
NORTHWESTERN UNIVERSITY

Configuration Management Techniques for Reconfigurable

Computing

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS

For the degree

DOCTOR OF PHILOSOPHY

Field of Computer Engineering

By

Zhiyuan Li

EVANSTON, ILLINOIS

June 2002

 - ii -

ABSTRACT

Configuration Management Techniques for Reconfigurable Computing

 Zhiyuan Li

Reconfigurable computing is becoming an important part of research in computer

architectures and software systems. By placing the computationally intense portions of

an application onto the reconfigurable hardware, that application can be greatly

accelerated. Gains are realized because reconfigurable computing combines the benefits

of both software and ASIC implementations. However, the advantages of

reconfigurable computing do not come without a cost. By requiring multiple

reconfigurations to complete a computation, the time to reconfigure the hardware

significantly degraded performance of such systems. This thesis examines a complete

strategy that attacks this reconfiguration bottleneck from different perspectives.

Compression techniques are introduced to decrease the amount of configuration data

that must be transferred to the system. Configuration caching approaches are

investigated to retain configurations on-chip. Configuration prefetching techniques are

developed to hide reconfiguration latency. Reconfiguration overhead is virtually

eliminated by using these techniques.

 - iii -

Acknowledgements

I am greatly indebted to my thesis advisor, Professor Scott A. Hauck. Scott has

provided me with countless opportunities to learn and to research that I doubt I would

have found otherwise. I am thankful to Scott for his guidance throughout this work, and

for showing me how to perform research. I am also thankful to Scott for providing me

excellent facilities and financial support throughout my studies. Thanks also to the

members of my thesis committee at Northwestern University, Professors Prithviraj

Banerjee and Lawrence Henschen.

I would like to thank all the members of the ACME group in University of Washington

and Northwestern University, from whom I have learned so much. They not only put up

with me all of those years, but also made my days as graduate student enjoyable. I am

grateful for their valuable suggestions and discussions. In particular, I wish to thank

Katherine Compton, Melany Richmond and others who contributed along the way.

This work has benefited from various researchers. I would like to acknowledge

following people for providing benchmarks and feedbacks for this work: Professor

Gordon Brebner, Dr. Timothy Callahan, Dr. Steve Trimberger, Dr. Andreas Dandalis,

Professor Carl Ebeling and many others. I would also like to acknowledge financial

support provided the Defense Advanced Research Projects Agency and Xilinx Inc..

I wish to thank my parents for all their love, support and encouragement during my

graduate studies. There were many struggles and accomplishments along the way, but

through them all, they were always there.

 - iv -

Contents

List of Figures

List of Tables
Chapter 1 Introduction...1

Chapter 2 Background and Motivation ...6
2.1 Reconfigurable Computing Systems... 6

2.2 Reconfiguration Models .. 9

2.2.1 System Example—Garp..13

2.2.2 System Example—DISC...15

2.3 Reconfiguration Overhead Reduction Techniques............................. 16

2.3.1 Configuration Cloning...16

2.3.2 Configuration Sharing ...17

2.3.3 Configuration Scheduling..18

2.4 Research Focus .. 19

Chapter 3 Configuration Compression ..22
3.1 General Data Compression Techniques.. 22

3.2 Configuration Compression Overview ... 23

3.3 Configuration Compression Vs. Data Compression 24

3.4 Compression for the Xilinx 6200 FPGAs... 26

3.4.1 Algorithm Overview..28

3.4.2 The First Stage of the Algorithm ..29

3.4.3 Wildcarded Address Creation via Logic Minimization32

3.4.4 The Second Stage of the Compression Algorithm36

3.4.5 Experimental Results...40

3.5 Compression for the Xilinx Virtex FPGAs... 43

3.5.1 Algorithms Overview ..44

3.5.2 Regularity Analysis ...45

3.5.3 Symbol Length ..46

 - v -
3.5.4 Huffman coding...47

3.5.5 Arithmetic Coding ...48

3.5.6 Lempel-Ziv Based Compression...50

3.5.7 The Readback Algorithm ..54

3.5.8 Active Frame Reordering Algorithm..59

3.5.9 Fixed Frame Reordering Algorithm..61

3.5.10 Wildcarded Compression for Virtex...61

3.5.11 Simulation Results...63

3.5.12 Hardware Costs..67

3.6 Related Works ... 68

3.7 Summary.. 68

Chapter 4 Don’t Care Discovery for Configuration Compression...........70
4.1 Don’t Cares .. 70

4.2 The Backtracing Algorithm... 72

4.3 Don’t Care Discovery for the Xilinx 6200 FPGAs 74

4.3.1 Don’t Care Discovery Algorithm..74

4.3.2 The Modification of the Compression Algorithm......................78

4.3.3 Experimental Results...81

4.4 Virtex Compression with Don’t Cares.. 83

4.5 Summary.. 84

Chapter 5 Configuration Caching ..86
5.1 Configuration Caching Overview ... 86

5.2 Reconfigurable Models Review.. 88

5.3 Experimental Setup.. 90

5.4 Capacity Analysis .. 91

5.5 Configuration Sequence Generation ... 92

5.6 Configuration Caching Algorithms... 93

5.7 Single Context Algorithms.. 94

5.7.1 Simulated Annealing Algorithm for Single Context FPGA94

5.7.2 General Off-line Algorithm for Single Context FPGA..............96

 - vi -
5.8 Multi-Context Algorithms... 98

5.8.1 Complete Prediction Algorithm for Multi-Context FPGA98

5.8.2 Least Recently Used (LRU) Algorithm for Multi-Context......101

5.9 Algorithms for the PRTR FPGAs ... 101

5.9.1 A Simulated Annealing Algorithm for the PRTR FPGA.........102

5.9.2 An Alternate Annealing Algorithm for the PRTR FPGA........103

5.10 Algorithms for the PRTR R+D Model ... 104

5.10.1 A Lower-bound Algorithm for the PRTR R+D FPGA..........105

5.10.2 A General Off-line Algorithm for the PRTR R+D FPGA.....106

5.10.3 LRU Algorithm for the PRTR R+D FPGA............................107

5.10.4 Penalty-oriented Algorithm for the PRTR R+D FPGA107

5.11 A General Off-line Algorithm for the Relocation FPGA............... 108

5.12 Simulation Results and Discussion ... 109

5.13 Summary.. 112

Chapter 6 Configuration Prefetching...114
6.1 Prefetching Overview.. 114

6.2 Factors Affecting the Configuration Prefetching 117

6.3 Configuration Prefetching Techniques ... 118

6.4 Configuration Prefetching for Single Context Model 119

6.4.1 Experiment Setup ..120

6.4.2 Cost Function...122

6.4.3 The Bottom-up Algorithm for Prefetching124

6.4.4 Loop Detection and Conversion..128

6.4.5 Prefetch Insertion...130

6.4.6 Results and Analysis..130

6.5 Configuration Prefetching for Partial R+D FPGA 132

6.5.1 Static Configuration Prefetching...133

6.5.2 Dynamic Configuration Prefetching ...138

6.5.3 Hardware Requirements of Dynamic Prefetching....................141

6.5.4 Hybrid Configuration Prefetching ..142

 - vii -
6.5.5 Results and Analysis..145

6.6 Summary.. 147

Chapter 7 Conclusions..148
7.1 Summary of Contributions .. 149

7.2 Future work.. 151

References ...153

Appendix A ...161

 - viii -

List of Figures
2.1 Architecture of a reconfigurable computing system.......................... 6

2.2 A programming bit for SRAM FPGAs .. 7

2.3 A two-input look-up table... 8

2.4 The structure of a Single Context FPGA.. 9

2.5 A four-context FPGA.. 10

2.6 The structure of a Partial Run-time Reconfigurable FPGA............. 11

2.7 The architecture of the Relocation + Defragmentation model 12

2.8 An example of configuration relocation... 12

2.9 An example of defragmentation ... 13

2.10 Block diagram Garp.. 14

2.11 Block diagram of DISC system.. 16

2.12 An example of Configuration Cloning... 17

2.13 Execution using configuration caching approach 19

2.14 Execution using data caching approach ... 19

3.1 The flow of compression .. 23

3.2 XC6216 simplified block diagram ... 26

3.3 Example of the transformation of 2-level logic minimization
into the simplified configuration compression problem 30

3.4 Example for demonstrating the potential for configuration
compression... 31

3.5 Example of the use of Don’t Cares in configuration
compression... 32

3.6 Espresso input (a), and the result output (b)..................................... 33

3.7 An example that illustrates the reason for selecting bigger
groups .. 34

3.8 An example of Wildcard reduction .. 36

3.9 Graph of compressed file size as a percentage of original file
size ... 42

3.10 Virtex architecture... 43

3.11 Virtex frame organization... 44

 - ix -
3.12 An example of Huffman coding ... 48

3.13 An example of Arithmetic coding .. 49

3.14 The LZ77 sliding window compression example............................ 52

3.15 The hardware model for LZ77 compression.................................... 53

3.16 Example to illustrate the benefit of readback................................... 55

3.17 Seeking optimal configuration sequence.. 56

3.18 An example of memory sharing ... 58

3.19 An example to illustrate Memory Requirement Calculation
algorithm ... 59

3.20 An example of inter-frame compression using addressable
FDR ... 62

3.21 The simulation results for 6-bit symbol.. 65

3.22 The simulation results for 9-bit symbol.. 65

3.23 Unaligned regularity between frames... 66

4.1 Sample circuit for backtracing.. 73

4.2 Xilinx 6200 function unit and cell routing 75

4.3 The Xilinx 6200 North switch at 4 × 4 block boundaries................ 76

4.4 Experimental results of the compression algorithms 83

4.5 The effect of Don’t Cares on benchmarks in Table 3.2 for
Virtex compression ... 84

5.1 An example illustrating the effect of defragmentation 90

5.2 An example to illustrate the General Off-line algorithm for
Single Context FPGAs.. 97

5.3 Reconfiguration overheads of the Single Context FPGA, the
PRTR and the Multi-Context models... 110

5.4 Reconfiguration overheads for the Relocation and the PRTR
R+D FPGA.. 111

5.5 Comparison between the PRTR with Relocation +
Defragmentation model and the Multi-Context model.................. 112

6.1 An example for illustrating the ineffectiveness of the directed
shortest-path algorithm ... 122

6.2 The control flow graph for illustrating the const calculation......... 123

 - x -
6.3 An example of multiple children nodes reaching the same

configuration ... 127

6.4 Loop conversion.. 129

6.5 Example of prefetching operation control...................................... 134

6.6 An example of prefetch scheduling and generation after the
probability calculation... 136

6.7 The Markov model generated from access string A B C D C C
C A B D E ... 138

6.8 A table is used to represent the Markov graph............................... 141

6.9 An example illustrates the ineffectiveness of the dynamic
prefetching... 143

6.10 Reconfiguration overhead comparison... 146

6.11 Effect of the replacement algorithms for the static prefetching..... 147

 - xi -

List of Tables
The results of the compression algorithm on benchmark circuits............. 41

Information for Virtex benchmarks.. 64

4.1 The results of the compression algorithms....................................... 82

6.1 Results of the prefetching algorithm .. 132

6.2 Probability calculation for Figure 6.6... 136

 - 1 -

C h a p t e r 1

Introduction

As we approach the era in which a single chip can hold more than 100 million

transistors, current general-purpose processor systems will not reach their full potential

despite the great flexibility they can provide. On the other hand, application specific

integrated circuits (ASICs) achieve exceptionally high performance by targeting every

application on custom circuitry. However, no one can afford to design and implement a

custom chip for every application because of the enormous expense.

Reconfigurable computing systems have become an alternative to fill the gap between

ASICs and general-purpose computing systems. Although the basic concept was

proposed in the 1960s [Estrin63], reconfigurable computing systems have only recently

become feasible. This is due to the availability of high-density VLSI devices that use

programmable switches to implement flexible hardware architectures.

Most reconfigurable systems consist of a general-purpose processor, tightly or loosely

coupled with reconfigurable hardware. These systems can implement specific

functionality of applications on reconfigurable hardware rather than on the general-

purpose processor, providing significantly better performance. The general-purpose

processor in such systems no longer provides the major computational power; rather it

mainly performs tasks such as data collection and synchronization. Though the

performance of reconfigurable computing systems on a specific application is not as

high as on an ASIC, their promise to deliver flexibility along with high performance has

attracted a lot of attention. Moreover, in recent years such system can achieve high

 - 2 -

performance for a range of applications, such as image processing [Huelsbergen97],

pattern recognition [Rencher97], and encryption [Elebirt00, Leung00].

Field programmable gate arrays (FPGAs) [Brown92] or FPGA-like devices are the

most common hardware used for reconfigurable computing. A FPGA contains an array

of computational elements whose functionality is determined through multiple SRAM

configuration bits. These elements, also known as logic blocks, are connected using a

set of routing resources that is also programmable. In this way, custom circuits can be

mapped to the FPGA by computing the logic functions of the circuit within the logic

blocks, then using the configurable routing to connect the blocks to form the necessary

circuit.

Although the logic capacity of FPGAs is lower than that of ASICs because of the area

overhead for providing undedicated logic and routing, FPGAs provide significantly

higher flexibility than ASICs, while still offering considerable speedup over general-

purpose systems. In addition, the run-time reconfigurability provided by the advanced

FPGAs greatly improves hardware utilization.

In the first generation of reconfigurable computing systems, a single configuration was

created for the FPGA, and this configuration was the only one loaded into it. These are

called static reconfigurable systems [Sanchez99]. In contrast, run-time reconfigurable

systems can change configurations multiple times during the course of a computation.

Such systems are capable of reducing under-utilized hardware and fitting large

applications onto FPGAs.

In a static reconfigurable system, individual operations of an application will remain idle

when they are not required. For example, data dependencies within an application may

cause an operation idle, waiting for data inputs from other operations. Therefore,

placing all operations onto the FPGA at once is a poor choice, wasting precious

hardware resources. Run-time reconfiguration can be used to remove such idle

 - 3 -

operations by making them share limited hardware resources. Moreover, run-time

reconfiguration provides a design methodology for large applications that are too big for

the available hardware resources on the FPGA.

Many recent reconfigurable systems, such as Garp [Hauser97], PipeRench [Schmit97],

and Chimaera [Hauck97], involve run-time reconfiguration. In such systems, hardware

configuration may change frequently at run-time to reuse silicon resources for several

different parts of a computation. Such systems have the potential to make more

effective use of chip resources than even standard ASICs, where fixed hardware may be

used only in a portion of the computation.

In addition, run-time reconfigurable systems have been shown to accelerate a variety of

applications. An example is the run-time reconfiguration within an automatic target

recognition (ATR) application developed at UCLA to accelerate a template-matching

[Villasenor97]. The algorithm in this system is based on a correlation between

incoming radar image data and a set of target templates. Without considering the

reconfiguration time, this system improves performance by a factor of 30 over a

general-purpose computing system.

However, the advantages of run-time reconfiguration do not come without a cost. By

requiring multiple reconfigurations to complete a computation, the time it takes to

reconfigure the FPGA becomes a significant concern. The serial-shift configuration

approach, as its name indicated, transfers all programming bits into the FPGA in a serial

fashion. This very slow approach is still used by many existing FPGAs [Xilinx94,

Altera98, Lucent98]. Recent devices have moved to cutting-edge technology, resulting

in FPGAs with over one million gates. The configuration’s size for such devices is over

one megabyte [Xilinx00]. It could take milliseconds to seconds to transfer such a large

configuration using the serial-shift approach.

 - 4 -

In most reconfigurable systems the devices must sit idle while they are being

reconfigured, wasting cycles that could otherwise be performing useful work. For

example, the ATR system developed at UCLA uses 98% of its execution time

performing reconfiguration, meaning that it uses merely 2% time doing computation.

DISC and DISC II systems developed at BYU have spent up to 90% [Wirthlin95,

Wirthlin96] of their execution time performing reconfiguration. It is obvious that a

significant improvement in reconfigurable system performance can be achieved by

eliminating or reducing this overhead associated with reconfiguration delays.

To deal with the reconfiguration overhead this thesis develops an integrated

configuration management strategy for reconfigurable computing. Note that this

strategy will not only reduce or eliminate the time wasted in performing

reconfigurations, it can also increase the potential performance gains and applicability of

reconfigurable computing. Specifically, because of reconfiguration overhead, there are

applications where the performance benefits of using reconfigurable devices are

overwhelmed by the reconfiguration latencies involved; even worse, some applications

well suited to reconfigurable computing cannot run on current reconfigurable systems

simply because their performance gain is overwhelmed by reconfiguration time.

Therefore, eliminating reconfiguration overhead allows more applications to be mapped

into reconfigurable hardware, significantly increasing the benefits of reconfigurable

systems.

This thesis attempts to develop a complete set of configuration management techniques.

The succeeding chapters present:

• A review of reconfigurable computing systems, focusing on various popular

reconfigurable models, and of existing studies and techniques for reducing the

reconfiguration overhead (Chapter 2).

 - 5 -

• A discussion of an integrated configuration management strategy, including

configuration compression, configuration caching, and configuration prefetching

(Chapter 2).

• An exploration of configuration compression techniques (Chapter 3).

• An investigation of Don’t Care discovery technique to improve configuration

compression (Chapter 4)

• An investigation of configuration caching techniques for a range of

reconfigurable models (Chapter 5).

• An examination of configuration prefetching techniques (Chapter 6).

• A summary of the proposed techniques (Chapter 7).

This thesis closes with conclusions and opinions about the directions of future research

in configuration management techniques.

C h a p t e r 2

Background and Research Focus

This chapter first reviews the fundamentals of reconfigurable computing, and introduces

a variety of reconfigurable models and systems. It then summarizes previous techniques

and concludes by presenting the strategy and focus of our research.

2.1 Reconfigurable Computing Systems
Figure 2.1 illustrates the basic architectural components of a typical reconfigurable

computing system. The main component is the field programmable gate array (FPGA).

CPU RAM

FPGA

Figure 2.1: Architecture of a reconfigurable computing system.

FPGAs contain configurable logic blocks (CLBs), input-output blocks (IOBs), memory,

clock resources, programmable routing, and configuration circuitry. These logic

resources are configured through the configuration bit-stream allowing a very complex

 - 7 -

circuit to be programmed onto a single chip. The configuration bit-stream can be read

or written through one of the configuration interfaces on the device.

At this time, SRAM programmable FPGAs are very popular for reconfigurable

applications. For such devices, SRAM cells, as shown in Figure 2.2, are connected to

the configuration points within the FPGA. Configuration data from the input bit-stream

is written to the SRAM cell. The outputs connect to the FPGA logic and interconnect

structures. Control of the FPGA is therefore handled by the outputs of the SRAM cells

scattered throughout the device. Thus, an FPGA can be programmed and

reprogrammed as simply as writing to and reading from a standard SRAM.

Figure 2.2: A programming bit for SRAM FPGAs

The logic block is often considered to be a lookup table (LUT) that takes a number of

bits of input and generates one bit of output. By design, LUTs can compute any

Boolean logic function with n inputs. The LUT holds truth table outputs in the

memory instead of computing the output directly through combinational logic. In a

LUT, multiplexers implement logic function by choosing from the program bits in the

table. Figure 2.3 shows a two-input lookup table.

Logic blocks in commercial FPGAs are more complex than a single lookup table. For

example, a logic block of a Xilinx Virtex FPGA consists of 2 four-input lookup tables as

well as a dedicated carry chain circuitry that forms a fast adder. In addition, several

multiplexers are also included to combine with the lookup table, providing any logic

 - 8 -

function of five, six, seven, or eight inputs. Each logic block also contains flip-flops for

state-holding.

 P0

P1

P2

P3

C0 C1

Out

Figure 2.3: A two-input look-up table. P0, P1, P2, and P3 are program bits. By
giving them the right values, any two-input logic function can be realized.

Besides logic blocks, the other key feature that characterizes an FPGA is its interconnect

structure. Generally interconnect is arranged in horizontal and vertical channels that are

capable of connecting any two logic blocks. Each routing channel contains short wire

segments that often connect adjacent logic blocks, medium wire segments that span

multiple logic blocks, and long wire segments that run the entire length of the chip.

Most interconnect architectures use switches for signals from one logic block to reach

another.

As technology advances, the computational power of FPGAs has grown significantly.

For example, the new Xilinx Virtex FPGA has enough hardware to implement over two

thousand 32-bit adders. As a consequence, the time need to configure larger FPGAs

also increases. For example, the configuration time for the Xilinx Virtex 1000 FPGA is

15ms [Xilinx99]. This may not be an issue if the FPGAs were used as logic emulators.

However, for a reconfigurable computing system with configuration operations that

occur frequently, this latency represents an overhead that significantly degrades the

performance as well as limits the utilization of such systems.

 - 9 -

2.2 Reconfiguration Models
Frequently, the areas of a program that can be accelerated through the use of

reconfigurable hardware are too numerous or complex to be loaded simultaneously onto

the available hardware. For these cases, it is helpful to swap different configurations in

and out of the reconfigurable hardware as they are needed during program execution,

performing a run-time reconfiguration of the hardware. Because run-time

reconfiguration allows more sections of an application to be mapped into hardware than

can be fit in a non-run-time reconfigurable system, a greater portion of the program

can be accelerated in the run-time reconfigurable systems. This can lead to an overall

improvement in performance.

Memory
Array

Figure 2.4: The structure of a Single Context FPGA.

There are a few traditional configuration memory styles that can be used with

reconfigurable systems, including the Single Context model [Xilinx94, Altera98,

Lucent98], the Partial Run-time Reconfigurable model (PRTR) [Ebeling96, Schmit97,

Hauck97] and the Multi-Context model [DeHon94, Trimberger97]. For the Single

Context FPGA shown in Figure 2.4, the whole array can be viewed as a shift register,

and the whole chip area must be reconfigured during each reconfiguration. This means

that even if only a small portion of the chip needs to be reconfigured, the whole chip is

rewritten. Since many of the applications being developed with FPGAs today involve

run-time reconfiguration, the reconfiguration of the Single Context architecture incurs a

 - 10 -

significant overhead. Therefore, much research has focused on the new generation of

architectures or tools that can reduce this reconfiguration overhead.

A Multi-Context device [DeHon 94, Trimberger 97] has multiple layers of programming

bits, where each layer can be active at a different point in time. An advantage of the

Multi-Context FPGA over a Single Context architecture is that it allows for an

extremely fast context switch (on the order of nanoseconds), whereas the Single Context

may take milliseconds or more to reprogram. The Multi-Context design allows for

background loading, permitting one context to be configuring while another is

executing. Each context of a Multi-Context device can be viewed as a separate Single

Context device. A four-context FPGA is shown in Figure 2.5.

1

2
3

4

C

1

2
3

4

C

1

2
3

4

C

Figure 2.5: A four-context FPGA. At left is the four-context FPGA model, and at
right is the memory structure of the four-context FPGA.

Partial Run-time Reconfiguration (PRTR) is another typical reconfiguration model. By

changing only a portion of the reconfigurable logic while other sections continue

operating, the reconfiguration latency can be hidden by other computations. In recent

years, many commercial devices (Xilinx Virtex series, Xilinx 6200 series) and systems

(Garp [Hauser 97], Chimaera [Hauck 97], DISC [Wirthlin 96]) have applied the PRTR

model.

 - 11 -

The structure of a PRTR FPGA is shown in Figure 2.6. The entire SRAM control store

memory maps into the host processor’s address space. By sending configuration values

with row and column addresses to the FPGA, a certain location can be configured.

Based on the Partial Run-time Reconfigurable model, a new model, called Relocation +

Defragmentation (Partial R + D) [Compton00, Hauser97], was built to further improve

hardware utilization. Relocation allows the final placement of a configuration within

the FPGA to be determined at run-time, while defragmentation provides a way to

consolidate unused area within an FPGA during run-time without unloading useful

configurations.

Memory
Array

Row
 D

ecode

Col. Decode

Figure 2.6: The structure of a Partial Run-time Reconfigurable FPGA.

Like the PRTR FPGA, the memory array of the Partial R+D FPGA is composed of an

array of SRAM bits. These bits are read/write enabled by the decoded row address for

the programming data. However, instead of using a column decoder, an SRAM buffer

called the “staging area” is built. This buffer is essentially a set of memory cells equal

in number to one row of programming bits in the FPGA memory array. Its values are

transferred in parallel to the row location indicated by the row address. The structural

view of the Partial R + D model is shown in Figure 2.7.

 - 12 -

SRAM
Array

R
ow

 D
ecoder

Staging area

Figure 2.7: The architecture of the Relocation + Defragmentation model. Each row
of the configuration bit-stream is loaded into the staging area and then moved into
the array.

Incoming configuration:

(a) (b) (c) (d)
Figure 2.8: An example of configuration relocation. The incoming configuration
contains two rows. The first row is loaded into the staging area (a) and then
transferred to the desired location that was determined at run-time (b). Then the
second row of the incoming configuration is loaded to the staging area (c) and
transferred into the array (d).

To configure a chip, every row of a configuration is loaded into the staging area and

then transferred to the array. By providing the run-time determined row address to the

row decoder, rows of a configuration can be relocated to locations specified by the

system. Figure 2.8 shows the steps of relocating a configuration into the array. The

defragmentation operation is slightly more complicated than a simple relocation

operation. To collect the fragments within that array, each row of a particular

configuration is read back into the staging area and then moved to a new location in the

array. Figure 2.9 presents the steps of a defragmentation operation. [Compton00] has

 - 13 -

shown that with a very minor area increase, the Relocation + Defragmentation model

has a considerably lower reconfiguration overhead than the Partial Run-Time

Reconfigurable model.

Figure 2.9: An example of defragmentation. By moving the rows in a top-down
fashion into staging area and then moving upwards in the array, the smaller
fragments are collected.

Many recent reconfigurable systems are built based on these reconfiguration models. In

the next two sections, successful projects are briefly reviewed, illustrating high

performance and flexibility that reconfigurable systems can provide. Moreover,

performance degradation caused by reconfiguration overhead will also be discussed.

2.2.1 System Example -- Garp
The Garp project [Hauser97] focuses on the integration of a reconfigurable computing

unit with an ordinary RISC processor to form a single combined processor chip. The

research aims to demonstrate a tentative viable architecture that speeds up applications.

The Garp architecture is illustrated in Figure 2.10.

 - 14 -

Memory

I - Cache

Processor

D - Cache

Configurable
Array

Figure 2.10: Block diagram of Garp.

Garp’s main processor executes a MIPS-II instruction set extended for Garp. The rest of

the blocks in the system are logic blocks, which correspond roughly to the logic blocks

of the Xilinx 4000 series [Xilinx94]. The Garp architecture fixes the number of

columns of blocks at 24. The number of rows is implementation-specific. The

architecture is defined so that the number of rows can grow in an upward-compatible

fashion.

A C compiler is developed to discover the portions (kernels) of applications that can be

mapped onto Garp’s configurable array. The kernels are synthesized to run on the

configurable array, while the rest of the code is executed on the MIPS processor.

The loading and execution of configurations is under the control of the main processor.

Instructions are added to the MIPS-II instruction set for this purpose, including ones that

allow the processor to move data between the array and the processor’s own registers.

In the GARP system, configuration is loaded from memory. Since a significant

amount of time is needed to load the whole configuration, several steps have been

done to shorten the reconfiguration latency. One of the steps is to build a PRTR array

with relocation. Hardware translates a physical row numbers into logical ones, so one

can load several smaller configurations into the array and switch between them simply

 - 15 -

by changing a starting row’s address. In addition, simple cache memory units that

contain several recently used configurations are distributed within the array.

However, the performance of the system still suffers, since no sophisticated strategy

was developed to attack the reconfiguration bottleneck.

2.2.2 System Example — DISC
The dynamic instruction set computer (DISC) [Wirthlin95] successfully demonstrated

that application specific processors with large instruction set could be built on partial

reconfigurable FPGAs. DISC presented the concept of alleviating the density constraint

of FPGAs by dynamically reconfiguring the system at run-time.

The block diagram of the DISC system is showed in Figure 2.11. A CLAy31 FPGA

[National93] is used as the reconfigurable array. Bus interface circuitry is built for

communications between the host processor and the reconfigurable array. A

configuration controller is implemented on another CLAy31 FPGA to manage

configuration loadings from the RAM. The reconfigurable array runs each instruction

during execution. If an instruction requested is not presented on the array, the system

enters a halting state and sends a request for the instruction to the host processor.

Upon receiving a request from the reconfigurable array, the host processor chooses a

physical location in the array to hold the requested mode. The physical location is

chosen based on evaluation of the idle FPGA resources and the size of the requested

instruction. If another instruction currently occupies the location selected to hold the

requested instruction, the configuration of that instruction is replaced by that of the

requested instruction.

 - 16 -

H
ost Processor

Reconfigurable
Array

C
onfiguration
C

ontroller

R
A

M

Bus Interface
ISA Bus

Figure 2.11: Block diagram of DISC system.

Without consideration of the reconfiguration overhead, the DISC system achieves a

factor of 80 speedup over the general-purpose approach. However, when considering

the reconfiguration overhead, DISC only provides a 23 times speedup. This means the

reconfiguration overhead causes a factor of 3.8 performance degradation. Further

analysis on a range of applications shows that 25%--91% of execution time is used to

perform reconfiguration.

2.3 Reconfiguration Overhead Reduction Techniques
As demonstrated, reconfiguration overhead can severely degrade the performance of

reconfigurable systems. In addition, it also limits the system’s utilization simply

because it can overwhelm the speedup achieved by running applications on

reconfigurable hardware. Therefore, eliminating or reducing this overhead becomes a

very critical issue for reconfigurable systems. This section describes related research

work that attempts to reduce reconfiguration overhead.

2.3.1 Configuration Cloning
Configuration Cloning [Park99] exploits regularity and locality during reconfiguration

and is implemented by copying the bit-stream from one region of an FPGA to one or

several other regions. Therefore, without loading entire bit-stream the chip can be

 - 17 -

configured. By using this cloning technique, configuration overhead can be reduced.

Figure 2.12 shows an example of configuration cloning.

FPGA FPGA FPGA

Figure 2.12: An example of Configuration Cloning. Left shows the initial loading,
followed by a horizontal copy (middle) and a vertical copy (right).

However, this method is not very realistic. First, it requires the FPGA to send all bits

from multiple cells in a row/column to several other cells in the same row/column in

parallel. This necessitates a very large amount of routing hardware, complex control

circuitry, and perhaps some large switch matrixes, all of which could impose a

significant area overhead. Second, this method requires very high regularity; it is best

suited only to hand-mapped circuits and those circuits of arrays of replicated cells. This

is a significant set of restrictions, and may make this method of very limited utility.

Finally, in order to implement configuration cloning, the instruction set of the host

processor has to be extended, and the system requires a command interpreter in the

FPGA that can decode the command from a host processor and broadcast sender and

receiver addresses to a proper configuration bit-stream line. However, because of

uncertainty about the number of operands in a command, it is hard for the system to

decode commands. These drawbacks not only limit the utilization of this approach, but

also result in poor performance, as experimental results indicated.

2.3.2 Configuration Sharing
Configuration sharing [Heron99] is a way to efficiently exploit partial reconfiguration.

It involves locating the similarity between circuits that will reduce the amount of

reconfiguration. Maximizing the amount of static circuitry (the common circuitry

 - 18 -

shared by multiple configurations) can reduce the amount of reconfiguration necessary

to switch between them.

The basic idea of this method is simple, but it is hard to implement. Configuration

sharing requires applications with similar sub-circuitry, which makes this method of

very limited utility. In addition, it requires software tools that can identify the

similarities between the applications and map the applications in a way that permits

them to share the static circuitry. This will limit the utilization of hardware resources.

Furthermore, common circuitry development is very sensitive to the device and

algorithm. The static circuitry found in one device probably will not apply to another.

Using different algorithms for a function or application can also affect performance,

requiring designers to recognize the possible static circuitry produced by different

algorithms.

2.3.3 Configuration Scheduling
The configuration scheduling technique [Deshpande99] is suitable for pipelined

applications and was designed on a Striped FPGA [Schmit97]. There are two major

configuration scheduling approaches: configuration caching and data caching.

In configuration caching, all configurations must be stored in the cache, and cached

configurations are circulated through the fabric (Figure 2.13). In data caching, cached

intermediate data is circulated through the fabric (Figure 2.14). For configuration

caching, a stripe of the fabric is configured each pipeline stage. Therefore, that stripe

does not provide useful computation at the pipeline stage. Data caching, on the other

hand, does not perform reconfiguration at all pipeline stages. Therefore, when the

number of data elements processed by the application exceeds the number of pipeline

stages, the number of execution cycles is lower for data caching than for configuration

caching.

 - 19 -

Config f1 f1(x1)

Config f2

 f1(x2)

 f2 (x1)

Config f3

Config f4

 f2 (x2)

 f3 (x1)

 f4(x1)

Config f5

 f3 (x2)

 f4(x2)

 f5 (x1)

Config f6

Config f1

 f5 (x2)

 f6 (x1)

 f1(x4)

 f2 (x3)

Config f3

Config f4

 f2 (x4)

 f3 (x3)

 f4(x3)

Config f5

 f3 (x4)

 f4(x4)

 f5 (x3)

Config f6

 f5 (x4)

 f6 (x3) f6 (x4)

 f1(x3)

Config f2

 f6 (x2)

Figure 2.13: Execution using configuration caching approach. A strip is configured at
each pipeline stage, meaning that the strip does not contribute to computation at that
stage.

Config f1 f1(x1)

Config f2

 f1(x2)

 f2 (x1)

Config f3

 f2 (x2)

 f3 (x1)

 f1(x4)

 f3 (x2)

 f2 (x4)

Config f4

 f4(x3)

 f5 (x2) f5 (x3)

 f6 (x2) f6 (x3) f6 (x4)

 f4(x2)

 f1(x3)

 f2(x3)

 f3 (x3)

 f4(x1)

Config f5

 f3 (x4)

 f5 (x1)

Config f6 f6 (x1)

 f4 (x4)

 f5 (x4)

Figure 2.14: Execution using data caching approach. At stages 4 and 5, no strip needs

to be configured, thus all strips contribute to computation.

2.4 Research Focus
Section 2.3 illustrated a number of different tactics for reducing configuration overhead.

However, each of these techniques attempts to attack only one facet of the problem and

does not show significant overhead reduction. In addition, these approaches rely

heavily on specific architectures or applications, greatly limiting their utility.

In this thesis, we focus on developing a complete strategy that attacks this

reconfiguration bottleneck from multiple perspectives. First, compression techniques

can be introduced to decrease the amount of configuration data that must be transferred

 - 20 -

to the system. Second, the actual process of transferring configuration data from the

host processor to the reconfigurable hardware can be modified to include a

configuration cache. Third, configurations can be preloaded to overlap as much as

possible with the execution of instructions by the host processor. Finally, high

bandwidth configuration bus can be built to speed up configuration transferring process.

Loading a configuration requires that a large amount of data be transferred as quickly as

possible into the reconfigurable hardware. Increasing the number of pins for

configuration can provide higher configuration bandwidth. In addition, minimizing the

clock cycle of the configuration bus presents another alternative to increase

configuration bandwidth. However, these approaches are greatly limited by process

technology or device vendors, and thus they will not be the major focus of this thesis.

While high-bandwidth buses can get data into the reconfigurable device quickly, the

amount of data moved in a reconfiguration is often quite large. To deal with this, we

will investigate configuration compression techniques that can minimize the size of the

configuration bit-streams. FPGA configuration bit-streams tend to be sparse, with

significant amounts of regularity. We will develop algorithms to discover regularities

within the configuration bit-streams and compress the bit-streams using them.

To maximize the likelihood that a required configuration is already present on

reconfigurable devices, we will develop configuration caching techniques. By storing

the configurations on-chip, the number of configuration loading operations can be

reduced, and thus the overall time required is reduced. The challenge in configuration

caching is to determine which configurations should remain on the chip and which

should be replaced when a reconfiguration occurs. An incorrect decision will fail to

reduce the reconfiguration overhead and lead to a much higher reconfiguration overhead

than a correct decision. In addition, the different features of various FPGA

programming models (discussed in Section 2.2) add complexity to configuration

caching because each FPGA model may require unique caching algorithms.

 - 21 -

Performance can be further improved when the actual configuration operation is

overlapped with computations performed by the host processor. Overlapping

configuration and execution prevents the host processor from stalling while it is waiting

for the configuration to finish, and hides the configuration time from the program

execution.

Configuration prefetching attempts to leverage this overlap by determining when to

initiate reconfiguration in order to maximize overlap with useful computation on the

host processor. It also seeks to minimize the chance that a configuration will be

prefetched falsely, overwriting the configuration that is actually used next. The

challenge in configuration prefetching is to determine far enough in advance which

configuration will be required next. Many applications can have very complex control

flows, with multiple execution paths branching off from any point in the computation,

each potentially leading to a different next configuration. In addition, it is very

important to correctly predict which configuration will be required. In order to load a

configuration, configuration data that is already in the FPGA can be overwritten. An

incorrect decision on what configuration to load can not only fail to reduce the

reconfiguration delay, but also in fact can greatly increase the reconfiguration overhead

when compared to a non-prefetching system.

All of these techniques will be brought together to create a complete configuration

management system. Configuration compression will reduce the amount of data that

needs to be transferred for each configuration. Configuration caching will increase the

likelihood that a required configuration is present on-chip. Configuration prefetching

will overlap computation with reconfiguration, avoiding system stalls. By using these

techniques together, we can virtually eliminate reconfiguration overhead from

reconfigurable computing systems.

C h a p t e r 3

Configuration Compression

For each configuration operation, a significant amount of data is transferred onto the

reconfigurable device (FPGA) through communication links. Configuration

compression makes it possible to speed up data transfer by reducing the amount of space

consumed by the information being sent. In this chapter, we will investigate a variety of

effective configuration compression techniques for common reconfigurable devices.

3.1 General Data Compression Techniques
Data compression has important application in the areas of data transmission and data

storage. Many data processing applications store large volumes of data, and the number

of such applications is constantly increasing as the use of computers extends to new

disciplines. At the same time, the proliferation of computer communication networks is

resulting in massive transfers of data over communication links. Compressing data to

be stored or transmitted reduces storage and/or communication costs. When the amount

of data to be transmitted is reduced, the bandwidth of the communication link is

effectively increased.

Compression techniques are divided into two categories: lossless compression and lossy

compression [Nelson95]. No information of the original is lost for lossless

compression, meaning that a perfect reproduction of the original can be achieved from

the compressed data. This is generally the technique of choice for text or spreadsheet

files, where losing words or financial data could pose a problem. Lossy compression,

on the other hand, involves the loss of some information. Data reconstructed from the

 - 23 -

lossy compression is similar to, but not exactly the same as, the original. Lossy

compression is generally used for video and sound, where a certain amount of

information loss can be tolerated by users. In general, lossy compression techniques

achieve better compression ratios than lossless ones.

3.2 Configuration Compression Overview
The goal of configuration compression for reconfigurable systems is to minimize the

amount of configuration data that must be transferred. Configuration compression is

performed at compile-time. Once compressed, the bit-streams are stored in off-chip

memory. During reconfiguration at run-time, the compressed bit-stream is transferred

onto the reconfigurable device and then decompressed. The processes of compression

and decompression are shown in Figure 3.1.

Compressor
Configuration

bit-stream

Compressed
bit-stream Configuration

storage

(Off-chip)

(a) The compression stage (compile-time)

Configuration
storage

(Off-chip)

Compressed
bit-stream

Decompressor

Decompressed
bit-stream Configuration

memory

(On-chip)

Reconfigurable Device (FPGA)

(b) The decompression stage (run-time, on-chip)

Figure 3.1: The flow of compression. The original configuration data is compressed
at compile-time (a). When reconfigurations occur, the compressed data is transferred
to the decompressor on the reconfigurable device (b).

As can be seen in Figure 3.1, two issues must be resolved for configuration

compression. First, an efficient compression algorithm must be developed. Second,

 - 24 -

since decompression is performed on-chip, building a decompressor should not result in

significant hardware overhead.

Furthermore, any configuration compression technique must satisfy the following two

conditions: (1) the circuitry generated from the decompressed bit-stream must not cause

any damage to the reconfigurable devices, and (2) the circuitry generated must result in

the same outputs as those produced by circuitry generated from the original

configuration data. Consequently, most configuration compression research does not

involve lossy techniques since any information loss in a configuration bit-stream may

generate undesired circuitry on reconfigurable devices, and, even worse, may severely

damage the chips.

Lossless compression techniques satisfy the above conditions naturally, because the

decompressed data is exactly the same as the original configuration data. Lossless data

compression is a well-studied field, with a variety of very efficient coding algorithms.

However, applying these algorithms directly may not significantly reduce the size of the

configuration bit-stream, because a number of differences exist between configuration

compression and general data compression.

3.3 Configuration Compression Vs. Data Compression
The fundamental strategy of compression is to discover regularities in the original input

and then design algorithms to take advantage of these regularities. Since different data

types possess different types of regularities, a compression algorithm that works well for

a certain data input may not be as efficient as it is for other inputs. For example,

Lempel-Ziv compression does not compress image inputs as effectively as it does text

inputs. Therefore, in order to better discover and utilize regularities within a certain data

type, a specific technique must be developed. Existing lossless compression algorithms

may not be able to compress configuration data effectively, because those algorithms

cannot discover the potential specific regularities within configuration bit-streams.

 - 25 -

Since decompression is performed on-chip, the architecture of a specific device can

have an equally significant impact on compression algorithm design. Lossless data

compression algorithms do not consider this architecture factor, causing the following

problems:

(1) Significant hardware overhead can result from building the decompressor on-chip.

For example, a dictionary-based approach, such as Lempel-Ziv-Welch coding requires a

significant amount of hardware to maintain a large lookup table during decompression.

(2) The decompression speed at run-time may offset the effectiveness of the

compression. For example, in Huffman compression, each code word is decompressed

by scanning through the Huffman tree. It is very hard to pipeline the decompression

process, and therefore it could take multiple cycles to produce a symbol. As the result,

the time saved from transferring compressed data is overwhelmed by slow

decompression.

(3) Certain special on-chip hardware that can be used as decompressor may be wasted.

For example, wildcard registers on the Xilinx 6200 series FPGAs can be used as

decompressors. Unfortunately, no previous algorithm exists to take advantage of this

special feature.

Realizing the unique features required for configuration compression, we have focused

on exploring regularity and developing proper compression techniques for various

devices. However, any technique will be limited if it can merely apply to one device.

Therefore, our goal is to investigate the characteristics of different configuration

architecture domains, and develop efficient compression algorithms for a given domain.

Two types of base devices (FPGAs) are considered in this work: the Xilinx 6200 series

FPGAs and the Xilinx Virtex FPGAs. A first generation partial run-time reconfigurable

FPGA, the Xilinx 6200 series provides a special hardware, called wildcard registers, that

 - 26 -

allows multiple locations to be configured simultaneously. The wildcard compression

algorithm we developed not only efficiently compresses configuration bit-streams for all

members of the Xilinx 6200 family, but also works for any devices with similar feature.

The Xilinx Virtex FPGAs are the most widely used reconfigurable devices, with

millions of gates. The architecture of the Virtex family possesses interesting features for

future development of reconfigurable devices. Consequently, our compression research

for the Xilinx Virtex FPGAs can be adapted to a number of devices without significant

modifications. In the following sections, we will discuss the details of our compression

algorithms for these two devices.

3.4 Compression for the Xilinx 6200 FPGAs
The XC6200 FPGA is an SRAM-based, high-performance, Sea-Of-Gates FPGA

optimized for datapath designs [Xilinx97]. All user registers and SRAM control-store

memory are mapped into a host processor’s address space, making it easy to configure

and access the chip’s state. A simplified block diagram of the XC6216 is shown in

Figure 3.2.

R
ow

 D
ecoder

Cntr

64x64 Cell

Column Decoder

Figure 3.2: XC6216 simplified block diagram.

The XC6200 provides five types of programming control registers. Device

Configuration Registers control global device functions and modes. Device

Identification Registers control when computation starts; usually the ID Registers are

 - 27 -

written in the final step of configuration. Map Registers can map all possible cell

outputs from a column onto the external data bus. By correctly setting the Map

Registers, the state registers can be easily accessed without complicated mask

operations. Mask Registers can control which bits on the data bus are valid and which

bits are ignored. Finally, Wildcard Registers allow some cell configuration memories

within the same row or column of cells to be written simultaneously. Since Wildcard

Registers are the primary architectural feature used by our algorithm, we will provide

more detail about them.

There are two Wildcard Registers: Row Wildcard Register and Column Wildcard

Register, which are associated with the row address decoder and the column address

decoder, respectively. Each register has one bit for each bit in the row address or the

column address. Wildcard Registers can be viewed as “masks” for the row and column

address decoders. Let us consider the effect of the Row Wildcard Register on row

address translation. (The Column Wildcard Register has the same effect on column

address translation.) A logic one bit in the Row Wildcard Register indicates that the

corresponding bit of the row address is a wildcard, which means the address decoder

matches rows whose addresses have either a “1” or “0” on the wildcard bits. Thus, the

number of cells that will be configured at the same time is 2n if there are n logic one bits

in the Wildcard Register. For example, suppose the Row Wildcard Register is set to

“010001” and the address to the row address decoder is set to “110010”. In this case the

row decoder selects rows 100010, 100011, 110010, and 110011. If these locations share

the same computation, and thus would need to be configured with the same value, all

four could be configured with a single write operation. Thus, Wildcard Registers permit

faster configuration to be achieved.

The Wildcard Registers and the address decoder can be viewed as a configuration

decompressor. Given a compressed configuration file, which has Wildcard Register

writes followed by address writes, the address is decompressed so that several cells with

 - 28 -

the same function get configured simultaneously. The Wildcard Registers can inform

the address decoder about which bits in the address can be “wildcarded” and which bits

cannot. Theoretically, up to 4096 cells can be configured by only three writes (two

Wildcard Registers writes and one address write) if we assume all 4096 cells share the

same function. With this “decompressor” hardware available, there is the potential to

achieve significant reductions in the required configuration bandwidth. The key is to

find an algorithm that can efficiently use this decompression hardware.

3.4.1 Algorithm Overview
Given a normal configuration bit-stream, our algorithm will generate a new

configuration file that performs the same configuration with fewer writes by using the

Wildcard Registers. Our algorithm contains two stages. In the first, we assume that

writes to the Wildcard Registers are free and thus seek the minimum number of writes

necessary to configure the array for a given configuration. This will create a series of

writes with arbitrary wildcards, meaning that these wildcard writes may add significant

overhead. The second stage of the algorithm attempts to reduce this wildcarding

overhead by sharing the same wildcard in a series of writes, thus reducing the number of

times the Wildcard Registers must be changed.

Before discussing details of this algorithm, we first describe the format of the

configuration file we use. The standard Xilinx XC6200 configuration file (.cal file)

consists of a series of configuration address-data pairs. Two points must be made about

the .cal files. First, a .cal file contains data to configure the entire chip, including both

the logic array and the configuration registers. However, the Wildcard Registers operate

only on the logic array memory addresses, meaning that it is not possible to compress

the configuration register writes. Thus, these register writes represent a fixed overhead

for our algorithm. We will ignore these writes during the discussion that follows,

although our algorithm does maintain all control register writes from the source file, and

our results include these fixed overheads. Second, the XC6200 is partially

 - 29 -

reconfigurable, meaning that a .cal file may contain writes to only a portion of the logic

array. Thus, there are regions of the array that are not modified by the input

configuration. Since these locations may contain data from previous configurations that

must be maintained, we treat all locations not written by an input .cal file as “Don’t

Touches”. That is, we do not allow our algorithm to reconfigure these locations, thus

restricting the amount of compression possible.

3.4.2 The First Stage of the Algorithm
In the first stage of the algorithm, we assume that both Wildcard Registers can be

written during the same cycle as data is written to the logic array’s configuration. Thus,

we ignore the overhead of wildcard writes in order to simplify compression problem.

However, Appendix A shows that even this simplified version of the problem is NP-

hard by transforming two-level logic minimization into this compression problem.

Although this will demonstrate that an optimal algorithm is unlikely for this problem, it

will also point the way towards an efficient heuristic via standard logic minimization

techniques.

In the standard two-level logic minimization problem, the goal is to find the minimum

number of cubes that cover the ON set of a function, while covering none of the OFF

set. In the configuration compression problem, we seek the fewest wildcard-augmented

writes that will set the memory to the proper state. Figure 3.3 shows a transformation of

the two-level logic minimization problem into the wildcard compression problem.

Since even the simpler decision version of the problem of finding the smallest set of

wildcard writes that implements a particular configuration is NP-complete, we are

unlikely to find an efficient (polynomial-time) algorithm to construct the smallest such

set of writes. Consequently, we focus our attention on heuristic techniques instead.

 - 30 -

 00 01 11 10 00 01 10 11

00 0 1 0 0 00 DT 1 DT DT

01 0 0 0 0 01 DT DT DT DT

11 1 1 1 0 10 DT 1 DT 1

10 0 1 1 0 11 1 1 DT 1

Figure 3.3: Example of the transformation of 2-level logic minimization into the
simplified configuration compression problem. The Karnaugh Map (left) of the
circuit is transformed into the configuration to be compressed (right). “DT”
indicates don’t touches in the configuration.

Because of the similarity of the two problems, we should be able to use standard logic

minimization techniques to find the wildcards for the configuration problem. For the

example in Figure 3.4, normal configuration will need four writes to configure all cells

with the function “2”. However, by using logic minimization techniques we can find a

single cube that covers the corresponding cells in the Karnaugh map. Since we have

Wildcard Registers, we can compress the four configuration memory addresses in the

cube into one address “--10”, where “-” means wildcard. Before configuring these four

cells, we first set the Row Wildcard Register to “11” (which means the row address

following is read as “--”) and the Column Wildcard Register to “00”. The row address

decoder then automatically decompresses the address, configuring all four cells at the

same time.

Even though this configuration problem can be viewed as a logic minimization problem,

there is a difference between these two problems. In logic minimization the logic is

static, which means all “1” terms are written in the Karnaugh map at the same time, and

the sum of the product terms (cubes) exactly covers the logic for each output. However,

in configuration compression the configuration is done dynamically, which means that

later writes can overwrite previous values. Thus, we can consider the values of the cells

that have not yet been written into the FPGA as Don’t Cares.

 - 31 -

With these Don’t Cares, we may be able to use fewer product terms (cubes) to cover the

cells that need to be written to the FPGA, reducing the number of writes in the

configuration. For example, in Figure 3.4, suppose data “1” is written before data “3”.

We can find a single cube to cover all the “1”s, instead of two, if we consider the cells

with data “3” as Don’t Cares (Figure 3.5a). This means we need just one address write

to configure all “1”s. Of course, all cells covered by the cube shaded in Figure 3.5a are

configured with data “1”, including those cells that actually require data “3”. However,

since the XC6200 FPGA is a reconfigurable device, those cells with the wrong data can

be rewritten with the correct configuration later, as shown in Figure 3.5b.

 00 01 10 11

00 1 1 2 DT

01 1 1 2 DT

10 1 3 2 3

11 3 3 2 DT

Figure 3.4: Example for demonstrating the potential for configuration compression.

From the example in Figure 3.5, we can see that the order in which specific values are

written can affect the total number of writes needed. If we ignore Wildcard Register

writes, the total number of writes needed to complete the configuration in Figure 3.4 is

four for the case in which the “1”s are written before the “3”s. However, for the case in

which the “3”s are written before the “1”s, the total number of writes will be five. This

is because we can write all “1”s in one cycle if the “3”s are Don’t Cares, while the “3”s

will take two writes regardless of whether the “1”s are written before or after the “3”s.

Thus, we have to consider not only how to most efficiently write each value into the

configuration memory, but also the order of these writes should occur to best compress

the data. We can certainly find an optimal sequence for a specific configuration by

doing an exhaustive search, but the runtimes would be significant. Thus, heuristic

 - 32 -

algorithms are required not just for finding wildcarded addresses, but also to determine

the order of wildcard writes. Before we present these heuristics, we first introduce the

logic minimization technique we used for our configuration algorithm.

 00 01 10 11 00 01 10 11

00 1 1 00 1 1

01 1 1 01 1 1

10 1 X 10 1 3 3

11 X X

11 3 3

 (a) (b)

Figure 3.5: Example of the use of Don’t Cares in configuration compression. By
making the locations with “3” as Don’t Cares (a), one write, rather than two, is
sufficient to configure all “1”s. “3”s are written into required locations later (b).

3.4.3 Wildcarded Address Creation via Logic Minimization
The logic minimization problem is a well-known NP-complete problem, and heuristic

algorithms exist to find near optimal solutions. The Espresso algorithm [Brayton84] is

widely used for single-output logic optimization, and it is claimed that optimal solutions

will be produced in most cases. We use Espresso as a major portion of our

configuration compression algorithm. The input required by Espresso is an encoded

truth table, as shown in Figure 3.6 (a). Each line consists of a minterm index encoded in

binary, followed by either a “1” (for members of the On set) or a “-” (for members of

the Don’t Care set). The corresponding minimized truth table is shown in Figure 3.6

(b).

The configuration memory addresses in the .cal file can be viewed as minterms for the

Espresso input file. Assume, for example, that we decide that the “3”s are the next

values to write to the array, and that the “1”s have already been written, though the “2”s

have not. We can use Espresso to find the proper wildcarded writes by assigning all

addresses with the value to be written assigned to the On set, all Don’t Touch and

 - 33 -

already written values to the Off set, and all values not yet written to the Don’t Care set.

Thus, the “3” addresses would be passed to Espresso with a “1”, and the “2” addresses

would be passed with a “-”. The results of Espresso will be a set of cubes that

correspond to wildcarded writes. These writes contain all of the addresses that need to

be set to the value to be written, as well as locations that will be written in future writes,

but will not contain the Don’t Touch or already written addresses.

1000 1 00-- 1

0001 1 -000 1

0010 1

0011 1

0000 -

 (a) (b)

Figure 3.6: Espresso input (a), and the resulting output (b).

We now present the first stage of our algorithm:

1. Read the input .cal file and group together all configuration memory addresses

with the same value. Mark all address locations as “unoccupied”.

2. Sort the groups in decreasing order of the number of addresses to be written in that

group.

3. Pick the first group, and write the addresses in the group to the Espresso input file

as part of the On set.

4. Write all other addresses marked “unoccupied” to the Espresso input file as part of

the Don’t Care set.

5. Write all addresses marked “occupied”, yet with the same value as the first group,

to the Espresso input file as part of the Don’t Care set.

 - 34 -

6. Run Espresso.

7. Pick the cube from the Espresso output that covers the most unoccupied addresses

in the first group and add it to the compressed .cal file. Mark all covered addresses

as “occupied”, and remove them from the group.

8. If the cube did not cover all of the addresses in the group, reinsert the group into

the sorted list.

9. If any addresses remain to be compressed, go to Step 2.

This algorithm uses the Espresso-based techniques discussed earlier, with a greedy

choice of the order in which to write the different values. We greedily pick the group

with the most addresses in it because this group should benefit the most from having as

many Don’t Cares as possible, since the values may be scattered throughout the array.

An example of this is shown in Figure 3.7. If we choose to write the “5”s first, the total

number of writes (excluding Wildcard Register writes) is five, while it requires only

three writes if the “6”s are written first. This greedy method has been as efficient as

other more complete heuristic methods we have implemented.

 00 01 10 11

00 6 6 6 6

01 6 6 6 6

10 6 6 6 5

11 6 6 5 6

Figure 3.7: An example that illustrates the reason for selecting bigger groups.

Since a single cube may not cover all the addresses in the currently picked group, we

pick the cube that covers the most addresses, since it provides the greatest compression

factor. When this group is picked again (in order to cover the rest of the addresses), we

will put Don’t Cares for those configuration memory addresses “occupied” by the same

 - 35 -

function data. Thus, later cubes are still allowed to cover these earlier addresses, since

writing the same value twice does not cause any problems.

One additional optimization we have added to the algorithm is to perform a

preprocessing to determine if any of the groups will never benefit from any Don’t Cares,

and thus can be scheduled last. For each group, we run Espresso twice. In the first run,

all locations that will be configured, except for the members of the group, are assigned

to the Don’t Care set. In the second run, these nodes instead form the Off set. In both

cases the group members are assigned to the On set. If the numbers of cubes found in

both runs are identical, it is clear that the Don’t Cares do not help to reduce the number

of writes for this value. Thus, this group is always scheduled last.

One final concern for the first stage of our algorithm is the XC6216 column wildcard

restriction. Because of the electrical properties of the memory write logic, the

architecture restricts the number of wildcards in the column address to at most four bits.

To handle this, we examine the cube picked in Step 7 and see if it meets this restriction.

If there are too many wildcards in the column bits, we iteratively pick one wildcard to

remove until the restriction is met. To pick the wildcard to remove, we determine how

many addresses have a “0” in a given wildcard bit and how many have a “1”. The

wildcard removed is the one with the most addresses with a specific value (“1” or “0”),

and that value replaces the Wildcard.

Once the first stage of the algorithm is completed, we have a list of address data pairs,

with wildcards in most of the addresses, which will produce the desired configuration.

However, while this series of writes assumes that the Wildcard Registers can be set in

the same cycle as the configuration memory write, it actually takes three cycles to

perform this operation: Row Wildcard Register write, Column Wildcard Register write,

and configuration memory write. Thus, wildcard writes will triple the total number of

writes. In stage two of the algorithm, we use techniques for sharing Wildcard Register

 - 36 -

writes between multiple configuration memory writes, significantly reducing this

overhead.

3.4.4 The Second Stage of the Compression Algorithm
The objective of this stage is to reorder the sequence of writes created in the first stage

in order to share Wildcard Register writes between configuration memory writes. Also,

since Espresso will find the largest cube that covers the required configuration

addresses, there may be some wildcard bits that can be changed into “0” or “1” while

still covering all required memory addresses. Performing such reductions may increase

the number of compatible Wildcard Register values, again increasing Wildcard Register

value sharing. We call this second transformation “wildcard reduction”. Figure 3.8

gives an example of two consecutive writes that cannot share any Wildcard Register

values after the first stage, yet after wildcard reduction both wildcards can be shared.

The number of writes needed for writing the 6 configuration memory addresses is down

to four, two less than that without wildcard sharing.

Write 1 Addresses Write 2 Addresses Original Writes Reduced Writes

(000000, 000100) (100000, 100100) (0-0-00, 00--00) (0-0000, 00--00)

(010000, 000100) (100000, 100100) (1-0000, 1---00) (1-0000, 10--00)

(010000, 001000) (110000, 101000)

 (a) (b) (c)

Figure 3.8. An example of Wildcard reduction. The addresses to be configured are
shown in (a). (b) shows the set of writes given by the first stage, which requires
unique row and column wildcards. The reduced version (c) can share both row and
column Wildcards by removing some Wildcard bits.

Before we continue the discussion, we first need to define some terms:

• Required Addresses Set: the set of addresses that become occupied because of

this write (the addresses this write is used to set).

• Maximum Address: the wildcarded address found by Espresso.

 - 37 -

• Minimum Address: the wildcarded address with the minimum number of

wildcards that still covers the Required Address Set.

• Intersect(Addr1, Addr2): the set of addresses covered by both addresses Addr1

and Addr2.

• And(Wild1, Wild2): the bitwise AND of two Wildcard Register values. Retains

a wildcard bit only when it appears in both values.

• Or(Wild1, Wild2): the bitwise OR of two Wildcard Register values. Contains a

wildcard bit when either source wildcard value has a wildcard at that bit.

• Superset(Wild1, Wild2): true if every wildcard bit in Wild2 is also in Wild1.

In the second stage, we reorder the sequence of writes found in stage one and apply the

wildcard reduction selectively to find a new order with a much lower Wildcard Register

write overhead. In order to do this, we convert the totally ordered sequence of writes

from the first stage into a partial order that captures only those ordering constraints

necessary to maintain correctness. We then create a new order and apply the wildcard

reduction.

In the first stage, the sequence we created is not necessarily the only order in which the

sequence of writes can correctly be applied. For example, the writes in Figure 3.8 can

be reversed without altering the resulting configuration since neither write overwrites

relevant data from the other. Of course, there are some writes that are not swappable, so

we must determine which writes must be kept in sequence and which can be reordered.

Once we have this information, we can reorder the writes to increase Wildcard Register

value sharing. The following condition gives one situation in which writes can be

reordered and forms the basis for our partial order generation algorithm. In the

paragraphs that follow, we assume that write A preceded write B in the original order.

 - 38 -

Condition 1: If Intersect(Maximum Address(A), Required Addresses Set(B)) = {}, then

A and B can be reordered.

In order to create a partial order, we investigate each (not necessarily consecutive) pair

of nodes in the original order. If condition 1 does not hold for this pair of nodes, an

edge is inserted into the partial order group, requiring that the earlier write must occur

before the later write. Once all pairs have been considered, we have created a partial

order for the entire set of writes. Only those nodes without any incoming edges can be

scheduled first. After a node is scheduled, that node and any edges connected to it are

removed, potentially allowing other nodes to be scheduled. All nodes that become

schedulable once a given node is removed from the partial order are called the

“children” of that node.

At any given point in the scheduling process, the partial order graph determines which

nodes are candidates to be scheduled. Now, we must develop an algorithm for choosing

the best candidate node to schedule. We use the following rules as our scheduling

heuristics. The rules are applied in order, with ties at an earlier rule broken by the rules

that follow. Thus, losers at any rule are eliminated. Only the winners are compared

with the following rules:

1. The candidate can share both row and column wildcards with the preceding writes.

2. A child of the candidate can share both wildcards with a different current

candidate.

3. The candidate can share either the row or column wildcard with the preceding

writes.

4. The candidate with the greatest number of other candidates and children that can

share both row and column wildcards with it.

 - 39 -

5. the candidate with the greatest number of other candidates and children that can

share either the row or column wildcard with it.

6. Candidate with the greatest number of children.

Rules 1 and 3 measure the immediate impact of scheduling the candidate on the number

of wildcard writes. Rule 2 adds some lookahead, scheduling a candidate early in order

to allow its children to share wildcards with another current candidate. Rules 4 to 6

attempt to increase the number of good candidates, hoping that the greater flexibility

will result in lower wildcard overheads.

In order to implement these rules, we must determine when two writes can share a row

or column wildcard. To do this, we use the following condition:

Condition 2: If (Maximum Wildcard of A And Maximum Wildcard of B) is the superset

of (Minimum Wildcard of A Or Minimum Wildcard of B), then A and B can share the

wildcard.

The intuition behind this condition is that if A and B can share a wildcard, then the

Maximum Wildcard of A must be the superset of the Minimum Wildcard of B, and the

Maximum Wildcard of B must be the superset of the Minimum Wildcard of A.

Otherwise, they cannot share the wildcard. Notice that the wildcard sharing is not

transitive. That is, if A and B can share a wildcard, and B and C can share a wildcard, it

is not always true that A and C can share a wildcard. For example, B might have all bits

as wildcards, while A and C each have only one wildcarded position, and the position

differs for A and C.

The non-transitivity of wildcards is an important consideration. If we apply the

scheduling rules discussed earlier pairwise, we may schedule three writes in a series and

expect them to share all wildcards, when in fact we require new wildcard writes before

the third write. To deal with this, when a node is scheduled, we generate a new

 - 40 -

Minimum Wildcard and Maximum Wildcard bounds for the schedule so far. These

wildcard bounds must represent all possible values in the Wildcard Registers at this

point in the schedule. This process is captured by the following rules:

1. If the scheduled candidate cannot share the current wildcard:

Minimum Wildcard(schedule) = Minimum Wildcard(candidate)

Maximum Wildcard(schedule) = Maximum Wildcard(candidate)

2. If the scheduled candidate can share the current wildcard:

Min Wildcard(schedule) = Or(Min Wildcard(schedule), Min Wildcard(candidate))

Max Wildcard(schedule) = And(Max Wildcard(schedule), Max

Wildcard(candidate))

These rules maintain the Minimum and Maximum Wildcards in order to more

accurately determine which candidate can share a wildcard with the preceding writes.

Thus, whenever we apply the rules for determining which candidate to choose, we

always use the schedule’s Minimum and Maximum Wildcards to determine whether a

candidate can share a wildcard.

3.4.5 Experimental Results
The algorithm described above was implemented in C++ on a Sun Sparc20 and was run

on a set of benchmarks collected from XC6200 users. These benchmarks are real

applications that are either hand-mapped or generated by automatic tools.

The results are shown in Table 3.1 (as well as graphically in Figure 3.9). The size of the

initial circuit is given in the “Input size” column in terms of the number of configuration

writes in the original .cal files. This size includes all writes required to configure the

FPGA, including both compressible writes to the logic array as well as non-

compressible control register writes. The “Control writes” column represents the

number of non-compressible writes, and is a fixed overhead for both the original and

 - 41 -

compressed file. The size of the compressed file is contained in the “Total writes”

column, which includes control writes, writes to the logic array (“Config. Writes”), and

writes to the Wildcard Registers (“Wildcard Writes”). The “ratio” column is the ratio of

the compressed file size to the original file size. The “CPU time” for compressing each

benchmark is represented in the last column. As can be seen, the algorithm achieves an

average compression factor of almost four. This represents a significant reduction in the

bandwidth requirements for reconfiguration in reconfigurable systems.

Table 3.1: The results of the compression algorithm on benchmark circuits.

Benchmark Input
size

Control
writes

Config.
writes

Wildcar
d writes

Total
Writes

Ratio CPU
time(m
s)

counter 199 40 53 13 106 53.2% 1.3E3

parity 208 16 9 3 28 13.5% 3.0E2

adder4 214 40 43 14 97 45.3% 4.5E3

zero32 238 42 12 3 57 23.9% 4.0E2

adder32 384 31 28 14 73 19.0% 1.7E3

smear 696 44 224 37 305 43.8% 4.5E4

adder4rm 908 46 473 45 564 62.1% 8.3E4

gray 1201 44 530 74 648 52.2% 2.6E5

top 1367 70 812 87 969 70.8% 1.3E6

demo 2233 31 423 91 545 24.4% 2.8E6

ccitt 2684 31 346 84 461 17.2% 2.2E6

tally 3366 42 211 42 295 8.7% 4.5E6

t 5819 31 834 192 1057 18.2% 1.1E7

correlator 11011 38 1663 225 1926 17.4% 5.0E7

Geometric Mean: 27.7%

In addition, we notice a significant disparity in the compression ratios for different

benchmarks. After examining the configuration bit-streams and their corresponding

circuits, we discovered that this disparity was caused by the varied levels of the

 - 42 -

regularities existing within different configuration bit-streams. More specifically, the

hand-mapped applications consist of more regular logic and routing structures than the

automatically generated applications. As a result, the benchmarks that are hand-mapped

are more compressible in general than the automatically generated ones.

Figure 3.9: Graph of compressed file size as a percentage of original file size. Bar
height represents the total resulting file size and is broken into components. The
gray portion represents the writes to the Wildcard Register, white represents actual
writes to the array, and black represents the fixed, non-compressible portions of the
files.

Figure 3.9 also demonstrates the effectiveness of the second stage of our

compression algorithm. “Config. writes” represent the number of writes necessary to

configure the logic, which are produced by the first stage of our compression

algorithm. A large number of “Config. writes” require Wildcard Register writes,

generating a significant overhead. This overhead is minimized by applying the

second stage of our compression algorithm. As can be seen in Figure 3.9, “wildcard

writes” represent only a small percentage of total writes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

co
un

ter
pa

rity

ad
de

r4

ze
ro3

2

ad
de

r32
sm

ea
r

ad
de

r4r
m

gra
y top

de
mo

cc
itt tal

ly t

co
rre

lat
or

Pe
rc

en
ta

ge
 o

f O
rig

in
al

 S
iz

e Wildcard writes
Config. writes
Control writes

 - 43 -

3.5 Compression for the Xilinx Virtex FPGAs
Each Virtex [Xilinx99] device contains configurable logic blocks (CLBs), input-output

blocks (IOBs), block RAMs, clock resources, programmable routing, and configuration

circuitry. These logic functions are configurable through the configuration bit-stream.

Configuration bit-streams that contain a mix of commands and data can be read and

written through one of the configuration interfaces on the device. A simplified block

diagram of a Virtex FPGA is shown in Figure 3.10.

The Virtex configuration memory can be visualized as a rectangular array of bits. The

bits are grouped into vertical frames that are one-bit wide and extend from the top of the

array to the bottom. A frame is the atomic unit of configuration, meaning that it is the

smallest portion of the configuration memory that can be written to or read from.

Frames are grouped together into larger units, called columns. In Virtex devices, there

are several different types of columns, including one center column, two IOB columns,

multiple block RAM columns, and multiple CLB columns. As shown in Figure 3.11,

each frame sits vertically, with IOBs on the top and bottom. For each frame, the first 18

bits control the two IOBs on the top of the frame, then 18 bits are allocated for each

CLB row, and another 18 bits control the two IOBs at the bottom of the frame. The

frame then contains enough “pad” bits to make it an integral multiple of 32 bits.

Left IO
Bs

Left B
lock Select RA

M

IOBs

IOBs

Right Block Select Ram

Right IO
Bs

CLBs

Figure 3.10: Virtex architecture.

 - 44 -

The configuration for the Virtex device is done through the Frame Data Input Register

(FDR). The FDR is essentially a shift register into which data is loaded prior to transfer

to configuration memory. Specifically, given the starting address of the consecutive

frames to be configured, configuration data for each frame is loaded into the FDR and

then transferred to the frames in order. The FDR allows multiple frames to be

configured with identical information, requiring only a few cycles for each additional

frame, thus accelerating the configuration. However, if even one bit of the configuration

data for the current frame differs from the previous frame, the entire frame must be

reloaded.

Frame 2 Frame N

………

Top
IOBs

CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

…

18
bits

18
bits

18
bits

18
bits

18
bits

…

Frame 1

Top
IOBs

CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

…

18
bits

18
bits

18
bits

18
bits

18
bits

…

Top
IOBs

CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

…

18
bits

18
bits

18
bits

18
bits

18
bits

…

Figure 3.11: Virtex frame organization.

3.5.1 Algorithms Overview
As we mentioned, well-known techniques -- including Huffman [Huffman52],

Arithmetic [Witten87] and LZ [Ziv77] coding -- are very efficient for general-purpose

compression, such as text compression. However, without considering features of the

bit-stream, applying these techniques directly will not necessarily reduce the size of the

configuration file. Given the frame organization described above, it is likely that

 - 45 -

traditional compression will either miss or destroy the regularities contained in the

configuration files. For example, the commercial tool gzip achieves a compression

factor of 1.85 in our benchmark set, much less than is achievable.

In this section, we will consider general-purpose compression approaches including

Huffman, Arithmetic and Lempel-Ziv coding because of their proven effectiveness. In

addition, we will extend our wildcard approach used for Xilinx 6200 bit-stream

compression. Before we discuss the details of our compression algorithms, we will first

analyze the potential regularities in the configuration files.

3.5.2 Regularity Analysis
Current Virtex devices load whole frames of data at a time. Because of the similarity of

resources in the array, we can expect some regularity between different frames of data.

We call this similarity inter-frame regularity. In order to take advantage of this

regularity, the frames containing the same or similar configuration data should be loaded

consecutively. For example, an LZ77 compression algorithm uses recently loaded data

as a fixed-sized dictionary for subsequent writes, and by loading similar frames

consecutively, the size of the configuration files can be greatly reduced. The current

Virtex frame numbering scheme, where consecutive frames of a column are loaded in

sequence, can be a poor choice for compression. After analyzing multiple configuration

files, we discovered that the Nth frame of the columns is more likely to contain similar

configuration data since it controls identical resources. Therefore, if we clustered

together all of the Nth frames of the columns in the architecture, we can achieve a better

compression ratio. Of course, changing the order of the frames will incur an additional

overhead by providing the frame address, but the compression of frame data may more

than compensate for this overhead. Note that Huffman and Arithmetic coding are

probability-based compression approach, meaning that the sequence that the

configuration data is written will not affect the compression ratio.

 - 46 -

Regularity within frames may be as important as regularity between frames. This intra-

frame regularity exists in circuits that contain similar structures between rows. To

exploit this regularity we will modify the current FDR with different frame buffer

structures and develop the corresponding compression algorithms. For Lempel-Ziv

compression, the shift-based FDR fits the algorithm naturally. However, extending the

size of the FDR structure to a larger window can provide even greater compression

ratios, though this must be balanced against potential hardware overheads. For our

wildcarded approach, the structure of the Wildcard Registers used in Xilinx 6200 can be

applied to the FDR to allow multiple locations within the FDR to be written at the same

time.

3.5.3 Symbol Length
Even though the configuration bit-stream is packed with 32-bit words for the Virtex

devices, much of the regularity will be missed if the symbol length is set to 32-bit or

other powers of two. As was shown in Figure 3.11, each CLB row within a frame is

controlled by an 18-bit value, and the regularities we discussed above exist in the 18-bit

fragments rather than 32-bit ones. In order to preserve those regularities we will break

the 32-bit original configuration bit-stream. Except for the regularity, two other factors

are considered to determine the length of the basic symbol. First, for Lempel-Ziv,

Arithmetic and Huffman coding, the length of the symbol could affect the compression

ratio. If the symbol is too long, the potential intra-symbol similarities will likely be

overwhelmed. On the other hand, very short symbols, though retaining all the

similarities, will significantly increase coding overhead. Second, since decompression

is done at run-time, the potential hardware cost should be considered. For example,

both Huffman and Arithmetic coding are probability-based approaches and require that

the probabilities of symbols be known during decompression. Retaining long symbols

and their probabilities on-chip could consume significant hardware resources. In

 - 47 -

addition, transferring the probability values to the chip could also represent additional

configuration overhead.

As discussed above, using 18-bit symbols will retain the regularities in the configuration

bits-stream. However, for Huffman and Arithmetic coding, the probabilities of 218

symbols need to be transferred and then retained on-chip to correctly decompress the

bit-stream. Clearly, this is not possible to implement and will increase configuration

overhead. Therefore, we choose to use 6-bit or 9-bit symbols for Huffman, Arithmetic

and Lempel-Ziv compressions. Using 6-bit or 9-bit symbols will preserve the potential

regularities in the bit-streams and limit additional overheads.

Notice that the 32-bit words packed in each frame may not necessarily be multiples of

six or nine. Therefore, if we simply take the bit-steams and break them into 6-bit or 9-

bit symbols, we will likely to destroy inter-frame and regularity. To avoid this, during

the compression stage, we will attach the necessary pad bits to each frame to make it a

multiple of six or nine. This represents a pre-processing step for each of the

compression algorithms.

3.5.4 Huffman coding
The goal of Huffman coding is to provide shorter codes to symbols with higher

frequency. Huffman coding assigns an output code to each symbol, with the output

codes being as short as one bit or considerably longer than the original symbols,

depending on their probabilities. The optimal number of bits to be used for each symbol

is log2(1/p), where p is the probability of a given symbol. The probabilities of symbols

are sorted, and a prefix binary tree is built based on the sorted probabilities, with the

highest probability symbol at the top and the lowest at the bottom. Scanning the tree

will produce the Huffman code. Figure 3.12 shows a set of symbols (a) and its

corresponding Huffman tree (b). Given a string “XILINX” the resultant Huffman code

is 1110110010111, using 13 bits.

 - 48 -

Huffman compression for Virtex devices consists of two simple steps:

1. Convert the input bit-stream into a symbol stream.

2. Perform Huffman coding over the symbol stream.

The problem with this scheme lies in the fact that the Huffman codes must be an integral

number of bits long. For example, if the probability of a symbol is 1/3, the optimum

number of bits to code that symbol is around 1.6. Since Huffman coding requires an

integral number of bits to the code, assigning a 2-bit symbol leads to a longer

compressed code than is theoretically possible.

L X

N

I

0 1

0 1

0 1

Symbols I N L X

Frequency 0.6 0.2 0.1 0.1

(a) (b)

Figure 3.12: An example of Huffman coding. A set of 4 symbols and their frequencies
are shown in (a). The corresponding Huffman tree is shown in (b).

Another factor that needs to be considered is decompression speed. Since each code

word is decompressed by scanning through the Huffman tree, it is very hard to pipeline

the decompression process. Therefore it could take multiple cycles to produce a

symbol. Also, it is difficult to parallelize the decoding process, because Huffman is a

variable-length code.

3.5.5 Arithmetic Coding
Unlike Huffman coding, which replaces each input symbol by a code word, Arithmetic

coding completely takes a series of input symbols and replaces it with a single output

 - 49 -

number. The symbols contained in the stream may not be coded to an integral number

of bits. For example, a stream of five symbols can be coded in 8 bits, with 1.6-bit

average per symbol. Like Huffman coding, Arithmetic coding is a statistical

compression scheme. Once the probabilities of symbols are known, the individual

symbols are assigned to an interval along a probability line, and the algorithm works by

keeping track of a high and low number that bracket the interval of the possible output

number. Each input symbol narrows the interval and as the interval becomes smaller,

the number of bits needed to specify it grows. The size of the final interval determines

the number of bits needed to specify a stream. Since the size of the final interval is the

product of the probabilities of the input stream, the number of bits generated by

Arithmetic coding is equal to the entropy. Figure 3.13 shows the process of Arithmetic

coding for string “XILINX” over the same symbol set used for Huffman coding. The

generated code is 11110011011, two bits shorter than the Huffman code.

Note that the basic idea described above is difficult to implement, because the shrinking

interval requires the use of high precision arithmetic. In practice, mechanisms for fixed

precision arithmetic have been widely used.

Symbol LowRange HighRange

0.0 1.0

X 0.9 1.0

I 0.9 0.954

L 0.9432 0.9486

I 0.9432 0.94644

N 0.945144 0.951624

X 0.950994 0.951644

Symbols I N L X

Frequency 0.6 0.2 0.1 0.1

(a) (b)

Figure 3.13: An example of Arithmetic coding. The same symbol set used for the
Huffman coding is shown in (a). The coding process for string “XILINX” is shown in
(b). The final interval, represented by the last row in (b), determines the number of bits
needed.

The Arithmetic compression for Virtex devices consists of two steps:

 - 50 -

1. Convert the input bit-stream into a symbol stream.

2. Perform the fixed-precision Arithmetic coding over the symbol stream.

The problem with this algorithm is that Arithmetic coding considers the symbols to be

mutually unrelated. However, the regularities existing in the configuration bit-stream

may cause certain symbols to be related to each other. Therefore, this approach may not

be able to yield the best solution for configuration compression. One solution to this

problem is to combine multiple symbols together and discover the accurate probabilities

of the combined symbols. However, this will cause additional overhead by transferring

and retaining a significant amount of probability values. Another way to improve

performance is to calculate the probabilities of combined symbols by simply multiplying

the probabilities of individual symbols. This dynamic approach will increase the

precision of the interval without considering the correlation between symbols.

However, performing additional multiplications on the decompression end will slow

down decompression.

3.5.6 Lempel-Ziv-Based (LZ) Compression
Recall that Arithmetic coding is a compression algorithm that performs better on a

stream of unrelated symbols. LZ compression is an algorithm that more effectively

represents groups of symbols that occur frequently. This dictionary-based compression

algorithm maintains a group of symbols that can be used to code recurring patterns in

the stream. If the algorithm spots a sub-stream of the input that has been stored as part

of the dictionary, the sub-stream can be represented in a shorter code word. The related

symbols caused by the regularities in the configuration bit-stream make LZ algorithms

an effective compression approach.

There are variations of LZ compression, including LZ77 [Ziv77], LZ78 [Ziv78] and

LZW [Welch84]. In general, LZ78 and LZW will achieve better compression than

LZ77 over a finite data stream. A lookup table is used to maintain occurred patterns for

 - 51 -

LZ78 and LZW. However, the excessive amount of hardware resources required to

retain the table for LZ78 and LZW during decompression prevent us from considering

those schemes for configuration compression. The “sliding window” compression of

LZ77 requires only a buffer, and the shift-based FDR fits the scheme naturally, though

hardware must be added to allow reading of specific frame locations during execution.

The LZ77 compression algorithm tracks the last n symbols of data previously seen,

where n is the size of the sliding window buffer. When an incoming string is found to

match part of the buffer, a triple of values corresponding to the matching position, the

matching length, and the symbol that follows the match is output. For example, in

Figure 3.14, we find that the incoming string 3011 is in buffer position 2 with match

length 4, and the next symbol is 0. So the algorithm will output codeword (3, 4, 0).

Standard LZ77 compression containing the three fields will reach entropy over an

infinite data stream. However, for a finite data stream, this format is not very efficient

in practice. For the case when no matching is found, rather than outputing the symbol,

the algorithm will produce a codeword containing three fields, wasting bits and

worsening the compression ratio. An extension of LZ77, called LZSS [Storer82], will

improve coding efficiency. A threshold is given and if the matching length is shorter

than the threshold, only the current symbol will be output. When the matching length is

longer than the threshold, the output codeword will consist of the index pointer and the

length of the matching. In addition, to achieve correct decompression, a flag bit is

required for each code word to distinguish the two cases.

 - 52 -

 1 6 3 0 1 1 6 3 3
 0 0 7 5 4 3 4 3011 043455

43455 Output: 3, 4, 0

(a)

(b)
6 4 3

 3 0 0 7 5 4 3 4 3 0 1 1 0

Figure 3.14: The LZ77 sliding window compression example. Two matches found
are illustrated in color gray. LZ77 selects the longer match “3011”, and the resultant
codeword is (3, 4, 0). (a) shows the sliding window buffer and the input string
before encoding. (b) shows the buffer and input string after encoding.

As mentioned above, the FDR in Virtex devices can be used as the sliding window

buffer, and LZSS can take advantage of the intra-frame regularity naturally. However,

since the current FDR can contain only one frame of configuration data, using it as the

sliding window buffer will not take full advantage of inter-frame regularities. Thus, we

modify the FDR to the structure shown in Figure 3.15. As can be seen in Figure 3.15,

the bottom portion of the modified FDR, which has same size as the original FDR, can

transfer data to the configuration memory. During the decompression the compressed

bit-stream is decoded and then fed to the bottom of the modified FDR. Incoming data

will be shifted upwards in the modified FDR. Configuration data will be transferred to

the specified frame once the bottom portion of the modified FDR is filled with newly

input data.

In addition, configuration data that is written to the array can be reloaded to the bottom

portion of the modified FDR. This lets a previous frame be reused as part of the

dictionary, and the inter-frame regularity is better utilized. Specifically, before loading a

new frame, we could first read a currently loaded frame from the FPGA array back to

the frame buffer, and then load the new frame. By picking a currently loaded frame that

most resembles the new frame, we may be able to exploit similarities to compress this

new frame.

 - 53 -

Extended
FDR

FPGA
array

Bitstream

Figure 3.15: The hardware model for LZ77 compression.

While this technique will be slow due to delays in sending data from the FPGA array

back to the FDR, there may be ways to accelerate this with moderate hardware costs. In

current Virtex devices, the data stored in the Block Select RAMs can be transferred to

logic very quickly. We can exploit this feature by slightly modifying the current

hardware to allow the values stored in the Block Selected RAMs to be quickly read back

to the modified FDR. By providing the fast readback from only the Block Select

RAMs, we efficiently use the Block RAMs as caches during reconfiguration to hold

commonly requested frames without significant hardware costs. Also, the size of the

modified FDR must be balanced against the potential hardware cost. In our research,

we allow the modified FDR to contain two frames of data. This will not significantly

increase hardware overhead, yet it will utilize the regularities in the configuration

stream.

Finding regularities in a configuration file is a major goal. LZ compression performs

well only in the case where common strings are found between the sliding window

buffer and incoming data. This requires quite a large buffer to find enough matches for

general data compression. However, for configuration compression, the hardware costs

 - 54 -

will restrict the size of the sliding window buffer. Thus, performing LZ compression

directly over the datastream will not render the desired result. In order to make

compression work efficiently for a relatively small buffer, we need to carefully exploit

the data stream, finding regularities and intelligently rearranging the sequence of frames

to maximize matches. In the following sections, we discuss algorithms that apply LZSS

compression, targeting the hardware model described above. These algorithms are all

realistic but require different amounts of hardware resources and thus provide different

compression ratios.

3.5.7 The Readback Algorithm
The goal of configuration compression is to take advantage of both inter-frame and

intra-frame regularities. In the configuration stream, some of the frames are very

similar. By configuring them consecutively, higher compression ratios can be achieved.

The readback feature allows the frame that most resembles the new frame to be read

back to the modified FDR and reused as a dictionary, increasing the number of matches

for LZSS. This permits us to fully use regularities within the bit-stream. For example,

in Figure 3.16, four frames are to be configured, and frames (b), (c) and (d) are more

like (a) than like each other. Without readback, inter-frame regularities between (c), (d)

and (a) will be missed. However, with the fast readback feature, we can temporarily

store frame (a) in the Block Select RAMs, reading it back to the modified FDR and

using it as a dictionary when other frames are configured. This fast readback will

significantly increase the utilization of inter-frame regularities with negligible overhead.

Since the modified FDR is larger than the size of the frame, LZSS will be able to use

intra-frame regularities naturally.

Discovering inter-frame regularities represents an issue that will influence the

effectiveness of compression. Based on the hardware model we proposed above, the

similarity between the frame in the modified FDR and the new incoming frame is the

key factor for compression. More specifically, we seek to place a certain frame in the

 - 55 -

modified FDR so that it will mostly aid the compression of the incoming frame. In

order to obtain such information, each frame is used as a fixed dictionary in a

preprocessing stage, and LZSS is applied to all other frame, which are called beneficiary

frames. Note that LZSS is performed without moving the sliding window buffer,

meaning that the dictionary will not be changed. This approach excludes potential intra-

frame regularities within each beneficiary frame, providing only the inter-frame

regularity information. The output code length represents the necessary writes for each

beneficiary frame based on the dictionary, and shorter codes will be found if the

beneficiary frame resembles the dictionary.

a b c d e f g h

a b c d e x x x

x y y d e f g h

(a)

(b)

(c)

a b c j k f g h
(d)

Figure 3.16: Example to illustrate the benefit of readback. (b), (c), and (d) resemble
to (a). By reusing (a) as a dictionary, better compression can be achieved.

Once this process is over, a complete directed graph can be built, with each node

standing for a frame. The source node of a directed weighted edge represents a

dictionary frame, and the destination node represents a beneficiary frame. The weight

of each edge denotes the inter-frame regularity between a dictionary frame and a

beneficiary frame. One optimization performed is to delete the edges that present no

inter-frame regularity between any two frames. Figure 3.17(a) shows an example of the

inter-frame regularity graph.

 - 56 -

Given an inter-frame regularity graph, our algorithm seeks an optimal configuration

sequence that maximizes the inter-frame regularities. Specifically, we seek a subset of

the edges in the inter-frame regularity graph such that every node can be reached and the

aggregate edge weight is minimized. Solving this problem is equivalent to solving the

directed minimum spanning tree problem, where every node has one and only one

incoming edge, except for the root node. Figure 3.17(b) shows the corresponding

optimal configuration sequence graph of Figure 3.17(a). In the configuration sequence

graph, a frame with multiple children needs to be stored in Block Select RAMs for

future readback. For example, in Figure 3.17 (b), a copy of frame A will be stored in

Block Select RAMs and read back to the modified FDR to act as a dictionary.

A

B

D

F

C

10

30
30

30
50

60
30

E60

40
60

30
20

30

40

60

F

E

B C D

A

40

 (a) (b)
Figure 3.17: Seeking optimal configuration sequence. An inter-frame regularity graph
is shown in (a). The corresponding optimal configuration sequence graph is shown in
(b).

Now we present our Readback algorithm:

1 Convert the input bit-stream into a symbol stream.

2 For each frame, use it as a fixed dictionary and perform LZSS on every other frame.

3 Build an inter-frame regularity graph using the values computed in step 2.

4 Apply the standard directed minimum spanning tree algorithm [Chu65] on the inter-

frame regularity graph to create the configuration sequence graph.

 - 57 -

5. Perform pre-order traverse starting from the root. For each node that is being

traversed:

5.1. If it has multiple children, a copy of it will be stored in an empty slot of the

Block Select RAMs.

5.2. If its parent node is not in the modified FDR, read the parent back from the

Block Select RAMs.

5.3. Perform LZSS compression.

5.4. If it is the final child traversed of the parent node, release the memory slot taken

by the parent.

Step 2 investigates inter-frame regularities between frames. Results are used to build

the inter-frame regularity graph and the corresponding configuration sequence graph in

Steps 3 and 4 respectively. The Pre-order traversal performed in Step 5 uses the parent

frame of the currently loading frame as a dictionary for LZSS compression. Note that a

copy of the currently loading frame will be stored in the Block Select RAMs if it has

multiple children in the configuration sequence graph. Also, additional overhead from

setting configuration registers will occur if frames to be configured are not contiguous.

One final concern for our Readback algorithm is the storage requirement for the reused

frames. Analyzing configuration sequence graphs, we found that although a large

number of frames need to be read back, they are not all required to be held in the Block

Selected RAM at the same time, and they can share the same memory slot without

conflict. For example, in Figure 3.18, both frame A and frame B need to be read back.

Suppose the left sub-tree needs to be configured first; then frame A will occupy a slot in

the Block Selected RAMs for future readback. Once the configuration of the left tree is

complete, the memory slot taken by frame A can be reused by frame B during

configuration of the right sub-tree.

 - 58 -

We have developed an algorithm using a bottom-up approach that accurately calculates

the memory slots necessary. By combining it with our Readback algorithm, usage of

the Block Select RAMs can be minimized. The details of the algorithm are as follows:

A B

Figure 3.18: An example of memory sharing.

1. For each node in the configuration sequence graph, assign 0 to the variable V and

number of children to C.

2. Put each node whose children are all leaves into a queue.

3. While the queue is not empty:

3.1. Remove a node from the queue.

3.2. If it has one child, V = Vchild, else V = max(largest Vchild, (second largest Vchild +

1)).

3.3. For its parent node, C = C -1. If C = 0, put the parent node into the queue.

Figure 3.19 shows an example of our Memory Requirement Calculation algorithm. At

left is the original configuration sequence graph. At right shows the calculation of the

memory requirement using a bottom-up approach. The number inside each node

represents the number of memory slots necessary for configuring its sub-trees. As can

 - 59 -

be seen, only two memory slots are required for this 14-node tree. It is obvious that the

memory required by a node depends on the memory required by each of its children.

One important observation is that the memory required by the largest sub-tree can

overlap with the memory required for other sub-trees. In addition, since the last child of

a node to be configured can use the memory slot released by its parent, the memory

required by configuring all sub-trees can equal that of configuring the largest sub-tree.

Since the pre-order traverse will scan the left sub-trees before the right ones, we should

readjust the configuration sequence graph to set each node in the sub-tree that requires

the most memory as the rightmost sub-tree. In order to apply the memory minimization

to our compression, we modify Step 4 of our readback algorithm as follows:

4. Apply the standard directed minimum spanning tree algorithm on the inter-frame

regularity graph to create the configuration sequence graph. Perform the Memory

Calculation algorithm, and the largest sub-tree for each node is set as the rightmost

sub-tree.

0

0 0

0 1

1

2

0

0 0

1

2

1

0 0

(a) (b)
Figure 3.19: An example to illustrate our Memory Requirement Calculation algorithm.
A configuration sequence graph is shown in (a), and the corresponding memory
requirement calculation procedure is shown in (b).

3.5.8 Active Frame Reordering Algorithm
The Readback algorithm allows frames to be read back to the modified FDR to achieve

effective compression. However, the delay and hardware alterations required for the

Block Selected RAM readback may not be acceptable. Some applications may restrict

 - 60 -

the use of the Block Select RAMs. In order to take advantage of the regularities within

the configuration bit-stream, we have developed a frame reordering algorithm that does

not require frame readback.

As can be seen in our readback algorithm, frame reordering enhances compression by

utilizing inter-frame regularities. This idea can still be applied to applications without

the readback feature. In our readback algorithm, once the inter-frame regularity graph is

built, a corresponding configuration sequence graph can be generated, and traversing the

configuration sequence graph in pre-order can guarantee the maximum utilization of the

regularities discovered. However, without frame readback, traversing the configuration

sequence graph might not necessarily be the optimal solution, since parent nodes cannot

be reused as a dictionary. Our Active Frame Reordering algorithm uses a greedy

approach to generate a configuration sequence that allows each frame to be used as a

dictionary only once. It still takes the inter-frame regularity graph as input. However,

instead of using the directed MST approach to create a configuration sequence, a

spanning chain will be generated using a greedy approach. The details of the algorithm

are as follows:

1. Convert the input bit-stream into symbol stream.

2. For each frame, use it as fixed dictionary, perform the LZSS on every other frame.

3. Build an inter-frame regularity graph using the values that resulted from Step 2.

4. Put the two frames connected by the minimum weight edge into a set. Let H be the

head and T be the tail of this edge.

5. While not all frames are in the set:

5.1. For all incoming edges to H and outgoing edges from T, find the shortest one

that connects to a frame not in the set. Put that frame into the set. The frame is

set to H if the edge found is an incoming edge to H; otherwise set the frame to

T.

 - 61 -

6. Perform LZSS compression on the chain discovered in Step 5.

The basic idea of the algorithm is to grow a spanning chain from the two ends. Step 5

finds a frame not in the chain with the shortest edge either coming into an end or going

out from the other. This greedy process is repeated until all frames are put in the

spanning chain. For example, in Figure 3.17, the order of the frames to be put into the

chain discovered by our algorithm is ABDFEC (the configuration sequence will be

DABFEC). The cost of the sequence is 160, slightly larger than the optimal spanning

chain (150). Starting from one end of the discovered spanning chain, LZSS can be

performed to generate a compressed bit-stream.

3.5.9 Fixed Frame Reordering Algorithm
One simple algorithm is to reorder the frames such that the Nth frame of each column to

be configured in consecutively. Performing LZSS over the sequence generated by the

simple reordering takes advantage of the regularities within applications. The overhead

of setting the configuration registers can be eliminated using this fixed frame order.

3.5.10 Wildcarded Compression for Virtex
Since our Wildcard Compression achieves good results for the Xilinx 6200 FPGAs, we

would like to apply it to Virtex FPGAs. For Virtex configurations, multiple rows within

a frame can contain the same configuration data. Instead of configuring them one by

one, the wildcarded approach allows these rows to be configured simultaneously. To

apply the wildcarded approach to Virtex, an address register and a wildcard register will

be added as an augmented structure to the FDR. They will allow specified rows within

the FDR to be configured.

For circuits with repetitive structures, multiple frames could be very similar, yet not

completely identical. By allowing the FDR to be addressable, we take advantage of this

inter-frame regularity. Instead of loading the whole frame, we can load only the

 - 62 -

differences between frames. For example, in Figure 3.20, two frames need to be

configured, and the second frame has only three different rows from the first one. In

this case, only the configuration data for the 3 different rows needs to be loaded. In

addition, if the three different rows can be covered by a wildcard, one write is enough to

configure the whole second frame. This structure will also support true partial

reconfiguration. More specifically, for each frame to be reconfigured, rather than

loading the entire frame, we can simply load the difference from the current

configuration. Note that adding the Address Register and Wildcard Register represents

additional hardware cost. Moreover, extra bits for the address and wildcard need to be

transferred for every write.

Figure 3.20: An example of inter-frame compression using addressable FDR.

The Wildcard algorithm consists of 2 stages. In the first stage we reorder similar frames

so they will be configured consecutively. This creates a sequence in which the number

of writes necessary for configuring each frame is greatly reduced. In the second stage,

we find the wildcards covering the writes for each frame and thus further reduce the

configuration overhead. The first stage takes advantage of inter-frame regularities while

the second stage focuses on intra-frame regularities.

In the first stage, we discover the number of non-matching rows between each pair of

frames; the result indicates the extent of similarity between the frames. An undirected

graph is built to keep track of the regularities, and a near optimal sequence needs to be

discovered. Since each frame is configured exactly once, finding the sequence based on

 - 63 -

the regularity graph is equivalent to solving the traveling salesman problem. An

existing algorithm is an approximation with a ratio bound of two for the traveling-

salesman problem with triangle inequality [Lawler]. Given a complete undirected graph

G = (V, E) that has a nonnegative integer cost c(u, v) associated with each edge (u,

v)∈E, cost function c satisfies the triangle inequality if for all vertices u, v, w ∈V, c(u,

w) ≤ c(u, v) + c(v, w). Since the differences between frames satisfy the triangle

inequality, we can apply the approximation algorithm on our compression algorithm.

The details of our Wildcard algorithm are as follows:

1. Convert the input bit-stream into an 18-bit symbol stream.

2. For each pair of frames, identify the different 18-bit symbols between them.

3. Build a regularity graph using the results from Step 2.

4. Perform the Approx-TSP-Tour algorithm [12] to determine the order of frames to

be configured.

5. For each frame configuration, use the Wildcard algorithm to find the wildcards to

cover the differences.

3.5.11 Simulation Results
All algorithms are implemented in C++ on a Sun Sparc Ultra 5 workstation and were

run on a set of benchmarks collected from Virtex users. Detailed information about the

benchmarks is shown in Table 3.2.

Figure 3.21 shows simulation results for compression approaches using 6-bit symbols;

the wildcard approach uses 18-bit symbols. The left 10 benchmarks are automatically

mapped and use more than 50% of the chip area. The “Geo. Mean” column is the

geometric mean of the 10 benchmarks. The three right-most benchmarks are either

hand mapped or use only a small percentage of the chip area and are included to

demonstrate how hand mapping or low utilization affects compression. Figure 3.22

 - 64 -

demonstrates simulation results for 9-bit symbols. (The Wildcard algorithm is not

shown, since it uses only 18-bit symbols.)

Table 3.2: Information for Virtex benchmarks.

Benchmark Source Device Chip
Utilization Mapping

Mt1mem0 Rapid 400 >80% Auto

Mt1mem1 Rapid 400 >80% Auto

Mars USC 600 Unknown Auto

RC6 USC 400 Unknown Auto

Serpent USC 400 Unknown Auto

Rijndael USC 600 Unknown Auto

Design1 HP 1000 >70% Auto

Pex Northeastern 1000 93% Auto

Glidergun Xilinx 800 >80% Hand

Random Xilinx 800 >80% Hand

U1pc Xilinx 100 1% Auto

U50pc Xilinx 100 50% Auto

U93 Xilinx 100 >90% Auto

As can be seen in the figures, the readback algorithm performs better than other

algorithms for both 6-bit and 9-bit cases for most of the benchmarks. This is because

the Readback algorithm takes full advantage of inter-frame regularities within the

configuration bit-stream by reusing certain frames as dictionaries. Though they cannot

fully utilize inter-frame regularities, the reordering techniques still provide fairly good

results without using the Block Select RAMs as a cache. The Active Reordering

algorithm performs better than the Fixed Reordering algorithm since active reordering

can better use inter-frame regularities by actively shuffling the sequence of frames,

while fixed reordering can utilize only the regularities given by the fixed sequence.

 - 65 -

Figure 3.21: The simulation results for 6-bit symbol.

Figure3.22: The simulation results for 9-bit symbol.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Mem0 Mem1 mars rc6 serpent rijndael design1 Pex U50pc U93 Geo.
Mean

Glider Rand U1pc

Pe
rc

en
ta

ge
 o

f t
he

 o
rig

in
al

Huffman
Arithmetic
Readback
Active order
Fixed order

0%

10%

20%

30%

40%

50%

60%

70%

80%

Mem0 Mem1 mars rc6 serpent rijndael design1 Pex U50pc U93 Geo.
Mean

Glider Rand U1pc

Pe
rc

en
ta

ge
 o

f t
he

 o
rig

in
al

Huffman
Arithmetic
Readback
Active order
Fixed order
wildcard

 - 66 -

Surprisingly, although the wildcard approach can exploit both inter-frame and intra-

frame regularities, it still yields worse compression ratios than the active reordering

scheme for most of the benchmarks. There are several reasons for this. First, the

wildcard approach requires address and wildcard specification for each write, adding

significant overhead to the bit-stream. The additional overhead overwhelms the benefits

provided by the regularities within the applications. Second, the wildcard approach

requires a comparison between the same rows of given frames to discover inter-frame

regularities. Consequently, the similarity the wildcard approach can discover is aligned

in rows, and any unaligned similarities that benefit the LZ-based approaches will not

help it. For example in Figure 3.23, the Wildcard algorithm cannot discover the inter-

frame regularity between frame A and frame B. However, the regularity can be

exploited for LZ-based approaches. Third, the Wildcard approach requires that enough

rows covered by a wildcard share the same configuration value to achieve better

compression. However, even the XCV1000, which is a relatively large device, has only

64 rows and it is not likely to find enough rows covered by a wildcard that have the

same configuration value. For many cases, each wildcard contains only one row, and

the address/wildcard overhead is still applied.

 Frame A values Frame B values

Row 1 1 2

Row 2 2 3

Row 3 3 4

Row 4 4 5

Row 5 5 6

Figure 3.23: Unaligned regularity between frames. The wildcard approach will miss
this regularity, which benefits the LZ-based approaches.

 - 67 -

The probability-based Huffman and Arithmetic coding techniques perform significantly

worse than other techniques, since they do not consider regularities within the bit-

stream. The Huffman approach did worse than the Arithmetic approach, simply because

of its inefficient coding method. Adding the fact that these two approaches require

significant hardware for the decompressor, we will not consider using them for

configuration compression.

Comparing the results in Figure 3.21 and Figure 3.22, we found that LZ-based

approaches perform better on 6-bit symbols than 9-bit ones for most of the benchmarks.

Analyzing the bit-stream, we found that its regularities discovered within the bit-stream

may not result in very long matches. Increasing the symbol size will shorten the

matches and increase the length of codewords for single symbols. Huffman and

Arithmetic approaches perform better on 9-bit symbols, which distribute the probability

better.

Most of the benchmarks we tested use a significant amount of FPGA capacity. The only

exception is “u1pc”, which uses about 1% of the chip area. As can be seen in the

figures, its compression ratio is very high. The other two benchmarks with very high

compression ratios use more than 80% of the chip area, but they were hand placed.

After analyzing the two benchmarks, we found that the two handcrafted circuits have

extremely strong intra-frame regularities. Specifically, most rows within each frame are

identical, and very long matches can be found.

3.5.12 Hardware Costs
Since decompression must be performed on-chip, hardware costs for building

decompressors must be evaluated to determine whether our compression algorithms are

viable techniques. In this work we focus on the hardware implementation of the LZ

decompressor because its compression algorithms outperform other approaches. Our

fellow graduate student, Melany Richmond has implemented an LZ decompressor in

 - 68 -

hardware and demonstrated the hardware cost is minimal. The overall increase in area

is less than 1% for Virtex 1000 or larger devices [Richmond01].

3.6 Related Works
A LZ-based approach [Dandalis01] was developed to compress the Virtex bit-stream.

As a modified LZW algorithm, this approach requires a significant amount of memory

storage on-chip to retain dictionary. Though it can be applied to general data

compression, the approach does not compress the Virtex bit-stream effectively, mainly

because it does not exploit the specific regularities within the configuration data. Our

compression techniques outperform it by a factor of two.

Another approach, called Run-length compression [Hauck99], was developed to

compress the Xilinx 6200 bit-stream. A series of addresses with a common offset can

be compressed into a form of base, offset, and length. Also, the repeated configuration

data values can be compressed with Run-Length encoding. Results demonstrate a factor

of 3.6 average compression ratio, slightly worse than our Wildcard algorithm.

3.7 Summary
In this chapter, configuration compression techniques to reduce reconfiguration

overhead were discussed. Similar to general data compression, configuration

compression takes advantage of regularities and repetitions within the original

configuration data. However, using existing lossless compression approaches cannot

significantly reduce the size of configuration bit-streams, because there are several

fundamental differences between general compression and configuration compression.

The unique regularities and on-chip run-time decompression require distinct

compression algorithms for different architectures.

In this chapter, we have investigated configuration compression techniques for the

Xilinx 6200 FPGAs and the Xilinx Virtex FPGAs. Taking advantage of on-chip

 - 69 -

Wildcard Registers, our Wildcard algorithm can achieve a factor of 3.8 compression

ratio for the Xilinx 6200 FPGAs without adding extra hardware. A number of

compression algorithms were investigated for Virtex FPGA -- the most popular

commercial configurable devices. These algorithms can significantly reduce the amount

of data that needs to be transferred with a minimum modification of hardware. In order

to explore the best compression algorithm, we have extensively researched current

compression techniques, including Huffman coding, Arithmetic coding, and LZ coding.

Furthermore, we have developed different algorithms targeting different hardware

structures. Our Readback algorithm allows certain frames to be reused as a dictionary

and sufficiently utilizes the regularities within the configuration bit-stream. Our Frame

Reordering algorithms exploit regularities by shuffling the sequence of the

configuration. The simulation results demonstrate that a factor of four compression

ratio can be achieved. As mentioned earlier, the configuration compression algorithms

we developed can be extended to any similar reconfigurable devices without significant

modifications.

C h a p t e r 4

Don’t Care Discovery for Configuration
Compression

The results in Chapter 3 demonstrate that configuration compression can effectively

reduce the amount of configuration data that needs to be transferred. All algorithms we

developed are considered lossless compression approaches, since no configuration

information is lost during the compression stage. In order to further reduce

configuration data, a lossy approach that can increase regularities, called Don’t Care

discovery, is discussed in this chapter. By combining Don’t Care discovery with the

compression algorithms developed in Chapter 3, higher compression ratios can be

achieved.

4.1 Don’t Cares Overview
There are two types of Don’t Cares for each configuration: True Don’t Cares and

Partial Don’t Cares. In practice, most applications do not utilize all function units or

routing resources. Therefore, unused function units and routing resources will not affect

computational results, and the corresponding configuration bits for these locations can

be considered as True Don’t Cares. For other locations, not all configuration bits are

important to computation, and some bits can be turned into Don’t Cares without causing

errors. We call these bits Partial Don’t Cares. By exploring Don’t Cares and then

assigning each Don’t Care bit a certain value, we can increase regularities within each

application.

 - 71 -

For example, each cell of a Xilinx 6200 FPGA can route signals in four different

directions. However, in most cases, only one or two directions are actually used for the

computation, so the configuration for unused directions can be treated as Partial Don’t

Cares. Although none of these locations is a True Don’t Care, regularities for different

locations may increase by turning bits into Don’t Cares, and thus fewer cubes to cover

the necessary configuration can be found. Suppose there are only two locations

specified in a configuration, with address 1 containing data “00101000” and address 2

containing data “00100000”. Obviously, two separate configuration writes are required.

However, assume that we can modify the value in address 1 to “0010-000”, where “-”

means Don’t Care. Without considering the overhead of the Wildcard Register write,

one write is now sufficient to complete the configuration of both locations.

Obviously, exploring Don’t Cares requires detailed information about configuration bit-

streams. Additionally, an algorithm that uses the information to discover all

configuration bits that sufficiently contribute to correct computation must be developed.

Furthermore, all output locations, including IOBs and registers, must be specified−from

the user’s point of view, these locations contain the information that the user really

needs. The outputs of these locations are computed by logic operations on the inputs to

them, meaning that the locations providing these inputs could affect the results of the

outputs. This identifies all fields within newly specified locations are critical to the

computation results. Our algorithm backtraces the inputs to these fields and gets another

set of important fields. This backtracing process is repeated until all important fields for

the computation are traversed. Notice that these traversed fields normally represent a

subset of the given configuration. This is because some configuration bits specified in

the configuration file become Don’t Cares, meaning that we can assign arbitrary values

to them.

As mentioned in Chapter 3, one major concern for any lossy approach is whether the

correctness of computation can be held for circuitry generated by decompressed data.

 - 72 -

Using our Don’t Care discovery technique, the given configuration can be changed to a

different configuration, since new values can be assigned to the newly discovered Don’t

Care bits. However, the resulting computation of the two configurations will be

identical. From the user’s point of view, if the outputs of both configurations produce

the same result, we can safely say that both configurations meet the user’s needs. Since

the backtracing starting from the outputs for a given configuration covers all important

fields necessary to the outputs, the computation correctness is maintained.

We have seen that the original configuration can be changed to a different one.

However, we must ensure that the new configuration will not damage the reconfigurable

device. Our algorithm in this work is optimized for the Xilinx 6200 and Virtex FPGAs,

whose architectures have safeguards that prevent short-circuits from being created in the

programming of the FPGAs. In systems where a bad configuration could cause a short-

circuit on the device, a simple algorithm that eliminates the side effects of Don’t Care

discovery is necessary.

One final concern is that the new configuration will overwrite locations that may be

used by other configurations. Since the locations traversed during backtracing contain

information for the correct computation, those locations must be specified by the

original configuration or by initialization (Reset) values. In either case, if the given

configuration does not overwrite any locations that are used by other computations, the

new configuration also will not, since it is a subset of the given one.

4.2 The Backtracing Algorithm
Given a configuration file, the backtracing algorithm seeks to discover the Don’t Cares.

Once this stage is complete, with minor modifications, our configuration compression

algorithm can be applied to find a compressed version of a configuration. The algorithm

starts from the output cells (user-defined registers) and output IOBs, backtracing all

configuration bits that contribute to the correct computation. This determines all

 - 73 -

programming bits necessary for correct computation, meaning that all other bits don’t

matter and can thus be considered as Don’t Cares.

During backtracing we seek all portions of a circuit that help produce a given signal.

Once these regions are found for each circuit output, we have identified all locations that

must be configured with a specified value. Thus, all other locations can be treated as

Don’t Cares. For example, in Figure 4.1, the only output of the circuit is “O”. We

backtrace this signal, discovering that it is computed by a register. This means that its

clock circuitry and its input “A” are important. Backtracing A will show that the

function block of this cell is important, requiring B and C to be backtraced. Eventually,

we will reach the registers that start this computation. Using this recursive backtracing

process, we will identify the entire circuitry shown. For this example all other

configuration data is irrelevant to proper circuit function, and can be considered as

Don’t Care. Thus, all Northward and Westward routing resources, the logic blocks of

cells 1 and 2, and the register in cell 3 can be configured arbitrarily. It is this flexibility

that helps boost compression ratios significantly.

 - 74 -

Clock
M ux

D Q D Q

D Q

O
B
C A

D

1

2

3

4

Clock
mux

Figure 4.1: Sample circuit for backtracing.

Since Xilinx does not disclose the information necessary for discovering the Don’t

Cares in Virtex applications, we will focus mainly on algorithm design for the Xilinx

6200 architecture. However, we will still estimate the potential impact of Don’t Cares

for Virtex compression.

4.3 Don’t Care Discovery for the Xilinx 6200 FPGAs
In order to do the backtracing, we need information about output locations. One set of

our benchmarks is compiled by XACT6000 tools, which produce a symbol table file

(.sym file) that specifies the locations of all circuit inputs and outputs. For another set of

benchmarks that is not created by XACT6000 tools, we create the symbol files that

consist of output information provided by the designers.

4.3.1 Don’t Care Discovery Algorithm
As discussed in Section 4.2, the key technique for Don’t Care discovery is to backtrace

all components that produce outputs. There are three major components in the array:

 - 75 -

cells, switches and IOBs. There are 4096 cells arranged in a 64 × 64 array, and each cell

has 3 separate 8-bit configuration bytes. One of these bytes controls the neighbor routing

multiplexers, and two others control the functionality. Switches are located at the

boundary of blocks of 4 × 4 cells, and they are labeled according to the signal travel

direction. Each of the east and west switches has one configuration byte controlling

neighbor routing, length 4 wire routing, and length 16 wire routing. Each north and

south switch has multiple configuration bytes that control: neighbor routing, length 4

and length 16 routing, and global signals including clock and clear lines. Each IOB

consists of multiple configuration bytes controlling routing and some circuit control

signals. A configuration can be viewed as the configurations of the multiplexers in

cells, switches, and IOBs. If any multiplexer in a specified unit (cells, switches and

IOBs) is not used for the computation, then the corresponding configuration bits for that

multiplexer are considered Don’t Cares. We now present details on how to find Don’t

Cares for cells, switches and IOBs.

Figure 4.2 shows the basic XC6200 cell in detail, with the function unit at left and cell

routing resources at right. Input multiplexers select outputs from neighbors or from

length 4 wires to connect to X1, X2, and X3. The Y2 and Y3 multiplexers provide for

conditional inversion of the inputs. The CS multiplexer selects a combinatorial or

sequential output. The RP multiplexer controls the contents of the register to be

“protected”. If the register is configured as “protected”, then only the user interface can

write it.

 - 76 -

Function
Unit

N S E WN4S4E4W4

S E W F X2 X3

N E W F
X3

Nout

F

X1

X2
Y2

1

0

D Q

Q

C

S

F

Clk

X3X3

Y3

RP Mux

N
S
E
W
N4
S4
E4
W4

X1

N
S
E
W
N4
S4
E4
W4

X2

MagicSout

N
S
W
F

Wout N
S
E
F

Eout

Figure 4.2: Xilinx 6200 function unit and cell routing.

Two configuration bytes control the multiplexers for the function unit. Don’t Care

discovery depends on the functionality of the cell. For example, if the CS multiplexer

selects the sequential output and the RP multiplexer configures the register as protected

(feeds the register output back into its input), then all X and Y multiplexers can be set as

Don’t Cares because the user interface is the only source that can change the F output.

If either the Y2 or Y3 multiplexer selects the output of the register, then the

corresponding X multiplex can be set to Don’t Care. The X1 multiplexer can be set to

Don’t Care if Y2 and Y3 both select the same signal. For any of the four neighbor

routing multiplexers not used for computation or routing, the bits for controlling the

multiplexer can be considered Don’t Cares.

Figure 4.3 shows the North switch at 4 × 4 block boundaries. Two multiplexers control

neighbor routing and length 4 routing to the North, and there is an additional length 16

multiplexer at each 16 × 16 boundary. South, East and West switches have structures

that are similar to the North switches. Generally, if any of the multiplexers is not used,

 - 77 -

then the configuration bits for that multiplexer can be set to Don’t Cares. However, the

configuration bits for the Nout multiplexer cannot be set to Don’t Cares if the N4out

multiplexer selects NCout, since the same programming bits control the upper and lower

four input multiplexers. If NCout and Nout select different inputs, both inputs must be

backtraced.

SCIn
NCLNCL
N16N16
NCOut
ClkIn
N4In
MNAMNA
PS16
SCL
MN
MS

N4Out

F
Nin
E
W

N4In
N16
PS4
MN

Nout

NCOut
NCL
SCLSCL
N16In
N4In
PS4
NCOut
SCIn
MN

N16Out

P P P

Figure 4.3: The Xilinx 6200 North switch at 4 × 4 block boundaries.

Each North switch contains an additional Clock multiplexer. This multiplexer is

traversed only if a cell in the same column within the 4 × 4 block is configured as a

register. Each South switch at the 16 × 16 boundary contains a Clear multiplexer. This

multiplexer is traversed only if any cell at the same column within the 16 × 16 block is

configured as a register.

Our algorithm does not attempt to find Don’t Cares in IOBs for two reasons. First, there

are only 64 IOBs at each side of the array, meaning that we will not benefit significantly

from finding Don’t Cares. Second, the architecture of IOB involves many circuit-

control signals that cannot be turned to Don’t Cares. However, our algorithm does

traverse identified IOBs to backtrace other units. Thus, our algorithm is conservative,

since it may not discover Don’t Cares in IOBs, but will always produce valid output.

 - 78 -

We now present the basic steps of our Don’t Care discovery algorithm.

1. Read the input .cal file and mark a unit as “touched” if any part of it is specified in

the .cal file. Mark all configuration bits as Don’t Cares.

2. Read the .sym file and put all output units (IOBs and registers used as outputs) into a

queue.

3. Remove a unit from the queue. If it has already been backtraced, ignore it.

Otherwise, mark its configuration bits as “no longer Don’t Care”, and insert its

important inputs into the queue. Mark the unit as “touched”.

4. If the queue is not empty, goto Step 3.

5. Produce a new target configuration where:

5.1. All locations that were not marked as touched are considered as Don’t Touch.

5.2. All bits that were marked as “no longer Don’t Care” are assigned their values

from the .cal file.

5.3. All other bits are Don’t Cares.

Note that in situations where the configuration given to the compression algorithm

represents the entire logic that will be mapped to the array, it does not matter what

happens to unused cells in the FPGA. In these cases, Step 5 instead sets locations not

marked as touched to Don’t Care.

4.3.2 Compression Algorithm Modifications
Once the Don’t Care discovery algorithm is complete, we have a list of address data

pairs, with Don’t Care bits contained in many of the data values. In order to take

advantage of these Don’t Cares we need to modify to our configuration compression

algorithm.

 - 79 -

In our original configuration compression algorithm, locations with the same data value

are placed in the same group. This is because the addresses with the same value

represent an On set in the corresponding logic minimization problem. However, by

discovering the Don’t Care bits, each On set can be represented by a set of locations that

does not necessarily consist of the same value. After modifying the Don’t Cares to “1”

or “0”, the locations with different values in the given configuration can be placed into

the same group, since they are compatible. Notice that it is now possible for an address

to fit into multiple groups instead of just one group in our original compression

algorithm because of the Don’t Cares, meaning that the flexibility for our configuration

compression algorithm has increased. For example, suppose that after the discovery of

Don’t Care bits, address A contains data “00-000-0”. Assume there are 3 groups, where

group 1 has the value “00000000”, group 2 has the value “00000010” and group 3 has

the value “00100000”. Address A is compatible with the value of each of the three

groups and is placed into them. Writing any value representing the three groups into

address A properly configures it. This is because any of the three values can create the

configuration necessary for the computation. Even though address A may be

overwritten by values from the other two groups, the necessary configuration is

maintained. Our original algorithm can take advantage of this feature to find fewer

cubes covering the necessary configuration.

In our original configuration compression algorithm, the data associated with an address

has a fixed value, so the locations were grouped by their values. However, after running

the Don’t Care discovery algorithm, a location with Don’t Cares can be placed into

multiple groups depending on their compatibility. Thus, we need to develop an

algorithm to group the locations so that the addresses (locations) in each group are

compatible. An address (location) can appear in as many as 2n groups, where n is the

number of Don’t Care bits contained in its data value. Notice that compatibility is not

transitive. That is, if A and B are compatible, and B and C are compatible, it is not

always true that A and C are compatible. For example, assume A, B and C have values

 - 80 -

“000100-0”, “0-0-0000” and “0100-000”, respectively. A and B are compatible, and B

and C are compatible, but A and C are not compatible. This non-transitivity property is

an important consideration, making grouping decisions complex.

For 8-bit data, the simplest method for grouping is to create 256 groups with the values

0 to 255, and place each address data pair into every group with a compatible value.

However, this technique has exponential time complexity; to extend this technique to a

32-bit data bus, the number of groups needed is 232. It is obvious that a heuristic method

is needed. We present our heuristic grouping algorithm as follows:

1. Once Don’t Care discovery is complete, put those addresses with Don’t Care data

bits into a list. Group those addresses without Don’t Care Data bits according to

their data values.

2. Search the list, removing those addresses that can be fit into any of the current

groups, and put them into all compatible groups.

3. Repeat until the list is empty:

3.1. Pick a location from the list with the fewest Don’t Care bits.

3.2. The value for the group equals the value for the picked location, but with all

Don’t Care bits converted to “0” or “1”. These bits are converted iteratively,

converting to the value that is most compatible with other locations.

3.3. Add all locations compatible with this value to the group. If they are on the

unassigned list, remove them.

We also need to modify other steps of the configuration compression algorithm. First,

we present the modified algorithm:

1. Apply the Don’t Care discovery algorithm to find Don’t Cares. Group the address

data pairs by using our grouping algorithm. Mark the address locations specified

 - 81 -

in given .cal file as “unoccupied”. Mark the address locations not specified in the

.cal file, but used in the backtrace, as “occupied”.

2. Sort the groups in decreasing order of the number of addresses unoccupied in that

group.

3. Pick the first group and write the addresses in the group to the Espresso input file

as part of the On set.

4. Write all “unoccupied” addresses to the Espresso input file as part of the Don’t

Care set.

5. Write all addresses marked “occupied”, yet with a value compatible with the

group, to the Espresso input file as part of the Don’t Care set.

6. Run Espresso.

7. Pick the cube from the Espresso output that covers the most unoccupied addresses

in the first group and add it to the compressed configuration file. Mark all covered

addresses as “occupied”.

8. If the cube did not cover all of the addresses in the group, reinsert the group into

the sorted list.

9. If any addresses remain unoccupied, go to Step 2.

This Don’t Care discovery algorithm has several classes of locations: configured,

untouched, and initialized. Configured locations are those whose value is set in the

input .cal file, and our algorithm will generate a write to set these values. Untouched

locations, which are not found in either the backtrace or the .cal file, can be viewed as

either Don’t Touch, if these unused cells may be used for other functions, or Don’t

Care, if the cells will be left unused. Initialized locations are locations that are not set

in the .cal file, but are discovered to be important during backtracing. Thus, the

initialization value must be used. Our algorithm handles these locations as potential

 - 82 -

group members marked as “occupied”. As a result, compatible values can overwrite

these locations to achieve better compression, but the algorithm is not required to

write to these locations if it is not advantageous.

4.3.3. Experimental Results
The results are shown in Table 4.1 (as well as in Figure 4.4). The size of the initial

circuit is given in the “Input size” column. This size includes all writes required to

configure the FPGA, including both compressible writes to the array, as well as non-

compressible control register writes. The “Ctrl” column represents the number of non-

compressible writes, and is a fixed overhead for both the original and compressed file.

The results of the compressed version achieved by our original algorithm are shown in

the column “Original Compression”. The results of the compressed version by our new

algorithm are shown in the column “New algorithm”, with unspecified locations

considered as Don’t Touch (the configuration bits for these locations cannot be

changed) or Don’t Care depending on the details of the use of these configurations.

Table 4.1. The results of the compression algorithms.

 - 83 -

Original compression algorithm New algorithm (Don’t Touch) New algorithm (Don’t Care) Bench-
mark

Input
size

Ctrl

Cnfg Wcrd Ratio1 Ratio2 Cnfg Wcrd Ratio1 Ratio2 Cnfg Wcrd Ratio1 Ratio2

Counter 199 40 53 13 53.2% 41.5% 29 5 37.2% 21.4% 22 4 33.2% 16.4%

parity 208 16 9 3 13.5% 6.3% 6 2 11.5% 4.2% 6 2 11.5% 4.2%

Add4 214 40 43 14 45.3% 32.7% 24 7 33.2% 17.8% 16 6 29.0% 12.6%

zero32 238 42 12 3 23.9% 7.7% 8 3 22.3% 5.6% 6 3 21.4% 4.5%

adder32 384 31 28 14 19.0% 11.9% 20 13 16.7% 9.3% 20 13 16.7% 9.3%

Smear 696 44 224 37 43.8% 40.0% 150 36 33.0% 28.5% 121 32 28.3% 23.5%

Add4rm 908 46 473 45 62.1% 60.1% 279 78 44.3% 41.4% 203 65 34.6% 31.1%

Gray 1201 44 530 74 53.9% 52.2% 378 53 39.5% 37.3% 311 44 33.2% 30.4%

Top 1367 70 812 87 70.8% 69.3% 531 65 48.7% 46.0% 419 57 39.9% 36.7%

demo 2233 31 423 91 24.4% 23.3% 281 77 17.4% 16.3% 241 66 15.1% 13.9%

ccitt 2684 31 346 84 17.2% 16.2% 235 55 12.0% 11.0% 204 50 10.6% 9.6%

t 5819 31 834 192 18.2% 17.7% 567 176 13.3% 12.8% 492 162 11.8% 11.3%

correlat 11011 38 1663 225 17.4% 17.2% 1159 187 12.6% 12.3% 1004 176 11.0% 10.8%

Totals:

w/ctrl 27162 6836 (25.2%) 4928 (18.1%) 4249 (15.6%)

w/o ctrl 26658 6332 (23.8%) 4424 (16.6%) 3745 (14.0%)

The number of writes to configure the logic array is shown in the column “Cnfg”, the

number of Wildcard Register writes is shown in “Wcrd”, and “Ratio1” is the ratio of the

total number of writes (the summation of “Ctrl”, “Cnfg” and “Wcrd”) to the size of the

input configurations. Notice that the “Ctrl” writes represent a fixed startup cost that can

often be ignored during Run-time reconfiguration. Thus, to reflect the compression

ratio without this initial startup cost, we use “Ratio2”, which equals to (“Cnfg” +

“Wcrd”)/(“Input size” – “Ctrl”), to represent the compression ratio for the compressible

parts of the circuits. In the last two rows, the total number of writes and compression

ratios of all benchmarks are calculated for two cases, with and without counting the

“Ctrl” writes. As can be seen, the use of Don’t Care discovery as pre-processing can

improve the average compression factor from 4 to 7.

 - 84 -

24%

14%

0%

10%

20%

30%

40%

50%

60%

70%

C
ounter

Parity

A
dder4

Z
ero32

A
dder32

Sm
ear

A
dder4rm

T
op

D
em

o

C
citt

T

C
orrelator

A
rith. m

ean

Percent of original size

Old Compress Don't Cares

Figure 4.4: Experimental results of the compression algorithms

4.4 Virtex Compression with Don’t Cares
Although Xilinx does not disclose the information necessary to discover Don’t Cares in

the Virtex applications, we can still evaluate the potential impact of the Don’t Cares for

Virtex compression. In order to make an estimate, we randomly turn some bits of the

data stream into Don’t Cares and bound the impact of Don’t Cares on our Readback

algorithm.

In practice, the discovered Don’t Care bits need to be turned to ‘0’ or ‘1’ to produce a

valid configuration bit-stream. The way that the bits are turned affects the frame

sequence and thus the compression ratio. Finding the optimal way to turn the bits takes

exponential time. We have used a simple greedy approach to turn these bits to create an

upper-bound for our Readback algorithm. The configuration sequence graph is built

taking into account the Don’t Cares. We greedily turn the Don’t Care bits into ‘0’ or ‘1’

to find the best matches. Note that once a bit is turned, it can no longer be used as a

 - 85 -

Don’t Care. To discover the lower-bound, we do not turn the Don’t Care bits; thus, they

can be used again to discover better matches.

0%

20%

40%

60%

80%

100%

120%

DC 0% DC 10% DC 20% DC 30% DC 40% DC 50%
Don't Care percentage

pe
rc

en
ta

ge
 o

f o
rig

in
al

 a
lg

or
ith

m

lower bound

upper bound

Figure 4.5: The effect of Don’t Cares on benchmarks in Table 3.2 for Virtex
compression.

Figure 4.5 demonstrates the potential effect of Don’t Cares over the benchmarks listed

in Table 3.2. The X-axis is the percentage of the don’t cares we randomly create and the

Y-axis is the normalization over the results without considering Don’t Cares. As can be

seen in Figure 4.5, by using upper-bound approach a factor of 1.3 improvement can be

achieved on applications containing 30% Don’t Cares, while a factor of 2 improvement

can be achieved using the lower-bound approach.

4.5 Summary
Lossy approaches can be applied to achieve better configuration compression.

However, the configuration changed by a lossy compression must generate same

computational results as the original one and must not damage the reconfigurable

device. In this chapter, we have presented an efficient lossy approach, called Don’t

Care discovery.

 - 86 -

Realizing that Don’t Cares increase regularities, our Don’t Care discovery technique

backtraces important locations starting from the outputs, generating a new

configuration. A subset of the original configuration, this new configuration discovers

the locations that are sufficient to produce the correct computation. All other locations

can be treated as Don’t Cares, increasing regularities within the configuration data. A

significant improvement in compression ratios is achieved by combining this technique

with our lossless techniques presented in Chapter 3.

C h a p t e r 5

Configuration Caching

Configuration caching — the process of determining which configurations that are

retained on the reconfigurable hardware until they are required again -- is another

technique to reduce reconfiguration overhead. However, the limited the on-chip

memory and the non-uniform configuration latency add complexity to decide which

configurations to retain to maximize the odds that the required data is present in the

cache. In this chapter, we present new caching algorithms targeted to a number of

different FPGA models.

5.1 Configuration Caching Overview
Caching configurations on an FPGA is similar to caching instructions or data in a

general memory. It retains the configurations on reconfigurable hardware so the amount

of data that needs to be transferred to the chip can be reduced. In configuration caching,

we view the area of the FPGA as a cache. If this cache is large enough to hold more

than one computation, configuration cache management techniques can be used to

determine when configurations should be loaded and unloaded to best minimize overall

reconfiguration times.

In a general-purpose computational system, caching is an important approach to hide

memory latency by taking advantage of two types of locality: spatial locality and

temporal locality. Spatial locality states that items whose addresses are near one another

tend to be referenced close together in time. Temporal locality addresses the tendency

of recently accessed items to be accessed again in the near future. These two localities

also apply to the caching of configurations for reconfigurable systems. However, the

 - 88 -

traditional caching approaches for general-purpose computational systems are unsuited

to configuration caching for the following reasons:

1) In general-purpose systems, the data loading latency is fixed, because the block

represents the atomic data transfer unit; in reconfigurable systems, the loading

latency of configurations may vary due to non-uniform configuration sizes. This

variable latency factor could have a great impact on the effectiveness of caching

approaches. In traditional memory caching, frequently accessed data items are kept

in the cache in order to minimize the memory latency. However, this might not be

true in reconfigurable systems because of the non-uniform configuration latency.

For example, suppose that we have two configurations with latencies 10ms and

1000ms, respectively. Even though the first configuration is executed 10 times as

often as the second, the second is likely to be cached in order to minimize the total

configuration overhead.

2) In configuration Caching, the large size of each configuration means that only a

small number of configurations can be retained on-chip. This makes the system

more likely to suffer from the “thrashing problem”, in which configurations are

swapped excessively between the configuration memory and the reconfigurable

device.

The challenge in configuration caching is to determine which configurations should

remain on the chip and which should be replaced when reconfiguration occurs. An

incorrect decision will fail to reduce reconfiguration overhead and can lead to a much

higher overhead than a correct decision. Non-uniform configuration latency and the

small number of configurations that reside simultaneously on the chip increase the

complexity of this decision. Both frequency and latency factors of configurations need

to be considered to assure the highest reconfiguration overhead reduction. Specifically,

in certain situations retaining configurations with high latency is better than keeping

frequently required configurations that have lower latency. In other situations, keeping

 - 89 -

configurations with high latency and ignoring the frequency factor results in thrashing

between other frequently required configurations because they cannot fit in the

remaining area. This switching causes reconfiguration overhead that would not have

occurred if the configurations with high latency but low frequency were unloaded.

In addition, the different features of various reconfigurable models add complexity to

configuration caching. The specific architecture and control structure of each

reconfigurable model require unique caching algorithms.

5.2 Reconfigurable Models Review
In order to explore the best configuration architecture, we now evaluate five

reconfigurable models discussed in Chapter 2.

For a Single Context FPGA, the whole chip area must be reconfigured during each

reconfiguration. Even if only a small portion of the chip needs to reconfigure, the whole

chip is rewritten during the reconfiguration. Configuration caching for the Single

Context model allocates multiple configurations that are likely to be accessed near in

time into a single context to minimize switching of contexts. By caching configurations

in this way, the reconfiguration latency is amortized over the configurations in a context.

Since the reconfiguration latency for a Single Context FPGA is fixed (based on the total

amount of configuration memory), minimizing the number of times the chip is

reconfigured will minimize the reconfiguration overhead.

The configuration mechanism of the Multi-Context model is similar to that of the Single

Context FPGA. However, instead of having one configuration stored in the FPGA,

multiple complete configurations are stored. Each complete configuration can be

viewed as multiple configuration memory planes contained within the FPGA. For the

Multi-Context FPGA, the configuration can be loaded into any of the contexts. When

needed, the context containing the required configuration is switched to control the logic

and interconnect plane. Compared to the configuration loading latency, the single cycle

 - 90 -

configuration switching latency is negligible. Because every SRAM context can be

viewed as a Single Context FPGA, the methods for allocating configurations onto

contexts for the Single Context FPGA could be applied.

For the Partial Run-Time Reconfigurable (PRTR) FPGA, the area that is reconfigured is

just the portion required by the new configuration, while the rest of the chip remains

intact. Unlike the configuration caching for the Single Context FPGA, where multiple

configurations are loaded to amortize the fixed reconfiguration latency, the

configuration caching method for the PRTR is to load and retain configurations that are

required rather than to reconfigure the whole chip. The overall reconfiguration

overhead is the summation of the reconfiguration latency of the individual

reconfigurations. Compared to the Single Context FPGA, the PRTR FPGA provides

greater flexibility for performing reconfiguration.

Current PRTR systems are likely to suffer from “thrashing problems” when two or more

frequently used configurations occupy overlapping locations in the array. Simply

increasing the size of the chip will not alleviate this problem. However, the Relocation

model [Compton00], which dynamically allocates the position of a configuration on the

FPGA at run-time instead of at compile time, can minimize its impact.

The Relocation + Defragmentation model (R+D model) can significantly improve

hardware utilization by collecting the small unused fragments into a single large one.

This allows more configurations to be retained on the chip, increasing the hardware

utilization and thus reducing the reconfiguration overhead. For example, Figure 5.1

shows three configurations currently on-chip with two small fragments. Without

defragmentation, one of the three configurations has to be replaced when Configuration

4 is loaded. However, as shown in the right side of Figure 5.1, by pushing

Configurations 2 and 3 upward, the defragmentor produces one single fragment that is

large enough to hold Configuration 4. Notice that the previous three configurations are

 - 91 -

still present, and therefore the reconfiguration overhead caused by reloading a replaced

configuration can be avoided.

Configuration 1

Configuration 2

Configuration 3

Configuration 1

Configuration 2

Configuration 3

Configuration 4

Configuration 4

(a) (b)

Figure 5.1: An example illustrating the effect of defragmentation. (a) The two small
fragments are located between configurations, and neither of them is large enough to
hold Configuration 4. (b) After defragmentation, Configuration 4 can be loaded without
replacing any of the three other configurations.

5.3 Experimental Setup
In order to investigate the performance of configuration caching for the five different

models presented above, we developed a set of caching algorithms for each model. A

fixed amount of hardware resources (in the form of overall area) is allocated to each

model. To conduct the evaluation, we must perform three steps. First, for each model,

the capacity equation must be derived for a given architecture model and a given area.

Since the number of programming bits represent the maximum amount of the

configuration information that a model can retain, the number of programming bits is

calculated to represent the capacity of each model. Second, we test the performance of

the algorithms for each model by generating a sequence of configuration accesses from

an execution profile of each benchmark. Third, for each model, caching algorithms are

executed on the configuration access sequence, and the configuration overhead for each

algorithm is measured.

 - 92 -

5.4. Capacity Analysis
Layout for the programming structure of each reconfigurable model is required to carry

out capacity analysis. Our fellow graduate student Katherine Compton created layouts

of all five reconfigurable models using the Magic tool. The area models are based on

the layout of tileable structures that composed the necessary memory system, and the

sizes (in lambda2) are obtained for the tiles [Compton00].

The Single Context FPGA model is built from shift chains or RAM structures. The

PRTR FPGA, however, requires more complex hardware. The programming bits are

held in five-transistor SRAM cells that form a memory array similar to traditional RAM

structures. Row decoders and column decoders are necessary to selectively write to the

SRAM cells. Large output tri-state drivers are also required near the column decoder to

magnify the weak signals provided by the SRAM cells when reading the configuration

data off the array. The Multi-Context FPGA is based on the information found in

[Trimberger97], where each context is similar to a single plane of a PRTR FPGA. A

few extra transistors and a latch per active programming bit are required to select

between the four contexts for programming and execution. Additionally, a context

decoder must be added to determine which of those transistors should be enabled.

The PRTR design forms the basis of the PRTR with Relocation FPGA. A small adder

and a small register, both equal in width to the number of address bits for the row

address of the memory array, were added for the new design. This allows all

configurations to be generated so that the "uppermost" address is 0. Relocating the

configuration is therefore as simple as loading an offset into the offset register, and

adding this offset to the addresses supplied when loading a configuration. Finally, the

R+D model is similar to the PRTR with Relocation, with the addition of a row-sized set

of SRAM cells that forms a buffer between the input of the programming information

and the memory array itself.

 - 93 -

In order to account for the size of the logic and interconnect in these FPGAs, we assume

that the programming layer of a Single Context FPGA uses approximately 25% of the

area of the chip. All other architectures are assumed to require this same logic and

interconnect area per bit of configuration (or active configuration in the case of a Multi-

Context device). See [Compton00] for calculation details.

As mentioned before, all models are given the same total silicon. However, due to the

differences in the hardware structures, the number of programming bits, and thus the

capacity of the device, vary among models. For example, according to [Compton00], a

Multi-Context model with one megabit of active configuration information and three

megabits of inactive information has same area as a PRTR with 2.4 megabits of

configuration information. Thus, the PRTR devices have 2.4 times as many logic

blocks as the Multi-Context device, but require 40% less total configuration space.

5.5 Configuration Sequence Generation
We use two sets of benchmarks to evaluate the caching algorithms for FPGA models.

One set of benchmarks was compiled and mapped to the Garp architecture [Hauser97],

where the computational intensive loops of C programs are extracted automatically for

acceleration on a tightly-coupled dynamically reconfigurable coprocessor [Callahan99].

The other set of benchmarks was created for the Chimera architecture [Hauck97]. In

this system, portions of the code that can accelerate computation are mapped to the

reconfigurable coprocessor [Hauck98]. In order to evaluate the algorithms for different

FPGA models, we need to create an RFUOP access trace for each benchmark, which is

similar to a memory access string used for memory evaluation.

The RFUOP sequence for each benchmark was generated by simulating the execution

of the benchmark. During the simulated execution, the RFUOP ID is output when an

RFUOP is encountered. Once the execution ends, an ordered sequence of the execution

of RFUOPs is created. In the Garp architecture, each RFUOP in the benchmark

 - 94 -

programs has size information in term of number of rows occupied. For Chimaera, we

assume that the size of an RFUOP is proportional to the number of instructions mapped

to that RFUOP.

5.6 Configuration Caching Algorithms
For each FPGA model, we develop realistic algorithms that can significantly reduce the

reconfiguration latencies. In order to evaluate the performance of these realistic

algorithms, we also attempt to develop tight lower-bound algorithms by using complete

application execution information. For the models where true lower-bound algorithms

are unavailable, we develop algorithms that we believe are near optimal.

We divide our algorithms into three categories: run-time algorithms, general off-line

algorithms, and complete prediction algorithms. The classification of the algorithms

depends on the time complexity and input information needed for each algorithm.

The run-time algorithms use only basic information on the execution of the program up

to that point, and thus must make guesses as to the future behavior of the program. This

is similar to run-time cache management algorithms such as LRU. Because of the

limited information at run-time, a prediction of keeping a configuration or replacing a

configuration may not be correct, and can even cause higher reconfiguration overhead.

Therefore, we believe that these realistic algorithms will provide an upper-bound on

reconfiguration overhead, and for some domains better predictors could be developed

that improve over these results.

The complete prediction algorithms use complete, exact execution information of the

application, and can use computationally expensive approaches. These algorithms

attempt to search the whole execution stream to lower configuration overhead. They

provide the optimal (lower-bound) or near optimal solutions. In some cases, these

algorithms relax restrictions on system behavior in order to make the algorithm a true

(but unachievable) lower-bound.

 - 95 -

The general off-line algorithms use profile information of each application, with

computationally tractable algorithms. They represent realistic algorithms for the case

where static execution information is available, or approximate algorithms where highly

accurate execution predictions can be developed. These algorithms will typically

perform between the run-time and complete prediction algorithms in terms of quality,

and are realistic algorithms for some situations.

5.7 Single Context Algorithms
In the next two sub-sections, we present a near lower-bound algorithm (based on

simulated annealing), and a more realistic general off-line algorithm, which uses more

restricted information. Note that since there are no run-time decisions in a single

context device (if a needed configuration is not loaded the only possible behavior is to

overwrite all currently loaded configurations with the required configuration), we do not

present a run-time algorithm.

5.7.1 Simulated Annealing Algorithm for Single Context

FPGAs
When a reconfiguration occurs in a Single Context FPGA, even if only a portion of the

chip needs to be reconfigured, the entire configuration memory store will be rewritten.

Because of this property, multiple RFUOPs should be configured together onto the chip.

In this manner, during a reconfiguration a group (context) that contains the currently

required RFUOP, as well as possibly one or more later required RFUOPs, is loaded.

This amortizes the configuration time over all of the configurations grouped into a

context. Minimizing the number of group (context) loadings will minimize the overall

reconfiguration overhead.

It is obvious that the method used for grouping has a great impact on latency reduction;

the overall reconfiguration overhead resulting from a good grouping could be much

smaller than that resulting from a bad one. For example, suppose there are four

 - 96 -

RFUOPs with equal size and equal configuration latency for a computation, and the

RFUOP sequence is 1 2 3 4 3 4 2 1, where 1, 2, 3, and 4 are RFUOP IDs. Given a

Single Context FPGA that has the capacity to hold two RFUOPs, the number of context

loads is three if RFUOPs 1 and 2 are placed in the same group (context), and RFUOPs 3

and 4 are placed in another. However, if RFUOPs 1 and 3 are placed in the same group

(context) and RFUOPs 2 and 4 are placed in the other, the number of context loads

increases to seven.

In order to create the optimal solution for grouping, one simple method is to create all

combinations of configurations and then compute the reconfiguration latency for all

possible groupings, from which an optimal solution can be found. However, this

method has exponential time complexity and is therefore not applicable for real

applications. In this work, we instead use a Simulated Annealing algorithm to acquire a

near optimal solution. For the Simulated Annealing algorithm, we use the exact

reconfiguration overhead for a given grouping as our cost function, and the moves

consist of shuffling the different RFUOPs between contexts. Specifically, at each step

an RFUOP is randomly picked to move to a randomly selected group; if there is

insufficient room in that group to hold the RFUOP, RFUOPs in that group are randomly

chosen to move to other groups. Once finished, the reconfiguration overhead of the

grouping is computed by applying the complete RFUOP sequence. The steps below

outline the complete algorithm:

1. While the current temperature is greater than the terminating temperature:

1.1. While the number of iterations is greater than 0:

1.1.1. A candidate RFUOP is randomly chosen along with a randomly selected

destination group to which the candidate will be moved.

1.1.2. After the move, if the total size of the RFUOPs in the destination group

exceeds the size of the context, a new candidate RFUOP in the

 - 97 -

destination group is randomly selected. This RFUOP is then moved to

any group that can hold it. This step is repeated until all groups satisfy

the size constraint.

1.1.3. Execute the newly generated grouping on the RFUOP execution

sequence and calculate the number of times reconfiguration is

performed. The reconfiguration overhead, used as the cost function of

this version of simulated annealing, can be calculated by multiplying the

number of context switches by the loading latency of a context.

1.1.4. The new and the old cost are compared to determine if the move is

allowed, then the number of iterations is decreased by one.

1.2. Decrease the current temperature.

5.7.2 General Off-line Algorithm for Single Context FPGA
Although the Simulated Annealing approach can generate a near optimal solution, its

high computation complexity and the requirement of knowledge of the exact execution

sequences make this solution unreasonable for most real applications. We therefore

propose an algorithm better suited to general-purpose use. The Single Context FPGA

requires that the whole configuration memory will be rewritten if a demanded RFUOP

is not currently on the chip. Therefore, if two consecutive RFUOPs are not allocated to

the same group, a reconfiguration will result. Our algorithm computes the likelihood of

RFUOPs following one another in sequence and use this knowledge to minimize the

number of reconfigurations required. Before we discuss this algorithm further, we first

present the definition of a “correlate” as used in the algorithm:

Definition 5.1: Given two RFUOPs and an RFUOP sequence, RFUOP A is said to

correlate to RFUOP B if in the RFUOP sequence there exists any consecutive

appearance of A and B.

 - 98 -

For the Single Context FPGA, highly correlated RFUOPs should be allocated to the

same group. Therefore, the number of times a context is loaded is greatly decreased,

minimizing the reconfiguration overhead. In our algorithm, we first build an adjacency

matrix of RFUOPs. Instead of using 0 or 1 as a general adjacency matrix does, the

degree of correlation of each RFUOP pair (the number of times two RFUOPs are

adjacent) is recorded. These correlations can be estimated from expected behavior or

determined via profiling. The details of our grouping algorithm are as follows:

1. Create COR, where COR[I, J]= number of times RFUOP I correlates to J.

2. While any A[I, J] > 0, do:

2.1. Find I, J such that COR[I, J] + COR[J, I] is maximized;

2.2. If SIZE[I] + SIZE[J] <= Maximum Context Size;

2.2.1. Merge group I and group J and add their sizes;

2.2.2. For each group K other than I and J:

2.2.2.1. A[I, K] += A[J, K]; A[K, I] += A[K, J];

2.2.2.2. A[J, K] = 0; A[K, J] = 0;
2.3. A[I, J] = 0; A[J, I] = 0;

 RFUOP
43

 RFUOP
34

RFUOP
2

RFUOP
68

RFUOP
22

 RFUOP
4

RFUOP
17

1

1

15
10

10

1915 110

15

Step 4 Step 3 Step 1 Step 2

Figure 5.2: An example to illustrate the General Off-line algorithm for Single
Context FPGAs.

 - 99 -

Figure 5.2 illustrates an example of the General Off-line algorithm. Each line connects

a pair of correlated RFUOPs and the number next to each line indicates the degree of the

correlation. As presented in the algorithm, we merge the highly correlated groups

together under the size constraints of the target architecture. In this example, assume

that the chip can retain only a maximum of 3 RFUOPs at a time. In the first grouping

step we place RFUOP 17 and RFUOP 4 together. In the second step we add RFUOP 43

into the group formed in Step 1, since it has a correlation of 30 (15+15) to that group.

We then group RFUOP 2 and RFUOP 34 together in Step 3, and they cannot be merged

with the previous group because of the size restriction. Finally, in the fourth step

RFUOP 22 and RFUOP 68 are grouped together.

5.8. Multi-Context Algorithms
In this section we present algorithms for multi-context devices. This includes a

Complete Prediction algorithm that represents a near lower-bound, and a General

Offline algorithm that couples the Single Context General Offline algorithm with a run-

time replacement policy.

5.8.1 Complete Prediction Algorithm for Multi-Context FPGAs
A Multi-Context FPGA can be regarded as multiple Single Context FPGAs, since the

atomic unit that must be transferred from the host processor to the FPGA is a full

context. During a reconfiguration, one of the inactive contexts is replaced. In order to

reduce the reconfiguration overhead, the number of reconfigurations must be reduced.

The factors that could affect the number of reconfigurations are the configuration

grouping method and the context replacement policies.

We have discussed the importance of the grouping method for the Single Context

FPGA, where an incorrect grouping may incur significantly larger overhead than a good

grouping. This is also true for the Multi-Context FPGA, where a context (i.e. a group of

configurations) remains the atomic reconfiguration data transfer unit. The

 - 100 -

reconfiguration overhead caused by the incorrect grouping remains very high even

though the flexibility provided by the Multi-Context FPGA can reduce part of the

overhead.

As mentioned previously, even the perfect grouping will not minimize reconfiguration

overhead if the policies used for context replacement are not considered. A context

replacement policy specifies which context should be replaced once a demanded

configuration is not present. As in the general caching problem, where frequently used

blocks should remain in the cache, the contexts that are frequently used should be kept

configured on the chip. Furthermore, if the atomic configuration unit (context) is

considered as a data block, we can view the Multi-Context FPGA as a general cache and

apply standard cache algorithms.

There is an existing optimal replacement algorithm, called the Belady [Belady66]

algorithm for the Multi-Context FPGA. The Belady algorithm is well known in the

operating systems and computer architecture fields. It states that the fewest number of

replacements can be achieved provided the memory access sequence is known. This

algorithm is based on the idea that a data item is most likely to be replaced if it is least

likely to be accessed in the near future. For a Multi-Context FPGA, the optimal context

replacement can be achieved as long as the context access string is available. Since the

RFUOP sequence is known, it is trivial to create the context access string by

transforming the RFUOP sequence.

We integrate the Belady algorithm into the simulated annealing grouping method used

in the Single Context model to achieve the near optimal solution. Specifically, for each

grouping generated, the number of the context replacements determined by the Belady

algorithm is calculated as the cost function of the Simulated Annealing algorithm. The

steps below outline the Complete Prediction algorithm for the Multi-Context model:

 - 101 -

1. Traverse the RFUOP sequence, and for each RFUOP appearing, change the RFUOP

ID to the corresponding group ID. This will result in a context access sequence.

2. Initially assign each RFUOP to a group so that, for each group, the total size of all

RFUOPs is smaller than or equal to the size of the context. Set up parameters of

initial temperature and the number of iterations under each temperature.

3. While the current temperature is greater than the terminating temperature:

3.1. While the number of iterations is greater than 0:

3.1.1. A candidate RFUOP is randomly chosen along with a randomly selected

destination group to which the candidate will be moved.

3.1.2. After the move, if the total size of the RFUOPs in the destination group

exceeds the size of the context, a new candidate RFUOP in the destination

group is randomly selected. This RFUOP is then moved to any group that

can hold it. This step is repeated until all groups satisfy the size constraint.

3.1.3. Apply the Belady algorithm to the context access string. Increase the total

number of context loads by one if a replacement occurs. This creates the

new cost of the simulated annealing.

3.1.4. Compare the new cost to the old cost to determine if the move is allowed,

then decrease the number of iterations by one.

3.2. Decrease the current temperature.

The reconfiguration overhead for a Multi-Context FPGA is therefore the number of

context loads multiplied by the configuration latency for a single context. As mentioned

above, the factors that can affect the performance of configuration caching for the Multi-

Context FPGA are the configuration grouping and the replacement policies. Since the

optimal replacement algorithm is integrated into the simulated annealing approach, this

algorithm will provide the near optimal solution. We consider this to be a complete

prediction algorithm.

 - 102 -

5.8.2 Least Recently Used (LRU) Algorithm
The LRU algorithm is a widely used memory replacement algorithm in operating

system and architecture fields. Unlike the Belady algorithm, the LRU algorithm does

not require future information to make a replacement decision. Because of the

similarity between the configuration caching and the data caching, we can apply the

LRU algorithm for the Multi-Context FPGA model. The LRU is more realistic than the

Belady algorithm, but the reconfiguration overhead incurred is higher. Its basic steps

are outlined below:

1. Apply the Single Context General Off-line algorithm to acquire a final grouping of

RFUOPs into contexts, and give each group formed its own ID.

2. Traverse the RFUOP sequence, and for each RFUOP appearing, change the RFUOP

ID to the corresponding group ID. This generates a context access sequence.

3. Apply the LRU algorithm to the context access string. Increase the total number of

context loads by one when a replacement occurs.

5.9 Algorithms for the PRTR FPGAs
Compared to the Single Context FPGA, an advantage of the PRTR FPGA is its

flexibility of loading and retaining configurations. Any time a reconfiguration occurs,

instead of loading the whole group only a portion of the chip is reconfigured, while the

other RFUOPs located elsewhere on the chip remain intact. The basic idea of

configuration caching for PRTR is to find the optimal location for each RFUOP. This is

to avoid the thrashing problem, which could be caused by the overlap of frequently used

RFUOPs. In order to reduce reconfiguration overhead for the PRTR FPGA, we need to

consider two major factors: the reconfiguration frequency and the latency of each

RFUOP. Any algorithm that attempts to lower only one factor will fail to produce an

optimal solution because the reconfiguration overhead is the product of the two. A

 - 103 -

Complete Prediction algorithm that can achieve a near optimal solution is presented

below.

5.9.1 A Simulated Annealing Algorithm for the PRTR FPGA
The purpose of annealing for the PRTR FPGA is to find the optimal mapping for each

configuration such that the reconfiguration overhead is minimized. For each step, a

randomly selected RFUOP is assigned to a random position on-chip, and the exact

reconfiguration overhead is then computed. Before presenting the full Simulated

Annealing algorithm, we first define “conflict” as used in our discussion.

Definition 2: Given two configurations and their positions on the FPGA, RFUOP A is

said to be in conflict with RFUOP B if any part of A overlaps with any part of B.

We now present our Full Simulated Annealing algorithm for the PRTR FPGA.

1. Assign a random position to each RFUOP. Set up the parameters of initial

temperature, number of iterations under each temperature, and terminating

temperature.

2. While the current temperature is greater than the terminating temperature:

2.1. While the number of iterations is greater than 0:

2.1.1. A randomly selected RFUOP is moved to a random location on-chip.

2.1.2. Traverse the RFUOP sequence. If the demanded RFUOP is not currently

on the chip, load the RFUOP to the specified location, and increase the

overall reconfiguration latency by the loading latency of the RFUOP. If

the newly loaded RFUOP conflicts with any other RFUOPs on the chip,

those conflicted RFUOPs are removed from the chip.

2.1.3. Let the new cost be equal to the overall RFUOP overhead and determine

whether the move is allowed. Decrease the number of iterations by one.

 - 104 -

2.2. Decrease the current temperature.

Finding the location for each RFUOP is similar to the placement problem in physical

design, where the simulated annealing algorithm usually provides good performance.

Therefore, our Full Simulated Annealing algorithm should create a near optimal

solution.

5.9.2 An Alternate Annealing Algorithm for the PRTR FPGA
In the Full Simulated Annealing algorithm presented in the last section, the computation

complexity is very high, since the RFUOP sequence must be traversed to compute the

overall reconfiguration overhead after every move. Obviously, a better algorithm is

needed to reduce the running time. Again, as for the Single Context FPGA, an

adjacency matrix of size N×N is built, where N is the number of RFUOPs. The main

purpose of the matrix is to record the possible conflicts between RFUOPs. In order to

reduce the reconfiguration overhead, the conflicts that create larger configuration

loading latency are distributed to non-overlapped locations. This is done by modifying

the cost computation step of the previous algorithm. To clarify, we present the full

algorithm:

1. Create an N × N matrix, where N is the number of RFUOPs. All values of A[i, j] are

set to be 0, where 0 ≤ i, j ≤ N-1.

2. Traverse the RFUOP sequence. For any RFUOP j that appears between two

consecutive appearances of an RFUOP i, A[i, j] is increased by 1. Notice that

multiple appearances of an RFUOP j only count once between two consecutive

appearances of an RFUOP.

3. Assign a random position for each RFUOP. Set up parameters of initial

temperature, the number of iterations under each temperature, and terminating

 - 105 -

temperature. An N × N adjacency matrix B is created. All values of B[i, j] are set to

be 0, where 0 ≤ i, j ≤ N-1.

4. While the current temperature is greater than the terminating temperature:

4.1. While the number of iterations is greater than 0:

4.1.1. A randomly selected RFUOP is reallocated to a random location on-chip.

After the move, if two RFUOPs i and j conflict, set B[i, j] and B[j, i] to

be 1.

4.1.2. For any B[i, j]=1, multiply the value of A[i, j] by the RFUOP loading

latency of j. The new cost is computed as the summation of the results

of all the products.

4.1.3. Determine whether the new move is allowed and decrease the number of

iterations by one.

4.2. Decrease the current temperature.

Generally, the total number of RFUOPs is much less than the length of the RFUOP

sequence. Therefore, by looking up the conflict matrices instead of the whole

configuration sequence, the time complexity can be greatly decreased. Still, one final

concern is the quality of the algorithm because the matrix of potential conflicts derived

from the sequence is used rather than using the complete configuration sequence. Even

the matrix may not represent the conflicts exactly; however, it gives an estimate of the

potential conflicts between any two configurations.

5.10 Algorithms for the PRTR R+D FPGAs
For the PRTR R+D FPGA, the replacement policies have a great impact on reducing the

reconfiguration overhead. This is due to the high flexibility available for choosing

victim RFUOPs when a reconfiguration is required. With relocation, an RFUOP can be

dynamically remapped and loaded to an arbitrary position. With defragmentation, a

 - 106 -

demanded RFUOP can be loaded as long as there is enough room on the chip, since the

small fragments on-chip can be merged. In the next sub-sections we present the

algorithms of Relocation + Defragmentation, which include a Lower-bound algorithm

that relaxes restrictions in the system, a General Off-line algorithm integrating the

Belady algorithm, and two Run-time algorithms using different approaches.

5.10.1 A Lower-bound Algorithm for the PRTR R+D FPGAs
The major problems that prevent us from acquiring an optimal solution to configuration

caching are the different sizes and loading latencies of RFUOPs. Generally, the loading

latency of an RFUOP is proportional to the size of the configuration.

The Belady algorithm gives the optimal replacement when the memory access sequence

is known and the data transfer unit is uniform. Given the RFUOP sequence for the

PRTR R+D model, we can achieve a lower-bound for our problem if we assume that a

portion of any RFUOP can be transferred. Under this assumption, when a

reconfiguration occurs, only a portion of an RFUOP might be replaced while the other

portion is still retained on-chip. Once the removed RFUOP is needed again, only the

missing portion (possibly the whole RFUOP) is loaded instead of loading the entire

RFUOP. We present the Lower-bound algorithm as follows:

1. If a required RFUOP is not on the chip, do the following:

1.1. Find the missing portion of the RFUOP. While the missing portion is greater

than the free space on the chip:

1.1.1. For all RFUOPs that are currently on the chip, identify a victim RFUOP

whose next appearance is later than the appearances of all others.

1.1.2. Let R = the size of the victim + the size of the free space – the missing

portion.

 - 107 -

1.1.3. If R is greater than 0, a portion of the victim that equals R is retained on-

chip while the other portion is replaced and added to the free space.

Otherwise, add the space occupied by the victim to the free space.

1.2. Load the missing portion of the demanded RFUOP into the free space. Increase

the reconfiguration overhead by the loading latency of the missing portion.

5.10.2 A General Off-line Algorithm for the PRTR R+D FPGAs
Since the Belady algorithm can provide a lower-bound for the fixed size problem, some

ideas can be transferred into a more realistic off-line algorithm. As in the Belady

algorithm, for all RFUOPs that are currently on-chip, we identify the one that will not

appear in the RFUOP sequence until all others have appeared. But instead of replacing

that RFUOP, as in the Belady algorithm, the victim configuration is selected by

considering the factors of size and loading latency. Before we discuss the algorithms

further, we first define a “reappearance window” as used in our algorithms.

Definition 5.3: A reappearance window W is the shortest subsequence of the

reconfiguration stream, starting at the current reconfiguration, that contains an

occurrence of all currently loaded configurations. If a configuration does not occur

again, the reappearance window is the entire remaining reconfiguration stream.

We now present our General Off-line algorithm for the PRTR R+D FPGA:

1. If a demanded RFUOP is not currently on the chip:

1.1. While there is not enough room to load the RFUOP, do the following:

1.1.1. Find the reappearance window W.

1.1.2. For each RFUOP, calculate the total number of appearances in W

1.1.3. For each RFUOP, multiply the loading latency and the number of

appearances; replace the RFUOP with the smallest value.

 - 108 -

1.2. Load the demanded RFUOP. Increase the overall latency by the loading

latency of the RFUOP.

Steps 1.1.1 – 1.1.3 specify the rules to select the victim RFUOP. Counting the number

of appearances of each RFUOP obtains the frequency of the use of the RFUOP to in the

near future. As mentioned, this is not adequate to determine a victim RFUOP, because

an RFUOP with lower frequency may have much higher configuration latency.

Therefore, by multiplying the latency and the frequency, we can find the possible

overall latency in the near future if the RFUOP is replaced.

5.10.3 LRU Algorithm for the R+D FPGAs
Since the PRTR R+D can be viewed as a general memory model, we can use an LRU

algorithm for our reconfiguration problem. Here, we traverse the RFUOP sequence, and

when a demanded RFUOP is not on-chip and there is insufficient room to load the

RFUOP, the least recently used on-chip RFUOP is selected to be removed. Although

simple to implement, this algorithm may display poor quality because it ignores the

sizes of the RFUOPs.

5.10.4 Penalty-oriented Algorithm for the PRTR R+D FPGAs
Since the non-uniform size of RFUOPs is not considered a factor in LRU algorithm, a

high reconfiguration overhead could potentially result. For example, consider an

RFUOP sequence 1 2 3 1 2 3 1 2 3 …; RFUOPs 1, 2 and 3 have sizes of 1000, 10 and

10 programming bits respectively. Suppose also that the size of the chip is 1010

programming bits. According to the LRU algorithm, the RFUOPs are replaced in same

order of the RFUOP sequence. It is obvious that configuration overhead will be much

smaller if RFUOP 1 is always kept on the chip.

This does not suggest that we always want to keep larger RFUOPs on the chip as

keeping larger configurations with low reload frequency may not reduce the

 - 109 -

reconfiguration overhead. Instead, both size and frequency factors should be considered

in the algorithm. Therefore, we use a variable “credit” to determine the victim

[Young94]. Every time an RFUOP is loaded onto the chip, its credit is set to its size.

When a replacement occurs, the RFUOP with the smallest credit is evicted from the

chip, and the credit of all other RFUOPs on-chip is decreased by the credit of the victim.

To make this clearer, we present the algorithm as follows:

1. If a demanded RFUOP is currently on the chip, set its credit equal to its size. Else

do the following:

1.1. While there is not enough room to load the required RFUOP:

1.1.1. For all RFUOPs on-chip, replace the one with the smallest credit and

decrease the credit of all other RFUOPs by that value.

1.2. Load the demanded RFUOP and set its credit equal to its size.

5.11 A General Off-line Algorithm for the Relocation FPGAs
One major advantage that the PRTR R+D FPGA has over the PRTR with Relocation is

the ability to have higher utilization of the space on the reconfigurable hardware. Any

small fragments can contribute to one larger area, so that an RFUOP could possibly be

loaded without forcing a replacement. However, for PRTR with only Relocation, those

fragments could be wasted. This could cause an RFUOP that is currently on chip to be

replaced and thus may result in extra overhead if the replaced RFUOP is demanded

again very soon. In order to reduce the reconfiguration overhead for this model, the

utilization of the fragments must be improved. We present the algorithm as follows:

1. If a demanded RFUOP is not currently on the chip, do the following.

1.1. While there is not enough room to load the RFUOP, do the following:

1.1.1. Find the reappearance window W.

1.1.2. For each RFUOP, calculate the total number of appearances in W.

 - 110 -

1.1.3. For each RFUOP, multiply the loading latency by the number of

appearances, producing a cost.

1.1.4. For each RFUOP on-chip, assume that it is to be the candidate victim,

and identify the adjacent configurations that must also be removed to

make room for the demanded RFUOP. Total the costs of all potential

victims.

1.1.5. Identify the smallest sum of each RFUOP. The victim that produces the

smallest costs is replaced.

1.2. Load the demanded RFUOP. Increase the overall latency by the loading

latency of the configuration.

The General Off-line heuristic that applied to the R+D FPGA is also implemented in

this algorithm. The major difference for this algorithm is to consider the geometric

positions of the RFUOPs. Since the R+D FPGA model has the ability to collect the

fragments, the RFUOPs are replaced in the increasing order of their costs (load latency

times appearance in the reappearance window). However, this scheme does not work

for the PRTR with Relocation if the victim RFUOPs are separated by other non-victim

RFUOPs because the system cannot merge the non-adjacent spaces. Therefore, when

multiple RFUOPs are to be replaced in the PRTR FPGA with Relocation, these

RFUOPs must be adjacent or separated only by empty fragments. Considering this

geometric factor, the victims to be replaced are adjacent RFUOPs (or those separated by

fragments) that produce the smallest overall cost.

5.12 Simulation Results and Discussion
All algorithms are implemented in C++ on a Sun Sparc-20 workstation. Figure 5.3

demonstrates the bounds of Single Context, PRTR, and Multi-Context models. For each

benchmark, we first normalize the reconfiguration penalty for each algorithm, then we

calculate the average for each algorithm.

 - 111 -

As can be seen in Figure 5.3, the reconfiguration penalties of the PRTR are much

smaller (64% to 85% smaller) than for the Single Context model. This is because with

almost the same capacity, the PRTR model can significantly reduce the average

reconfiguration latency of the Single Context model without incurring a much larger

number of reconfigurations. The Multi-Context model has smaller reconfiguration

overhead (20% to 40% smaller) than the PRTR when the chip silicon is small. With a

small silicon area, the Multi-Context model wins because of its much larger

configuration area. When the silicon area becomes larger, the number of conflicts

incurred in the PRTR model is greatly reduced, and thus the PRTR has almost the same

reconfiguration penalty as the Multi-Context model. In fact, the PRTR performs even

better than the Multi-Context model in some cases. The Multi-Context device must

reload a complete context each time, making the per reconfiguration penalty in large

chips much higher than in the PRTR model. Since the number of conflicts is small, the

overall reconfiguration overhead of the PRTR FPGA is smaller than that of the Multi-

Context FPGA.

Figure 5.3. Reconfiguration overheads of the Single Context FPGA, the PRTR, and
the Multi-Context models. The “low” represents the lower-bound or near optimal
solution for each model, and the “high” represents the upper-bound.

0

0.2

0.4

0.6

0.8

1

1.2

1 1.25 1.5 1.75 2

N orm alized FPG A size

N
or

m
al

iz
ed

 C
on

fig
ur

at
io

n
Pe

na
lty

Single low

S ingle h igh

P artia l low

P artia l h igh

M ulti low

M ulti h igh

 - 112 -

Figure 5.4 shows the reconfiguration overheads of the Relocation model and the R+D

model. For the R+D FPGA, the General Off-line algorithm performs almost as well as

the Lower-bound algorithm in the reconfiguration overhead reduction, especially when

the chip silicon becomes larger. Note that the Lower-bound algorithm relaxes the PRTR

model restrictions by allowing portion of the RFUOPs can be replaced and loaded. As

can be seen in Figure 5.4, future information is very important, as the General Off-line

algorithm for the PRTR with Relocation performs better than both the LRU and the

Penalty-oriented algorithms for the R+D FPGA. By only considering the frequency

factor while ignoring load latency, the LRU algorithm has worse performance than the

penalty oriented algorithm.

Figure 5.4: Reconfiguration overheads for the Relocation and the PRTR R+D FPGA.
The “Low Reloc + Defrag” represents the lower-bound algorithm for the R+D FPGA.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 1.25 1.5 1.75 2

Normalized FPGA size

N
or

m
al

iz
ed

 C
on

fig
ur

at
io

n
Pe

na
lty

off-line
Relocation

Low Reloc +
Defrag.

off-line Reloc
+Defrag

LRU Reloc
+Defrag

penalty Reloc
+ Defrag

 - 113 -

Figure 5.5: Comparison between the PRTR with Relocation + Defragmentation model
and the Multi-Context model.

Figure 5.5 compares the PRTR R+D and the Multi-Context models. As we can see,

when the chip silicon is small, the Complete Prediction algorithm for the Multi-Context

FPGA performs better than the General Off-line algorithm for the R+D FPGA.

However, as the chip silicon increases, the General Off-line algorithm for the R+D

FPGA has almost the same ability to reduce the reconfiguration overhead as the

Complete Prediction algorithm for the Multi-Context FPGA. In addition, the Penalty-

oriented algorithm (run-time algorithm) for the R+D FPGA performs slightly better than

the General Off-line algorithm for the Multi-Context FPGA.

5.13 Summary
In this chapter, we have presented the first cache management algorithms for

reconfigurable computing systems. We have developed new caching algorithms

targeted at a number of different FPGA models, as well as creating lower-bounds to

quantify the maximum achievable reconfiguration reductions possible. For each model,

we have implemented a set of algorithms to reduce the reconfiguration overhead. The

simulation results demonstrate that the reconfiguration overhead of the PRTR is 85%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 1.25 1.5 1.75 2

Normalized FPGA size

N
or

m
al

iz
ed

 C
on

fig
ur

at
io

n
Pe

na
lty

off-line Reloc
+ Defrag

penalty Reloc
+ Defrag

Multi low

off-line Multi

 - 114 -

smaller than for the Single Context model. The Multi-Context model has smaller

reconfiguration overhead (20% to 40% smaller) than the PRTR when chip silicon is

small. When the chip area becomes larger, the PRTR has almost the same

reconfiguration overhead as the Multi-Context model. Since the PRTR R+D provide

higher hardware utilization, the reconfiguration overhead of the PRTR R+D model is

about factor of 2-3 smaller than the PRTR model. The reconfiguration overhead of the

PRTR R+D is slightly smaller than the Multi-Context model.

C h a p t e r 6

Configuration Prefetching

As demonstrated in Chapter 5, an FPGA can be viewed as a cache of configurations.

Prefetching configurations on an FPGA, which is similar to prefetching in a general

memory system, overlaps the reconfigurations with computation to hide the

reconfiguration latency. In this chapter, we present configuration prefetching techniques

for various reconfigurable models.

6.1 Prefetching Overview
Prefetching for standard processor caches has been extensively studied. Research is

normally split into data and instruction prefetching. In data prefetching, the

organization of a data structure and the measured or predicted access pattern are

exploited to determine which portions of a data structure are likely to be accessed next.

The simplest case is array accesses with a fixed stride, where the access to memory

location N is followed by accesses to (N+stride), (N+2*stride), etc. Techniques can be

used to determine the stride and issue prefetches for locations one or more strides away

[Mowry92, Santhanam97, Zucker98, Callahan91]. For more irregular, pointer-based

structures, techniques have been developed to prefetch locations likely to be accessed in

the near future, either by using the previous reference pattern, by prefetching all children

of a node, or by regularizing data structures [Luk96].

Techniques have also been developed for instruction prefetching. The simplest is to

prefetch the cache line directly after the line currently being executed [Smith78, Hsu98],

since this is the next line needed unless a jump or branch intervenes. To handle such

branches information can be kept on all previous successors to this block [Kim93], or

 - 116 -

the most recent successor (“target prefetch”) [Hsu98], and prefetch these lines.

Alternatively, a look-ahead PC can use branch prediction to race ahead of the standard

program counter, prefetching along the likely execution path [Chen94, Chen97].

However, information must be maintained to determine when the actual execution has

diverged from the lookahead PC’s path, and then restart the lookahead along the correct

path.

Unfortunately, many standard prefetching techniques are not appropriate for FPGA

configurations because of differences between configurations and single instruction or

data block. Before we discuss the details of configuration prefetching, we first

reexamine the factors important to the effectiveness of prefetching for a general-purpose

system:

1) Accuracy. This is the ratio of the executed prefetched instructions or data to the

overall prefetched instructions or data. Prefetching accuracy estimates the quality of

a prefetching technique as a fraction of all prefetches that are useful. Based on the

profile or run-time information, the system must be able to make accurate

predictions on the instructions or data that will be used and fetch them in advance.

2) Coverage. This is the fraction of cache misses eliminated by the effectiveness of a

prefetching technique. An accurate prefetch technique will not significantly reduce

the latency without a high coverage.

3) Pollution. One side-effect that prefetching techniques produce is that the cache lines

that would have been used in the future will be replaced by some prefetched

instructions or data that may not be used. This is known as cache pollution.

These issues are even more critical to the performance of configuration prefetching. In

general-purpose systems the atomic data transfer unit is a cache block. Cache studies

consistently show that the average access time will likely drop when the block size

increases until it reaches a certain value (usually fewer than 128 bytes), the access time

 - 117 -

will then increases as the block size continue to increase since a very large block will

result in an enormous penalty for every cache miss. The atomic data transfer unit in the

configuration caching or configuration prefetching domain, rather than a block, is the

configuration itself, which normally is significantly larger than a block. Therefore the

system suffers severely if a demanded configuration is not present on chip. In order for

a system to minimize this huge latency accurate prediction of the next required

configurations is highly desired.

As bad as it could be in general-memory systems, cache pollution plays a much more

malicious role in the configuration prefetching domain. As demonstrated in Chapter 5,

due to the large configuration size and relatively small on-chip memory, very few

configurations can be stored on reconfigurable hardware. As the result, an incorrect

prefetch will be very likely to cause a required configuration to be replaced, and

significant overhead will be generated when the required configuration is brought back

later. Thus, rather than reducing the overall configuration overhead, a poor prefetching

approach can actually significantly increase overhead.

In addition, the correct prefetch of a configuration needs to be performed much earlier

than it will be required; otherwise, the large configuration loading latency cannot be

entirely or mostly hidden. A correct prediction must be made as early as possible to

make prefetching an effective approach. Also, in contrast to the fixed block size for

general memory system the sizes of different configurations could vary drastically. As

shown in Chapter 5, the variable configuration sizes make it more difficult to determine

which configurations should be unloaded to make room for the required configuration.

In general, prefetching algorithms can be divided into three categories: static

prefetching, dynamic prefetching and hybrid prefetching. A compiler-controlled

approach, static prefetching inserts prefetch instructions after performing control flow or

data flow analysis based on profile information and data access patterns. One major

advantage of static prefetching is that it requires very little additional hardware.

 - 118 -

However, since a significant amount of access information is unknown at compile time,

the static approach is limited by the lack of run-time data access information. Dynamic

prefetching determines and dispatches prefetches at run-time without compiler

intervention. With the help of the extra hardware, dynamic prefetching uses more data

access information to make accurate predictions. Hybrid prefetching tries to combine

the strong points of both approaches—it utilizes both compile-time and run-time

information to become a more accurate and efficient approach.

6.2 Factors Affecting Configuration Prefetching
In order to better discuss the factors that will affect prefetching performance, we first

make the following definitions.

• Lk: The latency of loading a configuration k.

• Sk: The size of the configuration k.

• Dik: The distance (in instructions executed) between an operation i and the

execution of the configuration k.

• Pik: The probability that configuration k is the next executed RFUOP after

instruction i.

• Costik: The potential minimum cost if k is prefetched at instruction i.

• C: The capacity of the chip.

The probability factor could have a significant impact on prefetching accuracy. The

combination of Sk and C determines whether there is enough space on the chip to load

the configuration k. The combination of Lk and Dik determines the amount of the latency

the configuration k that can be hidden if it is prefetched at i. It is obvious that there will

 - 119 -

not be a significant reduction if Dik is too short, since most of the latency of

configuration k cannot be eliminated if it is prefetched at i.

In addition, the non-uniform configuration latency will affect the order of the prefetches

that need to be performed. Specifically, we might want to perform out-of-order prefetch

(prefetch configuration j before configuration k even if k is required earlier than j) for

some situations. For example, suppose we have three configurations 1, 2, and 3 to be

executed in that order. Given that S3 >> S1 >> S2, S1 + S3 < C < S1 + S2 + S3, and D12

>> L3 >> L2 >D23, prefetching configuration 3 before configuration 2 when 1 is

executed results in a penalty of L2 at most. This is because the latency of configuration

3 can be completely hidden and configuration 2 can be either demanded fetched (penalty

of L2) or prefetched once the execution of the configuration 1 completes. However, if

the in-order prefetches are performed the overall penalty is calculated as L3 -D23, which

is much larger than L2.

6.3 Configuration Prefetching Techniques
Two reconfigurable models are considered in this work. The Single Context

reconfigurable model is chosen mainly because of its architecture simplicity.

Additionally, since only one configuration can be retained on-chip at any time, only in-

order prefetching needs to be considered. This will simplify the techniques we use for

configuration prefetching.

Partial R+D FPGA is the other reconfigurable model we selected because of its high

hardware utilization demonstrated in Chapter 5. Note that Partial R+D and Multi-

Context models show similar hardware utilization. We chose Partial R+D model over

Multi-Context model based on the following reasons. First, various current commercial

FPGAs are partial reconfigurable and the Partial R+D model can be built from them

without significantly increasing hardware [Compton00]. Second, as mentioned in

 - 120 -

Chapter 2, power consumption during context switches for Multi-Context remains a

major concern.

6.4 Configuration Prefetching for the Single Context FPGAs
The initial prefetching algorithm for the Single Context model [Hauck98] was

developed by professor Scott Hauck, advisor for this dissertation. A static prefetching

technique, the algorithm applies a shortest path approach to identify the next candidate

to prefetch. Since the probability factor is not considered in the algorithm, malicious

prefetches can significantly lower the effectiveness of the prefetching. In order to avoid

this, a post-processing pruning approach is repetitively executed to reduce malicious

prefetches, causing a longer running time. Furthermore, though this approach can

reduce malicious prefetches, it cannot add potentially helpful prefetches to take

advantage of the distances left by the removal of malicious prefetches. In this work, we

seek to improve the effectiveness of the static prefetching algorithm as well as to

remove the pruning process.

Given the control flow graph of an application, our goal is to explore a technique that

can automatically insert prefetch instructions at compile-time. These prefetch

instructions are executed just like any other instructions, occupying a single slot in the

processor’s pipeline. The prefetch instruction specifies the ID of a specific

configuration that should be loaded into the coprocessor. If the desired configuration is

already loaded, or is in the process of being loaded by some other prefetch instruction,

this prefetch instruction becomes a NO-OP. If the specified configuration is not present,

the coprocessor trashes the current configuration and begins loading the specified one.

At this point the host processor is free to perform other computations, overlapping the

reconfiguration of the coprocessor with other useful work. Once the next call to the

coprocessor occurs it can take advantage of the loading performed by the prefetch

instruction.

 - 121 -

6.4.1 Experiment Setup
In order to evaluate the different configuration prefetching algorithms we must perform

the following steps. First, some method must be developed to choose which portions of

the software algorithms should be mapped to the reconfigurable coprocessor. In this

work, we apply the approach presented in [Hauck98] (these mappings of the portions of

the source code will be referred to as RFUOPs). Second, a simulator of the

reconfigurable system must be employed to measure the performance of the prefetching

algorithms. Our simulator is developed from SHADE [Cmelik93]. It allows us to track

the cycle-by-cycle operation of the system, and get exact cycle counts. We will

compare the performance of the prefetching algorithms as well as the performance

assuming no prefetch occurs at all. Also, we measure the impact of the techniques on

reconfiguration time, which can be reasonably measured in this system, as opposed to

overall speedup, which cannot accurately be measured due to uncertainties in future

system architectures and exact program features.

To make our analysis clearer in the control flow graph, we use circles to represent the

instruction nodes and squares to represent the RFUOPs. Since in a single entry and

single exit path, the prefetch should be executed at the top, but not other nodes

contained in the path, only the top node is considered as the candidate where prefetch

instructions can be inserted. Therefore, we simplify the control graph by packing other

nodes in the path, with a length that represents the number of nodes contained in the

path.

Since all configurations for a Single Context FPGA have equal size, the only factors that

determine prefetches are distance, probability and configuration latency. From our

experiments and analysis, we found that prefetching the closest configuration could

work well on applications whose reconfiguration latency is relatively small. In these

cases, the prefetches are not required to be determined very far in advance to hide the

entire latency, and the prefetch of the closest configuration will result in the correct

 - 122 -

decision most of the time. Also, the prefetch of the closest configuration will lead to

more direct benefit than the prefetch of other configurations, whose latency can be

overlapped by later prefetches.

However, for systems with very large reconfiguration latencies, prefetching the closest

configuration will not lead to the desired solution. This is because another factor, the

probabilities of reaching a different configuration from the current instruction, can have

a more significant effect. With large reconfiguration delays, the insertion of prefetches

to load one configuration means that the reconfiguration latency of other configurations

cannot be entirely hidden. Consider the example in Figure 6.1, where the “Length” and

the “Probability” next to an arrow represents the number of instruction cycles and the

probability to execute that path, respectively. If the closest configuration is prefetched,

a prefetch instruction for configuration 1 will be inserted at instruction I and a prefetch

instruction for configuration 2 will be inserted at instruction L. All reconfiguration

latency will be eliminated in a system where it takes 10 cycles to load each

configuration because the path from instruction L to configuration 2 is long enough to

hide the reconfiguration latency of configuration 2. However, if the reconfiguration

latency of each configuration is 100 cycles, then the majority of the latency for

configuration 2 still remains. Furthermore, although 90% of the time configuration 2

will be executed once instruction I is reached, the long path from instruction I to

instruction J cannot be utilized to hide the reconfiguration cost 90% of the time.

However, if configuration 2 were prefetched at instruction I, the rate of correct

prediction of the next configuration improves from 10% to 90%. Thus the path from

instruction I to instruction J can provide more benefit in reducing the overall

reconfiguration cost.

 - 123 -

I

 J

 K L

1 2

Length = 2 Length = 10

Length = 89

Length = 1
Probability = 0.1

Length = 1
Probability = 0.9

Figure 6.1: An example for illustrating the ineffectiveness of the directed shortest-
path algorithm

As can be seen in Figure 6.1, the reconfiguration latency is also a factor that affects the

prediction of the next required configuration. With the reconfiguration latency changes

from 10 cycles to 100 cycles, the determination of the next required configuration at

instruction I has changed. To correctly predict the next required configuration all three

factors must be considered. Failing to do so will lower the efficiency of configuration

prefetching.

6.4.2 Cost Function
For paths where only one configuration can be reached the determination of the next

required configuration is trivial, since simply inserting a prefetch of the configuration at

the top of the path is the obvious solution. The problem becomes more complex for

paths where multiple configurations can be reached. We call these shared paths.

Inserting a prefetch of any single configuration at the top of a shared path will keep this

path from being used to hide the reconfiguration latency of any other configurations.

 - 124 -

i

 j

 k m

1 2

X Y

Z

Figure 6.2: The control flow graph for illustrating the cost calculation.

We first start our cost calculation on the basic case that is shown in Figure 6.2. There

are two ways to insert prefetches in this example. One is to prefetch configuration 1 at

instruction i and prefetch configuration 2 at instruction m. The other is to prefetch

configuration 2 at instruction i and prefetch configuration 1 at instruction k. The

decision is made depending on the calculation of the overall reconfiguration cost

resulting from each prefetching sequence, which is affected by the factors of the

probability, the distance and the reconfiguration latency. The reconfiguration cost of

each prefetching sequence is calculated as follows:

Costi1 = Pi1 × (L – Di1) + Pi2 × (L – Dm2) = Pi1 × (L - Z - X - 2) + Pi2 × (L - Y)

Costi2 = Pi2 × (L – Di2) + Pi1 × (L – Dk1) = Pi2 × (L - Z - Y - 2) + Pi1 × (L - X)

Since the cost of each prefetch cannot be negative, we modify the functions to be:

Costi1 = Pi1 × max (0, (L - Z - X - 2)) + P12 × max (0, (L - Y)) (6.4.1)

Costi2 = Pi2 × max (0, (L - Z - Y - 2)) + P11 × max (0, (L - X)) (6.4.2)

 - 125 -

Costi1 and Costi2 are the potential minimum costs at instruction i with different

prefetches performed. As can be seen from (6.4.1) and (6.4.2), the costs of upper nodes

can be calculated by using the costs of lower nodes. Therefore, for more complex

control graphs we can apply a bottom-up scheme to calculate the potential minimum

costs at each node, with upper level nodes using the results calculated at the lower-level

nodes.

6.4.3 The Bottom-up Algorithm for Prefetching
The Bottom-up algorithm works on the control flow graph when the edges from

RFUOPs to their successors have been removed. We also eliminate loops, as discussed

in Section 6.4.4. The algorithm starts from the configuration nodes, calculating the

potential minimum costs at each instruction node once the costs of children nodes are

available. This scheme continues until all nodes are processed. Once finished, the top-

most nodes will contain a series of costs reflecting the different prefetch sequences. The

sequence with the minimum cost represents the prefetch sequence that has the best

potential to hide reconfiguration overheads. Before presenting the algorithm, we first

discuss the information that must be calculated and retained at each instruction node.

From (6.4.1) and (6.4.2), we can see that the length of the paths are important to the

generation of the best prefetch sequences. If the shared path in Figure 6.2 is not long

enough to hide the remaining latency of both configurations, then by subtracting (6.4.2)

from (6.4.1) we will have:

Ci1 - Ci2 = Pi1 × (L - Z - X - 2) + Pi2 × (L - Y) – (Pi2 × (L - Z - Y - 2) + Pi1 × (L - X))

 = Pi2 × (Z + 2) – Pi1 × (Z + 2) (6.4.3)

As can be seen in (6.4.3), for this case the configuration with the largest probability

should be prefetched. However, this may not be true when the shared path is long

enough to hide the remaining reconfiguration latency of at least one configuration.

Suppose in Figure 6.2 that X were much longer than Y, and by prefetching configuration

 - 126 -

1 at instruction i the entire reconfiguration latency of configuration 1 could be

eliminated. Then by subtracting (6.4.2) from (6.4.1), we will have:

Ci1 – Ci2 = Pi2 × (Z + 2) – Pi1 × (L – X) (6.4.4)

As can be seen in (6.4.4), probability is not the only factor in deciding the prefetches,

since the length of each path for an instruction to reach a configuration also affects the

way to insert prefetches. The difference in forms between equation (6.4.3) and equation

(6.4.4) raises an important issue: Given two nodes in a shared path (such as i and j), the

best configuration to prefetch at the close node may differ from the best RFUOP to

prefetch at the more distant node. This is because the close node may be affected only

by the difference in branch probabilities (as in equation (6.4.3)), while the far node will

also be affected by the path lengths (as in equation (6.4.4)). The interested reader can

verify this in Figure 6.2 by assuming that X, Y, Z, L, P11, P12 equal 90, 10, 80, 100, 0.6,

and 0.4, respectively. In this scenario, the best configuration to prefetch at instruction j

is configuration 1, while the configuration to prefetch at instruction i is 2. To deal with

this discrepancy, we lean towards the decision made at the more distant node, since this

provides the greatest opportunity to hide latency.

During the Bottom-up algorithm, the cost to prefetch each reachable configuration is

calculated at each instruction node. The costs will be used to determine the prefetch at

the current node and the cost calculation at the parent nodes. The basic steps of the

Bottom-up scheme are outlined below:

For each instruction node i, set Cij, Pij, and Dij to 0 for all i and set

num_children_searched to 0.

1. For each configuration node i, set Cii, Pii and Dii to 1. Place configuration nodes

into a queue.

2. While the queue is not empty, do:

 - 127 -

2.1. Remove a node k from the queue. If it is not a configuration node, do:

2.1.1. CALCULATE_COST(k).

2.2. For each parent node, if it is not a configuration node do:

2.2.1. Increase num_children_searched by 1, if num_children_searched equal

the number of children of that node, insert the parent node into the

queue.

Before we present the details of subroutine CALCULATE_COST(k), we must define

some terms:

• Bij: the branch probability for instruction i to reach instruction j.

• Min_cost(i): Min Cij for all configurations j reachable from i.

Now we outline the basic steps of the subroutine CALCULATE_COST(k):

1. For each configuration j that can be reach by k, do:

1.1. Temp_length = 0.

1.2. For each child node i that can reach the configuration j, do:

1.2.1. Temp_probability = Bki × Pij.

1.2.2. Pkj= Pkj + Temp_probability.

1.2.3. Temp_length = Temp_length + min(Latency, Dij + Dki) ×

Temp_probability.

1.2.4. Temp_cost += Cij – Temp_probility × max(0, Latency - Dij – Dki).

1.3. Dkj = Temp_length / Pkj.

1.4. Ckj = Ckj + Temp_cost.

1.5. For each child node i that cannot reach the configuration j, do:

1.5.1. Ckj = Ckj + Min_cost(i).

 - 128 -

The function call CALCULATE_COST(k) at instruction k is to calculate probability,

distance, and cost of k to prefetch each reachable configuration j. The probability is

calculated based on the probabilities of its children to reach j and the branch probability

of k to reach each child node. Since the control flow graph can be very complex, there

may exist several different paths for an instruction to reach a configuration. Therefore,

we calculate the weighted average length of these paths. This could cause some

inaccuracy in the cost calculation, but in most of the cases the inaccuracy is tolerable

because the path with the high probability dominates the weighted average length. The

cost calculation considers both the probability and length for k to reach configuration j,

as well as the costs computed at the children nodes.

 j

 m n

1 2

 k

 r s

3

i

Figure 6.3: An example of multiple children nodes reaching the same configuration.

For example assume we are computing Ci3 in Figure 6.3. Ci3 includes the costs of

configuration 3 at each of its children, as well as the latency hiding achieved (if any)

during the execution of edges (i, j) and (i, k). Since k is the only node to reach 3, we will

be unable to hide any latency on (i, j). Also, we will incur the cost min_cost(j) at node j,

which represents performing the best prefetch possible at node j. In cases where

multiple children can reach the same configuration, the cost of the parent includes the

reduced cost from the edges to each of those children. Consider the example in Figure

 - 129 -

6.3, where both node j and node k can reach configuration 2. Ci2 includes the costs of

configuration 2 at j and k, as well as the latency hiding achieved during edges (i, j) and

(i, k).

6.4.4 Loop Detection and Conversion
Our Bottom-up algorithm operates on acyclic graphs, and thus requires loop detection

and conversion. If loop detection were not performed, two problems would result.

First, our simple bottom-up processing would deadlock, since a node in a loop is its own

descendant. Second, the insertion of prefetches into loops that do not contain RFUOPs

can cause excessive overhead, as the same prefetch operation is called multiple times,

wasting an execute slot each time it is encountered. For example, in Figure 6.4 left, our

basic prefetching algorithm might decide that the best configuration to prefetch at j is 1,

and at m is 2. This could insert two prefetch instructions into the loop, wasting two

execute slots per iteration. After converting the loop as shown in Figure 6.4 right, the

prefetch algorithm would insert a prefetch of 1 at i, and a prefetch of 2 at n, reducing the

overhead of potentially redundant prefetches.

To solve these problems, we use a strongly connected components algorithm to identify

the loops existing in the control flow and then convert the loops into dummy nodes in

the graph. The strongly connected components algorithm is a standard method to

identify a set of nodes in the graph so that every node in the set can reach every other

node. In our model, a nested loop can be viewed as a set of strongly connected

components, in which every node in the loop can reach every other. Furthermore, to

perform the Bottom-up algorithm, appropriate values for P, C, and D must be calculated

for each dummy node for each reachable configuration. The basic steps of loop

detection and conversion are as following:

 - 130 -

i

 j

 k n

1 2

 m

i

 k n

1 2

loop

Figure 6.4. Loop conversion. The original control flow graph with a loop containing
nodes j and m is shown on the left, while at right they are replaced by a dummy loop
node.

1. Run the strongly connected component algorithm.

2. For each component, do:

2.1. Compute the total number of executions of all nodes in the component.

2.2. Calculate the total number of executions of paths exiting the loop.

2.3. Divide the value calculated from 2.1 by the value of 2.2, producing the

average length of the loop.

2.4. For each path exiting the loop, do:

2.4.1. The branch probability of the path is calculated as the execution of the

path divided by the total number of executions of paths exiting the loop.

The execution information used in the algorithm can be gathered from the profile

information provided by our simulator. Step 2.2 calculates the total control flow that

exits from the loop. By dividing this number by the total number of executions of all

loop nodes, the average length of the loop nodes can be calculated.

 - 131 -

6.4.5 Prefetch Insertion
Once the bottom-up process is complete, we have discovered a potential way to perform

prefetch. The prefetch instructions must be inserted to execute discovered prefetches.

Inserting prefetch instructions represents additional overhead of the systems, therefore,

no redundant prefetch instruction should be allowed.

The prefetch insertion is performed in a top-down style starting from the nodes that have

no instruction parents. The prefetch of each of these nodes is determined by the

minimum cost calculated. Once the prefetch instruction is inserted, each node passes

the prefetch information to its children. Upon receiving the prefetch information, each

child checks whether it can reach the configuration that is prefetched by its parents. If

so, no new prefetch is inserted and the prefetch information is passed down. For each of

the nodes that cannot reach the configuration prefetched by the parents, the prefetch to

the configuration that was calculated with the minimum cost is inserted and this

information is passed to its children. Note that the prefetch instruction will not be

inserted if the RFUOP to prefetch is also the ancestor of the instruction node. This top-

down method continues until all the instruction nodes are traversed.

6.4.6 Results and Analysis
The simulation results are shown in Table 6.1. Each benchmark is tested at four

different per-reconfiguration delay values. Note that different reconfiguration delays

results in different RFUOP being picked by the simulator. The “No Prefetch”, “Optimal

Prefetch” and “Prefetch” columns report the total number of cycles spent stalling the

processor while the coprocessor is reconfigured, plus the number of cycles spent on

prefetch opcodes. The “Opt/No”, “Pre/NO” and “Pre/Opt” columns list the ratios of

Optimal Prefetching delays to no prefetching delays, of delays of our prefetching

algorithm to no prefetching and of delays of our prefetching algorithm to optimal

prefetching. The cumulative rows compare the total reconfiguration penalties across the

entire benchmark suite.

 - 132 -

As can be seen in Table 6.1, the prefetching algorithm provides an overall 41%-65%

reduction in reconfiguration overhead when compared to the base case of no

prefetching. While this is not nearly as good as the 69%-84% improvement suggested

by the optimal prefetch technique, it is important to realize that the optimal prefetch

numbers may not be achievable by any static configuration prefetch algorithm. For

example, if there exists a very long shared path for an instruction to reach multiple

configurations, then static prefetch approaches will not gain as much as optimal prefetch

since the prefetch instruction inserted on the top of the shared path will only reduce the

overhead of one configuration. If the probability to reach one configuration is

significantly greater than the combined probability to reach the rest of the

configurations, the static approaches may not suffer too much compared to optimal

prefetch. However, if the probabilities for an instruction to reach different

configurations are almost identical, the performance of static prefetch approaches will

be much worse than that of the optimal prefetch, which can dynamically issue different

prefetch targets at the top of the shared paths.

Consider the benchmark “Perl” with a latency of 10,000, where only two prefetches are

needed for the configurations by using Optimal Prefetch, which issues one at the

beginning of the execution and another one after the first RFUOP is finished. However,

since the two configurations have a long shared path, no static approach can perform as

well as optimal Prefetch. Furthermore, as can be seen in Table 6.1, the shared path is

more critical when the Latency is high. When the latency is small, the shared path may

not be necessary to hide reconfiguration latency for most configurations. With the

increase of the latency, it is more likely that the shared path is necessary to hide the

overhead.

 - 133 -

Table 6.1: Results of the prefetching algorithm.

Benchmark Latency No Prefetching Optimal
Prefetch

(Opt/No) Prefetch (Pre/No
)

(Pre/Opt)

Go 10 6,239,090 2,072,560 33.2% 2,453,389 39.32% 118.37%
 100 6,860,700 1,031,739 15.0% 2,834,309 41.31% 274.71%
 1,000 2,520,000 225,588 9.0% 889,736 35.31% 394.41%
 10,000 1,030,000 314,329 30.5% 533,987 51.84% 169.88%
Compress 10 344,840 63,403 18.4% 83,876 24.32% 132.29%
 100 127,100 46,972 37.0% 80,998 63.73% 172.44%
 1,000 358,000 289,216 80.8% 253,981 70.94% 87.82%
 10,000 520,000 12,535 2.4% 252,673 48.59% 2015.74%
Li 10 6,455,840 958,890 14.9% 1,877,365 29.08% 195.79%
 100 4,998,800 66,463 1.3% 2,131,882 42.65% 3207.62%
 1,000 55,000 21,325 38.8% 41,102 74.73% 192.74%
 10,000 330,000 43,092 13.1% 110,392 33.45% 256.18%
Perl 10 4,369,880 656,210 15.0% 1,598,984 36.59% 243.67%
 100 3,937,600 398,493 10.1% 1,800,337 45.72% 451.79%
 1,000 3,419,000 9,801 0.3% 1,899,644 55.56% 19382.14%
 10,000 20,000 2 0.0% 5,714 28.57% 285700.00%
Fpppp 10 2,626,180 1,415,924 53.9% 1,667,678 63.50% 117.78%
 100 11,707,000 6,927,877 59.2% 6,982,352 59.64% 100.79%
 1,000 19,875,000 5,674,064 28.5% 6,269,614 31.55% 110.50%
 10,000 370,000 4,485 1.2% 349,870 94.56% 7800.89%
Swim 10 600,700 265,648 44.2% 311,092 51.79% 117.11%
 100 10,200 4,852 47.6% 6,092 59.73% 125.56%
 1,000 91,000 79,905 87.8% 83,822 92.11% 104.90%
 10,000 330,000 43,019 13.0% 55,267 16.75% 128.47%
Cumulative 10 20,636,530 5,432,635 26.3% 7,075,757 34.29% 130.25%
 100 27,641,400 8,476,396 30.7% 13,835,970 50.06% 163.23%
 1,000 26,318,000 6,299,899 23.9% 9,347,899 35.52% 148.38%
 10,000 2,600,000 417,462 16.1% 1,307,903 50.30% 313.30%

6.5 Configuration Prefetching for Partial R+D FPGA
In this section, we present efficient prefetching techniques for reconfigurable systems

containing a Partial R+D FPGA. We have developed algorithms that apply the different

configuration prefetching techniques. Based on the available access information and the

additional hardware required, our configuration prefetching algorithms can be divided

 - 134 -

into 3 categories: Static Configuration Prefetching, Dynamic Configuration Prefetching,

and Hybrid Configuration Prefetching.

6.5.1. Static Configuration Prefetching
Unlike the Single Context FPGA a Partial R+D FPGA can hold more than one

configuration, and at a given point multiple RFUOPs may need to be prefetched. Thus,

the method to effectively specify the IDs of the RFUOPs to prefetch becomes an issue.

One intuitive approach is to pack the IDs into one single instruction. However, since the

number of IDs need to be specified could be different for each prefetch instruction, it is

not possible to generate prefetch instructions with equal length. Another option is to use

a sequence of prefetch instructions when multiple prefetching operations need to be

performed. However, to make it an effective approach a method that can terminate

previously issued prefetches is required. This is because during the execution certain

previous unfinished prefetch instructions may become obsolete and useless cancelled

these unwanted prefetching operations will significantly damage performance.

In Figure 6.5, for example, 1, 2, 3, and 4 are RFUOPs and P1, P2, P3, and P4 are

prefetching instructions. It is obvious that when P1 is executed, configurations 3 and 4

will not be reached, and the prefetches of 3 and 4 are wasted. This waste may be

negligible for a general-purpose system since the load latency of an instruction or a data

block is very small. However, because of the large configuration latency in

reconfigurable systems, it is likely that the prefetch of configuration 3 has not completed

or even not started when P1 is reached. As a consequence, if we use the same approach

used in general-purpose systems, letting the prefetches of P3 and P4 complete before

prefetching P1 and P2, the effectiveness of the prefetches of P1 and P2 will be severely

damaged since they cannot completely or mostly hide the load latencies of

configurations 1 and 2. Therefore, we must find a way to terminate previously issued

prefetches if they become unwanted.

 - 135 -

1 2

3
P2

P3

P1
4

P4

Figure 6.5: Example of prefetching operation control.

A simple approach used in this work to solve this problem is to insert termination

instructions when necessary. The format of a termination instruction resembles any

other instruction, consuming a single slot in the processor’s pipeline. Once a

termination instruction is encountered the processor will terminate all previously issued

prefetches so the new prefetches can start immediately. For the example in Figure 6.5, a

termination instruction will be inserted immediately before P1 to eliminate the

unwanted prefetches of P4 and P3.

Now that we have demonstrated how to handle the prefetches, the remaining problem is

to determine where the prefetch instructions will be placed given the RFUOPs and the

control flow graph of the application. Since the algorithm used in the previous section

demonstrated high-quality results for Single Context reconfigurable systems, we will

extend it for systems containing a Partial R+D.

The algorithm we used to determine the prefetches contains three stages:

1) Penalty calculation. In this stage the algorithm computes the potential penalties for

a set of prefetches at each instruction node of the control flow graph.

 - 136 -

2) Prefetch scheduling and generation. In this stage the algorithm determines the

configurations that need to be prefetched at each instruction node based on the

penalties calculated in Stage 1. Prefetches are generated under the restriction of the

size of the chip.

3) Prefetch reduction. In this stage the algorithm trims the redundant prefetches

generated in the previous stage. In addition, it inserts termination instructions.

In the previous section, a bottom-up approach was applied to calculate the penalties

using the probability and distance factors. Since the probability is dominant in deciding

the penalties, and the average prefetching distance is mostly greater than the latencies of

RFUOPs, it is adequate to use probability to represent penalty.

Given the simplified control flow graph and the branch probabilities, we will use a

bottom-up approach to calculate the potential probabilities for an instruction node to

reach a set of RFUOPs. The basic steps of the Bottom-up algorithm are outlined below:

1. For each instruction, initialize the probability of each reachable configuration to 0,

and set the num_children_searched to be 0.

2. Set the probability of the configuration nodes to 1. Place the configuration nodes

into a queue.

3. While the queue is not empty, do

3.1. Remove a node k from the queue. If it is not a configuration node, do:

3.1.1. Pkj = ∑(Pki × Pij), for all children i of node k.

3.2. For each parent node, if it is not a configuration node, do

3.2.1. Increase num_children_searched by 1. If num_children_searched equals

the total number of children of that node, insert the parent node into the

queue.

 - 137 -

The left side of Figure 6.6 shows a control flow graph with branch probability on each

edge. Table 6.2 shows the probabilities calculated at the instruction nodes with more

than one reachable RFUOP.

I1

1 2 3 4

0.3 0.7 0.4 0.6

0.6 0.4 0.80.2

0.6 0.4

0.20.3 0.5

I2 I3 I4

I5 I6

I7 I8

I9

I10

I1

1 2 3 4

I2 I3 I4

I5 I6

I7 I8

I9

I10

P1 P2 P3 P4

P1,2 P4,3

P1,3 P4,3

P3,4

P1,4

Figure 6.6: An example of prefetch scheduling and generation after the probability
calculation.

Table 6.2: Probability calculation for Figure 6.6.

 1 2 3 4

I5 0.7 0.3 0 0

I6 0 0 0.4 0.6

I7 0.42 0.18 0.4 0

I8 0 0.2 0.32 0.48

I9 0.168 0.072 0.4 0.36

I10 0.5504 0.0616 0.184 0.204

 - 138 -

Once this stage is complete, each instruction contains the probabilities of the reachable

RFUOPs. We use the results to schedule necessary prefetches.

The prefetch scheduling is quite trivial once the probabilities have been calculated.

Based on the decreasing order the probabilities, a sequence of prefetches could be

generated for each instruction node. Since the aggregate size of the reachable RFUOPs

for a certain instruction could exceed the capacity of the chip, the algorithm only

generate prefetches under the size restriction of the chip. The rest of the reachable

RFUOPs are ignored. For example, in Figure 6.6 we assume that the chip can at most

hold 2 RFUOPs at a time. The generated prefetches at each instruction are shown on the

right side of Figure 6.6.

The prefetches generated at a child node are considered to be redundant if they match

the beginning sub-sequence generated at its parents. Our algorithm will check and

eliminate these redundant prefetches. One may argue that the prefetches at a child node

should be considered as redundant if they are a sub-sequence, but not necessary the

beginning sub-sequence, of its parents, because the parents represent a superset of

prefetches. However, by not issuing the prefetch instructions at the child node, the

desired the prefetches cannot start immediately, since the unwanted prefetches at the

parents might have not completed. For example, in Figure 6.6, P2 at the instruction I2

cannot be eliminated even though it is a sub-sequence of P1,2 because when I2 is

reached P2 may not be able to start if P1 has not completed. In Figure 6.6, the

prefetches at instructions I1, I4, and I6 can be eliminated.

Once the prefetch reduction is complete, for each instruction node where prefetches

must be performed a termination instruction is inserted, followed by a sequence of

prefetch instructions. Note that a termination instruction does not flush the entire

FPGA, but merely clears the prefetch queue. RFUOPs that have already been loaded by

the preceding prefetches are often retained.

 - 139 -

6.5.2 Dynamic Configuration Prefetching
Among the various dynamic prefetching techniques available for general-purpose

computing systems, Markov prefetching [Joseph97] is a very unique approach. Markov

prefetching does not tie itself to particular data structure accesses and is capable of

prefetching both instructions and data.

As the name implies, Markov prefetching uses a Markov model to determine which

blocks should be brought in from the higher-level memory. A Markov process is a

stochastic system for which the occurrence of a future state depends on the immediately

preceding state, and only on it. A Markov process can be represented as a directed

graph, with probabilities associated with each vertex. Each node represents a specific

state, and a state transition is described by traversing an edge from the current node to a

new node. The graph is built and updated dynamically using the available access

information. As an example, the access string A B C D C C C A B D E results in the

Markov model shown in Figure 6.7. Using the Markov graph multiple prefetches with

different priorities can be issued.

Figure 6.7: The Markov model generated from access string A B C D C C C A B D
E. Each node represents a specific state and each edge represents a transition from
one state to another. The number on an edge represents the probability of the
transition occurring.

 - 140 -

Markov prefetching can be extended to handle the configuration prefetching for

reconfigurable systems. Specifically, the RFUOPs can be represented as the vertices in

the Markov graph and the transitions can be built and updated using the RFUOP access

sequence. However, the Markov prefetching needs to be modified because of the

differences between general-purpose systems and reconfigurable systems.

Note that only a few RFUOPs can be retained on-chip at any given time because of the

large size of each RFUOP. Therefore, it is very unlikely that all the transitions from the

current RFUOP node can be executed. This feature requires the system to make

accurate predictions to guarantee that only the highly probable RFUOPs are prefetched.

In order to find good candidates to prefetch, Markov prefetching keeps updating the

probability of each transition using the currently available access information. This

probability represents the overall likelihood this transition could happen during the

course of the execution and may work well for a general-purpose system which a large

number of instructions or data blocks with small loading latency can be stored in a

cache. However, without emphasizing the recent history, Markov prefetching could

make poor predictions during a given period of the execution. Due to the features of the

reconfigurable systems mentioned above, we believe the probability calculated based on

the recent history is more important than the overall probability.

In this work, a weighed probability in which recent accesses are given higher weight in

probability calculation is used as a metric for candidate selection and prefetching order

determination. The weighted probability of each transition is continually updated as the

RFUOP access sequence progresses. Specifically, probabilities out of a node u will be

updated once a transition (u, v) is executed:

For each transition starting from u:

Pu,w = Pu,w / (1 + C) if w ≠ v;

Pu,v = (Pu,v + C) / (1 + C);

 - 141 -

where C is a weight coefficient.

For general-purpose systems, the prefetching unit generally operates separately from the

cache management unit. Specifically, the prefetching unit picks candidates and then

sends prefetch requests into the prefetching buffer (usually a FIFO). Working

separately, the cache management unit will vacate the requests one by one from the

buffer and load the instructions or data blocks into the cache. If there is not enough

space in the cache, the cache management unit will apply a certain replacement policy to

select victims and evict them to make room for the loading instructions or data.

Though this works well for general-purpose systems, this separated approach may not

be efficient for configuration prefetching because of the large size and latency of each

RFUOP. For example, at a certain point 3 equal-size RFUOPs A, B, C are stored on

chip, and equal-size RFUOPs D, A, B are required in sequence with very a short

distance between each other. Suppose there is no room on chip and a FIFO replacement

policy is used. The system will evict A first to make room for D, then replace B with A

and C with B in order. It is obvious that the overall latency will not be significantly

reduced because of the short distance between D, A, B. This situation can be improved

by combining prefetching with caching techniques. For the example above, we can

simply replace C with D and retain A and B on chip to eliminate the latencies of loading

them. The intuition behind this approach is to use the prefetching unit as predictor as

well as a cache manager. The dynamic prefetching algorithm can be described as

following:

Upon the completion of each execution of RFUOP k, do:

1. Sort the weighted probabilities in decreasing order of all transitions starting from k

in the Markov graph.

2. Terminate all previously issued prefetches. Select k as the first candidate.

 - 142 -

3. Select the rest of the candidates in sorted order under the size constraint of the chip.

Issue prefetch requests for each candidate that is not currently on chip.

4. Update the weighted probability of each transition starting from j, where j is the

RFUOP executed just before k.

Though the replacement is not presented in the algorithm, it is carried out indirectly.

Specifically, any RFUOPs that are currently on chip will be marked for eviction if they

are not selected as candidates. One last point to mention is that the RFUOP just

executed is treated as the top candidate automatically since generally each RFUOP is

contained in a loop and likely to be repeated multiple times. Correspondingly, the self-

loop transitions in the Markov graph are ignored.

6.5.3 Hardware Requirements of Dynamic Prefetching
A data structure is required to maintain and continually update the Markov graph as

execution progresses. A table, as shown in Figure 6.8, can be used to represent the

Markov graph. Each node (RFUOP) of the Markov graph occupies a single row of the

table. The first column of each row is the ID of an RFUOP, and the rest of the columns

are the RFUOPs it can reach. Since under chip size constraint only the high probability

RFUOPs out of each node are used for the prefetching algorithm, keeping all transitions

out of a node will simply waste precious hardware resources. As can be seen in Figure

6.8, the number of transitions retained is limited to K.

RFUOP 1 Next 1 Next 2 … Next K

RFUOP 2 Next 1 Next 2 … Next K
… … … … …

RFUOP M Next 1 Next 2 … Next K

Figure 6.8: A table is used to represent the Markov graph. The first column of each
row is the ID of a RFUOP and the rest of the columns are k-reachable RFUOPs from
this row’s RFUOP with highest probability.

 - 143 -

In addition, a small FIFO buffer is required to store the prefetch requests. The

configuration management unit will take the requests from the buffer and load the

corresponding RFUOPs. Note that the buffer will be flushed to terminate previous

prefetches before the new prefetches are sent to the buffer. Furthermore, the

configuration management unit can be interrupted to stop the current loading if an

RFUOP not currently loaded is invoked.

In order for the host processor to save execution time in updating the probabilities, the

weight coefficient C is set to 1. This means that when a transition needs to be updated,

the host processor will simply right shift the register retaining the probability by one bit.

Then the most significant bit of the register representing the currently occurring

transition is set to 1. An N-bit register representing any transition (u, v) will become 0 if

(u, v) does not occur for N executions of u. In that sense, only the most recent N

accesses of u are used to compute the probability for each transition starting from u. As

a consequence, the number of transitions that needs to be stored in the table representing

the Markov graph can be set to N (i.e. K = N). To balance the hardware cost and retain

enough history, we use 8-bit registers in this work.

6.5.4 Hybrid Configuration Prefetching
Dynamic prefetching using recent history works well for the transitions occurring within

a loop. However, this approach will not be able to make accurate predictions for

transitions jumping out a loop. For example, on the left side of Figure 6.9, we assume

only one RFUOP can be store on chip at any given point. By applying dynamic

prefetching approach, RFUOP 2 is always prefetched after RFUOP 1 assuming the inner

loop will always be taken for several iterations. Thus, the reconfiguration penalty for

RFUOP 3 can never be hidden due to the wrong prediction.

 - 144 -

3

1

2

I1

3

1

2

I1 P3

Figure 6.9: An example illustrates the ineffectiveness of the dynamic prefetching.

This misprediction can be avoided if static prefetching approach can be integrated with

the dynamic approach. More specifically, before reaching RFUOP3 a normal

instruction node will likely be encountered and the static prefetches determined at that

instruction node can be used to correct the wrong predictions determined by the

dynamic prefetching. As illustrated on the right side of the Figure 6.9, a normal

instruction I1 will be encountered before RFUOP 3 is reached and our static prefetching

will correctly predict 3 will be the next required RFUOP. As the consequence, the

wrong prefetch of RFUOP 2 determined by our dynamic prefetching can be corrected at

I1.

The goal of combining the dynamic configuration prefetching with the static

configuration prefetching is to take advantage of the recent access history without

exaggerating it. Specifically, dynamic prefetching using the recent history will make

accurate predictions within the loops while static prefetching using the global history

will make accurate predictions between the loops. The challenge of integrating dynamic

prefetching with static prefetching is to coordinate the prefetches such that the wrong

 - 145 -

prefetches are minimized. When the prefetches determined by the dynamic prefetching

do not agree those determined by the static prefetching a decision must be made.

The basic idea we use to determine the beneficial prefetches for our hybrid prefetching

is to penalize the wrong prefetches. We add a per-RFUOP flag bit to indicate the

correctness of the prefetch made by previous static prefetching. When the prefetches

determined by static prefetching conflict with those determined by dynamic prefetching,

the statically predicted prefetch of a RFUOP is issued only if the flag bit for that

RFUOP was set to 1. The flag bit of a RFUOP is set to 0 once the static prefetch of the

RFUOP is issued, and will remain 0 until the RFUOP is executed. As the consequence,

statically predicted prefetches, especially those made within the loops, are ignored if

they have not been correctly predicting. On the other hand, those correctly predicted

static prefetches, especially those made between the loops, are chosen to replace the

wrong prefetches made by the dynamic prefetching. The basic steps of the hybrid

prefetching are outlined as following:

1. Perform the Static Configuration Prefetching algorithm. Set the flag bit of each

RFUOP to 1. An empty priority queue is created.

2. Upon the finish of a RFUOP execution, perform the Dynamic Prefetching algorithm.

Set the flag bit of the RFUOP to 1. Clear the priority queue first, then place the IDs

of the dynamically predicted RFUOPs into the queue.

3. When a static prefetch of a RFUOP is encountered and the flag bit of the RFUOP is

1, terminate current loading. Set the flag bit of the RFUOP to 0. Give the highest

priority to this RFUOP and insert its ID into the priority queue. The RFUOPs with

lower priorities are replaced or ignored to make room for the new RFUOP.

4. Load the RFUOPs from the priority queue.

 - 146 -

6.5.5 Results and Analysis
All algorithms are implemented in C++ on a Sun Sparc-20 workstation and are

simulated with the SHADE simulator [Cmelik93]. We choose to use the SPEC95

benchmark suite to test the performance of our prefetching algorithms. Note that these

applications have not been optimized for reconfigurable systems, and may not be as

accurate in predicting exact performance as would real applications for reconfigurable

systems. However, such real applications are not in general available for

experimentation. In addition, the performance of the prefetching techniques will be

compared against the previous caching techniques, which also used the SPEC95

benchmark suite.

As can be seen in Figure 6.10, five algorithms are compared: Least Recently Used

(LRU) Caching, Off-line Caching, Static Prefetching, Dynamic Prefetching, and Hybrid

Prefetching. The LRU algorithm chooses victims to be replaced based on run-time

information, while the Off-line algorithm takes into consideration future access patterns

to make more accurate decisions. Note that our static prefetching uses the Off-line

algorithm to pick victims. Since the cache replacement is integrated into dynamic

prefetching and hybrid prefetching, no additional replacement algorithms are used for

both prefetching algorithms.

Clearly, all prefetching techniques substantially outperformed caching-only techniques,

especially when cache size is small. As cache size grows, the chip is able to hold more

RFUOPs and cache misses are reduced. However, the prefetching distance is not

changed. As the consequence, the performance due to prefetching will not significantly

improve as the cache size grows. Among the prefetching techniques, dynamic

prefetching performs consistently better than static prefetching because it can use the

RFUOP access information. Hybrid prefetching performs slightly better than dynamic

prefetching, because of its ability to correct some wrong prediction made by dynamic

 - 147 -

prefetching. However, the advantage of hybrid prefetching becomes negligible as the

cache size grows.

0

0.2

0.4

0.6

0.8

1

1.2

1 1.25 1.5 1.75 2
Normalized FPGA Size

N
or

m
al

iz
ed

 C
on

fig
ur

at
io

n
Pe

na
lty LRU

Off-line
Static+Off-line
Dynamic
Hybrid

Figure 6.10: Reconfiguration overhead comparison. Five algorithms are
compared: Least Recently Used (LRU) Caching, Off-line Caching, Static
Prefetching, Dynamic Prefetching, and Hybrid Prefetching. The configuration
penalty of each algorithm is normalized to the penalty of the LRU algorithm with a
normalized FPGA size 1.

Figure 6.11 demonstrates the effect of the different replacement algorithms that used for

the static prefetching. Since the static prefetching algorithm requires an augment

replacement algorithm, the overall reconfiguration overhead reduction can be affected

not only by the prefetching, but also by the replacement approach that is chosen.

However, as can be seen in Figure 6.11, the prefetching is the more dominant factor in

overall overhead reduction, as the off-line replacement algorithm (the optimum realistic

replacement) with more complete information on performs just slightly better than the

LRU.

 - 148 -

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.25 1.5 1.75 2

Normalized FPGA Size

N
or

m
al

iz
ed

 R
ec

on
fig

ur
at

io
n

Pe
na

lty

Static+LRU

Static+Off-line

Figure 6.11: Effect of the replacement algorithms for the static prefetching.

6.6 Summary
In this chapter we have introduced the concept of configuration prefetching for

reconfigurable systems. Our prefetching techniques target two reconfigurable models,

Single Context and PRTR R+D. For the Single Context model, we have developed a

static prefetching algorithm that can automatically determine the placement of these

prefetch operations, avoiding burdening the user with the potentially difficult task of

placing these operations by hand. Without using additional hardware, this approach can

reduce the reconfiguration latency by more than a factor of two.

We have also developed efficient prefetching techniques for reconfigurable systems

containing a PRTR R+D. We have developed algorithms applying the different

configuration prefetching techniques. Based on the available access information and the

additional hardware required, our configuration caching algorithms can be divided into

three categories: static configuration prefetching, dynamic configuration prefetching,

and hybrid configuration prefetching. Compare to the caching techniques presented in

Chapter 5, our prefetching algorithms can further reduce reconfiguration overhead by a

factor of 3.

C h a p t e r 7

Conclusions

Reconfigurable computing is becoming an important part of research in computer

architectures and software systems. By placing the computationally intense portions of

an application onto the reconfigurable hardware, that application can be greatly

accelerated. Gains are realized because reconfigurable computing combines the benefits

of both software and ASIC implementations. As suggested by many applications,

reconfigurable computing systems greatly improve performance over general-purpose

computing systems.

Run-time reconfiguration provides additional opportunities for computation

specialization that is not available within static configurable systems. In such systems,

hardware configuration may change frequently at run-time to reuse silicon resources for

several different parts of a computation. Such systems have demonstrated high

hardware efficiency by specializing circuits at run-time.

However, the advantages of reconfigurable computing do not come without a cost. By

requiring multiple reconfigurations to complete a computation, the time it takes to

reconfigure the FPGA becomes a significant overhead. This overhead not only has a

major negative impact on performance of reconfigurable systems, it can also limit the

applications that can be executed on such systems.

In this work, we have developed a complete configuration management system to attack

this problem.

 - 150 -

7.1 Summary of Contributions
The main contributions presented in this thesis include:

• An investigation of the strategy for reducing the reconfiguration overhead for

reconfigurable computing.

• An investigation of the most efficient reconfiguration model for reconfigurable

computing. We have quantified the reconfiguration overhead for various

reconfiguration models.

• An exploration of configuration compression techniques to reduce the size of the

configuration bit-streams. Configuration compression takes advantage of

regularities and repetitions within the original configuration data. However,

using the existing lossless compression approaches cannot significantly reduce

the size of configuration bit-streams because of several fundamental differences

between data and configuration compression. The unique regularities and on-

chip run-time decompression require distinct compression algorithms for

different architectures.

• In this work, we have investigated configuration compression techniques for the

Xilinx 6200 FPGAs and the Xilinx Virtex FPGAs. Taking advantage of the on-

chip Wildcard Registers, our Wildcard algorithm can achieve a factor of 3.8

compression ratio for the Xilinx 6200 FPGAs without adding extra hardware. A

number of compression algorithms are investigated for Virtex FPGA. These

algorithms can significantly reduce the amount of data that needs to be

transferred with minimum modification to hardware. In order to explore the best

compression algorithm we have extensively researched existing compression

techniques, including Huffman coding, Arithmetic coding and LZ coding.

Simulation results demonstrate that a compression factor of 4 can be achieved.

 - 151 -

• An exploration of the Don’t Care discovery approach to further improve the

compression ratios. Realizing that Don’t Cares within the bit-streams increase

regularities, our Don’t Care discovery technique backtraces important locations,

starting from the outputs, generating a new configuration. By combining this

technique with our lossless techniques, compression ratio is improved from a

factor of 4 to a factor of 7.

• An examination of configuration caching techniques to increase the likelihood of

the required configuration presented on chip. We have developed new caching

algorithms targeted at a number of different FPGA models, as well as creating

lower-bounds to quantify the maximum achievable reconfiguration reductions

possible. For each model, we have implemented a set of algorithms to reduce

the reconfiguration overhead. The simulation results proved that the Partial

Run-Time Reconfigurable FPGA and the Multi-Context FPGA are significantly

better caching models than the traditional Single Context FPGA.

• An investigation of various configuration prefetching techniques that overlap the

transfer of configuration bit-streams with useful computation. Our prefetching

techniques target two reconfigurable models, the Single Context model and the

PRTR R+D model. For Single Context model, we have developed a static

prefetching algorithm that can automatically determine the placement prefetch

operations, avoiding burdening the user with the potentially difficult task of

placing these operations by hand. Without using additional hardware, this

approach can reduce reconfiguration latency by more than a factor of 2. We

have also developed efficient prefetching techniques for reconfigurable systems

containing a PRTR R+D because of its high hardware utilization. We have

developed algorithms applying the different configuration prefetching

techniques that can significantly reduce reconfiguration overhead by a factor of

3.

 - 152 -

Each of these techniques attacks different perspective of the reconfiguration bottleneck.

Therefore, the gain from one technique will not be overlapped or hidden by others.

Using all techniques together provides a complete system that virtually eliminates

reconfiguration overhead. For a system that applies these techniques, compression

reduces the size of configuration bit-streams by a factor of 2 to 7 at compile time.

During execution, configuration caching reduces off-chip traffic by a factor of 2.5 to 10.

Prefetching techniques can further improve caching by at least a factor of 2. Combining

these techniques together represents a factor of 10 to 150 overhead reduction.

7.2 Future Work
All told, the results presented in this thesis indicate considerable promise for integrated

techniques that improve the performance of reconfigurable computing systems by

virtually eliminating reconfiguration overheads. Nevertheless, these techniques must be

refined for future reconfigurable systems. The lack of benchmarks presents a great

barrier to not only overhead reduction technique development, but also run-time

reconfigurable system architecture research. We look forward to future research that

develops adequate benchmark suites to address the impact of these techniques for

different application domains.

The current reconfigurable systems are divided by three categories – fine grain, medium

grain, and coarse grain – depending on applications they attempt to attack. To evaluate

overhead reduction techniques or compare various architectures, a well-designed

benchmark suite for each category is necessary. This requires research efforts to

analyze a set of applications, discovering the parallelism and granularity.

In addition, we look forward to discover the trade-off of logic and configuration cache.

As mentioned, hardware density of run-time reconfigurable system is very sensitive to

reconfiguration overhead. Caching techniques demonstrate great promise in reducing

reconfiguration overhead, and thus improve hardware density. Logic and interconnect

 - 153 -

of configurable devices consume much more hardware resources than configuration

cache. Consequently, converting hardware consumed by logic and interconnect into fast

configuration caches can effectively improve hardware density. Specifically, larger

configuration caches can significantly reduce reconfiguration overhead. Though logic

and interconnect are reduced, more portions of applications can be executed on-chip due

to the overhead reduction, effectively improving hardware density.

However, converting too much logic and interconnect into configuration cache can

greatly reduce computation power of the configurable device. Although a very large

cache can virtually eliminate reconfiguration overhead, it will use up hardware

necessary for computation, limiting the system’s utility. Therefore, it is hoped that

future research will explore the trade-off of logic, and interconnect, and configuration

cache.

References

[Altera99] Altera Inc.. Altera Mega Core Functions,

http://www.altera.com/html/tools/megacore.html, San Jose, CA, 1999.

[Babb99] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R. Barua, S.

Amarasinghe. Parallelizing Applications into Silicon, IEEE

Symposium on Field-Programmable Custom Computing

Machines,1999.

[Belady66] L. A. Belady. A Study of Replacement Algorithms for Virtual Storage

Computers. IBM Systems Journal 5, 2, 78-101, 1966.

[Betz99] V. Betz, J. Rose. FPGA Routing Architecture: Segmentation and

Buffering to Optimize Speed and Density. ACM/SIGDA International

Symposium on FPGAs, pp. 59-68, 1999.

[Bolotski94] M. Bolotski, A. DeHon, T. F. Knight Jr.. Unifying FPGAs and SIMD

Arrays. 2nd International ACM/SIGDA Workshop on Field-

Programmable Gate Arrays, 1994.

[Brasen98] D. R. Brasen, G. Saucier. Using Cone Structures for Circuit

Partitioning into FPGA Packages. IEEE Transactions on CAD of

Integrated Circuits and Systems, Vol. 17, No.7, pp. 592-600, July 1998.

[Brayton84] R. K. Brayton, G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-

Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.

Kluwer Academic Publishers, 1984.

 - 155 -

[Brown92] S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic. Field-

Programmable Gate Arrays, Boston, Mass: Kluwer Academic

Publishers, 1992.

 [Burns97] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit. A Dynamic

Reconfiguration Run-Time System, IEEE Symposium on Field-

Programmable Custom Computing Machines, 1997.

[Cadambi98] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, D. E. Thomas.

Managing Pipeline-Reconfigurable FPGAs. ACM/SIGDA

International Symposium on FPGAs, pp. 55-64, 1998.

[Callahan91] D. Callahan, K. Kennedy, A. Porterfield. Software Prefetching.

International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 40-52, 1991.

[Callahan98] T. J. Callahan, P. Chong, A. DeHon, J. Wawrzynek. Fast Module

Mapping and Placement for Datapaths in FPGAs. ACM/SIGDA

International Symposium on FPGAs, pp. 123-132, 1998.

[Cmelik93] R. F. Cmelik. Introduction to Shade. Sun Microsystems Laboratories,

Inc., February, 1993.

[Compton00] K. Compton, J. Cooley, S. Knol, S. Hauck. Abstract: Configuration

Relocation and Defragmentation for FPGAs. IEEE Symposium on

Field-Programmable Custom Computing Machines, 2000.

[Dandalis01] Andreas Dandalis, Viktor Prasanna. Configuration Compression for

FPGA-based Embedded Systems. ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 2001.

 - 156 -

[DeHon94] Andre DeHon. DPGA-coupled microprocessors: Commodity ICs for

the early 21st century. In Duncan A. Buell and Kenneth L. Pocek,

editors, Proceedings of the IEEE Workshop on FPGAs for Custom

Computing Machines, pp 31--39, April 1994.

[Deshpande99] D. Deshpande, A. Somani. Configuration Caching Vs Data Caching

for Striped FPGA. ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 206-214, 1999.

[Ebeling96] C. Ebeling, D.C. Cronquist, P. Franklin. RaPiD – Reconfigurable

Pipelined Datapath. Lecture Notes in Computer Science 1142—Field-

programmable Logic: Smart Applications, New Paradigms and

Compilers. R. W. Hartenstein, M. Glesner, Eds. Berlin, Germany:

Springer-Verlag, pp. 126-135, 1996.

[Elbirt00] A. J. Elbirt, C. Paar. An FPGA Implementation and Performance

Evaluation of the Serpent Block Cipher. ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pp. 33-40, 2000.

[Estrin63] G. Estrin et al.. Parallel Processing in a Restructurable Computer

System. IEEE Trans. Electronic Computers, pp. 747-755, 1963

[Garey79] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman, 1979.

[Hauck97] S. Hauck, T. Fry, M. Hosler, J. Kao. The Chimaera Reconfigurable

Functional Unit. IEEE Symposium on FPGAs for Custom Computing

Machines, 1997.

 - 157 -

[Hauck98] S. Hauck. Configuration Prefetch for Single Context Reconfigurable

Coprocessors. ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 65-74, 1998.

 [Hauck99] S. Hauck, W Wilson. Abstract: Runlength Compression Techniques

for FPGA Configuration. IEEE Symposium on FPGAs for Custom

Computing Machines, 1999.

[Heron99] J. Heron, R. Woods. Accelerating run-time reconfiguration on FCCMs.

IEEE Symposium on FPGAs for Custom Computing Machines, pp.

131-140, 1999.

[Huffman52] D. A. Huffman, A Method for the Construction of Minimum

Redundancy Codes. Proceedings of the Institute of Radio Engineers

40, pp 1098—1101, 1952.

[Joseph97] Doug Joseph, Dirk Grunwald. Prefetching Using Markov Predictors.

Proceedings of the 24th International Symposium on Computer

Architecture, 1997.

[Lawler] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.

The Traveling Salesman Problem. John Wiley and Sons, New York,

1985.

[Leung00] K. Leung, K. Ma, W. Wong, P. Leong. FPGA Implementation of a

Microcoded Elliptic Curve Cryptographic Processor. IEEE Symposium

on FPGAs for Custom Computing Machines, pp. 192-201, 2000.

[Li00] Z.Li, K. Compton, Scott Hauck. Configuration Caching Management

Techniques for Reconfigurable Computing”. IEEE Symposium on

FPGAs for Custom Computing Machines, pp. 87-96, 2000.

 - 158 -

[Li99] Z. Li, S. Hauck, Don’t Care Discovery for FPGA Configuration

Compression. ACM/SIGDAInternational Symposium on Field-

Programmable Gate Arrays, pp. 91-100, 1999.

[Lucent98] Lucent Technology Inc.. FPGA Data Book, 1998.

[Luk96] C.-K. Luk, T. C. Mowry. Compiler-Based Prefetching for Recursive

Data Structures. International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 222-233, 1996.

[Mowry92] T. C. Mowry, M. S. Lam, A. Gupta. Design and Evaluation of a

Compiler Algorithm for Prefetching. International Conference on

Architectural Support for Programming Languages and Operating

Systems, pp. 62-73, 1992.

[National 93] National Semiconductor. Configurable Logic Array (CLAy) Data

Sheet, December 1993.

[Nelson95] Mark Nelson, Jean-loup Gailly. The Data Compression Book. M&T

Books, 1995

[Park99] S.R. Park, W. Burleson. Configuration Cloning: Exploiting Regularity

in Dynamic DSP Architecture. ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, pp. 81-90, 1999.

[Razdan94] R. Razdan, PRISC: Programmable Reduced Instruction Set

Computers, Ph.D. Thesis, Harvard University, Division of Applied

Sciences, 1994.

[Rencher97] M. Rencher, B. Hutchings. Automated Target Recognition on

SPLASH2. IEEE Symposium on FPGAs for Custom Computing

Machines, pp. 87-96, 1997.

 - 159 -

[Richmond01] Melany Richmond. A Lemple-Ziv based Configuration Management

Architecture for Reconfigurable Computing. Master’s Thesis,

University of Washington, Dept. of EE, 2001.

[Sanchez99] E. Sanchez, M. Sipper, J.O. Haenni, P.U. Andres, Static and dynamic

configurable systems, IEEE Transaction on Computers, 48 (6) 556-

564, 1999.

[Santhanam97] V. Santhanam, E. H. Gornish, W.-C. Hsu. Data Prefetching on the HP

PA-8000. International Symposium on Computer Architecture, pp.

264-273, 1997.

[Schmit97] H. Schmit. Incremental Reconfiguration for Pipelined Applications.

IEEE Symposium on FPGAs for Custom Computing Machines, pp. 47-

55, 1997.

[Spec95] SPEC CPU95 Benchmark Suite. Standard Performance Evaluation

Corp., Manassas, VA, 1995.

[Storer82] J.A. Storer, T. G. Syzmanski. Data Compression via Textual

Substitution. Journal of the ACM, 29:928-951, 1982.

[Trimberger97] Steve Trimberger, Khue Duong, and Bob Conn. Architecture issues

and solutions for a high-capacity FPGA. Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, pp 3--9, February 1997.

[Welch84] T. Welch. A technique for high-performance data compression. IEEE

Computer, pp 8-19, June 1984.

 - 160 -

[Wirthlin95] M. J. Wirthlin, Brad L. Hutchings. A dynamic instruction set

computer. In Peter Athanas and Kenneth L. Pocek, editors,

Proceedings of the IEEE Symposium on FPGAs for Custom Computing

Machines, pp 99--107, April 1995.

[Wirthlin96] M. Wirthlin, B. Hutchings. Sequencing Run-time Reconfigured

Hardware with Software. ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 122-128, 1996.

[Witten87] I. H. Witten, R. M. Neal, J. G. Cleary. Arithmetic Coding for Data

Compression. Communications of the ACM, vol. 30, pp. 520-540,

1987.

[Wittig96] R. Wittig, P. Chow. OneChip: An FPGA Processor with

Reconfigurable Logic. IEEE Symposium on FPGAs for Custom

Computing Machines, 1996.

[Xilinx 94] Xilinx Inc.. The Programmable Logic Data Book, 1994.

[Xilinx97] Xilinx, Inc.. XC6200 Field Programmable Gate Arrays Product

Description. April 1997.

[Xilinx99] Xilinx, Inc. Virtex Configuration Architecture Advanced Users’

Guide. June, 1999.

[Xilinx00] Xilinx, Inc. Virtex II Configuration Architecture Advanced Users’

Guide. March, 2000.

[Young94] Neal E. Young. The k-server dual and loose competitiveness for

paging. Algorithmica, 11(6), 535-541, June 1994

 - 161 -

[Ziv77] J. Ziv, and A. Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on Information Theory, pp 337-343,

May 1977.

[Ziv78] J. Ziv, and A. Lempel. Compression of individual sequences via

variable-rate coding. IEEE Transactions on Information Theory, pages

530-536, September 1978.

A p p e n d i x N P - C o m p l e t e n e s s o f t h e
W i l d c a r d C o m p r e s s i o n

In the standard two-level logic minimization problem, the goal is to find the minimum

number of cubes that cover the ON set of a function, while covering none of the OFF

set. Wildcard compression seeks the fewest wildcard-augmented writes that will set the

memory to the proper state.

The two problems can be formally defined as follows:

TWO-LEVEL-LOGIC: Given a Boolean function X, specified as an ON-set and an

OFF-set with a total of n terms, and a value j, is there a set of at most j cubes that covers

precisely those minterms in the ON-set of the given function?

WILDCARD-WRITES: Given a configuration Y with n total addresses and a value k, is

there a sequence of at most k wildcard writes that implements the given configuration?

TWO-LEVEL-LOGIC is known to be NP-complete, by a reduction from the

MINIMUM-DNF problem [Garey79]. In the following, NP-completeness of

WILDCARD-WRITES is established.

Theorem: WILDCARD-WRITES is NP-complete.

Proof: First, we observe that WILDCARD-WRITES is in NP, since if we are given a

configuration Y, a value k, and a sequence of wildcard writes, it is easy to verify in

polynomial time that the sequence contains at most k wildcard writes and implements

the configuration Y.

To show that WILDCARD-WRITES is NP-hard, we proceed by reduction from the

TWO-LEVEL-LOGIC problem.

 - 163 -

Let an instance (X, j) of TWO-LEVEL-LOGIC with n terms be given. Each of the n

terms is in either the ON or the OFF set of the function X. We will construct a

corresponding instance (Y, k) of WILDCARD-WRITES as follows: For each address in

the configuration Y, set the address to “1” if the corresponding term is in the ON set of

X, and to “Don't Touch” if the corresponding term is in the OFF set of X. Set k = j.

Now, we observe that there is a one-to-one correspondence between a cube that covers a

collection of minterms in the ON set of X and a wildcard write that sets the values of the

corresponding addresses in Y to “1”. It follows from this observation that the ON set of

X can be precisely covered by at most j cubes if and only if Y can be implemented with

at most j (equivalently, k) wildcard writes. Since it is clear the construction of (Y, k)

from (X, j) can be performed in polynomial time, it follows that that TWO-LEVEL-

LOGIC is polynomial-time reducible to WILDCARD-WRITES.

From the reducibility of TWO-LEVEL-LOGIC to WILDCARD-WRITES, it follows

that WILDCARD-WRITES is NP-hard. Since we have already established that it is in

NP, it follows that WILDCARD-WRITES is NP-complete.

 -
5 -

