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Abstract
We report our experience with Chimaera, a prototype system that
integrates a small and fast reconfigurable functional unit (RFU)
into the pipeline of an aggressive, dynamically-scheduled
superscalar processor. We discuss the Chimaera C compiler that
automatically maps computations for execution in the RFU.Using
a set of multimedia and communication applications we show that
even with simple optimizations, the Chimaera C compiler is able
to map 22% of all instructions to the RFU on the average. Timing
experiments demonstrate that for a 4-way out-of-order
superscalar processor Chimaera results in average performance
improvements of 21%. This assuming a very aggressive core
processor design (most pessimistic RFU latency model) and
communication overheads from and to the RFU. 

1 Introduction
Conventional instruction set architectures (ISAs) provide
primitives that facilitate low-cost and low-complexity
implementations while offering high performance for a broad
spectrum of applications. However, in some cases, offering
specialized operations tailored toward specific application
domains can significantly improve performance. Unfortunately,
deciding what operations to support is challenging. These
operations should be specialized enough to allow significant
performance benefits, and at the same time, they should be
general enough so that they are useful for a variety of
applications. More importantly, we have to decide whether any of
the current performance benefits justify the risks associated with
introducing new instructions. Such instructions may become
defunct as software evolves and may adversely impact future
hardware implementations.

Reconfigurable hardware provides a convenient way of
addressing most of the aforementioned concerns. It may
significantly improve performance by tailoring its operation on a
per application basis. Moreover, since the type of specialized
operations is not fixed in the ISA, reconfigurable hardware has
the potential to evolve with the applications. As increasingly
higher levels of on-chip resources are anticipated, reconfigurable
capable systems provide a potentially fruitful way of utilizing
such resources. However, for this potential to materialize we also
need methods of converting software so that we can exploit it.
While it is possible to hand-map applications to exploit
reconfigurable hardware, writing working software is already
complicated enough. For this reason, an automated process is
highly desirable. In this paper, we discuss our experience with
designing Chimaera [9], a reconfigurable-hardware-based
architecture and our experience with providing compiler support
for it. In particular, in this paper we: (1) review the design of
Chimaera, (2) explain how it can be integrated into a modern,

dynamically-scheduled superscalar pipeline, (3) describe the
compiler optimizations we used to exploit Chimaera, and (4)
study the resulting performance tradeoffs. 

Chimaera tightly couples a processor and a reconfigurable
functional unit (RFU). This RFU is a small and fast field-
programmable-gate-array-like (FPGA) device which can
implement application specific operations. For example, an RFU
operation (RFUOP) can efficiently compute several data-
dependent operations (e.g., tmp=R2-R3; R5=tmp+R1),
conditional evaluations (e.g., if (a>88) a=b+3), or multiple sub-
word operations (e.g., "a = a + 3; b = c << 2", where a, b and c are
half-word long). In Chimaera, the RFU is capable of performing
computations that use up to 9 input registers and produce a single
register result. The RFU is tightly integrated with the processor
core to allow fast operation (in contrast to typical FPGAs which
are build as discrete components and that are relatively slow).
More information about the Chimaera architecture is given in
Section 2.

Chimaera has the following advantages: 

1. The RFU may reduce the execution time of dependent
operations which can be reduced in a single, lower-latency
RFU operation. 

2. The RFU may reduce dynamic branch count by collapsing
code containing control flow into an RFU operation. In this
case the RFU speculatively executes all branch paths and
internally selects the appropriate one.

3. The RFU may exploit sub-word parallelism. Using the bit-
level flexibility of the RFU, several sub-word operations can
be performed in parallel. While this is similar to what typical
multimedia instruction set extensions do, the RFU-based
approach is more general. Not only the operations that can be
combined are not fixed in the ISA definition, but also, they do
not have to be the same. For example, an RFU operation
could combine 2 byte adds and 2 byte subtracts. Moreover, it
could combine four byte-wide conditional moves.

4. The RFU may reduce resource contention as several
instructions are replaced by a single one. These resources
include instruction issue bandwidth, writeback bandwidth,
reservation stations and functional units.

To exploit the aforementioned opportunities we have developed a
C compiler for Chimaera. We found that even though our
compiler uses very simple, first-cut optimizations, it can
effectively map computations to the RFU. Moreover, the
computations mapped are diverse. 

In this paper, we study the performance of Chimaera under a
variety of both timing and RFU mapping assumptions ranging
from optimistic to very pessimistic. We demonstrate that, for most



programs, performance is sensitive to both the latency of the RFU
and the aggressiveness of the synthesis process (in synthesis we
map a set of instructions into an RFU operation and construct the
RFU datapath). For some programs, Chimaera offers significant
performance improvements even under pessimistic assumptions.
Under models that approximate our current prototype of
Chimaera's core RFU, we observe average speedups in between
31% (somewhat optimistic) and 21% (somewhat pessimistic).

The rest of this paper is organized as follows: In Section 2 we
review the Chimaera RFU architecture and discuss how we
integrate the RFU into a typical superscalar pipeline. In Section 3
we discuss the compiler support. In Section 4 we review related
work. In Section 5 we present our experimental results. Finally, in
Section 6 we summarize our findings.

2. The Chimaera Architecture
The Chimaera architecture, as we show in Figure 1 (more detailed
information about the RFU can be found in [9,39]), comprises the
following components: (1) Thereconfigurable array(RA), (2) the
shadow register file(SRF), (3) theexecution control unit(ECU),
and (4) theconfiguration control and caching unit(CCCU). The
RA is where operations are executed. The ECU decodes the
incoming instruction stream and directs execution. The ECU
communicated with the control logic of the host processor for
coordinating execution of RFU operations. The CCCU is
responsible for loading and caching configuration data. Finally,
the SRF provides input data to the RA for manipulation.

In the core of the RFU lies the RA. The RA is a collection of
programmable logic blocks organized as interconnected rows (32
in our prototype). The logic blocks contain lookup tables and
carry computation logic. Across a single row, all logic blocks
share a fast-carry logic which is used to implement fast addition
and subtraction operations. By using this organization, arithmetic
operations such as addition, subtraction, comparison, and parity
can be supported very efficiently. The routing structure of
Chimaera is also optimized for such operations. 

During program execution, the RA may contain configurations for
multiple RFU operations (RFUOPs). A configuration is a
collection of bits that when appropriately loaded in the RA
implements a desired operation. Managing the RA-resident set of
RFUOPs is the responsibility of the ECU and the CCCU. The
CCCU loads configurations in the RA, provides fast access to
recently evicted configurations through caching, and provides the
interfaces necessary to communicate with the rest of the memory
hierarchy. The ECU decodes the instruction stream. It detects
RFUOPs and guides their execution through the RA and if
necessary notifies the CCCU of currently unloaded
configurations. 

Each RFUOP instruction is associated with a configuration and a
unique ID. The compiler generates configurations and their IDs.
The linker places these configurations into the program's address-
space and also generates a vector table pointing to the beginning
of each generated configuration. At run-time, and upon detection
of an RFUOP, the ECU initiates a trap to load the appropriate
configuration in the RA. While the configuration is being loaded,
execution is stalled. In our prototype implementation, each row
requires 1674 bits of configuration. 

Input data is supplied via the Shadow Register File (SRF) which
is a physical, partial copy of the actual register file (only registers
0 through 8 are copied). It is organized as a single row containing
copies of all logical registers. This allows single register write

access from the host processor and allows the RA to read all
registers at once. 

To interface with the out-of-order core and to allow out-of-order
execution of RFUOPs, we provide a separate, small RFUOP
scheduler. This scheduler follows the RUU model [27]. Upon
encountering an RFUOP, the ECU allocates a dummy entry in the
scheduler of the OOO core. This entry is used to maintain in-
order commits and to support control-speculative execution (the
OOO notifies the RFUOP scheduler of miss-speculations using
the dummy entry). Based on the input vector data (which is part
of the configuration data), the ECU also allocates an entry in the
RFUOP scheduler marking the location of all desired input
registers (this is done by maintaining a shadow register renaming
table that allows single cycle access to all entries). Moreover, the
single target register of the RFUOP is renamed by the OOO core.
RFUOP scheduling proceeds in the same fashion as regular
instruction scheduling. In all experiments we assume a single-
issue capable RFUOP scheduler since this significantly simplifies
its design and allows easy integration with the current RA
prototype.

A standalone prototype of the RA was fabricated and is tested.
The chip was fabricated in a .5 um, 3-layer CMOS process using
MOSIS. The worst case path through a single logic block in the
current prototype consists of 23 transistor levels. Modern
microprocessors exhibit great variety on the number of transistor
levels operating within a single clock cycle. For example, an
aggressive implementation allows up to 12 transistor levels per
clock cycle [5] (six 2-input gates) while another design allows up
to 24 transistors levels per clock cycle [11] (eight 3-input gates).
By utilizing the Elmore delay model [34], we estimated the worst
case delay through each RA row to be within 0.96 to 1.9 cycles
for implementations with 24 and 12 transistor levels respectively.

3. Compiler Support
We have developed a C compiler for Chimaera to automatically
map groups of instructions to RFUOPs. The compiler is built over
the GCC framework, version 2.6.3. We introduced the following
three RFUOP-specific optimizations:Instruction Combination,
Control Localization, and SIMD Within A Register (SWAR). 

4.1 Instruction Combination

Figure 1: Overview of the Chimaera Architecture
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The core optimization is Instruction Combination, which extracts
RFUOPs from a basic block. It works by analyzing the DFG and
by extracting subgraphs that consist of multiple RFU-eligible
(RE) nodes. RE nodes correspond to instructions that can be
mapped in the RFU (e.g., adds, logic operations and shifts). Each
sub-graph must have a single register output (intermediate outputs
are allowed provided that they are not used outside the sub-
graph). Recall, that an RFUOP can produce only a single register
result.    Each of the subgraphs is mapped to an RFUOP. 

The algorithmFindSequencesin Figure 2 identifies maximum RE
instruction subgraphs. It works by coloring dataflow-graph nodes
for a single basic block. Non-RE instructions are marked as
BLACK. An RE instruction is marked as BROWN when its
output must be written into a register, that is, the output is either
alive after the basic-block or is being read by a non-RE
instruction. Other RE instructions are marked as WHITE.
Subgraphs consisting of BROWN and WHITE nodes are eligible
for RFUOP generation.

The compiler currently changes all RFU-eligible subgraphs into
RFUOPs. However, to control RFUOP generation we use
profiling to identify the most frequently running functions.
Moreover, instruction combination is limited to the basic blocks
of the inner-most loops of these functions.FIX: what policy is
being used? Top 10, 90% of the time?

4.2 Control Localization
To increase opportunities for instruction combination, the
compiler first performs control localization. This optimization
transforms branch containing sequences into temporary, aggregate
instructions which can be treated as a single nodes by instruction
combination [17]. This optimization works by first identifying
RFU-eligible basic-blocks (REBB). These are basic-blocks whose
instructions are all either RE (RFU-eligible) or branches. Two
adjacent REBBs are combined into an aggregate instruction if the
total number of input operands is less than nine and the total
number or live-on-exit output operands is one.DOUBLE
CHECK THIS.

4.3 SIMD Within A Register
The SWAR optimization identifies sub-word operations that can
be executed in parallel. The current implementation attempts to
pack several 8-bit operations into a single word operation. While
this appears similar to existing SIMD ISA extensions, the RFU-
supported SIMD model is much more general. Not only the
operations that can be combined are not fixed in the ISA
definition, but also, they do not have to be the same. For example,
an RFU operation could combine 2 byte adds and 2 byte
subtracts. Moreover, it could combine four byte-wide conditional
moves. For example, four iterations of the following loops can be
combined into a single RFUOP:

char out[100],in1[100],in2[100];

for(i=0;i<100;i++) 

if ((in1[i]-in2[i])>10) 

   out[i]=in1[i]-in2[i];

else

   out[i]=10;

Unfortunately, due to the lack of an alias analysis phase, our
current prototype cannot apply this optimization without
endangering correctness. For this reason, we have disabled this
optimization for all experiments. 

4.4 An Example of RFUOP Generation
Figure 3 shows an example of the compilation process on the
adpcm_decoder function which is appear in theadpcm.dec
benchmark (see Section 5 for a description of the benchmarks).
Part of the original source code is shown in part (a). The code
after control localization is shown in (b). The "d=tempx(s1,...,sn)"
notation refers to a temporary instruction whose source operands
are s1 to sn and destination isd. As shown, the three "if"
statements are first converted into three temporary instructions,
forming a single-entry/single-exit instruction sequence. The
instruction combination phase then maps all three instructions into
a single RFUOP, as shown in part (c).

4. Related Work
Numerous reconfigurable-hardware-based architectures have been
proposed. We can roughly divide them into two categories, those
that target coarse, loop-level optimizations and those that target
fine-grain, instruction-level optimizations. The two approaches
are complementary.

ALGORITHM: FindSequences
INPUT: DFG G, Non-RE, RE, Live-on-exit registers R
OUTPUT: A set of RFU sequences S
begin
      S=∅
      for  each node n∈G
            Color(n) ←WHITE
      end
      for  each node n∈Non-RE
            Color(n) ←BLACK
            for  each node p∈Pred(n)
                  if   p∈ΡΕ then
                         Color(p) ←BROWN
                  endif
             end
       end
       for  each register r∈R
              n← the last node that updates r in G
              if  n∈ΡΕ then
                 Color(n) ←BROWN
              endif
       end
       for  each node n∈G
               if  Color(n)=BROWN then
                   sequence=∅
                   AddSequence(n, sequence)
                   if  sizeof(sequence)>1 then
                       S=S∪{sequence}
                   endif
               endif
        end
end

AddSequence(n, sequence)
begin
        if  Color(n)=(BROWN or WHITE) then
              sequence←sequence∪{n}
               for each p∈Pred(n)
                     AddSequence(p, sequence)
               end
        endif
end

Figure 2: Instruction Combination Algorithm



Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff=rfuop(delta,vpdiff, step)
...
}

(c)

The loop-level systems are capable of highly-optimized
implementations (e.g., a pipeline) for whole loops. GARP [13],
Napa [26], PipeRench [8], Rapid [4], Xputer [10], and RAW [33]
are examples of such systems. Instruction-level systems target
fine-grain specialization opportunities. Chimaera [9], PRISC [24,
25], DISC [32], and OneChip [30] are instruction-level systems.
Chimaera differs from other systems primarily in that it supports a
9-input/1-output instruction model.

Restricted forms of optimizations similar to those we described
can be found in several existing architectures. Many architectures
provide support for collapsing a small number of data dependent
operations into a single, combined operation. For example, many
DSPs provide Multiply/Add instructions, e.g., [7,20]. More
general multiple operation collapsing functional units have also
been studied [22,28]. 

Most current ISAs have added support multimedia applications in
the form of SIMD subword operations [14,18,19,21,23,29].
Chimaera provides a more general model subword-parallelism
model as the operation itself is not restricted by the ISA. 

Finally, Chimaera can map code containing control-flow into a
single operation. A similar effect is possible with predicated
execution (e.g., [1,2,6,16]). or with multiple-path execution
models [15, 31].

5. Evaluation
In this section, we present our experimental analysis of a model of
the Chimaera architecture. In Section 5.1, we discuss our
methodology. There we also discuss the various RFUOP latency
models we used in our experiments. In Section 5.2, we present an
analysis of the RFUOPs generated. In Section 5.3, we measure
the performance impact of our RFU optimizations under an
aggressive, dynamically-scheduled superscalar environment.  

5.1 Methodology

We used benchmarks from the Mediabench [19] and the
Honeywell [12] benchmark suites. Table 2 provides a description
of these benchmarks. The Honeywell benchmark suite has been
used extensively in testing the performance of reconfigurable
systems. For all benchmarks we have used the default input data
set. While, in some cases the resulting instruction count appears
relatively small, we note that due to their nature, even such short
runs are indicative of the program's behavior. We have compiled
these benchmarks, using the Chimaera C Compiler 

For performance measurements we have used execution-driven
timing simulation. We build our simulator over the Simplescalar
simulation environment [3]. The instruction set architecture (ISA)
is an extension of the MIPS ISA with embedded RFUOPs. By

appropriately choosing the opcode and the Rd field of the RFUOP
format, RFUOPs appear as NOOPs under the MIPS ISA.  

For our experiments we have used the base configuration shown
in Table 3. This models an aggressive, 4-way dynamically-
scheduled superscalar processor. The RFU configuration we used
is also shown in Table 3. When the RFU is in place the maximum
number of instructions that can pass through decode, fetch, write-
back and commit is still limited to 4 including any RFUOPs.
Furthermore, only a single RFUOP can issue per cycle.

5.1.1 Modeling RFUOP Latency
To study performance it is necessary to express RFUOP execution
latencies in terms of processor cycles. These latencies can be
modeled accurately using a specific processor/RFU
implementation and a synthesis (i.e., RFU configuration)
algorithm. While valuable, the utility of such a model will be
limited to the specific configuration and synthesis algorithm.
Since our goal is to understand the performance tradeoffs that
exist in the Chimaera architecture, we have experimented with
several RFUOP latency models which are summarized in Table 4.

We use a two-tiered approach. First, we utilize latency models
that are based on the original instruction sequence each RFUOP
replaces. These models provide us with insight on the latencies
the RFU should be able to sustain to make this a fruitful approach.
These are reported as original-instruction-based models in Table
3. Models C, 2C and 3C model RFUOP latency as a function of
the critical path "c" of the equivalent original program
computation. To provide additional insight we also modeled fixed
RFU latencies of 1, 2 andn cycles wheren is the number of the
original program instructions mapped in the RFUOP. The 1 and 2
cycle models offer upper bounds on the performance
improvements possible with the current Chimaera compiler.

We also utilize transistor-level-based models. We first hand-
mapped each RFUOP into an efficient RFU configuration and
measured the number of transistor levels appearing in the critical
path. We then calculated latencies for various base processor
configurations. Using published data on the number of transistor
levels per clock cycle for modern processors we developed the
following four timing models: P24_0, P12_0, P24_1 and P12_1.
Models P24_0 and P12_0 assume designs with 24 and 12
transistor levels per cycle. P24_0 corresponds to a design with
eight 3-input gates per clock cycle such as the one in [11]. P12_0
assumes a more aggressive base processor pipeline with only six
2-input gates per clock cycle, such as the one as in [5]. To model
the possibility of extra delays over the interconnect to and from
the RFU we also include models P24_1 and P12_1 which include
an additional cycle of latency over P24_0 and P12_0 respectively.

Figure 3: An example of the Chimaera optimizations. (a) Original code. (b) Code after control localization. (c) Code after instruction
combination. The example is taken from the adpcm.dec Mediabench benchmark.

Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff = step >> 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2 ) vpdiff += step>>1;
if ( delta & 1 ) vpdiff += step>>2;
...
}

(a)

Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff = step >> 3;
vpdiff=temp1(delta, vpdiff, step);
vpdiff=temp2(delta, vpdiff, step);
vpdiff=temp3(delta, vpdiff, step);
...
}

(b)

Adpcmdecoder() 
{
int vpdiff, step, delta;
...
vpdiff=rfuop(delta,vpdiff, step)
...
}

(c)



Model P24_0 is the most optimistic while model P12_1 is the
most pessimistic.

5.2 RFUOP Analysis
In this section we present an analysis of RFUOP characteristics.
We measure the total number of instructions mapped to RFUOPs
and we take a close look at the internals of some of the RFUOPs.
Finally, we present results on the number of transistor levels used
to implement RFUOPs in the RA.

Table 4 shows statistics on the number of instructions mapped to
RFUOPs. Under the "IC" columns we report the dynamic
instruction count of the Chimaera optimized program. This is
expressed as a percentage of the original instruction count (shown
in Table 3). We also report the fraction of the original instructions
that were mapped to RFUOPs ("Red." column). The remaining
eight columns provide a per instruction type breakdown of the
mapped instructions. Shown is the percentage of instructions of
each type in the original program ("Orig." columns) and the
portion of this percentage ("Opt." columns) that was mapped to
RFUOPs in the Chimaera optimized program. For example, for
adpcmenc, 34% of all instructions was mapped to RFUOPs
resulting in a reduction of 19% in dynamic instruction count. The
original program had 27% branches and 37% of them (i.e., 9.9%
of all instructions) was mapped to RFUOPs. We can observe that

a significant fraction of instructions is mapped to RFUOPs (22%
on the average). The actual percentage varies from as little as 8%
to as much as 58%. More importantly, a significant fraction of
branches is eliminated (18% on the average). Some of these
branches foil the GSHARE predictor. Also, relatively large
fractions of shift operations are mapped to RFUOPs as compared
to other instruction types. 

Component Configuration

Superscalar Core

Branch predictor 64k GSHARE

Scheduler Out-of-order issue of up to 4 operations per cycle, 128 entry re-order buffer (RUU), 32 entry
load/store queue(LSQ)

Functional units 4 integer ALUs, 1 integer MULT, 4 FP adders, 1 FP mult/div

Functional unit latencies Integer ALU 1, integer MULT 3, integer DIV 12, FP adder 12, FP MULT 4, FP DIV 12, load/store 1

Instruction cache 32kb Direct-Mapped, 32-byte block, 1 cycle hit latency

Data cache 32kb Direct-Mapped, write-back, write-allocate, non-blocking, 32-byte blocks, 1 cycle hit latency

L2 cache Unified 4-way set associative, 128k byte, 12 cycles hit latency

Main memory Infinite size, 100 cycles latency

Fetch Mechanism Up to 4 instructions per cycle

Reconfigurable Functional Unit 

Scheduler 8 entries. Each entry corresponds to a single RFUOP
Single Issue, Single Write-back per cycle.
An RFUOP can issue if all its inputs are available and no other instance of the same RFUOP is
currently executing.

Functional Unit / RA 32 rows. Each RFUOP occupies as many rows as instructions of the original program it replaced
(pessimistic)
Only a single instance of each RFUOP can be active at any given point in time.

Configuration Loading 1-st level configuration cache of 32 configuration rows (32 x 210 bytes).
Configuration loading is modeled by injecting accesses to the rest of the memory hierarchy.
Execution stalls for the duration of configuration loading.

RFUOP Latency Various model simulated. See Section 5.1.1.

Table 1: Base configuration for timing experiments.

 Instruction-based Models 

Model C 2C 3C 1 2 N

CPU cycles c 2*c 3*c 1 2 n

Transistor-Level-based Models
Model P24_0 P24_1 P12_0 P12_1

CPU cycles t/24 t/24+1 t/12 t/12+1

Table 3: Timing Models.

Benchmark Description Inst. Count

MediaBench Benchmarks

Mpegenc Mpeg encoder 1139.0 M

G721enc CCITT G.721 voice encoder 309.0 M

G721dec CCITT G.721 voice decoder 294.0 M

Adpcm enc Speech compression 6.6 M

Adpcm dec Speech decompression 5.6 M

Pegwitkey Pehwit key generation. Pegwit is a
public key encryption and
authentication application.

12.3 M

Pegwitenc Pegwit encryption 23.9 M

Pegwitdec Pegwit decryption 12.5 M

Honeywell Benchmarks

Comp Image compression 34.1 M

Decomp Image decompression 32.7 M

Table 2: Benchmark characteristics.



We take a closer look at the internal composition of individual
RFUOPS. For clarity, we restrict our attention to three
applications:mpegenc, adpcmencandadpcmdec. We chose these
benchmarks as they contain a small number of RFUOPs. Figure 4
shows these measurements. One bar per RFUOP is shown (X-
axis). Each bar is divided into sub-bars (Y-axis) representing the
per instruction type breakdown of the original instructions. We
split instructions into those that do addition/subtraction, bit logic
operations, shifts, branches and moves. All RFUOPs are included
in this graph. The actual instruction count per type is also shown
(numbers within the sub-bars). It can be seen that the Chimaera
compiler is capable of mapping a variety of computations. While
addition/subtraction and shift operations are quite common, other
types of operations are also mapped. For example, in mpegenc, a
computation comprising 12 additions/subtractions and 4 branches
has been mapped into a single RFUOP.

Finally, we report statistics on the number of transistor levels used
by RFUOPs. For the purposes of this experiment, we hand-
mapped all RFUOPs. Table 5 reports RFUOP transistor level
statistics for all benchmarks. We report the average, minimum
and maximum number of transistor levels per RFUOP per
benchmark (three rightmost columns). The variation on the
average number of levels is relatively large. The most complex
operations require as many as 90 transistor levels, while the most
simple ones require only 7. While these numbers may seem
discouraging, it is important to also pay attention to the original
instruction sequence they replace. Accordingly, we report the
average, minimum and maximum number of transistor levels per
RFUOP amortized over the critical path of the original instruction
sequence replaced by the RFUOP. From this perspective and in
the worst case, only 20 transistor levels are required per level of
the original dataflow graph. While we hand-optimized the
configurations shown we expect that it should be possible to
generate comparable or better results using an automated method. 

5.4 Performance Measurements
Figure 8 shows how performance varies over the base
configuration. Note that when the RFU is included, overall issue,
write-back and commit bandwidth are each still limited at 4
instructions per cycle including RFUOPs. Furthermore, only a
single instance of an RFUOP can be active in the RFU at any
given point in time.

It can be seen from Figure 5, part (a) that with the 2C model,
Chimaera offers speedups of about 11% on the average over the
4-way base configuration. In two cases, speedups exceed 30%.

On the other hand, we observe slowdowns in 3 benchmarks. With
the C model, performance improvements almost double (about
20% on the average). Note that foradpcmdecthe speedup under
the C model is 155%. With the 3C model, performance improves
only for one benchmark. As expected the 1-cycle model shows
radical performance improvements for those benchmarks having
RFUOPs that replaced several original instructions. Notably, even
under the N model performance improves over all benchmarks. In
this case, it is the decreased branches and reduced resource
contention that primarily impact performance. For most programs
studied the branches mapped into RFUOPs foil the GSHARE
predictor. The results of this experiment suggest that in a 4-way
superscalar processor and for most of the programs studied,
Chimaera can offer performance improvements even if RFUOP
latencies are in the order of 2C.

Figure 8, part (b) shows performance variation with the transistor-
level-based models. Notably, Chimaera performs well even we
assume few transistor levels per processor cycle. With the most
conservative model, P12_1, we observe an improvement of 21%
on the average. As shown by the P12_0 model, performance can
improve by 26% o on the average in the absence of additional
communication overheads. As expected, the other two models,
P24_0 and P24_1, show even greater improvements, 31% in
P24_0 and 29% in P24_1.

The results of this section suggest that even under relatively
pessimistic assumptions about RFU latency Chimaera results in

Figure 4: RFUOP instruction type composition. Left: mpegenc. Right: adpcmenc (RFUOPs 1 through 7) and adpcmdec (RFUOPs 8
through 11).Instruction types shown are addition/subtraction, logical operations, shifts, branches and moves.
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Table 4 Global Instruction Count Statistics. 

Bench IC Red. Branch Add/Sub Logic Shift

Opt. Orig. Opt. Orig. Opt. Orig. Opt. Orig. Opt.
Adpcmenc 81% 34% 27% 37% 41% 31% 10% 46% 15% 46%

Adpcmdec 53% 58% 30% 59% 29% 57% 18% 77% 14% 72%

Mpegenc 90% 12% 17% 13% 47% 19% 0% 0% 3% 31%

G721enc 94% 8% 22% 4% 41% 5% 3% 32% 12% 35%

G721dec 92% 9% 23% 5% 41% 5% 3% 32% 11% 41%

Pegwitkey 85% 22% 15% 16% 37% 33% 13% 3% 11% 67%

Pegwitenc 85% 22% 15% 16% 37% 33% 12% 2% 10% 67%

Pegwitdec 85% 22% 15% 16% 37% 33% 13% 3% 11% 67%

Honeyenc 83% 28% 13% 18% 51% 36% 1% 0% 9% 88%

Honeydec 88% 21% 13% 0% 47% 27% 0% 51% 10% 82%

Average 84% 22% 12% 18% 41% 28% 7% 25% 10% 60%



significant performance improvements over both a 4-way and a 8-
way highly-aggressive superscalar processors.

6. Summary
We have described Chimaera, a micro-architecture that integrates
a reconfigurable functional unit into the pipeline of an aggressive,
dynamically-scheduled superscalar processor. We also described
the Chimaera C compiler that automatically generates binaries for
RFU execution. The Chimaera micro-architecture is capable of
mapping a sequence of instructions into a single RFU operation
provided that the aggregate operation reads up to 9 input registers
and generates a single register output. Chimaera is also capable of
eliminating control flow instructions in a way similar to that
possible with predicated execution. Finally, Chimaera is capable
of a more general sub-word data-parallel model than that offered
by current, multimedia-oriented ISA extensions.

Using a set of multimedia and communication applications we
have found the even with simple optimizations, the Chimaera C
compiler is able to map 22% of all instructions on the average. A
variety of computations were mapped into RFU operations, from
as simple as add/sub-shift pairs to operations of more than 10
instructions including several branch statements. We studied
Chimaera's performance under a number of timing models,
ranging from pessimistic to optimistic. Our experiments
demonstrate that for a 4-way out-of-order superscalar processor
performance our approach results in average performance
improvements of 21% under the most pessimistic transistor-level-
based timing model (P12_1). With a different timing model
(P24_1) that matches existing high-performance processor
designs, Chimaera improved performance by 28% on the average.
Performance varied from 5% to 197%.

Our results demonstrate the potential of the Chimaera approach,
even under very pessimistic RFU latency assumptions. It is
encouraging that the performance improvements were obtained
using automatic compilation. While similar or higher performance
improvements have been observed in multimedia applications
using specialized instruction set extensions, these were in most
cases the result of careful hand optimizations.  
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