
A Scalable High-Bandwidth Architecture for Lossless Compression on FPGAs

Jeremy Fowers∗, Joo-Young Kim∗ and Doug Burger∗
∗Microsoft Research
Redmond, WA, USA

Scott Hauck∗†
†Department of Electrical Engineering

University of Washington, Seattle, WA, USA

Abstract—Data compression techniques have been the subject
of intense study over the past several decades due to exponential
increases in the quantity of data stored and transmitted by
computer systems. Compression algorithms are traditionally
forced to make tradeoffs between throughput and compression
quality (the ratio of original file size to compressed file
size). FPGAs represent a compelling substrate for streaming
applications such as data compression thanks to their capacity
for deep pipelines and custom caching solutions. Unfortunately,
data hazards in compression algorithms such as LZ77 inhibit
the creation of deep pipelines without sacrificing some amount
of compression quality. In this work we detail a scalable fully
pipelined FPGA accelerator that performs LZ77 compression
and static Huffman encoding at rates up to 5.6 GB/s. Further-
more, we explore tradeoffs between compression quality and
FPGA area that allow the same throughput at a fraction of
the logic utilization in exchange for moderate reductions in
compression quality. Compared to recent FPGA compression
studies, our emphasis on scalability gives our accelerator a 3.0x
advantage in resource utilization at equivalent throughput and
compression ratio.
Keywords-FPGA; data compression; LZ77; Huffman encoding;
hardware accelerator; Xpress; high throughput;

I. INTRODUCTION

Data compression plays an important role in computer

systems by reducing resource usage in both storage and

networking in exchange for some computational cost. The

recent computing paradigm shift from personal to cloud has

emphasized the role of compression for building efficient

storage systems.

Lossless compression often exploits statistical redundancy

in data patterns and applies a representation to eliminate

it. The Lempel-Ziv (LZ) [1] compression method finds

duplicate strings from earlier in the data and replaces the

strings with pointers. On the other hand, Huffman encoding

[2] collects frequency information for symbols and assigns

fewer bits to commonly used symbols to reduce the av-

erage codeword length. DEFLATE [3], which combines

LZ compression and Huffman encoding to achieve higher

compression ratios, is one of the most popular algorithms

for lossless storage and is utilized in many variations such

as GZIP [4], ZLIB [5], XPRESS [6] and 7ZIP [7].

Streaming data applications, which includes high through-

put compression, are typically well-matched to hardware

accelerators such as FPGAs and ASICs. Unfortunately,

hardware compression studies from the previous decade [8]–

[10] have suffered from low throughput performance. How-

ever, recent efforts from industrial vendors [11]–[14] have

demonstrated 10 GB/s and 4 GB/s lossless compression on

ASICs and FPGAs, respectively, proving that these devices

are indeed a compelling substrate for compression. These

accelerators are useful for both higher throughput and for

alleviating the computational cost of compression from the

CPU.

While these new accelerators provide an order-of-

magnitude throughput increase over modern CPUs, they are

resource intensive and will not scale to significantly higher

bandwidths on existing hardware. In this paper, we present

a scalable high-bandwidth compression accelerator for re-

configurable devices. We introduce a hardware-amenable

compression algorithm and demonstrate an area-efficient

mapping to a scalable pipelined architecture. The results

show that we achieve the same 16 bytes/cycle of throughput

as the IBM implementation at 3.1x less area. Additionally,

our design is the first FPGA architecture that scales up to 32

bytes/cycle in a single engine on a modern Stratix V FPGA.

The remainder of the paper is organized as follows: In

Section II, we detail our compression algorithm and the

challenges associated with hardware compression. Next,

Section III provides an overview of the pipelined com-

pression architecture. Each module from the architecture is

detailed in Section IV, then Section V provides experimental

results and analysis. Lastly, Section VI offers conclusions

and suggestions for future work.

II. COMPRESSION ALGORITHM

The widely-used DEFLATE compression algorithm in-

cludes data-hazards and other features that make it chal-

lenging to implement in scalable hardware. Our compres-

sion algorithm modifies DEFLATE with the dual goals of

enabling data- and pipeline-parallelism while minimizing

sacrifices to compression quality. In this section, we will

first summarize DEFLATE algorithm, then describe the

modifications we made for parallel execution and hardware

pipelining with a few newly introduced parameters. It is

worth noting that these modifications are made only with

regard for hardware mapping, and are not intended to benefit

software performance.
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Algorithm 1 DEFLATE Algorithm.

1: while (curr position<data size) do
2: Hash chain build

calculate hash value hv
Prev[pos]← Head[hv]
Head[hv]← pos

String matching

candidates from a hash chain vs. current

Match selection

if (either commit literal or match)

Huffman encoding

Move to next position

3: end while

A. DEFLATE Algorithm

As shown in Algorithm 1, DEFLATE uses a chained

hash table implemented with head and prev tables to find

duplicated strings from earlier in the data. For the current

byte, it calculates a hash value by applying a hash function

on the current 4-byte sequence. Then, the head table caches

the most recent position for each hash value, while the

prev table stores linked lists of matching positions. Each

linked list starts with the second-most recent position in the

hash value. As a result, the algorithm can traverse previous

positions that have the same hash value through the prev

table. The string matching examines the input data sequence

with respect to strings from these candidate positions to

find the longest match. To improve overall compression,

the algorithm doesn’t commit the matches immediately, but

instead searches for another matching at the next position. If

a longer match is found, the algorithm truncates the previous

match to a literal and repeats this process of lazy evaluation

until it encounters a worse match. Otherwise, it emits the

previous match and skips forward by the match length; this

repeats until it covers the entire input data set.

B. Parallelization Window

To parallelize the above algorithm, we perform the algo-

rithm on multiple consecutive positions at the same time

in a multi-threaded fashion. We call this spatial set of

positions our parallelization window and the size of it (the

number of positions) the parallelization window size (PWS).
Each position in the window executes the hash chain build

and string matching processes independently. Among these

positions, dependencies exists in the hash table update stage

that performs write operations the on head and prev tables.

Although we could solve this dependency using the chaining

property of head and prev update, we solved it by re-

designing the hash table structure, which will be discussed in

the following sub-section. Furthermore, the string matching

step can also execute in parallel, at the cost of invoking

many concurrent read operations to the data memory.

Algorithm 2 Hash update algorithm.

for i = HTD − 1 to 0 do
Candidate[i]← HashTable[i][hv]
if i ≥ 1 then

HashTable[i][hv]← HashTable[i− 1][hv]
else

HashTable[i][hv]← pos
end if

end for

Another dependency issue in our parallelization window

approach occurs between neighboring windows. The match

selection results from one window impact the match selec-

tion process in the following window, resulting in a data

hazard for window pipelining. To resolve this problem, we

start match selection by finding a match that extends into

the next window, then communicate that match to the next

window, and finally perform selection for the remaining

window positions. Within independent windows we perform

a lazy match selection evaluation found only in advanced

DEFLATE versions.

C. Re-design of Hash Table

We made a series of significant modifications to the DE-

FLATE hash table to improve its amenability for hardware.

First, we changed the head-prev linked list design to a

multiple hash table design. In this design, the first hash

table includes the latest positions for hash indexes, while the

second hash table has the second latest, the third includes

the third latest, and so on. While the original method is

more resource efficient, this method has the advantage of

retrieving previous positions simultaneously with no need to

traverse the prev table. We refer to the number of hash tables

with a parameter called hash table depth (HTD), which is

equivalent to the number of hash chain walks allowed in the

original DEFLATE algorithm. The new hash update process

is reflected in Algorithm 2.

Candidates positions with the same hash value can now

access all of our hash tables at the same index. Further-

more, the hash tables are updated in a shifted fashion that

throws out the oldest position, and has the current position

as the latest. However, this simple hash read and update

process has a severe hardware realization problem when

it is applied to multiple positions simultaneously. As each

position requires a single read and a single write for each

table, the parallelization case requires PWS read and PWS

write operations in a single cycle for each hash table. Given

that multi-port memory designs are typically very expensive

on FPGA devices [15], an alternative is needed to maintain

scalability.

To resolve this problem, we propose a multi-banking

solution that does not require any replicas for multi-port
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Figure 1. Hash table organization. Original (left) and hardware-optimized
(right).

Algorithm 3 Head/tail algorithm.

for all window w[N] in input do
Select a tail match that extends into w[N+1]

if N �= 0 then
Receive head match from w[N-1]

Trim tail match start to avoid head match overlap

Invalidate positions in w[N] up to head match end

end if
Send tail match to w[N+1] as a head match
Trim matches in w[N] to avoid tail match overlap

Select matches and literals for remaining positions

end for

operation, while increasing read/write throughput up to by

the factor of the number of banks, depending on how bank

conflicts occur. We refer to the number of banks in the hash

table as the hash table bank number (HBN). Each bank

performs hashing for positions whose hash modulo HBN

falls into the index of the bank. Figure 1 compares the re-

designed hash table organization with the original DEFLATE

version.

Our re-designed hash table will encounter bank conflicts

when hash values have the same modulo result. To achieve

both a seamless hardware pipeline and a single read and

a single write requirement per bank, we drop all of the

conflicted inputs in the hash table after the second request

from the smallest position. It is noteworthy that this dropping

strategy actually solves the dependency problem mentioned

in previous sub-section as well. However, we miss some

possible candidate positions due to the dropping, and thus

there is a loss in compression. We can mitigate the bank

conflict by choosing a large enough HBN value since the

hash function generates well-spread hash values. Based on

our experiments, we picked an HBN value of 32 as it give a

nice trade-off between conflict reduction effect and hardware

cost for multi-banking.

D. Match Selection

Matches identified by string matching can overlap with

each other. Match selection identifies which matches should

be included in the output stream. The primary challenge

with parallel match selection is that selecting each match

requires knowledge of both past matches (do they preclude

this match?) and future matches (would selecting this match

preclude a better one later?). Therefore, a data hazard exists

between windows if a match in one window can cover

positions in the following window.

We enable parallel match selection by employing two

techniques. The first, match trimming, reduces the size of

matches to eliminate the dependencies between windows.

However, we found that match trimming results in a 10-

20% reduction in available compression quality. To improve

quality at the cost of some resources we can apply our

second technique, which we refer to as head/tail selection.

Head/tail pre-processes each window by selecting one match

that extends into the next window, then trims to the match

candidates in both windows accordingly. We found that

head/tail reduces the compression loss to only 2-6%.

The process for applying the head/tail technique is shown

in Algorithm 3. Our selection approach uses the follow-

ing heuristics for selecting matches. For tail matches, the

selector chooses the longest match in the window that

extends into the next window. For all other matches, we

rely on the fact that the largest matches occur at low-indexed

positions due to match trimming. The selector begins at the

lowest-indexed position and compares its match length to its

neighbor one index higher. If a position contains a longer

match than its neighbor we select a match, otherwise we

select a literal. Finally, trimming a match involves shifting

its start position past the end of the head match and shifting

its end position before the start of the tail match.

III. FULLY-PIPELINED ARCHITECTURE

Figure 2 shows the fully pipelined architecture of the

proposed compressor with 22 + 2 ∗ PWS + log2(PWS)
total stages. The compressor receives PWS bytes of data

from its input source every cycle and directs them into

our stall-free fixed latency pipeline. Thanks to this no-

stall architecture, its input and output data rate are very

simple to calculate; the input data rate is computed as

(PWS x clock rate) bytes per second, while the output rate

will be divided by that data set’s compression ratio. The

proposed architecture is composed of four major functional

components: hash table update (hash calculation included),

string match, match selection, and Huffman bit-packing. To

sustain high data throughput while shrinking multiple bytes

to compressed bits, we face the following design challenges

for each component:

• Hash table update: The hash calculation module con-

verts PWS bytes into hash values ranging from 0 to

64K-1, while also storing the bytes to data memory.
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Figure 2. Fully-pipelined architecture.

Then, it must read candidates for PWS hash values

from the multi-banked hash table, while resolving bank

conflicts among the inputs. Simultaneously, it updates

the hash table with new positions.

• String match: At each candidate position in the input

the string matcher performs PWS independent match-

ings between the current string and previous strings.

This parallel matching computation will require PWS

reads of PWS bytes to the 64KB data memory.

• Match selection: We receive PWS candidate matches

per cycle, which is too many to process combinatorially,

and must perform lazy evaluation to select between

them. Data hazards exist because each match may pre-

clude other matches within a certain range of positions.

• Huffman bit-packing: We must create a PWS-aligned

byte stream out of many Huffman encoded selection

results. A large amount of buffering and bit shifting is

required to align the data.

IV. MICRO-ARCHITECTURES

A. Multi-banking hash table

As we stated in Section II-C, we resolved the multiple

read/write problem in the hash table with a multi-banking

scheme that drops banking conflicts. Figure 3 shows the 5-

stage pipelined hash table read and update module with two

fully connected crossbar switches. The hash table module

receives PWS input hash values per cycle from the hash

calculation module. Based on their LSB values, it routes

each input position to the corresponding bank. This problem

is similar to the routing problem in a network switch, with

the input positions corresponding to input ports and the

bank numbers corresponding to output ports. Multiple input

positions can send requests to a single bank and an arbiter

chooses up to two requests per cycle. Thanks to a clock

Figure 3. Multi-banking hash table update.

rate double that of the rest of the pipeline, each bank in

the hash table can handle up to two hash updates involving

two read and two write operations per cycle. Since each

input hash value can update any channel of any bank in the

hash table, we need a fully connected crossbar switch whose

input and output port size is PWS and 2*HBN, respectively.

After getting a grant from the bank, each input position

accesses the granted bank to read the candidate position

value and update it to the current position. For the single-

depth hash table, we can perform read and write operations

at the same cycle by configuring the memory output mode

to read old data. In the case of multi-depth hash table, we

need to wait for the read data to arrive, while resolving

possible dependencies with forwarding without stalling. The

read candidate positions arrive in two cycles from the banks

and we re-align these to match the correct input positions.

Therefore, another full crossbar switch is required to connect

2*HBN bank ports to PWS output ports. As a result, the
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Figure 4. Parallel string matching.

module provides PWS candidate positions per cycle to the

matching stage.

B. Parallel Matching

In this stage, we perform PWS parallel matchings between

the current string and PWS previous strings to which those

candidate positions refer, as shown in Figure 4. The current

string is stored in pipeline registers, while the previous

strings are fetched from the data memory. For the current

string, we buffer up to the next window bytes (2*PWS

bytes total) so that each position in the current window

can have a full PWS byte sequence. The data memory that

stores input bytes is designed to prepare vector data for

matching. With multiple banks and a data aligner in its

data read path, it provides PWS consecutive bytes from any

input address. We replicate the data memory by PWS to

support parallel matching, providing a total data bandwidth

of (PWS*PWS*clock freq) bytes per second.

With two PWS bytes of strings available, the matching

process is straightforward. It compares each byte of the two

strings until they become different. As a result, we have up

to PWS matching results, each of which is represented as a

(length, offset) pair.

C. Match Selection

Our match selection pipeline (partially depicted in Fig-

ure 5) uses PWS + log2(PWS) + 3 stages to process

PWS input elements. Each element contains the literal

for that position in the original input, along with match

information: length, offset, and valid flag. Pipeline stages

1 through log2(PWS) + 2 are tasked with selecting (with

a pipelined max reduction), triming, and propagating the

head/tail matches, while the remaining PWS+1 stages trim

and select the remaining matches.

Figure 5. Match selection logic.

The selector modules depicted in Figure 5 perform the

following tasks. First, they ensure that the match in the

current position has not been precluded by a previous match,

including the head match. Next, they determine whether the

tail match should replace the match for the current position.

If a selection is still needed, the selector compares the post-

trimming match lengths for the current and next-indexed

position, as described in Section II-D. Lastly, preclusions

are carried between stages by decrementing length of the

selected match. A stage’s selector knows it must make a

new selection when the preclusion value reaches zero.

Note that head/tail can be disabled to reduce resource

usage by removing blue modules and wires in Figure 5

simply trimming matches to the end of the window.

D. Huffman Encoding + Bit-Packing

Encoding the match selection results with static Huffman

codes is a relatively simple process; however it is challeng-

ing to pack the subsequent outputs into a fixed-width output
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Figure 6. Window bit-packer.

bit stream. The encoder itself has two main actions: First,

if the data is precluded by a previous match it is ignored.

Second, if a match or literal is selected, the data is passed

through a codebook ROM and the resulting data and size are

passed to the packing module. PWS/2 dual-ported ROMs

are used to process one output per window per cycle (PWS

cycles for one window).

Packing the data is challenging because encoded outputs

for a single selection vary from 7 to 28 bits, and each win-

dow can produce between one and PWS outputs. Therefore,

the total output from one window can range between 12

and PWS*8 bits, representing a well-encoded match of size

PWS and PWS literals, respectively.

Our bit-packing pipeline operates in two phases. First,

PWS window packers are each responsible for collecting

all of the outputs from one of the PWS parallel windows.

Each cycle, one window packer will finish its window and

send its data to the second phase, a unified output packer.

The output packer accepts compressed windows and packs

them into a PWS-bit output stream.

Our window packer implementation is depicted in Fig-

ure 6. It uses a 64-bit barrel shifter to align incoming data

with data that has already been collected from the current

window. The aligned values are ORed with the contents of

the lower of two 32-bit registers in a double buffer, then

stored back in the register. The packer’s controller tracks the

number of bits stored this way, and when a buffer is full its

contents are sent to the 32-bit word shift register. Next, the

barrel shifter continues to fill the upper register and uses the

lower register for overflow. Our window packer uses PWS/4

shift registers, allowing it to pack up to 28 bits/cycle, and a

total of PWS*8 bits, using a single 64-bit barrel shifter.

The output packer is a simpler version of the window

Table I
IMPLEMENTATION COMPARISON (ON CALGARY CORPUS)

Design Perf. Comp. Area Efficiency
(GB/s) Ratio (ALMs) (MB/s /

kALMs)
ZLIB (fastest) 0.038 2.62 N/A N/A
IBM 4 2.17 110000* 38
Altera 4 2.17 123000* 33
PWS=8 1.4 1.74 14472 97
PWS=8 w/ HT 1.4 1.82 16519 85
PWS=16 2.8 1.93 35115 80
PWS=16 w/ HT 2.8 2.05 39078 72
PWS=24 4.2 1.97 63919 66
PWS=24 w/ HT 4.2 2.09 68625 61
PWS=32 5.6 1.97 100754 56
PWS=32 w/ HT 5.6 2.09 108350 52

*Extrapolated from [11] and [12]

packer that excludes the shift registers. It accepts inputs of

up to PWS*8 bits and uses a PWS*16-bit barrel shifter to

align them into a PWS*16-bit double buffer. When one side

of the double buffers is filled, the buffer’s data is sent as

final compressed output.

V. EXPERIMENTAL RESULTS

A. Compression ratio

To evaluate the proposed compression algorithm, we chose

4 different data benchmarks covering a variety of data types:

Calgary and Canterbury Corpus [16], Silesia Corpus [17]

and the large text benchmark [18]. We use the publicly

available ZLIB software implementation [5] of DEFLATE

to provide a baseline for compression ratio and measure

CPU throughput on a machine with a 2.3GHz Intel Xeon

E5-2630 CPU and 32GB RAM.

Figure 7 shows the resulting compression ratios, cal-

culated as input file size divided by output file size, with

PWS varying between 8 and 32 and with head/tail selection

included. We fixed the hash table bank number to 32 and

varied the depth between 1 and 4. Figure 7 demonstrates

that our compression ratio increases logarithmically with

PWS. This behavior is expected because larger paralleliza-

tion windows allow for longer matches. The compression

gain achieved by increasing PWS for 8 to 16 is especially

noteworthy across all data sets, since the PWS of 8 case

simply does not produce enough matches due to the min-

imum match length of 4. Another trend in the graphs is

that our compression ratio increases as the hash table depth

grows larger. Deeper hash buckets result in better matches

because we are able to keep more candidate positions

available for comparison. A good observation for hardware

implementation is that even increasing the depth to 2 results

in a meaningful boost in compression ratio without requiring

too large a hardware cost.
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Figure 7. Compression ratio vs. parallelization window size

B. Area-performance Trade-off

We implemented our architecture with SystemVerilog on a

modern Stratix V FPGA at 175 MHz to evaluate the tradeoffs

between area, throughput, and compression ratio. The HTD

parameter is set to 1, as we found supporting higher values

to be outside the scope of this work. Figure 8 presents

the area requirements for each module across different PWS

sizes and Table I gives the total area for each engine with

and without head/tail selection. The results show that the

design does not scale linearly, as certain modules—such as

data memory and match selection—scale quadratically with

PWS. This presents an interesting design space to users, who

can achieve a target throughput by either applying one large

engine or an array of smaller engines.

Figure 9 depicts the design space for area versus com-

pression ratio at throughputs of 5.6, 2.8, and 1.4 GB/s. Each

line represents a different throughput level, and the points

along the line are the corresponding engine configurations

(PWS x # engines). The data shows that a significant 15%

improvement to compression ratio can be achieved if an

additional 64% area can be spared for a PWS=32 engine.

C. Comparison

Table I compares our implementation, with PWS set

between 8 and 32, to the fastest ZLIB mode, the IBM

Figure 8. FPGA area in ALMs required for each module at varying PWS
(head/tail selection included).

results from [11], and the Altera results from [12]. For a

fair comparison, we used only Calgary Corpus that their

results are also based on. We found that the high-throughput

hardware accelerators outperformed the throughput of one

CPU core running ZLIB by up to 2 orders of magnitude.

However, all of the hardware implementations in Table I

sacrifice some amount of compression ratio to improve DE-

FLATE’s hardware amenability. The discrepancy between

our designs and the other hardware accelerators can be

partially accounted for by the hash table design; the IBM

and Altera designs keep more candidate positions than

ours, which we will match with a depth of 2 in future

work. Finally, we found our design to be significantly more

resource-efficient than IBM’s or Altera’s, achieving 1.4-2.7x

and 1.6-3.0x, respectively, better throughput/area across the

various PWS settings. With further clock rate optimizations

this lead would increase, because a PWS of 16 running at

IBM’s 250 MHz would result in the same 4 GB/s throughput.

VI. RELATED WORKS

Decades of research has investigated different compres-

sion algorithms [1]–[7]. High-bandwidth pipelined FPGA

implementations have become interesting recently thanks to

area and I/O bandwidth improvements. IBM’s DEFLATE

implementation for FPGAs [11] achieved 4 GB/s throughput

at 16 bytes/cycle; However, certain architectural choices,

Figure 9. Area vs. compression ratio at three throughput levels. Data
points are labeled with the engine size x number of engines.
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such as a 256-port hash table, limit its scalability. Altera [12]

has also recently implemented LZ77 for FPGAs with their

OpenCL compiler at the same throughput as IBM. However,

they use an unscalable combinatorial match selection circuit.

Our compression architecture improves on both of these

implementations with significantly greater area efficiency

and overall scalability.

An alternative approach from IBM is presented in [13],

which makes significant sacrifices to compression quality

to achieve hardware amenability. In particular, the 842B

algorithm used in this work only allows matches of size 8,

4, and 2 and does not apply Huffman encoding. Our work

significantly improves compression ratios by allowing larger

matches and integrating static Huffman codes.

Microsoft presented their Xpress compression accelerator

[19] targeting high compression ratios with complex match-

ing optimization and dynamic Huffman encoding. However,

its throughput performance is limited to less than a GB/s

due to the complex algorithmic flow.

Application-specific integrated circuits (ASICs) have also

been used to accelerate compression. The latest AHA372

product performs 2.5GB/s throughput, while the next gener-

ation AHA378 product [14] is capable of up to 10GB/s on a

sixteen-lane PCIe board. Our scalable FPGA implementation

is complementary because it offers a compelling alternative

for servers that already include an FPGA [20].

VII. CONCLUSION & FUTURE WORK

In this paper we presented a scalable architecture for high-

bandwidth lossless compression on reconfigurable devices.

To enable seamless pipelining in hardware, we resolved

algorithmic dependencies by introducing a new hash table

design and trimming matches. Although these changes sac-

rifice some amount of compression ratio, they enable our

architecture to scale to 5.6 GB/s of throughput. We also

detailed micro architectural components for the compression

pipeline, including modules for hash table update, string

matching, selection, and Huffman bit-packing in a scalable

and resource-efficient way. Finally, we explored a design

space of proposed architecture with parallelization window

size and embraced area-performance trade-off relations. At

the time of this writing, our architecture achieves the high-

est throughput and area-efficiency of any published high-

bandwidth FPGA compressor.

Future work will investigate clock frequency optimizations

to improve the throughput of a given PWS value. We

also plan to integrate deep hash tables to improve the our

compression ratio.
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