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Abstract 
 

Domain-specific FPGAs attempt to improve performance over general-purpose reconfigurable logic 
by providing only the necessary flexibility needed for a range of applications.  One typical 
optimization is the replacement of more universal fine-grain logic elements with a specialized set of 
coarse-grain functional units.  While this improves computation speed and reduces routing 
complexity, this also introduces a unique problem.  It is not clear how to simultaneously consider all 
applications in a domain and determine the most appropriate overall number and ratio of different 
functional units.  In this paper we use the candidate algorithms of the Advanced Encryption Standard 
competition to explore this problem.  We introduce three algorithms that attempt to balance the 
hardware needs of the domain and optimize the overall performance and area requirements for an 
encryption-specialized reconfigurable array. 

 
1 Introduction  

 
The Advanced Encryption Standard competition offered a compelling opportunity for designers to exploit the benefits 
of domain-specific FPGAs to produce a versatile and early-to-market encryption device.  Figure 1 provides a brief 
timeline for the competition.  The competition requirements and the candidate algorithms have several unique 
characteristics that make designing specialized, coarse-grain reconfigurable devices particularly attractive.  First, high 
performance is very important due to today’s large volume of sensitive electronic traffic.  Second, flexibility, in addition 
to being helpful to allow for future updates, was a necessity for pioneering designers since the contest allowed 
submissions to be modified in order to address any security or performance concerns that might be raised during public 
review.  Furthermore, the control logic and routing structure for the system does not need to be complex since the 
iterative dataflow for most of the algorithms conforms to one of three simple styles.  Figure 2 shows the common 
dataflow types.  Lastly, very few different types of functional units are needed because all of the required operations can 
be implemented with a combination of simple ALUs, multipliers, Galois Field multipliers, bit permutations, memories, 
and multiplexors. 
 

Advanced Encryption Standard Competition Timeline 
 

January 1997 The National Institute for Standards and Technology issues a public call for symmetric-key block cipher 
algorithms that are both faster and more secure than the aging Data Encryption Standard 

August 1998  From around the world, twenty-six submissions are received.  Fifteen algorithms are accepted to compete 
in an eight-month review period 

August 1999 Based upon brief but careful public analysis and comment about security and efficiency, five algorithms 
are selected for further scrutiny.  

October 2000 After a nine-month second review period and several public forums, Rijndael is announced as the new 
encryption standard 

December 2001 The Secretary of Commerce makes the AES a Federal Information Processing Standard.  This makes 
AES support compulsory for all federal government organizations as of May 2002 

 
Figure 1 - A brief timeline for the Advanced Encryption Standard competition sponsored by the National Institute for 
Standards and Technology.  Note that modifications to four algorithms were submitted between August 1998 and 
August 1999.   
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Dataflow Styles of Encryption Algorithms 
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Figure 2 - Block diagrams of common encryption styles. Thirteen of the fifteen AES candidate algorithms conform to 
one of these dataflow types. 

 
2 Implications of Domain-Specific Devices 
 
Although domain-specific FPGAs can offer great speed improvements over general-purpose reconfigurable devices, 
they also present some unique challenges.  One issue is that while design choices that affect the performance and 
flexibility of classical FPGAs are clearly defined and well understood, the effects that fundamental architecture 
decisions have on specialized reconfigurable devices are largely unknown and difficult to quantify.  This problem is 
primarily due to the migration to coarse-grain logic resources.  While the basic logic elements of general-purpose 
reconfigurable devices are generic and universally flexible, the limiting portions of many applications are complex 
functions that are difficult to efficiently implement using the fine-grain resources provided.  These functions require 
many logic blocks and lose much of their performance in intra-function communication.  By mapping these applications 
onto architectures that include more sophisticated and specialized coarse-grain functional units, they can be 
implemented in a smaller area with better performance.  While the device may lose much of its generality, there are 
often common or related operations that reoccur across similar applications in a domain.  These advantages lead to the 
integration of coarse-grain functional elements into specialized reconfigurable devices, as is done in architectures such 
as RaPiD[1].  However, the migration from a sea of fine-grained logical units to a clearly defined set of coarse-grained 
function units introduces a host of unexplored issues.  Merely given a domain of applications, it is not obvious what the 
best set of functional units would be, much less what routing architecture would be appropriate, what implications this 
might have on necessary CAD tools, or how any of these factors might affect each other. 
 
The first challenge, the selection of functional units, can be subdivided into three steps.  First, all applications in a 
domain must be analyzed to determine what functions they require.  Crucial parts such as wide multipliers or fast adders 
should be identified. Next, this preliminary set of functional units can be distilled to a smaller set by capitalizing on 
potential overlap or partial reuse of other types of units.  Different sizes of memories, for example, can be combined 
through the use of multi-mode addressing schemes.  Lastly, based upon design constraints, the exact number of each 
type of unit in the array should be determined.  For example, if the applications are memory intensive rather than 
computationally intensive, the relative number of memory units versus ALUs should reflect this.   
 
In this paper we will use the 15 candidate algorithms of the Advanced Encryption Standard competition to examine the 
difficulties of the functional unit selection process.  Primarily, we will focus on the problem of determining the most 
appropriate quantity and ratio of functional units.  While operator identification and optimization are also complex 
problems and unique to coarse-grain architectures, the algorithms themselves, at least in the encryption and DSP 
domains, provide an obvious starting point.  The algorithms in these domains have a relatively small number of strongly 
typed functional units, so it is fairly simple to perform the logical optimization and technology mapping by hand.  
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Although this may overlook subtle optimizations, such as the incorporation of more sophisticated operators, this does 
provide an acceptable working set. 
 
3 Functional Unit Design 
 
We chose to build a platform similar to the RaPiD reconfigurable architecture [1].  While the necessary functional units 
are different, the architecture is particularly well suited for linear, iterative dataflow.  However, since it is a coarse-grain 
architecture, there are particular differences that separate it from general-purpose reconfigurable devices.  One major 
design decision is the bit-width of the architecture.  Since the operations needed by the AES competition algorithms 
range from single-bit specific manipulations to wide 128-bit operations, we determined that a 32-bit word size provided 
a reasonable compromise between the awkwardness of wide operators and the loss of performance due to excessive 
intra-function routing.  In addition, while the algorithms did not necessary preclude the use of 64, 16 or 8-bit processors, 
the natural operator width for many of the algorithms was specifically designed to take advantage of the more common 
32-bit microprocessors.  With the bit-width of the architecture defined, the next problem was to find a comprehensive 
set of operators.  Analysis identified six primary operations required for the AES candidate algorithm.  These operations 
lead to the development of seven distinct types of functional units.  See Figure 3 for a list of operations and Figure 4 for 
a description of the functional unit types.  

 
Required Operators of the AES Candidate Algorithms 

 
Class Operations 
Multiplexor Dynamic dataflow control 
Rotation Dynamic left rotation, static rotation, static logical left/right shift, dynamic left shift 
Permutation Static 32-bit permutation, static 64-bit permutation, static 128-bit permutation 
RAM 4-bit lookup table, 6-bit lookup table, 8-bit lookup table 
Multiplication 8-bit Galois Field multiplication, 8-bit integer multiplication, 32–bit integer multiplication 
ALU Addition, subtraction, XOR, AND, OR, NOT 

 
Figure 3 – Table of six operator classes used in the AES competition algorithms. 

 
One peculiarity of a RaPiD-like architecture is the distinct separation between control and datapath logic.  Like the 
RaPiD architecture, we needed to explicitly include multiplexors in the datapath to provide support for dynamic 
dataflow control.  In addition, due to the bus-based routing structure, we needed to include rotator/shifters and bit-wise 
crossbars to provide support for static rotations/shifts and bit permutations.  Although these static operations would be 
essentially free to implement using the routing resources of a general-purpose FPGA, there is the benefit that the 
necessary dynamic rotations and shifts can be supported with minimal additional hardware.  For future flexibility, we 
also chose to add in currently unused operations such as arithmetic shifting.  We chose to implement a 
dynamically/statically controlled rotation/shift unit separately from a statically controlled crossbar for two reasons.  
First, static random bit permutations are needed far less than rotation or shift operations and we expect the crossbar to 
be larger than its rotation/shift counterpart.  Second, the additional hardware required to make a crossbar emulate a 
dynamically controlled rotator/shifter is too large to be efficient. 
 
Next we considered the logical and arithmetic needs of the algorithms.  First, since all of the algorithms contain addition 
and subtraction or bit-wise logical operations, we chose to roll all of these functions into one ALU type.  For simplicity 
and future flexibility, we chose to simply extend the 16-bit RaPiD ALU [1] to a 32-bit version.  Second, many of the 
algorithms require either an 8 or 32-bit integer multiplication or a related function, an 8-bit Galois Field multiplication.  
See Appendix A for an explanation of Galois Field multiplication.  Although these operations can be performed using 
the other functional units that we have included, the frequency and complex nature of these operations make them ideal 
candidates for dedicated functions units both in terms of area efficiency and speed.  We chose to implement the 32-bit 
integer multiplier and the 4-way 8-bit integer/Galois field multiplier as two separate units for three main reasons.  First, 
the AES algorithms do include multiplications up to 64 bits.  To quickly calculate these multiplications, it was 
necessary to implement a wide multiplier.  Second, as can be seen from the diagram in Appendix A, it is difficult to 
make an efficient multi-mode 32-bit integer/8-bit Galois field multiplier.  Most likely, this unit would only be able to 
handle one or possibly two Galois multiplications at a time.  This is not efficient in terms of resource utilization or 
speed.  Lastly, if we do implement a four-way 8-bit Galois field multiplier, it is able to handle four 8-bit integer 
multiplications with minimal modification and little additional hardware. 
 
Finally, we considered the memory resources that our architecture should provide.  While one of the AES candidate 
algorithms requires a larger lookup table, most of the algorithms use either a 4 to 4, a 6 to 4 or an 8 to 8 lookup table.  
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Instead of separating these out into three distinct types of memory units, we chose to combine them into one memory 
that could support all three addressing modes.  From this, we developed a 256-byte memory that either contained eight 4 
to 4 lookup tables (each with 4 pages of memory), eight 6 to 4 lookup tables, or one 8 to 8 lookup table.  See Figure 5 
for an illustrated description of these addressing modes. 

 
Functional Unit Description 

 
Unit Description 
Multiplexor 32 x 2:1 muxes 
Rotate/shift Unit 32-bit dynamic/static, left/right, rotate/(logical/arithmetic) shift 
Permutation Unit 32 x 32:1 statically controlled muxes 
RAM 256 byte memory with multi-mode read function 

• Mode 0: Single 256 byte memory (8-bit input, 8-bit output) 
• Mode 1: 8  x 64 nibble memories (8 x 6-bit inputs, 8 x 4-bit outputs) 

32-bit Multiplier 32–bit integer multiplication (32 –bit input, 64-bit output) 
8-bit  Multiplier 4 x 8-bit modulus 256 integer multiplications or 4 x 8-bit Galois Field multiplications 
ALU Addition, subtraction, XOR, AND, OR, NOT 

 
Figure 4 – Table of the seven types of functional unit resources supported by our system. 
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Figure 5 - The three most common lookup table configurations for our RAM unit  

 
4 Functional Unit Selection 

 
Although it is relatively straightforward to establish the absolute minimum area required to support a domain, 
determining the best way to allocate additional resources is more difficult.  During the functional unit selection process 
for the AES candidate algorithms, we determined the necessary hardware to implement each of the algorithms in a 
range of performance levels.  We identified the resource requirements for systems ranging from a completely unrolled 
algorithm to a single iteration of the main encryption loop or, in some cases, sub-loops as appropriate, attempting to 
target natural arrangements in between.  From this data we discovered four factors that obscure the relationship between 
hardware resources and performance.  First, although the algorithms in our domain share common operations, the ratio 
of the different functional units varies considerably between algorithms.  Without any prioritization, it is unclear how to 
distribute resources.  For example, if we consider the fully rolled implementations for six encryption algorithms, as in 
Figure 6, we can see the wide variation in RAM, crossbar, and runtime requirements among the different algorithms.  
To complicate matters, if we attempt to equalize any one requirement over the entire set, the variation among the other 
requirements becomes more extreme.  The second factor that complicates correlation between hardware availability and 
performance is that the algorithms have vastly different complexities.  This means that the hardware requirement for 
each algorithm to support a given throughput differs considerably.  It is difficult to fairly quantify the performance-
versus-hardware tradeoff of any domain that has a wide complexity gap.  In Figure 7 we show an example of five 
different encryption algorithms that all have similar throughput, but have a wide variation in hardware requirements.  
The third problem of allocating hardware resources is that the requirements of the algorithms do not necessarily scale 
linearly or monotonically when loops are unrolled.  This phenomenon makes it difficult to foresee the effect of 
decreasing the population of one type of functional unit and increasing another.  See Figure 8 for an example of this 
non-uniform behavior.  The last problem of estimating performance from available resources is that overextended 
functional units often can be supplemented by using combinations of other, underutilized units.  For example, a regular 
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bit permutation could be accomplished with a mixture of shifting and masking.  Although this flexibility may improve 
resource utilization, it also dramatically increases the number of configurations to be evaluated. 
 

Ratio Complications 
 

Algorithm 
(Baseline) 

RAM 
Blocks 

XBar Runtime 

CAST-256 (1x) 16 0 48 
DEAL (1x) 1 7 96 
HPC (1x) 24 52 8 

Loki97 (1x) 40 7 128 
Serpent (1x) 8 32 32 
Twofish (1x) 8 0 16 

Average 16.2 16.3 54.7 
Std. Dev. 14.1 21.1 47.6 

 

Algorithm 
(Unrolling Factor) 

RAM 
Blocks 

XBar Runtime 

CAST-256 (2x) 32 0 24 
DEAL (32x) 32 104 3 

HPC (1x) 24 52 8 
Loki97 (1x) 40 7 128 
Serpent (8x) 32 32 4 
Twofish (4x) 32 0 4 

Average 32 32.5 28.5 
Std. Dev. 5.6 40.6 49.4 

 
Figure 6 – Two examples of the complications caused by varying hardware demands.  The table on the left compares 
the RAM, crossbar and runtime requirements for the baseline implementations of six encryption algorithms.  The 
table on the right displays the compounded problems that occur when attempting to normalize the RAM requirements 
across algorithms. 

 
An effective solution must have the flexibility needed to simultaneously address the multi-dimensional 
hardware requirements of the entire domain while maximizing usability and maintaining hard or soft area and 
performance constraints.  In the following sections we propose three solutions to the functional unit selection 
problem.  The first addresses hard performance constraints.  The second and third algorithms attempt to 
maximize the overall performance given a hard or soft area constraint. 

 
Complexity Disparity 

 
Algorithm 

(Unrolling Factor) 
RAM 
Blocks 

XBar Runtime 

CAST-256 (2x) 32 0 24 
DEAL (4x) 4 16 24 
Loki97 (4x) 160 7 32 

Magenta (4x) 64 0 18 
Twofish(1x) 8 0 16 

Average 53.6 4.6 22.8 
Std. Dev. 64.1 7.1 6.3 

 
Figure 7 – An illustration of the imbalance that occurs when attempting to equalize throughput across algorithms. 

 
Scaling Behavior 

 
 

 
Figure 8 - An example of the unpredictable nature of hardware demands when unrolling algorithms. 

 
5 Performance-Constrained Algorithm 

 
The first algorithm we developed uses a hard minimum throughput constraint to guide the functional unit 
selection.  As described earlier, we began the exploration of the AES domain by establishing the hardware 
requirements of all of the algorithms for a variety of performance levels.  These results are shown in Appendix 
B.  First, we determined the hardware requirements for the most reasonably compact versions of each 
algorithm.  For all algorithms except for Loki97, these fully rolled implementations require very modest 
hardware resources.  Loki97 is unique because the algorithm requires a minimum of 10KB of memory.  After 
this, we determined the hardware requirements for various unrolled versions of each algorithm at logical 

Algorithm 
(Unrolling Factor) 

RAM 
Blocks 

Mux Runtime 

FROG (1x) 8 23 512 
FROG (4x) 8 72 128 
FROG (16x) 8 256 32 
FROG (64x) 16 120 8 

FROG (256x) 64 30 2 
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intervals.  We use this table of results to determine the minimum hardware requirements for all algorithms to 
support a given throughput constraint.   
 
We first determine the hardware requirements to run each algorithm at a given minimum throughput.  We then 
examine these requirements to establish the maximum required number of each type of functional unit.  To 
calculate the overall performance for this superset of resources, we re-examine each algorithm to determine if 
there are sufficient resources to allow for greater throughput, then sum the overall clock cycles required to run 
all of the algorithms.  See Figure 9 for an example of this process.  Note that this is a greedy algorithm and, due 
to the non-monotonic behavior of hardware requirements, does not necessarily find the minimum area or 
maximum performance for the system. 

 
Performance-Constrained Functional Unit Selection 

Algorithm X Algorithm Y Algorithm Z

16 8 4 8 4 1 9 3 1

Hardware
Requirements

# of Clock
Cycles/Result

Unit Type 1 Unit Type 2 Unit Type 3
 

Figure 9 - Illustration of our performance-constrained selection algorithm for a performance threshold of 
4 clock cycles.  The three horizontal dotted lines represent the minimum hardware requirements.  Note 
that during the second Algorithm Y is able to unroll further. 

 
6 Area-Constrained Algorithm 
 
The next two algorithms we developed use simulated annealing to provide more sophisticated solutions that 
attempt to capitalize on softer performance constraints to improve average throughput.  The second algorithm 
begins by randomly adding components until limited by a given area constraint.  Next we evaluate the quality 
of the configuration by determining the average maximum throughput across the domain given the existing 
resources.  If an algorithm cannot be implemented on the available hardware, a penalty is incurred.  Then we 
perturb the configuration by randomly picking two types of components, removing enough of the first type to 
replace it with at least one of the second, then adding enough of the second type to fill up the available area.  
Finally, the quality of the new configuration is evaluated in the same manner as before.  If the new 
configuration provides the same or better average throughput, it is accepted.  If it does not provide better 
performance, based on the current temperature and relative performance degradation, it may or may not be 
accepted.  This process continues based on a simple cooling schedule.  See Figure 10 for an illustration of this 
procedure.  Note that, while for simplicity we did not directly deal with the possibility of functional unit 
emulation in this paper, there is no inherent limitation in either of the area-constrained solutions that would 
prevent this from being addressed with a larger hardware/throughput matrix 
 
7 Improved Area-Constrained Algorithm 
 
Our last algorithm attempts to balance performance and area constraints.  First, we eliminate implementations 
from the hardware/throughput matrix that do not provide enough throughput to meet a specified minimum 
performance requirement.  Then, we randomly select one of the remaining implementations of each algorithm 
for our current arrangement.  We then determine the minimum hardware and area requirements necessary to fit 



 7

all of the algorithms at their current settings.  Afterwards, we establish if any algorithms can be expanded to a 
higher performance level given the calculated hardware resources.  We calculate the new performance over all 
of the algorithms, then penalize for any excessive area requirements.  We then perturb the configuration by 
randomly choosing one algorithm and changing the setting to a different performance level.  Finally, the quality 
is re-evaluated and compared to the original arrangement in a similar manner as described earlier.  See Figure 
11 for an illustration of this process. 
 

Area-Constrained Function Unit Selection 

Unit Type 1 Unit Type 2 Unit Type 3
Unit Type 4 Unit Type 5

1) Starting Config.

2) Remove Unit 4 

3) Add Unit 5

4) Evaluate & Accept

5) Remove Unit 5

6) Add Unit 2

7) Evaluate & Reject Maximum
Area

 
Figure 10 - Illustration of our area-constrained selection algorithm. 

 
Improved Area-Constrained Functional Unit Selection 

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

Hardware
Requirements

# of Clock
Cycles

Maximum
Area

Cost = 6 + 100 = 106

Eliminate implementations below 
performance threshold, then randomly choose 

throughput level for each algorithm and 
determine hardware requirements.  Unroll 

algorithms further if possible.

Evaluate throughput and penalize for excessive area. 
Cost = throughput cost + area penalty

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

Hardware
Requirements

# of Clock
Cycles

Randomly choose new Z arrangement and 
determine new hardware requirements. 

Cost = 106 

Cost = 14 + 25 = 39 

Maximum
Area

Despite lower performance, new state will be accepted 
due to very low area penalty.

 
Figure 11 - Illustration of our improved area-constrained selection algorithm assuming the throughput 
threshold is 10 cycles/block. 
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8 Testing and Results 
 
The testing of the functional unit selection techniques began by using the performance-constrained algorithm as 
a baseline for comparison.  We first identified all of the distinct throughput levels between the AES candidate 
algorithms.  As seen in Appendix B, these ranged between 1 and 512 cycles per data block.  Then, each of these 
distinct throughput constraints was fed into the performance-constrained functional unit selection algorithm.  
The area requirements for each were recorded and then used as inputs to the two area-constrained techniques. 
 
These three techniques produce very different results when applied to the set of AES candidate algorithms.  The 
results of our testing can be seen in Appendix C.  As expected, the hard constraints of the performance driven 
approach has limitations.  As seen in Figures 12, the maximum time required by any algorithm is the lowest out 
of the three methods for most of the implementations.  However, as seen in Figure 13, the overall performance 
of the system suffers by as much as almost 50% as compared to either of the area-driven techniques.  If the 
design constraints allow for some flexibility in term of the minimum acceptable performance, a better 
compromise would be either of the area driven approaches.  Although the results are very similar between these 
two techniques, the improved area-constrained method consistently produces better overall performance and, as 
seen in Figure 14, smaller area requirements. 
 

Minimum Throughput Results of Functional Unit Selection 
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Figure 12 - Graph of worst-case throughput.  The area results are shown in Figure 14. 

 
Overall Performance Results of Functional Unit Selection 
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Figure 13 - Graph of overall throughput cost.  The area results are shown in Figure 14. 

 
 

Area Results of Functional Unit Selection 
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Figure 14 - Graph of area requirements used to obtain the throughput results in Figures 12 and 13 

 
The three functional unit selection techniques also recommended very different hardware resources.  As seen in 
Figure 15, the hard constraints of the performance driven method lead to a very memory dominated 
architecture.  This is primarily caused by the quickly growing memory requirements of Loki97 and, eventually, 
MAGENTA.  See Appendix B for the details of the hardware requirements for all of the encryption algorithms.  
While this additional memory may be necessary to allow for these algorithms to run a high speed, it does not 
adequately reflect the requirements of the other encryption algorithms. As seen in Figure 16, the original area 
driven technique has a fairly even response to varying area limitations.  Since only three algorithms benefit 
from having more than 64KB of memory and only one or two benefit from large numbers of multiplexors, by 
devoting more resources to the other components the average throughput can be improved.  As seen in Figure 
17, the improved area-constrained technique combines these recommendations.  Like the original area-
constrained technique, it recognizes the limited usage of multiplexors.  However, it also considers the moderate 
RAM requirements of many of the high performance implementations of the AES algorithms.  This is reflected 
in the mild emphasis of RAM units in the medium to large area tests. 
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Resource Results from Performance-Constrained Analysis 
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Figure 15 - The functional unit ratio recommended by the performance-constrained selection technique. 
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Resource Results from Area-Constrained Analysis 
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Figure 16 - The functional unit ratio recommended by the more flexible area-constrained technique. 

 
Resource Results from Improved-Area Constrained Analysis 
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Figure 17 - The functional unit ratio recommended by the improved area-constrained technique. The 
selected area is of most interest because it represents high performance implementations and the relative 
ratios of the various components are mostly stable 

 
We believe that scaleable, flexible moderate to high performance encryption architectures can be based on a 
tile-able cell structure.  The results from our tests show that the improved area-constrained method best 
combined area and performance constraints.  While taking special consideration for stable, high performance 
implementations and the possibility for future flexibility, we arrived at the component mixture shown in Figure 
18.  Although this is a large cell and would produce a very coarse-grained architecture, perhaps consisting of 
only 16 or 32 cells, it allows the target encryption algorithms to map with a minimum of resource wastage and 
a maximum of performance and flexibility.  For example, an architecture consisting of 16 such cells would 
have an average throughput of one result every 6.7 clock cycles with an average component utilization of 79%. 
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Component Mixture 
 

Unit Type Num / Cell % of Num % of Area 
MUX 9 18.00% 5.65% 
RAM 16 32.00% 45.99% 
Xbar 6 12.00% 7.34% 
Mul 1 2.00% 11.04% 

Galois 2 4.00% 10.45% 
ALU 12 24.00% 16.20% 
Rot 4 8.00% 3.33% 

  
Figure 18 - Recommended component mixture extrapolated from functional unit analysis 

 
9 Conclusions 
 
In this paper we introduced a design problem unique to coarse-grained FPGA devices.  Although we 
encountered the difficulties of functional unit selection while exploring an encryption-specific domain, we 
believe that the causes of the problem are not exclusive to this domain and can be expected to be common in 
any complex group of applications.  We presented three algorithms that attempt to balance vastly different 
hardware requirements with performance and area constraints.  The first algorithm produces a configuration 
with the absolution minimum area to guarantee a hard performance requirement.  The second algorithm 
maximizes average throughput given a hard area limitation.  The third algorithm combines these two strategies 
to offer good overall performance given less area.   
 
The functional unit selection problem will become more difficult as reconfigurable devices are expected to 
offer better and better performance over large domain spaces.  Increased specialization of function units and 
growing domain size combined with the need for resource utilization optimization techniques such as 
functional unit emulation will soon complicate architecture exploration beyond that which can be analyzed by 
hand.  In the future, designers will need CAD tools that are aware of these issues in order to create devices that 
retain the flexibility required for customization over a domain of applications while maintaining good 
throughput and area characteristics. 
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Appendix A – Galois Field Multiplication 
 
Manipulating Galois Field variables is unique in that all operations - addition, subtraction, etc., begin with two 
variables in a field and result in an answer that also lies in the field.  One difference between conventional 
multiplication and Galois Field multiplication is that an N-bit conventional multiplication results in a (2N)-bit 
product while a Galois Field multiplication, as mentioned earlier, must result in an N-bit product in order to 
stay in the field. 
 
Galois Field multiplication begins in a similar manner to conventional multiplication in that all partial products 
are calculated in an identical manner.  From that point though, there are two key differences.  First, partial sums 
are calculated using bit-wise modulo 2 addition instead of conventional N-bit carry addition.  Second, an 
iterative reduction may be performed to adjust the output to stay in the field.  If the preliminary sum is greater 
or equal to 2^N, the result lies outside the N-bit field and must be XOR-ed with a left justified (N+1)-bit 
reduction constant.  The most significant bit of the reduction constant is always a 1, so as to eliminate the most 
significant bit in the preliminary sum.  This process is repeated until the result lies within the N-bit field.  For 
all of the Galois field multiplications performed in the AES candidate algorithms, N is 8 and the reduction 
constant is “100011011”. 
 

1 0 1 0 1 0 1 0

0 0 1 0 0 0 1 1

A

B

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 1 1 1 1 1 0

0 0 0 1 1 0 1 11

X

0 0 1 0 1 0 0 0 0 1 1 1 0

0 0 0 1 1 0 1 11

0 0 1 0 1 1 0 0 0 1 0

0 0 0 1 1 0 1 11

0 0 1 1 1 1 0 0 1

Partial
Products

Sum
Reduction

Left justified to leading 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Left justified to leading 1

Left justified to leading 1
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Appendix B – Hardware Requirements 
 

Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area 
CAST-256 4 X 12 10 16 0 0 0 5 1 726266 

 4 X 6 20 32 0 0 0 10 2 1452532 
 2 X 6 16 64 0 0 0 20 4 2722280 
 1 X 6 8 128 0 0 0 40 8 5261776 
 1 X 1 0 768 0 0 0 240 48 31205088 
          

Crypton 12 8 16 16 0 0 36  1446400 
 6 4 32 32 0 0 68 0 2735872 
 4  48 48 0 0 100  4025344 
 3 4 64 64 0 0 132 0 5375744 
 2 4 96 96 0 0 196 0 8015616 
 1 0 192 192 0 0 388 0 15904768 
          

Deal 6 X 16 6 1 7 0 0 7 0 299200 
 6 X 8 6 2 10 0 0 10 0 427776 
 6 X 4 6 4 16 0 0 16 0 684928 
 6 X 2 6 8 28 0 0 28 0 1199232 
 6 X 1 4 16 52 0 0 52 0 2212608 
 3 X 1 4 32 104 0 0 104 0 4394752 
 2 X 1 4 48 156 0 0 156 0 6576896 
 1 X 1 0 96 312 0 0 312 0 13092864 
          

DFC 8 5 0 0 8 0 26 1 1546298 
 4 5 0 0 16 0 52 2 3054516 
 2 5 0 0 32 0 104 4 6070952 
 1 1 0 0 64 0 208 8 12073360 
          

E2 12 4 16 4 4 0 43 3 1918830 
 6 4 32 8 8 0 78 3 3645806 
 3 4 64 16 16 0 148 3 7099758 
 2 4 128 24 24 0 218 3 11669870 
 1 0 256 48 48 0 428 3 23117422 
          

Frog 4 X 16 X 8 23 8 0 0 0 1 0 470592 
 4 X 16 X 4 38 8 0 0 0 2 0 601216 
 4 X 16 X 2 72 8 0 0 0 4 0 892928 
 4 X 16 X 1 128 8 0 0 0 8 0 1384960 
 2 X 16 X 1 256 8 0 0 0 16 0 2490880 
 1 X 16 X 1 240 8 0 0 0 32 0 2631168 
 1 X 8 X 1 120 16 0 0 0 64 0 2520576 
 1 X 4 X 1 60 32 0 0 0 128 0 3670272 
 1 X 2 X 1 30 64 0 0 0 256 0 6655104 
 1 X 1 X 1 15 128 0 0 0 512 0 12967488 
          

HPC 8 4 24 52 0 0 56 4 2597608 
 4 4 48 104 0 0 112 8 5164752 
 2 4 96 208 0 0 224 16 10299040 
 1 0 192 416 0 0 448 32 20537152 
          

Loki97 16 X 8 13 40 7 0 0 14 0 1827520 
 16 X 4 11 80 7 0 0 16 0 3240256 
 16 X 2 7 160 7 0 0 20 0 6065728 
 16 X 1 4 320 7 0 0 28 0 11754752 
 8 X 1 4 640 14 0 0 56 0 23479040 
 4 X 1 4 1280 28 0 0 112 0 46927616 
 2 X 1 4 2560 56 0 0 224 0 93824768 
 1 X 1 0 5120 112 0 0 448 0 1.88E+08 

*A x B notation indicates nested looping
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Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area 
Magenta 6 X 3 X 4 12 16 0 0 0 20 4 1017576 

 6 X 3 X 2 12 32 0 0 0 22 4 1608424 
 6 X 3 X 1 8 64 0 0 0 26 4 2759656 
 6 X 1 X 1 8 192 0 0 0 74 12 8091576 
 3 X 1 X 1 4 384 0 0 0 148 24 16091760 
 2 X 1 X 1 4 576 0 0 0 222 36 24122408 
 1 X 1 X 1 0 1152 0 0 0 444 72 48183888 
          

Mars 16 12 24 0 1 0 36 8 1733200 
 8 16 32 0 2 0 48 14 2433964 
 4 32 64 0 4 0 96 28 4867928 
 2 64 128 0 8 0 192 56 9735856 
 1 128 256 0 16 0 384 112 19471712 
          

RC6 8 4 0 0 2 0 10 6 522972 
 4 4 0 0 4 0 16 12 949944 
 2 4 0 0 6 0 28 24 1535856 
 1 0 0 0 8 0 52 48 2409184 
          

Rijndael 10 X 16 8 4 0 0 1 12 3 490790 
 10 X 8 8 4 0 0 2 12 3 554206 
 10 X 4 8 4 0 0 4 12 3 681038 
 10 X 2 8 8 0 0 8 12 3 1074222 
 10 X 1 4 16 0 0 16 12 3 1830126 
 5 X 1 4 32 0 0 32 16 6 3498716 
 2 X 1 4 80 0 0 80 28 15 8504486 
 1 X 1 0 160 0 0 160 48 30 16816972 
          

Safer+ 8 X 16 8 16 0 0 4 11 0 1052896 
 8 X 8 8 16 0 0 8 14 0 1355712 
 8 X 4 8 16 0 0 16 20 0 1961344 
 8 X 2 8 16 0 0 32 32 0 3172608 
 8 X 1 4 16 0 0 64 56 0 5564672 
 4 X 1 4 32 0 0 128 104 0 10967808 
 2 X 1 4 64 0 0 256 200 0 21774080 
 1 X 1 0 128 0 0 512 160 0 39555072 
          

Serpent 32 8 8 32 0 0 16 8 1158096 
 16 4 8 32 0 0 28 16 1405088 
 8 4 16 32 0 0 52 32 2239040 
 4 4 32 32 0 0 100 64 3906944 
 2 4 64 32 0 0 196 128 7242752 
 1 0 128 32 0 0 388 256 13883904 
          

Twofish 16 4 8 0 0 8 17 3 1125678 
 8 4 16 0 0 16 26 6 2089820 
 4 4 32 0 0 32 44 12 4018104 
 2 4 64 0 0 64 80 24 7874672 
 1 0 128 0 0 128 152 48 15557344 

*A x B notation indicates nested looping 
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Appendix C – Results 
 

Results of Performance-Constrained Analysis 
 

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Est. Area 

512 902 23 40 52 8 8 56 8 4.92027E+06 
256 646 38 40 52 8 8 56 8 5.03451E+06 
160 518 72 40 52 8 8 56 8 5.29346E+06 
96 360 128 80 52 8 8 56 8 7.11515E+06 
48 224 256 160 52 8 16 56 8 1.13877E+07 
24 155 240 320 52 8 32 56 16 1.79422E+07 
16 129 240 320 52 8 32 74 16 1.82371E+07 
12 103 120 640 52 8 64 74 32 3.06758E+07 
10 97 120 640 52 8 64 78 32 3.07413E+07 
6 58 60 1280 104 16 128 128 64 5.96530E+07 
5 43 60 1280 104 16 128 240 64 6.14880E+07 
3 25 64 2560 208 32 256 256 128 1.18879E+08 
1 15 128 5120 416 64 512 512 256 2.37759E+08 

 
 % of Total Number of Components % of Total Area     

Max #  
of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % Mux  % RAM % XBAR % Mul % Galois % ALU % Rot %

512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10% 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64%
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81% 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61%
160 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28% 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53%
96 37.65% 23.53% 15.29% 2.35% 2.35% 16.47% 2.35% 13.70% 39.22% 10.85% 15.07% 7.13% 12.90% 1.14%
48 46.04% 28.78% 9.35% 1.44% 2.88% 10.07% 1.44% 17.12% 49.01% 6.78% 9.41% 8.91% 8.06% 0.71%
24 33.15% 44.20% 7.18% 1.10% 4.42% 7.73% 2.21% 10.19% 62.21% 4.30% 5.98% 11.31% 5.11% 0.90%
16 32.35% 43.13% 7.01% 1.08% 4.31% 9.97% 2.16% 10.02% 61.20% 4.23% 5.88% 11.13% 6.65% 0.89%
12 12.12% 64.65% 5.25% 0.81% 6.46% 7.47% 3.23% 2.98% 72.77% 2.52% 3.50% 13.23% 3.95% 1.05%
10 12.07% 64.39% 5.23% 0.80% 6.44% 7.85% 3.22% 2.97% 72.62% 2.51% 3.49% 13.20% 4.16% 1.05%
6 3.37% 71.91% 5.84% 0.90% 7.19% 7.19% 3.60% 0.77% 74.84% 2.59% 3.59% 13.61% 3.52% 1.08%
5 3.17% 67.65% 5.50% 0.85% 6.77% 12.68% 3.38% 0.74% 72.61% 2.51% 3.49% 13.20% 6.40% 1.05%
3 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%
1 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%

 
Results of Area-Constrained Analysis 

 
Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Est. Area 

512 902 23 40 52 8 8 56 8 4.92027E+06 
256 646 38 40 52 8 8 56 8 5.03451E+06 
128 518 72 40 52 8 8 56 8 5.29346E+06 
128 297 122 40 53 8 16 81 58 7.11515E+06 
64 156 73 84 113 8 33 141 74 1.13877E+07 
32 92 64 192 105 17 64 135 64 1.79422E+07 
32 93 68 192 156 16 32 197 129 1.82371E+07 
16 55 64 320 209 16 129 262 129 3.06758E+07 
16 55 69 321 208 17 128 256 132 3.07413E+07 
16 38 136 387 459 68 258 608 283 5.96530E+07 
8 28 146 774 208 64 161 541 261 6.14880E+07 
8 23 204 828 521 182 514 1223 364 1.18879E+08 
4 18 143 1282 789 930 523 1182 303 2.37759E+08 
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 % of Total Number of Components % of Total Area     
Max #  

of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % Mux  % RAM % XBAR % Mul % Galois % ALU % Rot %
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
128 13.06% 19.61% 11.06% 15.07% 14.26% 18.65% 8.24% 32.28% 10.58% 14.02% 2.12% 4.23% 21.43% 15.34%
64 4.88% 25.73% 14.73% 9.41% 18.38% 20.29% 6.57% 13.88% 15.97% 21.48% 1.52% 6.27% 26.81% 14.07%
32 2.72% 37.33% 8.69% 12.70% 22.62% 12.33% 3.60% 9.98% 29.95% 16.38% 2.65% 9.98% 21.06% 9.98%
32 2.84% 36.72% 12.70% 11.76% 11.13% 17.70% 7.15% 8.61% 24.30% 19.75% 2.03% 4.05% 24.94% 16.33%
16 1.59% 36.39% 10.12% 6.99% 26.67% 13.99% 4.25% 5.67% 28.34% 18.51% 1.42% 11.43% 23.21% 11.43%
16 1.71% 36.42% 10.05% 7.41% 26.41% 13.64% 4.34% 6.10% 28.38% 18.39% 1.50% 11.32% 22.63% 11.67%
16 1.74% 22.63% 11.42% 15.28% 27.43% 16.70% 4.79% 6.18% 17.60% 20.87% 3.09% 11.73% 27.65% 12.87%
8 1.81% 43.91% 5.02% 13.95% 16.60% 14.42% 4.29% 6.77% 35.92% 9.65% 2.97% 7.47% 25.10% 12.11%
8 1.31% 24.29% 6.51% 20.52% 27.42% 16.86% 3.09% 5.32% 21.58% 13.58% 4.74% 13.40% 31.88% 9.49%
4 0.46% 18.81% 4.93% 52.42% 13.95% 8.15% 1.29% 2.78% 24.88% 15.31% 18.05% 10.15% 22.94% 5.88%
 

Results of Improved Area-Constrained Analysis 
 
Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Est. Area 

512 902 23 40 52 8 8 56 8 4.92027E+06 
256 646 38 40 52 8 8 56 8 5.03451E+06 
128 518 72 40 52 8 8 56 8 5.29346E+06 
128 297 120 40 52 8 16 78 48 6.93000E+06 
32 156 60 160 52 8 16 128 32 1.13170E+07 
16 103 60 320 52 8 32 128 32 1.79130E+07 
16 98 60 320 52 8 32 128 64 1.82360E+07 
16 57 64 384 104 16 128 196 128 3.01920E+07 
16 57 120 384 104 16 128 196 128 3.06180E+07 
8 30 128 768 208 32 256 388 128 5.90250E+07 
8 29 128 768 208 32 256 388 256 6.03180E+07 
4 18 128 1280 416 64 512 512 256 1.03820E+08 
1 15 128 5120 416 64 512 512 256 2.37759E+08 

  
 % of Total Number of Components % of Total Area     

Max #  
of Cycles Mux  % RAM % XBAR % Mul % Galois % ALU % Rot % Mux  % RAM % XBAR % Mul % Galois % ALU % Rot %

512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
128 13.19% 20.13% 11.14% 15.47% 14.64% 18.44% 7.00% 33.15% 11.05% 14.36% 2.21% 4.42% 21.55% 13.26%
32 4.04% 49.31% 6.82% 9.47% 8.97% 18.53% 2.86% 13.16% 35.09% 11.40% 1.75% 3.51% 28.07% 7.02%
16 2.55% 62.31% 4.31% 5.99% 11.33% 11.71% 1.81% 9.49% 50.63% 8.23% 1.27% 5.06% 20.25% 5.06%
16 2.51% 61.21% 4.23% 5.88% 11.13% 11.50% 3.55% 9.04% 48.19% 7.83% 1.20% 4.82% 19.28% 9.64%
16 1.61% 44.36% 5.11% 7.10% 26.89% 10.64% 4.28% 6.27% 37.65% 10.20% 1.57% 12.55% 19.22% 12.55%
16 2.98% 43.75% 5.04% 7.00% 26.51% 10.49% 4.22% 11.15% 35.69% 9.67% 1.49% 11.90% 18.22% 11.90%
8 1.65% 45.38% 5.23% 7.27% 27.50% 10.77% 2.19% 6.71% 40.25% 10.90% 1.68% 13.42% 20.34% 6.71%
8 1.62% 44.41% 5.12% 7.11% 26.91% 10.54% 4.29% 6.29% 37.72% 10.22% 1.57% 12.57% 19.06% 12.57%
4 0.94% 43.00% 5.95% 8.26% 31.27% 8.08% 2.49% 4.04% 40.40% 13.13% 2.02% 16.16% 16.16% 8.08%
1 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09% 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65%
 
 


