

Decipher:
Architecture Development of Reconfigurable Encryption Hardware

Kenneth Eguro and Scott Hauck

{eguro, hauck}@ee.washington.edu

Dept of EE, University of Washington
Seattle WA, 98195-2500

UWEE Technical Report
Number UWEETR-2002-0012
10/15/02

Department of Electrical Engineering
University of Washington
Box 352500
Seattle, Washington 98195-2500
PHN: (206) 543-2150
FAX: (206) 543-3842
URL: http://www.ee.washington.edu

 1

Decipher: Architecture Development of Reconfigurable Encryption Hardware

Kenneth Eguro and Scott Hauck

{eguro, hauck}@ee.washington.edu

Dept of EE, University of Washington
Seattle WA, 98195-2500

University of Washington, Dept. of EE, UWEETR-2002-0012

October 2002

Abstract

Domain-specific FPGAs attempt to improve performance over general-purpose reconfigurable logic
by providing only the necessary flexibility needed for a range of applications. One typical
optimization is the replacement of more universal fine-grain logic elements with a specialized set of
coarse-grain functional units. While this improves computation speed and reduces routing
complexity, this also introduces a unique problem. It is not clear how to simultaneously consider all
applications in a domain and determine the most appropriate overall number and ratio of different
functional units. In this paper we use the candidate algorithms of the Advanced Encryption Standard
competition to explore this problem. We introduce three algorithms that attempt to balance the
hardware needs of the domain and optimize the overall performance and area requirements for an
encryption-specialized reconfigurable array.

1 Introduction

The Advanced Encryption Standard competition offered a compelling opportunity for designers to exploit the benefits
of domain-specific FPGAs to produce a versatile and early-to-market encryption device. Figure 1 provides a brief
timeline for the competition. The competition requirements and the candidate algorithms have several unique
characteristics that make designing specialized, coarse-grain reconfigurable devices particularly attractive. First, high
performance is very important due to today’s large volume of sensitive electronic traffic. Second, flexibility, in addition
to being helpful to allow for future updates, was a necessity for pioneering designers since the contest allowed
submissions to be modified in order to address any security or performance concerns that might be raised during public
review. Furthermore, the control logic and routing structure for the system does not need to be complex since the
iterative dataflow for most of the algorithms conforms to one of three simple styles. Figure 2 shows the common
dataflow types. Lastly, very few different types of functional units are needed because all of the required operations can
be implemented with a combination of simple ALUs, multipliers, Galois Field multipliers, bit permutations, memories,
and multiplexors.

Advanced Encryption Standard Competition Timeline

January 1997 The National Institute for Standards and Technology issues a public call for symmetric-key block cipher
algorithms that are both faster and more secure than the aging Data Encryption Standard

August 1998 From around the world, twenty-six submissions are received. Fifteen algorithms are accepted to compete
in an eight-month review period

August 1999 Based upon brief but careful public analysis and comment about security and efficiency, five algorithms
are selected for further scrutiny.

October 2000 After a nine-month second review period and several public forums, Rijndael is announced as the new
encryption standard

December 2001 The Secretary of Commerce makes the AES a Federal Information Processing Standard. This makes
AES support compulsory for all federal government organizations as of May 2002

Figure 1 - A brief timeline for the Advanced Encryption Standard competition sponsored by the National Institute for
Standards and Technology. Note that modifications to four algorithms were submitted between August 1998 and
August 1999.

 2

Dataflow Styles of Encryption Algorithms

Input

Left Right

Fiestal

Transfer
Function

XOR

Substitution
Permutation

Square

Output

Left’ Right’

Input

N…10

S-box…S-boxS-Box

Transfer Function

Output

N…10

Input

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S-box
0-15

Output

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Row MixColumn Mix

Figure 2 - Block diagrams of common encryption styles. Thirteen of the fifteen AES candidate algorithms conform to
one of these dataflow types.

2 Implications of Domain-Specific Devices

Although domain-specific FPGAs can offer great speed improvements over general-purpose reconfigurable devices,
they also present some unique challenges. One issue is that while design choices that affect the performance and
flexibility of classical FPGAs are clearly defined and well understood, the effects that fundamental architecture
decisions have on specialized reconfigurable devices are largely unknown and difficult to quantify. This problem is
primarily due to the migration to coarse-grain logic resources. While the basic logic elements of general-purpose
reconfigurable devices are generic and universally flexible, the limiting portions of many applications are complex
functions that are difficult to efficiently implement using the fine-grain resources provided. These functions require
many logic blocks and lose much of their performance in intra-function communication. By mapping these applications
onto architectures that include more sophisticated and specialized coarse-grain functional units, they can be
implemented in a smaller area with better performance. While the device may lose much of its generality, there are
often common or related operations that reoccur across similar applications in a domain. These advantages lead to the
integration of coarse-grain functional elements into specialized reconfigurable devices, as is done in architectures such
as RaPiD[1]. However, the migration from a sea of fine-grained logical units to a clearly defined set of coarse-grained
function units introduces a host of unexplored issues. Merely given a domain of applications, it is not obvious what the
best set of functional units would be, much less what routing architecture would be appropriate, what implications this
might have on necessary CAD tools, or how any of these factors might affect each other.

The first challenge, the selection of functional units, can be subdivided into three steps. First, all applications in a
domain must be analyzed to determine what functions they require. Crucial parts such as wide multipliers or fast adders
should be identified. Next, this preliminary set of functional units can be distilled to a smaller set by capitalizing on
potential overlap or partial reuse of other types of units. Different sizes of memories, for example, can be combined
through the use of multi-mode addressing schemes. Lastly, based upon design constraints, the exact number of each
type of unit in the array should be determined. For example, if the applications are memory intensive rather than
computationally intensive, the relative number of memory units versus ALUs should reflect this.

In this paper we will use the 15 candidate algorithms of the Advanced Encryption Standard competition to examine the
difficulties of the functional unit selection process. Primarily, we will focus on the problem of determining the most
appropriate quantity and ratio of functional units. While operator identification and optimization are also complex
problems and unique to coarse-grain architectures, the algorithms themselves, at least in the encryption and DSP
domains, provide an obvious starting point. The algorithms in these domains have a relatively small number of strongly
typed functional units, so it is fairly simple to perform the logical optimization and technology mapping by hand.

 3

Although this may overlook subtle optimizations, such as the incorporation of more sophisticated operators, this does
provide an acceptable working set.

3 Functional Unit Design

We chose to build a platform similar to the RaPiD reconfigurable architecture [1]. While the necessary functional units
are different, the architecture is particularly well suited for linear, iterative dataflow. However, since it is a coarse-grain
architecture, there are particular differences that separate it from general-purpose reconfigurable devices. One major
design decision is the bit-width of the architecture. Since the operations needed by the AES competition algorithms
range from single-bit specific manipulations to wide 128-bit operations, we determined that a 32-bit word size provided
a reasonable compromise between the awkwardness of wide operators and the loss of performance due to excessive
intra-function routing. In addition, while the algorithms did not necessary preclude the use of 64, 16 or 8-bit processors,
the natural operator width for many of the algorithms was specifically designed to take advantage of the more common
32-bit microprocessors. With the bit-width of the architecture defined, the next problem was to find a comprehensive
set of operators. Analysis identified six primary operations required for the AES candidate algorithm. These operations
lead to the development of seven distinct types of functional units. See Figure 3 for a list of operations and Figure 4 for
a description of the functional unit types.

Required Operators of the AES Candidate Algorithms

Class Operations
Multiplexor Dynamic dataflow control
Rotation Dynamic left rotation, static rotation, static logical left/right shift, dynamic left shift
Permutation Static 32-bit permutation, static 64-bit permutation, static 128-bit permutation
RAM 4-bit lookup table, 6-bit lookup table, 8-bit lookup table
Multiplication 8-bit Galois Field multiplication, 8-bit integer multiplication, 32–bit integer multiplication
ALU Addition, subtraction, XOR, AND, OR, NOT

Figure 3 – Table of six operator classes used in the AES competition algorithms.

One peculiarity of a RaPiD-like architecture is the distinct separation between control and datapath logic. Like the
RaPiD architecture, we needed to explicitly include multiplexors in the datapath to provide support for dynamic
dataflow control. In addition, due to the bus-based routing structure, we needed to include rotator/shifters and bit-wise
crossbars to provide support for static rotations/shifts and bit permutations. Although these static operations would be
essentially free to implement using the routing resources of a general-purpose FPGA, there is the benefit that the
necessary dynamic rotations and shifts can be supported with minimal additional hardware. For future flexibility, we
also chose to add in currently unused operations such as arithmetic shifting. We chose to implement a
dynamically/statically controlled rotation/shift unit separately from a statically controlled crossbar for two reasons.
First, static random bit permutations are needed far less than rotation or shift operations and we expect the crossbar to
be larger than its rotation/shift counterpart. Second, the additional hardware required to make a crossbar emulate a
dynamically controlled rotator/shifter is too large to be efficient.

Next we considered the logical and arithmetic needs of the algorithms. First, since all of the algorithms contain addition
and subtraction or bit-wise logical operations, we chose to roll all of these functions into one ALU type. For simplicity
and future flexibility, we chose to simply extend the 16-bit RaPiD ALU [1] to a 32-bit version. Second, many of the
algorithms require either an 8 or 32-bit integer multiplication or a related function, an 8-bit Galois Field multiplication.
See Appendix A for an explanation of Galois Field multiplication. Although these operations can be performed using
the other functional units that we have included, the frequency and complex nature of these operations make them ideal
candidates for dedicated functions units both in terms of area efficiency and speed. We chose to implement the 32-bit
integer multiplier and the 4-way 8-bit integer/Galois field multiplier as two separate units for three main reasons. First,
the AES algorithms do include multiplications up to 64 bits. To quickly calculate these multiplications, it was
necessary to implement a wide multiplier. Second, as can be seen from the diagram in Appendix A, it is difficult to
make an efficient multi-mode 32-bit integer/8-bit Galois field multiplier. Most likely, this unit would only be able to
handle one or possibly two Galois multiplications at a time. This is not efficient in terms of resource utilization or
speed. Lastly, if we do implement a four-way 8-bit Galois field multiplier, it is able to handle four 8-bit integer
multiplications with minimal modification and little additional hardware.

Finally, we considered the memory resources that our architecture should provide. While one of the AES candidate
algorithms requires a larger lookup table, most of the algorithms use either a 4 to 4, a 6 to 4 or an 8 to 8 lookup table.

 4

Instead of separating these out into three distinct types of memory units, we chose to combine them into one memory
that could support all three addressing modes. From this, we developed a 256-byte memory that either contained eight 4
to 4 lookup tables (each with 4 pages of memory), eight 6 to 4 lookup tables, or one 8 to 8 lookup table. See Figure 5
for an illustrated description of these addressing modes.

Functional Unit Description

Unit Description
Multiplexor 32 x 2:1 muxes
Rotate/shift Unit 32-bit dynamic/static, left/right, rotate/(logical/arithmetic) shift
Permutation Unit 32 x 32:1 statically controlled muxes
RAM 256 byte memory with multi-mode read function

• Mode 0: Single 256 byte memory (8-bit input, 8-bit output)
• Mode 1: 8 x 64 nibble memories (8 x 6-bit inputs, 8 x 4-bit outputs)

32-bit Multiplier 32–bit integer multiplication (32 –bit input, 64-bit output)
8-bit Multiplier 4 x 8-bit modulus 256 integer multiplications or 4 x 8-bit Galois Field multiplications
ALU Addition, subtraction, XOR, AND, OR, NOT

Figure 4 – Table of the seven types of functional unit resources supported by our system.

Multi-mode RAM unit

64 nibbles
64 nibbles

8 x 4:1 Muxes

8

8 Add. Lines

8 Output Lines

64 nibbles
64 nibbles

64 nibbles
64 nibbles

64 nibbles
64 nibbles

6

2

8 8 8

8

8 to 8 Lookup Mode

64 nibbles

64 nibbles

4

48 Add. Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

4 4 4 4 4 4 4

6 6 6 6 6 6 6 6

6 to 4 Lookup Mode

64 nibbles

64 nibbles

4

32 Add. Lines

32 Output Lines

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles

64 nibbles
4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 to 4 Lookup Mode

Page #

2

Figure 5 - The three most common lookup table configurations for our RAM unit

4 Functional Unit Selection

Although it is relatively straightforward to establish the absolute minimum area required to support a domain,
determining the best way to allocate additional resources is more difficult. During the functional unit selection process
for the AES candidate algorithms, we determined the necessary hardware to implement each of the algorithms in a
range of performance levels. We identified the resource requirements for systems ranging from a completely unrolled
algorithm to a single iteration of the main encryption loop or, in some cases, sub-loops as appropriate, attempting to
target natural arrangements in between. From this data we discovered four factors that obscure the relationship between
hardware resources and performance. First, although the algorithms in our domain share common operations, the ratio
of the different functional units varies considerably between algorithms. Without any prioritization, it is unclear how to
distribute resources. For example, if we consider the fully rolled implementations for six encryption algorithms, as in
Figure 6, we can see the wide variation in RAM, crossbar, and runtime requirements among the different algorithms.
To complicate matters, if we attempt to equalize any one requirement over the entire set, the variation among the other
requirements becomes more extreme. The second factor that complicates correlation between hardware availability and
performance is that the algorithms have vastly different complexities. This means that the hardware requirement for
each algorithm to support a given throughput differs considerably. It is difficult to fairly quantify the performance-
versus-hardware tradeoff of any domain that has a wide complexity gap. In Figure 7 we show an example of five
different encryption algorithms that all have similar throughput, but have a wide variation in hardware requirements.
The third problem of allocating hardware resources is that the requirements of the algorithms do not necessarily scale
linearly or monotonically when loops are unrolled. This phenomenon makes it difficult to foresee the effect of
decreasing the population of one type of functional unit and increasing another. See Figure 8 for an example of this
non-uniform behavior. The last problem of estimating performance from available resources is that overextended
functional units often can be supplemented by using combinations of other, underutilized units. For example, a regular

 5

bit permutation could be accomplished with a mixture of shifting and masking. Although this flexibility may improve
resource utilization, it also dramatically increases the number of configurations to be evaluated.

Ratio Complications

Algorithm
(Baseline)

RAM
Blocks

XBar Runtime

CAST-256 (1x) 16 0 48
DEAL (1x) 1 7 96
HPC (1x) 24 52 8

Loki97 (1x) 40 7 128
Serpent (1x) 8 32 32
Twofish (1x) 8 0 16

Average 16.2 16.3 54.7
Std. Dev. 14.1 21.1 47.6

Algorithm
(Unrolling Factor)

RAM
Blocks

XBar Runtime

CAST-256 (2x) 32 0 24
DEAL (32x) 32 104 3

HPC (1x) 24 52 8
Loki97 (1x) 40 7 128
Serpent (8x) 32 32 4
Twofish (4x) 32 0 4

Average 32 32.5 28.5
Std. Dev. 5.6 40.6 49.4

Figure 6 – Two examples of the complications caused by varying hardware demands. The table on the left compares
the RAM, crossbar and runtime requirements for the baseline implementations of six encryption algorithms. The
table on the right displays the compounded problems that occur when attempting to normalize the RAM requirements
across algorithms.

An effective solution must have the flexibility needed to simultaneously address the multi-dimensional
hardware requirements of the entire domain while maximizing usability and maintaining hard or soft area and
performance constraints. In the following sections we propose three solutions to the functional unit selection
problem. The first addresses hard performance constraints. The second and third algorithms attempt to
maximize the overall performance given a hard or soft area constraint.

Complexity Disparity

Algorithm

(Unrolling Factor)
RAM
Blocks

XBar Runtime

CAST-256 (2x) 32 0 24
DEAL (4x) 4 16 24
Loki97 (4x) 160 7 32

Magenta (4x) 64 0 18
Twofish(1x) 8 0 16

Average 53.6 4.6 22.8
Std. Dev. 64.1 7.1 6.3

Figure 7 – An illustration of the imbalance that occurs when attempting to equalize throughput across algorithms.

Scaling Behavior

Figure 8 - An example of the unpredictable nature of hardware demands when unrolling algorithms.

5 Performance-Constrained Algorithm

The first algorithm we developed uses a hard minimum throughput constraint to guide the functional unit
selection. As described earlier, we began the exploration of the AES domain by establishing the hardware
requirements of all of the algorithms for a variety of performance levels. These results are shown in Appendix
B. First, we determined the hardware requirements for the most reasonably compact versions of each
algorithm. For all algorithms except for Loki97, these fully rolled implementations require very modest
hardware resources. Loki97 is unique because the algorithm requires a minimum of 10KB of memory. After
this, we determined the hardware requirements for various unrolled versions of each algorithm at logical

Algorithm
(Unrolling Factor)

RAM
Blocks

Mux Runtime

FROG (1x) 8 23 512
FROG (4x) 8 72 128
FROG (16x) 8 256 32
FROG (64x) 16 120 8

FROG (256x) 64 30 2

 6

intervals. We use this table of results to determine the minimum hardware requirements for all algorithms to
support a given throughput constraint.

We first determine the hardware requirements to run each algorithm at a given minimum throughput. We then
examine these requirements to establish the maximum required number of each type of functional unit. To
calculate the overall performance for this superset of resources, we re-examine each algorithm to determine if
there are sufficient resources to allow for greater throughput, then sum the overall clock cycles required to run
all of the algorithms. See Figure 9 for an example of this process. Note that this is a greedy algorithm and, due
to the non-monotonic behavior of hardware requirements, does not necessarily find the minimum area or
maximum performance for the system.

Performance-Constrained Functional Unit Selection

Algorithm X Algorithm Y Algorithm Z

16 8 4 8 4 1 9 3 1

Hardware
Requirements

of Clock
Cycles/Result

Unit Type 1 Unit Type 2 Unit Type 3

Figure 9 - Illustration of our performance-constrained selection algorithm for a performance threshold of
4 clock cycles. The three horizontal dotted lines represent the minimum hardware requirements. Note
that during the second Algorithm Y is able to unroll further.

6 Area-Constrained Algorithm

The next two algorithms we developed use simulated annealing to provide more sophisticated solutions that
attempt to capitalize on softer performance constraints to improve average throughput. The second algorithm
begins by randomly adding components until limited by a given area constraint. Next we evaluate the quality
of the configuration by determining the average maximum throughput across the domain given the existing
resources. If an algorithm cannot be implemented on the available hardware, a penalty is incurred. Then we
perturb the configuration by randomly picking two types of components, removing enough of the first type to
replace it with at least one of the second, then adding enough of the second type to fill up the available area.
Finally, the quality of the new configuration is evaluated in the same manner as before. If the new
configuration provides the same or better average throughput, it is accepted. If it does not provide better
performance, based on the current temperature and relative performance degradation, it may or may not be
accepted. This process continues based on a simple cooling schedule. See Figure 10 for an illustration of this
procedure. Note that, while for simplicity we did not directly deal with the possibility of functional unit
emulation in this paper, there is no inherent limitation in either of the area-constrained solutions that would
prevent this from being addressed with a larger hardware/throughput matrix

7 Improved Area-Constrained Algorithm

Our last algorithm attempts to balance performance and area constraints. First, we eliminate implementations
from the hardware/throughput matrix that do not provide enough throughput to meet a specified minimum
performance requirement. Then, we randomly select one of the remaining implementations of each algorithm
for our current arrangement. We then determine the minimum hardware and area requirements necessary to fit

 7

all of the algorithms at their current settings. Afterwards, we establish if any algorithms can be expanded to a
higher performance level given the calculated hardware resources. We calculate the new performance over all
of the algorithms, then penalize for any excessive area requirements. We then perturb the configuration by
randomly choosing one algorithm and changing the setting to a different performance level. Finally, the quality
is re-evaluated and compared to the original arrangement in a similar manner as described earlier. See Figure
11 for an illustration of this process.

Area-Constrained Function Unit Selection

Unit Type 1 Unit Type 2 Unit Type 3
Unit Type 4 Unit Type 5

1) Starting Config.

2) Remove Unit 4

3) Add Unit 5

4) Evaluate & Accept

5) Remove Unit 5

6) Add Unit 2

7) Evaluate & Reject Maximum
Area

Figure 10 - Illustration of our area-constrained selection algorithm.

Improved Area-Constrained Functional Unit Selection

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

Hardware
Requirements

of Clock
Cycles

Maximum
Area

Cost = 6 + 100 = 106

Eliminate implementations below
performance threshold, then randomly choose

throughput level for each algorithm and
determine hardware requirements. Unroll

algorithms further if possible.

Evaluate throughput and penalize for excessive area.
Cost = throughput cost + area penalty

Algorithm X Algorithm Y Algorithm Z
16 8 4 8 4 1 9 3 1

Hardware
Requirements

of Clock
Cycles

Randomly choose new Z arrangement and
determine new hardware requirements.

Cost = 106

Cost = 14 + 25 = 39

Maximum
Area

Despite lower performance, new state will be accepted
due to very low area penalty.

Figure 11 - Illustration of our improved area-constrained selection algorithm assuming the throughput
threshold is 10 cycles/block.

 8

8 Testing and Results

The testing of the functional unit selection techniques began by using the performance-constrained algorithm as
a baseline for comparison. We first identified all of the distinct throughput levels between the AES candidate
algorithms. As seen in Appendix B, these ranged between 1 and 512 cycles per data block. Then, each of these
distinct throughput constraints was fed into the performance-constrained functional unit selection algorithm.
The area requirements for each were recorded and then used as inputs to the two area-constrained techniques.

These three techniques produce very different results when applied to the set of AES candidate algorithms. The
results of our testing can be seen in Appendix C. As expected, the hard constraints of the performance driven
approach has limitations. As seen in Figures 12, the maximum time required by any algorithm is the lowest out
of the three methods for most of the implementations. However, as seen in Figure 13, the overall performance
of the system suffers by as much as almost 50% as compared to either of the area-driven techniques. If the
design constraints allow for some flexibility in term of the minimum acceptable performance, a better
compromise would be either of the area driven approaches. Although the results are very similar between these
two techniques, the improved area-constrained method consistently produces better overall performance and, as
seen in Figure 14, smaller area requirements.

Minimum Throughput Results of Functional Unit Selection

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Ar e a Re qui r e me nt s

Per f or mance Constr ained

Ar ea Constr ained

Impr oved Ar ea Constr ained

Figure 12 - Graph of worst-case throughput. The area results are shown in Figure 14.

Overall Performance Results of Functional Unit Selection

 9

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9

Area Requirements

O
ve

ra
ll

Pe
rf

or
m

an
ce

 C
os

t

Performance Constrained

Area Constrained

Improved Area Constrained

Figure 13 - Graph of overall throughput cost. The area results are shown in Figure 14.

Area Results of Functional Unit Selection

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9

Area Requirments

A
re

a
(1

0
M

ill
io

n
U

ni
ts

)

Performance Constrained

Area Constrained

Improved Area Constrained

Figure 14 - Graph of area requirements used to obtain the throughput results in Figures 12 and 13

The three functional unit selection techniques also recommended very different hardware resources. As seen in
Figure 15, the hard constraints of the performance driven method lead to a very memory dominated
architecture. This is primarily caused by the quickly growing memory requirements of Loki97 and, eventually,
MAGENTA. See Appendix B for the details of the hardware requirements for all of the encryption algorithms.
While this additional memory may be necessary to allow for these algorithms to run a high speed, it does not
adequately reflect the requirements of the other encryption algorithms. As seen in Figure 16, the original area
driven technique has a fairly even response to varying area limitations. Since only three algorithms benefit
from having more than 64KB of memory and only one or two benefit from large numbers of multiplexors, by
devoting more resources to the other components the average throughput can be improved. As seen in Figure
17, the improved area-constrained technique combines these recommendations. Like the original area-
constrained technique, it recognizes the limited usage of multiplexors. However, it also considers the moderate
RAM requirements of many of the high performance implementations of the AES algorithms. This is reflected
in the mild emphasis of RAM units in the medium to large area tests.

 10

Resource Results from Performance-Constrained Analysis

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.49 0.50 0.53 0.71 1.14 1.79 1.82 3.07 3.07 5.97 6.15 11.89 23.78

Area (10 Million Units)

%
 o

f T
ot

al
 N

um
be

r
of

 C
om

po
ne

nt
s

RAM

Mux

ALU

XBAR

Galois

Rot

Mul

Figure 15 - The functional unit ratio recommended by the performance-constrained selection technique.

 11

Resource Results from Area-Constrained Analysis

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.49 0.50 0.53 0.71 1.14 1.79 1.82 3.07 3.07 5.97 6.15 11.89 23.78

Area (10 Million Units)

%
 o

f T
ot

al
 N

um
be

r
of

 C
om

po
ne

nt
s

RAM

Mux

ALU

XBAR

Galois

Rot

Mul

Figure 16 - The functional unit ratio recommended by the more flexible area-constrained technique.

Resource Results from Improved-Area Constrained Analysis

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.49 0.50 0.53 0.69 1.13 1.79 1.82 3.02 3.06 5.90 6.03 10.38 23.78

Area (10 Million Units)

%
 o

f T
ot

al
 N

um
be

r
of

 C
om

po
ne

nt
s

RAM

Mux

ALU

XBAR

Galois

Rot

Mul

Figure 17 - The functional unit ratio recommended by the improved area-constrained technique. The
selected area is of most interest because it represents high performance implementations and the relative
ratios of the various components are mostly stable

We believe that scaleable, flexible moderate to high performance encryption architectures can be based on a
tile-able cell structure. The results from our tests show that the improved area-constrained method best
combined area and performance constraints. While taking special consideration for stable, high performance
implementations and the possibility for future flexibility, we arrived at the component mixture shown in Figure
18. Although this is a large cell and would produce a very coarse-grained architecture, perhaps consisting of
only 16 or 32 cells, it allows the target encryption algorithms to map with a minimum of resource wastage and
a maximum of performance and flexibility. For example, an architecture consisting of 16 such cells would
have an average throughput of one result every 6.7 clock cycles with an average component utilization of 79%.

 12

Component Mixture

Unit Type Num / Cell % of Num % of Area
MUX 9 18.00% 5.65%
RAM 16 32.00% 45.99%
Xbar 6 12.00% 7.34%
Mul 1 2.00% 11.04%

Galois 2 4.00% 10.45%
ALU 12 24.00% 16.20%
Rot 4 8.00% 3.33%

Figure 18 - Recommended component mixture extrapolated from functional unit analysis

9 Conclusions

In this paper we introduced a design problem unique to coarse-grained FPGA devices. Although we
encountered the difficulties of functional unit selection while exploring an encryption-specific domain, we
believe that the causes of the problem are not exclusive to this domain and can be expected to be common in
any complex group of applications. We presented three algorithms that attempt to balance vastly different
hardware requirements with performance and area constraints. The first algorithm produces a configuration
with the absolution minimum area to guarantee a hard performance requirement. The second algorithm
maximizes average throughput given a hard area limitation. The third algorithm combines these two strategies
to offer good overall performance given less area.

The functional unit selection problem will become more difficult as reconfigurable devices are expected to
offer better and better performance over large domain spaces. Increased specialization of function units and
growing domain size combined with the need for resource utilization optimization techniques such as
functional unit emulation will soon complicate architecture exploration beyond that which can be analyzed by
hand. In the future, designers will need CAD tools that are aware of these issues in order to create devices that
retain the flexibility required for customization over a domain of applications while maintaining good
throughput and area characteristics.

10 References

[1] Ebeling, Carl; Cronquist, Darren C. and Paul Franklin; "RaPiD - Reconfigurable Pipelined Datapath";

The 6th International Workshop on Field-Programmable Logic and Applications, 1996
[2] Adams, C. and J Gilchrist; “The CAST-256 Encryption Algorithm”’; Proc. of 1st AES Candidate

Conference, Aug.20-22, 1998
[3] Lim, C.H. “CRYPTON : A New 128-bit Block Cipher”; Proc. of 1st AES Candidate Conference,

Aug.20-22, 1998
[4] Knudsen, Lars R.; “DEAL - A 128-bit Block Cipher”; Proc. of 1st AES Candidate Conference,

Aug.20-22, 1998
[5] Gilbert, H.; Girault, M.; Hoogvorst, P.; Noilhan, F.; Pornin, T.; Poupard, G.; Stern, J. and S.

Vaudenay; “Decorrelated Fast Cipher : An AES Candidate” Proc. of 1st AES Candidate Conference,
Aug.20-22, 1998

[6] Nippon Telegraph and Telephone Corporation; “Specification of E2 – A 128-bit Block Cipher”; Proc.
of 1st AES Candidate Conference, Aug.20-22, 1998

[7] Georgoudis, Dianelos; Leroux, Damian; Chaves, Billy Simón and TecApro International S.A.; “The
‘FROG’ Encryption Algorithm”; Proc. of 1st AES Candidate Conference, Aug.20-22, 1998

[8] Schroeppel, Rich; “Hasty Pudding Cipher Specification”; Proc. of 1st AES Candidate Conference,
Aug.20-22, 1998

[9] Brown, Lawrie and Josef Pieprzyk; “Introducing the New LOKI97 Block Cipher”; Proc. of 1st AES
Candidate Conference, Aug.20-22, 1998

[10] Jacobson, M.J. Jr. and K. Huber; “The MAGENTA Block Cipher Algorithm”; Proc. of 1st AES
Candidate Conference, Aug.20-22, 1998

[11] Burwick, Carolynn; Coppersmith, Don; D'Avignon, Edward; Gennaro, Rosario; Halevi, Shai; Jutla,
Charanjit; Matyas, Stephen M. Jr.; O'Connor, Luke; Peyravian, Mohammad; Safford, David and
Nevenko Zunic; “Mars – A Candidate Cipher for AES” Proc. of 1st AES Candidate Conference,
Aug.20-22, 1998

 13

[12] Rivest, Ron; Robshaw, M.J.B.; Sidney, R. and Y.L. Yin; “The RC6 Block Cipher”; Proc. of 1st AES
Candidate Conference, Aug.20-22, 1998

[13] Daemen, Joan and Vincent Rijmen; “AES Proposal : Rijndael”; Proc. of 1st AES Candidate
Conference, Aug.20-22, 1998

[14] Cylink Corporation; “Nomination of SAFER+ as Candidate Algorithm for the Advanced Encryption
Standard (AES)”; Proc. of 1st AES Candidate Conference, Aug.20-22, 1998

[15] Anderson, Ross; Biham, Eli and Lars Knudsen; “Serpent : A Proposal for the Advanced Encryption
Standard”; Proc. of 1st AES Candidate Conference, Aug.20-22, 1998

[16] Schneier, B.; Kelsey, J.; Whiting, D.; Wagner, D.; Hall, C. and N. Ferguson; “Twofish : A 128-bit
Block Cipher”; Proc. of 1st AES Candidate Conference, Aug.20-22, 1998

[17] Schneier, Bruce; Applied Cryptography; John Wiley & Sons Inc.; pp 270 - 278

 14

Appendix A – Galois Field Multiplication

Manipulating Galois Field variables is unique in that all operations - addition, subtraction, etc., begin with two
variables in a field and result in an answer that also lies in the field. One difference between conventional
multiplication and Galois Field multiplication is that an N-bit conventional multiplication results in a (2N)-bit
product while a Galois Field multiplication, as mentioned earlier, must result in an N-bit product in order to
stay in the field.

Galois Field multiplication begins in a similar manner to conventional multiplication in that all partial products
are calculated in an identical manner. From that point though, there are two key differences. First, partial sums
are calculated using bit-wise modulo 2 addition instead of conventional N-bit carry addition. Second, an
iterative reduction may be performed to adjust the output to stay in the field. If the preliminary sum is greater
or equal to 2^N, the result lies outside the N-bit field and must be XOR-ed with a left justified (N+1)-bit
reduction constant. The most significant bit of the reduction constant is always a 1, so as to eliminate the most
significant bit in the preliminary sum. This process is repeated until the result lies within the N-bit field. For
all of the Galois field multiplications performed in the AES candidate algorithms, N is 8 and the reduction
constant is “100011011”.

1 0 1 0 1 0 1 0

0 0 1 0 0 0 1 1

A

B

0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0 1 1 1 1 1 0

0 0 0 1 1 0 1 11

X

0 0 1 0 1 0 0 0 0 1 1 1 0

0 0 0 1 1 0 1 11

0 0 1 0 1 1 0 0 0 1 0

0 0 0 1 1 0 1 11

0 0 1 1 1 1 0 0 1

Partial
Products

Sum
Reduction

Left justified to leading 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Left justified to leading 1

Left justified to leading 1

 15

Appendix B – Hardware Requirements

Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area
CAST-256 4 X 12 10 16 0 0 0 5 1 726266

 4 X 6 20 32 0 0 0 10 2 1452532
 2 X 6 16 64 0 0 0 20 4 2722280
 1 X 6 8 128 0 0 0 40 8 5261776
 1 X 1 0 768 0 0 0 240 48 31205088

Crypton 12 8 16 16 0 0 36 1446400
 6 4 32 32 0 0 68 0 2735872
 4 48 48 0 0 100 4025344
 3 4 64 64 0 0 132 0 5375744
 2 4 96 96 0 0 196 0 8015616
 1 0 192 192 0 0 388 0 15904768

Deal 6 X 16 6 1 7 0 0 7 0 299200
 6 X 8 6 2 10 0 0 10 0 427776
 6 X 4 6 4 16 0 0 16 0 684928
 6 X 2 6 8 28 0 0 28 0 1199232
 6 X 1 4 16 52 0 0 52 0 2212608
 3 X 1 4 32 104 0 0 104 0 4394752
 2 X 1 4 48 156 0 0 156 0 6576896
 1 X 1 0 96 312 0 0 312 0 13092864

DFC 8 5 0 0 8 0 26 1 1546298
 4 5 0 0 16 0 52 2 3054516
 2 5 0 0 32 0 104 4 6070952
 1 1 0 0 64 0 208 8 12073360

E2 12 4 16 4 4 0 43 3 1918830
 6 4 32 8 8 0 78 3 3645806
 3 4 64 16 16 0 148 3 7099758
 2 4 128 24 24 0 218 3 11669870
 1 0 256 48 48 0 428 3 23117422

Frog 4 X 16 X 8 23 8 0 0 0 1 0 470592
 4 X 16 X 4 38 8 0 0 0 2 0 601216
 4 X 16 X 2 72 8 0 0 0 4 0 892928
 4 X 16 X 1 128 8 0 0 0 8 0 1384960
 2 X 16 X 1 256 8 0 0 0 16 0 2490880
 1 X 16 X 1 240 8 0 0 0 32 0 2631168
 1 X 8 X 1 120 16 0 0 0 64 0 2520576
 1 X 4 X 1 60 32 0 0 0 128 0 3670272
 1 X 2 X 1 30 64 0 0 0 256 0 6655104
 1 X 1 X 1 15 128 0 0 0 512 0 12967488

HPC 8 4 24 52 0 0 56 4 2597608
 4 4 48 104 0 0 112 8 5164752
 2 4 96 208 0 0 224 16 10299040
 1 0 192 416 0 0 448 32 20537152

Loki97 16 X 8 13 40 7 0 0 14 0 1827520
 16 X 4 11 80 7 0 0 16 0 3240256
 16 X 2 7 160 7 0 0 20 0 6065728
 16 X 1 4 320 7 0 0 28 0 11754752
 8 X 1 4 640 14 0 0 56 0 23479040
 4 X 1 4 1280 28 0 0 112 0 46927616
 2 X 1 4 2560 56 0 0 224 0 93824768
 1 X 1 0 5120 112 0 0 448 0 1.88E+08

*A x B notation indicates nested looping

 16

Algorithm Cycles * 32-bit 2:1 Mux 256B RAM XBAR 32- bit Mul Galois ALU ROT/shift Area
Magenta 6 X 3 X 4 12 16 0 0 0 20 4 1017576

 6 X 3 X 2 12 32 0 0 0 22 4 1608424
 6 X 3 X 1 8 64 0 0 0 26 4 2759656
 6 X 1 X 1 8 192 0 0 0 74 12 8091576
 3 X 1 X 1 4 384 0 0 0 148 24 16091760
 2 X 1 X 1 4 576 0 0 0 222 36 24122408
 1 X 1 X 1 0 1152 0 0 0 444 72 48183888

Mars 16 12 24 0 1 0 36 8 1733200
 8 16 32 0 2 0 48 14 2433964
 4 32 64 0 4 0 96 28 4867928
 2 64 128 0 8 0 192 56 9735856
 1 128 256 0 16 0 384 112 19471712

RC6 8 4 0 0 2 0 10 6 522972
 4 4 0 0 4 0 16 12 949944
 2 4 0 0 6 0 28 24 1535856
 1 0 0 0 8 0 52 48 2409184

Rijndael 10 X 16 8 4 0 0 1 12 3 490790
 10 X 8 8 4 0 0 2 12 3 554206
 10 X 4 8 4 0 0 4 12 3 681038
 10 X 2 8 8 0 0 8 12 3 1074222
 10 X 1 4 16 0 0 16 12 3 1830126
 5 X 1 4 32 0 0 32 16 6 3498716
 2 X 1 4 80 0 0 80 28 15 8504486
 1 X 1 0 160 0 0 160 48 30 16816972

Safer+ 8 X 16 8 16 0 0 4 11 0 1052896
 8 X 8 8 16 0 0 8 14 0 1355712
 8 X 4 8 16 0 0 16 20 0 1961344
 8 X 2 8 16 0 0 32 32 0 3172608
 8 X 1 4 16 0 0 64 56 0 5564672
 4 X 1 4 32 0 0 128 104 0 10967808
 2 X 1 4 64 0 0 256 200 0 21774080
 1 X 1 0 128 0 0 512 160 0 39555072

Serpent 32 8 8 32 0 0 16 8 1158096
 16 4 8 32 0 0 28 16 1405088
 8 4 16 32 0 0 52 32 2239040
 4 4 32 32 0 0 100 64 3906944
 2 4 64 32 0 0 196 128 7242752
 1 0 128 32 0 0 388 256 13883904

Twofish 16 4 8 0 0 8 17 3 1125678
 8 4 16 0 0 16 26 6 2089820
 4 4 32 0 0 32 44 12 4018104
 2 4 64 0 0 64 80 24 7874672
 1 0 128 0 0 128 152 48 15557344

*A x B notation indicates nested looping

 17

Appendix C – Results

Results of Performance-Constrained Analysis

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Est. Area

512 902 23 40 52 8 8 56 8 4.92027E+06
256 646 38 40 52 8 8 56 8 5.03451E+06
160 518 72 40 52 8 8 56 8 5.29346E+06
96 360 128 80 52 8 8 56 8 7.11515E+06
48 224 256 160 52 8 16 56 8 1.13877E+07
24 155 240 320 52 8 32 56 16 1.79422E+07
16 129 240 320 52 8 32 74 16 1.82371E+07
12 103 120 640 52 8 64 74 32 3.06758E+07
10 97 120 640 52 8 64 78 32 3.07413E+07
6 58 60 1280 104 16 128 128 64 5.96530E+07
5 43 60 1280 104 16 128 240 64 6.14880E+07
3 25 64 2560 208 32 256 256 128 1.18879E+08
1 15 128 5120 416 64 512 512 256 2.37759E+08

 % of Total Number of Components % of Total Area

Max #
of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot % Mux % RAM % XBAR % Mul % Galois % ALU % Rot %

512 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10% 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64%
256 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81% 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61%
160 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28% 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53%
96 37.65% 23.53% 15.29% 2.35% 2.35% 16.47% 2.35% 13.70% 39.22% 10.85% 15.07% 7.13% 12.90% 1.14%
48 46.04% 28.78% 9.35% 1.44% 2.88% 10.07% 1.44% 17.12% 49.01% 6.78% 9.41% 8.91% 8.06% 0.71%
24 33.15% 44.20% 7.18% 1.10% 4.42% 7.73% 2.21% 10.19% 62.21% 4.30% 5.98% 11.31% 5.11% 0.90%
16 32.35% 43.13% 7.01% 1.08% 4.31% 9.97% 2.16% 10.02% 61.20% 4.23% 5.88% 11.13% 6.65% 0.89%
12 12.12% 64.65% 5.25% 0.81% 6.46% 7.47% 3.23% 2.98% 72.77% 2.52% 3.50% 13.23% 3.95% 1.05%
10 12.07% 64.39% 5.23% 0.80% 6.44% 7.85% 3.22% 2.97% 72.62% 2.51% 3.49% 13.20% 4.16% 1.05%
6 3.37% 71.91% 5.84% 0.90% 7.19% 7.19% 3.60% 0.77% 74.84% 2.59% 3.59% 13.61% 3.52% 1.08%
5 3.17% 67.65% 5.50% 0.85% 6.77% 12.68% 3.38% 0.74% 72.61% 2.51% 3.49% 13.20% 6.40% 1.05%
3 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%
1 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65% 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09%

Results of Area-Constrained Analysis

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Est. Area

512 902 23 40 52 8 8 56 8 4.92027E+06
256 646 38 40 52 8 8 56 8 5.03451E+06
128 518 72 40 52 8 8 56 8 5.29346E+06
128 297 122 40 53 8 16 81 58 7.11515E+06
64 156 73 84 113 8 33 141 74 1.13877E+07
32 92 64 192 105 17 64 135 64 1.79422E+07
32 93 68 192 156 16 32 197 129 1.82371E+07
16 55 64 320 209 16 129 262 129 3.06758E+07
16 55 69 321 208 17 128 256 132 3.07413E+07
16 38 136 387 459 68 258 608 283 5.96530E+07
8 28 146 774 208 64 161 541 261 6.14880E+07
8 23 204 828 521 182 514 1223 364 1.18879E+08
4 18 143 1282 789 930 523 1182 303 2.37759E+08

 18

 % of Total Number of Components % of Total Area
Max #

of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot % Mux % RAM % XBAR % Mul % Galois % ALU % Rot %
512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
128 13.06% 19.61% 11.06% 15.07% 14.26% 18.65% 8.24% 32.28% 10.58% 14.02% 2.12% 4.23% 21.43% 15.34%
64 4.88% 25.73% 14.73% 9.41% 18.38% 20.29% 6.57% 13.88% 15.97% 21.48% 1.52% 6.27% 26.81% 14.07%
32 2.72% 37.33% 8.69% 12.70% 22.62% 12.33% 3.60% 9.98% 29.95% 16.38% 2.65% 9.98% 21.06% 9.98%
32 2.84% 36.72% 12.70% 11.76% 11.13% 17.70% 7.15% 8.61% 24.30% 19.75% 2.03% 4.05% 24.94% 16.33%
16 1.59% 36.39% 10.12% 6.99% 26.67% 13.99% 4.25% 5.67% 28.34% 18.51% 1.42% 11.43% 23.21% 11.43%
16 1.71% 36.42% 10.05% 7.41% 26.41% 13.64% 4.34% 6.10% 28.38% 18.39% 1.50% 11.32% 22.63% 11.67%
16 1.74% 22.63% 11.42% 15.28% 27.43% 16.70% 4.79% 6.18% 17.60% 20.87% 3.09% 11.73% 27.65% 12.87%
8 1.81% 43.91% 5.02% 13.95% 16.60% 14.42% 4.29% 6.77% 35.92% 9.65% 2.97% 7.47% 25.10% 12.11%
8 1.31% 24.29% 6.51% 20.52% 27.42% 16.86% 3.09% 5.32% 21.58% 13.58% 4.74% 13.40% 31.88% 9.49%
4 0.46% 18.81% 4.93% 52.42% 13.95% 8.15% 1.29% 2.78% 24.88% 15.31% 18.05% 10.15% 22.94% 5.88%

Results of Improved Area-Constrained Analysis

Max # of Cycles Aggregate Throughput # Mux # RAM # Xbars # Mul # Galois # ALU # Rot Est. Area

512 902 23 40 52 8 8 56 8 4.92027E+06
256 646 38 40 52 8 8 56 8 5.03451E+06
128 518 72 40 52 8 8 56 8 5.29346E+06
128 297 120 40 52 8 16 78 48 6.93000E+06
32 156 60 160 52 8 16 128 32 1.13170E+07
16 103 60 320 52 8 32 128 32 1.79130E+07
16 98 60 320 52 8 32 128 64 1.82360E+07
16 57 64 384 104 16 128 196 128 3.01920E+07
16 57 120 384 104 16 128 196 128 3.06180E+07
8 30 128 768 208 32 256 388 128 5.90250E+07
8 29 128 768 208 32 256 388 256 6.03180E+07
4 18 128 1280 416 64 512 512 256 1.03820E+08
1 15 128 5120 416 64 512 512 256 2.37759E+08

 % of Total Number of Components % of Total Area

Max #
of Cycles Mux % RAM % XBAR % Mul % Galois % ALU % Rot % Mux % RAM % XBAR % Mul % Galois % ALU % Rot %

512 3.56% 28.36% 15.69% 21.79% 10.31% 18.65% 1.64% 11.79% 20.51% 26.67% 4.10% 4.10% 28.72% 4.10%
256 5.75% 27.71% 15.34% 21.30% 10.08% 18.22% 1.61% 18.10% 19.05% 24.76% 3.81% 3.81% 26.67% 3.81%
128 10.36% 26.36% 14.59% 20.25% 9.58% 17.33% 1.53% 29.51% 16.39% 21.31% 3.28% 3.28% 22.95% 3.28%
128 13.19% 20.13% 11.14% 15.47% 14.64% 18.44% 7.00% 33.15% 11.05% 14.36% 2.21% 4.42% 21.55% 13.26%
32 4.04% 49.31% 6.82% 9.47% 8.97% 18.53% 2.86% 13.16% 35.09% 11.40% 1.75% 3.51% 28.07% 7.02%
16 2.55% 62.31% 4.31% 5.99% 11.33% 11.71% 1.81% 9.49% 50.63% 8.23% 1.27% 5.06% 20.25% 5.06%
16 2.51% 61.21% 4.23% 5.88% 11.13% 11.50% 3.55% 9.04% 48.19% 7.83% 1.20% 4.82% 19.28% 9.64%
16 1.61% 44.36% 5.11% 7.10% 26.89% 10.64% 4.28% 6.27% 37.65% 10.20% 1.57% 12.55% 19.22% 12.55%
16 2.98% 43.75% 5.04% 7.00% 26.51% 10.49% 4.22% 11.15% 35.69% 9.67% 1.49% 11.90% 18.22% 11.90%
8 1.65% 45.38% 5.23% 7.27% 27.50% 10.77% 2.19% 6.71% 40.25% 10.90% 1.68% 13.42% 20.34% 6.71%
8 1.62% 44.41% 5.12% 7.11% 26.91% 10.54% 4.29% 6.29% 37.72% 10.22% 1.57% 12.57% 19.06% 12.57%
4 0.94% 43.00% 5.95% 8.26% 31.27% 8.08% 2.49% 4.04% 40.40% 13.13% 2.02% 16.16% 16.16% 8.08%
1 0.41% 75.11% 2.60% 3.61% 13.66% 3.53% 1.09% 1.83% 73.06% 5.94% 0.91% 7.31% 7.31% 3.65%

