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NASA’s satellites currently do not make use of image compression techniques during 

data transmission to earth because of limitations in the available platforms. Yet as 

satellites are built with an ever-larger number of sensors, the amount of data captured by 

a satellite is beginning to overwhelm the bandwidth capabilities of the transmission 

channels. Current software implementations are unable to meet the necessary 

computational and power requirements for use in a satellite. At the same time hardware 

platforms lack the required flexibility needed for post-launch modifications. 

With the advent of Field Programmable Gate Arrays (FPGAs) and Adaptive Computing 

technologies it is now possible to construct a system, which compresses the data stream 

before down linking. By developing image compression routines on a reconfigurable 

platform, it is possible to obtain the computational performance required to compress a 

satellite’s data in real time and at the same time retain the ability to modify the system 

post-launch. Our work is part of a NASA-sponsored study on the design and 

implementation of FPGA-based Hyperspectral Image Compression algorithms for use in 

space. 
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1  Introduction 

Satellites deployed by NASA currently do not make use of lossy image compression 

techniques during transmission. There have been a few driving reasons behind NASA’s 

decision to transmit raw data. First, the downlink channels have provided enough 

bandwidth to handle all of the data a satellite’s sensors collected in real time. Second, 

there has been a lack of viable platforms with which a satellite could process data. Lastly, 

transmitting raw data reduces the risk of corrupting the data-stream. 

As NASA deploys satellites with more sensors, capturing an ever-larger number of 

spectral bands, the volume of data being collected is beginning to outstrip a satellite’s 

ability to transmit it back to Earth. NASA’s most recent satellite Terra contains five 

separate sensors each collecting up to 36 individual spectral bands. The Tracking and 

Data Relay Satellite System (TDRSS) ground terminal in White Sands, New Mexico, 

captures data from all of these sensors at a rate of 150Mbps [19]. As the number of 

sensors on a satellite grows and thus the transmission rates increase, they are providing a 

driving force for NASA to study methods of compressing images prior to down linking. 

Current technologies have been unable to provide NASA with a viable platform to 

process data in space. Software solutions suffer from performance limitations and power 

requirements. At the same time traditional hardware platforms lack the required 

flexibility needed for post-launch modifications. After launch they cannot be modified to 

use newer compression schemes or even implement bug fixes. In the past, a modification 

to fixed systems in satellites has proven to be very expensive. The correction to the 

Hubble telescope’s flawed 94-inch-wide primary mirror approached $50 million [4]. 

By implementing an image compression kernel in a reconfigurable system, it is possible 

to overcome these shortcomings. Since such a system may be reprogrammed after launch, 

it does not suffer from conventional hardware’s inherit inflexibility. At the same time the 

algorithm is computing in custom hardware and can perform at the required rates, while 

consuming less power than a traditional software implementation. 
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Our work is part of a NASA-sponsored investigation into the design and implementation 

of a space-bound FPGA-based Hyperspectral Image Compression algorithm. We have 

selected the Set Partitioning in Hierarchical Trees (SPIHT) compression routine and 

optimized the algorithm for implementation in hardware. This thesis describes our work 

towards this effort and provides a description of our results. 
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2  Background 

2.1  FPGAs 

The most common type of computing system is the general-purpose processor. Under this 

model, the hardware of the system is limited to merely a few basic tasks. By combining 

and building off of these operations, a general-purpose computer can perform a much 

larger number of operations than it was originally designed to handle. Which is why the 

general-purpose computer is so flexible. However this flexibility comes with a price. For 

any specific application, the general-purpose processor will perform poorly when 

compared to a custom hardware implementation.  

Traditionally computations that required the high performance of a custom hardware 

implementation needed the development and fabrication of an Application-Specific 

Integrated Circuit (ASIC). Development of an ASIC requires several steps. The circuit 

must be designed and tested. Once the circuit is designed it must be fabricated. 

Fabrication involves creating wafer masks for that specific design, fabricating the chips, 

packaging and finally testing. A modification to a design post-masking requires whole 

new wafer masks to be prepared. All of these factors contribute to making ASIC designs 

both expensive for low volume runs and intolerant to design errors or modifications once 

the fabrication process is started. 

With the advent of Field Programmable Gate Arrays (FPGAs) and Reconfigurable 

Computing, designers may now develop custom hardware solutions without a separate 

fabrication run for each design. FPGAs are, as their name implies, an array of logic gates, 

which can be programmed to perform a variety of tasks. They consist of programmable 

logic structures distributed throughout the chip in one of four methods: Symmetrical 

Array, Sea-of-Gates, Row Based and Hierarchical PLD [10]. A routing interconnect is 

used to connect the logic structures. Like the array of logic gates, the routing interconnect 

is fully programmable. 

By reprogramming the logic gates and the routing interconnect it is possible to configure 

the chip to perform any arbitrary computation. By utilizing their programmable nature, 
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FPGAs offer a low cost, flexible solution over traditional ASICs. Since a single FPGA 

design may be used for many tasks, it can be fabricated in higher volumes, lowering 

fabrication costs. Also, their ability to be reprogrammed allows for easy design 

modifications and bug fixes without the need to construct a new hardware system. 

FPGAs may be reprogrammed within milliseconds for no cost other than the designer’s 

time, while ASICs require a completely new fabrication run lasting a month or two and 

costing hundreds of thousands of dollars. 

Routing Interconnect

I/O Connections

Logic Cell

 

Figure 1: Typical FPGA Structure 

2.2 SPIHT 

For our system we selected the Set Partitioning in Hierarchical Trees (SPIHT) image 

compression algorithm. SPIHT is a wavelet-based image compression coder. It first 

converts the image into its wavelet transform and then transmits information about the 

wavelet coefficients. The decoder uses the received signal to reconstruct the wavelet and 

performs an inverse transform to recover the image. We selected SPIHT because it 

displays exceptional characteristics over several properties all at once [14]. They include: 

• Good image quality with a high PSNR 
• Fast coding and decoding 
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• A fully progressive bit-stream 
• Can be used for lossless compression 
• May be combined with error protection 
• Ability to code for exact bit rate or PSNR 

2.2.1  Wavelet Transformation 

The Fourier Transform (Figure 2) is used to convert an aperiodic signal from the time 

domain to the frequency domain [8]. The inverse Fourier Transform (Figure 3) may then 

be used to restore the original signal by converting the signal back to the time domain. 
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Figure 2: Fourier Transform 

( ) ( )�
∞

∞−

= dtet tjωω
π

F
2

1
f  

Figure 3: Inverse Fourier Transform 

Such a Fourier expansion yields full frequency resolution but no spatial/time resolution 

over a signal. Wavelet theory has been refined over the past 15 years to address the 

spatial resolution problem. Wavelets make use of scales to analyze data at various 

resolutions. By using a scalable window over a signal they provide a multi-resolution 

analysis of the signal [9]. Using these windows, it is possible to gather spatial-scale 

representations. Since the various scales correspond to different frequencies, wavelet 

analysis offers a spatial-frequency representation of a signal. 

The typical wavelet uses a filter bank to process a high-pass and low-pass subband of the 

signal and down samples the results by a factor of two. By spatially compressing the 

wavelet by a factor of two, the frequency spectrum will stretch and shift by a factor of 

two as well, restoring the original frequency range. Thus by iteratively applying the filter 

bank to the low-pass result of the wavelet and down sampling the results, each wavelet 

covers half of the frequency components remaining (Figure 4). Lastly, a low-pass 

subband will represent all of the remaining frequency components [20]. 
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Figure 4: A set of Wavelet scales and one final low-pass function 

2.2.2  Discrete Wavelet Transform 

Since images are not continuous, but sampled at individual points or pixels, it is 

necessary to use a discrete form of the wavelet transform, as wavelets assume a 

continuous signal. The discrete wavelet transform runs a high and low-pass subband over 

the signal in one dimension. Every other result from each pass is then sampled yielding 

two subbands, each of which is one half the size of the input stream. The result is a new 

image comprising of a high and low-pass subband. The two subbands can be used to fully 

recover the original image. In the case of a multidimensional signal, such as an image, 

this procedure is repeated in each dimension (Figure 5). 

a) Original Image b) Horizontal Pass b) Vertical Pass

L H
LH

HHHL

LLLP

HP

LP

HP

2↓

2↓

2↓

2↓

 

Figure 5: One Level Wavelet built by two one-dimensional passes 

The vertical and horizontal transformations break up the image into four distinct 

subbands. The wavelet coefficients that correspond to the sharpest scale are the LH, HL 

and HH subbands. Lower frequencies are represented by the LL subband which is a low-

pass filtered version of the original image [16]. 

The next wavelet level is calculated by repeating the horizontal and vertical 

transformations on the LL subband from the previous level. Four new subbands are 
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created from the transformations. The LH, HL and HH subbands the next level represent 

coarser scale coefficients and the new LL subband is an even smoother version of the 

original image. It is possible to obtain coarser and coarser scales of the LH, HL and HH 

subbands, by iteratively repeating the wavelet transformation on the LL subband of each 

level. Once the procedure is compete, the final LL subband is saved along with the other 

three subbands within the same level. Figure 6 displays an image with three scales of 

wavelet transformation. 

HH1

LH1

HL1

HL2 HH2

LH2

LH3

HH3HL3

LL3

 

Figure 6: A three-level wavelet transform 

2.2.3  SPIHT Coding 

SPIHT is a method of coding and decoding the wavelet transform of an image. By coding 

and transmitting information about the wavelet coefficients, it is possible for a decoder to 

perform an inverse transformation on the wavelet and reconstruct the original image. The 

entire wavelet does not need to be transmitted in order to recover the image. Instead, as 

the decoder receives more information about the wavelet, the inverse-transformation will 

yield a better quality reconstruction of the original image. SPIHT generates excellent 

image quality and performance due to several properties of the coding algorithm. They 

are partial ordering by coefficient value, taking advantage of the redundancies between 

different wavelet scales and transmitting data in bit plane order [13]. 
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Following a wavelet transformation, SPIHT divides the wavelet into Spatial Orientation 

Trees. Each node in the tree corresponds to an individual pixel. The offspring of a pixel 

are the four pixels in the same spatial location of the same subband at the next finer scale 

of the wavelet. Pixels at the finest scale of the wavelet are the leaves of the tree and have 

no children. Every pixel is part of a 2 x 2 block with its adjacent pixels. Blocks are a 

natural result of the hierarchical trees because every pixel in a block shares the same 

parent. Also, the upper left pixel of each 2 x 2 block at the root of the tree has no children 

since there only 3 subbands at each scale and not four. Figure 7 shows how the pyramid 

is defined. Arrows point to the offspring of an individual pixel, and the grayed blocks 

show all of the descendents for a specific pixel at every scale. 

 

Figure 7: Spatial-orientation trees 

SPIHT codes a wavelet by transmitting information about the significance of a pixel. By 

stating whether or not a pixel is above some threshold, information about that pixel’s 

value is implied. Furthermore, SPIHT transmits information stating whether a pixel or 

any of its descendants are above a threshold. If the statement proves false, then all of its 

descendants are known to be below that threshold level and they do not need to be 

considered during the rest of the current pass. At the end of each pass the threshold is 

divided by two and the algorithm continues. By proceeding in this manner, information 
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about the most significant bits of the wavelet coefficients will always precede 

information on lower order significant bits, which is referred to as bit plane ordering. 

Information stating whether or not a pixel is above the current threshold or being 

processed at the current threshold is contained in three lists: the list of insignificant pixels 

(LIP), the list of insignificant sets (LIS) and the list of significant pixels (LSP). The LIP is 

pixels that are currently being processed but have yet to be above the threshold. The LIS 

is pixels, which are currently being processed, but none of their descendants are yet 

above the threshold and are not being processed. Lastly the LSP is pixels, which were 

already stated to be above a previous threshold level, and now their value at each bit 

plane is transmitted. 

Figure 8 is the algorithm copied from the original SPIHT paper [13]. It is modified to 

reflect changes discussed later in the paper referring to 2x2 block information. Sn(i,j) 

represents if the pixel (i,j) is greater than the current threshold and Sn( D(i,j) ) states if 

any of pixel’s (i,j) descendants are greater than the current threshold. 

1. Initialization: output n = floor[ log2( max(i,j){ |ci,j| } ) ]; clear the LSP list, 
add the root pixels to the LIP list and root pixels with descendants to LIS 
2. Sorting Pass: 
   2.1 for each entry (i,j) in the LIP: 
      2.1.1 output Sn(i,j); 
      2.1.2 if Sn(i,j) = 1 then move (i,j) to the LSP list and output its sign 
   2.2 for each entry (i,j) in the LIS: 
      2.2.1 if one of the pixels in (i,j)’s block is not in LIP but all are in LIS 
                  output Sn( all descendants of the current block ) 
                  if none are significant skip 2.2.2 
      2.2.2 output Sn( D(i,j) ) 
               if Sn( D(i,j) ) = 1 then 
                  for each of (i,j) immediate children (k,l) 
                     output Sn(k,l) 
                     add (k,l) to the LIS for the current pass    
                     if Sn(k,l) = 1 then add (k,l) to the LSP and output its sign 
                                         else add (k,l) to the LIP 
3. Refinement Pass: for each entry (i,j) in LSP, except ones inserted in 
the current pass, output the nth most significant bit of (i,j). 
4. Quantization-step Update: decrement n by 1 and go to Step 2. 

Figure 8: SPIHT Coding algorithm 
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There are two important concepts to take from the algorithm. First, as the encoder 

sequentially steps through the image and inserts/deletes pixels from the three lists, all of 

the information required to keep track of the lists is output to the decoder. In order for the 

decoder to reproduce the steps taken by the encoder you merely need to replace output 

in the encoder with input in the decoder. Second, the bit-stream produced is naturally 

progressive. A progressive bit-stream is one that can be cut off at any point and still is a 

valid bit-stream. As the decoder steps through the coding algorithm, it gathers finer and 

finer detail about the original wavelet transform. The decoder is able to stop at any point 

and perform an inverse transform with the wavelet coefficients it has currently 

reconstructed. Progressive bit-streams also have the advantage of being able to be 

reduced to an arbitrary size or be cut off during transmission and still produce a valid 

image. 
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3  Prior Work 

As wavelets have gained popularity over the past several years there has been growing 

interest in implementing the discrete wavelet transform in hardware. Much of the work 

on DWTs involves parallel platforms to save both memory access and computations 

[5][11][15]. Here we will provide a review of four individual DWT architectures and 

their performance where available.  

The one-dimensional DWT entails demanding computations, which involve significant 

hardware resources. Most two-dimensional DWT architectures have implemented folding 

to reuse logic for each dimension, since the horizontal and vertical passes use identical 

FIR filters [6]. Figure 9 illustrates how a 1-D DWT is used to realize a 2-D DWT. 

1-D DWT Memory

Row Data

Column Data
 

Figure 9: Illustration of a folded architecture 

Such an architecture suffers from high memory bandwidth. For an N x N image there are 

at least 2N2 read and write cycles for the first wavelet level. Additional levels require re-

reading previously computed coefficients.  

In order to address these superfluous memory accesses the Recursive Pyramid Algorithm 

(RPA) was designed [21]. RPA takes advantage of the fact that the various wavelet levels 

run at different clock rates. Each wavelet level requires ¼ the amount of time as the 

previous level. Thus it is possible to store previously computed coefficients on-chip and 

intermix the next level’s computations with the current calculations. A careful analysis of 

the runtime yields (4*N2)/3 computations for an image. However the algorithm has 

significant on chip memory requirements and requires a thorough scheduling process to 

interleave the various wavelet levels. 
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Another method to reduce memory accesses is the Partitioned DWT, which partitions the 

image into smaller blocks and computes several scales of the DWT at once for each block 

[12]. In addition, the algorithm makes use of wavelet lifting to reduce the computational 

complexity of the DWT [18]. By partitioning an image into smaller blocks, the amount of 

on-chip memory storage required is significantly reduced since only the coefficients in 

the block need to be stored. The approach is similar to the Recursive Pyramid Algorithm 

except that it computes over sections of the image at a time instead of the entire image at 

once. Figure 10 from Ritter et al. [12] illustrates how the partitioned wavelet is 

constructed. 

 

Figure 10: The Partitioned DWT 

Nevertheless the partitioned approach suffers blocking artifacts along the partition 

boundaries if the boundaries are treated with reflection1. Thus pixels from neighboring 

partitions are required to smooth out these boundaries. The number of wavelet levels 

determines how many pixels beyond a sub-image’s boundary are needed. Higher wavelet 

levels represent data from a greater region of the image. To compensate for the partition 

boundaries the algorithm processes sub-image rows at a time to eliminate multiple reads 

in the horizontal direction. Overall data throughputs of up to 152Mbytes have been 

achieved with the Partitioned DWT. 

                                                 
1 A FIR filter generally computes over several pixels at once and generates a result for the middle pixel. In 
order to calculate pixels close to image’s edge, data points are required beyond the edge of the image. 
Reflection is a method which takes pixels towards the image’s edge and copies them beyond the edge of 
the actual image for calculation purposes. 
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The last unique architecture to discuss is the Generic 2-D Biorthogonal DWT shown in 

Benkrid et al. [3]. Unlike previous design methodologies, the Generic 2-D Biorthogonal 

DWT does not require filter folding or large on chip memories as the Recursive Pyramid 

design. Nor does it involve partitioning an image into sub-images. Instead, the 

architecture proposed creates separate structures to calculate each wavelet level as data is 

presented to it, as shown in Figure 11. The design sequentially reads in the image and 

computes the four DWT subbands. As the LL1 subband becomes available, the 

coefficients are passed off to the next stage, which will calculate the next coarser level 

subbands and so on.  

For larger images that require several individual wavelet scales, the Generic 2-D 

Biorthogonal DWT architecture consumes a tremendous amount of on-chip resources. 

With SPIHT, a 1024 by 1024 pixel image computes seven separate wavelet scales. The 

proposed architecture would employ 21 individual high and low pass FIR filters. Since 

each wavelet scale processes data at different rates, a separate clock signal is also needed 

for each scale. The advantage of the architecture is much lower on-chip memory 

requirements and full utilization of the memory’s bandwidth since each pixel is only read 

and written once.  
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Figure 11: Generic 2-D Biorthogonal DWT 

To date the literature contains very little on hardware implementations of SPIHT since 

the algorithm was developed so recently. Singh et al. [17] briefly describes a direct 

implementation of the SPIHT software algorithm. The paper is a brief on work done and 

provides a high level overview of the architecture. Their design calls for one processing 

phase to calculate the image’s wavelet transformation and another for the SPIHT coding. 

The SPIHT coding is performed using Content Addressable Memories to keep track of in 
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what lists each pixel is active. The algorithm sequentially steps through the wavelet 

coefficients multiple times in the same order as the original software program. The design 

has been developed for 8 by 8 sized images and no performance numbers were given. 
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4  SPIHT Design Considerations and Modifications 

In order to fully take advantage of the high performance a custom hardware 

implementation of SPIHT can yield, the software specifications must be examined and 

adjusted where they either perform poorly in hardware or do not make the most of the 

resources available. Here we discuss both memory storage considerations and 

optimizations to the original SPIHT algorithm for use in hardware. 

4.1 Variable Fixed Point 

The discrete wavelet transform produces real numbers as the wavelet coefficients. 

General-purpose computers realize real numbers as floating-point numbers. The 

representation of a floating-point number contains three parts: the sign bit, the exponent 

definition and the decimal description. A computer shifts the decimal description of the 

number by analyzing the exponential part. By utilizing these three parts, floating point 

numbers are able to represent a tremendous numerical range while still providing a high 

degree of precision. 

Because of their inherit flexibility, floating-point numbers are well suited for a broad 

range of applications. Which is why general-purpose computers provide hardware 

support for floating-point numbers. However, floating-point numbers are not optimized 

for any specific application. For example, a data set that includes only numbers between 

–1000 and 1000 will waste many of the bits employed by an exponential description 

optimized for numbers in the range ±1031. In order to conserve bits and optimize both 

memory storage and bandwidth, it is important to create a numerical representation 

specific to the data set under consideration. 

Traditionally FPGAs have not employed the use of floating-point numbers for several 

reasons. Some of these reasons are that floating-point numbers: 

• Require variable shifts based on the exponential description and variable shifters 

in FPGAs perform poorly. 

• Consume enormous hardware resources on a limited resource FPGA. 
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• Are often unnecessary for a known data set. 

At each wavelet level of the DWT, coefficients have a fixed range. Therefore we opted 

for a fixed-point numerical representation. A fixed-point number is one where the 

decimal point’s position is predefined. With the decimal point locked at a specific 

location, each bit contributes a known value to the number, which eliminates the need for 

variable shifters. However the DWT’s filter bank is unbounded, meaning that the range 

of possible numbers increases with each additional wavelet level.  

Table 1: Fixed-Point Magnitude Calculations 

Wavelet Level Factor Maximum Magnitude Maximum Bits Maximum Bits from Data 

Input image 1 255 8 8 
0 2.9054 741 11 11 
1 8.4412 2152 13 12 
2 24.525 6254 14 13 
3 71.253 18170 16 14 
4 207.02 52789 17 15 
5 601.46 153373 19 16 
6 1747.5 445605 20 17 

An analysis of the coefficients of each filter bank shows that a 2-D low-pass FIR filter at 

most increases the range of possible numbers by a factor of 2.9054. This number is the 

increase found from both the horizontal and the vertical directions. It represents how 

much larger a coefficient at the next wavelet level could be if all of the previous level’s 

coefficients were both the maximum found at that level and of the correct sign. As a 

result, the coefficients at various wavelet levels require a variable number of bits above 

the decimal point to cover their possible ranges, as shown in Table 1. 

Figure 12 illustrates the various requirements placed on a numerical representation for 

each wavelet level. The Factor and Maximum Magnitude columns demonstrate how the 

range of possible numbers increases with each level and the final result for a 1 byte per 

pixel image. The next column shows the maximum number of bits (with a sign bit) that 

are necessary to represent the numeric range at each wavelet level. The maximum 

number of bits we found by evaluating the actual range observed over many sample 
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images is displayed in the last column. These values determine what position the most 

significant bit must stand for. 

If each wavelet level used the same numerical representation, they would all be required 

to handle numbers as large as the highest wavelet level to prevent overflow. Yet the 

lowest wavelet levels will never encounter numbers in that range. As a result, several bits 

at these levels would not be employed and therefore wasted. 

PSNR vs. bit-rate
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Figure 12: PSNR vs. bit-rate for various coefficient sizes 

To fully utilize all of the bits for each wavelet coefficient, we introduce the concept of 

Variable Fixed-Point representation. With Variable Fixed-Point we assign a fixed-point 

numerical representation for each wavelet level. In addition, each representation differs 

from one another, meaning we employ a different fixed-point scheme for each wavelet 

level. Doing so allows us to optimize both memory storage and I/O at each wavelet level 

to yield maximum performance. 
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Once the position of the most significant bit is found for each wavelet level, the number 

of precision bits to accurately represent the wavelet coefficients needs to be determined. 

Our goal is to provide enough bits to fully recover the image and at the same time use 

only as many are necessary to do so. Figure 12 displays the average Peak Signal to Noise 

ratios for several recovered images from SPIHT using a range of bit widths for each 

coefficient. 

An assignment of 16 bits per coefficient most accurately matches the full precision 

floating-point coefficients used in software, up through perfect reconstruction. Previous 

wavelet designs have focused on bit rates less than 4 bpp. Their studies found that fewer 

pixels are necessary for SPIHT [3]. Instead we elected a numerical representation which 

retains an equivalent amount of information as a floating-point number. By doing so, it is 

possible to perfectly reconstruct an image given a high enough bit rate. Table 2 provides 

the number of integer and decimal bits2 allocated for each wavelet level. The number of 

integer bits also includes one extra bit for the sign value. The highest wavelet level’s 16 

integer bits represent positions 17 to 1 with no bit assigned for the 0 position. 

Table 2: Final Variable Fixed-Point Representation 

Wavelet Level Integer Bits Decimal Bits

Input image 10 6 
0 11 5 
1 12 4 
2 13 3 
3 14 2 
4 15 1 
5 16 0 
6 17 -1 

4.2  Fixed Order SPIHT 

The SPIHT algorithm given in Figure 8 is designed to transmit data in the optimal order 

within each bit-plane. By always adding pixels to the end of the LIP, LIS and LSP lists, 

coefficients most critical to constructing a valid wavelet are generally placed first while 

less critical coefficients are placed last in the lists. Such an ordering will yield better 

                                                 
2 Integer bits refer to bits above the decimal point. Decimal bits refer to bits following the decimal point. 
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image quality for bit-streams which end within the middle of a bit-plane. The drawback 

of this ordering is that every image will have a unique list order determined by the 

image’s wavelet coefficient values.  

The data that a block of coefficients contributes to the final SPIHT bit-stream is fully 

determined by the following localized information. 

• The 2x2 block of coefficients. 

• The maximum magnitude of the four child trees. 

• Some threshold and sign data of the 16 child coefficients when they are first 

inserted into the LIS list. 

Thus, every block of coefficients may be calculated independently and in parallel of one 

another. However, the order that a block’s data will be inserted into the bit-stream is not 

known since this order is dependent upon the image’s list order. Once the order is 

determined it is possible to produce a valid SPIHT bit-stream from the above 

information.  

In order to determine an image’s list order, it is necessary to sequentially step through the 

LIP and LIS lists for each bit-plane. By doing so each pixel must be considered multiple 

times and thus read from memory multiple times. Consequently, a hardware 

implementation of SPIHT is unable to calculate coefficient blocks in parallel. As a result, 

many of the speedups a custom hardware implementation may produce are lost. Instead, 

any hardware implementation must create the lists in the same manner as a software 

implementation. This process requires many clock cycles per block of coefficients. 

We propose a modification to the original SPIHT algorithm called Fixed Order SPIHT. 

Fixed Order SPIHT is similar to the algorithm in Figure 8, except that the order of the 

LIP, LIS and LSP lists is fixed and known beforehand. Instead of inserting blocks of 

coefficients at the end of the lists, they are inserted in a predetermined order. For example 

block A will always appear before block B which is always before block C, regardless of 

the order in which A, B and C were added to the lists. The order of Fixed Order SPIHT is 

based upon the Morton Scan ordering discussed in Algazi et al. [1]. 
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Fixed Order SPIHT allows us to create a fully parallel version of the original SPIHT 

algorithm. Figure 13 outlines our new version of SPIHT. The final bit-stream generated is 

precisely the same as the bit-stream generated from the original SPIHT algorithm 

modified to use a Morton Scan Ordering. As a result the original decoder looping through 

the lists multiple times can decode the bit-stream generated by the parallel encoder. 

1. Bit Plane Calculation: for each 2x2 block of pixels (i,j) in a Morton 
Scan Ordering 
   1.1 for each threshold level n from the highest level to the lowest 
      1.1.1 if (i,j) is a root and Max( (i,j) ) >= n 
                  add all four pixels to the LIP 
      1.1.2 if (i,j) is not a root and Max( (i,j) ) >= previous n 
                  for each pixel p in the block 
                     if p < previous n 
                        add p to the LIP 
                     else 
                        add p to the LSP 
      1.1.3 if (i,j) is not a leaf and Max( (i,j) ) >= n 
                  add all four pixel to the LIS unless (i,j) is a root, then  
                  just add the three with children 
      1.1.4 if all four pixels are in LIS and at least one is not in the LIP 
                  if at least one pixel will be removed from the LIS at this level 
                     output a ‘0’ to the LIS stream 
                  else 
                     output a ‘1’ to the LIS stream 
      1.1.5 for each pixel p in the LIP 
                   if p >= n 
                      output a ‘1’ and the sign of p to the LIP stream 
                      remove p from the LIP and add it to the LSP 
                   else 
                      output a ‘0’ to the LIP stream 
      1.1.6 for each pixel p in the LIS 
                   if child max( p ) >= n 
                      output a ‘1’ to the LIS stream 
                      remove p from the LIS 
                      for each child (k,l) of p 
                         if (k,l) >= n 
                            output a ‘1’ and the sign of (k,l) to the LIS stream 
                         else 
                            output a ‘0’ to the LIS stream 
                   else 
                      output a ‘0’ to the LIS stream 
      1.1.7 for each pixel p in the LSP 
         (continued) 
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                  output the value of p at the bit plane n to the LSP stream 
2. Grouping phase: for each threshold level n from the highest level to 
the lowest 
   2.1 output the LIP stream at threshold level n to the final data stream 
   2.2 output the LIS stream at threshold level n to the final data stream 
   2.3 output the LSP stream at threshold level n to the final data stream 

Figure 13: Fixed Order SPIHT 

By using the algorithm in Figure 13 instead of the original sequential algorithm in Figure 

8, the final data stream can be computed in one pass through the image instead of 

multiple passes. In addition each pixel block is coded in parallel, which yields 

significantly faster compression times with FPGAs.  
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Figure 14: Comparison of Original SPIHT to Fixed Order SPIHT 

An analysis between the original SPIHT algorithm and the new version using Morton 

Scan Ordering shows that the data streams are not identical. The original algorithm varies 

the order in which it transmits data to produce very high image quality within each pass. 

On the other hand Fixed Order SPIHT transmits the same data but in a fixed order. 

Therefore at the end of each LIP, LIS and LSP passes, the image quality of Fixed Order 
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SPIHT will match that of the original SPIHT algorithm. However since the new fixed 

order is not optimal for the image, within a pass there is a marginal drop in PSNR. 

Results show the loss of quality to be between at most 0.1 dB and 0.2 dB. Figure 14 

provides an image quality comparison between the two algorithms. Because the data 

transmitted is the same at the end of each bit plane, the PSNR curves of Fixed Order 

SPIHT follow the original algorithm very closely.  
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5  Architecture  

5.1 Target Platform 

Our target platform is the WildStar FPGA processor board developed by Annapolis 

Micro Systems [2]. The board, shown in Figure 15, consists of three Xilinx Virtex 2000E 

FPGAs: PE0, PE1 and PE2. It operates at rates up to 133MHz. 48 MBytes of memory is 

available through 12 individual memory ports between 32 and 64 bits wide, yielding a 

throughput of up to 8.5 GBytes/Sec. Four shared memory blocks connect the Virtex chips 

through a crossbar. By switching a crossbar, several MBytes of data is passed between 

the chips in just a few clock cycles. 

 

Figure 15: Annapolis Micro Systems WildStar board block diagram 

The Xilinx Virtex 2000E FPGA allows for 2 million gate designs [22]. For extra on-chip 

memory, the FPGAs contain 160 asynchronous dual ported BlockRAMs. Each 

BlockRAM stores 4096 bits of data and is accessible in 1, 2, 4, 8 or 16 bit wide words. 
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Because they are dual ported, the BlockRAMs function well as FIFOs. A PCI bus 

connects the board to a host computer. 

5.2  Design Overview 

Our architecture consists of three phases: Wavelet Transform, Maximum Magnitude 

Calculation and Fixed Order SPIHT Coding. Each phase is implemented in one of the 

three Virtex chips. By instantiating each phase on a separate chip, separate images can be 

operated upon in parallel. Data are transferred from one phase to the next through the 

shared memories. Once processing in a phase is complete, the crossbar mode is switched 

and the data calculated is accessible to the next chip. By coding a different image in each 

phase simultaneously, the throughput of the system is determined by the slowest phase, 

while the latency of the architecture is the sum of the three phases. Figure 16 illustrates 

the architecture of the system. 

PE1
Wavelet

PE0
Magnitude

PE2
SPIHT

Wavelet
Coefficients

Wavelet
Coefficients

Magnitude
Information  

Figure 16: Overview of the architecture 

5.3  Discrete Wavelet Transform Phase 

We selected a form of the folding architecture to calculate the DWT. Previous parallel 

versions of the DWT saved some memory bandwidth. However, additional resources and 

a more complex scheduling algorithm become necessary. In addition the savings becomes 

minimal since each higher wavelet level is ¼ the size of the previous wavelet level. In a 

seven level DWT, the highest 4 levels compute in just 2% of the time it takes to compute 

the first level.  

For this reason we designed a folded architecture which processes one dimension of a 

single wavelet level. Pixels are read in horizontally from one memory port and written 

directly to a second memory port. In addition pixels are written to memory in columns, 

inverting the image along the 45-degree line. By utilizing the same addressing logic, 
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pixels are again read in horizontally and written vertically. However, since the image was 

inverted along its diagonal, the second pass will calculate the vertical dimension of the 

wavelet and restore the image to its original form.  

Each dimension of the image is reduced by half and the process iteratively continues for 

each wavelet level. Finally, the mean of the LL subband is calculated and subtracted from 

itself. To speed up the DWT, the design reads and writes four rows at a time. Given 16 

bit coefficients and a 64-bit wide memory port, four rows is the maximum that can be 

transferred in a clock cycles. Figure 17 illustrates the architecture of the discrete wavelet 

transform phase. 
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Figure 17: DWT Architecture 

Since every pixel is read and written once and the design processes four rows at a time, 

for an N x N size image both dimensions in the lowest wavelet level will compute in N/4 

clock cycles. Similarly, the next wavelet level will process the image in ¼ the number of 

clock cycles as the previous level. With an infinite number of wavelet levels the image 

will process in: 
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Thus the runtime of the DWT engine is bounded by ¾th a clock cycle per pixel in the 

image. Many of the parallel architectures designed to process multiple wavelet levels 

simultaneously run in more than one clock cycle per image. Because of the additional 

resources required by a parallel implementation, computing multiple rows at once 

becomes impractical. Given more resources, the parallel architectures discussed above 

could process multiple rows at once and yield runtimes lower than ¾th a clock cycle per 

pixel. However, our FPGAs do not have such extensive resources.  

By keeping the address and control logic simple, there are enough resources on the FPGA 

to implement 8 distributed arithmetic FIR filters [23] from the Xilinx Core library. The 

FIR filters use a bit-serial approach to compute the input stream and require significant 

FPGA resources, approximately 8% of the Virtex 2000E FPGA for each high and low-

pass FIR filter. We chose the distributed arithmetic FIR filters because they produce a 

new result on every clock cycle. 

5.4 Maximum Magnitude Phase 

Once the DWT is complete the next phase must prepare and organize the image into a 

form easily readable by the parallel version of the SPIHT coder. Specifically the 

maximum magnitude phase needs to calculate and rearrange the following information 

for the next phase. 

• The absolute value of the 2x2 block of coefficients. 

• A sign value for each coefficient in the block. 

• The maximum magnitude of each of the 4 child trees. 

• The threshold level when the block is first inserted into the LIS by its parent. 

• Threshold and Sign data of each of the 16 child coefficients when they are first 

inserted into the LIS. 

• Re-order the wavelet coefficients into a Morton Scan ordering. 
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The SPIHT coding phase shares two 64-bit memory ports with the magnitude phase 

allowing it to read 128 bits on each clock cycle. The data listed above can fit into these 

two memory ports. By doing so on every clock cycle the SPIHT coding phase will be 

able to read and process an entire block of data. The data that the maximum magnitude 

phase calculates is shown in Figure 18. Since there are less than 32 threshold levels, a 

five-bit number can represent when a block is inserted into the lists.  

4 Children and Parent’s Threshold data

015163132474863

Coefficient 1Coefficient 2Coefficient 3Coefficient 4

Left Memory Port Coefficient

15 14 0

Coefficient Magnitude

Sign Bit

025313263

Right Memory Port

24

Threshold and Sign data for 16 children

 

Figure 18: Data passed to the SPIHT coder to calculate a single block 

To calculate the maximum magnitude of all coefficients below a node in the spatial 

orientation trees, the image must be scanned in a depth-first search order [7]. By scanning 

the trees of the image in a depth-first search order, whenever a new coefficient is read 

and being considered, all of its children will have already been read and the maximum 

coefficient so far is known. On every clock cycle the new coefficient is compared to and 

updates the current maximum. Since PE0 (the Magnitude phase) uses 32-bit wide 

memory ports, it can read half a block at a time. 

Spatial Orientation Tree Stack

Child Coefficients

Child Maximum Magnitudes

Current Coefficients

 

Figure 19: Depth-First Search of the Spatial Orientation Trees 

The state machine, which controls how the spatial orientation trees are traversed, reads 

one half of a block as it descends the tree and the other half as it ascends the tree. By 
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doing so all of the data needed to compute the maximum magnitude for the current block 

is available as the state machine ascends back up the spatial orientation tree. In addition 

the four most recent blocks of each level are saved onto a stack so that all 16-child 

coefficients are available to the parent block.  

Figure 19 demonstrates the algorithm. The current block, maximum magnitude for each 

child and 16 child coefficients are shown on the stack. Light gray blocks are coefficients 

that were previously read and processed. The dark gray blocks are the coefficients 

currently being read. In this example the state machine just finished reading the lowest 

level and has just ascended to the second wavelet level. The second block in the second 

level is now complete and its maximum magnitude can now be calculated, as shown as 

the dark gray block in the highest level of the stack. In addition the 16 child coefficients 

in the lowest level were saved and are available. There are no child values for the lowest 

level since there are no children. 
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Figure 20: Maximum Magnitude Block Diagram 

Another benefit of scanning the image in a depth-first search order is that the Morton 

scan ordering is naturally realized within each level, although it is intermixed between 

levels. By writing data from each level to a separate area of memory and later reading the 

data from the highest wavelet level to the lowest, data will be read in a Morton scan 

order. A block diagram of the maximum magnitude phase is provided in Figure 20. Since 

two pixels are read together and the image is scanned only once, the runtime of this phase 



 

 

29

is ½ a clock cycle per pixel. Because the magnitude phase computes in less time than the 

wavelet phase, the throughput of the system is not affected. 

5.5  SPIHT Coding Phase 

The final SPIHT Coding phase essentially computes the parallel algorithm in Figure 13. 

Coefficient blocks are read from the highest wavelet level to the lowest. As information 

is loaded from memory it is shifted from the Variable Fixed Point representation to a 

common scheme for every wavelet level. Once each block has been adjusted to the same 

numerical representation, the parallel version of SPIHT is used to calculate what 

information the block will contribute to each bit plane. The information is grouped and 

counted before being added to three separate variable FIFOs for each bit plane. The data 

which the variable FIFO components receive varies in size and the variable FIFOs are 

used to arrange the data into regular sized blocks. Separate FIFOs are used for each of the 

LIP, LIS and LSP bit-streams.  
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Figure 21: SPIHT Coding Phase Block Diagram 

Lastly, data from each buffer is output to a fixed location in memory and the number of 

bits in each bit-stream is output as well. Given that data is added dynamically to each bit-

stream, there needs to be a dynamic scheduler to select which buffer should be written to 

memory. Since there are a large number of FIFOs which all require a BlockRAM, the 



 

 

30

FIFOs are spread apart on the FPGA and some type of staging is required to prevent a 

signal from traveling too far. The scheduler selects which FIFO to read based upon both 

how full a FIFO is and when it was last accessed. Our studies show that the LSP bit-

stream is roughly the size of the LIP and LIS streams combined. Because of this the LSP 

bit-streams transfer more data to memory than the other two lists. In our design the LIP 

and LIS bit-streams share a memory port while the LSP stream writes to a separate 

memory port. Since a 2x2 block of coefficients is processed every clock cycle, the design 

takes ¼ a clock cycle per pixel which is far less than the ¾ a clock cycle per pixel for the 

DWT. The block diagram for the SPIHT coding phase is given in Figure 21. 

With 22 total bit-planes to calculate, the design involves 66 individual data grouping and 

variable FIFO blocks. Although none of the blocks consume a significant amount of 

FPGA resources individually, 66 blocks do. The entire design requires 160% of the 

resources in a Virtex 2000E and will not fit. However, by removing the lower bit-planes, 

less FPGA resources are needed and the architecture can easily be adjusted to fit the 

FPGA being used. Depending on the size of the final bit-stream required, the size of the  

FPGA used in the SPIHT phase can be varied to handle the number of intermediate bit-

streams generated. 

Removing lower bit-planes is possible since the final bit-stream transmits data from the 

highest bit-plane to the lowest. In our design the lower 9 bit-planes were eliminated. Yet, 

without these lower planes, bit-rates of up to 6 bpp can still be achieved. We found the 

constraint to be acceptable because we are interested in high compression ratios using 

low bit-rates. Since SPIHT is optimized for lower bit-rates, the ability to calculate higher 

bit-rates is not considered necessary. In addition the use of a larger FPGA would alleviate 

the size constraint.  
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6  Design Results 

Our system was designed using VHDL with models provided from Annapolis Micro 

Systems to access the PCI bus and memory ports. Simulations for debugging purposes 

were done with ModelSim EE 5.4e from Mentor Graphics. Synplify 6.2 from Synplicity 

was used to compile the VHDL code and generate a net list. The Xilinx Foundation 

Series 3.1i tool set was used to both place and route the design. Lastly the peutil.exe 

utility from Annapolis Micro Systems generated the FPGA configuration streams. 

Table 3 shows the speed and runtime specifications of our architecture. All performance 

numbers are measured results from the actual hardware implementations. Each phase 

computes on separate memory blocks, which can operate at different clock rates. The 

design can process any square image where the dimensions are a power of 2: 16 by 16, 32 

by 32 up to 1024 by 1024. Since the WildStar board is connected to the host computer by 

a relatively slow PCI bus, the throughput of the entire system we built is constrained by 

the throughput of the PCI bus. However, our study is on how image compression routines 

could be implemented on a satellite. Such a system would be designed differently and 

would not contain a reconfigurable board connected to some host platform though a PCI 

bus. Rather the image compression routines would be inserted directly into the data path 

and the data transfer times would not be the bottleneck of the system. For this reason we 

analyzed the throughput of just the SPIHT compression engine and analyzed how quickly 

the FPGAs can process the images.  

Table 3: Performance Numbers 

Phase Clock Cycles per 
512x512 image 

Clock Cycles 
per Pixel 

Clock Rate Throughput FPGA Area

Wavelet 182465 3/4 75 MHz 100 MBytes/sec 62% 
Magnitude 131132 1/2 73 MHz 146 MBytes/sec 34% 

SPIHT 65793 1/4 56 MHz 224 MBytes/sec 98% 

The throughput of the system is constrained by the discrete wavelet transform at 100 

MBytes/second. One method to increase its rate is to compute more rows in parallel. If 

the available memory ports accessed 128-bits of data instead of the 64-bits with our 

WildStar board, the number of clock cycles per pixel could be reduced by half and the 
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throughput could double. Assuming the original image consists of 8 bpp, images are 

processed at a rate of 800Mbits/sec.  

In addition the entire throughput of the architecture is less than one clock cycle for every 

pixel, which is lower than parallel versions of the DWT. Parallel versions of the DWT 

used complex scheduling to compute multiple wavelet levels simultaneously, which left 

limited resources to process multiple rows at a time. Given more resources though, they 

would obtain higher data rates by processing multiple rows simultaneously than our 

architecture could. In the future another DWT architecture than the one we implemented 

could be selected for further speed improvements. 

We compared our results to the original software version of SPIHT provided on the 

SPIHT website [14]. The comparison was made without arithmetic coding since our 

hardware implementation currently does not perform any arithmetic coding on the final 

bit-stream. A SPARC 5 workstation was used for the comparison and we used a 

combination of satellite images from NASA’s website and standard image compression 

benchmark images. The software version of SPIHT compressed a 512 x 512 image in 

1.14 seconds on average. The wavelet phase, which constrains the hardware 

implementation, computes in 2.48 milliseconds yielding a speedup of 457 times for the 

SPIHT engine. In addition, by creating a parallel implementation of the wavelet phase, 

further improvements to the runtimes of the SPIHT engine are possible. 

While this is the speedup we will obtain if the data transfer times are not a factor, the 

design may be used to speed up SPIHT on a general-purpose processor. On such a system 

the time to read and write data must be included as well. Our WildStar board is connected 

to the host processor over a PCI bus, which writes images in 13 milliseconds and reads 

the final data stream in 20.75 milliseconds. With the data transfer delay; the total speedup 

still yields an improvement of 31.4 times. 

Both the Magnitude and SPIHT phases yield higher throughputs than the wavelet phase, 

even though they operate at lower clock rates. The reason for the higher throughputs is 

that both of these phases need fewer clock cycles per pixel to compute an image. The 

Magnitude phase takes half a clock cycle per pixel and the SPIHT phases requires just a 
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quarter. The fact that the SPIHT phase computes in less than one clock cycle per pixel, let 

alone a quarter, is a striking result considering that the original SPIHT algorithm is very 

sequential in nature and had to consider each pixel in an image multiple times. 

The entire system has been tested over many images of variable size and functions 

correctly. However, at the time of the writing of this paper there is one bit-stream 

generated by the SPIHT phase with a slight glitch. The first word written to memory of 

one stream is blank yet the stream is valid after the first 32 bits of data. Simulations in 

ModelSim show the design computing correctly and it appears to be a synthesis problem 

with Synplify. Part of our ongoing development effort is to both lower the size 

requirement of the final SPHIT phase and correct this one glitch. 
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7  Conclusions and Future Work 

In this thesis we have demonstrated a viable image compression routine on a 

reconfigurable platform. We showed how by analyzing the range of data processed by 

each section of the algorithm, it is advantageous to create optimized memory structures as 

with our Variable Fixed Point work. In addition our Fixed Order SPIHT design illustrates 

how by making slight adjustments to an existing algorithm it is possible to dramatically 

increase the performance in a custom hardware implementation. 

Our SPIHT work is part of an ongoing development effort funded by NASA. Future work 

will to address how lossy image compression will affect downstream processing. The 

level of lossy image compression that is tolerable before later processing begins to yield 

false results needs to be analyzed and dealt with. Lastly improvements to SPIHT and the 

consequences to a hardware implementation will be studied. Modifications to Fixed 

Order SPIHT including adding error protection to the bit-stream and region of interest 

coding will be considered.  
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