (using a pipelining-

unaware router Pathfinder) placements produced by the algorithm described in this section. Note that

pipelining registers were explicitly mapped to BCs in the interconnect structure, and the post-placement

routing graph was modified to reflect the assignment of pipelining registers to BCs.

Table 9-1: Overhead incurred in using a pipelining-unaware router (Pathfinder) to route netlists.

NETLIST NORM. AREA
firtm 1
sobel 1
fft16 1.6

imagerapid FAIL
cascade FAIL

matmult4 FAIL
sort_g FAIL
sort_rb FAIL

firsymeven FAIL

Table 9-1 presents the results of this experiment. Column 1 lists the netlists in our benchmark set.

Column 2 lists the minimum-size array required to route each netlist using Pathfinder. The entries in

column 2 are normalized to the minimum-size RaPiD array needed to route the netlists using

PipeRoute. A “FAIL” entry in column 2 means that the netlist could not be routed on any array whose

97

normalized size was between 1.0 – 2.0. Table 9-1 shows that Pathfinder was unable to route a majority

of netlists on arrays that had double the number of logic and routing resources needed to route the

placements using PipeRoute. This result clearly showed that pipelining register allocation is best done

during the routing phase.

9.7 Experimental Setup and Benchmarks
The set of benchmark netlists used in our experimentation includes implementations of FIR filters,

sorting algorithms, matrix multiplication, edge detection, 16-point FFT, IIR filtering and a camera

imaging pipeline. While selecting the benchmark set, we included a diverse set of applications that were

representative of the domains to which the RaPiD architecture is targeted. We also tried to ensure that

the benchmark set was not unduly biased towards netlists with too many or too few pipelined signals.

Table 9-2 lists statistics of the application netlists in our benchmark set. Column 1 lists the netlists,

column 2 lists the total number of nets in each netlist, column 3 lists the percentage of nets that are

pipelined, column 4 lists the maximum number of registers needed between any source-sink terminal

pair in the netlist (this number is similar to the latency of the application), and column 5 lists the

average number of registers needed across all source-sink terminal pairs in the netlist.

Table 9-2: Benchmark application netlist statistics.

NUM % MAX AVG
NETLIST NETS PIPELINED DEPTH DEPTH

firtm 158 3 16 5.5
fft16 94 29 3 0.74

cascade 113 40 21 3.88
matmult4 164 44 31 4.62

sobel 74 44 5 1.44
imagerapid 101 51 12 3.46
firsymeven 95 54 31 6.98

sort_g 70 65 35 4.98
sort_rb 63 71 35 5.42

While the size of the netlists in Table 9-2 might seem small, remember that a single pipelined signal

represents multiple routing problems. An example of a pipelined signal in the netlist sort_rb has 38

sinks. The number of registers that separate the 38 sinks from the source is evenly distributed between 0

registers and 35 registers. Although this signal is counted as a single signal in Table 9-2, finding a route

for this signal may require hundreds of individual routing searches. Thus, routing the pipelined signals

98

in the benchmark netlists clearly represents a problem of reasonable complexity. Also note that RaPiD

is a coarse-grained architecture. Thus, a single net represents a 16-bit bus.

Applications are mapped to netlists using the RaPiD compiler, and the architecture is represented as an

annotated structural Verilog file. Area models for the RaPiD architecture are derived from a

combination of the current layout of the RaPiD cell, and transistor-count models. The delay model is

extrapolated from SPICE simulations. Each netlist is placed using the algorithm presented in Section

9.6. The placement algorithm places pipelining registers into BC positions in order to model the

demands of pipelining. However, the BC assignments are removed before routing to allow PipeRoute

full flexibility in assigning pipelining registers.

The netlists are routed using timing-aware PipeRoute that can handle multiple-register IO and

interconnect sites. A netlist is declared unrouteable on an architecture of a given size (where size is the

number of RaPiD cells that constitute the architecture) if PipeRoute fails to route the netlist in 32 tracks.

9.8 Results

9.8.1 Experiment 1
The objective of our first experiment was to quantify the area overhead incurred in routing the

benchmark netlists on an optimized RaPiD architecture [44]. The logic units in this architecture have

registered input terminals (the original RaPiD architecture has registered output terminals), and between

0 – 3 registers can be acquired at each input terminal and BC. Also, unlike the original RaPiD

architecture, the optimized RaPiD architecture in [44] has nine GPRs in every RaPiD cell.

We acquired area numbers by running the entire set of benchmarks through two place-and-route flows.

The first is a pipelining-unaware flow that treats netlists as if they were unpipelined. Specifically, all

pipelined signals in a netlist are treated like normal, unpipelined signals (Figure 9-20). The pipelining-

unaware placement tool attempts to reduce only maximum and average cutsize. The pipelining-unaware

router attempts only connectivity routing, since there are no registers to be found in the interconnect

structure. The pipelining-unaware place and route flow provides a lower-bound on the size of the

smallest architecture needed to successfully route the benchmark netlists. This is because the best area

that we can expect from a pipelining-aware flow would be no better than a pipelining-unaware flow that

ignores pipelining altogether.

99

K1

1 1 1 1 1S

K2

K1

S

K2

Figure 9-20: Unpipelining a pipelined signal. The pipelined signal (top) is transformed into an unpipelined
signal (bottom).

The second flow is the pipelining-aware flow described in this paper. Netlists are placed using the

algorithm described in Section 9.6, and routed using purely congestion-driven PipeRoute. For both

approaches, we recorded the area of the smallest architecture required to successfully route each netlist.

Table 9-3 lists the smallest areas found for each benchmark netlist using both pipelining-aware and

pipelining-unaware flows. The area overhead varied between 0% (for the netlists fft16, matmult4 and

sobel) and 44% for the netlist firsymeven. Overall, the geometric mean of the overhead incurred across

the entire benchmark set was 18%. We regard this a satisfactory result, since a pipelining-aware flow

incurs less than a 20% penalty over a likely unachievable lower-bound.

Table 9-3: Experiment 1 – Area comparison between pipelining-aware and pipelining-unaware place and
route flows.

PIPELINING PIPELINING
UNAWARE AREA AWARE AREA

NETLIST (um2) (um2)
sort_g 3808215 5183743
sort_rb 3808215 5752143

fft16 5712322 5712322
imagerapid 6664376 8025125
firsymeven 6897972 9949143

firtm 7257201 7616430
matmult4 7616430 7616430
cascade 7616430 8753230

sobel 9039119 9039119
GEOMEAN 6247146 7347621

100

9.8.2 Experiment 2
The objective of our second experiment was to investigate the performance of timing-aware PipeRoute

vs. timing-unaware PipeRoute. For both approaches, we separately obtained the post-route critical path

delays of benchmark netlists routed on the smallest possible RaPiD architecture. Table 9-4 shows the

results that we obtained. Across the entire benchmark set, timing-aware PipeRoute produced an 8%

improvement in critical path delay compared to timing-unaware PipeRoute.

Table 9-4: Experiment 2 – Delay comparison between timing-aware and timing-unaware PipeRoute.

TIMING-
NETLIST AWARE (ns)

firtm 6.73 6.63
matmult4 8.27 8.57
sort_rb 9.65 12.61

firsymeven 10.97 9.96
sort_g 11.44 6.07
fft16 13.14 11.6
sobel 14.24 13.25

imagerapid 14.36 12.62
cascade 15.45 15.42

GEOMEAN 11.2112 10.29194

TIMING-
UNAWARE (ns)

9.8.3 Experiment 3
Our final experiment was to study whether there is any relationship between the fraction of pipelined

signals in a benchmark netlist and the area overhead incurred in successfully routing the netlist on a

minimum size architecture. The area overhead is a measure of the pipelining ‘difficulty’ of a netlist and

is quantified in terms of the following parameters:

• AL – The area of the smallest architecture required to successfully route the netlist using a

pipelining-unaware place and route flow.

• AP – The area of the smallest architecture required to successfully route the netlist using a

pipelining-aware place and route flow.

• PIPE-COST – The ratio AP / AL. This is a quantitative measure of the overhead incurred.

Figure 9-21 shows a plot of PIPE-COST vs. the fraction of pipelined signals in a netlist. The data points

represent the PIPE-COST of each netlist in the benchmark set. It can be seen that an increase in the

percentage of pipelined signals in a netlist tends to result in an increase in the PIPE-COST of that

101

netlist. This observation validates our intuition that the fraction of pipelined signals in a netlist roughly

tracks the combined architecture and CAD effort needed to successfully route the netlist.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FRACTION PIPELINED SIGNALS

A
R

E
A

 O
V

E
R

H
E

A
D

A
R

E
A

 O
V

E
R

H
E

A
D

Figure 9-21: Experiment 3 – The variation of PIPE-COST vs. fraction pipelined signals.

9.9 Summary
The main focus of this chapter was the development of an algorithm that routes logically retimed

netlists on the RaPiD architecture. We developed an optimal 1D router, and used it in formulating an

efficient heuristic to route two-terminal ND pipelined signals. The algorithm for routing general multi-

terminal pipelined signals borrowed from both the 1D and ND routers. Congestion resolution while

routing pipelined signals was achieved using Pathfinder. Our results showed that the architecture

overhead (PIPE-COST) incurred in routing netlists on the RaPiD architecture was 18%, and that there

might be a correlation between the PIPE-COST of a netlist and the percentage of pipelined signals in

that netlist.

102

Chapter 10: Exploring RaPiD’s Interconnect Structure

Pipelined FPGA architecture design poses a number of challenges, not the least of which is the

composition of the interconnect structure. Earlier work [6] has shown that the design of FPGA

interconnect structures involves tradeoffs amongst different parameters like segment-length, switch-box

types and layout considerations. However, the interconnect structure of a pipelined FPGA is different.

Unlike conventional architectures, the interconnect structure of a pipelined FPGA may include a large

number of registers. The number and location of interconnect registers plays an important role in

determining the performance of applications mapped to pipelined FPGAs. If the number of interconnect

registers is too few, the benefits of pipelining may get lost in long, circuitous routes. On the other hand,

the area penalty due to too many interconnect registers may reduce the impact of improvements in clock

cycle time.

In this chapter, we parameterize and explore the performance of RaPiD’s pipelined interconnect

structure. Specifically, we try to answer the following questions:

• What are the benefits of registering the IO terminals of logic units? Note that both RaPiD and

HSRA provide register banks at IO terminals.

• How many sites in the interconnect structure should be registered? A related question is how

many registers should a single site provide?

• How long should the segments of registered routing tracks be?

• How does the flexibility of the interconnect structure affect the performance of pipelined

FPGAs?

To the best of our knowledge, the only previous work that explored pipelined interconnect structures

can be found in [46]. In that work, the authors present a limited study that demonstrates speed-ups by

adding registers to routing switches. The authors do not explore multiple-register interconnect sites,

segment lengths of registered tracks, or the flexibility of the interconnect structure. This work expands

the pipelined interconnect exploration space to include these parameters.

10.1 Characterizing Pipelined Interconnect Structures
We now present our interpretation and analysis of the trends that we observed while exploring RaPiD’s

pipelined interconnect structure. Our primary measure of the quality of a given point in the exploration

103

space is the post place-and-route geometric mean of the area-delay product across the benchmark set.

Netlists are placed using the placement algorithm described in Section 9.6, and routed using timing-

aware PipeRoute. The area-delay product of a netlist is measured from the minimum number of RaPiD

cells required to route a netlist in less than thirty-two tracks. Area models for the RaPiD architecture are

derived from a combination of the current layout of the RaPiD cell and transistor-count models. The

delay model is extrapolated from SPICE simulations.

Before presenting our results, we briefly explain the effects of certain important interconnect features

on the area and delay of a netlist:

Track Count: The track count of a netlist is the minimum number of tracks required to route the netlist.

Track count directly affects area in two ways. First, the area of the IO multiplexers and demultiplexers

depends on the number of tracks that connect to them. Second, the number of BCs in the architecture is

directly proportional to the number of tracks.

BCs: The frequency and number of BCs in the interconnect structure affects both area and delay. A

large number of BCs provide an abundance of interconnect register sites. Consequently, a BC-rich

interconnect structure improves the routability of pipelined signals. Routability improvements generally

result in track count reductions, and if the area benefit due to such reductions is greater than the area-

penalty of a large number of BCs, an overall area win may result. The number and location of BCs in

the interconnect structure also influences the delay characteristics of a netlist. One reason is the effects

of segmentation on the critical path delay of a netlist [6]. Another reason is that the number of BCs

determines the quality of the routes of pipelined signals. Recall that the number of BCs is a direct

measure of the number of interconnect registers. In BC-poor architectures, the pipelined router finds

long, circuitous routes for heavily pipelined signals. Such poor-quality routes result in a deterioration of

the delay characteristics of a netlist.

Based on our observations on the impact of track count and BCs on area and delay, we identified the

following parameters that may play an important role in determining the overall performance of

RaPiD’s pipelined interconnect structure:

• Registered IO Terminals – The number of registers that can be locally acquired at the IO

terminals of logic units directly affects the number of registers that need to be located in the

interconnect structure. The ability to acquire registers at IO terminals may reduce the overall

routing effort expended in locating pipelining registers.

104

• Bus Connectors – The number of BCs in the interconnect structure directly impacts both area

and delay. As mentioned earlier in this section, a large number of BCs might improve track

count and delay. However, the area hit due to too many BCs might offset improvements due to

track count and delay reductions.

• Multiple-Register Bus Connectors – The number of registers in a BC is a measure of the

number of pipelining registers that can be acquired at a single pipelining site. Increasing the

number of registers that can be acquired at a BC reduces the total number of BCs that have to

be found when routing pipelined signals.

• Short / Long Track Ratio – Since BCs can only be found on long tracks, the ratio between the

number of short and long tracks affects the total number of BCs that can be found in the

interconnect structure. Further, if there are too many short tracks compared to long tracks, then

long connections that would have otherwise used long tracks may be forced to use short track

segments. This might affect track counts and delay adversely.

• Datapath Registers (GPRs) – The GPRs provided in the RaPiD datapath structure offer an

important degree of flexibility. Any unoccupied GPRs in the datapath can be used to switch

tracks during routing. The ability to switch tracks might improve routability.

The remainder of this section presents our interpretation of the results we obtained while exploring

RaPiD’s pipelined interconnect structure. The results were obtained by sweeping individual parameters

of an experimentally optimized RaPiD architecture.

10.1.1 Registered IO Terminals
Our first step is to explore the possible benefits of logic units that have ‘registered’ input or output

terminals. An IO terminal of a logic unit is registered if the terminal can be connected to the

interconnect structure through a local register bank. Local register banks allow pipelined signals to pick

up registers at the logic unit, thus reducing the number of registers that have to be found in the

interconnect structure.

Figure 10-1 shows the area and delay numbers that we obtained on mapping the benchmark netlists to

architectures with registered input, registered output and unregistered terminals. Surprisingly, the effect

of registered IO terminals on area is negligible. This is because the area penalty of adding registers to

IO terminals nullifies the area benefits attributable to the track count reductions shown in Figure 10-2.

105

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Unregistered Reg Inputs Reg Outputs

Registered IO Terminals

AR
E

A
 (u

m
2)

0

2

4

6

8

10

12

DE
LA

Y
 (n

s)

AREA DELAY

Figure 10-1: Area and delay numbers for architectures with registered outputs, registered inputs and
unregistered IO terminals. The “Unregistered” point on the x-axis represents logic units that have no IO
registers, the “RegInputs” point represents logic units that have registers at the input terminals, and the
“RegOutputs” point represents logic units that have registers at the output terminals.

0

5

10

15

20

25

Unregistered Reg Inputs Reg Outputs

REGISTERED IO

TR
A

CK
 C

O
UN

T

Figure 10-2: Track counts for architectures that have registered input, registered output and unregistered
IO terminals. The “Unregistered” point on the x-axis represents logic units that have no IO registers, the
“RegInputs” point represents logic units that have registers at the input terminals, and the “RegOutputs”
point represents logic units that have registers at the output terminals.

106

While area is insensitive to registered IO terminals, the delay results of architectures with registered

inputs is clearly better. This is because the preprocessing heuristic mentioned in Section 9.4 moves a

large number of registers from the interconnect structure in to the inputs of logic units. Consequently,

the pipelined router has to find fewer registers in the interconnect structure, which in turn may improve

delay due to tighter pipelined routes. Interestingly, architectures with registered outputs show no delay

improvement when compared to architectures that have unregistered IO. This is probably because the

number of interconnect registers that are moved in to the outputs of logic units is an insignificant

fraction of the total number of interconnect registers that have to be found during pipelined routing.

Overall, architectures with registered input terminals proved to be the best choice in terms of area-delay

product.

10.1.2 Bus Connectors (BCs)
BCs serve as buffered registered switches in the RaPiD interconnect structure The total number of BCs

in the interconnect structure plays a major role in determining the overall area and delay of a netlist

mapped to the RaPiD architecture. Since a single BC may provide multiple registers, the number of

BCs directly impacts the number of pipelining registers available in the interconnect structure. The

number of BCs in the interconnect structure is varied by changing the number of BCs per long track in a

RaPiD cell. (Hereafter, ‘BCs per long track’ will simply be called BCs per track).

G
PR

G
PR

R
A

M

R
A

M

M
U

L
T

A
L

U

G
PR

A
L

U

G
PR

G
PR

R
A

M

A
L

U

G
PR

G
PR

G
PR

R
A

M

R
A

M

M
U

L
T

A
L

U

G
PR

A
L

U

G
PR

G
PR

R
A

M

A
L

U

G
PR

Figure 10-3: A RaPiD cell that has 1 BC per track (top), and a RaPiD cell that has 2 BCs per track (bottom).

107

For example, the RaPiD cell shown in Figure 10-3 (top) has one BC per track, while the cell shown in

Figure 10-3 (bottom) has two BCs per track. Varying the number of BCs per track not only changes the

number of interconnect register sites, but also the length of long track segments. Long track segments in

Figure 10-3 (top) span thirteen logic units, while long track segments in Figure 10-3 (bottom) span six

or seven logic units.

Figure 10-4 shows the area and delay numbers that we obtained as a result of varying the number of

BCs per track (the number 0.5 on the x-axis implies architectures that had a single BC per track for

every two RaPiD cells). There is a marked improvement in delay when going from half to a single BC

per track. This is because at half BC per track, track segments are too long and there are relatively few

BCs available for pipelined signals. When we increase the number of BCs per track past one, the delay

gradually goes back up. This is because the delay incurred in traversing an increased number of BCs

along a long track more than offsets improvements due to shorter track segments and tighter pipelined

routes.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0.5 1 2 3 4

BCs / TRACK

A
R

E
A

 (u
m

2)

0

5

10

15

20

25

D
E

LA
Y

(n
s)

AREA DELAY

Figure 10-4: The effect of varying number of BCs per track on area and delay.

In terms of area, Figure 10-4 shows a benefit as the number of BCs per track is increased to two. This is

consistent with the 45% reduction in track count when the number of BCs per track is increased from

half to two (Figure 10-5). The area gradually increases after that due to the fact that the area cost of

adding more BCs per track exceeds any improvements in track count.

108

0

5

10

15

20

25

0.5 1 2 3 4

BCs / TRACK

TR
A

CK
 C

O
UN

T

Figure 10-5: The effect of varying number of BCs per track on track count.

Figure 10-6 shows the area-delay product trend that we obtained. The area-delay products at one and

two BCs per track are within 1% of each other, which leads us to believe that anywhere between one

and two BCs per track is a good architectural choice. We selected one BC per track for our experiments.

0

50000000

100000000

150000000

200000000

0.5 1 2 3 4

BCs / TRACK

A
R

E
A*

D
E

LA
Y

 (x
 1

0
-2

1 m
2 s)

Figure 10-6: The effect of varying number of BCs per track on the area-delay product.

109

10.1.3 Multiple-Register Bus Connectors
The number of registers in a BC is another parameter that influences the overall area-delay performance

of a circuit. An increase in the number of registers per BC allows pipelined signals to pick up a greater

number of registers at a single interconnect site. This improves track count because a reduced number

of BCs have to be found while routing pipelined signals. At the same time, the delay characteristics of

the netlists may also get better due to a reduction in the long, circuitous routes that are found while

routing pipelined signals on architectures that have register-poor BCs. Figure 10-7 shows area and delay

trends when the number of registers per BC is varied between one and seven.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

1 2 3 4 5 6 7

REGISTERS / BC

A
R

EA
 (u

m
2)

0

2

4

6

8

10

12

D
E

LA
Y

 (n
s)

AREA DELAY

Figure 10-7: The effect of varying number of registers per BC on area and delay.

There is an improvement in area as the number of registers per BC is increased to three. However, the

area goes back up as the number of registers per BC is increased past that point. This is because

increases in BCs area exceed any area improvements attributable to track-count reductions (Figure

10-8).

At first sight, the delay trend in Figure 10-7 seems surprising. While there is an expected improvement

in delay as the number of registers per BC is increased to four, the delay unexpectedly goes back up

past that point. A possible reason for this behavior is the greedy manner in which the preprocessing

heuristic pushes interconnect registers into logic unit input terminals. While conducting experiments,

we assume that the number of registers in a BC is equal to the maximum number of registers that can be

110

picked up at the inputs of logic units (we made this assumption to limit the number of axes that we

explored to a practical number). Thus, if the number of registers per BC is large, so is the number of

registers that can be moved into the sinks of a pipelined signal. A shortcoming of this assumption is that

long segments of a pipelined signal may get unpipelined because of the removal of registers from the

interconnect structure. This phenomenon is illustrated in Figure 10-9. Assume that a maximum of four

registers can be picked up at the sinks K1- K8. In this case, one interconnect register will be moved into

K1, two into K2, three into K3, and four into K4-K8. This process effectively unpipelines a long-track

segment, which in turn may increase the critical path delay of a netlist.

0

5

10

15

20

25

1 2 3 4 5 6 7

REGISTERS / BC

TR
A

C
K

 C
O

U
NT

Figure 10-8: The effect of varying number of registers per BC on track count.

S 1 1 1 1 1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

1 1 1 1

K1 K2 K3 K4 K5 K6 K7 K8

Long, unpipelined track segment

S

Figure 10-9: Pushing registers from the interconnect structure into logic unit inputs sometimes results in
long, unpipelined track segments.

111

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

1 2 3 4 5 6 7

REGISTERS / BC

A
R

E
A

*D
E

LA
Y

 (x
10

 -2
1 m

2 s)

Figure 10-10: The effect of varying number of registers per BC on the area-delay product.

Figure 10-10 shows the area-delay product vs. number of registers per BC. A clear sweet spot can be

observed at three registers per BC.

10.1.4 Short / Long Track Ratio
RaPiD’s interconnect structure is a mix of short tracks and long tracks. Short tracks achieve local

connectivity between logic units. Long tracks are used to traverse longer distances along the datapath,

and are segmented by means of BCs. In addition to serving as bidirectional switches, BCs also play the

role of interconnect register sites.

We demonstrated earlier that the combined area-delay product of the benchmark netlists is sensitive to

the number of BCs per track. Varying the number of BCs per track changes the distribution and total

number of BCs in the interconnect structure. Another factor that directly affects the number of BCs is

the ratio between short and long tracks. Figure 10-11 shows the area and delay trends that we observed

on varying the fraction of short tracks in the architecture. Notice that the delay is higher for

architectures that have short-track fractions < 0.28. This trend may be due to the fact that short-track

poor architectures force signals to use long-track segments to establish connections that could otherwise

have been routed on short-track segments.9

9

In general, the routing delay of a long-track segment exceeds that of a short-track segment. A long segment has more resistance
due to its length, and greater fanout capacitance.

112

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

0 0.14 0.28 0.42 0.56

FRACTION SHORT TRACKS

A
R

E
A

 (u
m

2)

0

2

4

6

8

10

12

D
E

LA
Y

 (n
s)

AREA DELAY

Figure 10-11: The effect of varying fraction of short tracks on area and delay.

For short-track fractions > 0.28, the delay again increases because of two reasons. First, long-track poor

architectures force signals to use multiple short-track segments to establish connections that may have

otherwise used a single long-track segment10. Second, the reduction in the number of BCs increases the

need for long, circuitous routes for heavily pipelined signals.

The area curve has a minimum at 0.14. Architectures that are relatively poor in short tracks pay an area

penalty due to an excessive number of BCs and an increased track count (Figure 10-12). The track

count increases because signals that could have been routed on segments on the same short track have

to use segments on different long tracks. As the short-track fraction is increased past 0.14, the area goes

back up. This is again due to an increase in track count (Figure 10-12). This time however, the track

count increases because fewer BCs are available to pick up registers in the interconnect structure.

10Note that unoccupied GPRs in the datapath can be used by signals to switch tracks arbitrarily.

113

0

5

10

15

20

25

30

0 0.14 0.28 0.42 0.56

FRACTION SHORT TRACKS

TR
AC

K
 C

O
UN

T

Figure 10-12: The effect of varying fraction of short tracks on track count.

The area-delay trend vs. the fraction of short tracks in Figure 10-13 shows a clear minimum at 0.28.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 0.14 0.28 0.42 0.56

FRACTION SHORT TRACKS

A
R

E
A

*D
E

LA
Y

 (x
10

 -2
1 m

2 s)

Figure 10-13: The effect of varying fraction of short tracks on the area-delay product.

114

10.1.5 Datapath Registers (GPRs)
The main purpose of GPRs in the RaPiD architecture is to serve as pipelining sites in the datapath

structure. However, any unoccupied GPR units can also be used by signals to switch tracks in the

interconnect structure. A large number of unoccupied GPRs in the datapath structure increases the

flexibility of the interconnect structure. Consequently, the total number of GPRs in the architecture

plays a role in determining the routability of netlists that are mapped to the RaPiD architecture. This

role may be especially pronounced in netlists that occupy a large percentage of GPRs in the datapath.

Figure 10-14 shows area and delay trends when the number of GPRs per RaPiD cell is varied between

five and ten (the number 6 on the x-axis corresponds to the number of GPRs provided in the original

RaPiD cell shown in Figure 10-3 (top)).

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

5 6 7 8 9 10

GPRs / CELL

A
R

E
A

 (u
m

2)

0

2

4

6

8

10

12

DE
LA

Y
 (n

s)

AREA DELAY

Figure 10-14: The effect of increasing the number of extra GPRs / RaPiD cell on area and delay.

Figure 10-14 shows that varying the number of GPRs per RaPiD cell produces marginal area benefits

while going from five to seven GPRs per cell. This is consistent with the reduction in track count shown

in Figure 10-15. When the number of GPRs / cell is increased past seven, the area goes back up due to

the penalty of adding extra GPRs to the architecture. Notice in Figure 10-15 that track count remains

relatively constant past seven GPRs.

The delay curve in Figure 10-14 has a minimum at nine GPRs per cell. Architectures that have fewer

than nine GPRs per cell do not have sufficient switching sites. Consequently, the pipelined router is

115

forced to find potentially longer routes for pipelined signals. The delay goes back up past nine GPRs

per cell because the delay of track segments increases. This increase can be attributed to the greater

fanout capacitance per segment that results when the number of GPRs per cell is increased. Figure

10-16 shows that the area-delay product is minimum for architectures that have nine GPRs per RaPiD

cell.

0

5

10

15

20

25

5 6 7 8 9 10

GPRs / CELL

TR
A

C
K

 C
O

U
N

T

Figure 10-15: The effect of increasing the number of extra GPRs / RaPiD cell on track count.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

5 6 7 8 9 10

GPRs / CELL

A
RE

A*
D

EL
AY

 (x
10

 -2
1 m

2 s)

Figure 10-16: The effect of increasing the number of extra GPRs / RaPiD cell on area-delay product.

116

10.2 Quantitative Evaluation
In this section we quantify the benefits of exploring RaPiD’s pipelined interconnect structure. We

reproduce the RaPiD cell from Figure 10-3 (top) in Figure 10-17. The RaPiD cell has registered

outputs, a single BC per track, three registers per BC and 28% short tracks.

G
PR

G
PR

R
A

M

R
A

M

M
U

L
T

A
L

U

G
PR

A
L

U

G
PR

G
PR

R
A

M

A
L

U

G
PR

Figure 10-17: A RaPiD cell. Several cells can be tiled together to form a representative architecture.

We first note that the choices of a single BC per track, three registers per BC and 28% short tracks are

in fact consistent with the findings of our exploration in Section 10.1. At the same time, there are

differences between RaPiD and our findings. First, RaPiD has registered outputs. Our exploration found

that registered inputs are a better choice. Second, we found that the number of GPRs per RaPiD cell is

insufficient, and that there should be nine GPRs per RaPiD cell (three more than the six GPRs shown in

Figure 10-17).Table 10-1 presents a comparison between the original RaPiD architecture and the best

post-exploration architecture that we found. Column 1 lists the benchmark netlists, column 2 lists area-

delay products (all area-delay product values are x10-21m2s) measured from the post-exploration

architecture, column 3 lists area-delay products measured from RaPiD, column 4 lists percentage

improvements, and column 5 lists the fraction of pipelined signals in each netlist. RaPiD outperforms

the post-exploration architecture for netlists that have less than 30% pipelined signals, while the post-

exploration architecture performs better than RaPiD for netlists that have more than 54% pipelined

signals. Overall, the post-exploration architecture’s area-delay product is 19% better than that of the

RaPiD architecture.

117

Table 10-1: A quantitative comparison of RaPiD with the post-exploration architecture.

Netlist Post-Explore RaPiD % Improve fracn pipe
firtm 53315010 42731038 - 25% 0.03
fft16 69861704 58841648 - 19% 0.29

cascade 124208334 131567582 + 6% 0.4
matmult4 43718308 69887073 + 37% 0.44

sobel 149055072 111187648 - 34% 0.44
imagerapid 108339199 90049942 - 20% 0.51
firsymeven 66659262 102737262 + 35% 0.54

sort_g 19128011 41412889 + 54% 0.65
sort_rb 31809351 88791876 + 65% 0.71

61850995.6 76281065.26

10.3 Summary
The primary objective of this chapter was to identify and explore various interconnect parameters that

affect the overall performance of applications that are mapped to RaPiD. A summary of our findings:

1. Adding registers to the inputs of logic units may improve the performance of pipelined netlists

(Section 10.1.1). However, if the number of registers is large, greedily pushing the maximum

number of registers into inputs may result in a deterioration of the delay of a netlist (Section

10.1.3).

2. The number and distribution of registered interconnect sites greatly influence overall

performance. If there is an insufficient number of interconnect register sites, the pipelined

router is forced to find long, circuitous routes that adversely affect both track count and delay

(Section 10.1.2). On the other hand, peppering the interconnect structure with register sites

may result in an unacceptable area penalty.

3. For reasons similar to those in 2, the number of registers per interconnect site also has to be

carefully selected (Section 10.1.3).

4. The flexibility of the interconnect structure has a bearing on the performance of netlists. In

Section 10.1.5, we show that architectures that are GPR-poor do not perform well. This is

because of increased track counts and longer pipelined routes. On the other hand, architectures

that have too many GPRs suffer from an excessive area-penalty.

118

Chapter 11: Conclusions and Future Work

The subject of this dissertation was the development of placement and routing algorithms that may play

important roles in FPGA architecture advancement. The work presented in this document can be

divided into two major contributions. The first was the development of a universal FPGA placement

algorithm (Independence) that adapts to the target FPGA’s interconnect structure. The second

contribution was the development of an algorithm (PipeRoute) that can be used to route netlists on

pipelined FPGAs. We present our assessment, conclusions, and the scope for future work separately for

each contribution.

11.1 Independence
The primary motivation for Independence was the lack of an FPGA placement algorithm that truly

adapts to the target FPGA’s interconnect structure. We thought that FPGA architecture development

efforts would benefit from an adaptive placement algorithm that could be used both as an early

evaluation mechanism, as well as a quality goal during CAD tool development. Since the primary goal

of an FPGA placement algorithm is to produce a routable placement, our solution to architecture

adaptive FPGA placement was centered on using an architecture-adaptive router (Pathfinder) to guide a

conventional simulated annealing placement algorithm. Specifically, we used Pathfinder in the

simulated annealing inner loop to maintain a fully routed solution at all times. As a result, our cost

calculations were based on actual routing information instead of architecture-specific heuristic estimates

of routability.

The results presented in Chapter 6 clearly demonstrated Independence’s adaptability to island-style

FPGAs, a hierarchical FPGA architecture (HSRA), and a domain-specific reconfigurable architecture

(RaPiD). The quality of the placements produced by Independence was within 2.5% of the quality of

VPR’s placements, 21% better than the placements produced by HSRA’s place-and-route tool, and

within 1% of RaPiD's placement tool. Further, our results also showed that Independence successfully

adapts to routing-poor island-style FPGA architectures. When considered together, these results were a

convincing validation of using an architecture adaptive router to guide FPGA placement.

In our opinion, Independence’s main weakness is its runtime. The algorithm pays a stiff runtime penalty

for using a graph-based router in the simulated annealing inner loop. In Chapter 7, we presented ideas

119

on speeding up Independence (and FPGA routing in general) using the A* algorithm. Again, to preserve

adaptability, we concentrated on developing an approach that would work across different FPGA

architectures. Memory considerations quickly eliminated a straightforward approach that would pre-

compute and store A* estimates for every sink terminal at each interconnect wire. The central idea

behind our approach was to cluster interconnect wires that have similar A* estimates, so that all wires

that belong to the same cluster could share an entry in the A* estimate table. Thus, the memory

requirements of the A* estimate table produced by our clustering technique were comfortably

manageable when compared to the straightforward approach.

We evaluated the efficacy of our clustering-based technique on an island–style architecture and a

hierarchical architecture (HSRA). The quality of the A* estimates produced by our technique was

within 11% of heuristic estimates on the island-style architecture, and 7% better than heuristically

calculated estimates for HSRA. We also observed that a low-effort clustering technique might produce

estimates that are comparable in quality to both heuristic and clustering-based estimates.

Currently, we see at least three important problems that need to be addressed in the future. We now

describe each problem, and present preliminary ideas on how these problems may be solved.

Congestion Weighting Parameter λ: Independence’s cost function (Equation 11.1) includes a

congestion cost term that represents the extent to which the routing resources are congested in a given

placement. The congestion weighting parameter λ is used to vary the importance of changes in

congestion with respect to changes in wire cost. In Chapter 6, we studied the effect of the congestion

weighting parameter λ on the quality of placements produced by Independence. We reproduce our

results in Figure 11-1. While it can safely be concluded that a non-zero value of λ produces placements

that either match or are better than placements produced at λ=0, there is no compelling evidence that

points to a “magic” value of λ that produces high-quality placements across different architectural

styles. Furthermore, the nature of the quality curves also differs on a per-architecture basis.

Equation 11.1: ∆ C = ∆WireCost / prevWireCost + λ * ∆ CongestionCost / CongestionNorm

120

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10 12 14 16

λ

N
or

m
al

iz
ed

 T
ra

ck
 C

ou
nt

Island-Style
RaPiD
HSRA7,0.5
HSRA8,0.5

Figure 11-1: The effect of weighting parameter λ on the quality of the placements produced by
Independence. The Island-Style curve shows the results of our experiments on an island-style architecture,
the RaPiD curve shows results on the RaPiD architecture, the HSRA7,0.5 curve shows results on HSRA, and
the HSRA8,0.5 curve shows results on a high-stress instance of the HSRA architecture. The x-axis represents
increasing values of the congestion weighting parameter λ, and the y-axis represents normalized track-
counts.

Based on the results presented in Figure 11-1, λ is a tuning parameter that needs to be empirically

determined on a per-architecture basis. Tuning λ on a per-architecture basis weakens Independence.

The underlying premise of Independence is adaptability, and expecting FPGA architects to spend time

and resources in determining a sweet spot for λ is probably not consistent with the adaptability premise.

Thus, it is imperative that future research focuses on techniques that auto-determine λ.

Our first idea for solving the auto-determination problem for λ is based on dynamic parameter tuning

techniques presented in [50]. Specifically, we first select a small representative sub-set of the

benchmark netlists. For each netlist in this sub-set, we determine the value of λ which yields the best

placement while recording the congestion profile as the placement algorithm progresses. We then use

121

statistical techniques to determine a target congestion value at the end of each temperature iteration. If

the congestion at the end of a temperature iteration exceeds the target value, then we increase λ by an

amount proportional to the difference between actual and target congestion. Otherwise, λ is decreased

by an amount proportional to the difference between the target and actual congestion. This approach is

rooted in feedback-based control systems, and proved very effective in dynamically controlling cost

function weighting parameters in [50].

Another technique that may prove useful in auto-determining λ is based on dynamically varying λ in

proportion to the difference between the netlist and interconnect bandwidth. At the end of a temperature

iteration, the target device is binned into approximately equal sized bins. Each bin is assigned a value of

λ proportional to the difference between the region’s incident interconnect bandwidth (or Rent’s

parameter) and the locally resident sub-netlist’s Rent’s parameter. In the next temperature iteration, the

λ used in calculating the change in cost due to a logic block move is equal to the λ assigned to the bin in

which the logic block resided. In case the logic blocks involved in the move belong to different λ bins,

then a simple, easily calculated function of both λs can be used in cost calculations. The significant

difference between the previous dynamic parameter tuning technique and the binning technique is that λ

varies spatially as well as over time in the binning technique. An efficient technique for estimating the

Rent’s parameter of an FPGA interconnect structure can be found in [37]. Techniques for estimating the

Rent’s parameter at the sub-netlist level can be found in [53].

A potentially significant shortcoming of the binning technique is selecting bin-size on a per-architecture

basis. We want to ensure that bin-size does not become a tuning parameter itself. To alleviate this

problem, we could use a pre-processing step that uses a binary search on a representative sub-set of

benchmark netlists to calculate a reasonable bin size. This bin size can then be used as a constant

parameter for experiments on the actual benchmark set.

Timing-Driven Cost Function: Independence’s current cost function is routability-driven, and does not

explicitly consider critical path delay information during the placement process. Timing can be

incorporated into Independence’s cost formulation by including a timing cost term that is very similar to

VPR’s TimingCost [30]. Independence’s cost function can be modified to include timing information as

follows:

122

Equation 11.2: TimingCost
mingCostTi

NormCongestion
CostCongestion

stprevWireCo
WireCostC ∆

+
∆

+
∆

=∆ ** µλ

The timing cost of a placement is calculated using the cost functions in Equation 11.3 and Equation

11.4.

Equation 11.3: j)y(i,Criticalit*j)Delay(i,j),mingCost(iTi =

Equation 11.4: ∑
⊂∀

=
circuitji,

j)(i,TimingCostingCostTim

In Equation 11.3, TimingCost(i,j) represents the timing cost of a net that connects a source-sink pair

(i,j), Delay(i,j) is the delay of the net, and Criticality(i,j) is the criticality of the net. During the

placement process, the delay of a net is directly obtained from the currently routed placement. Note that

VPR uses a pre-computed delay table to lookup the delay of a net during placement. The pre-computed

delay values are calculated using a congestion-unaware timing-driven router, and may be inaccurate in

the presence of congestion. Since Independence uses a congestion-driven cost function and maintains a

fully routed placement at all times, accurate delay calculations can easily be done on the fly during

placement. Further, we update the criticality of moved nets using an incremental static timing analysis

approach similar to the approach presented in [35]. Again, this is a difference between our timing-

driven technique and VPR’s timing-driven placement algorithm. VPR performs static timing analysis

only at the beginning of temperature iteration, which may result in undesirably stale criticalities during

a temperature iteration. Independence’s incremental criticality update approach avoids stale criticalities.

The value of µ in Equation 11.2 can be dynamically determined using a technique that is similar to the

dynamic parameter tuning approach for auto-determining congestion parameter λ.

Runtime Considerations: An enhanced implementation of Independence that uses the A* algorithm is

currently between 640 – 5000 times slower than VPR. This gap is undesirably large, and calls for

further runtime improvements.

123

Our technique for runtime improvements is based on dividing simulated annealing into two phases over

time. We hypothesize that a large share of the annealing runtime is spent in producing routability

improvements primarily through wirelength reductions. Thus, during the first part of the annealing

process (called the “initial” phase), the cost of a placement is purely a function of wirelength. Full-

blown Pathfinder-driven Independence is kicked in only during the second part of the annealing process

(called the “final” phase). In the final phase, we use Independence’s congestion- and timing-driven cost

function to aggressively reduce congestion while producing potential improvements in timing.

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% of Total Placement Iterations

%
 o

f T
ot

al
 R

un
tim

e

alu4

apex4

dsip

ex5p

misex3

pair

rot

tseng

x1

x3

Figure 11-2: Runtime distributions for the ten largest netlists in our island-style benchmark set. The x-axis
shows the percentage of the total number of annealing iterations required by Independence to place an
individual netlist. The y-axis shows the fraction of the total annealing runtime spent in an annealing
iteration.

The point at which the initial phase transitions to the final phase may be determined by running full-

blown Independence on a subset of the benchmark netlists and plotting execution time vs. annealing

progress. Figure 11-2 shows the variation in per-iteration placement runtime for the ten largest island-

style benchmark netlists. The charts in Figure 11-2 show that a large share of Independence’s runtime is

124

due to the first 80 – 90% of the annealing iterations. Based on these trends, we expect that the initial

phase will consist of 80 – 90% of the annealing iterations, while the final phase will consist of the

remaining 10 – 20% of the annealing iterations. In our current implementation of Independence, the last

10 – 20% of the annealing iterations require 5 – 11% of the total runtime. Assuming that we can

develop an architecture-adaptive wirelength-based placer whose runtime is similar to VPR, we could

reduce Independence’s runtime by potentially 10 – 20 times.

The transition from the initial to the final phase need not be determined only on the basis of runtime. A

second approach that may prove useful in determining the phase transition point is based on monitoring

quality curves produced by full-blown Independence and the wirelength-based placement algorithm.

Specifically, we run Independence and the wirelength-based placer separately on a subset of benchmark

netlists. During execution, we periodically halt the placement algorithm and route the current placement

using Pathfinder. Note that this will be a complete multi-iteration Pathfinder run that attempts to find a

fully routed solution for the current placement. At the end of a Pathfinder run, we record routing data

(number of congested resources, number of iterations required by Pathfinder to converge etc) that is

representative of the quality of the routing solution. This process of halting placement and attempting

routing is repeated throughout the execution of both placement algorithms. At the end of a placement

run, the routing data produced by both placement algorithms is plotted vs. annealing progress. Based on

our hypothesis, we would expect that the quality curves produced by Independence and the wirelength-

based placer would diverge at some point during the annealing process. This divergence point might be

a good opportunity to transition from a wirelength-based placer to full-blown Pathfinder-driven

Independence.

The bedrock of our approach will be the architecture-adaptive wirelength estimation technique used

during the initial phase. Clearly, we do not have the luxury of semi-perimeter estimates, and need to

develop techniques that are reasonably accurate and architecture-adaptive. In our opinion, architecture-

adaptive wirelength estimates can only be obtained using actual routing information. The important

question is when and how often to run the router. Clearly, we cannot use an incremental rip-up and

reroute strategy after every placement move without degenerating to Independence’s runtime. Instead,

we could use an all-pair shortest-path algorithm to pre-compute the cost of a shortest path between any

two logic-blocks in the target device and store the costs in a lookup table. This lookup table could then

be used during the initial phase to estimate the wirelength of a net.

125

Note that lookup table-based estimation of the wirelength of a multi-terminal net is not a trivial process.

It will be necessary to develop a quick method to approximate the cost of a Steiner tree for the net based

on shortest-path costs between any two logic blocks. Approximating Steiner trees using MSTs may be a

good starting point, since the number of vertices in the target graph (built from the lookup-table) is

equal to the number of logic blocks, and not the number of routing wires and IO terminals in the

FPGA’s interconnect structure. Still, MST calculation is expensive and the runtime improvement

produced by an initial phase that uses MSTs to estimate wirelength might not be compelling. Thus, it

might be necessary to develop a faster heuristic for approximating Steiner trees using the pre-computed

lookup table.

Wirelength estimation can be approached from a different direction if we relax the adaptability

constraint to an architecture-independent constraint. Specifically, we could develop a wirelength

estimation technique that is largely independent of the target FPGA’s interconnect structure. There are a

number of research efforts that have used statistical techniques [11], Rent’s rule based techniques

[48,61], and flexibility analysis [24] to estimate the wirelength and/or congestion of a placement. It

might be possible to use these techniques as a good starting point for developing an architecture-

independent wirelength estimation approach. A good survey of the applicability of these techniques can

be found in [23].

As a final note, there are a couple important considerations that directly influence the usefulness of our

approach. First, the wirelength estimation technique used in the initial phase must allow fast,

incremental calculation of changes in cost. Otherwise, the technique might not be appropriate for a

simulated annealing placement algorithm that relies on the quick calculation of incremental changes in

cost. Second, the transition from the initial phase to the final phase may affect the annealing schedule,

since the placement cost profile will abruptly switch from one space to another. Both these issues need

to be carefully considered during the development of this potentially faster technique.

11.2 PipeRoute
The second major contribution of the work discussed in this dissertation is the PipeRoute algorithm. In

Chapter 9 we pointed out that the routing problem for pipelined FPGAs is different from the

conventional FPGA routing problem. In a nutshell, the pipelined routing problem is to find minimum

cost routes that satisfy register constraints at sink terminals. The two-terminal pipelined routing

problem is NP-Complete, and PipeRoute was the first algorithm that attempted to solve the pipelined

routing problem. The algorithm’s core is an optimal 1-Register router that is used in a heuristic manner

126

to build general two-terminal and multi-terminal routes. During PipeRoute’s development, we actively

tried to minimize the algorithm’s reliance on architecture-specific features by using architecture

independent abstractions and heuristics. For example, by expressing the target FPGA’s interconnect

structure as a routing graph, we were able to leverage Pathfinder’s congestion resolution mechanism

while routing pipelined signals.

PipeRoute’s performance was evaluated on the RaPiD architecture. Overall, PipeRoute was able to

successfully route pipelined netlists on the RaPiD architecture, and the overhead incurred was less than

20% above a realistic lower bound. We also combined PipeRoute and a RaPiD-specific placer together

in an exploratory CAD flow. Chapter 10 presents the results that we obtained on using the CAD flow to

explore RaPiD’s pipelined interconnect structure. The main findings of the exploration were that the

number and location of registers in the interconnect structure may have a significant impact on area-

delay product, and that logic units with registered inputs may be a good choice for the RaPiD

architecture. Overall, the post-exploration architecture that we found was 19% better than the original

RaPiD architecture.

PipeRoute’s primary weakness is probably its inability to distribute latency along a route. PipeRoute’s

greedy heuristics tend to clump registers at the source end of a pipelined signal, resulting in long

unpipelined track segments. This weakness may adversely affect critical path delay, and thus it is

necessary to explore techniques that explicitly consider the timing effects of register assignment during

the routing process.

Clearly, the development of a timing-driven pipelined CAD flow is a strong candidate for future work.

However, timing-driven register assignment must be made manageable, possibly by breaking up the

task into smaller problems. In our opinion, timing-driven register assignment during the FPGA routing

phase is an untenably difficult problem. To begin with, conventional FPGA routing is an NP-Hard

problem. Further, even if sharing and timing constraints are entirely disregarded, the two-terminal ND

pipelined routing problem is also NP-Hard. Developing an effective, unified approach that

simultaneously finds pipelined routes and eliminates sharing and minimizes critical-path delay is

probably just too hard. We propose the following approaches as potential solutions to timing-driven

register assignment:

Register Assignment During Placement: In this approach, register assignment is performed during the

placement phase. Pipelining registers in the netlist are freely assigned to both logic units and

127

interconnect register-sites. The placement algorithm used by this technique is a timing-driven version of

Independence. The primary benefits of using Independence are its adaptability and an explicit

congestion resolution mechanism. Thus, Independence can be used to solve the register assignment

problem on any pipelined FPGA architecture. Furthermore, on routing-poor architectures like RaPiD,

Independence’s congestion-driven formulation can counter reductions in routing flexibility due to the

assignment of pipelining registers to interconnect register-sites.

At the end of the placement phase, the assignments of pipelining registers to logic and interconnect sites

are preserved, and Pathfinder is used to route the netlist. This methodology is in direct contrast to the

place-and-route flow developed for RaPiD (Chapter 9). In RaPiD’s case, the register assignments that

were produced by a targeted cutsize-based placement algorithm were in fact removed prior to routing

the netlist using PipeRoute. Recall that the register assignments were of extremely poor quality (Table

9-1), and Pathfinder was unable to route most of netlists. We feel that the primary reason for this failure

was the inability of our placement algorithm to produce sufficiently decongested placements on

RaPiD’s inflexible interconnect structure, which shifted the burden of register assignment to the routing

algorithm. Now that we have a congestion-driven placement algorithm, it might be a good idea to

revisit placement techniques that can solve the register assignment problem.

Decouple Timing From Congestion Resolution: This approach breaks up the timing-driven pipelined

routing problem into two sub-problems. Specifically, we first use routability-driven PipeRoute to

produce register assignments. We then transform the netlist to expose the register assignments, rip up

the routing produced by PipeRoute, and use timing-driven Pathfinder to reroute the transformed netlist.

Clearly, this two-step approach separates register assignment from timing improvements, and is more

manageable from an implementation perspective.

Merely decoupling register assignment from timing improvements might not adequately address

PipeRoute’s register-clumping shortcoming. In order to distribute registers more evenly along pipelined

routes, an incremental “de-clump” step that redistributes registers along pipelined routes might be

necessary. Specifically, at the end of a successful PipeRoute run, the de-clump step pulls apart register

clumps by spreading out register assignments on a pipelined route. Note that de-clump does not involve

any rip-up and reroute; register re-assignments are localized to register-sites that are already part of a

pipelined route. Clearly, the de-clump operation relies on the availability of extra, unused register-sites

along a pipelined route. We feel that this assumption may be reasonable given that a number of FPGA

128

architectures have track-domains, and the switches in a track domain are either entirely registered or

unregistered [15,52,46].

All in all, the overall flow of this technique is routability-driven PipeRoute + de-clump + timing-driven

Pathfinder. Placements can be obtained using an Independence-based placement algorithm that exposes

pipelining registers during placement. The only difference is that register assignments are removed

post-placement, and routability-driven PipeRoute is used to reassign pipelining registers during the

routing phase.

129

Bibliography

[1] M. Alexander, J. Cohoon, J. Ganley, G. Robins, “ Performance-Oriented Placement and Routing
for Field-Programmable Gate Arrays”, European Design Automation Conference, pp. 80 – 85,
1995.

[2] Altera Inc., “Stratix™ Devices”, available at http://altera.com/literature/lit-stx.jsp

[3] Altera Inc., “Stratix II™ Devices”, available at http://altera.com/literature/lit-stx2.jsp.

[4] J. Beetem, “Simultaneous Placement and Routing of the LABYRINTH Reconfigurable Logic
Array”, In Will Moore and Wayne Luk, editors, FPGAs, pp. 232-243, 1991.

[5] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research”,
7th International Workshop on Field-Programmable Logic and Applications, pp 213-222, 1997.

[6] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, Boston, MA:1999.

[7] V Betz, “The FPGA Place-and-Route Challenge”, at http://www.eecg.toronto.edu/~vaughn/

[8] G. Boriello, C. Ebeling, S Hauck, S. Burns, “The Triptych FPGA Architecture”, IEEE
Transactions on VLS Systems, Vol. 3, No. 4, pp. 473 – 482, 1995.

[9] S. Cadambi, S. Goldstein, “Efficient Place and Route for Pipeline Reconfigurable Architectures,”
International Conference on Computer Design, pp. 423 – 429, 2000.

[10] Y.W. Chang and Y.T. Chang, “An Architecture-Driven Metric for Simultaneous Placement and
Global Routing for FPGAs”, ACM/IEEE Design Automation Conference, pp. 567-572, 2000.

[11] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling”, IEEE/ACM
International Conference on Computer Aided Design, pp. 690 – 695, 1994.

[12] K Compton, S Hauck, “Totem: Custom Reconfigurable Array Generation”, IEEE Symposium on
Field-Programmable Custom Computing Machines, pp , 2001.

[13] K Compton, A Sharma, S Phillips, S Hauck, “Flexible Routing Architecture Generation for
Domain-Specific Reconfigurable Subsystems”, International Conference on Field-
Programmable Logic and Applications, pp 59 – 68, 2002.

[14] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press, Cambridge,
MA:1990.

[15] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling, “Architecture Design of
Reconfigurable Pipelined Datapaths”, Twentieth Anniversary Conference on Advanced Research
in VLSI, pp 23-40, 1999.

130

[16] A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable Computing Array (or,
why you don’t really want 100% LUT utilization),” ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 1999.

[17] C. Ebeling, D. Cronquist, P. Franklin, “RaPiD - Reconfigurable Pipelined Datapath”, 6th
International Workshop on Field-Programmable Logic and Applications, pp 126-135, 1996.

[18] C. Fiduccia, R. Mattheyses, "A Linear-Time Heuristic for Improved Network Partitions",
ACM/IEEE Design Automation Conference, pp. 241-247, 1982.

[19] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor, “PipeRench: A
Reconfigurable Architecture and Compiler”, IEEE Computer, pp. 70 – 76, 2000.

[20] S. Hauck, T. Fry, M. Hosler, J. Kao, “The Chimaera Reconfigurable Functional Unit”, IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 87 – 96, 1997.

[21] S Hauck, Multi-FPGA Systems, PhD Thesis, University of Washington, Dept. of Computer
Science and Engineering, 1995.

[22] N. Kafafi, K. Bozman, S Wilton, “Architectures and Algorithms for Synthesizable Embedded
Programmable Logic Cores”, ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp. 3 – 11, 2003.

[23] P. Kannan, S. Balachandran, D. Bhatia, “On Metrics for Comparing Routability Estimation
Methods for FPGAs”, ACM/IEEE Design Automation Conference, pp 70 – 75, 2002.

[24] P. Kannan, S. Balachandran, D. Bhatia, “fGREP: Fast Generic Routing Demand Estimation for
Placed FPGA Circuits”, International Conference on Field Programmable Logic and
Applications, pp 37 – 47, 2001.

[25] G. Karypis, Vipin Kumar, “Multi-level k-way Hypergraph Partitioning”, ACM/IEEE Design
Automation Conference, pp. 343 – 348, 1999.

[26] S. Kirkpatrick, C. Gelatt Jr., M. Vecchi, “Optimization by Simulated Annealing”, Science, 220,
pp. 671-680, 1983.

[27] C. Leiserson, and J. Saxe, “Retiming Synchronous Circuitry”, Algorithmica, 6(1):5-35, 1991.

[28] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations”, 5th
Berkeley Symposium on Mathematical Statistics and Probability, pp. 281 – 297, 1967.

[29] P. Maidee, C. Ababei, K. Bazargan, “Fast Timing-Driven Partitioning-based Placement for
Island Style FPGAs”, ACM/IEEE Design Automation Conference, pp. 598 – 603, 2003.

[30] A. Marquardt, V. Betz and J. Rose, “Timing Driven Placement for FPGAs”, ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp. 203 – 213, 2000.

[31] A. Marquardt, V. Betz and J. Rose, “Speed and Area Tradeoffs in Cluster-Based FPGA
Architectures”, IEEE Transactions on VLSI Systems, Vol. 8, No. 1, pp. 84 – 93, 2000.

[32] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings, “ A Reconfigurable

131

Arithmetic Array for Multimedia Applications”, ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 135 – 143, 1999.

[33] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven Router
for FPGAs”, ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp
111-117, 1995.

[34] C. Mulpuri, S. Hauck, “Runtime and Quality Tradeoffs in FPGA Placement and Routing”,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 29 – 36, 2001.

[35] S. Nag and R. Rutenbar, “ Performance-Driven Simultaneous Placement and Routing for
FPGAs”, IEEE Transactions on Computer-Aided Design of Integrated Circuits, Vol. 17, No. 6,
pp. 499 – 518, 1998.

[36] M. Papaefthymiou, “Understanding Retiming through Maximum Average-Weight Cycles”, ACM
Symposium on Parallel Algorithms and Architectures, pp. 272 – 277, 1991.

[37] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, A. Singh, “Interconnect Complexity-
Aware FPGA Placement Using Rent’s Rule”, IEEE/ACM International Workshop on System
Level Interconnect Prediction, pp. 115 – 121, 2001.

[38] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing, Kluwer Academic
Publishers, Boston, MA: 1988.

[39] U. Seidl, K. Eckl, F. Johannes, “Performance-directed Retiming for FPGAs using Post-
placement Delay Information”, Design Automation and Test in Europe, pp. 770 – 775, 2003.

[40] A. Sharma, “Development of a Place and Route Tool for the RaPiD Architecture”, Master’s
Project, University of Washington, December 2001.

[41] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for FPGAs”,
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp 68-77, 2003.

[42] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for Reconfigurable
Architectures”, to appear in IEEE Transactions on Computer-Aided Design of Integrated
Circuits, 2006.

[43] A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for FPGAs”,
University of Washington, Dept. of EE Technical Report UWEETR-0018, 2002.

[44] A Sharma, K Compton, C Ebeling, S Hauck, “Exploration of Pipelined FPGA Interconnect
Structures”, ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp 13-
22, 2004.

[45] N. Shenoy, R. Rudell, “Efficient Implementation of Retiming”, IEEE/ACM International
Conference on Computer Aided Design, pp. 226 – 233, 1994.

[46] D. Singh, S. Brown, “The Case for Registered Routing Switches in Field Programmable Gate
Arrays”, ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp 161-
169, 2001.

132

[47] D. Singh, S. Brown, “Integrated Retiming and Placement for Field Programmable Gate Arrays”,
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp 67-76, 2002.

[48] D. Stroobandt and J Van Campenhout, “Accurate Interconnect Length Estimations for
Predictions Early in the Design Cycle”, VLSI Design, Special Issue on Physical Design in Deep
Submicron, 10(1):1-20, 1999.

[49] J. Swartz, V. Betz and J. Rose, “A Fast Routability-Driven Router for FPGAs”, ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp. 140 – 149, 1998.

[50] W. Swartz and C Sechen. “New Algorithms for the Placement and Routing of Macrocells”, IEEE
International Conference on Computer Aided Design, pp. 336 – 339, 1990.

[51] N. Togawa, M. Yanigasawa, T. Ohtsuki, “Maple-opt: A Performance-Oriented Simultaneous
Technology Mapping, Placement, and Global Routing Algorithm for FPGAs”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, Vol. 17, No. 9, pp. 803 – 818,
1998.

[52] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George, J.
Wawrzynek and A. DeHon, “HSRA: High-Speed, Hierarchical Synchronous Reconfigurable
Array”, ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 1999.

[53] H. Van Marck, D. Stroobandt and J. Van Campenhout, “Toward an Extension of Rent’s Rule for
Describing Local Variations in Interconnect Complexity”, International Conference for Young
Scientists, pp. 136 –141, 1995.

[54] B Von Herzen, “Signal Processing at 250 MHz Using High-Performance FPGAs”, ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp 62 – 68, 1997.

[55] P. Wang and K. Chen, “A Simultaneous Placement and Global Routing Algorithm for an FPGA
with Hierarchical Interconnection Structure”, International Symposium on Circuits and Systems,
pp. 659 – 662, 1996.

[56] N. Weaver, J. Hauser, J. Wawrzynek, “The SFRA: A Corner-Turn FPGA Architecture”,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pp. 3 – 12, 2004.

[57] N. Weaver, Y. Markovskiy, Y. Patel, J. Wawrzynek, “Post-Placement C-slow Retiming for the
Xilinx Virtex FPGA”, ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 185 – 194, 2003.

[58] T. Wong, “Non-Rectangular Embedded Programmable Logic Cores”, M.A.Sc. Thesis, University
of British Columbia, May 2002.

[59] Xilinx Inc, “Virtex-4 Overview”, at http://www.xilinx.com/products/virtex4/overview.htm.

[60] Xilinx Inc, “VirtexII Platform FPGA Features”, at http://www.xilinx.com.

[61] X. Yang, R. Kastner, M Sarrafzadeh, “Congestion Estimation During Top Down Placement”,
International Symposium on Physical Design, pp. 164 – 169, 2001.

133

Vita

Personal
Akshay Sharma, born January 3, 1977.

Education
Ph.D., Electrical Engineering, University of Washington, Seattle WA, 2005.
Thesis: Place and Route Techniques for FPGA Architecture Advancement.
Advisors: Scott Hauck and Carl Ebeling.

M.S., Electrical Engineering, University of Washington, Seattle WA, 2001.
GPA 3.85.

B.E., Electronics & Communications Engineering, University of Delhi, New Delhi (India), 1999.
Grade 80% (With Distinction).

Recognition
University of Washington Electrical Engineering Outstanding Research Assistant Award, 2005.
Nominated for an Intel Fellowship by University of Washington Electrical Engineering, 2004.
Nominated for University of Washington Electrical Engineering Outstanding Teaching Award, 2004.

Publications
K. Compton, A. Sharma, S. Phillips, S.Hauck, “Flexible Routing Architecture Generation for Domain-
Specific Reconfigurable Subsystems”, International Conference on Field Programmable Logic and
Applications, 2002.

A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for FPGAs”, ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2003.

A. Sharma, K. Compton, C. Ebeling, S. Hauck, “Exploration of Pipelined FPGA Interconnect
Structures”, ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2004.

S. Phillips, A. Sharma, S. Hauck, “Automating the Layout of Reconfigurable Subsytems Via Template
Reduction”, International Conference on Field-Programmable Logic and Applications, 2004.

A. Sharma, C. Ebeling, S. Hauck, “Architecture Adaptive Routability-Driven Placement for FPGAs”,
International Conference on Field-Programmable Logic and Applications, 2005.

K. Eguro, S. Hauck, A Sharma, “Architecture-Adaptive Range Limit Windowing for Simulated
Annealing FPGA Placement”, ACM/IEEE Design Automation Conference, 2005.

A. Sharma, C. Ebeling, S. Hauck, “PipeRoute: A Pipelining-Aware Router for Reconfigurable
Architectures”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2006.

