

Hyperspectral Image Compression on Reconfigurable Platforms

Thomas W. Fry

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Electrical Engineering

University of Washington

2001

Program Authorized to Offer Degree: Electrical Engineering

University of Washington

Abstract

Hyperspectral Image Compression on Reconfigurable Platforms

Thomas W. Fry

Chair of the Supervisory Committee:
Associate Professor, Scott Hauck

Electrical Engineering

NASA’s satellites currently do not make use of image compression techniques during

data transmission to earth because of limitations in the available platforms. Yet as

satellites are built with an ever-larger number of sensors, the amount of data captured by

a satellite is beginning to overwhelm the bandwidth capabilities of the transmission

channels. Current software implementations are unable to meet the necessary

computational and power requirements for use in a satellite. At the same time hardware

platforms lack the required flexibility needed for post-launch modifications.

With the advent of Field Programmable Gate Arrays (FPGAs) and Adaptive Computing

technologies it is now possible to construct a system, which compresses the data stream

before down linking. By developing image compression routines on a reconfigurable

platform, it is possible to obtain the computational performance required to compress a

satellite’s data in real time and at the same time retain the ability to modify the system

post-launch. Our work is part of a NASA-sponsored study on the design and

implementation of FPGA-based Hyperspectral Image Compression algorithms for use in

space.

i

Table of Contents

 Page

List of Figures ...ii

List of Tables..iii

1 Introduction ... 1

2 Background ... 3
2.1 FPGAs .. 3
2.2 SPIHT.. 4

2.2.1 Wavelet Transformation.. 5
2.2.2 Discrete Wavelet Transform ... 6
2.2.3 SPIHT Coding ... 7

3 Prior Work... 11

4 SPIHT Design Considerations and Modifications .. 15
4.1 Variable Fixed Point.. 15
4.2 Fixed Order SPIHT .. 18

5 Architecture... 23
5.1 Target Platform ... 23
5.2 Design Overview.. 24
5.3 Discrete Wavelet Transform Phase .. 24
5.4 Maximum Magnitude Phase ... 26
5.5 SPIHT Coding Phase.. 29

6 Design Results... 31

7 Conclusions and Future Work... 34

Bibliography.. 35

ii

List of Figures

 Page

Figure 1: Typical FPGA Structure .. 4

Figure 2: Fourier Transform.. 5

Figure 3: Inverse Fourier Transform... 5

Figure 4: A set of Wavelet scales and one final low-pass function 6

Figure 5: One Level Wavelet built by two one-dimensional passes 6

Figure 6: A three-level wavelet transform .. 7

Figure 7: Spatial-orientation trees ... 8

Figure 8: SPIHT Coding algorithm... 9

Figure 9: Illustration of a folded architecture.. 11

Figure 10: The Partitioned DWT .. 12

Figure 11: Generic 2-D Biorthogonal DWT ... 13

Figure 12: PSNR vs. bit-rate for various coefficient sizes.. 17

Figure 13: Fixed Order SPIHT.. 21

Figure 14: Comparison of Original SPIHT to Fixed Order SPIHT 21

Figure 15: Annapolis Micro Systems WildStar board block diagram 23

Figure 16: Overview of the architecture ... 24

Figure 17: DWT Architecture ... 25

Figure 18: Data passed to the SPIHT coder to calculate a single block............................ 27

Figure 19: Depth-First Search of the Spatial Orientation Trees.. 27

Figure 20: Maximum Magnitude Block Diagram... 28

Figure 21: SPIHT Coding Phase Block Diagram.. 29

iii

List of Tables

 Page

Table 1: Fixed-Point Magnitude Calculations .. 16

Table 2: Final Variable Fixed-Point Representation... 18

Table 3: Performance Numbers... 31

1

1 Introduction

Satellites deployed by NASA currently do not make use of lossy image compression

techniques during transmission. There have been a few driving reasons behind NASA’s

decision to transmit raw data. First, the downlink channels have provided enough

bandwidth to handle all of the data a satellite’s sensors collected in real time. Second,

there has been a lack of viable platforms with which a satellite could process data. Lastly,

transmitting raw data reduces the risk of corrupting the data-stream.

As NASA deploys satellites with more sensors, capturing an ever-larger number of

spectral bands, the volume of data being collected is beginning to outstrip a satellite’s

ability to transmit it back to Earth. NASA’s most recent satellite Terra contains five

separate sensors each collecting up to 36 individual spectral bands. The Tracking and

Data Relay Satellite System (TDRSS) ground terminal in White Sands, New Mexico,

captures data from all of these sensors at a rate of 150Mbps [19]. As the number of

sensors on a satellite grows and thus the transmission rates increase, they are providing a

driving force for NASA to study methods of compressing images prior to down linking.

Current technologies have been unable to provide NASA with a viable platform to

process data in space. Software solutions suffer from performance limitations and power

requirements. At the same time traditional hardware platforms lack the required

flexibility needed for post-launch modifications. After launch they cannot be modified to

use newer compression schemes or even implement bug fixes. In the past, a modification

to fixed systems in satellites has proven to be very expensive. The correction to the

Hubble telescope’s flawed 94-inch-wide primary mirror approached $50 million [4].

By implementing an image compression kernel in a reconfigurable system, it is possible

to overcome these shortcomings. Since such a system may be reprogrammed after launch,

it does not suffer from conventional hardware’s inherit inflexibility. At the same time the

algorithm is computing in custom hardware and can perform at the required rates, while

consuming less power than a traditional software implementation.

2

Our work is part of a NASA-sponsored investigation into the design and implementation

of a space-bound FPGA-based Hyperspectral Image Compression algorithm. We have

selected the Set Partitioning in Hierarchical Trees (SPIHT) compression routine and

optimized the algorithm for implementation in hardware. This thesis describes our work

towards this effort and provides a description of our results.

3

2 Background

2.1 FPGAs

The most common type of computing system is the general-purpose processor. Under this

model, the hardware of the system is limited to merely a few basic tasks. By combining

and building off of these operations, a general-purpose computer can perform a much

larger number of operations than it was originally designed to handle. Which is why the

general-purpose computer is so flexible. However this flexibility comes with a price. For

any specific application, the general-purpose processor will perform poorly when

compared to a custom hardware implementation.

Traditionally computations that required the high performance of a custom hardware

implementation needed the development and fabrication of an Application-Specific

Integrated Circuit (ASIC). Development of an ASIC requires several steps. The circuit

must be designed and tested. Once the circuit is designed it must be fabricated.

Fabrication involves creating wafer masks for that specific design, fabricating the chips,

packaging and finally testing. A modification to a design post-masking requires whole

new wafer masks to be prepared. All of these factors contribute to making ASIC designs

both expensive for low volume runs and intolerant to design errors or modifications once

the fabrication process is started.

With the advent of Field Programmable Gate Arrays (FPGAs) and Reconfigurable

Computing, designers may now develop custom hardware solutions without a separate

fabrication run for each design. FPGAs are, as their name implies, an array of logic gates,

which can be programmed to perform a variety of tasks. They consist of programmable

logic structures distributed throughout the chip in one of four methods: Symmetrical

Array, Sea-of-Gates, Row Based and Hierarchical PLD [10]. A routing interconnect is

used to connect the logic structures. Like the array of logic gates, the routing interconnect

is fully programmable.

By reprogramming the logic gates and the routing interconnect it is possible to configure

the chip to perform any arbitrary computation. By utilizing their programmable nature,

4

FPGAs offer a low cost, flexible solution over traditional ASICs. Since a single FPGA

design may be used for many tasks, it can be fabricated in higher volumes, lowering

fabrication costs. Also, their ability to be reprogrammed allows for easy design

modifications and bug fixes without the need to construct a new hardware system.

FPGAs may be reprogrammed within milliseconds for no cost other than the designer’s

time, while ASICs require a completely new fabrication run lasting a month or two and

costing hundreds of thousands of dollars.

Routing Interconnect

I/O Connections

Logic Cell

Figure 1: Typical FPGA Structure

2.2 SPIHT

For our system we selected the Set Partitioning in Hierarchical Trees (SPIHT) image

compression algorithm. SPIHT is a wavelet-based image compression coder. It first

converts the image into its wavelet transform and then transmits information about the

wavelet coefficients. The decoder uses the received signal to reconstruct the wavelet and

performs an inverse transform to recover the image. We selected SPIHT because it

displays exceptional characteristics over several properties all at once [14]. They include:

• Good image quality with a high PSNR
• Fast coding and decoding

5

• A fully progressive bit-stream
• Can be used for lossless compression
• May be combined with error protection
• Ability to code for exact bit rate or PSNR

2.2.1 Wavelet Transformation

The Fourier Transform (Figure 2) is used to convert an aperiodic signal from the time

domain to the frequency domain [8]. The inverse Fourier Transform (Figure 3) may then

be used to restore the original signal by converting the signal back to the time domain.

() ()�
∞

∞−

−= dtetω tjωfF

Figure 2: Fourier Transform

() ()�
∞

∞−

= dtet tjωω
π

F
2

1
f

Figure 3: Inverse Fourier Transform

Such a Fourier expansion yields full frequency resolution but no spatial/time resolution

over a signal. Wavelet theory has been refined over the past 15 years to address the

spatial resolution problem. Wavelets make use of scales to analyze data at various

resolutions. By using a scalable window over a signal they provide a multi-resolution

analysis of the signal [9]. Using these windows, it is possible to gather spatial-scale

representations. Since the various scales correspond to different frequencies, wavelet

analysis offers a spatial-frequency representation of a signal.

The typical wavelet uses a filter bank to process a high-pass and low-pass subband of the

signal and down samples the results by a factor of two. By spatially compressing the

wavelet by a factor of two, the frequency spectrum will stretch and shift by a factor of

two as well, restoring the original frequency range. Thus by iteratively applying the filter

bank to the low-pass result of the wavelet and down sampling the results, each wavelet

covers half of the frequency components remaining (Figure 4). Lastly, a low-pass

subband will represent all of the remaining frequency components [20].

6

n1+n2+n

()Ψ components Pass-High

()ϕcomponent Pass-Low Final

nωnω
2

1
nω

4

1

Figure 4: A set of Wavelet scales and one final low-pass function

2.2.2 Discrete Wavelet Transform

Since images are not continuous, but sampled at individual points or pixels, it is

necessary to use a discrete form of the wavelet transform, as wavelets assume a

continuous signal. The discrete wavelet transform runs a high and low-pass subband over

the signal in one dimension. Every other result from each pass is then sampled yielding

two subbands, each of which is one half the size of the input stream. The result is a new

image comprising of a high and low-pass subband. The two subbands can be used to fully

recover the original image. In the case of a multidimensional signal, such as an image,

this procedure is repeated in each dimension (Figure 5).

a) Original Image b) Horizontal Pass b) Vertical Pass

L H
LH

HHHL

LLLP

HP

LP

HP

2↓

2↓

2↓

2↓

Figure 5: One Level Wavelet built by two one-dimensional passes

The vertical and horizontal transformations break up the image into four distinct

subbands. The wavelet coefficients that correspond to the sharpest scale are the LH, HL

and HH subbands. Lower frequencies are represented by the LL subband which is a low-

pass filtered version of the original image [16].

The next wavelet level is calculated by repeating the horizontal and vertical

transformations on the LL subband from the previous level. Four new subbands are

7

created from the transformations. The LH, HL and HH subbands the next level represent

coarser scale coefficients and the new LL subband is an even smoother version of the

original image. It is possible to obtain coarser and coarser scales of the LH, HL and HH

subbands, by iteratively repeating the wavelet transformation on the LL subband of each

level. Once the procedure is compete, the final LL subband is saved along with the other

three subbands within the same level. Figure 6 displays an image with three scales of

wavelet transformation.

HH1

LH1

HL1

HL2 HH2

LH2

LH3

HH3HL3

LL3

Figure 6: A three-level wavelet transform

2.2.3 SPIHT Coding

SPIHT is a method of coding and decoding the wavelet transform of an image. By coding

and transmitting information about the wavelet coefficients, it is possible for a decoder to

perform an inverse transformation on the wavelet and reconstruct the original image. The

entire wavelet does not need to be transmitted in order to recover the image. Instead, as

the decoder receives more information about the wavelet, the inverse-transformation will

yield a better quality reconstruction of the original image. SPIHT generates excellent

image quality and performance due to several properties of the coding algorithm. They

are partial ordering by coefficient value, taking advantage of the redundancies between

different wavelet scales and transmitting data in bit plane order [13].

8

Following a wavelet transformation, SPIHT divides the wavelet into Spatial Orientation

Trees. Each node in the tree corresponds to an individual pixel. The offspring of a pixel

are the four pixels in the same spatial location of the same subband at the next finer scale

of the wavelet. Pixels at the finest scale of the wavelet are the leaves of the tree and have

no children. Every pixel is part of a 2 x 2 block with its adjacent pixels. Blocks are a

natural result of the hierarchical trees because every pixel in a block shares the same

parent. Also, the upper left pixel of each 2 x 2 block at the root of the tree has no children

since there only 3 subbands at each scale and not four. Figure 7 shows how the pyramid

is defined. Arrows point to the offspring of an individual pixel, and the grayed blocks

show all of the descendents for a specific pixel at every scale.

Figure 7: Spatial-orientation trees

SPIHT codes a wavelet by transmitting information about the significance of a pixel. By

stating whether or not a pixel is above some threshold, information about that pixel’s

value is implied. Furthermore, SPIHT transmits information stating whether a pixel or

any of its descendants are above a threshold. If the statement proves false, then all of its

descendants are known to be below that threshold level and they do not need to be

considered during the rest of the current pass. At the end of each pass the threshold is

divided by two and the algorithm continues. By proceeding in this manner, information

9

about the most significant bits of the wavelet coefficients will always precede

information on lower order significant bits, which is referred to as bit plane ordering.

Information stating whether or not a pixel is above the current threshold or being

processed at the current threshold is contained in three lists: the list of insignificant pixels

(LIP), the list of insignificant sets (LIS) and the list of significant pixels (LSP). The LIP is

pixels that are currently being processed but have yet to be above the threshold. The LIS

is pixels, which are currently being processed, but none of their descendants are yet

above the threshold and are not being processed. Lastly the LSP is pixels, which were

already stated to be above a previous threshold level, and now their value at each bit

plane is transmitted.

Figure 8 is the algorithm copied from the original SPIHT paper [13]. It is modified to

reflect changes discussed later in the paper referring to 2x2 block information. Sn(i,j)

represents if the pixel (i,j) is greater than the current threshold and Sn(D(i,j)) states if

any of pixel’s (i,j) descendants are greater than the current threshold.

1. Initialization: output n = floor[log2(max(i,j){ |ci,j| })]; clear the LSP list,
add the root pixels to the LIP list and root pixels with descendants to LIS
2. Sorting Pass:
 2.1 for each entry (i,j) in the LIP:
 2.1.1 output Sn(i,j);
 2.1.2 if Sn(i,j) = 1 then move (i,j) to the LSP list and output its sign
 2.2 for each entry (i,j) in the LIS:
 2.2.1 if one of the pixels in (i,j)’s block is not in LIP but all are in LIS
 output Sn(all descendants of the current block)
 if none are significant skip 2.2.2
 2.2.2 output Sn(D(i,j))
 if Sn(D(i,j)) = 1 then
 for each of (i,j) immediate children (k,l)
 output Sn(k,l)
 add (k,l) to the LIS for the current pass
 if Sn(k,l) = 1 then add (k,l) to the LSP and output its sign
 else add (k,l) to the LIP
3. Refinement Pass: for each entry (i,j) in LSP, except ones inserted in
the current pass, output the nth most significant bit of (i,j).
4. Quantization-step Update: decrement n by 1 and go to Step 2.

Figure 8: SPIHT Coding algorithm

10

There are two important concepts to take from the algorithm. First, as the encoder

sequentially steps through the image and inserts/deletes pixels from the three lists, all of

the information required to keep track of the lists is output to the decoder. In order for the

decoder to reproduce the steps taken by the encoder you merely need to replace output

in the encoder with input in the decoder. Second, the bit-stream produced is naturally

progressive. A progressive bit-stream is one that can be cut off at any point and still is a

valid bit-stream. As the decoder steps through the coding algorithm, it gathers finer and

finer detail about the original wavelet transform. The decoder is able to stop at any point

and perform an inverse transform with the wavelet coefficients it has currently

reconstructed. Progressive bit-streams also have the advantage of being able to be

reduced to an arbitrary size or be cut off during transmission and still produce a valid

image.

11

3 Prior Work

As wavelets have gained popularity over the past several years there has been growing

interest in implementing the discrete wavelet transform in hardware. Much of the work

on DWTs involves parallel platforms to save both memory access and computations

[5][11][15]. Here we will provide a review of four individual DWT architectures and

their performance where available.

The one-dimensional DWT entails demanding computations, which involve significant

hardware resources. Most two-dimensional DWT architectures have implemented folding

to reuse logic for each dimension, since the horizontal and vertical passes use identical

FIR filters [6]. Figure 9 illustrates how a 1-D DWT is used to realize a 2-D DWT.

1-D DWT Memory

Row Data

Column Data

Figure 9: Illustration of a folded architecture

Such an architecture suffers from high memory bandwidth. For an N x N image there are

at least 2N2 read and write cycles for the first wavelet level. Additional levels require re-

reading previously computed coefficients.

In order to address these superfluous memory accesses the Recursive Pyramid Algorithm

(RPA) was designed [21]. RPA takes advantage of the fact that the various wavelet levels

run at different clock rates. Each wavelet level requires ¼ the amount of time as the

previous level. Thus it is possible to store previously computed coefficients on-chip and

intermix the next level’s computations with the current calculations. A careful analysis of

the runtime yields (4*N2)/3 computations for an image. However the algorithm has

significant on chip memory requirements and requires a thorough scheduling process to

interleave the various wavelet levels.

12

Another method to reduce memory accesses is the Partitioned DWT, which partitions the

image into smaller blocks and computes several scales of the DWT at once for each block

[12]. In addition, the algorithm makes use of wavelet lifting to reduce the computational

complexity of the DWT [18]. By partitioning an image into smaller blocks, the amount of

on-chip memory storage required is significantly reduced since only the coefficients in

the block need to be stored. The approach is similar to the Recursive Pyramid Algorithm

except that it computes over sections of the image at a time instead of the entire image at

once. Figure 10 from Ritter et al. [12] illustrates how the partitioned wavelet is

constructed.

Figure 10: The Partitioned DWT

Nevertheless the partitioned approach suffers blocking artifacts along the partition

boundaries if the boundaries are treated with reflection1. Thus pixels from neighboring

partitions are required to smooth out these boundaries. The number of wavelet levels

determines how many pixels beyond a sub-image’s boundary are needed. Higher wavelet

levels represent data from a greater region of the image. To compensate for the partition

boundaries the algorithm processes sub-image rows at a time to eliminate multiple reads

in the horizontal direction. Overall data throughputs of up to 152Mbytes have been

achieved with the Partitioned DWT.

1 A FIR filter generally computes over several pixels at once and generates a result for the middle pixel. In
order to calculate pixels close to image’s edge, data points are required beyond the edge of the image.
Reflection is a method which takes pixels towards the image’s edge and copies them beyond the edge of
the actual image for calculation purposes.

13

The last unique architecture to discuss is the Generic 2-D Biorthogonal DWT shown in

Benkrid et al. [3]. Unlike previous design methodologies, the Generic 2-D Biorthogonal

DWT does not require filter folding or large on chip memories as the Recursive Pyramid

design. Nor does it involve partitioning an image into sub-images. Instead, the

architecture proposed creates separate structures to calculate each wavelet level as data is

presented to it, as shown in Figure 11. The design sequentially reads in the image and

computes the four DWT subbands. As the LL1 subband becomes available, the

coefficients are passed off to the next stage, which will calculate the next coarser level

subbands and so on.

For larger images that require several individual wavelet scales, the Generic 2-D

Biorthogonal DWT architecture consumes a tremendous amount of on-chip resources.

With SPIHT, a 1024 by 1024 pixel image computes seven separate wavelet scales. The

proposed architecture would employ 21 individual high and low pass FIR filters. Since

each wavelet scale processes data at different rates, a separate clock signal is also needed

for each scale. The advantage of the architecture is much lower on-chip memory

requirements and full utilization of the memory’s bandwidth since each pixel is only read

and written once.

Low

High

High

High

Low

Low

HH1

HL1

LH1

Low

High

High

High

Low

Low

HH2

HL2

LH2

Low

High

High

High

Low

Low

HH3

HL3

LH3

LL3

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

Low

High

High

High

Low

Low

HH1

HL1

LH1

Low

High

High

High

Low

Low

HH2

HL2

LH2

Low

High

High

High

Low

Low

HH3

HL3

LH3

LL3

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

2↓

Figure 11: Generic 2-D Biorthogonal DWT

To date the literature contains very little on hardware implementations of SPIHT since

the algorithm was developed so recently. Singh et al. [17] briefly describes a direct

implementation of the SPIHT software algorithm. The paper is a brief on work done and

provides a high level overview of the architecture. Their design calls for one processing

phase to calculate the image’s wavelet transformation and another for the SPIHT coding.

The SPIHT coding is performed using Content Addressable Memories to keep track of in

14

what lists each pixel is active. The algorithm sequentially steps through the wavelet

coefficients multiple times in the same order as the original software program. The design

has been developed for 8 by 8 sized images and no performance numbers were given.

15

4 SPIHT Design Considerations and Modifications

In order to fully take advantage of the high performance a custom hardware

implementation of SPIHT can yield, the software specifications must be examined and

adjusted where they either perform poorly in hardware or do not make the most of the

resources available. Here we discuss both memory storage considerations and

optimizations to the original SPIHT algorithm for use in hardware.

4.1 Variable Fixed Point

The discrete wavelet transform produces real numbers as the wavelet coefficients.

General-purpose computers realize real numbers as floating-point numbers. The

representation of a floating-point number contains three parts: the sign bit, the exponent

definition and the decimal description. A computer shifts the decimal description of the

number by analyzing the exponential part. By utilizing these three parts, floating point

numbers are able to represent a tremendous numerical range while still providing a high

degree of precision.

Because of their inherit flexibility, floating-point numbers are well suited for a broad

range of applications. Which is why general-purpose computers provide hardware

support for floating-point numbers. However, floating-point numbers are not optimized

for any specific application. For example, a data set that includes only numbers between

–1000 and 1000 will waste many of the bits employed by an exponential description

optimized for numbers in the range ±1031. In order to conserve bits and optimize both

memory storage and bandwidth, it is important to create a numerical representation

specific to the data set under consideration.

Traditionally FPGAs have not employed the use of floating-point numbers for several

reasons. Some of these reasons are that floating-point numbers:

• Require variable shifts based on the exponential description and variable shifters

in FPGAs perform poorly.

• Consume enormous hardware resources on a limited resource FPGA.

16

• Are often unnecessary for a known data set.

At each wavelet level of the DWT, coefficients have a fixed range. Therefore we opted

for a fixed-point numerical representation. A fixed-point number is one where the

decimal point’s position is predefined. With the decimal point locked at a specific

location, each bit contributes a known value to the number, which eliminates the need for

variable shifters. However the DWT’s filter bank is unbounded, meaning that the range

of possible numbers increases with each additional wavelet level.

Table 1: Fixed-Point Magnitude Calculations

Wavelet Level Factor Maximum Magnitude Maximum Bits Maximum Bits from Data

Input image 1 255 8 8
0 2.9054 741 11 11
1 8.4412 2152 13 12
2 24.525 6254 14 13
3 71.253 18170 16 14
4 207.02 52789 17 15
5 601.46 153373 19 16
6 1747.5 445605 20 17

An analysis of the coefficients of each filter bank shows that a 2-D low-pass FIR filter at

most increases the range of possible numbers by a factor of 2.9054. This number is the

increase found from both the horizontal and the vertical directions. It represents how

much larger a coefficient at the next wavelet level could be if all of the previous level’s

coefficients were both the maximum found at that level and of the correct sign. As a

result, the coefficients at various wavelet levels require a variable number of bits above

the decimal point to cover their possible ranges, as shown in Table 1.

Figure 12 illustrates the various requirements placed on a numerical representation for

each wavelet level. The Factor and Maximum Magnitude columns demonstrate how the

range of possible numbers increases with each level and the final result for a 1 byte per

pixel image. The next column shows the maximum number of bits (with a sign bit) that

are necessary to represent the numeric range at each wavelet level. The maximum

number of bits we found by evaluating the actual range observed over many sample

17

images is displayed in the last column. These values determine what position the most

significant bit must stand for.

If each wavelet level used the same numerical representation, they would all be required

to handle numbers as large as the highest wavelet level to prevent overflow. Yet the

lowest wavelet levels will never encounter numbers in that range. As a result, several bits

at these levels would not be employed and therefore wasted.

PSNR vs. bit-rate

0

20

40

60

80

100

0.
05

0.
45

0.
85

1.
25

1.
65

2.
05

2.
45

2.
85

3.
25

3.
65

4.
05

4.
45

4.
85

5.
25

5.
65

6.
05

6.
45

6.
85

7.
25

7.
65

Bitrate

P
S

N
R

orig

bit16

bit15

bit14

bit14-h

bit14-l

bit13

bit12

bit11

bit10

Figure 12: PSNR vs. bit-rate for various coefficient sizes

To fully utilize all of the bits for each wavelet coefficient, we introduce the concept of

Variable Fixed-Point representation. With Variable Fixed-Point we assign a fixed-point

numerical representation for each wavelet level. In addition, each representation differs

from one another, meaning we employ a different fixed-point scheme for each wavelet

level. Doing so allows us to optimize both memory storage and I/O at each wavelet level

to yield maximum performance.

18

Once the position of the most significant bit is found for each wavelet level, the number

of precision bits to accurately represent the wavelet coefficients needs to be determined.

Our goal is to provide enough bits to fully recover the image and at the same time use

only as many are necessary to do so. Figure 12 displays the average Peak Signal to Noise

ratios for several recovered images from SPIHT using a range of bit widths for each

coefficient.

An assignment of 16 bits per coefficient most accurately matches the full precision

floating-point coefficients used in software, up through perfect reconstruction. Previous

wavelet designs have focused on bit rates less than 4 bpp. Their studies found that fewer

pixels are necessary for SPIHT [3]. Instead we elected a numerical representation which

retains an equivalent amount of information as a floating-point number. By doing so, it is

possible to perfectly reconstruct an image given a high enough bit rate. Table 2 provides

the number of integer and decimal bits2 allocated for each wavelet level. The number of

integer bits also includes one extra bit for the sign value. The highest wavelet level’s 16

integer bits represent positions 17 to 1 with no bit assigned for the 0 position.

Table 2: Final Variable Fixed-Point Representation

Wavelet Level Integer Bits Decimal Bits

Input image 10 6
0 11 5
1 12 4
2 13 3
3 14 2
4 15 1
5 16 0
6 17 -1

4.2 Fixed Order SPIHT

The SPIHT algorithm given in Figure 8 is designed to transmit data in the optimal order

within each bit-plane. By always adding pixels to the end of the LIP, LIS and LSP lists,

coefficients most critical to constructing a valid wavelet are generally placed first while

less critical coefficients are placed last in the lists. Such an ordering will yield better

2 Integer bits refer to bits above the decimal point. Decimal bits refer to bits following the decimal point.

19

image quality for bit-streams which end within the middle of a bit-plane. The drawback

of this ordering is that every image will have a unique list order determined by the

image’s wavelet coefficient values.

The data that a block of coefficients contributes to the final SPIHT bit-stream is fully

determined by the following localized information.

• The 2x2 block of coefficients.

• The maximum magnitude of the four child trees.

• Some threshold and sign data of the 16 child coefficients when they are first

inserted into the LIS list.

Thus, every block of coefficients may be calculated independently and in parallel of one

another. However, the order that a block’s data will be inserted into the bit-stream is not

known since this order is dependent upon the image’s list order. Once the order is

determined it is possible to produce a valid SPIHT bit-stream from the above

information.

In order to determine an image’s list order, it is necessary to sequentially step through the

LIP and LIS lists for each bit-plane. By doing so each pixel must be considered multiple

times and thus read from memory multiple times. Consequently, a hardware

implementation of SPIHT is unable to calculate coefficient blocks in parallel. As a result,

many of the speedups a custom hardware implementation may produce are lost. Instead,

any hardware implementation must create the lists in the same manner as a software

implementation. This process requires many clock cycles per block of coefficients.

We propose a modification to the original SPIHT algorithm called Fixed Order SPIHT.

Fixed Order SPIHT is similar to the algorithm in Figure 8, except that the order of the

LIP, LIS and LSP lists is fixed and known beforehand. Instead of inserting blocks of

coefficients at the end of the lists, they are inserted in a predetermined order. For example

block A will always appear before block B which is always before block C, regardless of

the order in which A, B and C were added to the lists. The order of Fixed Order SPIHT is

based upon the Morton Scan ordering discussed in Algazi et al. [1].

20

Fixed Order SPIHT allows us to create a fully parallel version of the original SPIHT

algorithm. Figure 13 outlines our new version of SPIHT. The final bit-stream generated is

precisely the same as the bit-stream generated from the original SPIHT algorithm

modified to use a Morton Scan Ordering. As a result the original decoder looping through

the lists multiple times can decode the bit-stream generated by the parallel encoder.

1. Bit Plane Calculation: for each 2x2 block of pixels (i,j) in a Morton
Scan Ordering
 1.1 for each threshold level n from the highest level to the lowest
 1.1.1 if (i,j) is a root and Max((i,j)) >= n
 add all four pixels to the LIP
 1.1.2 if (i,j) is not a root and Max((i,j)) >= previous n
 for each pixel p in the block
 if p < previous n
 add p to the LIP
 else
 add p to the LSP
 1.1.3 if (i,j) is not a leaf and Max((i,j)) >= n
 add all four pixel to the LIS unless (i,j) is a root, then
 just add the three with children
 1.1.4 if all four pixels are in LIS and at least one is not in the LIP
 if at least one pixel will be removed from the LIS at this level
 output a ‘0’ to the LIS stream
 else
 output a ‘1’ to the LIS stream
 1.1.5 for each pixel p in the LIP
 if p >= n
 output a ‘1’ and the sign of p to the LIP stream
 remove p from the LIP and add it to the LSP
 else
 output a ‘0’ to the LIP stream
 1.1.6 for each pixel p in the LIS
 if child max(p) >= n
 output a ‘1’ to the LIS stream
 remove p from the LIS
 for each child (k,l) of p
 if (k,l) >= n
 output a ‘1’ and the sign of (k,l) to the LIS stream
 else
 output a ‘0’ to the LIS stream
 else
 output a ‘0’ to the LIS stream
 1.1.7 for each pixel p in the LSP
 (continued)

21

 output the value of p at the bit plane n to the LSP stream
2. Grouping phase: for each threshold level n from the highest level to
the lowest
 2.1 output the LIP stream at threshold level n to the final data stream
 2.2 output the LIS stream at threshold level n to the final data stream
 2.3 output the LSP stream at threshold level n to the final data stream

Figure 13: Fixed Order SPIHT

By using the algorithm in Figure 13 instead of the original sequential algorithm in Figure

8, the final data stream can be computed in one pass through the image instead of

multiple passes. In addition each pixel block is coded in parallel, which yields

significantly faster compression times with FPGAs.

Original SPIHT Order vs. Fixed Order SPIHT

0

10

20

30

40

50

60

70

0.
05 0.
3

0.
55 0.
8

1.
05 1.
3

1.
55 1.
8

2.
05 2.
3

2.
55 2.
8

3.
05 3.
3

3.
55 3.
8

BitRate

P
S

N
R

f ire Original

fire Fixed Order

lena512 Original

lena Fixed Order

SF Original

SF Fixed Order

itcz Original

itcz Fixed Order

Figure 14: Comparison of Original SPIHT to Fixed Order SPIHT

An analysis between the original SPIHT algorithm and the new version using Morton

Scan Ordering shows that the data streams are not identical. The original algorithm varies

the order in which it transmits data to produce very high image quality within each pass.

On the other hand Fixed Order SPIHT transmits the same data but in a fixed order.

Therefore at the end of each LIP, LIS and LSP passes, the image quality of Fixed Order

22

SPIHT will match that of the original SPIHT algorithm. However since the new fixed

order is not optimal for the image, within a pass there is a marginal drop in PSNR.

Results show the loss of quality to be between at most 0.1 dB and 0.2 dB. Figure 14

provides an image quality comparison between the two algorithms. Because the data

transmitted is the same at the end of each bit plane, the PSNR curves of Fixed Order

SPIHT follow the original algorithm very closely.

23

5 Architecture

5.1 Target Platform

Our target platform is the WildStar FPGA processor board developed by Annapolis

Micro Systems [2]. The board, shown in Figure 15, consists of three Xilinx Virtex 2000E

FPGAs: PE0, PE1 and PE2. It operates at rates up to 133MHz. 48 MBytes of memory is

available through 12 individual memory ports between 32 and 64 bits wide, yielding a

throughput of up to 8.5 GBytes/Sec. Four shared memory blocks connect the Virtex chips

through a crossbar. By switching a crossbar, several MBytes of data is passed between

the chips in just a few clock cycles.

Figure 15: Annapolis Micro Systems WildStar board block diagram

The Xilinx Virtex 2000E FPGA allows for 2 million gate designs [22]. For extra on-chip

memory, the FPGAs contain 160 asynchronous dual ported BlockRAMs. Each

BlockRAM stores 4096 bits of data and is accessible in 1, 2, 4, 8 or 16 bit wide words.

24

Because they are dual ported, the BlockRAMs function well as FIFOs. A PCI bus

connects the board to a host computer.

5.2 Design Overview

Our architecture consists of three phases: Wavelet Transform, Maximum Magnitude

Calculation and Fixed Order SPIHT Coding. Each phase is implemented in one of the

three Virtex chips. By instantiating each phase on a separate chip, separate images can be

operated upon in parallel. Data are transferred from one phase to the next through the

shared memories. Once processing in a phase is complete, the crossbar mode is switched

and the data calculated is accessible to the next chip. By coding a different image in each

phase simultaneously, the throughput of the system is determined by the slowest phase,

while the latency of the architecture is the sum of the three phases. Figure 16 illustrates

the architecture of the system.

PE1
Wavelet

PE0
Magnitude

PE2
SPIHT

Wavelet
Coefficients

Wavelet
Coefficients

Magnitude
Information

Figure 16: Overview of the architecture

5.3 Discrete Wavelet Transform Phase

We selected a form of the folding architecture to calculate the DWT. Previous parallel

versions of the DWT saved some memory bandwidth. However, additional resources and

a more complex scheduling algorithm become necessary. In addition the savings becomes

minimal since each higher wavelet level is ¼ the size of the previous wavelet level. In a

seven level DWT, the highest 4 levels compute in just 2% of the time it takes to compute

the first level.

For this reason we designed a folded architecture which processes one dimension of a

single wavelet level. Pixels are read in horizontally from one memory port and written

directly to a second memory port. In addition pixels are written to memory in columns,

inverting the image along the 45-degree line. By utilizing the same addressing logic,

25

pixels are again read in horizontally and written vertically. However, since the image was

inverted along its diagonal, the second pass will calculate the vertical dimension of the

wavelet and restore the image to its original form.

Each dimension of the image is reduced by half and the process iteratively continues for

each wavelet level. Finally, the mean of the LL subband is calculated and subtracted from

itself. To speed up the DWT, the design reads and writes four rows at a time. Given 16

bit coefficients and a 64-bit wide memory port, four rows is the maximum that can be

transferred in a clock cycles. Figure 17 illustrates the architecture of the discrete wavelet

transform phase.

Read
Address Logic

Row Boundary
Reflection

Row 1
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 2
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 3
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 4
Low Pass

High Pass

Variable Fixed
Point Scaling

Data Selection
and Write

Address Logic

LL Subband Mean
Calculation and Subtraction

Write
Memory Port

Read
Memory Port

DWT Level
Calculation

and
Control Logic

Read-Write Crossbar

Figure 17: DWT Architecture

Since every pixel is read and written once and the design processes four rows at a time,

for an N x N size image both dimensions in the lowest wavelet level will compute in N/4

clock cycles. Similarly, the next wavelet level will process the image in ¼ the number of

clock cycles as the previous level. With an infinite number of wavelet levels the image

will process in:

26

2

1

2

4

3

4

2
N

N

l
l

⋅=⋅
�

∞

=

Thus the runtime of the DWT engine is bounded by ¾th a clock cycle per pixel in the

image. Many of the parallel architectures designed to process multiple wavelet levels

simultaneously run in more than one clock cycle per image. Because of the additional

resources required by a parallel implementation, computing multiple rows at once

becomes impractical. Given more resources, the parallel architectures discussed above

could process multiple rows at once and yield runtimes lower than ¾th a clock cycle per

pixel. However, our FPGAs do not have such extensive resources.

By keeping the address and control logic simple, there are enough resources on the FPGA

to implement 8 distributed arithmetic FIR filters [23] from the Xilinx Core library. The

FIR filters use a bit-serial approach to compute the input stream and require significant

FPGA resources, approximately 8% of the Virtex 2000E FPGA for each high and low-

pass FIR filter. We chose the distributed arithmetic FIR filters because they produce a

new result on every clock cycle.

5.4 Maximum Magnitude Phase

Once the DWT is complete the next phase must prepare and organize the image into a

form easily readable by the parallel version of the SPIHT coder. Specifically the

maximum magnitude phase needs to calculate and rearrange the following information

for the next phase.

• The absolute value of the 2x2 block of coefficients.

• A sign value for each coefficient in the block.

• The maximum magnitude of each of the 4 child trees.

• The threshold level when the block is first inserted into the LIS by its parent.

• Threshold and Sign data of each of the 16 child coefficients when they are first

inserted into the LIS.

• Re-order the wavelet coefficients into a Morton Scan ordering.

27

The SPIHT coding phase shares two 64-bit memory ports with the magnitude phase

allowing it to read 128 bits on each clock cycle. The data listed above can fit into these

two memory ports. By doing so on every clock cycle the SPIHT coding phase will be

able to read and process an entire block of data. The data that the maximum magnitude

phase calculates is shown in Figure 18. Since there are less than 32 threshold levels, a

five-bit number can represent when a block is inserted into the lists.

4 Children and Parent’s Threshold data

015163132474863

Coefficient 1Coefficient 2Coefficient 3Coefficient 4

Left Memory Port Coefficient

15 14 0

Coefficient Magnitude

Sign Bit

025313263

Right Memory Port

24

Threshold and Sign data for 16 children

Figure 18: Data passed to the SPIHT coder to calculate a single block

To calculate the maximum magnitude of all coefficients below a node in the spatial

orientation trees, the image must be scanned in a depth-first search order [7]. By scanning

the trees of the image in a depth-first search order, whenever a new coefficient is read

and being considered, all of its children will have already been read and the maximum

coefficient so far is known. On every clock cycle the new coefficient is compared to and

updates the current maximum. Since PE0 (the Magnitude phase) uses 32-bit wide

memory ports, it can read half a block at a time.

Spatial Orientation Tree Stack

Child Coefficients

Child Maximum Magnitudes

Current Coefficients

Figure 19: Depth-First Search of the Spatial Orientation Trees

The state machine, which controls how the spatial orientation trees are traversed, reads

one half of a block as it descends the tree and the other half as it ascends the tree. By

28

doing so all of the data needed to compute the maximum magnitude for the current block

is available as the state machine ascends back up the spatial orientation tree. In addition

the four most recent blocks of each level are saved onto a stack so that all 16-child

coefficients are available to the parent block.

Figure 19 demonstrates the algorithm. The current block, maximum magnitude for each

child and 16 child coefficients are shown on the stack. Light gray blocks are coefficients

that were previously read and processed. The dark gray blocks are the coefficients

currently being read. In this example the state machine just finished reading the lowest

level and has just ascended to the second wavelet level. The second block in the second

level is now complete and its maximum magnitude can now be calculated, as shown as

the dark gray block in the highest level of the stack. In addition the 16 child coefficients

in the lowest level were saved and are available. There are no child values for the lowest

level since there are no children.

Depth-First
Search State
Machine and
Control Logic

Read
Memory Port

Magnitude
Calculation

Coefficient
Stack and
Maximum
Magnitude
Calculation

Encode
Maximum

Magnitudes and
Group Block

Data
Memory

Buffer and
Address

Generator

Write
Memory Port

#1

Write
Memory Port

#2

Figure 20: Maximum Magnitude Block Diagram

Another benefit of scanning the image in a depth-first search order is that the Morton

scan ordering is naturally realized within each level, although it is intermixed between

levels. By writing data from each level to a separate area of memory and later reading the

data from the highest wavelet level to the lowest, data will be read in a Morton scan

order. A block diagram of the maximum magnitude phase is provided in Figure 20. Since

two pixels are read together and the image is scanned only once, the runtime of this phase

29

is ½ a clock cycle per pixel. Because the magnitude phase computes in less time than the

wavelet phase, the throughput of the system is not affected.

5.5 SPIHT Coding Phase

The final SPIHT Coding phase essentially computes the parallel algorithm in Figure 13.

Coefficient blocks are read from the highest wavelet level to the lowest. As information

is loaded from memory it is shifted from the Variable Fixed Point representation to a

common scheme for every wavelet level. Once each block has been adjusted to the same

numerical representation, the parallel version of SPIHT is used to calculate what

information the block will contribute to each bit plane. The information is grouped and

counted before being added to three separate variable FIFOs for each bit plane. The data

which the variable FIFO components receive varies in size and the variable FIFOs are

used to arrange the data into regular sized blocks. Separate FIFOs are used for each of the

LIP, LIS and LSP bit-streams.

Address
Generator and
Control Logic

Read
Memory Port

#1

Read
Memory Port

#2

Shift Data

Calculate
Bit-Plane 21

…

LIP
Data

LIS
Data

LSP
Data

Calculate
Bit-Plane 0

LIP
Data

LIS
Data

LSP
Data

Group
Data

Group
Data

Group
Data

Variable
FIFO

Variable
FIFO

Variable
FIFO

Group
Data

Group
Data

Group
Data

Variable
FIFO

Variable
FIFO

Variable
FIFO

Dynamic
FIFO

Scheduler

Select and Read FIFOs

…

LIP and LIS
Address

Generator

Write
Memory Port

#1

LSP
Address

Generator

Write
Memory Port

#2

Figure 21: SPIHT Coding Phase Block Diagram

Lastly, data from each buffer is output to a fixed location in memory and the number of

bits in each bit-stream is output as well. Given that data is added dynamically to each bit-

stream, there needs to be a dynamic scheduler to select which buffer should be written to

memory. Since there are a large number of FIFOs which all require a BlockRAM, the

30

FIFOs are spread apart on the FPGA and some type of staging is required to prevent a

signal from traveling too far. The scheduler selects which FIFO to read based upon both

how full a FIFO is and when it was last accessed. Our studies show that the LSP bit-

stream is roughly the size of the LIP and LIS streams combined. Because of this the LSP

bit-streams transfer more data to memory than the other two lists. In our design the LIP

and LIS bit-streams share a memory port while the LSP stream writes to a separate

memory port. Since a 2x2 block of coefficients is processed every clock cycle, the design

takes ¼ a clock cycle per pixel which is far less than the ¾ a clock cycle per pixel for the

DWT. The block diagram for the SPIHT coding phase is given in Figure 21.

With 22 total bit-planes to calculate, the design involves 66 individual data grouping and

variable FIFO blocks. Although none of the blocks consume a significant amount of

FPGA resources individually, 66 blocks do. The entire design requires 160% of the

resources in a Virtex 2000E and will not fit. However, by removing the lower bit-planes,

less FPGA resources are needed and the architecture can easily be adjusted to fit the

FPGA being used. Depending on the size of the final bit-stream required, the size of the

FPGA used in the SPIHT phase can be varied to handle the number of intermediate bit-

streams generated.

Removing lower bit-planes is possible since the final bit-stream transmits data from the

highest bit-plane to the lowest. In our design the lower 9 bit-planes were eliminated. Yet,

without these lower planes, bit-rates of up to 6 bpp can still be achieved. We found the

constraint to be acceptable because we are interested in high compression ratios using

low bit-rates. Since SPIHT is optimized for lower bit-rates, the ability to calculate higher

bit-rates is not considered necessary. In addition the use of a larger FPGA would alleviate

the size constraint.

31

6 Design Results

Our system was designed using VHDL with models provided from Annapolis Micro

Systems to access the PCI bus and memory ports. Simulations for debugging purposes

were done with ModelSim EE 5.4e from Mentor Graphics. Synplify 6.2 from Synplicity

was used to compile the VHDL code and generate a net list. The Xilinx Foundation

Series 3.1i tool set was used to both place and route the design. Lastly the peutil.exe

utility from Annapolis Micro Systems generated the FPGA configuration streams.

Table 3 shows the speed and runtime specifications of our architecture. All performance

numbers are measured results from the actual hardware implementations. Each phase

computes on separate memory blocks, which can operate at different clock rates. The

design can process any square image where the dimensions are a power of 2: 16 by 16, 32

by 32 up to 1024 by 1024. Since the WildStar board is connected to the host computer by

a relatively slow PCI bus, the throughput of the entire system we built is constrained by

the throughput of the PCI bus. However, our study is on how image compression routines

could be implemented on a satellite. Such a system would be designed differently and

would not contain a reconfigurable board connected to some host platform though a PCI

bus. Rather the image compression routines would be inserted directly into the data path

and the data transfer times would not be the bottleneck of the system. For this reason we

analyzed the throughput of just the SPIHT compression engine and analyzed how quickly

the FPGAs can process the images.

Table 3: Performance Numbers

Phase Clock Cycles per
512x512 image

Clock Cycles
per Pixel

Clock Rate Throughput FPGA Area

Wavelet 182465 3/4 75 MHz 100 MBytes/sec 62%
Magnitude 131132 1/2 73 MHz 146 MBytes/sec 34%

SPIHT 65793 1/4 56 MHz 224 MBytes/sec 98%

The throughput of the system is constrained by the discrete wavelet transform at 100

MBytes/second. One method to increase its rate is to compute more rows in parallel. If

the available memory ports accessed 128-bits of data instead of the 64-bits with our

WildStar board, the number of clock cycles per pixel could be reduced by half and the

32

throughput could double. Assuming the original image consists of 8 bpp, images are

processed at a rate of 800Mbits/sec.

In addition the entire throughput of the architecture is less than one clock cycle for every

pixel, which is lower than parallel versions of the DWT. Parallel versions of the DWT

used complex scheduling to compute multiple wavelet levels simultaneously, which left

limited resources to process multiple rows at a time. Given more resources though, they

would obtain higher data rates by processing multiple rows simultaneously than our

architecture could. In the future another DWT architecture than the one we implemented

could be selected for further speed improvements.

We compared our results to the original software version of SPIHT provided on the

SPIHT website [14]. The comparison was made without arithmetic coding since our

hardware implementation currently does not perform any arithmetic coding on the final

bit-stream. A SPARC 5 workstation was used for the comparison and we used a

combination of satellite images from NASA’s website and standard image compression

benchmark images. The software version of SPIHT compressed a 512 x 512 image in

1.14 seconds on average. The wavelet phase, which constrains the hardware

implementation, computes in 2.48 milliseconds yielding a speedup of 457 times for the

SPIHT engine. In addition, by creating a parallel implementation of the wavelet phase,

further improvements to the runtimes of the SPIHT engine are possible.

While this is the speedup we will obtain if the data transfer times are not a factor, the

design may be used to speed up SPIHT on a general-purpose processor. On such a system

the time to read and write data must be included as well. Our WildStar board is connected

to the host processor over a PCI bus, which writes images in 13 milliseconds and reads

the final data stream in 20.75 milliseconds. With the data transfer delay; the total speedup

still yields an improvement of 31.4 times.

Both the Magnitude and SPIHT phases yield higher throughputs than the wavelet phase,

even though they operate at lower clock rates. The reason for the higher throughputs is

that both of these phases need fewer clock cycles per pixel to compute an image. The

Magnitude phase takes half a clock cycle per pixel and the SPIHT phases requires just a

33

quarter. The fact that the SPIHT phase computes in less than one clock cycle per pixel, let

alone a quarter, is a striking result considering that the original SPIHT algorithm is very

sequential in nature and had to consider each pixel in an image multiple times.

The entire system has been tested over many images of variable size and functions

correctly. However, at the time of the writing of this paper there is one bit-stream

generated by the SPIHT phase with a slight glitch. The first word written to memory of

one stream is blank yet the stream is valid after the first 32 bits of data. Simulations in

ModelSim show the design computing correctly and it appears to be a synthesis problem

with Synplify. Part of our ongoing development effort is to both lower the size

requirement of the final SPHIT phase and correct this one glitch.

34

7 Conclusions and Future Work

In this thesis we have demonstrated a viable image compression routine on a

reconfigurable platform. We showed how by analyzing the range of data processed by

each section of the algorithm, it is advantageous to create optimized memory structures as

with our Variable Fixed Point work. In addition our Fixed Order SPIHT design illustrates

how by making slight adjustments to an existing algorithm it is possible to dramatically

increase the performance in a custom hardware implementation.

Our SPIHT work is part of an ongoing development effort funded by NASA. Future work

will to address how lossy image compression will affect downstream processing. The

level of lossy image compression that is tolerable before later processing begins to yield

false results needs to be analyzed and dealt with. Lastly improvements to SPIHT and the

consequences to a hardware implementation will be studied. Modifications to Fixed

Order SPIHT including adding error protection to the bit-stream and region of interest

coding will be considered.

35

Bibliography

[1] V. R. Algazi, R. R. Estes. “Analysis based coding of image transform and
subband coefficients,” Applications of Digital Image Processing XVIII, volume
2564 of SPIE Proceedings, pages 11-21, 1995.

[2] Annapolis Microsystems. WildStar Reference Manual, Maryland: Annapolis
Microsystems, 2000.

[3] A. Benkrid, D. Crookes, K. Benkrid, “Design and Implementation of Generic 2-D
Biorthogonal Discrete Wavelet Transform on and FPGA,” IEEE Symposium on
Field Programmable Custom Computing Machines, pp 1 – 9, April 2001.

[4] M. Carraeu. Hubble Servicing Mission, “Hubble is fitted with a new ‘Eye’”,
http://www.chron.com/content/interactive/space/missions/sts-
103/hubble/archive/931207.html (Dec. 7, 1993)

[5] C. M. Chakrabarti, M. Vishwanath, “Efficient Realization of the Discrete and
Continuous Wavelet Transforms: From Single Chip Implementations to Mappings
in SIMD Array Computers,” IEEE Transactions on Signal Processing, Vol. 43,
pp 759 – 771, March 1995.

[6] C. M. Chakrabarti, M. Vishwanath, Owens R.M, “Architectures for Wavelet
Transforms: A Survey,” Journal of VLSI Signal Processing, Vol. 14, pp 171-192,
1996.

[7] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT Press,
Cambridge, Massachusetts, 1997.

[8] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1993.

[9] A. Graps, “An Introduction to Wavelets,” IEEE Computational Science and
Engineering, Vol. 2, Num. 2, pp. 50 - 61, Summer 1995.

[10] R. H. Katz, Contemporary Logic Design, The Benjamin/Cummings Publishing
Company, Inc. Redwood City, CA. pp. 524 – 538, 1994.

[11] K. K. Parhi, T. Nishitani, “VLSI Architectures for Discrete Wavelet Transforms,”
IEEE Transactions on VLSI Systems, pp 191 – 201, June 1993.

[12] J. Ritter, P. Molitor, “A Pipelined Architecture for Partitioned DWT Based Lossy
Image Compression using FPGA’s,” ACM/SIGDA Ninth International Symposium
on Field Programmable Gate Arrays, pp 201 – 206, February 2001.

36

[13] A. Said, W. A. Pearlman, “A New Fast and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees,” IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 6, pp 243 - 250, June 1996.

[14] A. Said, W. A. Pearlman, SPIHT Image Compression, “Properties of the
Method”, http://www.cipr.rpi.edu/research/SPIHT/spiht1.html

[15] H. Sava, M. Fleury, A. C. Downton, Clark A, “Parallel pipeline implementations
of wavelet transforms.” IEEE Proceedings Part 1 (Vision, Image and Signal
Processing), Vol. 144(6), pp 355 – 359, December 1997.

[16] J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet
Coefficients,” IEEE Transactions on Signal Processing, Vol. 41, No. 12, pp 3445
- 3462, December 1993.

[17] J. Singh, A. Antoniou, D. J. Shpak, “Hardware Implementation of a Wavelet
based Image Compression Coder,” IEEE Symposium on Advances in Digital
Filtering and Signal Processing, pp 169 – 173, 1998.

[18] W. Sweldens, “The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet
Constructions,” Wavelet Applications in Signal and Image Processing, Vol. 3, pp
68 – 79, 1995.

[19] TERRA: The EOS Flagship, “The EOS Data and Information System (EOSDIS)”,
http://terra.nasa.gov/Brochure/Sect_5-1.html

[20] C. Valens, “A Really Friendly Guide to Wavelets”,
http://perso.wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html

[21] M. Vishwanath, R. M. Owens, M. J. Irwin, “VLSI Architectures for the Discrete
Wavelet Transform,” IEEE Transactions on Circuits and Systems, Part II, pp
305-316, May 1995.

[22] Xilinx, Inc., The Programmable Logic Data Book, California: Xilinx, Inc., 2000.

[23] Xilinx, Inc., Serial Distributed Arithmetic FIR Filter, California: Xilinx, Inc.,
1998.

