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ABSTRACT 

Configuration Management Techniques for Reconfigurable Computing 
 

 Zhiyuan Li 

Reconfigurable computing is becoming an important part of research in computer 

architectures and software systems.  By placing the computationally intense portions of 

an application onto the reconfigurable hardware, that application can be greatly 

accelerated.  Gains are realized because reconfigurable computing combines the benefits 

of both software and ASIC implementations.  However, the advantages of 

reconfigurable computing do not come without a cost.  By requiring multiple 

reconfigurations to complete a computation, the time to reconfigure the hardware 

significantly degraded performance of such systems.  This thesis examines a complete 

strategy that attacks this reconfiguration bottleneck from different perspectives.  

Compression techniques are introduced to decrease the amount of configuration data 

that must be transferred to the system.  Configuration caching approaches are 

investigated to retain configurations on-chip.  Configuration prefetching techniques are 

developed to hide reconfiguration latency.  Reconfiguration overhead is virtually 

eliminated by using these techniques. 
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C h a p t e r  1  

Introduction 

As we approach the era in which a single chip can hold more than 100 million 

transistors, current general-purpose processor systems will not reach their full potential 

despite the great flexibility they can provide.  On the other hand, application specific 

integrated circuits (ASICs) achieve exceptionally high performance by targeting every 

application on custom circuitry.  However, no one can afford to design and implement a 

custom chip for every application because of the enormous expense.   

Reconfigurable computing systems have become an alternative to fill the gap between 

ASICs and general-purpose computing systems.  Although the basic concept was 

proposed in the 1960s [Estrin63], reconfigurable computing systems have only recently 

become feasible.  This is due to the availability of high-density VLSI devices that use 

programmable switches to implement flexible hardware architectures.   

Most reconfigurable systems consist of a general-purpose processor, tightly or loosely 

coupled with reconfigurable hardware.  These systems can implement specific 

functionality of applications on reconfigurable hardware rather than on the general-

purpose processor, providing significantly better performance.  The general-purpose 

processor in such systems no longer provides the major computational power; rather it 

mainly performs tasks such as data collection and synchronization.  Though the 

performance of reconfigurable computing systems on a specific application is not as 

high as on an ASIC, their promise to deliver flexibility along with high performance has 

attracted a lot of attention.  Moreover, in recent years such system can achieve high 



                                                                                                                                   - 2 - 

 

performance for a range of applications, such as image processing [Huelsbergen97], 

pattern recognition [Rencher97], and encryption [Elebirt00, Leung00].   

Field programmable gate arrays (FPGAs) [Brown92] or FPGA-like devices are the 

most common hardware used for reconfigurable computing.  A FPGA contains an array 

of computational elements whose functionality is determined through multiple SRAM 

configuration bits.  These elements, also known as logic blocks, are connected using a 

set of routing resources that is also programmable.  In this way, custom circuits can be 

mapped to the FPGA by computing the logic functions of the circuit within the logic 

blocks, then using the configurable routing to connect the blocks to form the necessary 

circuit.   

Although the logic capacity of FPGAs is lower than that of ASICs because of the area 

overhead for providing undedicated logic and routing, FPGAs provide significantly 

higher flexibility than ASICs, while still offering considerable speedup over general-

purpose systems.  In addition, the run-time reconfigurability provided by the advanced 

FPGAs greatly improves hardware utilization. 

In the first generation of reconfigurable computing systems, a single configuration was 

created for the FPGA, and this configuration was the only one loaded into it.  These are 

called static reconfigurable systems [Sanchez99].  In contrast, run-time reconfigurable 

systems can change configurations multiple times during the course of a computation.  

Such systems are capable of reducing under-utilized hardware and fitting large 

applications onto FPGAs.   

In a static reconfigurable system, individual operations of an application will remain idle 

when they are not required.  For example, data dependencies within an application may 

cause an operation idle, waiting for data inputs from other operations.  Therefore, 

placing all operations onto the FPGA at once is a poor choice, wasting precious 

hardware resources.  Run-time reconfiguration can be used to remove such idle 
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operations by making them share limited hardware resources.  Moreover, run-time 

reconfiguration provides a design methodology for large applications that are too big for 

the available hardware resources on the FPGA.   

Many recent reconfigurable systems, such as Garp [Hauser97], PipeRench [Schmit97], 

and Chimaera [Hauck97], involve run-time reconfiguration.  In such systems, hardware 

configuration may change frequently at run-time to reuse silicon resources for several 

different parts of a computation.  Such systems have the potential to make more 

effective use of chip resources than even standard ASICs, where fixed hardware may be 

used only in a portion of the computation.   

In addition, run-time reconfigurable systems have been shown to accelerate a variety of 

applications.  An example is the run-time reconfiguration within an automatic target 

recognition (ATR) application developed at UCLA to accelerate a template-matching 

[Villasenor97].  The algorithm in this system is based on a correlation between 

incoming radar image data and a set of target templates.  Without considering the 

reconfiguration time, this system improves performance by a factor of 30 over a 

general-purpose computing system. 

However, the advantages of run-time reconfiguration do not come without a cost.  By 

requiring multiple reconfigurations to complete a computation, the time it takes to 

reconfigure the FPGA becomes a significant concern.  The serial-shift configuration 

approach, as its name indicated, transfers all programming bits into the FPGA in a serial 

fashion.  This very slow approach is still used by many existing FPGAs [Xilinx94, 

Altera98, Lucent98].  Recent devices have moved to cutting-edge technology, resulting 

in FPGAs with over one million gates.  The configuration’s size for such devices is over 

one megabyte [Xilinx00].  It could take milliseconds to seconds to transfer such a large 

configuration using the serial-shift approach.   



                                                                                                                                   - 4 - 

 

In most reconfigurable systems the devices must sit idle while they are being 

reconfigured, wasting cycles that could otherwise be performing useful work.  For 

example, the ATR system developed at UCLA uses 98% of its execution time 

performing reconfiguration, meaning that it uses merely 2% time doing computation.  

DISC and DISC II systems developed at BYU have spent up to 90% [Wirthlin95, 

Wirthlin96] of their execution time performing reconfiguration.  It is obvious that a 

significant improvement in reconfigurable system performance can be achieved by 

eliminating or reducing this overhead associated with reconfiguration delays.   

To deal with the reconfiguration overhead this thesis develops an integrated 

configuration management strategy for reconfigurable computing.  Note that this 

strategy will not only reduce or eliminate the time wasted in performing 

reconfigurations, it can also increase the potential performance gains and applicability of 

reconfigurable computing.  Specifically, because of reconfiguration overhead, there are 

applications where the performance benefits of using reconfigurable devices are 

overwhelmed by the reconfiguration latencies involved; even worse, some applications 

well suited to reconfigurable computing cannot run on current reconfigurable systems 

simply because their performance gain is overwhelmed by reconfiguration time.  

Therefore, eliminating reconfiguration overhead allows more applications to be mapped 

into reconfigurable hardware, significantly increasing the benefits of reconfigurable 

systems.  

This thesis attempts to develop a complete set of configuration management techniques.  

The succeeding chapters present: 

• A review of reconfigurable computing systems, focusing on various popular 

reconfigurable models, and of existing studies and techniques for reducing the 

reconfiguration overhead (Chapter 2). 
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• A discussion of an integrated configuration management strategy, including 

configuration compression, configuration caching, and configuration prefetching 

(Chapter 2).   

• An exploration of configuration compression techniques (Chapter 3).  

• An investigation of Don’t Care discovery technique to improve configuration 

compression (Chapter 4) 

• An investigation of configuration caching techniques for a range of 

reconfigurable models (Chapter 5).  

• An examination of configuration prefetching techniques (Chapter 6).   

• A summary of the proposed techniques (Chapter 7). 

This thesis closes with conclusions and opinions about the directions of future research 

in configuration management techniques. 



C h a p t e r  2  

Background and Research Focus 

This chapter first reviews the fundamentals of reconfigurable computing, and introduces 

a variety of reconfigurable models and systems.  It then summarizes previous techniques 

and concludes by presenting the strategy and focus of our research. 

2.1  Reconfigurable Computing Systems 
Figure 2.1 illustrates the basic architectural components of a typical reconfigurable 

computing system.  The main component is the field programmable gate array (FPGA). 

 
CPU RAM 

FPGA 

 

Figure 2.1:  Architecture of a reconfigurable computing system. 

FPGAs contain configurable logic blocks (CLBs), input-output blocks (IOBs), memory, 

clock resources, programmable routing, and configuration circuitry.  These logic 

resources are configured through the configuration bit-stream allowing a very complex 
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circuit to be programmed onto a single chip. The configuration bit-stream can be read 

or written through one of the configuration interfaces on the device. 

At this time, SRAM programmable FPGAs are very popular for reconfigurable 

applications.  For such devices, SRAM cells, as shown in Figure 2.2, are connected to 

the configuration points within the FPGA.  Configuration data from the input bit-stream 

is written to the SRAM cell.  The outputs connect to the FPGA logic and interconnect 

structures.  Control of the FPGA is therefore handled by the outputs of the SRAM cells 

scattered throughout the device.  Thus, an FPGA can be programmed and 

reprogrammed as simply as writing to and reading from a standard SRAM. 

 

 

Figure 2.2:  A programming bit for SRAM FPGAs 

The logic block is often considered to be a lookup table (LUT) that takes a number of 

bits of input and generates one bit of output.  By design, LUTs can compute any 

Boolean logic function with n inputs.  The LUT holds truth table outputs in the 

memory instead of computing the output directly through combinational logic.  In a 

LUT, multiplexers implement logic function by choosing from the program bits in the 

table.  Figure 2.3 shows a two-input lookup table. 

Logic blocks in commercial FPGAs are more complex than a single lookup table.  For 

example, a logic block of a Xilinx Virtex FPGA consists of 2 four-input lookup tables as 

well as a dedicated carry chain circuitry that forms a fast adder.  In addition, several 

multiplexers are also included to combine with the lookup table, providing any logic 
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function of five, six, seven, or eight inputs.  Each logic block also contains flip-flops for 

state-holding. 

 P0

P1

P2

P3

C0 C1

Out

 
Figure 2.3:  A two-input look-up table.  P0, P1, P2, and P3 are program bits.  By 
giving them the right values, any two-input logic function can be realized. 

Besides logic blocks, the other key feature that characterizes an FPGA is its interconnect 

structure.  Generally interconnect is arranged in horizontal and vertical channels that are 

capable of connecting any two logic blocks.  Each routing channel contains short wire 

segments that often connect adjacent logic blocks, medium wire segments that span 

multiple logic blocks, and long wire segments that run the entire length of the chip.  

Most interconnect architectures use switches for signals from one logic block to reach 

another. 

As technology advances, the computational power of FPGAs has grown significantly.  

For example, the new Xilinx Virtex FPGA has enough hardware to implement over two 

thousand 32-bit adders.  As a consequence, the time need to configure larger FPGAs 

also increases.  For example, the configuration time for the Xilinx Virtex 1000 FPGA is 

15ms [Xilinx99].  This may not be an issue if the FPGAs were used as logic emulators.  

However, for a reconfigurable computing system with configuration operations that 

occur frequently, this latency represents an overhead that significantly degrades the 

performance as well as limits the utilization of such systems.   
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2.2  Reconfiguration Models 
Frequently, the areas of a program that can be accelerated through the use of 

reconfigurable hardware are too numerous or complex to be loaded simultaneously onto 

the available hardware.  For these cases, it is helpful to swap different configurations in 

and out of the reconfigurable hardware as they are needed during program execution, 

performing a run-time reconfiguration of the hardware.  Because run-time 

reconfiguration allows more sections of an application to be mapped into hardware than 

can be fit in a non-run-time reconfigurable system, a greater portion of the program 

can be accelerated in the run-time reconfigurable systems.  This can lead to an overall 

improvement in performance. 

Memory
Array

 
Figure 2.4:  The structure of a Single Context FPGA. 

There are a few traditional configuration memory styles that can be used with 

reconfigurable systems, including the Single Context model [Xilinx94, Altera98, 

Lucent98], the Partial Run-time Reconfigurable model (PRTR) [Ebeling96, Schmit97, 

Hauck97] and the Multi-Context model [DeHon94, Trimberger97].  For the Single 

Context FPGA shown in Figure 2.4, the whole array can be viewed as a shift register, 

and the whole chip area must be reconfigured during each reconfiguration.  This means 

that even if only a small portion of the chip needs to be reconfigured, the whole chip is 

rewritten.  Since many of the applications being developed with FPGAs today involve 

run-time reconfiguration, the reconfiguration of the Single Context architecture incurs a 
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significant overhead.  Therefore, much research has focused on the new generation of 

architectures or tools that can reduce this reconfiguration overhead. 

A Multi-Context device [DeHon 94, Trimberger 97] has multiple layers of programming 

bits, where each layer can be active at a different point in time.  An advantage of the 

Multi-Context FPGA over a Single Context architecture is that it allows for an 

extremely fast context switch (on the order of nanoseconds), whereas the Single Context 

may take milliseconds or more to reprogram.  The Multi-Context design allows for 

background loading, permitting one context to be configuring while another is 

executing.  Each context of a Multi-Context device can be viewed as a separate Single 

Context device.  A four-context FPGA is shown in Figure 2.5.   

1

2
3

4

C

1

2
3

4

C

1

2
3

4

C

 

Figure 2.5:  A four-context FPGA.  At left is the four-context FPGA model, and at 
right is the memory structure of the four-context FPGA. 

Partial Run-time Reconfiguration (PRTR) is another typical reconfiguration model.  By 

changing only a portion of the reconfigurable logic while other sections continue 

operating, the reconfiguration latency can be hidden by other computations.  In recent 

years, many commercial devices (Xilinx Virtex series, Xilinx 6200 series) and systems 

(Garp [Hauser 97], Chimaera [Hauck 97], DISC [Wirthlin 96]) have applied the PRTR 

model. 
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The structure of a PRTR FPGA is shown in Figure 2.6.  The entire SRAM control store 

memory maps into the host processor’s address space.  By sending configuration values 

with row and column addresses to the FPGA, a certain location can be configured.   

Based on the Partial Run-time Reconfigurable model, a new model, called Relocation + 

Defragmentation (Partial R + D) [Compton00, Hauser97], was built to further improve 

hardware utilization.  Relocation allows the final placement of a configuration within 

the FPGA to be determined at run-time, while defragmentation provides a way to 

consolidate unused area within an FPGA during run-time without unloading useful 

configurations.   

Memory
Array

Row
 D

ecode

Col. Decode

 
Figure 2.6:  The structure of a Partial Run-time Reconfigurable FPGA. 

Like the PRTR FPGA, the memory array of the Partial R+D FPGA is composed of an 

array of SRAM bits.  These bits are read/write enabled by the decoded row address for 

the programming data.  However, instead of using a column decoder, an SRAM buffer 

called the “staging area” is built.  This buffer is essentially a set of memory cells equal 

in number to one row of programming bits in the FPGA memory array.  Its values are 

transferred in parallel to the row location indicated by the row address.  The structural 

view of the Partial R + D model is shown in Figure 2.7.   
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SRAM 
Array

R
ow

 D
ecoder

Staging area

Figure 2.7:  The architecture of the Relocation + Defragmentation model.  Each row 
of the configuration bit-stream is loaded into the staging area and then moved into 
the array. 

Incoming configuration:

(a)                                    (b)             (c)                                    (d)  
Figure 2.8:  An example of configuration relocation.  The incoming configuration 
contains two rows.  The first row is loaded into the staging area (a) and then 
transferred to the desired location that was determined at run-time (b).  Then the 
second row of the incoming configuration is loaded to the staging area (c) and 
transferred into the array (d).  

To configure a chip, every row of a configuration is loaded into the staging area and 

then transferred to the array.  By providing the run-time determined row address to the 

row decoder, rows of a configuration can be relocated to locations specified by the 

system.  Figure 2.8 shows the steps of relocating a configuration into the array.  The 

defragmentation operation is slightly more complicated than a simple relocation 

operation.  To collect the fragments within that array, each row of a particular 

configuration is read back into the staging area and then moved to a new location in the 

array.  Figure 2.9 presents the steps of a defragmentation operation.  [Compton00] has 
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shown that with a very minor area increase, the Relocation + Defragmentation model 

has a considerably lower reconfiguration overhead than the Partial Run-Time 

Reconfigurable model.   

 

Figure 2.9:  An example of defragmentation.  By moving the rows in a top-down 
fashion into staging area and then moving upwards in the array, the smaller 
fragments are collected. 

 

Many recent reconfigurable systems are built based on these reconfiguration models.  In 

the next two sections, successful projects are briefly reviewed, illustrating high 

performance and flexibility that reconfigurable systems can provide.  Moreover, 

performance degradation caused by reconfiguration overhead will also be discussed. 

2.2.1  System Example -- Garp  
The Garp project [Hauser97] focuses on the integration of a reconfigurable computing 

unit with an ordinary RISC processor to form a single combined processor chip.  The 

research aims to demonstrate a tentative viable architecture that speeds up applications.  

The Garp architecture is illustrated in Figure 2.10.   
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Figure 2.10:  Block diagram of Garp. 

Garp’s main processor executes a MIPS-II instruction set extended for Garp.  The rest of 

the blocks in the system are logic blocks, which correspond roughly to the logic blocks 

of the Xilinx 4000 series [Xilinx94].  The Garp architecture fixes the number of 

columns of blocks at 24.  The number of rows is implementation-specific.  The 

architecture is defined so that the number of rows can grow in an upward-compatible 

fashion. 

A C compiler is developed to discover the portions (kernels) of applications that can be 

mapped onto Garp’s configurable array.  The kernels are synthesized to run on the 

configurable array, while the rest of the code is executed on the MIPS processor.   

The loading and execution of configurations is under the control of the main processor. 

Instructions are added to the MIPS-II instruction set for this purpose, including ones that 

allow the processor to move data between the array and the processor’s own registers.  

In the GARP system, configuration is loaded from memory.  Since a significant 

amount of time is needed to load the whole configuration, several steps have been 

done to shorten the reconfiguration latency.  One of the steps is to build a PRTR array 

with relocation.  Hardware translates a physical row numbers into logical ones, so one 

can load several smaller configurations into the array and switch between them simply 
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by changing a starting row’s address.  In addition, simple cache memory units that 

contain several recently used configurations are distributed within the array.  

However, the performance of the system still suffers, since no sophisticated strategy 

was developed to attack the reconfiguration bottleneck.  

2.2.2  System Example — DISC 
The dynamic instruction set computer (DISC) [Wirthlin95] successfully demonstrated 

that application specific processors with large instruction set could be built on partial 

reconfigurable FPGAs.  DISC presented the concept of alleviating the density constraint 

of FPGAs by dynamically reconfiguring the system at run-time. 

The block diagram of the DISC system is showed in Figure 2.11.  A CLAy31 FPGA 

[National93] is used as the reconfigurable array.  Bus interface circuitry is built for 

communications between the host processor and the reconfigurable array.  A 

configuration controller is implemented on another CLAy31 FPGA to manage 

configuration loadings from the RAM.  The reconfigurable array runs each instruction 

during execution.  If an instruction requested is not presented on the array, the system 

enters a halting state and sends a request for the instruction to the host processor. 

Upon receiving a request from the reconfigurable array, the host processor chooses a 

physical location in the array to hold the requested mode.  The physical location is 

chosen based on evaluation of the idle FPGA resources and the size of the requested 

instruction.  If another instruction currently occupies the location selected to hold the 

requested instruction, the configuration of that instruction is replaced by that of the 

requested instruction. 
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Figure 2.11:  Block diagram of DISC system. 

Without consideration of the reconfiguration overhead, the DISC system achieves a 

factor of 80 speedup over the general-purpose approach.  However, when considering 

the reconfiguration overhead, DISC only provides a 23 times speedup.  This means the 

reconfiguration overhead causes a factor of 3.8 performance degradation.  Further 

analysis on a range of applications shows that 25%--91% of execution time is used to 

perform reconfiguration.  

2.3  Reconfiguration Overhead Reduction Techniques 
As demonstrated, reconfiguration overhead can severely degrade the performance of 

reconfigurable systems.  In addition, it also limits the system’s utilization simply 

because it can overwhelm the speedup achieved by running applications on 

reconfigurable hardware.  Therefore, eliminating or reducing this overhead becomes a 

very critical issue for reconfigurable systems.  This section describes related research 

work that attempts to reduce reconfiguration overhead. 

2.3.1  Configuration Cloning 
Configuration Cloning [Park99] exploits regularity and locality during reconfiguration 

and is implemented by copying the bit-stream from one region of an FPGA to one or 

several other regions.  Therefore, without loading entire bit-stream the chip can be 
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configured.  By using this cloning technique, configuration overhead can be reduced.  

Figure 2.12 shows an example of configuration cloning. 

FPGA FPGA FPGA 

Figure 2.12:  An example of Configuration Cloning.  Left shows the initial loading, 
followed by a horizontal copy (middle) and a vertical copy (right). 

However, this method is not very realistic.  First, it requires the FPGA to send all bits 

from multiple cells in a row/column to several other cells in the same row/column in 

parallel.  This necessitates a very large amount of routing hardware, complex control 

circuitry, and perhaps some large switch matrixes, all of which could impose a 

significant area overhead.  Second, this method requires very high regularity; it is best 

suited only to hand-mapped circuits and those circuits of arrays of replicated cells.  This 

is a significant set of restrictions, and may make this method of very limited utility.  

Finally, in order to implement configuration cloning, the instruction set of the host 

processor has to be extended, and the system requires a command interpreter in the 

FPGA that can decode the command from a host processor and broadcast sender and 

receiver addresses to a proper configuration bit-stream line.  However, because of 

uncertainty about the number of operands in a command, it is hard for the system to 

decode commands.  These drawbacks not only limit the utilization of this approach, but 

also result in poor performance, as experimental results indicated. 

2.3.2  Configuration Sharing 
Configuration sharing [Heron99] is a way to efficiently exploit partial reconfiguration.  

It involves locating the similarity between circuits that will reduce the amount of 

reconfiguration.  Maximizing the amount of static circuitry (the common circuitry 
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shared by multiple configurations) can reduce the amount of reconfiguration necessary 

to switch between them.   

The basic idea of this method is simple, but it is hard to implement.  Configuration 

sharing requires applications with similar sub-circuitry, which makes this method of 

very limited utility.  In addition, it requires software tools that can identify the 

similarities between the applications and map the applications in a way that permits 

them to share the static circuitry.  This will limit the utilization of hardware resources.  

Furthermore, common circuitry development is very sensitive to the device and 

algorithm.  The static circuitry found in one device probably will not apply to another.  

Using different algorithms for a function or application can also affect performance, 

requiring designers to recognize the possible static circuitry produced by different 

algorithms. 

2.3.3  Configuration Scheduling 
The configuration scheduling technique [Deshpande99] is suitable for pipelined 

applications and was designed on a Striped FPGA [Schmit97].  There are two major 

configuration scheduling approaches: configuration caching and data caching.  

In configuration caching, all configurations must be stored in the cache, and cached 

configurations are circulated through the fabric (Figure 2.13).  In data caching, cached 

intermediate data is circulated through the fabric (Figure 2.14).  For configuration 

caching, a stripe of the fabric is configured each pipeline stage.  Therefore, that stripe 

does not provide useful computation at the pipeline stage.  Data caching, on the other 

hand, does not perform reconfiguration at all pipeline stages.  Therefore, when the 

number of data elements processed by the application exceeds the number of pipeline 

stages, the number of execution cycles is lower for data caching than for configuration 

caching. 
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Figure 2.13:  Execution using configuration caching approach.  A strip is configured at 
each pipeline stage, meaning that the strip does not contribute to computation at that 
stage. 
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Figure 2.14:  Execution using data caching approach.  At stages 4 and 5, no strip needs 

to be configured, thus all strips contribute to computation. 

2.4  Research Focus 
Section 2.3 illustrated a number of different tactics for reducing configuration overhead.  

However, each of these techniques attempts to attack only one facet of the problem and 

does not show significant overhead reduction.  In addition, these approaches rely 

heavily on specific architectures or applications, greatly limiting their utility.   

In this thesis, we focus on developing a complete strategy that attacks this 

reconfiguration bottleneck from multiple perspectives.  First, compression techniques 

can be introduced to decrease the amount of configuration data that must be transferred 
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to the system.  Second, the actual process of transferring configuration data from the 

host processor to the reconfigurable hardware can be modified to include a 

configuration cache.  Third, configurations can be preloaded to overlap as much as 

possible with the execution of instructions by the host processor.  Finally, high 

bandwidth configuration bus can be built to speed up configuration transferring process. 

Loading a configuration requires that a large amount of data be transferred as quickly as 

possible into the reconfigurable hardware.  Increasing the number of pins for 

configuration can provide higher configuration bandwidth.  In addition, minimizing the 

clock cycle of the configuration bus presents another alternative to increase 

configuration bandwidth.  However, these approaches are greatly limited by process 

technology or device vendors, and thus they will not be the major focus of this thesis. 

While high-bandwidth buses can get data into the reconfigurable device quickly, the 

amount of data moved in a reconfiguration is often quite large.  To deal with this, we 

will investigate configuration compression techniques that can minimize the size of the 

configuration bit-streams.  FPGA configuration bit-streams tend to be sparse, with 

significant amounts of regularity.  We will develop algorithms to discover regularities 

within the configuration bit-streams and compress the bit-streams using them. 

To maximize the likelihood that a required configuration is already present on 

reconfigurable devices, we will develop configuration caching techniques.  By storing 

the configurations on-chip, the number of configuration loading operations can be 

reduced, and thus the overall time required is reduced.  The challenge in configuration 

caching is to determine which configurations should remain on the chip and which 

should be replaced when a reconfiguration occurs.  An incorrect decision will fail to 

reduce the reconfiguration overhead and lead to a much higher reconfiguration overhead 

than a correct decision.  In addition, the different features of various FPGA 

programming models (discussed in Section 2.2) add complexity to configuration 

caching because each FPGA model may require unique caching algorithms. 
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Performance can be further improved when the actual configuration operation is 

overlapped with computations performed by the host processor.  Overlapping 

configuration and execution prevents the host processor from stalling while it is waiting 

for the configuration to finish, and hides the configuration time from the program 

execution.   

Configuration prefetching attempts to leverage this overlap by determining when to 

initiate reconfiguration in order to maximize overlap with useful computation on the 

host processor. It also seeks to minimize the chance that a configuration will be 

prefetched falsely, overwriting the configuration that is actually used next.  The 

challenge in configuration prefetching is to determine far enough in advance which 

configuration will be required next.  Many applications can have very complex control 

flows, with multiple execution paths branching off from any point in the computation, 

each potentially leading to a different next configuration.  In addition, it is very 

important to correctly predict which configuration will be required.  In order to load a 

configuration, configuration data that is already in the FPGA can be overwritten.  An 

incorrect decision on what configuration to load can not only fail to reduce the 

reconfiguration delay, but also in fact can greatly increase the reconfiguration overhead 

when compared to a non-prefetching system.   

All of these techniques will be brought together to create a complete configuration 

management system.  Configuration compression will reduce the amount of data that 

needs to be transferred for each configuration.  Configuration caching will increase the 

likelihood that a required configuration is present on-chip.  Configuration prefetching 

will overlap computation with reconfiguration, avoiding system stalls.  By using these 

techniques together, we can virtually eliminate reconfiguration overhead from 

reconfigurable computing systems. 

 



C h a p t e r  3  

Configuration Compression 

For each configuration operation, a significant amount of data is transferred onto the 

reconfigurable device (FPGA) through communication links.  Configuration 

compression makes it possible to speed up data transfer by reducing the amount of space 

consumed by the information being sent.  In this chapter, we will investigate a variety of 

effective configuration compression techniques for common reconfigurable devices.   

3.1  General Data Compression Techniques 
Data compression has important application in the areas of data transmission and data 

storage.  Many data processing applications store large volumes of data, and the number 

of such applications is constantly increasing as the use of computers extends to new 

disciplines.  At the same time, the proliferation of computer communication networks is 

resulting in massive transfers of data over communication links.  Compressing data to 

be stored or transmitted reduces storage and/or communication costs.  When the amount 

of data to be transmitted is reduced, the bandwidth of the communication link is 

effectively increased.   

Compression techniques are divided into two categories: lossless compression and lossy 

compression [Nelson95].  No information of the original is lost for lossless 

compression, meaning that a perfect reproduction of the original can be achieved from 

the compressed data.  This is generally the technique of choice for text or spreadsheet 

files, where losing words or financial data could pose a problem.  Lossy compression, 

on the other hand, involves the loss of some information.  Data reconstructed from the 
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lossy compression is similar to, but not exactly the same as, the original.  Lossy 

compression is generally used for video and sound, where a certain amount of 

information loss can be tolerated by users.  In general, lossy compression techniques 

achieve better compression ratios than lossless ones. 

3.2  Configuration Compression Overview 
The goal of configuration compression for reconfigurable systems is to minimize the 

amount of configuration data that must be transferred.  Configuration compression is 

performed at compile-time.  Once compressed, the bit-streams are stored in off-chip 

memory.  During reconfiguration at run-time, the compressed bit-stream is transferred 

onto the reconfigurable device and then decompressed.  The processes of compression 

and decompression are shown in Figure 3.1. 
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bit-stream

Compressed
bit-stream Configuration

storage

(Off-chip)

(a)  The compression stage (compile-time)

Configuration
storage

(Off-chip)

Compressed
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(On-chip)

Reconfigurable Device (FPGA)

(b)  The decompression stage (run-time, on-chip)

 

Figure 3.1:  The flow of compression.  The original configuration data is compressed 
at compile-time (a).  When reconfigurations occur, the compressed data is transferred 
to the decompressor on the reconfigurable device (b).   

As can be seen in Figure 3.1, two issues must be resolved for configuration 

compression.  First, an efficient compression algorithm must be developed.  Second, 
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since decompression is performed on-chip, building a decompressor should not result in 

significant hardware overhead.   

Furthermore, any configuration compression technique must satisfy the following two 

conditions: (1) the circuitry generated from the decompressed bit-stream must not cause 

any damage to the reconfigurable devices, and (2) the circuitry generated must result in 

the same outputs as those produced by circuitry generated from the original 

configuration data.  Consequently, most configuration compression research does not 

involve lossy techniques since any information loss in a configuration bit-stream may 

generate undesired circuitry on reconfigurable devices, and, even worse, may severely 

damage the chips.   

Lossless compression techniques satisfy the above conditions naturally, because the 

decompressed data is exactly the same as the original configuration data.  Lossless data 

compression is a well-studied field, with a variety of very efficient coding algorithms.  

However, applying these algorithms directly may not significantly reduce the size of the 

configuration bit-stream, because a number of differences exist between configuration 

compression and general data compression.   

3.3  Configuration Compression Vs. Data Compression 
The fundamental strategy of compression is to discover regularities in the original input 

and then design algorithms to take advantage of these regularities.  Since different data 

types possess different types of regularities, a compression algorithm that works well for 

a certain data input may not be as efficient as it is for other inputs.  For example, 

Lempel-Ziv compression does not compress image inputs as effectively as it does text 

inputs.  Therefore, in order to better discover and utilize regularities within a certain data 

type, a specific technique must be developed.  Existing lossless compression algorithms 

may not be able to compress configuration data effectively, because those algorithms 

cannot discover the potential specific regularities within configuration bit-streams.   
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Since decompression is performed on-chip, the architecture of a specific device can 

have an equally significant impact on compression algorithm design.  Lossless data 

compression algorithms do not consider this architecture factor, causing the following 

problems: 

(1)  Significant hardware overhead can result from building the decompressor on-chip.  

For example, a dictionary-based approach, such as Lempel-Ziv-Welch coding requires a 

significant amount of hardware to maintain a large lookup table during decompression. 

(2)  The decompression speed at run-time may offset the effectiveness of the 

compression.  For example, in Huffman compression, each code word is decompressed 

by scanning through the Huffman tree.  It is very hard to pipeline the decompression 

process, and therefore it could take multiple cycles to produce a symbol.  As the result, 

the time saved from transferring compressed data is overwhelmed by slow 

decompression.   

(3)  Certain special on-chip hardware that can be used as decompressor may be wasted.  

For example, wildcard registers on the Xilinx 6200 series FPGAs can be used as 

decompressors.  Unfortunately, no previous algorithm exists to take advantage of this 

special feature.   

Realizing the unique features required for configuration compression, we have focused 

on exploring regularity and developing proper compression techniques for various 

devices.  However, any technique will be limited if it can merely apply to one device.  

Therefore, our goal is to investigate the characteristics of different configuration 

architecture domains, and develop efficient compression algorithms for a given domain.   

Two types of base devices (FPGAs) are considered in this work: the Xilinx 6200 series 

FPGAs and the Xilinx Virtex FPGAs.  A first generation partial run-time reconfigurable 

FPGA, the Xilinx 6200 series provides a special hardware, called wildcard registers, that 
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allows multiple locations to be configured simultaneously.  The wildcard compression 

algorithm we developed not only efficiently compresses configuration bit-streams for all 

members of the Xilinx 6200 family, but also works for any devices with similar feature.  

The Xilinx Virtex FPGAs are the most widely used reconfigurable devices, with 

millions of gates.  The architecture of the Virtex family possesses interesting features for 

future development of reconfigurable devices.  Consequently, our compression research 

for the Xilinx Virtex FPGAs can be adapted to a number of devices without significant 

modifications.  In the following sections, we will discuss the details of our compression 

algorithms for these two devices.  

3.4  Compression for the Xilinx 6200 FPGAs 
The XC6200 FPGA is an SRAM-based, high-performance, Sea-Of-Gates FPGA 

optimized for datapath designs [Xilinx97].  All user registers and SRAM control-store 

memory are mapped into a host processor’s address space, making it easy to configure 

and access the chip’s state.  A simplified block diagram of the XC6216 is shown in 

Figure 3.2. 
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Figure 3.2:  XC6216 simplified block diagram. 

The XC6200 provides five types of programming control registers.  Device 

Configuration Registers control global device functions and modes.  Device 

Identification Registers control when computation starts; usually the ID Registers are 
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written in the final step of configuration.  Map Registers can map all possible cell 

outputs from a column onto the external data bus.  By correctly setting the Map 

Registers, the state registers can be easily accessed without complicated mask 

operations.  Mask Registers can control which bits on the data bus are valid and which 

bits are ignored.  Finally, Wildcard Registers allow some cell configuration memories 

within the same row or column of cells to be written simultaneously.  Since Wildcard 

Registers are the primary architectural feature used by our algorithm, we will provide 

more detail about them. 

There are two Wildcard Registers: Row Wildcard Register and Column Wildcard 

Register, which are associated with the row address decoder and the column address 

decoder, respectively.  Each register has one bit for each bit in the row address or the 

column address.  Wildcard Registers can be viewed as “masks” for the row and column 

address decoders.  Let us consider the effect of the Row Wildcard Register on row 

address translation.  (The Column Wildcard Register has the same effect on column 

address translation.)  A logic one bit in the Row Wildcard Register indicates that the 

corresponding bit of the row address is a wildcard, which means the address decoder 

matches rows whose addresses have either a “1” or “0” on the wildcard bits.  Thus, the 

number of cells that will be configured at the same time is 2n if there are n logic one bits 

in the Wildcard Register.  For example, suppose the Row Wildcard Register is set to 

“010001” and the address to the row address decoder is set to “110010”.  In this case the 

row decoder selects rows 100010, 100011, 110010, and 110011.  If these locations share 

the same computation, and thus would need to be configured with the same value, all 

four could be configured with a single write operation.  Thus, Wildcard Registers permit 

faster configuration to be achieved. 

The Wildcard Registers and the address decoder can be viewed as a configuration 

decompressor.  Given a compressed configuration file, which has Wildcard Register 

writes followed by address writes, the address is decompressed so that several cells with 
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the same function get configured simultaneously.  The Wildcard Registers can inform 

the address decoder about which bits in the address can be “wildcarded” and which bits 

cannot.  Theoretically, up to 4096 cells can be configured by only three writes (two 

Wildcard Registers writes and one address write) if we assume all 4096 cells share the 

same function.  With this “decompressor” hardware available, there is the potential to 

achieve significant reductions in the required configuration bandwidth.  The key is to 

find an algorithm that can efficiently use this decompression hardware. 

3.4.1  Algorithm Overview 
Given a normal configuration bit-stream, our algorithm will generate a new 

configuration file that performs the same configuration with fewer writes by using the 

Wildcard Registers.  Our algorithm contains two stages.  In the first, we assume that 

writes to the Wildcard Registers are free and thus seek the minimum number of writes 

necessary to configure the array for a given configuration.  This will create a series of 

writes with arbitrary wildcards, meaning that these wildcard writes may add significant 

overhead.  The second stage of the algorithm attempts to reduce this wildcarding 

overhead by sharing the same wildcard in a series of writes, thus reducing the number of 

times the Wildcard Registers must be changed. 

Before discussing details of this algorithm, we first describe the format of the 

configuration file we use.  The standard Xilinx XC6200 configuration file (.cal file) 

consists of a series of configuration address-data pairs.  Two points must be made about 

the .cal files.  First, a .cal file contains data to configure the entire chip, including both 

the logic array and the configuration registers.  However, the Wildcard Registers operate 

only on the logic array memory addresses, meaning that it is not possible to compress 

the configuration register writes.  Thus, these register writes represent a fixed overhead 

for our algorithm.  We will ignore these writes during the discussion that follows, 

although our algorithm does maintain all control register writes from the source file, and 

our results include these fixed overheads.  Second, the XC6200 is partially 
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reconfigurable, meaning that a .cal file may contain writes to only a portion of the logic 

array.  Thus, there are regions of the array that are not modified by the input 

configuration.  Since these locations may contain data from previous configurations that 

must be maintained, we treat all locations not written by an input .cal file as “Don’t 

Touches”.  That is, we do not allow our algorithm to reconfigure these locations, thus 

restricting the amount of compression possible. 

3.4.2  The First Stage of the Algorithm 
In the first stage of the algorithm, we assume that both Wildcard Registers can be 

written during the same cycle as data is written to the logic array’s configuration.  Thus, 

we ignore the overhead of wildcard writes in order to simplify compression problem.  

However, Appendix A shows that even this simplified version of the problem is NP-

hard by transforming two-level logic minimization into this compression problem.  

Although this will demonstrate that an optimal algorithm is unlikely for this problem, it 

will also point the way towards an efficient heuristic via standard logic minimization 

techniques. 

In the standard two-level logic minimization problem, the goal is to find the minimum 

number of cubes that cover the ON set of a function, while covering none of the OFF 

set.  In the configuration compression problem, we seek the fewest wildcard-augmented 

writes that will set the memory to the proper state.  Figure 3.3 shows a transformation of 

the two-level logic minimization problem into the wildcard compression problem.   

Since even the simpler decision version of the problem of finding the smallest set of 

wildcard writes that implements a particular configuration is NP-complete, we are 

unlikely to find an efficient (polynomial-time) algorithm to construct the smallest such 

set of writes.  Consequently, we focus our attention on heuristic techniques instead. 
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Figure 3.3:  Example of the transformation of 2-level logic minimization into the 
simplified configuration compression problem.  The Karnaugh Map (left) of the 
circuit is transformed into the configuration to be compressed (right).  “DT” 
indicates don’t touches in the configuration. 

Because of the similarity of the two problems, we should be able to use standard logic 

minimization techniques to find the wildcards for the configuration problem.  For the 

example in Figure 3.4, normal configuration will need four writes to configure all cells 

with the function “2”.  However, by using logic minimization techniques we can find a 

single cube that covers the corresponding cells in the Karnaugh map.  Since we have 

Wildcard Registers, we can compress the four configuration memory addresses in the 

cube into one address “--10”, where “-” means wildcard.  Before configuring these four 

cells, we first set the Row Wildcard Register to “11” (which means the row address 

following is read as “--”) and the Column Wildcard Register to “00”.  The row address 

decoder then automatically decompresses the address, configuring all four cells at the 

same time. 

Even though this configuration problem can be viewed as a logic minimization problem, 

there is a difference between these two problems.  In logic minimization the logic is 

static, which means all “1” terms are written in the Karnaugh map at the same time, and 

the sum of the product terms (cubes) exactly covers the logic for each output.  However, 

in configuration compression the configuration is done dynamically, which means that 

later writes can overwrite previous values.  Thus, we can consider the values of the cells 

that have not yet been written into the FPGA as Don’t Cares.   
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With these Don’t Cares, we may be able to use fewer product terms (cubes) to cover the 

cells that need to be written to the FPGA, reducing the number of writes in the 

configuration.  For example, in Figure 3.4, suppose data “1” is written before data “3”.  

We can find a single cube to cover all the “1”s, instead of two, if we consider the cells 

with data “3” as Don’t Cares (Figure 3.5a).  This means we need just one address write 

to configure all “1”s.  Of course, all cells covered by the cube shaded in Figure 3.5a are 

configured with data “1”, including those cells that actually require  data “3”.  However, 

since the XC6200 FPGA is a reconfigurable device, those cells with the wrong data can 

be rewritten with the correct configuration later, as shown in Figure 3.5b. 

 

 00 01 10 11 

00 1 1 2 DT 

01 1 1 2 DT 

10 1 3 2 3 

11 3 3 2 DT 

Figure 3.4:  Example for demonstrating the potential for configuration compression. 

From the example in Figure 3.5, we can see that the order in which specific values are 

written can affect the total number of writes needed.  If we ignore Wildcard Register 

writes, the total number of writes needed to complete the configuration in Figure 3.4 is 

four for the case in which the “1”s are written before the “3”s.  However, for the case in 

which the “3”s are written before the “1”s, the total number of writes will be five.  This 

is because we can write all “1”s in one cycle if the “3”s are Don’t Cares, while the “3”s 

will take two writes regardless of whether the “1”s are written before or after the “3”s.  

Thus, we have to consider not only how to most efficiently write each value into the 

configuration memory, but also the order of these writes should occur to best compress 

the data.  We can certainly find an optimal sequence for a specific configuration by 

doing an exhaustive search, but the runtimes would be significant.  Thus, heuristic 
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algorithms are required not just for finding wildcarded addresses, but also to determine 

the order of wildcard writes.  Before we present these heuristics, we first introduce the 

logic minimization technique we used for our configuration algorithm. 

 

 00 01 10 11  00 01 10 11 

00 1 1   00 1 1   

01 1 1   01 1 1   

10 1 X   10 1 3  3 

11 X X   

 

11 3 3   

                    (a)                                                                            (b) 

Figure 3.5:  Example of the use of Don’t Cares in configuration compression.  By 
making the locations with “3” as Don’t Cares (a), one write, rather than two, is 
sufficient to configure all “1”s.  “3”s are written into required locations later (b). 

3.4.3  Wildcarded Address Creation via Logic Minimization 
The logic minimization problem is a well-known NP-complete problem, and heuristic 

algorithms exist to find near optimal solutions.  The Espresso algorithm [Brayton84] is 

widely used for single-output logic optimization, and it is claimed that optimal solutions 

will be produced in most cases.  We use Espresso as a major portion of our 

configuration compression algorithm.  The input required by Espresso is an encoded 

truth table, as shown in Figure 3.6 (a).  Each line consists of a minterm index encoded in 

binary, followed by either a “1” (for members of the On set) or a “-” (for members of 

the Don’t Care set).  The corresponding minimized truth table is shown in Figure 3.6 

(b). 

The configuration memory addresses in the .cal file can be viewed as minterms for the 

Espresso input file.  Assume, for example, that we decide that the “3”s are the next 

values to write to the array, and that the “1”s have already been written, though the “2”s 

have not.  We can use Espresso to find the proper wildcarded writes by assigning all 

addresses with the value to be written assigned to the On set, all Don’t Touch and 
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already written values to the Off set, and all values not yet written to the Don’t Care set.  

Thus, the “3” addresses would be passed to Espresso with a “1”, and the “2” addresses 

would be passed with a “-”.  The results of Espresso will be a set of cubes that 

correspond to wildcarded writes.  These writes contain all of the addresses that need to 

be set to the value to be written, as well as locations that will be written in future writes, 

but will not contain the Don’t Touch or already written addresses. 

 

1000 1 00-- 1 

0001 1 -000 1 

0010 1   

0011 1   

0000 - 

 

  

 

                               (a)                                                        (b) 

Figure 3.6:  Espresso input (a), and the resulting output (b). 

We now present the first stage of our algorithm: 

1. Read the input .cal file and group together all configuration memory addresses 

with the same value.  Mark all address locations as “unoccupied”. 

2. Sort the groups in decreasing order of the number of addresses to be written in that 

group. 

3. Pick the first group, and write the addresses in the group to the Espresso input file 

as part of the On set. 

4. Write all other addresses marked “unoccupied” to the Espresso input file as part of 

the Don’t Care set. 

5. Write all addresses marked “occupied”, yet with the same value as the first group, 

to the Espresso input file as part of the Don’t Care set. 
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6. Run Espresso. 

7. Pick the cube from the Espresso output that covers the most unoccupied addresses 

in the first group and add it to the compressed .cal file.  Mark all covered addresses 

as “occupied”, and remove them from the group. 

8. If the cube did not cover all of the addresses in the group, reinsert the group into 

the sorted list. 

9. If any addresses remain to be compressed, go to Step 2. 

This algorithm uses the Espresso-based techniques discussed earlier, with a greedy 

choice of the order in which to write the different values.  We greedily pick the group 

with the most addresses in it because this group should benefit the most from having as 

many Don’t Cares as possible, since the values may be scattered throughout the array.  

An example of this is shown in Figure 3.7.  If we choose to write the “5”s first, the total 

number of writes (excluding Wildcard Register writes) is five, while it requires only 

three writes if the “6”s are written first.  This greedy method has been as efficient as 

other more complete heuristic methods we have implemented.   

 00 01 10 11 

00 6 6 6 6 

01 6 6 6 6 

10 6 6 6 5 

11 6 6 5 6 

Figure 3.7:  An example that illustrates the reason for selecting bigger groups. 

Since a single cube may not cover all the addresses in the currently picked group, we 

pick the cube that covers the most addresses, since it provides the greatest compression 

factor.  When this group is picked again (in order to cover the rest of the addresses), we 

will put Don’t Cares for those configuration memory addresses “occupied” by the same 
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function data.  Thus, later cubes are still allowed to cover these earlier addresses, since 

writing the same value twice does not cause any problems. 

One additional optimization we have added to the algorithm is to perform a 

preprocessing to determine if any of the groups will never benefit from any Don’t Cares, 

and thus can be scheduled last.  For each group, we run Espresso twice.  In the first run, 

all locations that will be configured, except for the members of the group, are assigned 

to the Don’t Care set.  In the second run, these nodes instead form the Off set.  In both 

cases the group members are assigned to the On set.  If the numbers of cubes found in 

both runs are identical, it is clear that the Don’t Cares do not help to reduce the number 

of writes for this value.  Thus, this group is always scheduled last. 

One final concern for the first stage of our algorithm is the XC6216 column wildcard 

restriction.  Because of the electrical properties of the memory write logic, the 

architecture restricts the number of wildcards in the column address to at most four bits.  

To handle this, we examine the cube picked in Step 7 and see if it meets this restriction.  

If there are too many wildcards in the column bits, we iteratively pick one wildcard to 

remove until the restriction is met.  To pick the wildcard to remove, we determine how 

many addresses have a “0” in a given wildcard bit and how many have a “1”.  The 

wildcard removed is the one with the most addresses with a specific value (“1” or “0”), 

and that value replaces the Wildcard. 

Once the first stage of the algorithm is completed, we have a list of address data pairs, 

with wildcards in most of the addresses, which will produce the desired configuration.  

However, while this series of writes assumes that the Wildcard Registers can be set in 

the same cycle as the configuration memory write, it actually takes three cycles to 

perform this operation: Row Wildcard Register write, Column Wildcard Register write, 

and configuration memory write.  Thus, wildcard writes will triple the total number of 

writes.  In stage two of the algorithm, we use techniques for sharing Wildcard Register 
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writes between multiple configuration memory writes, significantly reducing this 

overhead. 

3.4.4  The Second Stage of the Compression Algorithm 
The objective of this stage is to reorder the sequence of writes created in the first stage 

in order to share Wildcard Register writes between configuration memory writes.  Also, 

since Espresso will find the largest cube that covers the required configuration 

addresses, there may be some wildcard bits that can be changed into “0” or “1” while 

still covering all required memory addresses.  Performing such reductions may increase 

the number of compatible Wildcard Register values, again increasing Wildcard Register 

value sharing.  We call this second transformation “wildcard reduction”.  Figure 3.8 

gives an example of two consecutive writes that cannot share any Wildcard Register 

values after the first stage, yet after wildcard reduction both wildcards can be shared.  

The number of writes needed for writing the 6 configuration memory addresses is down 

to four, two less than that without wildcard sharing. 

Write 1 Addresses Write 2 Addresses  Original Writes  Reduced Writes 

(000000, 000100) (100000, 100100)  (0-0-00, 00--00)  (0-0000, 00--00) 

(010000, 000100) (100000, 100100)  (1-0000, 1---00)  (1-0000, 10--00) 

(010000, 001000) (110000, 101000)     

                                 (a)                                                     (b)                                 (c) 

Figure 3.8.  An example of Wildcard reduction.  The addresses to be configured are 
shown in (a).  (b) shows the set of writes given by the first stage, which requires 
unique row and column wildcards.  The reduced version (c) can share both row and 
column Wildcards by removing some Wildcard bits. 

Before we continue the discussion, we first need to define some terms: 

• Required Addresses Set: the set of addresses that become occupied because of 

this write (the addresses this write is used to set).  

• Maximum Address: the wildcarded address found by Espresso. 
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• Minimum Address: the wildcarded address with the minimum number of 

wildcards that still covers the Required Address Set. 

• Intersect(Addr1, Addr2): the set of addresses covered by both addresses Addr1 

and Addr2. 

• And(Wild1, Wild2): the bitwise AND of two Wildcard Register values.  Retains 

a wildcard bit only when it appears in both values. 

• Or(Wild1, Wild2): the bitwise OR of two Wildcard Register values.  Contains a 

wildcard bit when either source wildcard value has a wildcard at that bit. 

• Superset(Wild1, Wild2):  true if every wildcard bit in Wild2 is also in Wild1. 

In the second stage, we reorder the sequence of writes found in stage one and apply the 

wildcard reduction selectively to find a new order with a much lower Wildcard Register 

write overhead.  In order to do this, we convert the totally ordered sequence of writes 

from the first stage into a partial order that captures only those ordering constraints 

necessary to maintain correctness.  We then create a new order and apply the wildcard 

reduction. 

In the first stage, the sequence we created is not necessarily the only order in which the 

sequence of writes can correctly be applied.  For example, the writes in Figure 3.8 can 

be reversed without altering the resulting configuration since neither write overwrites 

relevant data from the other.  Of course, there are some writes that are not swappable, so 

we must determine which writes must be kept in sequence and which can be reordered.  

Once we have this information, we can reorder the writes to increase Wildcard Register 

value sharing.  The following condition gives one situation in which writes can be 

reordered and forms the basis for our partial order generation algorithm.  In the 

paragraphs that follow, we assume that write A preceded write B in the original order. 
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Condition 1: If Intersect(Maximum Address(A), Required Addresses Set(B)) = {}, then 

A and B can be reordered. 

In order to create a partial order, we investigate each (not necessarily consecutive) pair 

of nodes in the original order.  If condition 1 does not hold for this pair of nodes, an 

edge is inserted into the partial order group, requiring that the earlier write must occur 

before the later write.  Once all pairs have been considered, we have created a partial 

order for the entire set of writes.  Only those nodes without any incoming edges can be 

scheduled first.  After a node is scheduled, that node and any edges connected to it are 

removed, potentially allowing other nodes to be scheduled.  All nodes that become 

schedulable once a given node is removed from the partial order are called the 

“children” of that node. 

At any given point in the scheduling process, the partial order graph determines which 

nodes are candidates to be scheduled.  Now, we must develop an algorithm for choosing 

the best candidate node to schedule.  We use the following rules as our scheduling 

heuristics.  The rules are applied in order, with ties at an earlier rule broken by the rules 

that follow.  Thus, losers at any rule are eliminated.  Only the winners are compared 

with the following rules: 

1. The candidate can share both row and column wildcards with the preceding writes. 

2. A child of the candidate can share both wildcards with a different current 

candidate. 

3. The candidate can share either the row or column wildcard with the preceding 

writes. 

4. The candidate with the greatest number of other candidates and children that can 

share both row and column wildcards with it. 
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5. the candidate with the greatest number of other candidates and children that can 

share either the row or column wildcard with it. 

6. Candidate with the greatest number of children. 

Rules 1 and 3 measure the immediate impact of scheduling the candidate on the number 

of wildcard writes.  Rule 2 adds some lookahead, scheduling a candidate early in order 

to allow its children to share wildcards with another current candidate.  Rules 4 to 6 

attempt to increase the number of good candidates, hoping that the greater flexibility 

will result in lower wildcard overheads. 

In order to implement these rules, we must determine when two writes can share a row 

or column wildcard.  To do this, we use the following condition: 

Condition 2: If (Maximum Wildcard of A And Maximum Wildcard of B) is the superset 

of (Minimum Wildcard of A Or Minimum Wildcard of B), then A and B can share the 

wildcard. 

The intuition behind this condition is that if A and B can share a wildcard, then the 

Maximum Wildcard of A must be the superset of the Minimum Wildcard of B, and the 

Maximum Wildcard of B must be the superset of the Minimum Wildcard of A.  

Otherwise, they cannot share the wildcard.  Notice that the wildcard sharing is not 

transitive.  That is, if A and B can share a wildcard, and B and C can share a wildcard, it 

is not always true that A and C can share a wildcard.  For example, B might have all bits 

as wildcards, while A and C each have only one wildcarded position, and the position 

differs for A and C. 

The non-transitivity of wildcards is an important consideration.  If we apply the 

scheduling rules discussed earlier pairwise, we may schedule three writes in a series and 

expect them to share all wildcards, when in fact we require new wildcard writes before 

the third write.  To deal with this, when a node is scheduled, we generate a new 
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Minimum Wildcard and Maximum Wildcard bounds for the schedule so far.  These 

wildcard bounds must represent all possible values in the Wildcard Registers at this 

point in the schedule.  This process is captured by the following rules: 

1. If the scheduled candidate cannot share the current wildcard:  

Minimum Wildcard(schedule) = Minimum Wildcard(candidate)  

Maximum Wildcard(schedule) = Maximum Wildcard(candidate) 

2. If the scheduled candidate can share the current wildcard:  

Min Wildcard(schedule) = Or(Min Wildcard(schedule), Min Wildcard(candidate)) 

Max Wildcard(schedule) = And(Max Wildcard(schedule), Max 

Wildcard(candidate)) 

These rules maintain the Minimum and Maximum Wildcards in order to more 

accurately determine which candidate can share a wildcard with the preceding writes.  

Thus, whenever we apply the rules for determining which candidate to choose, we 

always use the schedule’s Minimum and Maximum Wildcards to determine whether a 

candidate can share a wildcard. 

3.4.5  Experimental Results 
The algorithm described above was implemented in C++ on a Sun Sparc20 and was run 

on a set of benchmarks collected from XC6200 users.  These benchmarks are real 

applications that are either hand-mapped or generated by automatic tools. 

The results are shown in Table 3.1 (as well as graphically in Figure 3.9).  The size of the 

initial circuit is given in the “Input size” column in terms of the number of configuration 

writes in the original .cal files.  This size includes all writes required to configure the 

FPGA, including both compressible writes to the logic array as well as non-

compressible control register writes.  The “Control writes” column represents the 

number of non-compressible writes, and is a fixed overhead for both the original and 
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compressed file.  The size of the compressed file is contained in the “Total writes” 

column, which includes control writes, writes to the logic array (“Config. Writes”), and 

writes to the Wildcard Registers (“Wildcard Writes”).  The “ratio” column is the ratio of 

the compressed file size to the original file size.  The “CPU time” for compressing each 

benchmark is represented in the last column.  As can be seen, the algorithm achieves an 

average compression factor of almost four.  This represents a significant reduction in the 

bandwidth requirements for reconfiguration in reconfigurable systems. 

Table 3.1:  The results of the compression algorithm on benchmark circuits. 

Benchmark Input 
size 

Control 
writes 

Config. 
writes 

Wildcar
d writes 

Total 
Writes 

Ratio CPU 
time(m
s) 

counter 199 40 53 13 106 53.2% 1.3E3 

parity 208 16 9 3 28 13.5% 3.0E2 

adder4 214 40 43 14 97 45.3% 4.5E3 

zero32 238 42 12 3 57 23.9% 4.0E2 

adder32 384 31 28 14 73 19.0% 1.7E3 

smear 696 44 224 37 305 43.8% 4.5E4 

adder4rm 908 46 473 45 564 62.1% 8.3E4 

gray 1201 44 530 74 648 52.2% 2.6E5 

top 1367 70 812 87 969 70.8% 1.3E6 

demo 2233 31 423 91 545 24.4% 2.8E6 

ccitt 2684 31 346 84 461 17.2% 2.2E6 

tally 3366 42 211 42 295 8.7% 4.5E6 

t 5819 31 834 192 1057 18.2% 1.1E7 

correlator 11011 38 1663 225 1926 17.4% 5.0E7 

Geometric Mean:     27.7%  
 

In addition, we notice a significant disparity in the compression ratios for different 

benchmarks.  After examining the configuration bit-streams and their corresponding 

circuits, we discovered that this disparity was caused by the varied levels of the 
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regularities existing within different configuration bit-streams.  More specifically, the 

hand-mapped applications consist of more regular logic and routing structures than the 

automatically generated applications.  As a result, the benchmarks that are hand-mapped 

are more compressible in general than the automatically generated ones.   

Figure 3.9:  Graph of compressed file size as a percentage of original file size.  Bar 
height represents the total resulting file size and is broken into components.  The 
gray portion represents the writes to the Wildcard Register, white represents actual 
writes to the array, and black represents the fixed, non-compressible portions of the 
files. 

Figure 3.9 also demonstrates the effectiveness of the second stage of our 

compression algorithm.  “Config. writes” represent the number of writes necessary to 

configure the logic, which are produced by the first stage of our compression 

algorithm.  A large number of “Config. writes” require Wildcard Register writes, 

generating a significant overhead.  This overhead is minimized by applying the 

second stage of our compression algorithm.  As can be seen in Figure 3.9, “wildcard 

writes” represent only a small percentage of total writes.   
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3.5  Compression for the Xilinx Virtex FPGAs 
Each Virtex [Xilinx99] device contains configurable logic blocks (CLBs), input-output 

blocks (IOBs), block RAMs, clock resources, programmable routing, and configuration 

circuitry.  These logic functions are configurable through the configuration bit-stream.  

Configuration bit-streams that contain a mix of commands and data can be read and 

written through one of the configuration interfaces on the device.  A simplified block 

diagram of a Virtex FPGA is shown in Figure 3.10. 

The Virtex configuration memory can be visualized as a rectangular array of bits.  The 

bits are grouped into vertical frames that are one-bit wide and extend from the top of the 

array to the bottom.  A frame is the atomic unit of configuration, meaning that it is the 

smallest portion of the configuration memory that can be written to or read from. 

Frames are grouped together into larger units, called columns.  In Virtex devices, there 

are several different types of columns, including one center column, two IOB columns, 

multiple block RAM columns, and multiple CLB columns.  As shown in Figure 3.11, 

each frame sits vertically, with IOBs on the top and bottom.  For each frame, the first 18 

bits control the two IOBs on the top of the frame, then 18 bits are allocated for each 

CLB row, and another 18 bits control the two IOBs at the bottom of the frame. The 

frame then contains enough “pad” bits to make it an integral multiple of 32 bits.   

Left IO
Bs

Left B
lock Select RA

M

IOBs

IOBs

Right Block Select Ram

Right IO
Bs

CLBs

 

Figure 3.10:  Virtex architecture. 
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The configuration for the Virtex device is done through the Frame Data Input Register 

(FDR).  The FDR is essentially a shift register into which data is loaded prior to transfer 

to configuration memory.  Specifically, given the starting address of the consecutive 

frames to be configured, configuration data for each frame is loaded into the FDR and 

then transferred to the frames in order.  The FDR allows multiple frames to be 

configured with identical information, requiring only a few cycles for each additional 

frame, thus accelerating the configuration.  However, if even one bit of the configuration 

data for the current frame differs from the previous frame, the entire frame must be 

reloaded.   

Frame 2 Frame N
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Figure 3.11:  Virtex frame organization. 

3.5.1  Algorithms Overview 
As we mentioned, well-known techniques -- including Huffman [Huffman52], 

Arithmetic [Witten87] and LZ [Ziv77] coding -- are very efficient for general-purpose 

compression, such as text compression.  However, without considering features of the 

bit-stream, applying these techniques directly will not necessarily reduce the size of the 

configuration file.  Given the frame organization described above, it is likely that 
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traditional compression will either miss or destroy the regularities contained in the 

configuration files.  For example, the commercial tool gzip achieves a compression 

factor of 1.85 in our benchmark set, much less than is achievable. 

In this section, we will consider general-purpose compression approaches including 

Huffman, Arithmetic and Lempel-Ziv coding because of their proven effectiveness.  In 

addition, we will extend our wildcard approach used for Xilinx 6200 bit-stream 

compression.  Before we discuss the details of our compression algorithms, we will first 

analyze the potential regularities in the configuration files. 

3.5.2  Regularity Analysis 
Current Virtex devices load whole frames of data at a time.  Because of the similarity of 

resources in the array, we can expect some regularity between different frames of data.  

We call this similarity inter-frame regularity.  In order to take advantage of this 

regularity, the frames containing the same or similar configuration data should be loaded 

consecutively.  For example, an LZ77 compression algorithm uses recently loaded data 

as a fixed-sized dictionary for subsequent writes, and by loading similar frames 

consecutively, the size of the configuration files can be greatly reduced.  The current 

Virtex frame numbering scheme, where consecutive frames of a column are loaded in 

sequence, can be a poor choice for compression.  After analyzing multiple configuration 

files, we discovered that the Nth frame of the columns is more likely to contain similar 

configuration data since it controls identical resources.  Therefore, if we clustered 

together all of the Nth frames of the columns in the architecture, we can achieve a better 

compression ratio.  Of course, changing the order of the frames will incur an additional 

overhead by providing the frame address, but the compression of frame data may more 

than compensate for this overhead.  Note that Huffman and Arithmetic coding are 

probability-based compression approach, meaning that the sequence that the 

configuration data is written will not affect the compression ratio. 
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Regularity within frames may be as important as regularity between frames.  This intra-

frame regularity exists in circuits that contain similar structures between rows.  To 

exploit this regularity we will modify the current FDR with different frame buffer 

structures and develop the corresponding compression algorithms.  For Lempel-Ziv 

compression, the shift-based FDR fits the algorithm naturally.  However, extending the 

size of the FDR structure to a larger window can provide even greater compression 

ratios, though this must be balanced against potential hardware overheads.  For our 

wildcarded approach, the structure of the Wildcard Registers used in Xilinx 6200 can be 

applied to the FDR to allow multiple locations within the FDR to be written at the same 

time.   

3.5.3  Symbol Length 
Even though the configuration bit-stream is packed with 32-bit words for the Virtex 

devices, much of the regularity will be missed if the symbol length is set to 32-bit or 

other powers of two.  As was shown in Figure 3.11, each CLB row within a frame is 

controlled by an 18-bit value, and the regularities we discussed above exist in the 18-bit 

fragments rather than 32-bit ones.  In order to preserve those regularities we will break 

the 32-bit original configuration bit-stream.  Except for the regularity, two other factors 

are considered to determine the length of the basic symbol.  First, for Lempel-Ziv, 

Arithmetic and Huffman coding, the length of the symbol could affect the compression 

ratio.  If the symbol is too long, the potential intra-symbol similarities will likely be 

overwhelmed.  On the other hand, very short symbols, though retaining all the 

similarities, will significantly increase coding overhead.  Second, since decompression 

is done at run-time, the potential hardware cost should be considered.  For example, 

both Huffman and Arithmetic coding are probability-based approaches and require that 

the probabilities of symbols be known during decompression.  Retaining long symbols 

and their probabilities on-chip could consume significant hardware resources.  In 
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addition, transferring the probability values to the chip could also represent additional 

configuration overhead. 

As discussed above, using 18-bit symbols will retain the regularities in the configuration 

bits-stream.  However, for Huffman and Arithmetic coding, the probabilities of 218 

symbols need to be transferred and then retained on-chip to correctly decompress the 

bit-stream.  Clearly, this is not possible to implement and will increase configuration 

overhead.  Therefore, we choose to use 6-bit or 9-bit symbols for Huffman, Arithmetic 

and Lempel-Ziv compressions.  Using 6-bit or 9-bit symbols will preserve the potential 

regularities in the bit-streams and limit additional overheads.   

Notice that the 32-bit words packed in each frame may not necessarily be multiples of 

six or nine.  Therefore, if we simply take the bit-steams and break them into 6-bit or 9-

bit symbols, we will likely to destroy inter-frame and regularity.  To avoid this, during 

the compression stage, we will attach the necessary pad bits to each frame to make it a 

multiple of six or nine.  This represents a pre-processing step for each of the 

compression algorithms.  

3.5.4  Huffman coding 
The goal of Huffman coding is to provide shorter codes to symbols with higher 

frequency.  Huffman coding assigns an output code to each symbol, with the output 

codes being as short as one bit or considerably longer than the original symbols, 

depending on their probabilities.  The optimal number of bits to be used for each symbol 

is log2(1/p), where p is the probability of a given symbol.  The probabilities of symbols 

are sorted, and a prefix binary tree is built based on the sorted probabilities, with the 

highest probability symbol at the top and the lowest at the bottom.  Scanning the tree 

will produce the Huffman code.  Figure 3.12 shows a set of symbols (a) and its 

corresponding Huffman tree (b).  Given a string “XILINX” the resultant Huffman code 

is 1110110010111, using 13 bits. 
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Huffman compression for Virtex devices consists of two simple steps: 

1.  Convert the input bit-stream into a symbol stream. 

2.  Perform Huffman coding over the symbol stream. 

The problem with this scheme lies in the fact that the Huffman codes must be an integral 

number of bits long.  For example, if the probability of a symbol is 1/3, the optimum 

number of bits to code that symbol is around 1.6.  Since Huffman coding requires an 

integral number of bits to the code, assigning a 2-bit symbol leads to a longer 

compressed code than is theoretically possible.   

 

L X

N

I

0 1 

0 1 

0 1 

Symbols I N L X 

Frequency 0.6 0.2 0.1 0.1

(a)                                   (b)    

Figure 3.12:  An example of Huffman coding.  A set of 4 symbols and their frequencies 
are shown in (a).  The corresponding Huffman tree is shown in (b). 

Another factor that needs to be considered is decompression speed.  Since each code 

word is decompressed by scanning through the Huffman tree, it is very hard to pipeline 

the decompression process.  Therefore it could take multiple cycles to produce a 

symbol.  Also, it is difficult to parallelize the decoding process, because Huffman is a 

variable-length code.   

3.5.5  Arithmetic Coding 
Unlike Huffman coding, which replaces each input symbol by a code word, Arithmetic 

coding completely takes a series of input symbols and replaces it with a single output 



                                                                                                                                   - 49 - 

 

number.  The symbols contained in the stream may not be coded to an integral number 

of bits.  For example, a stream of five symbols can be coded in 8 bits, with 1.6-bit 

average per symbol.  Like Huffman coding, Arithmetic coding is a statistical 

compression scheme.  Once the probabilities of symbols are known, the individual 

symbols are assigned to an interval along a probability line, and the algorithm works by 

keeping track of a high and low number that bracket the interval of the possible output 

number.  Each input symbol narrows the interval and as the interval becomes smaller, 

the number of bits needed to specify it grows.  The size of the final interval determines 

the number of bits needed to specify a stream.  Since the size of the final interval is the 

product of the probabilities of the input stream, the number of bits generated by 

Arithmetic coding is equal to the entropy.  Figure 3.13 shows the process of Arithmetic 

coding for string “XILINX” over the same symbol set used for Huffman coding.  The 

generated code is 11110011011, two bits shorter than the Huffman code. 

Note that the basic idea described above is difficult to implement, because the shrinking 

interval requires the use of high precision arithmetic.  In practice, mechanisms for fixed 

precision arithmetic have been widely used.   

Symbol LowRange HighRange

0.0 1.0

X 0.9 1.0

I 0.9 0.954

L 0.9432 0.9486

I 0.9432 0.94644

N 0.945144 0.951624

X 0.950994 0.951644

Symbols I N L X 

Frequency 0.6 0.2 0.1 0.1

(a)                                   (b)    

Figure 3.13:  An example of Arithmetic coding.  The same symbol set used for the 
Huffman coding is shown in (a).  The coding process for string “XILINX” is shown in 
(b).  The final interval, represented by the last row in (b), determines the number of bits 
needed. 

The Arithmetic compression for Virtex devices consists of two steps: 
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1.  Convert the input bit-stream into a symbol stream. 

2.  Perform the fixed-precision Arithmetic coding over the symbol stream.  

The problem with this algorithm is that Arithmetic coding considers the symbols to be 

mutually unrelated.  However, the regularities existing in the configuration bit-stream 

may cause certain symbols to be related to each other.  Therefore, this approach may not 

be able to yield the best solution for configuration compression.  One solution to this 

problem is to combine multiple symbols together and discover the accurate probabilities 

of the combined symbols.  However, this will cause additional overhead by transferring 

and retaining a significant amount of probability values.  Another way to improve 

performance is to calculate the probabilities of combined symbols by simply multiplying 

the probabilities of individual symbols.  This dynamic approach will increase the 

precision of the interval without considering the correlation between symbols.  

However, performing additional multiplications on the decompression end will slow 

down decompression.   

3.5.6  Lempel-Ziv-Based (LZ) Compression 
Recall that Arithmetic coding is a compression algorithm that performs better on a 

stream of unrelated symbols.  LZ compression is an algorithm that more effectively 

represents groups of symbols that occur frequently.  This dictionary-based compression 

algorithm maintains a group of symbols that can be used to code recurring patterns in 

the stream.  If the algorithm spots a sub-stream of the input that has been stored as part 

of the dictionary, the sub-stream can be represented in a shorter code word.  The related 

symbols caused by the regularities in the configuration bit-stream make LZ algorithms 

an effective compression approach. 

There are variations of LZ compression, including LZ77 [Ziv77], LZ78 [Ziv78] and 

LZW [Welch84].  In general, LZ78 and LZW will achieve better compression than 

LZ77 over a finite data stream.  A lookup table is used to maintain occurred patterns for 
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LZ78 and LZW.  However, the excessive amount of hardware resources required to 

retain the table for LZ78 and LZW during decompression prevent us from considering 

those schemes for configuration compression.  The “sliding window” compression of 

LZ77 requires only a buffer, and the shift-based FDR fits the scheme naturally, though 

hardware must be added to allow reading of specific frame locations during execution.   

The LZ77 compression algorithm tracks the last n symbols of data previously seen, 

where n is the size of the sliding window buffer.  When an incoming string is found to 

match part of the buffer, a triple of values corresponding to the matching position, the 

matching length, and the symbol that follows the match is output.  For example, in 

Figure 3.14, we find that the incoming string 3011 is in buffer position 2 with match 

length 4, and the next symbol is 0.  So the algorithm will output codeword (3, 4, 0). 

Standard LZ77 compression containing the three fields will reach entropy over an 

infinite data stream.  However, for a finite data stream, this format is not very efficient 

in practice.  For the case when no matching is found, rather than outputing the symbol, 

the algorithm will produce a codeword containing three fields, wasting bits and 

worsening the compression ratio.  An extension of LZ77, called LZSS [Storer82], will 

improve coding efficiency.  A threshold is given and if the matching length is shorter 

than the threshold, only the current symbol will be output.  When the matching length is 

longer than the threshold, the output codeword will consist of the index pointer and the 

length of the matching.  In addition, to achieve correct decompression, a flag bit is 

required for each code word to distinguish the two cases.   
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 1 6  3 0 1 1  6 3  3 
  0  0 7 5 4 3 4 3011 043455 

43455   Output: 3, 4, 0 

(a)

(b) 
6 4 3 

  3 0 0 7 5 4 3 4 3 0 1 1 0 

 

Figure 3.14:  The LZ77 sliding window compression example.  Two matches found 
are illustrated in color gray.  LZ77 selects the longer match “3011”, and the resultant 
codeword is (3, 4, 0).  (a) shows the sliding window buffer and the input string 
before encoding.  (b) shows the buffer and input string after encoding. 

As mentioned above, the FDR in Virtex devices can be used as the sliding window 

buffer, and LZSS can take advantage of the intra-frame regularity naturally.  However, 

since the current FDR can contain only one frame of configuration data, using it as the 

sliding window buffer will not take full advantage of inter-frame regularities.  Thus, we 

modify the FDR to the structure shown in Figure 3.15.  As can be seen in Figure 3.15, 

the bottom portion of the modified FDR, which has same size as the original FDR, can 

transfer data to the configuration memory.  During the decompression the compressed 

bit-stream is decoded and then fed to the bottom of the modified FDR.  Incoming data 

will be shifted upwards in the modified FDR.  Configuration data will be transferred to 

the specified frame once the bottom portion of the modified FDR is filled with newly 

input data.   

In addition, configuration data that is written to the array can be reloaded to the bottom 

portion of the modified FDR.  This lets a previous frame be reused as part of the 

dictionary, and the inter-frame regularity is better utilized.  Specifically, before loading a 

new frame, we could first read a currently loaded frame from the FPGA array back to 

the frame buffer, and then load the new frame.  By picking a currently loaded frame that 

most resembles the new frame, we may be able to exploit similarities to compress this 

new frame.   
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Extended
FDR

FPGA 
array 

Bitstream

Figure 3.15:  The hardware model for LZ77 compression. 

While this technique will be slow due to delays in sending data from the FPGA array 

back to the FDR, there may be ways to accelerate this with moderate hardware costs.  In 

current Virtex devices, the data stored in the Block Select RAMs can be transferred to 

logic very quickly.  We can exploit this feature by slightly modifying the current 

hardware to allow the values stored in the Block Selected RAMs to be quickly read back 

to the modified FDR.  By providing the fast readback from only the Block Select 

RAMs, we efficiently use the Block RAMs as caches during reconfiguration to hold 

commonly requested frames without significant hardware costs.  Also, the size of the 

modified FDR must be balanced against the potential hardware cost.  In our research, 

we allow the modified FDR to contain two frames of data.  This will not significantly 

increase hardware overhead, yet it will utilize the regularities in the configuration 

stream.   

Finding regularities in a configuration file is a major goal.  LZ compression performs 

well only in the case where common strings are found between the sliding window 

buffer and incoming data.  This requires quite a large buffer to find enough matches for 

general data compression.  However, for configuration compression, the hardware costs 
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will restrict the size of the sliding window buffer.  Thus, performing LZ compression 

directly over the datastream will not render the desired result.  In order to make 

compression work efficiently for a relatively small buffer, we need to carefully exploit 

the data stream, finding regularities and intelligently rearranging the sequence of frames 

to maximize matches.  In the following sections, we discuss algorithms that apply LZSS 

compression, targeting the hardware model described above.  These algorithms are all 

realistic but require different amounts of hardware resources and thus provide different 

compression ratios. 

3.5.7  The Readback Algorithm 
The goal of configuration compression is to take advantage of both inter-frame and 

intra-frame regularities.  In the configuration stream, some of the frames are very 

similar.  By configuring them consecutively, higher compression ratios can be achieved.  

The readback feature allows the frame that most resembles the new frame to be read 

back to the modified FDR and reused as a dictionary, increasing the number of matches 

for LZSS.  This permits us to fully use regularities within the bit-stream.  For example, 

in Figure 3.16, four frames are to be configured, and frames (b), (c) and (d) are more 

like (a) than like each other.  Without readback, inter-frame regularities between (c), (d) 

and (a) will be missed.  However, with the fast readback feature, we can temporarily 

store frame (a) in the Block Select RAMs, reading it back to the modified FDR and 

using it as a dictionary when other frames are configured.  This fast readback will 

significantly increase the utilization of inter-frame regularities with negligible overhead.  

Since the modified FDR is larger than the size of the frame, LZSS will be able to use 

intra-frame regularities naturally.   

Discovering inter-frame regularities represents an issue that will influence the 

effectiveness of compression.  Based on the hardware model we proposed above, the 

similarity between the frame in the modified FDR and the new incoming frame is the 

key factor for compression.  More specifically, we seek to place a certain frame in the 
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modified FDR so that it will mostly aid the compression of the incoming frame.  In 

order to obtain such information, each frame is used as a fixed dictionary in a 

preprocessing stage, and LZSS is applied to all other frame, which are called beneficiary 

frames.  Note that LZSS is performed without moving the sliding window buffer, 

meaning that the dictionary will not be changed.  This approach excludes potential intra-

frame regularities within each beneficiary frame, providing only the inter-frame 

regularity information.  The output code length represents the necessary writes for each 

beneficiary frame based on the dictionary, and shorter codes will be found if the 

beneficiary frame resembles the dictionary.   

a b c d e f g h

a b c d e x x x

x y y d e f g h

(a)

(b)

(c)

a b c j k f g h
(d)

 

Figure 3.16:  Example to illustrate the benefit of readback.  (b), (c), and (d) resemble 
to (a).  By reusing (a) as a dictionary, better compression can be achieved. 

Once this process is over, a complete directed graph can be built, with each node 

standing for a frame.  The source node of a directed weighted edge represents a 

dictionary frame, and the destination node represents a beneficiary frame.  The weight 

of each edge denotes the inter-frame regularity between a dictionary frame and a 

beneficiary frame.  One optimization performed is to delete the edges that present no 

inter-frame regularity between any two frames.  Figure 3.17(a) shows an example of the 

inter-frame regularity graph.   
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Given an inter-frame regularity graph, our algorithm seeks an optimal configuration 

sequence that maximizes the inter-frame regularities.  Specifically, we seek a subset of 

the edges in the inter-frame regularity graph such that every node can be reached and the 

aggregate edge weight is minimized.  Solving this problem is equivalent to solving the 

directed minimum spanning tree problem, where every node has one and only one 

incoming edge, except for the root node.  Figure 3.17(b) shows the corresponding 

optimal configuration sequence graph of Figure 3.17(a).  In the configuration sequence 

graph, a frame with multiple children needs to be stored in Block Select RAMs for 

future readback.  For example, in Figure 3.17 (b), a copy of frame A will be stored in 

Block Select RAMs and read back to the modified FDR to act as a dictionary.   
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Figure 3.17:  Seeking optimal configuration sequence.  An inter-frame regularity graph 
is shown in (a).  The corresponding optimal configuration sequence graph is shown in 
(b). 

Now we present our Readback algorithm: 

1 Convert the input bit-stream into a symbol stream. 

2 For each frame, use it as a fixed dictionary and perform LZSS on every other frame. 

3 Build an inter-frame regularity graph using the values computed in step 2.   

4 Apply the standard directed minimum spanning tree algorithm [Chu65] on the inter-

frame regularity graph to create the configuration sequence graph.   
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5. Perform pre-order traverse starting from the root.  For each node that is being 

traversed: 

5.1. If it has multiple children, a copy of it will be stored in an empty slot of the 

Block Select RAMs.   

5.2. If its parent node is not in the modified FDR, read the parent back from the 

Block Select RAMs. 

5.3. Perform LZSS compression. 

5.4. If it is the final child traversed of the parent node, release the memory slot taken 

by the parent. 

Step 2 investigates inter-frame regularities between frames.  Results are used to build 

the inter-frame regularity graph and the corresponding configuration sequence graph in 

Steps 3 and 4 respectively.  The Pre-order traversal performed in Step 5 uses the parent 

frame of the currently loading frame as a dictionary for LZSS compression.  Note that a 

copy of the currently loading frame will be stored in the Block Select RAMs if it has 

multiple children in the configuration sequence graph.  Also, additional overhead from 

setting configuration registers will occur if frames to be configured are not contiguous.   

One final concern for our Readback algorithm is the storage requirement for the reused 

frames.  Analyzing configuration sequence graphs, we found that although a large 

number of frames need to be read back, they are not all required to be held in the Block 

Selected RAM at the same time, and they can share the same memory slot without 

conflict.  For example, in Figure 3.18, both frame A and frame B need to be read back.  

Suppose the left sub-tree needs to be configured first; then frame A will occupy a slot in 

the Block Selected RAMs for future readback.  Once the configuration of the left tree is 

complete, the memory slot taken by frame A can be reused by frame B during 

configuration of the right sub-tree.   
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We have developed an algorithm using a bottom-up approach that accurately calculates 

the memory slots necessary.  By combining it with our Readback algorithm, usage of 

the Block Select RAMs can be minimized.  The details of the algorithm are as follows: 

 

 

A B 

 

Figure 3.18:  An example of memory sharing. 

1. For each node in the configuration sequence graph, assign 0 to the variable V and 

number of children to C. 

2. Put each node whose children are all leaves into a queue. 

3. While the queue is not empty: 

3.1. Remove a node from the queue. 

3.2. If it has one child, V = Vchild, else V = max(largest Vchild, (second largest Vchild + 

1)). 

3.3. For its parent node, C = C -1.  If C = 0, put the parent node into the queue. 

Figure 3.19 shows an example of our Memory Requirement Calculation algorithm.  At 

left is the original configuration sequence graph.  At right shows the calculation of the 

memory requirement using a bottom-up approach.  The number inside each node 

represents the number of memory slots necessary for configuring its sub-trees.  As can 
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be seen, only two memory slots are required for this 14-node tree.  It is obvious that the 

memory required by a node depends on the memory required by each of its children.  

One important observation is that the memory required by the largest sub-tree can 

overlap with the memory required for other sub-trees.  In addition, since the last child of 

a node to be configured can use the memory slot released by its parent, the memory 

required by configuring all sub-trees can equal that of configuring the largest sub-tree.  

Since the pre-order traverse will scan the left sub-trees before the right ones, we should 

readjust the configuration sequence graph to set each node in the sub-tree that requires 

the most memory as the rightmost sub-tree.  In order to apply the memory minimization 

to our compression, we modify Step 4 of our readback algorithm as follows: 

4. Apply the standard directed minimum spanning tree algorithm on the inter-frame 

regularity graph to create the configuration sequence graph.  Perform the Memory 

Calculation algorithm, and the largest sub-tree for each node is set as the rightmost 

sub-tree. 
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(a)                                        (b) 
Figure 3.19:  An example to illustrate our Memory Requirement Calculation algorithm.  
A configuration sequence graph is shown in (a), and the corresponding memory 
requirement calculation procedure is shown in (b). 

3.5.8  Active Frame Reordering Algorithm 
The Readback algorithm allows frames to be read back to the modified FDR to achieve 

effective compression.  However, the delay and hardware alterations required for the 

Block Selected RAM readback may not be acceptable.  Some applications may restrict 
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the use of the Block Select RAMs.  In order to take advantage of the regularities within 

the configuration bit-stream, we have developed a frame reordering algorithm that does 

not require frame readback.   

As can be seen in our readback algorithm, frame reordering enhances compression by 

utilizing inter-frame regularities.  This idea can still be applied to applications without 

the readback feature.  In our readback algorithm, once the inter-frame regularity graph is 

built, a corresponding configuration sequence graph can be generated, and traversing the 

configuration sequence graph in pre-order can guarantee the maximum utilization of the 

regularities discovered.  However, without frame readback, traversing the configuration 

sequence graph might not necessarily be the optimal solution, since parent nodes cannot 

be reused as a dictionary.  Our Active Frame Reordering algorithm uses a greedy 

approach to generate a configuration sequence that allows each frame to be used as a 

dictionary only once.  It still takes the inter-frame regularity graph as input.  However, 

instead of using the directed MST approach to create a configuration sequence, a 

spanning chain will be generated using a greedy approach.  The details of the algorithm 

are as follows: 

1. Convert the input bit-stream into symbol stream. 

2. For each frame, use it as fixed dictionary, perform the LZSS on every other frame. 

3. Build an inter-frame regularity graph using the values that resulted from Step 2.   

4. Put the two frames connected by the minimum weight edge into a set.  Let H be the 

head and T be the tail of this edge. 

5. While not all frames are in the set: 

5.1. For all incoming edges to H and outgoing edges from T, find the shortest one 

that connects to a frame not in the set.  Put that frame into the set.  The frame is 

set to H if the edge found is an incoming edge to H; otherwise set the frame to 

T. 



                                                                                                                                   - 61 - 

 

6. Perform LZSS compression on the chain discovered in Step 5. 

The basic idea of the algorithm is to grow a spanning chain from the two ends.  Step 5 

finds a frame not in the chain with the shortest edge either coming into an end or going 

out from the other.  This greedy process is repeated until all frames are put in the 

spanning chain.  For example, in Figure 3.17, the order of the frames to be put into the 

chain discovered by our algorithm is ABDFEC (the configuration sequence will be 

DABFEC).  The cost of the sequence is 160, slightly larger than the optimal spanning 

chain (150).  Starting from one end of the discovered spanning chain, LZSS can be 

performed to generate a compressed bit-stream.   

3.5.9  Fixed Frame Reordering Algorithm 
One simple algorithm is to reorder the frames such that the Nth frame of each column to 

be configured in consecutively.  Performing LZSS over the sequence generated by the 

simple reordering takes advantage of the regularities within applications.  The overhead 

of setting the configuration registers can be eliminated using this fixed frame order. 

3.5.10  Wildcarded Compression for Virtex 
Since our Wildcard Compression achieves good results for the Xilinx 6200 FPGAs, we 

would like to apply it to Virtex FPGAs.  For Virtex configurations, multiple rows within 

a frame can contain the same configuration data.  Instead of configuring them one by 

one, the wildcarded approach allows these rows to be configured simultaneously.  To 

apply the wildcarded approach to Virtex, an address register and a wildcard register will 

be added as an augmented structure to the FDR.  They will allow specified rows within 

the FDR to be configured. 

For circuits with repetitive structures, multiple frames could be very similar, yet not 

completely identical.  By allowing the FDR to be addressable, we take advantage of this 

inter-frame regularity.  Instead of loading the whole frame, we can load only the 
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differences between frames.  For example, in Figure 3.20, two frames need to be 

configured, and the second frame has only three different rows from the first one.  In 

this case, only the configuration data for the 3 different rows needs to be loaded.  In 

addition, if the three different rows can be covered by a wildcard, one write is enough to 

configure the whole second frame.  This structure will also support true partial 

reconfiguration.  More specifically, for each frame to be reconfigured, rather than 

loading the entire frame, we can simply load the difference from the current 

configuration.  Note that adding the Address Register and Wildcard Register represents 

additional hardware cost.  Moreover, extra bits for the address and wildcard need to be 

transferred for every write.   

 

Figure 3.20:  An example of inter-frame compression using addressable FDR. 

The Wildcard algorithm consists of 2 stages.  In the first stage we reorder similar frames 

so they will be configured consecutively.  This creates a sequence in which the number 

of writes necessary for configuring each frame is greatly reduced.  In the second stage, 

we find the wildcards covering the writes for each frame and thus further reduce the 

configuration overhead.  The first stage takes advantage of inter-frame regularities while 

the second stage focuses on intra-frame regularities.   

In the first stage, we discover the number of non-matching rows between each pair of 

frames; the result indicates the extent of similarity between the frames.  An undirected 

graph is built to keep track of the regularities, and a near optimal sequence needs to be 

discovered.  Since each frame is configured exactly once, finding the sequence based on 
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the regularity graph is equivalent to solving the traveling salesman problem.  An 

existing algorithm is an approximation with a ratio bound of two for the traveling-

salesman problem with triangle inequality [Lawler].  Given a complete undirected graph 

G = (V, E) that has a nonnegative integer cost c(u, v) associated with each edge (u, 

v)∈E, cost function c satisfies the triangle inequality if for all vertices u, v, w ∈V, c(u, 

w) ≤ c(u, v) + c(v, w).  Since the differences between frames satisfy the triangle 

inequality, we can apply the approximation algorithm on our compression algorithm.  

The details of our Wildcard algorithm are as follows: 

1. Convert the input bit-stream into an 18-bit symbol stream. 

2. For each pair of frames, identify the different 18-bit symbols between them. 

3. Build a regularity graph using the results from Step 2. 

4. Perform the Approx-TSP-Tour algorithm [12] to determine the order of frames to 

be configured. 

5. For each frame configuration, use the Wildcard algorithm to find the wildcards to 

cover the differences. 

3.5.11  Simulation Results 
All algorithms are implemented in C++ on a Sun Sparc Ultra 5 workstation and were 

run on a set of benchmarks collected from Virtex users.  Detailed information about the 

benchmarks is shown in Table 3.2.   

Figure 3.21 shows simulation results for compression approaches using 6-bit symbols; 

the wildcard approach uses 18-bit symbols.  The left 10 benchmarks are automatically 

mapped and use more than 50% of the chip area.  The “Geo. Mean” column is the 

geometric mean of the 10 benchmarks.  The three right-most benchmarks are either 

hand mapped or use only a small percentage of the chip area and are included to 

demonstrate how hand mapping or low utilization affects compression.  Figure 3.22 
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demonstrates simulation results for 9-bit symbols. (The Wildcard algorithm is not 

shown, since it uses only 18-bit symbols.)   

Table 3.2:  Information for Virtex benchmarks. 

Benchmark Source Device Chip 
Utilization Mapping 

Mt1mem0 Rapid 400 >80% Auto 

Mt1mem1 Rapid 400 >80% Auto 

Mars USC 600 Unknown Auto 

RC6 USC 400 Unknown Auto 

Serpent USC 400 Unknown Auto 

Rijndael USC 600 Unknown Auto 

Design1 HP 1000 >70% Auto 

Pex Northeastern 1000 93% Auto 

Glidergun Xilinx 800 >80% Hand 

Random Xilinx 800 >80% Hand 

U1pc Xilinx 100 1% Auto 

U50pc Xilinx 100 50% Auto 

U93 Xilinx 100 >90% Auto 
 

As can be seen in the figures, the readback algorithm performs better than other 

algorithms for both 6-bit and 9-bit cases for most of the benchmarks.  This is because 

the Readback algorithm takes full advantage of inter-frame regularities within the 

configuration bit-stream by reusing certain frames as dictionaries.  Though they cannot 

fully utilize inter-frame regularities, the reordering techniques still provide fairly good 

results without using the Block Select RAMs as a cache.  The Active Reordering 

algorithm performs better than the Fixed Reordering algorithm since active reordering 

can better use inter-frame regularities by actively shuffling the sequence of frames, 

while fixed reordering can utilize only the regularities given by the fixed sequence.   
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Figure 3.21:  The simulation results for 6-bit symbol. 

Figure3.22:  The simulation results for 9-bit symbol. 
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Surprisingly, although the wildcard approach can exploit both inter-frame and intra-

frame regularities, it still yields worse compression ratios than the active reordering 

scheme for most of the benchmarks.  There are several reasons for this.  First, the 

wildcard approach requires address and wildcard specification for each write, adding 

significant overhead to the bit-stream.  The additional overhead overwhelms the benefits 

provided by the regularities within the applications.  Second, the wildcard approach 

requires a comparison between the same rows of given frames to discover inter-frame 

regularities.  Consequently, the similarity the wildcard approach can discover is aligned 

in rows, and any unaligned similarities that benefit the LZ-based approaches will not 

help it.  For example in Figure 3.23, the Wildcard algorithm cannot discover the inter-

frame regularity between frame A and frame B.  However, the regularity can be 

exploited for LZ-based approaches.  Third, the Wildcard approach requires that enough 

rows covered by a wildcard share the same configuration value to achieve better 

compression.  However, even the XCV1000, which is a relatively large device, has only 

64 rows and it is not likely to find enough rows covered by a wildcard that have the 

same configuration value.  For many cases, each wildcard contains only one row, and 

the address/wildcard overhead is still applied. 

 Frame A values Frame B values 

Row 1 1 2 

Row 2 2 3 

Row 3 3 4 

Row 4 4 5 

Row 5 5 6 

Figure 3.23:  Unaligned regularity between frames.  The wildcard approach will miss 
this regularity, which benefits the LZ-based approaches.  
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The probability-based Huffman and Arithmetic coding techniques perform significantly 

worse than other techniques, since they do not consider regularities within the bit-

stream.  The Huffman approach did worse than the Arithmetic approach, simply because 

of its inefficient coding method.  Adding the fact that these two approaches require 

significant hardware for the decompressor, we will not consider using them for 

configuration compression.   

Comparing the results in Figure 3.21 and Figure 3.22, we found that LZ-based 

approaches perform better on 6-bit symbols than 9-bit ones for most of the benchmarks.  

Analyzing the bit-stream, we found that its regularities discovered within the bit-stream 

may not result in very long matches.  Increasing the symbol size will shorten the 

matches and increase the length of codewords for single symbols.  Huffman and 

Arithmetic approaches perform better on 9-bit symbols, which distribute the probability 

better.   

Most of the benchmarks we tested use a significant amount of FPGA capacity.  The only 

exception is “u1pc”, which uses about 1% of the chip area.  As can be seen in the 

figures, its compression ratio is very high.  The other two benchmarks with very high 

compression ratios use more than 80% of the chip area, but they were hand placed.  

After analyzing the two benchmarks, we found that the two handcrafted circuits have 

extremely strong intra-frame regularities.  Specifically, most rows within each frame are 

identical, and very long matches can be found.   

3.5.12  Hardware Costs 
Since decompression must be performed on-chip, hardware costs for building 

decompressors must be evaluated to determine whether our compression algorithms are 

viable techniques. In this work we focus on the hardware implementation of the LZ 

decompressor because its compression algorithms outperform other approaches.  Our 

fellow graduate student, Melany Richmond has implemented an LZ decompressor in 
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hardware and demonstrated the hardware cost is minimal.  The overall increase in area 

is less than 1% for Virtex 1000 or larger devices [Richmond01]. 

3.6  Related Works 
A LZ-based approach [Dandalis01] was developed to compress the Virtex bit-stream.  

As a modified LZW algorithm, this approach requires a significant amount of memory 

storage on-chip to retain dictionary.  Though it can be applied to general data 

compression, the approach does not compress the Virtex bit-stream effectively, mainly 

because it does not exploit the specific regularities within the configuration data.  Our 

compression techniques outperform it by a factor of two. 

Another approach, called Run-length compression [Hauck99], was developed to 

compress the Xilinx 6200 bit-stream.  A series of addresses with a common offset can 

be compressed into a form of base, offset, and length.  Also, the repeated configuration 

data values can be compressed with Run-Length encoding.  Results demonstrate a factor 

of 3.6 average compression ratio, slightly worse than our Wildcard algorithm. 

3.7  Summary  
In this chapter, configuration compression techniques to reduce reconfiguration 

overhead were discussed.  Similar to general data compression, configuration 

compression takes advantage of regularities and repetitions within the original 

configuration data.  However, using existing lossless compression approaches cannot 

significantly reduce the size of configuration bit-streams, because there are several 

fundamental differences between general compression and configuration compression.  

The unique regularities and on-chip run-time decompression require distinct 

compression algorithms for different architectures.   

In this chapter, we have investigated configuration compression techniques for the 

Xilinx 6200 FPGAs and the Xilinx Virtex FPGAs.  Taking advantage of on-chip 
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Wildcard Registers, our Wildcard algorithm can achieve a factor of 3.8 compression 

ratio for the Xilinx 6200 FPGAs without adding extra hardware.  A number of 

compression algorithms were investigated for Virtex FPGA -- the most popular 

commercial configurable devices.  These algorithms can significantly reduce the amount 

of data that needs to be transferred with a minimum modification of hardware.  In order 

to explore the best compression algorithm, we have extensively researched current 

compression techniques, including Huffman coding, Arithmetic coding, and LZ coding.  

Furthermore, we have developed different algorithms targeting different hardware 

structures.  Our Readback algorithm allows certain frames to be reused as a dictionary 

and sufficiently utilizes the regularities within the configuration bit-stream.  Our Frame 

Reordering algorithms exploit regularities by shuffling the sequence of the 

configuration.  The simulation results demonstrate that a factor of four compression 

ratio can be achieved.  As mentioned earlier, the configuration compression algorithms 

we developed can be extended to any similar reconfigurable devices without significant 

modifications. 

 



C h a p t e r  4  

Don’t Care Discovery for Configuration 
Compression 

The results in Chapter 3 demonstrate that configuration compression can effectively 

reduce the amount of configuration data that needs to be transferred.  All algorithms we 

developed are considered lossless compression approaches, since no configuration 

information is lost during the compression stage.  In order to further reduce 

configuration data, a lossy approach that can increase regularities, called Don’t Care 

discovery, is discussed in this chapter.  By combining Don’t Care discovery with the 

compression algorithms developed in Chapter 3, higher compression ratios can be 

achieved. 

4.1  Don’t Cares Overview 
There are two types of Don’t Cares for each configuration: True Don’t Cares and 

Partial Don’t Cares.  In practice, most applications do not utilize all function units or 

routing resources.  Therefore, unused function units and routing resources will not affect 

computational results, and the corresponding configuration bits for these locations can 

be considered as True Don’t Cares.  For other locations, not all configuration bits are 

important to computation, and some bits can be turned into Don’t Cares without causing 

errors.  We call these bits Partial Don’t Cares.  By exploring Don’t Cares and then 

assigning each Don’t Care bit a certain value, we can increase regularities within each 

application.   
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For example, each cell of a Xilinx 6200 FPGA can route signals in four different 

directions.  However, in most cases, only one or two directions are actually used for the 

computation, so the configuration for unused directions can be treated as Partial Don’t 

Cares.  Although none of these locations is a True Don’t Care, regularities for different 

locations may increase by turning bits into Don’t Cares, and thus fewer cubes to cover 

the necessary configuration can be found.  Suppose there are only two locations 

specified in a configuration, with address 1 containing data “00101000” and address 2 

containing data “00100000”.  Obviously, two separate configuration writes are required.  

However, assume that we can modify the value in address 1 to “0010-000”, where “-” 

means Don’t Care. Without considering the overhead of the Wildcard Register write, 

one write is now sufficient to complete the configuration of both locations.   

Obviously, exploring Don’t Cares requires detailed information about configuration bit-

streams.  Additionally, an algorithm that uses the information to discover all 

configuration bits that sufficiently contribute to correct computation must be developed.  

Furthermore, all output locations, including IOBs and registers, must be specified−from 

the user’s point of view, these locations contain the information that the user really 

needs.  The outputs of these locations are computed by logic operations on the inputs to 

them, meaning that the locations providing these inputs could affect the results of the 

outputs.  This identifies all fields within newly specified locations are critical to the 

computation results.  Our algorithm backtraces the inputs to these fields and gets another 

set of important fields.  This backtracing process is repeated until all important fields for 

the computation are traversed.  Notice that these traversed fields normally represent a 

subset of the given configuration.  This is because some configuration bits specified in 

the configuration file become Don’t Cares, meaning that we can assign arbitrary values 

to them. 

As mentioned in Chapter 3, one major concern for any lossy approach is whether the 

correctness of computation can be held for circuitry generated by decompressed data.  
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Using our Don’t Care discovery technique, the given configuration can be changed to a 

different configuration, since new values can be assigned to the newly discovered Don’t 

Care bits.  However, the resulting computation of the two configurations will be 

identical.  From the user’s point of view, if the outputs of both configurations produce 

the same result, we can safely say that both configurations meet the user’s needs.  Since 

the backtracing starting from the outputs for a given configuration covers all important 

fields necessary to the outputs, the computation correctness is maintained.   

We have seen that the original configuration can be changed to a different one.  

However, we must ensure that the new configuration will not damage the reconfigurable 

device.  Our algorithm in this work is optimized for the Xilinx 6200 and Virtex FPGAs, 

whose architectures have safeguards that prevent short-circuits from being created in the 

programming of the FPGAs.  In systems where a bad configuration could cause a short-

circuit on the device, a simple algorithm that eliminates the side effects of Don’t Care 

discovery is necessary.   

One final concern is that the new configuration will overwrite locations that may be 

used by other configurations.  Since the locations traversed during backtracing contain 

information for the correct computation, those locations must be specified by the 

original configuration or by initialization (Reset) values. In either case, if the given 

configuration does not overwrite any locations that are used by other computations, the 

new configuration also will not, since it is a subset of the given one. 

4.2  The Backtracing Algorithm 
Given a configuration file, the backtracing algorithm seeks to discover the Don’t Cares.  

Once this stage is complete, with minor modifications, our configuration compression 

algorithm can be applied to find a compressed version of a configuration.  The algorithm 

starts from the output cells (user-defined registers) and output IOBs, backtracing all 

configuration bits that contribute to the correct computation.  This determines all 
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programming bits necessary for correct computation, meaning that all other bits don’t 

matter and can thus be considered as Don’t Cares. 

During backtracing we seek all portions of a circuit that help produce a given signal.  

Once these regions are found for each circuit output, we have identified all locations that 

must be configured with a specified value.  Thus, all other locations can be treated as 

Don’t Cares.  For example, in Figure 4.1, the only output of the circuit is “O”.  We 

backtrace this signal, discovering that it is computed by a register.  This means that its 

clock circuitry and its input “A” are important.  Backtracing A will show that the 

function block of this cell is important, requiring B and C to be backtraced.  Eventually, 

we will reach the registers that start this computation. Using this recursive backtracing 

process, we will identify the entire circuitry shown.  For this example all other 

configuration data is irrelevant to proper circuit function, and can be considered as 

Don’t Care.  Thus, all Northward and Westward routing resources, the logic blocks of 

cells 1 and 2, and the register in cell 3 can be configured arbitrarily.  It is this flexibility 

that helps boost compression ratios significantly. 
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Figure 4.1:  Sample circuit for backtracing. 

Since Xilinx does not disclose the information necessary for discovering the Don’t 

Cares in Virtex applications, we will focus mainly on algorithm design for the Xilinx 

6200 architecture.  However, we will still estimate the potential impact of Don’t Cares 

for Virtex compression. 

4.3  Don’t Care Discovery for the Xilinx 6200 FPGAs 
In order to do the backtracing, we need information about output locations.  One set of 

our benchmarks is compiled by XACT6000 tools, which produce a symbol table file 

(.sym file) that specifies the locations of all circuit inputs and outputs.  For another set of 

benchmarks that is not created by XACT6000 tools, we create the symbol files that 

consist of output information provided by the designers.   

4.3.1  Don’t Care Discovery Algorithm 
As discussed in Section 4.2, the key technique for Don’t Care discovery is to backtrace 

all components that produce outputs.  There are three major components in the array: 
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cells, switches and IOBs.  There are 4096 cells arranged in a 64 × 64 array, and each cell 

has 3 separate 8-bit configuration bytes. One of these bytes controls the neighbor routing 

multiplexers, and two others control the functionality.  Switches are located at the 

boundary of blocks of 4 × 4 cells, and they are labeled according to the signal travel 

direction.  Each of the east and west switches has one configuration byte controlling 

neighbor routing, length 4 wire routing, and length 16 wire routing.  Each north and 

south switch has multiple configuration bytes that control: neighbor routing, length 4 

and length 16 routing, and global signals including clock and clear lines.  Each IOB 

consists of multiple configuration bytes controlling routing and some circuit control 

signals.  A configuration can be viewed as the configurations of the multiplexers in 

cells, switches, and IOBs.  If any multiplexer in a specified unit (cells, switches and 

IOBs) is not used for the computation, then the corresponding configuration bits for that 

multiplexer are considered Don’t Cares.  We now present details on how to find Don’t 

Cares for cells, switches and IOBs.   

Figure 4.2 shows the basic XC6200 cell in detail, with the function unit at left and cell 

routing resources at right.  Input multiplexers select outputs from neighbors or from 

length 4 wires to connect to X1, X2, and X3.  The Y2 and Y3 multiplexers provide for 

conditional inversion of the inputs.  The CS multiplexer selects a combinatorial or 

sequential output.  The RP multiplexer controls the contents of the register to be 

“protected”.  If the register is configured as “protected”, then only the user interface can 

write it.   
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Figure 4.2:  Xilinx 6200 function unit and cell routing. 

Two configuration bytes control the multiplexers for the function unit.  Don’t Care 

discovery depends on the functionality of the cell.  For example, if the CS multiplexer 

selects the sequential output and the RP multiplexer configures the register as protected 

(feeds the register output back into its input), then all X and Y multiplexers can be set as 

Don’t Cares because the user interface is the only source that can change the F output.  

If either the Y2 or Y3 multiplexer selects the output of the register, then the 

corresponding X multiplex can be set to Don’t Care.  The X1 multiplexer can be set to 

Don’t Care if Y2 and Y3 both select the same signal. For any of the four neighbor 

routing multiplexers not used for computation or routing, the bits for controlling the 

multiplexer can be considered Don’t Cares. 

Figure 4.3 shows the North switch at 4 × 4 block boundaries.  Two multiplexers control 

neighbor routing and length 4 routing to the North, and there is an additional length 16 

multiplexer at each 16 × 16 boundary.  South, East and West switches have structures 

that are similar to the North switches.  Generally, if any of the multiplexers is not used, 
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then the configuration bits for that multiplexer can be set to Don’t Cares.  However, the 

configuration bits for the Nout multiplexer cannot be set to Don’t Cares if the N4out 

multiplexer selects NCout, since the same programming bits control the upper and lower 

four input multiplexers.  If NCout and Nout select different inputs, both inputs must be 

backtraced. 
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Figure 4.3:  The Xilinx 6200 North switch at 4 × 4 block boundaries. 

Each North switch contains an additional Clock multiplexer.  This multiplexer is 

traversed only if a cell in the same column within the 4 × 4 block is configured as a 

register.  Each South switch at the 16 × 16 boundary contains a Clear multiplexer.  This 

multiplexer is traversed only if any cell at the same column within the 16 × 16 block is 

configured as a register. 

Our algorithm does not attempt to find Don’t Cares in IOBs for two reasons.  First, there 

are only 64 IOBs at each side of the array, meaning that we will not benefit significantly 

from finding Don’t Cares.  Second, the architecture of IOB involves many circuit-

control signals that cannot be turned to Don’t Cares.  However, our algorithm does 

traverse identified IOBs to backtrace other units.  Thus, our algorithm is conservative, 

since it may not discover Don’t Cares in IOBs, but will always produce valid output. 
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We now present the basic steps of our Don’t Care discovery algorithm. 

1. Read the input .cal file and mark a unit as “touched” if any part of it is specified in 

the .cal file.  Mark all configuration bits as Don’t Cares. 

2. Read the .sym file and put all output units (IOBs and registers used as outputs) into a 

queue. 

3. Remove a unit from the queue.  If it has already been backtraced, ignore it.  

Otherwise, mark its configuration bits as “no longer Don’t Care”, and insert its 

important inputs into the queue.  Mark the unit as “touched”. 

4. If the queue is not empty, goto Step 3. 

5. Produce a new target configuration where: 

5.1. All locations that were not marked as touched are considered as Don’t Touch. 

5.2. All bits that were marked as “no longer Don’t Care” are assigned their values 

from the .cal file. 

5.3. All other bits are Don’t Cares. 

Note that in situations where the configuration given to the compression algorithm 

represents the entire logic that will be mapped to the array, it does not matter what 

happens to unused cells in the FPGA.  In these cases, Step 5 instead sets locations not 

marked as touched to Don’t Care. 

4.3.2  Compression Algorithm Modifications 
Once the Don’t Care discovery algorithm is complete, we have a list of address data 

pairs, with Don’t Care bits contained in many of the data values.  In order to take 

advantage of these Don’t Cares we need to modify to our configuration compression 

algorithm. 
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In our original configuration compression algorithm, locations with the same data value 

are placed in the same group.  This is because the addresses with the same value 

represent an On set in the corresponding logic minimization problem.  However, by 

discovering the Don’t Care bits, each On set can be represented by a set of locations that 

does not necessarily consist of the same value.  After modifying the Don’t Cares to “1” 

or “0”, the locations with different values in the given configuration can be placed into 

the same group, since they are compatible.  Notice that it is now possible for an address 

to fit into multiple groups instead of just one group in our original compression 

algorithm because of the Don’t Cares, meaning that the flexibility for our configuration 

compression algorithm has increased.  For example, suppose that after the discovery of 

Don’t Care bits, address A contains data “00-000-0”.  Assume there are 3 groups, where 

group 1 has the value “00000000”, group 2 has the value “00000010” and group 3 has 

the value “00100000”.  Address A is compatible with the value of each of the three 

groups and is placed into them.  Writing any value representing the three groups into 

address A properly configures it.  This is because any of the three values can create the 

configuration necessary for the computation.  Even though address A may be 

overwritten by values from the other two groups, the necessary configuration is 

maintained.  Our original algorithm can take advantage of this feature to find fewer 

cubes covering the necessary configuration. 

In our original configuration compression algorithm, the data associated with an address 

has a fixed value, so the locations were grouped by their values.  However, after running 

the Don’t Care discovery algorithm, a location with Don’t Cares can be placed into 

multiple groups depending on their compatibility.  Thus, we need to develop an 

algorithm to group the locations so that the addresses (locations) in each group are 

compatible.  An address (location) can appear in as many as 2n groups, where n is the 

number of Don’t Care bits contained in its data value.  Notice that compatibility is not 

transitive.  That is, if A and B are compatible, and B and C are compatible, it is not 

always true that A and C are compatible.  For example, assume A, B and C have values 
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“000100-0”, “0-0-0000” and “0100-000”, respectively. A and B are compatible, and B 

and C are compatible, but A and C are not compatible.  This non-transitivity property is 

an important consideration, making grouping decisions complex. 

For 8-bit data, the simplest method for grouping is to create 256 groups with the values 

0 to 255, and place each address data pair into every group with a compatible value.  

However, this technique has exponential time complexity; to extend this technique to a 

32-bit data bus, the number of groups needed is 232.  It is obvious that a heuristic method 

is needed.  We present our heuristic grouping algorithm as follows: 

1. Once Don’t Care discovery is complete, put those addresses with Don’t Care data 

bits into a list.  Group those addresses without Don’t Care Data bits according to 

their data values. 

2. Search the list, removing those addresses that can be fit into any of the current 

groups, and put them into all compatible groups. 

3. Repeat until the list is empty: 

3.1. Pick a location from the list with the fewest Don’t Care bits. 

3.2. The value for the group equals the value for the picked location, but with all 

Don’t Care bits converted to “0” or “1”.  These bits are converted iteratively, 

converting to the value that is most compatible with other locations. 

3.3. Add all locations compatible with this value to the group.  If they are on the 

unassigned list, remove them. 

We also need to modify other steps of the configuration compression algorithm.  First, 

we present the modified algorithm: 

1. Apply the Don’t Care discovery algorithm to find Don’t Cares.  Group the address 

data pairs by using our grouping algorithm.  Mark the address locations specified 
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in given .cal file as “unoccupied”.  Mark the address locations not specified in the 

.cal file, but used in the backtrace, as “occupied”. 

2. Sort the groups in decreasing order of the number of addresses unoccupied in that 

group. 

3. Pick the first group and write the addresses in the group to the Espresso input file 

as part of the On set. 

4. Write all “unoccupied” addresses to the Espresso input file as part of the Don’t 

Care set. 

5. Write all addresses marked “occupied”, yet with a value compatible with the 

group, to the Espresso input file as part of the Don’t Care set. 

6. Run Espresso. 

7. Pick the cube from the Espresso output that covers the most unoccupied addresses 

in the first group and add it to the compressed configuration file.  Mark all covered 

addresses as “occupied”.  

8. If the cube did not cover all of the addresses in the group, reinsert the group into 

the sorted list. 

9. If any addresses remain unoccupied, go to Step 2. 

This Don’t Care discovery algorithm has several classes of locations: configured, 

untouched, and initialized.  Configured locations are those whose value is set in the 

input .cal file, and our algorithm will generate a write to set these values.  Untouched 

locations, which are not found in either the backtrace or the .cal file, can be viewed as 

either Don’t Touch, if these unused cells may be used for other functions, or Don’t 

Care, if the cells will be left unused.  Initialized locations are locations that are not set 

in the .cal file, but are discovered to be important during backtracing.  Thus, the 

initialization value must be used.  Our algorithm handles these locations as potential 
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group members marked as “occupied”.  As a result, compatible values can overwrite 

these locations to achieve better compression, but the algorithm is not required to 

write to these locations if it is not advantageous. 

4.3.3.  Experimental Results 
The results are shown in Table 4.1 (as well as in Figure 4.4).  The size of the initial 

circuit is given in the “Input size” column.  This size includes all writes required to 

configure the FPGA, including both compressible writes to the array, as well as non-

compressible control register writes.  The “Ctrl” column represents the number of non-

compressible writes, and is a fixed overhead for both the original and compressed file.  

The results of the compressed version achieved by our original algorithm are shown in 

the column “Original Compression”.  The results of the compressed version by our new 

algorithm are shown in the column “New algorithm”, with unspecified locations 

considered as Don’t Touch (the configuration bits for these locations cannot be 

changed) or Don’t Care depending on the details of the use of these configurations.   

 

 

 

Table 4.1.  The results of the compression algorithms. 
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Original compression algorithm New algorithm (Don’t Touch) New algorithm (Don’t Care) Bench-
mark 

Input 
size 

Ctrl 

Cnfg Wcrd Ratio1 Ratio2 Cnfg Wcrd Ratio1 Ratio2 Cnfg Wcrd Ratio1 Ratio2 

Counter 199 40 53 13 53.2% 41.5% 29 5 37.2% 21.4% 22 4 33.2% 16.4% 

parity 208 16 9 3 13.5% 6.3% 6 2 11.5% 4.2% 6 2 11.5% 4.2% 

Add4 214 40 43 14 45.3% 32.7% 24 7 33.2% 17.8% 16 6 29.0% 12.6% 

zero32 238 42 12 3 23.9% 7.7% 8 3 22.3% 5.6% 6 3 21.4% 4.5% 

adder32 384 31 28 14 19.0% 11.9% 20 13 16.7% 9.3% 20 13 16.7% 9.3% 

Smear 696 44 224 37 43.8% 40.0% 150 36 33.0% 28.5% 121 32 28.3% 23.5% 

Add4rm 908 46 473 45 62.1% 60.1% 279 78 44.3% 41.4% 203 65 34.6% 31.1% 

Gray 1201 44 530 74 53.9% 52.2% 378 53 39.5% 37.3% 311 44 33.2% 30.4% 

Top 1367 70 812 87 70.8% 69.3% 531 65 48.7% 46.0% 419 57 39.9% 36.7% 

demo 2233 31 423 91 24.4% 23.3% 281 77 17.4% 16.3% 241 66 15.1% 13.9% 

ccitt 2684 31 346 84 17.2% 16.2% 235 55 12.0% 11.0% 204 50 10.6% 9.6% 

t 5819 31 834 192 18.2% 17.7% 567 176 13.3% 12.8% 492 162 11.8% 11.3% 

correlat 11011 38 1663 225 17.4% 17.2% 1159 187 12.6% 12.3% 1004 176 11.0% 10.8% 

Totals:               

w/ctrl 27162   6836 (25.2%)   4928 (18.1%)   4249 (15.6%)  

w/o ctrl 26658   6332 (23.8%)   4424 (16.6%)   3745 (14.0%)  

 

The number of writes to configure the logic array is shown in the column “Cnfg”, the 

number of Wildcard Register writes is shown in “Wcrd”, and “Ratio1” is the ratio of the 

total number of writes (the summation of “Ctrl”, “Cnfg” and “Wcrd”) to the size of the 

input configurations.  Notice that the “Ctrl” writes represent a fixed startup cost that can 

often be ignored during Run-time reconfiguration.  Thus, to reflect the compression 

ratio without this initial startup cost, we use “Ratio2”, which equals to (“Cnfg” + 

“Wcrd”)/(“Input size” – “Ctrl”), to represent the compression ratio for the compressible 

parts of the circuits.  In the last two rows, the total number of writes and compression 

ratios of all benchmarks are calculated for two cases, with and without counting the 

“Ctrl” writes.  As can be seen, the use of  Don’t Care discovery as pre-processing can 

improve the average compression factor from 4 to 7.   
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Figure 4.4:  Experimental results of the compression algorithms 

4.4  Virtex Compression with Don’t Cares 
Although Xilinx does not disclose the information necessary to discover Don’t Cares in 

the Virtex applications, we can still evaluate the potential impact of the Don’t Cares for 

Virtex compression.  In order to make an estimate, we randomly turn some bits of the 

data stream into Don’t Cares and bound the impact of Don’t Cares on our Readback 

algorithm.   

In practice, the discovered Don’t Care bits need to be turned to ‘0’ or ‘1’ to produce a 

valid configuration bit-stream.  The way that the bits are turned affects the frame 

sequence and thus the compression ratio.  Finding the optimal way to turn the bits takes 

exponential time.  We have used a simple greedy approach to turn these bits to create an 

upper-bound for our Readback algorithm.  The configuration sequence graph is built 

taking into account the Don’t Cares.  We greedily turn the Don’t Care bits into ‘0’ or ‘1’ 

to find the best matches.  Note that once a bit is turned, it can no longer be used as a 
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Don’t Care.  To discover the lower-bound, we do not turn the Don’t Care bits; thus, they 

can be used again to discover better matches. 
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Figure 4.5:  The effect of Don’t Cares on benchmarks in Table 3.2 for Virtex 
compression. 

Figure 4.5 demonstrates the potential effect of Don’t Cares over the benchmarks listed 

in Table 3.2.  The X-axis is the percentage of the don’t cares we randomly create and the 

Y-axis is the normalization over the results without considering Don’t Cares.  As can be 

seen in Figure 4.5, by using upper-bound approach a factor of 1.3 improvement can be 

achieved on applications containing 30% Don’t Cares, while a factor of 2 improvement 

can be achieved using the lower-bound approach.   

4.5  Summary 
Lossy approaches can be applied to achieve better configuration compression.  

However, the configuration changed by a lossy compression must generate same 

computational results as the original one and must not damage the reconfigurable 

device.  In this chapter, we have presented an efficient lossy approach, called Don’t 

Care discovery. 
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Realizing that Don’t Cares increase regularities, our Don’t Care discovery technique 

backtraces important locations starting from the outputs, generating a new 

configuration.  A subset of the original configuration, this new configuration discovers 

the locations that are sufficient to produce the correct computation.  All other locations 

can be treated as Don’t Cares, increasing regularities within the configuration data.  A 

significant improvement in compression ratios is achieved by combining this technique 

with our lossless techniques presented in Chapter 3.   



C h a p t e r  5  

Configuration Caching 

Configuration caching — the process of determining which configurations that are 

retained on the reconfigurable hardware until they are required again -- is another 

technique to reduce reconfiguration overhead.  However, the limited the on-chip 

memory and the non-uniform configuration latency add complexity to decide which 

configurations to retain to maximize the odds that the required data is present in the 

cache.  In this chapter, we present new caching algorithms targeted to a number of 

different FPGA models.   

5.1  Configuration Caching Overview 
Caching configurations on an FPGA is similar to caching instructions or data in a 

general memory.  It retains the configurations on reconfigurable hardware so the amount 

of data that needs to be transferred to the chip can be reduced.  In configuration caching, 

we view the area of the FPGA as a cache.  If this cache is large enough to hold more 

than one computation, configuration cache management techniques can be used to 

determine when configurations should be loaded and unloaded to best minimize overall 

reconfiguration times.  

In a general-purpose computational system, caching is an important approach to hide 

memory latency by taking advantage of two types of locality: spatial locality and 

temporal locality.  Spatial locality states that items whose addresses are near one another 

tend to be referenced close together in time.  Temporal locality addresses the tendency 

of recently accessed items to be accessed again in the near future.  These two localities 

also apply to the caching of configurations for reconfigurable systems.  However, the 
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traditional caching approaches for general-purpose computational systems are unsuited 

to configuration caching for the following reasons: 

1) In general-purpose systems, the data loading latency is fixed, because the block 

represents the atomic data transfer unit; in reconfigurable systems, the loading 

latency of configurations may vary due to non-uniform configuration sizes.  This 

variable latency factor could have a great impact on the effectiveness of caching 

approaches.  In traditional memory caching, frequently accessed data items are kept 

in the cache in order to minimize the memory latency.  However, this might not be 

true in reconfigurable systems because of the non-uniform configuration latency.  

For example, suppose that we have two configurations with latencies 10ms and 

1000ms, respectively.  Even though the first configuration is executed 10 times as 

often as the second, the second is likely to be cached in order to minimize the total 

configuration overhead.   

2) In configuration Caching, the large size of each configuration means that only a 

small number of configurations can be retained on-chip.  This makes the system 

more likely to suffer from the “thrashing problem”, in which configurations are 

swapped excessively between the configuration memory and the reconfigurable 

device.   

The challenge in configuration caching is to determine which configurations should 

remain on the chip and which should be replaced when reconfiguration occurs.  An 

incorrect decision will fail to reduce reconfiguration overhead and can lead to a much 

higher overhead than a correct decision.  Non-uniform configuration latency and the 

small number of configurations that reside simultaneously on the chip increase the 

complexity of this decision.  Both frequency and latency factors of configurations need 

to be considered to assure the highest reconfiguration overhead reduction.  Specifically, 

in certain situations retaining configurations with high latency is better than keeping 

frequently required configurations that have lower latency.  In other situations, keeping 
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configurations with high latency and ignoring the frequency factor results in thrashing 

between other frequently required configurations because they cannot fit in the 

remaining area.  This switching causes reconfiguration overhead that would not have 

occurred if the configurations with high latency but low frequency were unloaded.   

In addition, the different features of various reconfigurable models add complexity to 

configuration caching.  The specific architecture and control structure of each 

reconfigurable model require unique caching algorithms.   

5.2  Reconfigurable Models Review 
In order to explore the best configuration architecture, we now evaluate five 

reconfigurable models discussed in Chapter 2.   

For a Single Context FPGA, the whole chip area must be reconfigured during each 

reconfiguration.  Even if only a small portion of the chip needs to reconfigure, the whole 

chip is rewritten during the reconfiguration.  Configuration caching for the Single 

Context model allocates multiple configurations that are likely to be accessed near in 

time into a single context to minimize switching of contexts.  By caching configurations 

in this way, the reconfiguration latency is amortized over the configurations in a context.  

Since the reconfiguration latency for a Single Context FPGA is fixed (based on the total 

amount of configuration memory), minimizing the number of times the chip is 

reconfigured will minimize the reconfiguration overhead.   

The configuration mechanism of the Multi-Context model is similar to that of the Single 

Context FPGA.  However, instead of having one configuration stored in the FPGA, 

multiple complete configurations are stored.  Each complete configuration can be 

viewed as multiple configuration memory planes contained within the FPGA.  For the 

Multi-Context FPGA, the configuration can be loaded into any of the contexts.  When 

needed, the context containing the required configuration is switched to control the logic 

and interconnect plane.  Compared to the configuration loading latency, the single cycle 
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configuration switching latency is negligible.  Because every SRAM context can be 

viewed as a Single Context FPGA, the methods for allocating configurations onto 

contexts for the Single Context FPGA could be applied.   

For the Partial Run-Time Reconfigurable (PRTR) FPGA, the area that is reconfigured is 

just the portion required by the new configuration, while the rest of the chip remains 

intact.  Unlike the configuration caching for the Single Context FPGA, where multiple 

configurations are loaded to amortize the fixed reconfiguration latency, the 

configuration caching method for the PRTR is to load and retain configurations that are 

required rather than to reconfigure the whole chip.  The overall reconfiguration 

overhead is the summation of the reconfiguration latency of the individual 

reconfigurations.  Compared to the Single Context FPGA, the PRTR FPGA provides 

greater flexibility for performing reconfiguration.  

Current PRTR systems are likely to suffer from “thrashing problems” when two or more 

frequently used configurations occupy overlapping locations in the array.  Simply 

increasing the size of the chip will not alleviate this problem.  However, the Relocation 

model [Compton00], which dynamically allocates the position of a configuration on the 

FPGA at run-time instead of at compile time, can minimize its impact.   

The Relocation + Defragmentation model (R+D model) can significantly improve 

hardware utilization by collecting the small unused fragments into a single large one.  

This allows more configurations to be retained on the chip, increasing the hardware 

utilization and thus reducing the reconfiguration overhead.  For example, Figure 5.1 

shows three configurations currently on-chip with two small fragments.  Without 

defragmentation, one of the three configurations has to be replaced when Configuration 

4 is loaded.  However, as shown in the right side of Figure 5.1, by pushing 

Configurations 2 and 3 upward, the defragmentor produces one single fragment that is 

large enough to hold Configuration 4. Notice that the previous three configurations are 
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still present, and therefore the reconfiguration overhead caused by reloading a replaced 

configuration can be avoided.  

Configuration 1

Configuration 2

Configuration 3

Configuration 1

Configuration 2

Configuration 3

Configuration 4

Configuration 4

(a) (b)

Figure 5.1:  An example illustrating the effect of defragmentation.  (a) The two small 
fragments are located between configurations, and neither of them is large enough to 
hold Configuration 4.  (b) After defragmentation, Configuration 4 can be loaded without 
replacing any of the three other configurations. 

5.3  Experimental Setup 
In order to investigate the performance of configuration caching for the five different 

models presented above, we developed a set of caching algorithms for each model.  A 

fixed amount of hardware resources (in the form of overall area) is allocated to each 

model.  To conduct the evaluation, we must perform three steps.  First, for each model, 

the capacity equation must be derived for a given architecture model and a given area.  

Since the number of programming bits represent the maximum amount of the 

configuration information that a model can retain, the number of programming bits is 

calculated to represent the capacity of each model.  Second, we test the performance of 

the algorithms for each model by generating a sequence of configuration accesses from 

an execution profile of each benchmark.  Third, for each model, caching algorithms are 

executed on the configuration access sequence, and the configuration overhead for each 

algorithm is measured. 
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5.4.  Capacity Analysis 
Layout for the programming structure of each reconfigurable model is required to carry 

out capacity analysis.  Our fellow graduate student Katherine Compton created layouts 

of all five reconfigurable models using the Magic tool.  The area models are based on 

the layout of tileable structures that composed the necessary memory system, and the 

sizes (in lambda2) are obtained for the tiles [Compton00].   

The Single Context FPGA model is built from shift chains or RAM structures.  The 

PRTR FPGA, however, requires more complex hardware.  The programming bits are 

held in five-transistor SRAM cells that form a memory array similar to traditional RAM 

structures.  Row decoders and column decoders are necessary to selectively write to the 

SRAM cells.  Large output tri-state drivers are also required near the column decoder to 

magnify the weak signals provided by the SRAM cells when reading the configuration 

data off the array.  The Multi-Context FPGA is based on the information found in 

[Trimberger97], where each context is similar to a single plane of a PRTR FPGA.  A 

few extra transistors and a latch per active programming bit are required to select 

between the four contexts for programming and execution.  Additionally, a context 

decoder must be added to determine which of those transistors should be enabled. 

The PRTR design forms the basis of the PRTR with Relocation FPGA.  A small adder 

and a small register, both equal in width to the number of address bits for the row 

address of the memory array, were added for the new design.  This allows all 

configurations to be generated so that the "uppermost" address is 0.  Relocating the 

configuration is therefore as simple as loading an offset into the offset register, and 

adding this offset to the addresses supplied when loading a configuration.  Finally, the 

R+D model is similar to the PRTR with Relocation, with the addition of a row-sized set 

of SRAM cells that forms a buffer between the input of the programming information 

and the memory array itself.   
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In order to account for the size of the logic and interconnect in these FPGAs, we assume 

that the programming layer of a Single Context FPGA uses approximately 25% of the 

area of the chip.  All other architectures are assumed to require this same logic and 

interconnect area per bit of configuration (or active configuration in the case of a Multi-

Context device).  See [Compton00] for calculation details. 

As mentioned before, all models are given the same total silicon.  However, due to the 

differences in the hardware structures, the number of programming bits, and thus the 

capacity of the device, vary among models.  For example, according to [Compton00], a 

Multi-Context model with one megabit of active configuration information and three 

megabits of inactive information has same area as a PRTR with 2.4 megabits of 

configuration information.  Thus, the PRTR devices have 2.4 times as many logic 

blocks as the Multi-Context device, but require 40% less total configuration space. 

5.5  Configuration Sequence Generation  
We use two sets of benchmarks to evaluate the caching algorithms for FPGA models.  

One set of benchmarks was compiled and mapped to the Garp architecture [Hauser97], 

where the computational intensive loops of C programs are extracted automatically for 

acceleration on a tightly-coupled dynamically reconfigurable coprocessor [Callahan99].  

The other set of benchmarks was created for the Chimera architecture [Hauck97].  In 

this system, portions of the code that can accelerate computation are mapped to the 

reconfigurable coprocessor [Hauck98].  In order to evaluate the algorithms for different 

FPGA models, we need to create an RFUOP access trace for each benchmark, which is 

similar to a memory access string used for memory evaluation.  

The RFUOP sequence for each benchmark was generated by simulating the execution 

of the benchmark.  During the simulated execution, the RFUOP ID is output when an 

RFUOP is encountered.  Once the execution ends, an ordered sequence of the execution 

of RFUOPs is created.  In the Garp architecture, each RFUOP in the benchmark 
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programs has size information in term of number of rows occupied.  For Chimaera, we 

assume that the size of an RFUOP is proportional to the number of instructions mapped 

to that RFUOP.   

5.6  Configuration Caching Algorithms 
For each FPGA model, we develop realistic algorithms that can significantly reduce the 

reconfiguration latencies.  In order to evaluate the performance of these realistic 

algorithms, we also attempt to develop tight lower-bound algorithms by using complete 

application execution information.  For the models where true lower-bound algorithms 

are unavailable, we develop algorithms that we believe are near optimal. 

We divide our algorithms into three categories: run-time algorithms, general off-line 

algorithms, and complete prediction algorithms.  The classification of the algorithms 

depends on the time complexity and input information needed for each algorithm. 

The run-time algorithms use only basic information on the execution of the program up 

to that point, and thus must make guesses as to the future behavior of the program.  This 

is similar to run-time cache management algorithms such as LRU.  Because of the 

limited information at run-time, a prediction of keeping a configuration or replacing a 

configuration may not be correct, and can even cause higher reconfiguration overhead.  

Therefore, we believe that these realistic algorithms will provide an upper-bound on 

reconfiguration overhead, and for some domains better predictors could be developed 

that improve over these results. 

The complete prediction algorithms use complete, exact execution information of the 

application, and can use computationally expensive approaches.  These algorithms 

attempt to search the whole execution stream to lower configuration overhead.  They 

provide the optimal (lower-bound) or near optimal solutions.  In some cases, these 

algorithms relax restrictions on system behavior in order to make the algorithm a true 

(but unachievable) lower-bound. 
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The general off-line algorithms use profile information of each application, with 

computationally tractable algorithms.  They represent realistic algorithms for the case 

where static execution information is available, or approximate algorithms where highly 

accurate execution predictions can be developed.  These algorithms will typically 

perform between the run-time and complete prediction algorithms in terms of quality, 

and are realistic algorithms for some situations. 

5.7  Single Context Algorithms 
In the next two sub-sections, we present a near lower-bound algorithm (based on 

simulated annealing), and a more realistic general off-line algorithm, which uses more 

restricted information.  Note that since there are no run-time decisions in a single 

context device (if a needed configuration is not loaded the only possible behavior is to 

overwrite all currently loaded configurations with the required configuration), we do not 

present a run-time algorithm. 

5.7.1  Simulated Annealing Algorithm for Single Context 

FPGAs 
When a reconfiguration occurs in a Single Context FPGA, even if only a portion of the 

chip needs to be reconfigured, the entire configuration memory store will be rewritten.  

Because of this property, multiple RFUOPs should be configured together onto the chip.  

In this manner, during a reconfiguration a group (context) that contains the currently 

required RFUOP, as well as possibly one or more later required RFUOPs, is loaded.  

This amortizes the configuration time over all of the configurations grouped into a 

context.  Minimizing the number of group (context) loadings will minimize the overall 

reconfiguration overhead.  

It is obvious that the method used for grouping has a great impact on latency reduction; 

the overall reconfiguration overhead resulting from a good grouping could be much 

smaller than that resulting from a bad one.  For example, suppose there are four 
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RFUOPs with equal size and equal configuration latency for a computation, and the 

RFUOP sequence is 1 2 3 4 3 4 2 1, where 1, 2, 3, and 4 are RFUOP IDs.  Given a 

Single Context FPGA that has the capacity to hold two RFUOPs, the number of context 

loads is three if RFUOPs 1 and 2 are placed in the same group (context), and RFUOPs 3 

and 4 are placed in another.  However, if RFUOPs 1 and 3 are placed in the same group 

(context) and RFUOPs 2 and 4 are placed in the other, the number of context loads 

increases to seven. 

In order to create the optimal solution for grouping, one simple method is to create all 

combinations of configurations and then compute the reconfiguration latency for all 

possible groupings, from which an optimal solution can be found.  However, this 

method has exponential time complexity and is therefore not applicable for real 

applications.  In this work, we instead use a Simulated Annealing algorithm to acquire a 

near optimal solution.  For the Simulated Annealing algorithm, we use the exact 

reconfiguration overhead for a given grouping as our cost function, and the moves 

consist of shuffling the different RFUOPs between contexts.  Specifically, at each step 

an RFUOP is randomly picked to move to a randomly selected group; if there is 

insufficient room in that group to hold the RFUOP, RFUOPs in that group are randomly 

chosen to move to other groups.  Once finished, the reconfiguration overhead of the 

grouping is computed by applying the complete RFUOP sequence.  The steps below 

outline the complete algorithm: 

1. While the current temperature is greater than the terminating temperature: 

1.1. While the number of iterations is greater than 0: 

1.1.1.   A candidate RFUOP is randomly chosen along with a randomly selected 

destination group to which the candidate will be moved. 

1.1.2.   After the move, if the total size of the RFUOPs in the destination group 

exceeds the size of the context, a new candidate RFUOP in the 
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destination group is randomly selected.  This RFUOP is then moved to 

any group that can hold it.  This step is repeated until all groups satisfy 

the size constraint. 

1.1.3.   Execute the newly generated grouping on the RFUOP execution 

sequence and calculate the number of times reconfiguration is 

performed.  The reconfiguration overhead, used as the cost function of 

this version of simulated annealing, can be calculated by multiplying the 

number of context switches by the loading latency of a context. 

1.1.4.   The new and the old cost are compared to determine if the move is 

allowed, then the number of iterations is decreased by one.   

1.2.  Decrease the current temperature. 

5.7.2  General Off-line Algorithm for Single Context FPGA 
Although the Simulated Annealing approach can generate a near optimal solution, its 

high computation complexity and the requirement of knowledge of the exact execution 

sequences make this solution unreasonable for most real applications.  We therefore 

propose an algorithm better suited to general-purpose use.  The Single Context FPGA 

requires that the whole configuration memory will be rewritten if a demanded RFUOP 

is not currently on the chip.  Therefore, if two consecutive RFUOPs are not allocated to 

the same group, a reconfiguration will result.  Our algorithm computes the likelihood of 

RFUOPs following one another in sequence and use this knowledge to minimize the 

number of reconfigurations required.  Before we discuss this algorithm further, we first 

present the definition of a “correlate” as used in the algorithm:   

Definition 5.1: Given two RFUOPs and an RFUOP sequence, RFUOP A is said to 

correlate to RFUOP B if in the RFUOP sequence there exists any consecutive 

appearance of A and B.   



                                                                                                                                   - 98 - 

 

For the Single Context FPGA, highly correlated RFUOPs should be allocated to the 

same group.  Therefore, the number of times a context is loaded is greatly decreased, 

minimizing the reconfiguration overhead.  In our algorithm, we first build an adjacency 

matrix of RFUOPs.  Instead of using 0 or 1 as a general adjacency matrix does, the 

degree of correlation of each RFUOP pair (the number of times two RFUOPs are 

adjacent) is recorded.  These correlations can be estimated from expected behavior or 

determined via profiling.  The details of our grouping algorithm are as follows: 

1.   Create COR, where COR[I, J]= number of times RFUOP I correlates to J.   

2.   While any A[I, J] > 0, do:  

2.1. Find I, J such that COR[I, J] + COR[J, I] is maximized;  

2.2. If SIZE[I] + SIZE[J] <= Maximum Context Size;   

2.2.1.   Merge group I and group J and add their sizes; 

2.2.2.   For each group K other than I and J: 

2.2.2.1.   A[I, K] += A[J, K]; A[K, I] += A[K, J]; 

2.2.2.2.  A[J, K] = 0; A[K, J] = 0; 
2.3. A[I, J] = 0; A[J, I] = 0; 
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Figure 5.2:  An example to illustrate the General Off-line algorithm for Single 
Context FPGAs. 
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Figure 5.2 illustrates an example of the General Off-line algorithm.  Each line connects 

a pair of correlated RFUOPs and the number next to each line indicates the degree of the 

correlation.  As presented in the algorithm, we merge the highly correlated groups 

together under the size constraints of the target architecture.  In this example, assume 

that the chip can retain only a maximum of 3 RFUOPs at a time.  In the first grouping 

step we place RFUOP 17 and RFUOP 4 together.  In the second step we add RFUOP 43 

into the group formed in Step 1, since it has a correlation of 30 (15+15) to that group.  

We then group RFUOP 2 and RFUOP 34 together in Step 3, and they cannot be merged 

with the previous group because of the size restriction.  Finally, in the fourth step 

RFUOP 22 and RFUOP 68 are grouped together. 

5.8.  Multi-Context Algorithms 
In this section we present algorithms for multi-context devices.  This includes a 

Complete Prediction algorithm that represents a near lower-bound, and a General 

Offline algorithm that couples the Single Context General Offline algorithm with a run-

time replacement policy.   

5.8.1  Complete Prediction Algorithm for Multi-Context FPGAs 
A Multi-Context FPGA can be regarded as multiple Single Context FPGAs, since the 

atomic unit that must be transferred from the host processor to the FPGA is a full 

context.  During a reconfiguration, one of the inactive contexts is replaced.  In order to 

reduce the reconfiguration overhead, the number of reconfigurations must be reduced.  

The factors that could affect the number of reconfigurations are the configuration 

grouping method and the context replacement policies. 

We have discussed the importance of the grouping method for the Single Context 

FPGA, where an incorrect grouping may incur significantly larger overhead than a good 

grouping.  This is also true for the Multi-Context FPGA, where a context (i.e. a group of 

configurations) remains the atomic reconfiguration data transfer unit.  The 
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reconfiguration overhead caused by the incorrect grouping remains very high even 

though the flexibility provided by the Multi-Context FPGA can reduce part of the 

overhead.  

As mentioned previously, even the perfect grouping will not minimize reconfiguration 

overhead if the policies used for context replacement are not considered.  A context 

replacement policy specifies which context should be replaced once a demanded 

configuration is not present.  As in the general caching problem, where frequently used 

blocks should remain in the cache, the contexts that are frequently used should be kept 

configured on the chip.  Furthermore, if the atomic configuration unit (context) is 

considered as a data block, we can view the Multi-Context FPGA as a general cache and 

apply standard cache algorithms.   

There is an existing optimal replacement algorithm, called the Belady [Belady66] 

algorithm for the Multi-Context FPGA.  The Belady algorithm is well known in the 

operating systems and computer architecture fields.  It states that the fewest number of 

replacements can be achieved provided the memory access sequence is known.  This 

algorithm is based on the idea that a data item is most likely to be replaced if it is least 

likely to be accessed in the near future.  For a Multi-Context FPGA, the optimal context 

replacement can be achieved as long as the context access string is available.  Since the 

RFUOP sequence is known, it is trivial to create the context access string by 

transforming the RFUOP sequence.   

We integrate the Belady algorithm into the simulated annealing grouping method used 

in the Single Context model to achieve the near optimal solution.  Specifically, for each 

grouping generated, the number of the context replacements determined by the Belady 

algorithm is calculated as the cost function of the Simulated Annealing algorithm.  The 

steps below outline the Complete Prediction algorithm for the Multi-Context model: 
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1. Traverse the RFUOP sequence, and for each RFUOP appearing, change the RFUOP 

ID to the corresponding group ID.  This will result in a context access sequence.   

2. Initially assign each RFUOP to a group so that, for each group, the total size of all 

RFUOPs is smaller than or equal to the size of the context.  Set up parameters of 

initial temperature and the number of iterations under each temperature. 

3. While the current temperature is greater than the terminating temperature: 

3.1. While the number of iterations is greater than 0:  

3.1.1. A candidate RFUOP is randomly chosen along with a randomly selected 

destination group to which the candidate will be moved. 

3.1.2. After the move, if the total size of the RFUOPs in the destination group 

exceeds the size of the context, a new candidate RFUOP in the destination 

group is randomly selected.  This RFUOP is then moved to any group that 

can hold it.  This step is repeated until all groups satisfy the size constraint. 

3.1.3. Apply the Belady algorithm to the context access string.  Increase the total 

number of context loads by one if a replacement occurs.  This creates the 

new cost of the simulated annealing. 

3.1.4. Compare the new cost to the old cost to determine if the move is allowed, 

then decrease the number of iterations by one. 

3.2. Decrease the current temperature. 

The reconfiguration overhead for a Multi-Context FPGA is therefore the number of 

context loads multiplied by the configuration latency for a single context.  As mentioned 

above, the factors that can affect the performance of configuration caching for the Multi-

Context FPGA are the configuration grouping and the replacement policies.  Since the 

optimal replacement algorithm is integrated into the simulated annealing approach, this 

algorithm will provide the near optimal solution.  We consider this to be a complete 

prediction algorithm. 
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5.8.2  Least Recently Used (LRU) Algorithm 
The LRU algorithm is a widely used memory replacement algorithm in operating 

system and architecture fields.  Unlike the Belady algorithm, the LRU algorithm does 

not require future information to make a replacement decision.  Because of the 

similarity between the configuration caching and the data caching, we can apply the 

LRU algorithm for the Multi-Context FPGA model.  The LRU is more realistic than the 

Belady algorithm, but the reconfiguration overhead incurred is higher.  Its basic steps 

are outlined below: 

1. Apply the Single Context General Off-line algorithm to acquire a final grouping of 

RFUOPs into contexts, and give each group formed its own ID. 

2. Traverse the RFUOP sequence, and for each RFUOP appearing, change the RFUOP 

ID to the corresponding group ID.  This generates a context access sequence.   

3. Apply the LRU algorithm to the context access string.  Increase the total number of 

context loads by one when a replacement occurs. 

5.9  Algorithms for the PRTR FPGAs 
Compared to the Single Context FPGA, an advantage of the PRTR FPGA is its 

flexibility of loading and retaining configurations.  Any time a reconfiguration occurs, 

instead of loading the whole group only a portion of the chip is reconfigured, while the 

other RFUOPs located elsewhere on the chip remain intact.  The basic idea of 

configuration caching for PRTR is to find the optimal location for each RFUOP.  This is 

to avoid the thrashing problem, which could be caused by the overlap of frequently used 

RFUOPs.  In order to reduce reconfiguration overhead for the PRTR FPGA, we need to 

consider two major factors: the reconfiguration frequency and the latency of each 

RFUOP.  Any algorithm that attempts to lower only one factor will fail to produce an 

optimal solution because the reconfiguration overhead is the product of the two.  A 
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Complete Prediction algorithm that can achieve a near optimal solution is presented 

below. 

5.9.1  A Simulated Annealing Algorithm for the PRTR FPGA 
The purpose of annealing for the PRTR FPGA is to find the optimal mapping for each 

configuration such that the reconfiguration overhead is minimized.  For each step, a 

randomly selected RFUOP is assigned to a random position on-chip, and the exact 

reconfiguration overhead is then computed.  Before presenting the full Simulated 

Annealing algorithm, we first define “conflict” as used in our discussion. 

Definition 2: Given two configurations and their positions on the FPGA, RFUOP A is 

said to be in conflict with RFUOP B if any part of A overlaps with any part of B.  

We now present our Full Simulated Annealing algorithm for the PRTR FPGA. 

1. Assign a random position to each RFUOP.  Set up the parameters of initial 

temperature, number of iterations under each temperature, and terminating 

temperature.   

2. While the current temperature is greater than the terminating temperature:  

2.1. While the number of iterations is greater than 0: 

2.1.1.   A randomly selected RFUOP is moved to a random location on-chip. 

2.1.2.   Traverse the RFUOP sequence.  If the demanded RFUOP is not currently 

on the chip, load the RFUOP to the specified location, and increase the 

overall reconfiguration latency by the loading latency of the RFUOP.  If 

the newly loaded RFUOP conflicts with any other RFUOPs on the chip, 

those conflicted RFUOPs are removed from the chip.  

2.1.3.   Let the new cost be equal to the overall RFUOP overhead and determine 

whether the move is allowed.  Decrease the number of iterations by one. 
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2.2. Decrease the current temperature.  

Finding the location for each RFUOP is similar to the placement problem in physical 

design, where the simulated annealing algorithm usually provides good performance.  

Therefore, our Full Simulated Annealing algorithm should create a near optimal 

solution. 

5.9.2  An Alternate Annealing Algorithm for the PRTR FPGA 
In the Full Simulated Annealing algorithm presented in the last section, the computation 

complexity is very high, since the RFUOP sequence must be traversed to compute the 

overall reconfiguration overhead after every move.  Obviously, a better algorithm is 

needed to reduce the running time.  Again, as for the Single Context FPGA, an 

adjacency matrix of size N×N is built, where N is the number of RFUOPs.  The main 

purpose of the matrix is to record the possible conflicts between RFUOPs.  In order to 

reduce the reconfiguration overhead, the conflicts that create larger configuration 

loading latency are distributed to non-overlapped locations.  This is done by modifying 

the cost computation step of the previous algorithm.  To clarify, we present the full 

algorithm: 

1. Create an N × N matrix, where N is the number of RFUOPs.  All values of A[i, j] are 

set to be 0, where 0 ≤ i, j ≤ N-1. 

2. Traverse the RFUOP sequence.  For any RFUOP j that appears between two 

consecutive appearances of an RFUOP i, A[i, j] is increased by 1.  Notice that 

multiple appearances of an RFUOP j only count once between two consecutive 

appearances of an RFUOP. 

3. Assign a random position for each RFUOP.  Set up parameters of initial 

temperature, the number of iterations under each temperature, and terminating 
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temperature.  An N × N adjacency matrix B is created.  All values of B[i, j] are set to 

be 0, where 0 ≤ i, j ≤ N-1. 

4. While the current temperature is greater than the terminating temperature: 

4.1. While the number of iterations is greater than 0: 

4.1.1.   A randomly selected RFUOP is reallocated to a random location on-chip.  

After the move, if two RFUOPs i and j conflict, set B[i, j] and B[j, i] to 

be 1. 

4.1.2.   For any B[i, j]=1, multiply the value of A[i, j] by the RFUOP loading 

latency of j.  The new cost is computed as the summation of the results 

of all the products.  

4.1.3.   Determine whether the new move is allowed and decrease the number of 

iterations by one.   

4.2.  Decrease the current temperature. 

Generally, the total number of RFUOPs is much less than the length of the RFUOP 

sequence.  Therefore, by looking up the conflict matrices instead of the whole 

configuration sequence, the time complexity can be greatly decreased.  Still, one final 

concern is the quality of the algorithm because the matrix of potential conflicts derived 

from the sequence is used rather than using the complete configuration sequence.  Even 

the matrix may not represent the conflicts exactly; however, it gives an estimate of the 

potential conflicts between any two configurations. 

5.10  Algorithms for the PRTR R+D FPGAs 
For the PRTR R+D FPGA, the replacement policies have a great impact on reducing the 

reconfiguration overhead.  This is due to the high flexibility available for choosing 

victim RFUOPs when a reconfiguration is required.  With relocation, an RFUOP can be 

dynamically remapped and loaded to an arbitrary position.  With defragmentation, a 
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demanded RFUOP can be loaded as long as there is enough room on the chip, since the 

small fragments on-chip can be merged.  In the next sub-sections we present the 

algorithms of Relocation + Defragmentation, which include a Lower-bound algorithm 

that relaxes restrictions in the system, a General Off-line algorithm integrating the 

Belady algorithm, and two Run-time algorithms using different approaches. 

5.10.1  A Lower-bound Algorithm for the PRTR R+D FPGAs 
The major problems that prevent us from acquiring an optimal solution to configuration 

caching are the different sizes and loading latencies of RFUOPs.  Generally, the loading 

latency of an RFUOP is proportional to the size of the configuration. 

The Belady algorithm gives the optimal replacement when the memory access sequence 

is known and the data transfer unit is uniform.  Given the RFUOP sequence for the 

PRTR R+D model, we can achieve a lower-bound for our problem if we assume that a 

portion of any RFUOP can be transferred.  Under this assumption, when a 

reconfiguration occurs, only a portion of an RFUOP might be replaced while the other 

portion is still retained on-chip.  Once the removed RFUOP is needed again, only the 

missing portion (possibly the whole RFUOP) is loaded instead of loading the entire 

RFUOP.  We present the Lower-bound algorithm as follows: 

1. If a required RFUOP is not on the chip, do the following: 

1.1. Find the missing portion of the RFUOP.  While the missing portion is greater 

than the free space on the chip:  

1.1.1.   For all RFUOPs that are currently on the chip, identify a victim RFUOP 

whose next appearance is later than the appearances of all others. 

1.1.2.   Let R = the size of the victim + the size of the free space – the missing 

portion. 
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1.1.3.   If R is greater than 0, a portion of the victim that equals R is retained on-

chip while the other portion is replaced and added to the free space.  

Otherwise, add the space occupied by the victim to the free space.  

1.2. Load the missing portion of the demanded RFUOP into the free space.  Increase 

the reconfiguration overhead by the loading latency of the missing portion. 

5.10.2  A General Off-line Algorithm for the PRTR R+D FPGAs 
Since the Belady algorithm can provide a lower-bound for the fixed size problem, some 

ideas can be transferred into a more realistic off-line algorithm.  As in the Belady 

algorithm, for all RFUOPs that are currently on-chip, we identify the one that will not 

appear in the RFUOP sequence until all others have appeared.  But instead of replacing 

that RFUOP, as in the Belady algorithm, the victim configuration is selected by 

considering the factors of size and loading latency.  Before we discuss the algorithms 

further, we first define a “reappearance window” as used in our algorithms. 

Definition 5.3: A reappearance window W is the shortest subsequence of the 

reconfiguration stream, starting at the current reconfiguration, that contains an 

occurrence of all currently loaded configurations.  If a configuration does not occur 

again, the reappearance window is the entire remaining reconfiguration stream. 

We now present our General Off-line algorithm for the PRTR R+D FPGA: 

1. If a demanded RFUOP is not currently on the chip: 

1.1. While there is not enough room to load the RFUOP, do the following:  

1.1.1.   Find the reappearance window W. 

1.1.2.   For each RFUOP, calculate the total number of appearances in W 

1.1.3.   For each RFUOP, multiply the loading latency and the number of 

appearances; replace the RFUOP with the smallest value. 
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1.2. Load the demanded RFUOP.  Increase the overall latency by the loading 

latency of the RFUOP. 

Steps 1.1.1 – 1.1.3 specify the rules to select the victim RFUOP.  Counting the number 

of appearances of each RFUOP obtains the frequency of the use of the RFUOP to in the 

near future.  As mentioned, this is not adequate to determine a victim RFUOP, because 

an RFUOP with lower frequency may have much higher configuration latency.  

Therefore, by multiplying the latency and the frequency, we can find the possible 

overall latency in the near future if the RFUOP is replaced. 

5.10.3  LRU Algorithm for the R+D FPGAs 
Since the PRTR R+D can be viewed as a general memory model, we can use an LRU 

algorithm for our reconfiguration problem.  Here, we traverse the RFUOP sequence, and 

when a demanded RFUOP is not on-chip and there is insufficient room to load the 

RFUOP, the least recently used on-chip RFUOP is selected to be removed.  Although 

simple to implement, this algorithm may display poor quality because it ignores the 

sizes of the RFUOPs. 

5.10.4  Penalty-oriented Algorithm for the PRTR R+D FPGAs 
Since the non-uniform size of RFUOPs is not considered a factor in LRU algorithm, a 

high reconfiguration overhead could potentially result.  For example, consider an 

RFUOP sequence 1 2 3 1 2 3 1 2 3 …; RFUOPs 1, 2 and 3 have sizes of 1000, 10 and 

10 programming bits respectively.  Suppose also that the size of the chip is 1010 

programming bits.  According to the LRU algorithm, the RFUOPs are replaced in same 

order of the RFUOP sequence.  It is obvious that configuration overhead will be much 

smaller if RFUOP 1 is always kept on the chip.   

This does not suggest that we always want to keep larger RFUOPs on the chip as 

keeping larger configurations with low reload frequency may not reduce the 
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reconfiguration overhead.  Instead, both size and frequency factors should be considered 

in the algorithm.  Therefore, we use a variable “credit” to determine the victim 

[Young94].  Every time an RFUOP is loaded onto the chip, its credit is set to its size.  

When a replacement occurs, the RFUOP with the smallest credit is evicted from the 

chip, and the credit of all other RFUOPs on-chip is decreased by the credit of the victim.  

To make this clearer, we present the algorithm as follows: 

1. If a demanded RFUOP is currently on the chip, set its credit equal to its size.  Else 

do the following: 

1.1. While there is not enough room to load the required RFUOP: 

1.1.1.   For all RFUOPs on-chip, replace the one with the smallest credit and 

decrease the credit of all other RFUOPs by that value.  

1.2. Load the demanded RFUOP and set its credit equal to its size. 

5.11  A General Off-line Algorithm for the Relocation FPGAs 
One major advantage that the PRTR R+D FPGA has over the PRTR with Relocation is 

the ability to have higher utilization of the space on the reconfigurable hardware.  Any 

small fragments can contribute to one larger area, so that an RFUOP could possibly be 

loaded without forcing a replacement.  However, for PRTR with only Relocation, those 

fragments could be wasted.  This could cause an RFUOP that is currently on chip to be 

replaced and thus may result in extra overhead if the replaced RFUOP is demanded 

again very soon.  In order to reduce the reconfiguration overhead for this model, the 

utilization of the fragments must be improved.  We present the algorithm as follows: 

1. If a demanded RFUOP is not currently on the chip, do the following. 

1.1. While there is not enough room to load the RFUOP, do the following:  

1.1.1.   Find the reappearance window W. 

1.1.2.   For each RFUOP, calculate the total number of appearances in W. 
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1.1.3.   For each RFUOP, multiply the loading latency by the number of 

appearances, producing a cost. 

1.1.4.   For each RFUOP on-chip, assume that it is to be the candidate victim, 

and identify the adjacent configurations that must also be removed to 

make room for the demanded RFUOP.  Total the costs of all potential 

victims. 

1.1.5.   Identify the smallest sum of each RFUOP.  The victim that produces the 

smallest costs is replaced. 

1.2. Load the demanded RFUOP.  Increase the overall latency by the loading 

latency of the configuration. 

The General Off-line heuristic that applied to the R+D FPGA is also implemented in 

this algorithm.  The major difference for this algorithm is to consider the geometric 

positions of the RFUOPs.  Since the R+D FPGA model has the ability to collect the 

fragments, the RFUOPs are replaced in the increasing order of their costs (load latency 

times appearance in the reappearance window).  However, this scheme does not work 

for the PRTR with Relocation if the victim RFUOPs are separated by other non-victim 

RFUOPs because the system cannot merge the non-adjacent spaces.  Therefore, when 

multiple RFUOPs are to be replaced in the PRTR FPGA with Relocation, these 

RFUOPs must be adjacent or separated only by empty fragments.  Considering this 

geometric factor, the victims to be replaced are adjacent RFUOPs (or those separated by 

fragments) that produce the smallest overall cost.   

5.12  Simulation Results and Discussion 
All algorithms are implemented in C++ on a Sun Sparc-20 workstation.  Figure 5.3 

demonstrates the bounds of Single Context, PRTR, and Multi-Context models.  For each 

benchmark, we first normalize the reconfiguration penalty for each algorithm, then we 

calculate the average for each algorithm. 
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As can be seen in Figure 5.3, the reconfiguration penalties of the PRTR are much 

smaller (64% to 85% smaller) than for the Single Context model.  This is because with 

almost the same capacity, the PRTR model can significantly reduce the average 

reconfiguration latency of the Single Context model without incurring a much larger 

number of reconfigurations.  The Multi-Context model has smaller reconfiguration 

overhead (20% to 40% smaller) than the PRTR when the chip silicon is small.  With a 

small silicon area, the Multi-Context model wins because of its much larger 

configuration area.  When the silicon area becomes larger, the number of conflicts 

incurred in the PRTR model is greatly reduced, and thus the PRTR has almost the same 

reconfiguration penalty as the Multi-Context model.  In fact, the PRTR performs even 

better than the Multi-Context model in some cases.  The Multi-Context device must 

reload a complete context each time, making the per reconfiguration penalty in large 

chips much higher than in the PRTR model.  Since the number of conflicts is small, the 

overall reconfiguration overhead of the PRTR FPGA is smaller than that of the Multi-

Context FPGA.   

Figure 5.3.  Reconfiguration overheads of the Single Context FPGA, the PRTR, and 
the Multi-Context models.  The “low” represents the lower-bound or near optimal 
solution for each model, and the “high” represents the upper-bound.   
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Figure 5.4 shows the reconfiguration overheads of the Relocation model and the R+D 

model.  For the R+D FPGA, the General Off-line algorithm performs almost as well as 

the Lower-bound algorithm in the reconfiguration overhead reduction, especially when 

the chip silicon becomes larger.  Note that the Lower-bound algorithm relaxes the PRTR 

model restrictions by allowing portion of the RFUOPs can be replaced and loaded.  As 

can be seen in Figure 5.4, future information is very important, as the General Off-line 

algorithm for the PRTR with Relocation performs better than both the LRU and the 

Penalty-oriented algorithms for the R+D FPGA.  By only considering the frequency 

factor while ignoring load latency, the LRU algorithm has worse performance than the 

penalty oriented algorithm. 

Figure 5.4:  Reconfiguration overheads for the Relocation and the PRTR R+D FPGA.  
The “Low Reloc + Defrag” represents the lower-bound algorithm for the R+D FPGA.   
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Figure 5.5:  Comparison between the PRTR with Relocation + Defragmentation model 
and the Multi-Context model. 

Figure 5.5 compares the PRTR R+D and the Multi-Context models.  As we can see, 

when the chip silicon is small, the Complete Prediction algorithm for the Multi-Context 

FPGA performs better than the General Off-line algorithm for the R+D FPGA.  

However, as the chip silicon increases, the General Off-line algorithm for the R+D 

FPGA has almost the same ability to reduce the reconfiguration overhead as the 

Complete Prediction algorithm for the Multi-Context FPGA.  In addition, the Penalty-

oriented algorithm (run-time algorithm) for the R+D FPGA performs slightly better than 

the General Off-line algorithm for the Multi-Context FPGA.  

5.13  Summary 
In this chapter, we have presented the first cache management algorithms for 

reconfigurable computing systems.  We have developed new caching algorithms 

targeted at a number of different FPGA models, as well as creating lower-bounds to 

quantify the maximum achievable reconfiguration reductions possible.  For each model, 

we have implemented a set of algorithms to reduce the reconfiguration overhead.  The 

simulation results demonstrate that the reconfiguration overhead of the PRTR is 85% 
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smaller than for the Single Context model.  The Multi-Context model has smaller 

reconfiguration overhead (20% to 40% smaller) than the PRTR when chip silicon is 

small.  When the chip area becomes larger, the PRTR has almost the same 

reconfiguration overhead as the Multi-Context model.  Since the PRTR R+D provide 

higher hardware utilization, the reconfiguration overhead of the PRTR R+D model is 

about factor of 2-3 smaller than the PRTR model.  The reconfiguration overhead of the 

PRTR R+D is slightly smaller than the Multi-Context model.   

 



C h a p t e r  6  

Configuration Prefetching 

As demonstrated in Chapter 5, an FPGA can be viewed as a cache of configurations.  

Prefetching configurations on an FPGA, which is similar to prefetching in a general 

memory system, overlaps the reconfigurations with computation to hide the 

reconfiguration latency.  In this chapter, we present configuration prefetching techniques 

for various reconfigurable models. 

6.1  Prefetching Overview 
Prefetching for standard processor caches has been extensively studied.  Research is 

normally split into data and instruction prefetching.  In data prefetching, the 

organization of a data structure and the measured or predicted access pattern are 

exploited to determine which portions of a data structure are likely to be accessed next.  

The simplest case is array accesses with a fixed stride, where the access to memory 

location N is followed by accesses to (N+stride), (N+2*stride), etc.  Techniques can be 

used to determine the stride and issue prefetches for locations one or more strides away 

[Mowry92, Santhanam97, Zucker98, Callahan91].  For more irregular, pointer-based 

structures, techniques have been developed to prefetch locations likely to be accessed in 

the near future, either by using the previous reference pattern, by prefetching all children 

of a node, or by regularizing data structures [Luk96]. 

Techniques have also been developed for instruction prefetching.  The simplest is to 

prefetch the cache line directly after the line currently being executed [Smith78, Hsu98], 

since this is the next line needed unless a jump or branch intervenes.  To handle such 

branches information can be kept on all previous successors to this block [Kim93], or 
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the most recent successor (“target prefetch”) [Hsu98], and prefetch these lines.  

Alternatively, a look-ahead PC can use branch prediction to race ahead of the standard 

program counter, prefetching along the likely execution path [Chen94, Chen97].  

However, information must be maintained to determine when the actual execution has 

diverged from the lookahead PC’s path, and then restart the lookahead along the correct 

path. 

Unfortunately, many standard prefetching techniques are not appropriate for FPGA 

configurations because of differences between configurations and single instruction or 

data block.  Before we discuss the details of configuration prefetching, we first 

reexamine the factors important to the effectiveness of prefetching for a general-purpose 

system: 

1) Accuracy.  This is the ratio of the executed prefetched instructions or data to the 

overall prefetched instructions or data.  Prefetching accuracy estimates the quality of 

a prefetching technique as a fraction of all prefetches that are useful.  Based on the 

profile or run-time information, the system must be able to make accurate 

predictions on the instructions or data that will be used and fetch them in advance.   

2) Coverage.  This is the fraction of cache misses eliminated by the effectiveness of a 

prefetching technique.  An accurate prefetch technique will not significantly reduce 

the latency without a high coverage. 

3) Pollution.  One side-effect that prefetching techniques produce is that the cache lines 

that would have been used in the future will be replaced by some prefetched 

instructions or data that may not be used.  This is known as cache pollution.   

These issues are even more critical to the performance of configuration prefetching.  In 

general-purpose systems the atomic data transfer unit is a cache block.  Cache studies 

consistently show that the average access time will likely drop when the block size 

increases until it reaches a certain value (usually fewer than 128 bytes), the access time 
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will then increases as the block size continue to increase since a very large block will 

result in an enormous penalty for every cache miss.  The atomic data transfer unit in the 

configuration caching or configuration prefetching domain, rather than a block, is the 

configuration itself, which normally is significantly larger than a block.  Therefore the 

system suffers severely if a demanded configuration is not present on chip.  In order for 

a system to minimize this huge latency accurate prediction of the next required 

configurations is highly desired.   

As bad as it could be in general-memory systems, cache pollution plays a much more 

malicious role in the configuration prefetching domain.  As demonstrated in Chapter 5, 

due to the large configuration size and relatively small on-chip memory, very few 

configurations can be stored on reconfigurable hardware.  As the result, an incorrect 

prefetch will be very likely to cause a required configuration to be replaced, and 

significant overhead will be generated when the required configuration is brought back 

later.  Thus, rather than reducing the overall configuration overhead, a poor prefetching 

approach can actually significantly increase overhead.   

In addition, the correct prefetch of a configuration needs to be performed much earlier 

than it will be required; otherwise, the large configuration loading latency cannot be 

entirely or mostly hidden.  A correct prediction must be made as early as possible to 

make prefetching an effective approach.  Also, in contrast to the fixed block size for 

general memory system the sizes of different configurations could vary drastically.  As 

shown in Chapter 5, the variable configuration sizes make it more difficult to determine 

which configurations should be unloaded to make room for the required configuration. 

In general, prefetching algorithms can be divided into three categories: static 

prefetching, dynamic prefetching and hybrid prefetching.  A compiler-controlled 

approach, static prefetching inserts prefetch instructions after performing control flow or 

data flow analysis based on profile information and data access patterns.  One major 

advantage of static prefetching is that it requires very little additional hardware.  
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However, since a significant amount of access information is unknown at compile time, 

the static approach is limited by the lack of run-time data access information.  Dynamic 

prefetching determines and dispatches prefetches at run-time without compiler 

intervention.  With the help of the extra hardware, dynamic prefetching uses more data 

access information to make accurate predictions.  Hybrid prefetching tries to combine 

the strong points of both approaches—it utilizes both compile-time and run-time 

information to become a more accurate and efficient approach.   

6.2  Factors Affecting Configuration Prefetching 
In order to better discuss the factors that will affect prefetching performance, we first 

make the following definitions. 

• Lk: The latency of loading a configuration k. 

• Sk: The size of the configuration k. 

• Dik: The distance (in instructions executed) between an operation i and the 

execution of the configuration k. 

• Pik: The probability that configuration k is the next executed RFUOP after 

instruction i.   

• Costik: The potential minimum cost if k is prefetched at instruction i.   

• C: The capacity of the chip. 

The probability factor could have a significant impact on prefetching accuracy.  The 

combination of Sk and C determines whether there is enough space on the chip to load 

the configuration k.  The combination of Lk and Dik determines the amount of the latency 

the configuration k that can be hidden if it is prefetched at i.  It is obvious that there will 
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not be a significant reduction if Dik is too short, since most of the latency of 

configuration k cannot be eliminated if it is prefetched at i.   

In addition, the non-uniform configuration latency will affect the order of the prefetches 

that need to be performed.  Specifically, we might want to perform out-of-order prefetch 

(prefetch configuration j before configuration k even if k is required earlier than j) for 

some situations.  For example, suppose we have three configurations 1, 2, and 3 to be 

executed in that order.  Given that S3 >> S1 >> S2, S1 + S3 < C < S1 + S2 + S3, and D12 

>> L3 >> L2 >D23, prefetching configuration 3 before configuration 2 when 1 is 

executed results in a penalty of L2 at most.  This is because the latency of configuration 

3 can be completely hidden and configuration 2 can be either demanded fetched (penalty 

of L2) or prefetched once the execution of the configuration 1 completes.  However, if 

the in-order prefetches are performed the overall penalty is calculated as L3 -D23, which 

is much larger than L2.   

6.3  Configuration Prefetching Techniques 
Two reconfigurable models are considered in this work.  The Single Context 

reconfigurable model is chosen mainly because of its architecture simplicity.  

Additionally, since only one configuration can be retained on-chip at any time, only in-

order prefetching needs to be considered.  This will simplify the techniques we use for 

configuration prefetching.   

Partial R+D FPGA is the other reconfigurable model we selected because of its high 

hardware utilization demonstrated in Chapter 5.  Note that Partial R+D and Multi-

Context models show similar hardware utilization.  We chose Partial R+D model over 

Multi-Context model based on the following reasons.  First, various current commercial 

FPGAs are partial reconfigurable and the Partial R+D model can be built from them 

without significantly increasing hardware [Compton00].  Second, as mentioned in 
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Chapter 2, power consumption during context switches for Multi-Context remains a 

major concern. 

6.4  Configuration Prefetching for the Single Context FPGAs 
The initial prefetching algorithm for the Single Context model [Hauck98] was 

developed by professor Scott Hauck, advisor for this dissertation.  A static prefetching 

technique, the algorithm applies a shortest path approach to identify the next candidate 

to prefetch.  Since the probability factor is not considered in the algorithm, malicious 

prefetches can significantly lower the effectiveness of the prefetching.  In order to avoid 

this, a post-processing pruning approach is repetitively executed to reduce malicious 

prefetches, causing a longer running time.  Furthermore, though this approach can 

reduce malicious prefetches, it cannot add potentially helpful prefetches to take 

advantage of the distances left by the removal of malicious prefetches.  In this work, we 

seek to improve the effectiveness of the static prefetching algorithm as well as to 

remove the pruning process. 

Given the control flow graph of an application, our goal is to explore a technique that 

can automatically insert prefetch instructions at compile-time.  These prefetch 

instructions are executed just like any other instructions, occupying a single slot in the 

processor’s pipeline.  The prefetch instruction specifies the ID of a specific 

configuration that should be loaded into the coprocessor.  If the desired configuration is 

already loaded, or is in the process of being loaded by some other prefetch instruction, 

this prefetch instruction becomes a NO-OP.  If the specified configuration is not present, 

the coprocessor trashes the current configuration and begins loading the specified one.  

At this point the host processor is free to perform other computations, overlapping the 

reconfiguration of the coprocessor with other useful work.  Once the next call to the 

coprocessor occurs it can take advantage of the loading performed by the prefetch 

instruction.   
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6.4.1  Experiment Setup 
In order to evaluate the different configuration prefetching algorithms we must perform 

the following steps.  First, some method must be developed to choose which portions of 

the software algorithms should be mapped to the reconfigurable coprocessor.  In this 

work, we apply the approach presented in [Hauck98] (these mappings of the portions of 

the source code will be referred to as RFUOPs).  Second, a simulator of the 

reconfigurable system must be employed to measure the performance of the prefetching 

algorithms.  Our simulator is developed from SHADE [Cmelik93].  It allows us to track 

the cycle-by-cycle operation of the system, and get exact cycle counts.  We will 

compare the performance of the prefetching algorithms as well as the performance 

assuming no prefetch occurs at all.  Also, we measure the impact of the techniques on 

reconfiguration time, which can be reasonably measured in this system, as opposed to 

overall speedup, which cannot accurately be measured due to uncertainties in future 

system architectures and exact program features.   

To make our analysis clearer in the control flow graph, we use circles to represent the 

instruction nodes and squares to represent the RFUOPs.  Since in a single entry and 

single exit path, the prefetch should be executed at the top, but not other nodes 

contained in the path, only the top node is considered as the candidate where prefetch 

instructions can be inserted.  Therefore, we simplify the control graph by packing other 

nodes in the path, with a length that represents the number of nodes contained in the 

path.   

Since all configurations for a Single Context FPGA have equal size, the only factors that 

determine prefetches are distance, probability and configuration latency.  From our 

experiments and analysis, we found that prefetching the closest configuration could 

work well on applications whose reconfiguration latency is relatively small.  In these 

cases, the prefetches are not required to be determined very far in advance to hide the 

entire latency, and the prefetch of the closest configuration will result in the correct 
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decision most of the time.  Also, the prefetch of the closest configuration will lead to 

more direct benefit than the prefetch of other configurations, whose latency can be 

overlapped by later prefetches. 

However, for systems with very large reconfiguration latencies, prefetching the closest 

configuration will not lead to the desired solution.  This is because another factor, the 

probabilities of reaching a different configuration from the current instruction, can have 

a more significant effect.  With large reconfiguration delays, the insertion of prefetches 

to load one configuration means that the reconfiguration latency of other configurations 

cannot be entirely hidden.  Consider the example in Figure 6.1, where the “Length” and 

the “Probability” next to an arrow represents the number of instruction cycles and the 

probability to execute that path, respectively.  If the closest configuration is prefetched, 

a prefetch instruction for configuration 1 will be inserted at instruction I and a prefetch 

instruction for configuration 2 will be inserted at instruction L.  All reconfiguration 

latency will be eliminated in a system where it takes 10 cycles to load each 

configuration because the path from instruction L to configuration 2 is long enough to 

hide the reconfiguration latency of configuration 2.  However, if the reconfiguration 

latency of each configuration is 100 cycles, then the majority of the latency for 

configuration 2 still remains.  Furthermore, although 90% of the time configuration 2 

will be executed once instruction I is reached, the long path from instruction I to 

instruction J cannot be utilized to hide the reconfiguration cost 90% of the time.  

However, if configuration 2 were prefetched at instruction I, the rate of correct 

prediction of the next configuration improves from 10% to 90%.  Thus the path from 

instruction I to instruction J can provide more benefit in reducing the overall 

reconfiguration cost. 
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Figure 6.1:  An example for illustrating the ineffectiveness of the directed shortest-
path algorithm 

As can be seen in Figure 6.1, the reconfiguration latency is also a factor that affects the 

prediction of the next required configuration.  With the reconfiguration latency changes 

from 10 cycles to 100 cycles, the determination of the next required configuration at 

instruction I has changed.  To correctly predict the next required configuration all three 

factors must be considered.  Failing to do so will lower the efficiency of configuration 

prefetching. 

6.4.2  Cost Function 
For paths where only one configuration can be reached the determination of the next 

required configuration is trivial, since simply inserting a prefetch of the configuration at 

the top of the path is the obvious solution.  The problem becomes more complex for 

paths where multiple configurations can be reached.  We call these shared paths.  

Inserting a prefetch of any single configuration at the top of a shared path will keep this 

path from being used to hide the reconfiguration latency of any other configurations.   
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Figure 6.2:  The control flow graph for illustrating the cost calculation. 

We first start our cost calculation on the basic case that is shown in Figure 6.2.  There 

are two ways to insert prefetches in this example.  One is to prefetch configuration 1 at 

instruction i and prefetch configuration 2 at instruction m.  The other is to prefetch 

configuration 2 at instruction i and prefetch configuration 1 at instruction k.  The 

decision is made depending on the calculation of the overall reconfiguration cost 

resulting from each prefetching sequence, which is affected by the factors of the 

probability, the distance and the reconfiguration latency.  The reconfiguration cost of 

each prefetching sequence is calculated as follows:  

Costi1 = Pi1 × (L – Di1) + Pi2 × (L – Dm2) = Pi1 × (L - Z - X - 2) + Pi2 × (L - Y) 

Costi2 = Pi2 × (L – Di2) + Pi1 × (L – Dk1) = Pi2 × (L - Z - Y - 2) + Pi1 × (L - X) 

Since the cost of each prefetch cannot be negative, we modify the functions to be: 

Costi1 = Pi1 × max (0, (L - Z - X - 2)) + P12 × max (0, (L - Y))    (6.4.1) 

Costi2 = Pi2 × max (0, (L - Z - Y - 2)) + P11 × max (0, (L - X))    (6.4.2) 
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Costi1 and Costi2 are the potential minimum costs at instruction i with different 

prefetches performed.  As can be seen from (6.4.1) and (6.4.2), the costs of upper nodes 

can be calculated by using the costs of lower nodes.  Therefore, for more complex 

control graphs we can apply a bottom-up scheme to calculate the potential minimum 

costs at each node, with upper level nodes using the results calculated at the lower-level 

nodes.   

6.4.3  The Bottom-up Algorithm for Prefetching 
The Bottom-up algorithm works on the control flow graph when the edges from 

RFUOPs to their successors have been removed.  We also eliminate loops, as discussed 

in Section 6.4.4.  The algorithm starts from the configuration nodes, calculating the 

potential minimum costs at each instruction node once the costs of children nodes are 

available.  This scheme continues until all nodes are processed.  Once finished, the top-

most nodes will contain a series of costs reflecting the different prefetch sequences.  The 

sequence with the minimum cost represents the prefetch sequence that has the best 

potential to hide reconfiguration overheads.  Before presenting the algorithm, we first 

discuss the information that must be calculated and retained at each instruction node. 

From (6.4.1) and (6.4.2), we can see that the length of the paths are important to the 

generation of the best prefetch sequences.  If the shared path in Figure 6.2 is not long 

enough to hide the remaining latency of both configurations, then by subtracting (6.4.2) 

from (6.4.1) we will have: 

Ci1 - Ci2 = Pi1 × (L - Z - X - 2) + Pi2 × (L - Y) – (Pi2 × (L - Z - Y - 2) + Pi1 × (L - X)) 

      = Pi2 × (Z + 2) – Pi1 × (Z + 2)    (6.4.3) 

As can be seen in (6.4.3), for this case the configuration with the largest probability 

should be prefetched.  However, this may not be true when the shared path is long 

enough to hide the remaining reconfiguration latency of at least one configuration.  

Suppose in Figure 6.2 that X were much longer than Y, and by prefetching configuration 
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1 at instruction i the entire reconfiguration latency of configuration 1 could be 

eliminated.  Then by subtracting (6.4.2) from (6.4.1), we will have: 

Ci1 – Ci2 = Pi2 × (Z + 2) – Pi1 × (L – X)    (6.4.4) 

As can be seen in (6.4.4), probability is not the only factor in deciding the prefetches, 

since the length of each path for an instruction to reach a configuration also affects the 

way to insert prefetches.  The difference in forms between equation (6.4.3) and equation 

(6.4.4) raises an important issue: Given two nodes in a shared path (such as i and j), the 

best configuration to prefetch at the close node may differ from the best RFUOP to 

prefetch at the more distant node.  This is because the close node may be affected only 

by the difference in branch probabilities (as in equation (6.4.3)), while the far node will 

also be affected by the path lengths (as in equation (6.4.4)).  The interested reader can 

verify this in Figure 6.2 by assuming that X, Y, Z, L, P11, P12 equal 90, 10, 80, 100, 0.6, 

and 0.4, respectively.  In this scenario, the best configuration to prefetch at instruction j 

is configuration 1, while the configuration to prefetch at instruction i is 2.  To deal with 

this discrepancy, we lean towards the decision made at the more distant node, since this 

provides the greatest opportunity to hide latency. 

During the Bottom-up algorithm, the cost to prefetch each reachable configuration is 

calculated at each instruction node.  The costs will be used to determine the prefetch at 

the current node and the cost calculation at the parent nodes.  The basic steps of the 

Bottom-up scheme are outlined below: 

For each instruction node i, set Cij, Pij, and Dij to 0 for all i and set 

num_children_searched to 0. 

1. For each configuration node i, set Cii, Pii and Dii to 1.  Place configuration nodes 

into a queue. 

2. While the queue is not empty, do: 
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2.1.  Remove a node k from the queue.  If it is not a configuration node, do: 

2.1.1. CALCULATE_COST(k). 

2.2. For each parent node, if it is not a configuration node do: 

2.2.1. Increase num_children_searched by 1, if num_children_searched equal 

the number of children of that node, insert the parent node into the 

queue.   

Before we present the details of subroutine CALCULATE_COST(k), we must define 

some terms: 

• Bij: the branch probability for instruction i to reach instruction j. 

• Min_cost(i): Min Cij for all configurations j reachable from i. 

Now we outline the basic steps of the subroutine CALCULATE_COST(k): 

1. For each configuration j that can be reach by k, do: 

1.1. Temp_length = 0. 

1.2. For each child node i that can reach the configuration j, do: 

1.2.1. Temp_probability = Bki × Pij. 

1.2.2. Pkj= Pkj + Temp_probability. 

1.2.3. Temp_length = Temp_length + min(Latency, Dij + Dki) × 

Temp_probability. 

1.2.4. Temp_cost += Cij – Temp_probility × max(0, Latency - Dij – Dki). 

1.3. Dkj = Temp_length / Pkj. 

1.4. Ckj = Ckj + Temp_cost. 

1.5. For each child node i that cannot reach the configuration j, do: 

1.5.1. Ckj = Ckj + Min_cost(i). 
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The function call CALCULATE_COST(k) at instruction k is to calculate probability, 

distance, and cost of k to prefetch each reachable configuration j.  The probability is 

calculated based on the probabilities of its children to reach j and the branch probability 

of k to reach each child node.  Since the control flow graph can be very complex, there 

may exist several different paths for an instruction to reach a configuration.  Therefore, 

we calculate the weighted average length of these paths.  This could cause some 

inaccuracy in the cost calculation, but in most of the cases the inaccuracy is tolerable 

because the path with the high probability dominates the weighted average length.  The 

cost calculation considers both the probability and length for k to reach configuration j, 

as well as the costs computed at the children nodes.   

 j

 m  n

1 2

 k

 r  s
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Figure 6.3:  An example of multiple children nodes reaching the same configuration. 

For example assume we are computing Ci3 in Figure 6.3.  Ci3 includes the costs of 

configuration 3 at each of its children, as well as the latency hiding achieved (if any) 

during the execution of edges (i, j) and (i, k).  Since k is the only node to reach 3, we will 

be unable to hide any latency on (i, j).  Also, we will incur the cost min_cost(j) at node j, 

which represents performing the best prefetch possible at node j.  In cases where 

multiple children can reach the same configuration, the cost of the parent includes the 

reduced cost from the edges to each of those children.  Consider the example in Figure 
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6.3, where both node j and node k can reach configuration 2.   Ci2 includes the costs of 

configuration 2 at j and k, as well as the latency hiding achieved during edges (i, j) and 

(i, k). 

6.4.4  Loop Detection and Conversion 
Our Bottom-up algorithm operates on acyclic graphs, and thus requires loop detection 

and conversion.  If loop detection were not performed, two problems would result.  

First, our simple bottom-up processing would deadlock, since a node in a loop is its own 

descendant.  Second, the insertion of prefetches into loops that do not contain RFUOPs 

can cause excessive overhead, as the same prefetch operation is called multiple times, 

wasting an execute slot each time it is encountered.  For example, in Figure 6.4 left, our 

basic prefetching algorithm might decide that the best configuration to prefetch at j is 1, 

and at m is 2.  This could insert two prefetch instructions into the loop, wasting two 

execute slots per iteration.  After converting the loop as shown in Figure 6.4 right, the 

prefetch algorithm would insert a prefetch of 1 at i, and a prefetch of 2 at n, reducing the 

overhead of potentially redundant prefetches. 

To solve these problems, we use a strongly connected components algorithm to identify 

the loops existing in the control flow and then convert the loops into dummy nodes in 

the graph.  The strongly connected components algorithm is a standard method to 

identify a set of nodes in the graph so that every node in the set can reach every other 

node.  In our model, a nested loop can be viewed as a set of strongly connected 

components, in which every node in the loop can reach every other.  Furthermore, to 

perform the Bottom-up algorithm, appropriate values for P, C, and D must be calculated 

for each dummy node for each reachable configuration.  The basic steps of loop 

detection and conversion are as following: 
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Figure 6.4.  Loop conversion.  The original control flow graph with a loop containing 
nodes j and m is shown on the left, while at right they are replaced by a dummy loop 
node. 

1. Run the strongly connected component algorithm. 

2. For each component, do: 

2.1. Compute the total number of executions of all nodes in the component. 

2.2. Calculate the total number of executions of paths exiting the loop. 

2.3. Divide the value calculated from 2.1 by the value of 2.2, producing the 

average length of the loop. 

2.4. For each path exiting the loop, do: 

2.4.1. The branch probability of the path is calculated as the execution of the 

path divided by the total number of executions of paths exiting the loop. 

The execution information used in the algorithm can be gathered from the profile 

information provided by our simulator.  Step 2.2 calculates the total control flow that 

exits from the loop.  By dividing this number by the total number of executions of all 

loop nodes, the average length of the loop nodes can be calculated. 
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6.4.5  Prefetch Insertion 
Once the bottom-up process is complete, we have discovered a potential way to perform 

prefetch.  The prefetch instructions must be inserted to execute discovered prefetches.  

Inserting prefetch instructions represents additional overhead of the systems, therefore, 

no redundant prefetch instruction should be allowed. 

The prefetch insertion is performed in a top-down style starting from the nodes that have 

no instruction parents.  The prefetch of each of these nodes is determined by the 

minimum cost calculated.  Once the prefetch instruction is inserted, each node passes 

the prefetch information to its children.  Upon receiving the prefetch information, each 

child checks whether it can reach the configuration that is prefetched by its parents.  If 

so, no new prefetch is inserted and the prefetch information is passed down.  For each of 

the nodes that cannot reach the configuration prefetched by the parents, the prefetch to 

the configuration that was calculated with the minimum cost is inserted and this 

information is passed to its children.  Note that the prefetch instruction will not be 

inserted if the RFUOP to prefetch is also the ancestor of the instruction node.  This top-

down method continues until all the instruction nodes are traversed.   

6.4.6  Results and Analysis 
The simulation results are shown in Table 6.1.  Each benchmark is tested at four 

different per-reconfiguration delay values.  Note that different reconfiguration delays 

results in different RFUOP being picked by the simulator.  The “No Prefetch”, “Optimal 

Prefetch” and “Prefetch” columns report the total number of cycles spent stalling the 

processor while the coprocessor is reconfigured, plus the number of cycles spent on 

prefetch opcodes.  The “Opt/No”, “Pre/NO” and “Pre/Opt” columns list the ratios of 

Optimal Prefetching delays to no prefetching delays, of delays of our prefetching 

algorithm to no prefetching and of delays of our prefetching algorithm to optimal 

prefetching.  The cumulative rows compare the total reconfiguration penalties across the 

entire benchmark suite. 
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As can be seen in Table 6.1, the prefetching algorithm provides an overall 41%-65% 

reduction in reconfiguration overhead when compared to the base case of no 

prefetching.  While this is not nearly as good as the 69%-84% improvement suggested 

by the optimal prefetch technique, it is important to realize that the optimal prefetch 

numbers may not be achievable by any static configuration prefetch algorithm.  For 

example, if there exists a very long shared path for an instruction to reach multiple 

configurations, then static prefetch approaches will not gain as much as optimal prefetch 

since the prefetch instruction inserted on the top of the shared path will only reduce the 

overhead of one configuration.  If the probability to reach one configuration is 

significantly greater than the combined probability to reach the rest of the 

configurations, the static approaches may not suffer too much compared to optimal 

prefetch.  However, if the probabilities for an instruction to reach different 

configurations are almost identical, the performance of static prefetch approaches will 

be much worse than that of the optimal prefetch, which can dynamically issue different 

prefetch targets at the top of the shared paths.   

Consider the benchmark “Perl” with a latency of 10,000, where only two prefetches are 

needed for the configurations by using Optimal Prefetch, which issues one at the 

beginning of the execution and another one after the first RFUOP is finished.  However, 

since the two configurations have a long shared path, no static approach can perform as 

well as optimal Prefetch.  Furthermore, as can be seen in Table 6.1, the shared path is 

more critical when the Latency is high.  When the latency is small, the shared path may 

not be necessary to hide reconfiguration latency for most configurations.  With the 

increase of the latency, it is more likely that the shared path is necessary to hide the 

overhead.   
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Table 6.1:  Results of the prefetching algorithm. 

Benchmark Latency No Prefetching Optimal 
Prefetch 

(Opt/No) Prefetch (Pre/No
) 

(Pre/Opt) 

Go 10 6,239,090 2,072,560 33.2% 2,453,389 39.32% 118.37%
 100 6,860,700 1,031,739 15.0% 2,834,309 41.31% 274.71%
 1,000 2,520,000 225,588 9.0% 889,736 35.31% 394.41%
 10,000 1,030,000 314,329 30.5% 533,987 51.84% 169.88%
Compress 10 344,840 63,403 18.4% 83,876 24.32% 132.29%
 100 127,100 46,972 37.0% 80,998 63.73% 172.44%
 1,000 358,000 289,216 80.8% 253,981 70.94% 87.82%
 10,000 520,000 12,535 2.4% 252,673 48.59% 2015.74%
Li 10 6,455,840 958,890 14.9% 1,877,365 29.08% 195.79%
 100 4,998,800 66,463 1.3% 2,131,882 42.65% 3207.62%
 1,000 55,000 21,325 38.8% 41,102 74.73% 192.74%
 10,000 330,000 43,092 13.1% 110,392 33.45% 256.18%
Perl 10 4,369,880 656,210 15.0% 1,598,984 36.59% 243.67%
 100 3,937,600 398,493 10.1% 1,800,337 45.72% 451.79%
 1,000 3,419,000 9,801 0.3% 1,899,644 55.56% 19382.14%
 10,000 20,000 2 0.0% 5,714 28.57% 285700.00%
Fpppp 10 2,626,180 1,415,924 53.9% 1,667,678 63.50% 117.78%
 100 11,707,000 6,927,877 59.2% 6,982,352 59.64% 100.79%
 1,000 19,875,000 5,674,064 28.5% 6,269,614 31.55% 110.50%
 10,000 370,000 4,485 1.2% 349,870 94.56% 7800.89%
Swim 10 600,700 265,648 44.2% 311,092 51.79% 117.11%
 100 10,200 4,852 47.6% 6,092 59.73% 125.56%
 1,000 91,000 79,905 87.8% 83,822 92.11% 104.90%
 10,000 330,000 43,019 13.0% 55,267 16.75% 128.47%
Cumulative 10 20,636,530 5,432,635 26.3% 7,075,757 34.29% 130.25%
 100 27,641,400 8,476,396 30.7% 13,835,970 50.06% 163.23%
 1,000 26,318,000 6,299,899 23.9% 9,347,899 35.52% 148.38%
 10,000 2,600,000 417,462 16.1% 1,307,903 50.30% 313.30%

 

6.5  Configuration Prefetching for Partial R+D FPGA 
In this section, we present efficient prefetching techniques for reconfigurable systems 

containing a Partial R+D FPGA.  We have developed algorithms that apply the different 

configuration prefetching techniques.  Based on the available access information and the 

additional hardware required, our configuration prefetching algorithms can be divided 
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into 3 categories: Static Configuration Prefetching, Dynamic Configuration Prefetching, 

and Hybrid Configuration Prefetching.   

6.5.1.  Static Configuration Prefetching 
Unlike the Single Context FPGA a Partial R+D FPGA can hold more than one 

configuration, and at a given point multiple RFUOPs may need to be prefetched.  Thus, 

the method to effectively specify the IDs of the RFUOPs to prefetch becomes an issue.  

One intuitive approach is to pack the IDs into one single instruction.  However, since the 

number of IDs need to be specified could be different for each prefetch instruction, it is 

not possible to generate prefetch instructions with equal length.  Another option is to use 

a sequence of prefetch instructions when multiple prefetching operations need to be 

performed.  However, to make it an effective approach a method that can terminate 

previously issued prefetches is required.  This is because during the execution certain 

previous unfinished prefetch instructions may become obsolete and useless cancelled 

these unwanted prefetching operations will significantly damage performance.   

In Figure 6.5, for example, 1, 2, 3, and 4 are RFUOPs and P1, P2, P3, and P4 are 

prefetching instructions.  It is obvious that when P1 is executed, configurations 3 and 4 

will not be reached, and the prefetches of 3 and 4 are wasted.  This waste may be 

negligible for a general-purpose system since the load latency of an instruction or a data 

block is very small.  However, because of the large configuration latency in 

reconfigurable systems, it is likely that the prefetch of configuration 3 has not completed 

or even not started when P1 is reached.  As a consequence, if we use the same approach 

used in general-purpose systems, letting the prefetches of P3 and P4 complete before 

prefetching P1 and P2, the effectiveness of the prefetches of P1 and P2 will be severely 

damaged since they cannot completely or mostly hide the load latencies of 

configurations 1 and 2.  Therefore, we must find a way to terminate previously issued 

prefetches if they become unwanted.   
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Figure 6.5:  Example of prefetching operation control. 

A simple approach used in this work to solve this problem is to insert termination 

instructions when necessary.  The format of a termination instruction resembles any 

other instruction, consuming a single slot in the processor’s pipeline.  Once a 

termination instruction is encountered the processor will terminate all previously issued 

prefetches so the new prefetches can start immediately.  For the example in Figure 6.5, a 

termination instruction will be inserted immediately before P1 to eliminate the 

unwanted prefetches of P4 and P3. 

Now that we have demonstrated how to handle the prefetches, the remaining problem is 

to determine where the prefetch instructions will be placed given the RFUOPs and the 

control flow graph of the application.  Since the algorithm used in the previous section 

demonstrated high-quality results for Single Context reconfigurable systems, we will 

extend it for systems containing a Partial R+D. 

The algorithm we used to determine the prefetches contains three stages:   

1) Penalty calculation.  In this stage the algorithm computes the potential penalties for 

a set of prefetches at each instruction node of the control flow graph.   
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2) Prefetch scheduling and generation.  In this stage the algorithm determines the 

configurations that need to be prefetched at each instruction node based on the 

penalties calculated in Stage 1.  Prefetches are generated under the restriction of the 

size of the chip. 

3) Prefetch reduction.  In this stage the algorithm trims the redundant prefetches 

generated in the previous stage.  In addition, it inserts termination instructions. 

In the previous section, a bottom-up approach was applied to calculate the penalties 

using the probability and distance factors.  Since the probability is dominant in deciding 

the penalties, and the average prefetching distance is mostly greater than the latencies of 

RFUOPs, it is adequate to use probability to represent penalty.   

Given the simplified control flow graph and the branch probabilities, we will use a 

bottom-up approach to calculate the potential probabilities for an instruction node to 

reach a set of RFUOPs.  The basic steps of the Bottom-up algorithm are outlined below: 

1. For each instruction, initialize the probability of each reachable configuration to 0, 

and set the num_children_searched to be 0. 

2. Set the probability of the configuration nodes to 1.  Place the configuration nodes 

into a queue. 

3. While the queue is not empty, do 

3.1.  Remove a node k from the queue.  If it is not a configuration node, do: 

3.1.1. Pkj = ∑(Pki × Pij), for all children i of node k. 

3.2. For each parent node, if it is not a configuration node, do 

3.2.1. Increase num_children_searched by 1.  If num_children_searched equals 

the total number of children of that node, insert the parent node into the 

queue.   
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The left side of Figure 6.6 shows a control flow graph with branch probability on each 

edge.  Table 6.2 shows the probabilities calculated at the instruction nodes with more 

than one reachable RFUOP. 
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Figure 6.6:  An example of prefetch scheduling and generation after the probability 
calculation. 

Table 6.2:  Probability calculation for Figure 6.6. 

 1 2 3 4 

I5 0.7 0.3 0 0 

I6 0 0 0.4 0.6 

I7 0.42 0.18 0.4 0 

I8 0 0.2 0.32 0.48 

I9 0.168 0.072 0.4 0.36 

I10 0.5504 0.0616 0.184 0.204 
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Once this stage is complete, each instruction contains the probabilities of the reachable 

RFUOPs.  We use the results to schedule necessary prefetches.   

The prefetch scheduling is quite trivial once the probabilities have been calculated.  

Based on the decreasing order the probabilities, a sequence of prefetches could be 

generated for each instruction node.  Since the aggregate size of the reachable RFUOPs 

for a certain instruction could exceed the capacity of the chip, the algorithm only 

generate prefetches under the size restriction of the chip.  The rest of the reachable 

RFUOPs are ignored.  For example, in Figure 6.6 we assume that the chip can at most 

hold 2 RFUOPs at a time.  The generated prefetches at each instruction are shown on the 

right side of Figure 6.6. 

The prefetches generated at a child node are considered to be redundant if they match 

the beginning sub-sequence generated at its parents.  Our algorithm will check and 

eliminate these redundant prefetches.  One may argue that the prefetches at a child node 

should be considered as redundant if they are a sub-sequence, but not necessary the 

beginning sub-sequence, of its parents, because the parents represent a superset of 

prefetches.  However, by not issuing the prefetch instructions at the child node, the 

desired the prefetches cannot start immediately, since the unwanted prefetches at the 

parents might have not completed.  For example, in Figure 6.6, P2 at the instruction I2 

cannot be eliminated even though it is a sub-sequence of P1,2 because when I2 is 

reached P2 may not be able to start if P1 has not completed.  In Figure 6.6, the 

prefetches at instructions I1, I4, and I6 can be eliminated. 

Once the prefetch reduction is complete, for each instruction node where prefetches 

must be performed a termination instruction is inserted, followed by a sequence of 

prefetch instructions.  Note that a termination instruction does not flush the entire 

FPGA, but merely clears the prefetch queue.  RFUOPs that have already been loaded by 

the preceding prefetches are often retained.   
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6.5.2  Dynamic Configuration Prefetching 
Among the various dynamic prefetching techniques available for general-purpose 

computing systems, Markov prefetching [Joseph97] is a very unique approach.  Markov 

prefetching does not tie itself to particular data structure accesses and is capable of 

prefetching both instructions and data.   

As the name implies, Markov prefetching uses a Markov model to determine which 

blocks should be brought in from the higher-level memory.  A Markov process is a 

stochastic system for which the occurrence of a future state depends on the immediately 

preceding state, and only on it.  A Markov process can be represented as a directed 

graph, with probabilities associated with each vertex.  Each node represents a specific 

state, and a state transition is described by traversing an edge from the current node to a 

new node.  The graph is built and updated dynamically using the available access 

information.  As an example, the access string A B C D C C C A B D E results in the 

Markov model shown in Figure 6.7.  Using the Markov graph multiple prefetches with 

different priorities can be issued.   

 

 

Figure 6.7:  The Markov model generated from access string A B C D C C C A B D 
E.  Each node represents a specific state and each edge represents a transition from 
one state to another.  The number on an edge represents the probability of the 
transition occurring.   
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Markov prefetching can be extended to handle the configuration prefetching for 

reconfigurable systems.  Specifically, the RFUOPs can be represented as the vertices in 

the Markov graph and the transitions can be built and updated using the RFUOP access 

sequence.  However, the Markov prefetching needs to be modified because of the 

differences between general-purpose systems and reconfigurable systems.   

Note that only a few RFUOPs can be retained on-chip at any given time because of the 

large size of each RFUOP.  Therefore, it is very unlikely that all the transitions from the 

current RFUOP node can be executed.  This feature requires the system to make 

accurate predictions to guarantee that only the highly probable RFUOPs are prefetched.  

In order to find good candidates to prefetch, Markov prefetching keeps updating the 

probability of each transition using the currently available access information.  This 

probability represents the overall likelihood this transition could happen during the 

course of the execution and may work well for a general-purpose system which a large 

number of instructions or data blocks with small loading latency can be stored in a 

cache.  However, without emphasizing the recent history, Markov prefetching could 

make poor predictions during a given period of the execution.  Due to the features of the 

reconfigurable systems mentioned above, we believe the probability calculated based on 

the recent history is more important than the overall probability.   

In this work, a weighed probability in which recent accesses are given higher weight in 

probability calculation is used as a metric for candidate selection and prefetching order 

determination.  The weighted probability of each transition is continually updated as the 

RFUOP access sequence progresses.  Specifically, probabilities out of a node u will be 

updated once a transition (u, v) is executed: 

For each transition starting from u:  

Pu,w = Pu,w  / (1 + C) if w ≠ v; 

Pu,v = (Pu,v  + C) / (1 + C);  
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where C is a weight coefficient.   

For general-purpose systems, the prefetching unit generally operates separately from the 

cache management unit.  Specifically, the prefetching unit picks candidates and then 

sends prefetch requests into the prefetching buffer (usually a FIFO).  Working 

separately, the cache management unit will vacate the requests one by one from the 

buffer and load the instructions or data blocks into the cache.  If there is not enough 

space in the cache, the cache management unit will apply a certain replacement policy to 

select victims and evict them to make room for the loading instructions or data.   

Though this works well for general-purpose systems, this separated approach may not 

be efficient for configuration prefetching because of the large size and latency of each 

RFUOP.  For example, at a certain point 3 equal-size RFUOPs A, B, C are stored on 

chip, and equal-size RFUOPs D, A, B are required in sequence with very a short 

distance between each other.  Suppose there is no room on chip and a FIFO replacement 

policy is used.  The system will evict A first to make room for D, then replace B with A 

and C with B in order.  It is obvious that the overall latency will not be significantly 

reduced because of the short distance between D, A, B.  This situation can be improved 

by combining prefetching with caching techniques.  For the example above, we can 

simply replace C with D and retain A and B on chip to eliminate the latencies of loading 

them.  The intuition behind this approach is to use the prefetching unit as predictor as 

well as a cache manager.  The dynamic prefetching algorithm can be described as 

following: 

Upon the completion of each execution of RFUOP k, do: 

1. Sort the weighted probabilities in decreasing order of all transitions starting from k 

in the Markov graph.   

2. Terminate all previously issued prefetches.  Select k as the first candidate. 
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3. Select the rest of the candidates in sorted order under the size constraint of the chip.  

Issue prefetch requests for each candidate that is not currently on chip. 

4. Update the weighted probability of each transition starting from j, where j is the 

RFUOP executed just before k.  

Though the replacement is not presented in the algorithm, it is carried out indirectly.  

Specifically, any RFUOPs that are currently on chip will be marked for eviction if they 

are not selected as candidates.  One last point to mention is that the RFUOP just 

executed is treated as the top candidate automatically since generally each RFUOP is 

contained in a loop and likely to be repeated multiple times.  Correspondingly, the self-

loop transitions in the Markov graph are ignored. 

6.5.3  Hardware Requirements of Dynamic Prefetching 
A data structure is required to maintain and continually update the Markov graph as 

execution progresses.  A table, as shown in Figure 6.8, can be used to represent the 

Markov graph.  Each node (RFUOP) of the Markov graph occupies a single row of the 

table.  The first column of each row is the ID of an RFUOP, and the rest of the columns 

are the RFUOPs it can reach.  Since under chip size constraint only the high probability 

RFUOPs out of each node are used for the prefetching algorithm, keeping all transitions 

out of a node will simply waste precious hardware resources.  As can be seen in Figure 

6.8, the number of transitions retained is limited to K.  

RFUOP 1 Next 1 Next 2 … Next K 

RFUOP 2 Next 1 Next 2 … Next K 
… … … … … 

RFUOP M Next 1 Next 2 … Next K 

Figure 6.8:  A table is used to represent the Markov graph.  The first column of each 
row is the ID of a RFUOP and the rest of the columns are k-reachable RFUOPs from 
this row’s RFUOP with highest probability. 
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In addition, a small FIFO buffer is required to store the prefetch requests.  The 

configuration management unit will take the requests from the buffer and load the 

corresponding RFUOPs.  Note that the buffer will be flushed to terminate previous 

prefetches before the new prefetches are sent to the buffer.  Furthermore, the 

configuration management unit can be interrupted to stop the current loading if an 

RFUOP not currently loaded is invoked. 

In order for the host processor to save execution time in updating the probabilities, the 

weight coefficient C is set to 1.  This means that when a transition needs to be updated, 

the host processor will simply right shift the register retaining the probability by one bit.  

Then the most significant bit of the register representing the currently occurring 

transition is set to 1.  An N-bit register representing any transition (u, v) will become 0 if 

(u, v) does not occur for N executions of u.  In that sense, only the most recent N 

accesses of u are used to compute the probability for each transition starting from u.  As 

a consequence, the number of transitions that needs to be stored in the table representing 

the Markov graph can be set to N (i.e. K = N).  To balance the hardware cost and retain 

enough history, we use 8-bit registers in this work. 

6.5.4  Hybrid Configuration Prefetching 
Dynamic prefetching using recent history works well for the transitions occurring within 

a loop.  However, this approach will not be able to make accurate predictions for 

transitions jumping out a loop.  For example, on the left side of Figure 6.9, we assume 

only one RFUOP can be store on chip at any given point.  By applying dynamic 

prefetching approach, RFUOP 2 is always prefetched after RFUOP 1 assuming the inner 

loop will always be taken for several iterations.  Thus, the reconfiguration penalty for 

RFUOP 3 can never be hidden due to the wrong prediction. 
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Figure 6.9:  An example illustrates the ineffectiveness of the dynamic prefetching. 

This misprediction can be avoided if static prefetching approach can be integrated with 

the dynamic approach.  More specifically, before reaching RFUOP3 a normal 

instruction node will likely be encountered and the static prefetches determined at that 

instruction node can be used to correct the wrong predictions determined by the 

dynamic prefetching.  As illustrated on the right side of the Figure 6.9, a normal 

instruction I1 will be encountered before RFUOP 3 is reached and our static prefetching 

will correctly predict 3 will be the next required RFUOP.  As the consequence, the 

wrong prefetch of RFUOP 2 determined by our dynamic prefetching can be corrected at 

I1.   

The goal of combining the dynamic configuration prefetching with the static 

configuration prefetching is to take advantage of the recent access history without 

exaggerating it.  Specifically, dynamic prefetching using the recent history will make 

accurate predictions within the loops while static prefetching using the global history 

will make accurate predictions between the loops.  The challenge of integrating dynamic 

prefetching with static prefetching is to coordinate the prefetches such that the wrong 
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prefetches are minimized.  When the prefetches determined by the dynamic prefetching 

do not agree those determined by the static prefetching a decision must be made.   

The basic idea we use to determine the beneficial prefetches for our hybrid prefetching 

is to penalize the wrong prefetches.  We add a per-RFUOP flag bit to indicate the 

correctness of the prefetch made by previous static prefetching.  When the prefetches 

determined by static prefetching conflict with those determined by dynamic prefetching, 

the statically predicted prefetch of a RFUOP is issued only if the flag bit for that 

RFUOP was set to 1.  The flag bit of a RFUOP is set to 0 once the static prefetch of the 

RFUOP is issued, and will remain 0 until the RFUOP is executed.  As the consequence, 

statically predicted prefetches, especially those made within the loops, are ignored if 

they have not been correctly predicting.  On the other hand, those correctly predicted 

static prefetches, especially those made between the loops, are chosen to replace the 

wrong prefetches made by the dynamic prefetching.  The basic steps of the hybrid 

prefetching are outlined as following: 

1. Perform the Static Configuration Prefetching algorithm.  Set the flag bit of each 

RFUOP to 1.  An empty priority queue is created.   

2. Upon the finish of a RFUOP execution, perform the Dynamic Prefetching algorithm.  

Set the flag bit of the RFUOP to 1.  Clear the priority queue first, then place the IDs 

of the dynamically predicted RFUOPs into the queue. 

3. When a static prefetch of a RFUOP is encountered and the flag bit of the RFUOP is 

1, terminate current loading.  Set the flag bit of the RFUOP to 0.  Give the highest 

priority to this RFUOP and insert its ID into the priority queue.  The RFUOPs with 

lower priorities are replaced or ignored to make room for the new RFUOP.   

4. Load the RFUOPs from the priority queue. 
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6.5.5  Results and Analysis 
All algorithms are implemented in C++ on a Sun Sparc-20 workstation and are 

simulated with the SHADE simulator [Cmelik93].  We choose to use the SPEC95 

benchmark suite to test the performance of our prefetching algorithms. Note that these 

applications have not been optimized for reconfigurable systems, and may not be as 

accurate in predicting exact performance as would real applications for reconfigurable 

systems.  However, such real applications are not in general available for 

experimentation.  In addition, the performance of the prefetching techniques will be 

compared against the previous caching techniques, which also used the SPEC95 

benchmark suite.   

As can be seen in Figure 6.10, five algorithms are compared: Least Recently Used 

(LRU) Caching, Off-line Caching, Static Prefetching, Dynamic Prefetching, and Hybrid 

Prefetching.  The LRU algorithm chooses victims to be replaced based on run-time 

information, while the Off-line algorithm takes into consideration future access patterns 

to make more accurate decisions.  Note that our static prefetching uses the Off-line 

algorithm to pick victims.  Since the cache replacement is integrated into dynamic 

prefetching and hybrid prefetching, no additional replacement algorithms are used for 

both prefetching algorithms.   

Clearly, all prefetching techniques substantially outperformed caching-only techniques, 

especially when cache size is small.  As cache size grows, the chip is able to hold more 

RFUOPs and cache misses are reduced.  However, the prefetching distance is not 

changed.  As the consequence, the performance due to prefetching will not significantly 

improve as the cache size grows.  Among the prefetching techniques, dynamic 

prefetching performs consistently better than static prefetching because it can use the 

RFUOP access information.  Hybrid prefetching performs slightly better than dynamic 

prefetching, because of its ability to correct some wrong prediction made by dynamic 
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prefetching.  However, the advantage of hybrid prefetching becomes negligible as the 

cache size grows. 
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Figure 6.10:  Reconfiguration overhead comparison.  Five algorithms are 
compared:  Least Recently Used (LRU) Caching, Off-line Caching, Static 
Prefetching, Dynamic Prefetching, and Hybrid Prefetching.  The configuration 
penalty of each algorithm is normalized to the penalty of the LRU algorithm with a 
normalized FPGA size 1.   

 

Figure 6.11 demonstrates the effect of the different replacement algorithms that used for 

the static prefetching.  Since the static prefetching algorithm requires an augment 

replacement algorithm, the overall reconfiguration overhead reduction can be affected 

not only by the prefetching, but also by the replacement approach that is chosen.  

However, as can be seen in Figure 6.11, the prefetching is the more dominant factor in 

overall overhead reduction, as the off-line replacement algorithm (the optimum realistic 

replacement) with more complete information on performs just slightly better than the 

LRU.   
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Figure 6.11:  Effect of the replacement algorithms for the static prefetching.   

6.6  Summary 
In this chapter we have introduced the concept of configuration prefetching for 

reconfigurable systems.  Our prefetching techniques target two reconfigurable models, 

Single Context and PRTR R+D.  For the Single Context model, we have developed a 

static prefetching algorithm that can automatically determine the placement of these 

prefetch operations, avoiding burdening the user with the potentially difficult task of 

placing these operations by hand.  Without using additional hardware, this approach can 

reduce the reconfiguration latency by more than a factor of two. 

We have also developed efficient prefetching techniques for reconfigurable systems 

containing a PRTR R+D.  We have developed algorithms applying the different 

configuration prefetching techniques.  Based on the available access information and the 

additional hardware required, our configuration caching algorithms can be divided into 

three categories: static configuration prefetching, dynamic configuration prefetching, 

and hybrid configuration prefetching.  Compare to the caching techniques presented in 

Chapter 5, our prefetching algorithms can further reduce reconfiguration overhead by a 

factor of 3. 



C h a p t e r  7  

Conclusions 

Reconfigurable computing is becoming an important part of research in computer 

architectures and software systems.  By placing the computationally intense portions of 

an application onto the reconfigurable hardware, that application can be greatly 

accelerated.  Gains are realized because reconfigurable computing combines the benefits 

of both software and ASIC implementations.  As suggested by many applications, 

reconfigurable computing systems greatly improve performance over general-purpose 

computing systems.   

Run-time reconfiguration provides additional opportunities for computation 

specialization that is not available within static configurable systems.  In such systems, 

hardware configuration may change frequently at run-time to reuse silicon resources for 

several different parts of a computation.  Such systems have demonstrated high 

hardware efficiency by specializing circuits at run-time. 

However, the advantages of reconfigurable computing do not come without a cost.  By 

requiring multiple reconfigurations to complete a computation, the time it takes to 

reconfigure the FPGA becomes a significant overhead.  This overhead not only has a 

major negative impact on performance of reconfigurable systems, it can also limit the 

applications that can be executed on such systems.   

In this work, we have developed a complete configuration management system to attack 

this problem. 
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7.1  Summary of Contributions 
The main contributions presented in this thesis include: 

• An investigation of the strategy for reducing the reconfiguration overhead for 

reconfigurable computing.   

• An investigation of the most efficient reconfiguration model for reconfigurable 

computing.  We have quantified the reconfiguration overhead for various 

reconfiguration models. 

• An exploration of configuration compression techniques to reduce the size of the 

configuration bit-streams.  Configuration compression takes advantage of 

regularities and repetitions within the original configuration data.  However, 

using the existing lossless compression approaches cannot significantly reduce 

the size of configuration bit-streams because of several fundamental differences 

between data and configuration compression.  The unique regularities and on-

chip run-time decompression require distinct compression algorithms for 

different architectures.   

• In this work, we have investigated configuration compression techniques for the 

Xilinx 6200 FPGAs and the Xilinx Virtex FPGAs.  Taking advantage of the on-

chip Wildcard Registers, our Wildcard algorithm can achieve a factor of 3.8 

compression ratio for the Xilinx 6200 FPGAs without adding extra hardware.  A 

number of compression algorithms are investigated for Virtex FPGA.  These 

algorithms can significantly reduce the amount of data that needs to be 

transferred with minimum modification to hardware.  In order to explore the best 

compression algorithm we have extensively researched existing compression 

techniques, including Huffman coding, Arithmetic coding and LZ coding.  

Simulation results demonstrate that a compression factor of 4 can be achieved.   
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• An exploration of the Don’t Care discovery approach to further improve the 

compression ratios.  Realizing that Don’t Cares within the bit-streams increase 

regularities, our Don’t Care discovery technique backtraces important locations, 

starting from the outputs, generating a new configuration.  By combining this 

technique with our lossless techniques, compression ratio is improved from a 

factor of 4 to a factor of 7. 

• An examination of configuration caching techniques to increase the likelihood of 

the required configuration presented on chip.  We have developed new caching 

algorithms targeted at a number of different FPGA models, as well as creating 

lower-bounds to quantify the maximum achievable reconfiguration reductions 

possible.  For each model, we have implemented a set of algorithms to reduce 

the reconfiguration overhead.  The simulation results proved that the Partial 

Run-Time Reconfigurable FPGA and the Multi-Context FPGA are significantly 

better caching models than the traditional Single Context FPGA.   

• An investigation of various configuration prefetching techniques that overlap the 

transfer of configuration bit-streams with useful computation.  Our prefetching 

techniques target two reconfigurable models, the Single Context model and the 

PRTR R+D model.  For Single Context model, we have developed a static 

prefetching algorithm that can automatically determine the placement prefetch 

operations, avoiding burdening the user with the potentially difficult task of 

placing these operations by hand.  Without using additional hardware, this 

approach can reduce reconfiguration latency by more than a factor of 2.  We 

have also developed efficient prefetching techniques for reconfigurable systems 

containing a PRTR R+D because of its high hardware utilization.  We have 

developed algorithms applying the different configuration prefetching 

techniques that can significantly reduce reconfiguration overhead by a factor of 

3.   
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Each of these techniques attacks different perspective of the reconfiguration bottleneck.  

Therefore, the gain from one technique will not be overlapped or hidden by others.  

Using all techniques together provides a complete system that virtually eliminates 

reconfiguration overhead.  For a system that applies these techniques, compression 

reduces the size of configuration bit-streams by a factor of 2 to 7 at compile time.  

During execution, configuration caching reduces off-chip traffic by a factor of 2.5 to 10.  

Prefetching techniques can further improve caching by at least a factor of 2.  Combining 

these techniques together represents a factor of 10 to 150 overhead reduction.   

7.2 Future Work 
All told, the results presented in this thesis indicate considerable promise for integrated 

techniques that improve the performance of reconfigurable computing systems by 

virtually eliminating reconfiguration overheads.  Nevertheless, these techniques must be 

refined for future reconfigurable systems.  The lack of benchmarks presents a great 

barrier to not only overhead reduction technique development, but also run-time 

reconfigurable system architecture research.  We look forward to future research that 

develops adequate benchmark suites to address the impact of these techniques for 

different application domains. 

The current reconfigurable systems are divided by three categories – fine grain, medium 

grain, and coarse grain – depending on applications they attempt to attack.  To evaluate 

overhead reduction techniques or compare various architectures, a well-designed 

benchmark suite for each category is necessary.  This requires research efforts to 

analyze a set of applications, discovering the parallelism and granularity. 

In addition, we look forward to discover the trade-off of logic and configuration cache.  

As mentioned, hardware density of run-time reconfigurable system is very sensitive to 

reconfiguration overhead.  Caching techniques demonstrate great promise in reducing 

reconfiguration overhead, and thus improve hardware density.  Logic and interconnect 
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of configurable devices consume much more hardware resources than configuration 

cache.  Consequently, converting hardware consumed by logic and interconnect into fast 

configuration caches can effectively improve hardware density.  Specifically, larger 

configuration caches can significantly reduce reconfiguration overhead.  Though logic 

and interconnect are reduced, more portions of applications can be executed on-chip due 

to the overhead reduction, effectively improving hardware density. 

However, converting too much logic and interconnect into configuration cache can 

greatly reduce computation power of the configurable device.  Although a very large 

cache can virtually eliminate reconfiguration overhead, it will use up hardware 

necessary for computation, limiting the system’s utility.  Therefore, it is hoped that 

future research will explore the trade-off of logic, and interconnect, and configuration 

cache. 
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A p p e n d i x   N P - C o m p l e t e n e s s  o f  t h e  
W i l d c a r d  C o m p r e s s i o n  

In the standard two-level logic minimization problem, the goal is to find the minimum 

number of cubes that cover the ON set of a function, while covering none of the OFF 

set.  Wildcard compression seeks the fewest wildcard-augmented writes that will set the 

memory to the proper state. 

The two problems can be formally defined as follows: 

TWO-LEVEL-LOGIC: Given a Boolean function X, specified as an ON-set and an 

OFF-set with a total of n terms, and a value j, is there a set of at most j cubes that covers 

precisely those minterms in the ON-set of the given function? 

WILDCARD-WRITES: Given a configuration Y with n total addresses and a value k, is 

there a sequence of at most k wildcard writes that implements the given configuration? 

TWO-LEVEL-LOGIC is known to be NP-complete, by a reduction from the 

MINIMUM-DNF problem [Garey79].  In the following, NP-completeness of 

WILDCARD-WRITES is established. 

Theorem:  WILDCARD-WRITES is NP-complete. 

Proof:  First, we observe that WILDCARD-WRITES is in NP, since if we are given a 

configuration Y, a value k, and a sequence of wildcard writes, it is easy to verify in 

polynomial time that the sequence contains at most k wildcard writes and implements 

the configuration Y. 

To show that WILDCARD-WRITES is NP-hard, we proceed by reduction from the 

TWO-LEVEL-LOGIC problem. 
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Let an instance (X, j) of TWO-LEVEL-LOGIC with n terms be given.  Each of the n 

terms is in either the ON or the OFF set of the function X.  We will construct a 

corresponding instance (Y, k) of WILDCARD-WRITES as follows: For each address in 

the configuration Y, set the address to “1” if the corresponding term is in the ON set of 

X, and to “Don't Touch” if the corresponding term is in the OFF set of X.  Set k = j.   

Now, we observe that there is a one-to-one correspondence between a cube that covers a 

collection of minterms in the ON set of X and a wildcard write that sets the values of the 

corresponding addresses in Y to “1”.  It follows from this observation that the ON set of 

X can be precisely covered by at most j cubes if and only if Y can be implemented with 

at most j (equivalently, k) wildcard writes.  Since it is clear the construction of (Y, k) 

from (X, j) can be performed in polynomial time, it follows that that TWO-LEVEL-

LOGIC is polynomial-time reducible to WILDCARD-WRITES. 

From the reducibility of TWO-LEVEL-LOGIC to WILDCARD-WRITES, it follows 

that WILDCARD-WRITES is NP-hard.  Since we have already established that it is in 

NP, it follows that WILDCARD-WRITES is NP-complete.  
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