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This dissertation presents an execution model and compilation algorithms to advance the utility 

of coarse-grained reconfigurable arrays (CGRAs).  These time multiplexed, spatial architectures 

can provide improved energy efficiency and performance compared to FPGAs or commodity 

processor systems.  Conventional CGRAs are generally modulo scheduled for efficiently 

pipelining computationally intensive code.  However, as the control complexity of an application 

increases, the performance of modulo scheduled CGRAs is diminished.  An application 

composed of a series of phases and complex control flow may yield poor device utilization and 

limited performance on conventional CGRAs.  In this work, I present Offset Pipelining, a new 

execution model, along with supporting Offset Pipelined Scheduling and EveryTime routing 

algorithms for improved application mapping to CGRAs. 



 

Offset Pipelining provides a mechanism to support different phases of application execution.  

The approach increases the flexibility of CGRAs by supporting independent initiation intervals 

for the different phases and interleaving loop iterations across the device, similar to modulo 

scheduling.  This allows portions of an application to be optimized in isolation and also 

maximize resource sharing on the device.  It is particularly effective in cases where an 

application requires infrequent setup or teardown steps around a shorter inner loop that executes 

for many iterations.  I also introduce pipelined program counter CGRAs in order to support the 

proposed execution style. 

The new algorithms presented perform the scheduling and routing for an Offset Pipelined 

CGRA.  The Offset Pipelining Scheduling algorithm creates a schedule in the Offset Pipelining 

style.  It takes an iterative approach to adjusting the schedule, balancing the needs of each phase 

by positioning operations and issue slots to maximize performance.  The proposed EveryTime 

router manages new complexity resulting from the Offset Pipelining execution model.  This 

includes signals with run time dependent paths and variable flight time.  The Offset Pipelined 

Scheduling and EveryTime routing algorithms are joined by a more conventional simulated 

annealing placement phase to form a prototype tool chain to demonstrate the feasibility of Offset 

Pipelining for CGRAs. 

These components provide improvements to the utility of CGRAs compared to existing 

techniques.  The Offset Pipelining execution model increases the flexibility of CGRAs on a 

practical hardware architecture.  It offers better performance by allowing each phase to execute 

independently rather than fused into a single monolithic schedule for the entire application.  This 

work hopefully advances the development of CGRA architectures and tools. 
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Chapter 1. INTRODUCTION 

The potential of spatial parallel processing architectures is constrained by the lack of suitably 

mature programming models and compilation tools.  This work introduces Offset Pipelining and 

an accompanying tool chain for multi-mode computations on coarse grain reconfigurable array 

(CGRA) architectures with pipelined program counters.  Before getting to the details of the 

approach and device features, a brief overview of computing architectures provides context for 

this work.  A more specific discussion found in Chapter 2 covers the benefits and limitations of 

modulo scheduling on CGRAs to provide a framework to discuss the contributions of the 

proposed toolchain.  Understanding the broader computing landscape aids the reader in seeing 

the potential of this work to inform future architecture development and the necessary tool 

support for rapid, high performance application development. 

1.1 ACCELERATING SIGNAL PROCESSING APPLICATIONS 

The scope of computing is wide and pervasive.  It ranges from scientific computing to the 

smartphone applications.  Such diversity is addressed by a correspondingly rich selection of 

devices and systems engineered to meet different performance requirements.  This work focuses 

on mapping signal processing applications to CGRAs to evaluate a new CGRA execution model.  

Applications in this area are computationally demanding with performance typically resource 

limited, making them good candidates for acceleration with spatial architectures such as CGRAs. 

Applications with strong modal behavior, exhibited as discrete phases of computation, are 

particularly interesting.  These programs are generally more challenging to map to existing 

devices such as FPGAs due to difficulty in handling branching execution.  CGRAs and tools in 

this work are designed to support modal behavior and provide new opportunities for developers 

to produce high performance solutions over a wider range of applications. 

1.2 OPTIONS FOR COMPUTATION 

The semiconductor industry fields a wide variety of commodity computing devices.  Each is 

tailored to fill a specific role in the marketplace.  They may be designed to excel at a particular 

type of computation, fit into a given power envelope, or meet some other combination of 
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performance metrics.  There are many costs associated with designing, building, and deploying a 

device.  While a custom application specific integrated circuit (ASIC) is an obvious choice 

without budget or time constraints, an ASIC is not practical for the majority of applications.  The 

development time and cost of ASIC design makes it impractical for all but the highest volume 

and performance sensitive applications.  The majority of devices avoid significant non-recurring 

overhead being prefabricated “off the shelf” components.  These range from general purpose 

processors to Field Programmable Gate Arrays (FPGAs).  All options gain flexibility at the 

expense of efficiency for a specific application compared to custom ASICs.  While I focus on 

CGRAs as the target for the proposed Offset Pipelining execution model and tool chain, this is 

not to say that this work is limited to these devices.  The overview here lays out the landscape of 

computing before focusing on CGRAs. 

1.2.1 Processors 

The most flexible computing platform is a general purpose processor.  These devices execute a 

program by processing a sequence of instructions to perform a desired computation.  A set of 

instructions configures the computation units to perform a function on a set of inputs.  Modern 

systems with substantial memory resources at their disposal are not bounded by the number of 

instructions or even the amount of data that can be processed.  However, the execution model of 

a processor sets limits on the performance.  The serial nature of instruction execution remains a 

fundamental constraint limiting the scalability of a general purpose processor.  Adding more 

processors to a system cannot alleviate this problem without significantly modifying a target 

application due to the serial nature of the execution model. 

More closely related to this work, very long instruction word (VLIW) processor 

architectures inspire aspects of CGRAs and associated tool flows.  VLIW machines eschew 

complex scheduling logic in favor of simpler hardware that relies on the compiler to schedule 

operations onto a set of compute resources at compile time.  Chapter 2 introduces this scheduling 

problem and solutions through modulo scheduling as it applies to VLIW as well as CGRA 

architectures. 
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1.2.2 Graphics Processing Units 

Graphics processing units (GPUs) compose a class of domain specific hardware that has been 

increasingly leveraged for accelerating applications beyond graphics.  These devices excel where 

the same computation is replicated across large, independent data sets.  This is single instruction, 

multiple data (SIMD) style processing.  GPUs are particularly suited to the extensive use of 

floating point computations found in many scientific computing applications and also offer high 

memory bandwidth.  If a single instruction stream describes the actions to be taken over a large 

collection of data with relatively few data dependencies, GPUs offer large performance 

improvements compared to conventional processors.  However, efficient utilization requires 

keeping the compute units busy doing useful processing. 

1.2.3 Spatial Computing Architectures 

Another device category is the massively parallel processer array (MPPA).  These devices 

integrate dozens to hundreds of relatively small independent processors which is an order of 

magnitude more than the number offered by commodity multicore processors.  While a 

hierarchical organization can provide uniformity among resources, MPPAs are usually 

characterized by a grid oriented communication network to take advantage of the proximity of 

adjacent resources but still allowing communication across the device.  The challenge in 

developing applications for these devices is to harness the individual processors in coordination 

around a single task or otherwise keep a large portion of the device performing useful 

computation for a given application.  The much larger number of processors coupled with 

typically increased non-uniformity of memory access makes application development more 

challenging than for commodity multicore systems.  While MPPAs offer a unique hybrid of 

computation density and flexibility, tools for development on these platforms remain largely 

limited to traditional software development flows. 

FPGAs constitute a special class of ASICs.  Manufactured in a generic fashion and 

configured using firmware, they bypass the expensive fabrication of an ASIC.  An FPGA can 

implement arbitrary digital logic structures, but is limited by the capacity of the device and 

application performance requirements.  FPGAs have significant area and power overhead 

compared to ASICs, but allow designs to be modified without the massive fabrication effort 
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required to produce an ASIC.  The flexibility to tailor the hardware to specific applications is 

compelling with FPGAs offering significant parallelism despite the overhead.  However, FPGA 

designs also face the additional challenges of physical design and explicitly managing memory 

resources. 

1.2.4 Coarse Grain Reconfigurable Arrays 

A coarse grained reconfigurable array (CGRA) contains a large number of word-wide 

functional units and small distributed memories connected in a style reminiscent of FPGA 

interconnect.  This coarsened resource granularity mitigates some of the overheads seen in FPGA 

devices.  Most CGRAs support time multiplexed execution to maximize computation density.  

While coarse grained resources are a boon when the granularity matches the application 

requirements, some applications may use these resources inefficiently.  They generally lack 

expressive program counters, relying instead on static scheduling to map an application to the 

available resources.  CGRA tool flows adopt ideas from traditional software compilation as well 

as CAD concepts found in FPGA or ASIC tools.  Bridging the divide between a traditional 

processor execution model and a parallel computing substrate is an exciting and promising area 

of research across spatial computing.  CGRA tool support compatible with familiar high level 

language development is a powerful prospect.  The ability to leverage highly parallel hardware in 

this way offers a potential avenue for continued silicon performance improvements to 

supplement increasingly limited single thread performance gains. 

1.3 RUNTIME RECONFIGURATION ON RECONFIGURABLE HARDWARE 

Some FPGAs support changing their configurations at run time.  A portion of the device may 

receive a new configuration to execute a different computation.  This type of run time 

reconfiguration is limited in practice to sections that have been prepared to be swapped at 

compile time.  Since even a partial bitstream is many times larger than a single processor 

instruction, reconfiguration is a costly operation and should happen infrequently.  This cost may 

be worth paying for applications that have phases whose execution time dwarfs the 

reconfiguration time. 

Most CGRA work focuses on statically mapped applications, comparable to a single 

program executing on a processor or a single configuration of an FPGA.  For long running signal 
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processing applications, this is often preferred since greater effort at compile time to build the 

best application implementation benefits the application that runs for a very long time.  There is 

an important distinction to make between a time multiplexed CGRA and a statically configured 

FPGA in terms of reconfiguration.  An FPGA bitstream holds a single configuration of the 

available resources while a time multiplexed CGRA bitstream will include multiple contexts 

designed to be switched on a per cycle basis at run time. 

In a time multiplexed CGRA, reconfiguration refers to the fine grain time multiplexing of 

resources as opposed to conventional FPGA reconfiguration.  While execution is time 

multiplexed, applications on a CGRA are mapped in a static fashion; there is no dynamic 

instruction selection performed on the device itself. 

1.4 BROADENING THE SCOPE OF CGRAS WITH OFFSET PIPELINING 

The limited control of conventional CGRAs constrains the utility of these devices to the inner 

loops of computationally intensive applications.  This work introduces Offset Pipelining, an 

execution style that alleviates this limitation, broadening the scope of applications that can be 

efficiently mapped to CGRAs. 

1.4.1 Modal Computation 

The key constraint of modulo control is that there is only a single sequence of instructions 

available to perform the target application.  If the application structure deviates from a single 

loop body, even with only minor conditional execution, overhead in the mapping will emerge.  

Operation predication is an effective tool to deal with operations whose results are not used on a 

given pass of the instruction sequence, but as the application control flow becomes more varied, 

the overhead may eliminate the potential gains of executing on parallel hardware.  Offset 

Pipelining avoids much of this overhead by supporting instruction sequences that more closely 

match the application control flow. 

1.4.2 High Density Mapping 

K-means clustering provides an example application that exhibits modal behavior.  The process 

logically breaks down into two phases.  A data set is evaluated against a set of means and then 
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the means are updated.  Such an application can benefit from an execution model and mapping 

tools that can effectively partition the phases of the computation.  Thus, the different modes 

share the same resources in a multiplexed fashion with the understanding that, at run time, the 

modes are mutually exclusive.  Enabling improved sharing over modulo scheduling makes a 

higher density mapping of the application possible.  A multi-mode mapping may reduce the 

effective initiation interval compared to a modulo scheduled version.  Higher density potentially 

benefits the back end placement and routing in the tool flow. 

1.4.3 Tradeoffs 

While Offset Pipelining is a promising approach for the modal signal processing applications 

evaluated in this work, it is certainly not without limitations.  Applications without modal 

behavior might be mapped poorly compared to existing modulo scheduling techniques.  The 

execution model also adds significant complexity to the routing problem which requires 

additional tool algorithm innovation discussed in Chapter 8. 

1.5 THE BIG PICTURE 

The Offset Pipelining prototype tool chain in this work explores an alternative approach to 

mapping multi-mode applications to CGRAs.  The proposed execution model not only enables a 

broader range of applications for CGRAs, it does so by retaining an interface to conventional 

software front end compilation to fit into established application development flows.  The 

proposed approach leverages an array of compute units and automatically tailors the application 

mapping to the available resources providing better performance and utilization than existing 

approaches for signal processing applications with significant conditional execution. 
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Chapter 2. SCHEDULING FOR MODULO COUNTER CGRAS 

This chapter provides background on modulo scheduling as applied to modulo counter controlled 

CGRA architectures.  Introducing these concepts sets the stage to present Offset Pipelining in the 

next chapter.  CGRA architectures are discussed first with an emphasis on modulo counter based 

control for these systems.  With an understanding of the hardware organization, the next 

subsection addresses mapping applications to the hardware using modulo scheduling for loop 

pipelining.  Applying predication to manage control flow is discussed next to demonstrate how 

more complex practical applications are handled with modulo scheduling.  The chapter provides 

a basis for comparison to the proposed Offset Pipelining execution model introduced in the 

subsequent chapter.  Understanding modulo scheduling additionally provides corresponding 

background to discuss the Offset Pipelining Scheduling algorithm in a later chapter. 

2.1 CONVENTIONAL CGRA ARCHITECTURES 

CGRAs combine features of FPGA architectures and very long instruction word (VLIW) 

processors.  There are many variations, but they are generally characterized by time multiplexed, 

word oriented functional units.  Limited interconnectivity between the functional units is another 

important feature that simplifies scaling up device sizes.  Further comparisons can be drawn with 

other architectures such as GPUs and MPPAs, but focusing on FPGAs and VLIW processors 

provides a construction that aligns with the mapping techniques for CGRAs covered later in this 

chapter. 

Having adopted features of both, CGRAs represent a middle ground between FPGAs and 

VLIW machines in a variety of ways.  A CGRA is composed of an array of functional units with 

interconnect structures similar to those found in FPGAs.  A tile oriented organization coupled 

with configurable interconnect affords a scalable architecture for CGRAs and FPGAs.  The 

functional units in VLIW machines and CGRAs are word oriented and time multiplexed leading 

to considerable savings in configuration overhead compared to the per bit configuration for 

FPGA resources. 

From a configuration standpoint, a CGRA requires considerably less memory to configure 

its resources than an FPGA.  A 6 input LUT requires a 64-bit RAM to produce a single bit result 

while an ALU might use the same memory to support 16 contexts using a 4 bit opcode and 
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producing a word-wide result.  While time multiplexing resources multiplies the memory 

required by the number of contexts stored, this is offset by savings in logic and routing memory 

requirements.  Even using the same amount of memory, a CGRA with time multiplexed 

resources would benefit from high density memory that does not need to expose every bit 

simultaneously for configurations as in an FPGA. 

For interconnect, configuration memory reduction is due to the bundled organization and is 

on the order of the datapath width, since each bit of the word shares the same configuration.  An 

equivalent path on an FPGA must configure each bit independently.  Word wide functional units 

likewise reduce the amount of configuration memory needed for operations supported by these 

units, mainly arithmetic and logical functions on a data word.  By contrast, while FPGAs include 

blocks for these operations, the dominant resources by far are look-up tables (LUTs) that use tens 

of bits to configure a single bitwise operation.  Though ultimately flexible, this is a significant 

overhead for primarily word oriented applications.  While there are advantages in favor of 

CGRAs from an overhead standpoint, coarsening resource granularity is only beneficial if the 

application is well matched.  Applications that do not need or cannot use the full width of the 

available resources will have poor utilization. 

As much as a CGRA reduces the configuration memory requirements compared to an 

FPGA, it is still massive compared to instructions for a VLIW machine.  A CGRA with hundreds 

of execution units and supporting interconnect clearly requires more configuration than a VLIW 

machine with perhaps tens of execution units and a large multi-port register file acting as a 

highly flexible interconnect resource.  While it is feasible for a VLIW machine to read 

instructions from memory and execute a very long program, this is not the case for a CGRA.  

Similar to an FPGA, a CGRA achieves its best efficiency when configured only once to execute 

an application.  Unlike FPGAs, the relatively compact configurations for CGRAs make it 

feasible to store a number of resource configurations that may be selected at run time.  While not 

the virtually unbounded program size of a VLIW machine, this set of instructions is suitable for 

the computationally intensive and performance limiting portions of signal processing 

applications that are the focus of this work.  These instructions are generally executed in a 

repeating sequence at run time to time multiplex the resources. 

The concept of time multiplexing is illustrated in Figure 2.1.  In a device with a single 

configuration, such as an FPGA, each operation must be assigned to its own resource.  A time 
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multiplexed system allows multiple operations to share the same physical resource by executing 

them at different times.  The example shows resources with two time slots allowing the addition 

and shift operations to coexist on ALU0.  Time multiplexing helps to increase the density of the 

computation, providing better device utilization and locality.  The following section provides a 

brief overview of the control necessary to manage the instruction memory for a time multiplexed 

CGRA. 

 

Figure 2.1. Source code (left) is converted to a dataflow graph (center) and mapped to a time 

multiplexed architecture (right). 

 

2.2 MODULO COUNTER CONTROL 

For an FPGA, the configuration memory is usually unchanged after configuration for the lifetime 

of the application or for a long running phase of computation.  In order to take advantage of 

multiple configurations on a CGRA, they must be accessed to continuously update the active 

instruction.  While the next section discusses the execution of modulo scheduled applications, 

this section introduces the hardware features that facilitate it.  The desired behavior of a modulo 

scheduled system is to repeatedly execute a loop of a sequence of instructions.  This can be 

managed using a modulo counter which performs exactly this function.  It may be configured to 

adjust the length of the schedule depending on the application mapping.  The actual 

implementation in hardware may take a number of forms, but would most likely be distributed 

throughout the device to avoid distributing an address over a wide area unnecessarily when the 

execution sequence has been predefined during the application mapping process.  Instruction 

memory is addressed using the modulo counter to look up the configurations for the available 
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computation units and interconnect resources on a cycle by cycle basis at run time.  The repeated 

execution of a sequence of instructions is the desired behavior for a modulo scheduling 

introduced in the next section. 

2.3 MODULO SCHEDULING 

The introduction to modulo scheduling presented here focuses on scheduling for VLIW 

machines.  Though the absence of large multi-port register files in CGRAs complicates the 

mapping process, a VLIW machine is a good analogue for CGRA scheduling.  Software 

pipelining by modulo scheduling for VLIW compilation is a widely studied problem [RG81, 

Lam88, WBH+92, Huff93, Rau94, LGA+96].  As mentioned previously, a VLIW machine has a 

sizable advantage in terms of silicon area over a traditional out of order processor design.  For 

VLIW machines, the compilation process defines precisely when an operation will be executed 

on each of the available functional units.  Out of order machines devote considerable silicon real 

estate to perform dependency analysis and make scheduling determinations in hardware at run 

time. 

Practical VLIW machines, along with most computing architectures, contain a variety of 

functional units to perform different operations including a mixture of integer units, floating 

point units and memory units.  To simplify the following discussion, functional units will be 

generically called ALUs and are assumed to execute one operation per cycle in the following 

abstract examples.  These simplifications are strictly for illustrative purposes. 

 

Figure 2.2. Example of easily pipelined code. 

The prototypical VLIW machine operates most efficiently when there is a large volume of 

processing that can be scheduled without branch instructions or dependencies that limit the 

amount of instruction level parallelism that can be exposed by the compiler.  A simple example 

would be code such as that in Figure 2.2.  This code is easily pipelined onto three ALUs as 

shown in Table 2.1.  This scheduling represents a possible output of a modulo scheduler for this 

while (1)
{

a = readStream(stream1);
b = readStream(stream2);
c = (a + b) >> 1;
writeStream(c, stream3);

}
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code, the unrolled execution of which is shown in Table 2.2 with operations belonging to a single 

iteration outlined.  In this example, operations from two different iterations are executing across 

the device simultaneously. 

 

Table 2.1. Scheduled Operations 

Cycle ALU0 ALU1 ALU2 
0 Read Read >> 
1 +  write 

 

 

In this example, each iteration of the loop contains a sequence of instructions that does not 

depend on operations from other iterations, making it easy to schedule the operations on the 

available ALUs over a period of two cycles (Table 2.1).  This pair of cycles can then be executed 

repeatedly such that a single iteration of the loop executes over two repetitions of the schedule, 

with operations from two different iterations being executed simultaneously. 

 

Table 2.2. Unrolled Schedule 

Cycle ALU0 ALU1 ALU2 
0 Read Read >> 
1 +  write 
2 Read Read >> 
3 +  write 
4 Read Read >> 
5 +  write 
6 Read Read >> 
7 +  write 

 

 

Table 2.1 shows the issue slots of each ALU for each cycle in the schedule.  The length of 

the repeating sequence of cycles is called the initiation interval (II), which indicates the time 

interval between the beginnings of successive iterations of the loop body.  With no dependencies 

between iterations, this example is resource limited and could be executed faster, i.e., in only one 

cycle, if additional ALUs are available.  With five ALUs, there are sufficient issue slots for an II 

of one cycle.  More resources provide no further benefit for this example as it stands.  

Transformations such as unrolling the loop may provide additional opportunities for parallelism 
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by merging successive iterations, making it possible to leverage additional resources.  For more 

complex code structures, loop fission or fusion, inversion or unswitching may help improve 

scheduling. 

If the example is modified to add a dependency between operations in two different 

iterations, there is now a recurrence loop in the sequence of instructions.  The length of the 

recurrence loop defines the minimum II into which a given set of instructions may be legally 

scheduled, regardless of the number of resources available.  For example, if the writeStream 

operation were to change what would be read by one of the readStream operations of a 

subsequent iteration, the smallest II possible for that code is 4, in order to account for the 

dependency.  While in the previous case additional resources allowed for more parallelism, the 

recurrence loop places a fundamental limit on the performance of the application. 

Going to the other extreme of limiting the design to a single ALU, each operation is 

scheduled into its own cycle and the II is equal to the number of instructions in the target loop.  

A single ALU controlled by a program counter is a very simple processor that serves as a 

baseline for worst case performance.  Such a processor exploits no parallelism with the single 

cycle operation assumption.  Independent of modulo or other scheduling technique, application 

properties can be used to determine best or worst case performance based on resource 

constraints.  This is independent of how the application is mapped to the target device. 

2.3.1 Iterative Modulo Scheduling Algorithm 

The basis of many modulo schedulers is the Iterative Modulo Scheduling (IMS) algorithm 

[Rau94].  The goal is to extract the most parallelism from the loop to keep the available ALU 

resources busy.  To prepare for the main scheduling loop, the target code is analyzed to calculate 

the recurrence constrained minimum II (recII), which is the longest recurrence loop in the code.  

The resource constrained minimum II (resII) is calculated as the quotient of the total number of 

operations in the loop and the number of available ALUs for scheduling (Equation 2.1). 

ܫܫݏ݁ݎ  = ቒ
்௧ை௦

௦
ቓ (2.1) 

The maximum of these two minima is the minimum II that could possibly accommodate the 

target code and is the starting point for scheduling (Equation 2.2). 

ܫܫ  = max(ܫܫݏ݁ݎ,  (2.2) (ܫܫܿ݁ݎ
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The primary data structure for scheduling is the modulo reservation table (MRT).  For the 

previous example, this can be visualized as Table 2.1 on page 11.  For each ALU, there is an 

issue slot for each of the II cycles in the schedule.  All operations must have a valid position in 

the MRT for the scheduler to succeed. 

The goal of the main scheduling loop is to find a legal scheduling of the operations at the 

given II.  The loop starts by selecting operations one at a time from a priority queue.  Operations 

are prioritized based on a notion of height in the dataflow graph of the target code.  Higher 

priority operations intuitively have a greater impact on the overall length of the schedule.  

Therefore, they are scheduled as soon as possible in the MRT, respecting any constraints based 

on operations already scheduled. 

If scheduling an operation makes another operation no longer legal at its current position, 

the operation is evicted and placed back in the priority queue.  This can happen when there are 

insufficient resources available for all operations scheduled at a particular time.  When revisiting 

an operation, it must be placed later in the schedule than it had been previously.  This 

requirement helps ensure that the algorithm will continue to make progress and will not oscillate.  

If a heuristic cutoff is reached in terms of the number of attempts to schedule operations, the II is 

increased to reduce the difficulty of the scheduling problem and scheduling begins again.  A 

successful schedule fulfills all data dependencies and resource constraints, creating an execution 

pattern that can overlap successive iterations of the target loop body. 

Modulo scheduling can provide a significant benefit by optimizing loops to maximize 

resource utilization of the available hardware.  However, this is not always the case since useful 

code is rarely as simple as the example presented above.  The next section covers a technique to 

manage more complex control flow in the target code used in conjunction with modulo 

scheduling. 

2.3.2 Predication 

While an inner loop without any control divergence is preferable for modulo scheduling, the 

majority of signal processing applications contain conditional code.  If the earlier example is 

modified as shown in Figure 2.3, the modulo schedule must accommodate the conditional 

statements and also respect the semantics of the code.  In order to fit all of the target code into 

the schedule, both execution paths must be allocated issue slots in the schedule since either is 
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possible.  At run time, both results for c are generated and the greater than comparison generates 

a predicate which is used to determine the value to store.  This technique is called predication.  

The example is shown again in Figure 2.4 converted to static single assignment (SSA) form.  

This form eliminates the conditional statements allowing it to be modulo scheduled.  The 

predicate value p controls the ternary operator result assigned to c3.  This represents a 2:1 

multiplexer function available in the target CGRA to perform the run time selection of the result. 

 

 

Figure 2.3. Code example requiring predication. 

 

Predication is useful when sections of conditional code are short because the cost associated 

with allocating issue slots for both possible branches of the control flow are outweighed by the 

ability to maintain high throughput.  It is especially useful for CGRAs executing a modulo 

schedule because it allows conditional statements within the target code and also because it 

would be very costly to stop the modulo scheduled execution to handle a conditional statement.  

Whereas a VLIW machine can transition via prologue and epilogue code between modulo 

scheduled blocks and other portions of an application, CGRAs are more restricted in this 

capacity due to significantly larger instruction size. 

 

while (1)
{

a = readStream(stream1);
b = readStream(stream2);
if (a > b)

c = (a + b) >> 1;
else

c = a - b;
writeStream(c, stream3);

}
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Figure 2.4. Example converted to single assignment form. 

2.3.3 Predicate Aware Mapping 

Additional work on CGRA tool chains [Fri11] further enhances the handling of predication on 

CGRAs.  Predicate aware SPR (PA-SPR) is a state-of-the-art CGRA mapping tool used to 

evaluate the Offset Pipelining approach presented in this work.  It can recognize the type of 

conditional structure shown in the Figure 2.3 example and allow the mutually exclusive 

statements to coexist on the target hardware.  This requires additional hardware support, but 

mitigates some of the overhead associated with predication on CGRA devices.  Instruction 

memory requirements can reduce the maximum program length by a power of 2 determined by 

the degree of sharing achieved. 

The PA-SPR concept is introduced with the Figure 2.4 example, assuming that each 

statement consumes a generic resource in the target architecture.  The eight operations mapped to 

three resources results in a three cycle schedule as shown in Table 2.3.  The predicate aware 

variation recognizes that either the c0 and c1 assignments or the c2 assignment will be executed 

for a given loop iteration. 

 

Table 2.3. Modulo scheduling of above predication example. 

Cycle ALU0 ALU1 ALU2 
0 Read Read ?: 
1 > + Write 
2 - >>  

 

 

while (1)
{

a = readStream(stream1);
b = readStream(stream2);
p = (a > b);
c0 = a + b;
c1 = c0 >> 1;
c2 = a – b;
c3 = p ? c1 : c2;
writeStream(c3, stream3);

}
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Armed with this information, PA-SPR allows operations that are known to execute in a 

mutually exclusive fashion to share resources in the schedule.  Table 2.4 illustrates a possible 

schedule that takes advantage of this capability with the subtraction and shift occupying the same 

schedule position.  More significant sharing scenarios may reduce the number of resources 

necessary to schedule the application at a given schedule length. 

 

Table 2.4. Modulo schedule with predicate aware sharing support. 

Cycle ALU0 ALU1 ALU2 
0 Read Read ?: 
1 > + Write 
2  - or >>  

 

 

Modulo scheduling with predication as demonstrated by SPR is an effective scheduling 

approach for many applications on CGRAs.  However, as application complexity increases, the 

limitations of predication and a single modulo schedule become apparent.  The subsequent 

section introduces Offset Pipelining.  This technique builds on the CGRA architecture and 

modulo scheduling concepts presented here to efficiently execute more complex applications on 

CGRAs. 
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Chapter 3. OFFSET PIPELINED EXECUTION ON PIPELINED 

PROGRAM COUNTER CGRAS 

Offset Pipelining increases the efficiency of mapping signal processing applications with multi-

mode control flow to CGRAs.  Our model considers a computation divided into subsets of the 

target code which we call “modes,” and then organizes the operation of the modes to efficiently 

run on a CGRA architectures that support a mechanism for program counter distribution.  A 

mode is composed of one or more basic blocks as defined in compiler parlance.  An algorithm 

implementation becomes the execution of a series of modes over time, with interleaving of 

different mode iterations in a manner similar to modulo scheduling.  We introduce Offset 

Pipelining here in preparation for the discussion of the tool chain and algorithms that map 

applications using the execution style. 

 

 

Figure 3.1. Code example to motivate multi-mode applications. 

 

Consider the example in Figure 3.1 with the three colored basic blocks corresponding to 

modes for this example.  For a modulo scheduled implementation, the inner loop in green would 

need to be flattened as illustrated in Figure 3.2.  The if statement conditions would then be 

converted to predicates to provide the necessary control to manage the execution at run time. 

 

while (true)
{
id = readVal(stream1);
count = readVal(stream1);
while (count > 0)
{
writeVal(stream2, count);
count--;

}
writeVal(stream2, id);

}
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Figure 3.2. Multi-mode code flattened for modulo scheduling. 

 

Although the example is quite small, it illustrates the mutually exclusive execution of the 

modes.  A conceptual illustration for a corresponding modulo schedule is shown in Figure 3.3 on 

the left.  This and subsequent figures in this section illustrate the modes with 12, 8, and 4 

operations for the red, green and blue mode respectively to clearly illustrate the Offset Pipelining 

concept.  The schedule includes all of the operations for the complete application executing 

during every iteration of the schedule.  This illustrates a disadvantage of modulo scheduling as 

the control complexity of the target application increases.  We know that only one mode is 

executing at a time so only operations of one color are useful on any given iteration.  Trying to 

issue instructions for only one mode would be impossible, since the modes have been spread 

across time and space to form the overall schedule.  In fact, it is even worse than this diagram 

implies; under modulo scheduling the instructions for an iteration in row 1 may be intended to 

execute at time 1, 1+II, 1+2*II, etc. 

 

mode0 = 1; mode1 = 0; mode2 = 0;
while (true)
{
if (mode0)
{
id = readVal(stream1);
count = readVal(stream1);
mode0 = 0;
mode1 = count > 0;
mode2 = count <= 0;

}
else if (mode1)
{
writeVal(stream2, count);
count--;
mode1 = count > 0;
mode2 = count <= 0;

}
else if (mode2)
writeVal(stream2, id);
mode0 = 1;
mode2 = 0;

}
}
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Figure 3.3. Example modulo schedule after flattening and IMS scheduling (left) and modulo 

schedule organized by mode (right). 

 

However, imagine we grouped all instructions from a mode together into a specific set of 

rows, and an iteration completes within II cycles, as shown on the right in Figure 3.3.  In this 

organization we could choose to run only specific cycles of the schedule, and avoid issuing 

instructions that are not needed at this phase of the execution.  Unfortunately, this organization is 

impossible for most applications due to data dependencies – any specific mode iteration will 

have instructions that depend upon other instructions, meaning they cannot all be issued 

simultaneously.  For example, a value read in may be transformed through a set of mathematical 

operations before the result is written.  Performing a single iteration of a mode may require 

issuing a string of dependent instructions. 

An alternative is to offset the start times of different ALUs, as shown in Figure 3.4.  This 

skewing allows the system to support modes with deep sequences of instructions.  The concept 

of a “domain” will be introduced in 3.3.4.  Briefly, a domain is a set of resources that must be 

skewed as a unit.  In these examples, a domain is composed of a single ALU.  We can execute 

only those instructions needed for a given mode by telling each ALU which mode should be 

executed.  In fact, in Offset Pipelining we consider the modes as separate sets of instructions, 

with the only requirement being that the start time of instructions in a given ALU be offset by the 

same amount (Figure 3.5), inspiring the name of the execution style. 
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Figure 3.4. Staggering iteration start times across resources. 

 

From an execution perspective, the lead ALU, which has the earliest issue slot, determines 

the mode of the next iteration to start once the current iteration ends.  The following ALUs 

execute the same sequence with offset delay from the lead.  The ability to stack up the different 

mode iterations eliminates wasted issue slots.  Figure 3.6 shows an example execution trace for 

count of 2, 0, and at least 1 for 3 iterations of the outermost loop.  Instead of an II of 6 for the 

modulo schedule in Figure 3.3, the Offset Pipelined approach has an effective II of 2.  Rather 

than a monolithic modulo schedule for the entire application, Offset Pipelining executes each 

mode as required in a run time data dependent fashion.  This matches the control flow of the 

application without the flattening and predication required for modulo scheduling.  Both versions 

require the same total instruction storage, 6 operations for each ALU. 

 

 

Figure 3.5. Independent mode schedules with shared staggering between resources. 
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Figure 3.6. Sample Offset Pipelining execution trace of the Figure 3.5 schedule where count 

is 2, 0 and at least 1 over three iterations of the outmost loop. 

 

Under Offset Pipelining the device is broken into domains, where a domain is a set of both 

logic and routing resources controlled by one program counter.  This will typically be the basic 

tile of the spatial architecture, though several tiles could be combined into a single domain.  The 

evaluation of Offset Pipelining assumes an architecture based on the baseline Mosaic CGRA 

[VE10]. 

A mapping is composed of a lead domain, which determines the series of modes to execute, 

while the rest of the domains are followers.  Each follower domain has an offset, which is a 

statically programmed constant specifying the latency between the program counter of the lead 

domain and this domain.  If a domain has an offset of 5, then its program counter is identical to 

the program counter of the lead domain 5 clock cycles previously.  This offset allows for the 

pipelined distribution of the program counter throughout the array and supports nearly arbitrary 

chains of dependencies within a given mapping.  Note that the offsets are programmable and are 

set based on the requirements of a specific application. 

Each mode of an algorithm has its own II, which is the number of clock cycles each domain 

will spend issuing instructions for a given iteration of that mode.  Thus, if the lead domain starts 

mode M at time T, it will spend cycles T, T + 1, … T + IIM - 1 on that iteration.  Each follower 

domain I, with offset OI, will spend cycles T + OI, T + OI + 1, … T + OI + IIM - 1 on that 

iteration, as shown in Figure 3.6.  In this way, the instructions for a given iteration form a 
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pipeline of computation through the array, pipelining both the program counter changes and 

instruction issuing for an iteration.  These features allow Offset Pipelining to provide a scalable 

mechanism for executing branches in a spatial architecture. 

Note that the assignment of instructions to issue slots within a mode, and the domain offsets, 

are statically configured during scheduling, placement, and routing of an application to an Offset 

Pipelined device.  Compared to modulo scheduling, Offset Pipelining eliminates the overhead of 

issuing instructions for modes that are not currently active, which is important for a wide range 

of applications.  However, the assignment of instructions to issue slots is more constrained due to 

the requirement of a single offset per domain for all modes. 

3.1 PHI NODE ELIMINATION 

Offset Pipelining provides a further benefit for optimizing application execution compared to 

modulo scheduling.  Consider the for loop on the left side of Figure 3.7.  For a standard modulo 

counter based architecture, the loop execution would be predicated as shown to the right.  This 

leads to a minimum II of at least 2, since there is a recurrence loop from the increment operation 

to the phi node and back as seen in the top of Figure 3.8.  Note that the ternary ?: operator 

represents the phi node in question. 

In contrast, Offset Pipelining can eliminate phi nodes whereby the invocation of modes 

implicitly perform the phi node functions.  For example, the Offset Pipelined version of the same 

example is shown in Figure 3.8 bottom, showing two iterations of the inner loop (blue) within 

two iterations of the loop initialization mode (red).  Each mode has an II of 1.  Consider the input 

to the increment and comparison operations: when they are part of the first iteration of the loop, 

they receive the constant 0 from the preceding red iteration; when they are part of any other loop 

iteration, they receive the output of the previous increment operation on the same routing 

resources.  In effect, this means that the phi nodes are handled implicitly by the routing fabric, 

where the loading of instructions for each mode automatically performs the selection function.  

Eliminating these operations from the dataflow graph can make an Offset Pipelined 

implementation more compact and can improve the recurrence limit. 
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Figure 3.7. Inner loop predication (left) produces a ternary operator phi node in predicated 

version (right). 

 

 

Figure 3.8. Phi nodes in modulo schedule (top), eliminated with Offset Pipelining (bottom). 

 

3.2 SCHEDULING EXAMPLE 

The scheduling algorithm will be introduced in Chapter 5, but to provide a basis for 

understanding, consider manually scheduling the example of a single mode application in Figure 

3.9a.  The grey boxes are operations, with dataflow constraints depicted by arrows.  The 

application has a minimum II of 3 on a 5-ALU architecture.  ALUs are shown as oblongs to 

indicate their issue slots, with the offsets listed above.  The initial offset assignments are shown 

in Figure 3.9a, and are set to architecture-defined minimums.  This example does not represent a 

real dataflow graph but was instead constructed specifically to illustrate the major steps of the 
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...
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...
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scheduling process.  It highlights various decisions the scheduler must make in a compact unified 

example. 

 

 

Figure 3.9. (a) Initial schedule, (b) front end shaping, (c) back end shaping, (d) rescheduling. 

 

We employ list scheduling [ACD74], similar to IMS.  We also set the offsets as small as 

possible and then strictly increase them as needed.  Our offset increases are designed to be 

conservative and we only make heuristic choices if no conservative move is possible. 

In Figure 3.9a, consider the earliest instructions in the application.  In this example, there is 

only one instruction that can issue in cycle 0 and one instruction that can issue in cycle 1, there is 

no reason to have so many domains with offsets of 1.  In fact, whenever we have a domain with 

unused issue slots in its earliest slots, that domain can be shifted later without degrading the 

schedule quality.  This is a process unique to my scheduling algorithm we call front-end shaping.  

Figure 3.9b shows the result of front-end shaping, with the offsets now set to 0, 2, 2, 2, 2 with an 

II of 3. 

The next thing to consider is any instruction that cannot be legally scheduled at the bottom 

of the diagram, e.g., numbers 12, 13 and 14.  There are two possible solutions: Have a domain 

with offset 3 and one at 4 so instructions 13 and 14 are in the last issue slot of these two domains, 

or set one domain to an offset of 5 so instructions 12-14 can be scheduled, with 13 and 14 each 

moved 1 cycle later.  It is unclear which solution is better, since this move will impact the rest of 

the scheduling by moving the available issue slots forcing operation 6 to move later.  However, 

for this example we can prove that there must be at least one ALU with an offset of at least 4, 

and we make this clearly conservative change in Figure 3.9c.  This step is a second innovation in 
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the scheduling process called back-end shaping.  After front-end and back-end shaping, the 

application is rescheduled in Figure 3.9d which moves operation 6 a cycle later to an available 

issue slot. 

Since front-end and back-end shaping are conservative transformations, there will be cases 

where a heuristic choice must be made, such as in Figure 3.9d.  In such a case, we do offset 

exploration, which involves adding 1 to one domain at each offset individually to check 

improvement in schedule quality, measured by the number of nodes that cannot be scheduled.  In 

this case, 0, 2, 2, 3, 4 and 0, 2, 2, 2, 5 are the two possibilities, and are shown in Figure 3.10.  

These two cases are generated from the 0, 2, 2, 2, 4 collection of offsets.  Offset 0 is fixed and 

cannot be adjusted.  Incrementing one offset at 2 generates the 0, 2, 2, 3, 4 case while 

incrementing offset 4 generates 0, 2, 2, 2, 5.  The 0, 2, 2, 3, 4 case provides a complete schedule 

for the application and is therefore chosen.  In the sections that follow we take this intuitive 

example of scheduling and transform it into a complete scheduling algorithm for applying Offset 

Pipelining. 

 

 

Figure 3.10. Offset Exploration with 0, 2, 2, 3, 4 and 0, 2, 2, 2, 5. 

 

3.3 FEATURES RELATED TO OFFSET PIPELINING 

This section introduces concepts that describe an Offset Pipelined system.  Previously introduced 

features of the CGRA architecture and applications are covered to fill in additional details. 
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3.3.1 Pipelined Program Counters 

While this work focuses on tool chain innovations for multi-mode CGRA applications, the tools 

go hand in hand with features of the target architecture.  The central component of CGRA’s 

leveraging Offset Pipelining is the pipelined program counter control mechanism, which enables 

a scalable approach to managing control flow changes at run time.  Unlike conventional 

multicore devices, a pipelined program counter CGRA can be configured to pipeline program 

counter values across the array.  The device is divided into regions called domains that each 

contain a disjoint set of resources controlled by a single program counter.  Each domain is 

assigned an offset that defines a window of time that operations may be scheduled on the 

available resources.  The offset describes the relative delay between the program counter values 

of the lead domain and a given domain propagating through the device. 

3.3.2 Modes 

A mode is a partition of the target application code mapped to the CGRA comprised of one or 

more basic blocks.  Consider two successive loop bodies which logically execute in sequence.  

Each may be considered a mode which executes in isolation.  Such a division matters little in the 

context of a conventional processor since branching to move between basic blocks is trivial.  For 

a CGRA, where each cycle of a schedule is essentially a very long instruction word, efficient 

utilization of the hardware and program length become important considerations.  The added 

overhead of predication for complex control flow further increases the challenge.  In a 

conventional CGRA, control logic must execute by predicating operations with side effects 

across the entire target code body.  Modes delineate portions of the target code that are mutually 

exclusive and are selected for execution at run time.  Offset Pipelining supports this selection to 

avoid executing unused portions of code by initiating an iteration of only the operations of one 

mode at a time. 

The decomposition of the target application into modes does not limit a particular basic 

block to one mode, in fact it may be preferable to replicate a basic block into multiple modes 

where this can eliminate predicated logic.  For example, a mode might make a data dependent 

branch to different modes following completion of a loop execution.  If it is possible to eliminate 

this steering code by handling the final iteration in its own mode, overall performance may be 
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improved at the expense of replicating logic to execute the late iteration of the loop in a separate 

mode. 

While it may be tempting to aggressively decompose an application into many modes, a 

practical device will be limited by the total number of instructions supported on the device across 

all modes as well as how branching is handled in the program counter. 

3.3.3 Scalable Mode Transition 

The pipelined program counter architecture was developed to improve execution efficiency of 

multi-mode applications on CGRA hardware.  It also addresses practical concerns in device 

architecture.  Moving to a multi-mode execution style requires distributing control information 

throughout the device.  In practice, this broadcast is subject to appreciable latency.  The 

pipelined program counter organization enables a multi-mode execution style while distributing 

control across the device for a scalable approach.  In contrast, CGRAs geared toward modulo 

scheduling do not require control distribution other than a mechanism to start and stop the entire 

system.  However, CGRAs that rely on modulo scheduled execution are not as well suited to 

multi-mode applications which will be explored in 5.3.3. 

A significant challenge in developing parallel architectures is managing the scalability of a 

proposed solution.  For a single mode, characteristic of an inner loop of a computation, modulo 

counter based control scales fairly easily to larger devices since control of the counters can be 

managed locally and the sequence of operations repeats and never changes.  For a multi-mode 

application that requires the control flow to branch, there must be a mechanism available to steer 

the computation.  In a modulo counter based system, predicated execution can provide a means 

to reflect control flow changes but is only practical for lightweight branches.  The alternative is 

to adjust instruction fetching to reflect the desired execution sequence at run time.  The following 

discussion outlines the progression towards a pipelined program counter architecture that 

represents the minimum set of features an architecture should support to take advantage of Offset 

Pipelining.  The proposed architecture is practical to build and supports branching control flow 

to enable a wider range of applications on CGRAs. 
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3.3.4 Domains 

CGRAs, conventional or those including pipelined program counters, are generally logically 

organized in an array of tiles.  A domain corresponds to a tile in the architecture and 

encompasses the set of resources controlled by a single program counter, a critical concept for 

Offset Pipelining.  A domain can be thought of as a processor in an MPPA.  A program counter 

manages specific resources, controlling both computational and interconnect resources, and 

allowing configurations to change on a per cycle basis.  The provision of a program counter for 

each domain allows skewing iteration times for Offset Pipelining.  The flexibility of individual 

program counters also enables partitioning so that independent tasks can coexist on the device.  

Modulo scheduled applications can likewise be mapped to pipelined program counter CGRAs 

with the domain program counters configured to behave as modulo counters allowing a pipelined 

program counter CGRA to directly replace the modulo counter variety. 

3.3.5 Basic Device Organization 

The target device architecture for this work is based on earlier research exploring the resource 

composition for modulo scheduled CGRAs [VE10] as part of the Mosaic project [CFV+07].  

Resources that compose a domain include a pair of ALUs, a pair of LUTs, and memory blocks.  

A feature of a domain is that the enclosed resources can communicate quickly, generally through 

a crossbar.  In order to communicate between domains, signals must traverse an island style 

registered interconnect structure.  A program counter in each domain replaces a modulo counter 

to provide configuration sequencing at run time.  All resources within a domain are controlled by 

the single program counter contained within, which is an important feature of the execution 

model and scheduling described later. 

Interconnect resources are partitioned into three separate networks to match the different 

types of data used by applications.  The first is the word-wide interconnect that handles ALU 

operands, memory, and stream data.  LUT inputs and outputs are served by a 1-bit interconnect 

network which also connects to memory write enable and ALU control signals.  The last type of 

interconnect network is used to propagate program counter values between domains. 
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3.3.6 Offsets 

The offset is a property of each domain determined during scheduling.  The collection of offsets 

on the device sets the staggered execution of resources and provides the time needed to send 

changes in control flow.  One domain is assigned as the leader and is set to an offset of 0 by 

definition.  This domain computes loop and branch conditions to determine the next mode to 

initiate during execution.  Other units follow the leader, receiving the program counter value 

from the leader, delayed by a number of cycles defined by the offset.  Organized this way, the 

resources across the device form a pipeline.  The leader can repeatedly execute multiple 

iterations of a given loop and then transition to another portion of the computation.  The follower 

domains execute their own portions of these modes, in the same order, delayed by the fixed 

offset.  This allows the fill and drain periods of subsequent modes to overlap.  Decomposing the 

application into modes that execute independently with their own IIs helps eliminate wasted 

issue slots. 

Domains in the device are organized in a tree, with the leader at offset 0 at the root.  Control 

information propagates from the root to all other domains.  The offset is the cycle latency of 

receiving a program counter value from the lead domain.  The organization of the tree of 

domains factors into the placement of operations on the device and will be discussed in the 

scheduling and placement sections.  Each domain offset must be greater than the offset of its 

parent, as this represents a constraint on the legal arrangement of resources.  Furthermore, each 

domain is assigned one offset that is a constant for all modes, which allows iterations of different 

modes to be interleaved without wasting issue slots. 

The domain offset organization provides the additional benefit of eliminating the need to 

broadcast control information across the device.  The program counter in each domain controls 

the enclosed resources.  Control across the device is pipelined with latency measured by the 

offsets relative to the leader at offset 0.  A given domain can receive its control information from 

any domain with a smaller offset since all domains follow the same execution sequence, delayed 

by the offset.  The arrangement of domain offsets becomes an important part of the mapping 

quality.  The pipelined nature of the control simplifies the device architecture and aids in 

scalability by avoiding a complex broadcast mechanism. 

The cascading control of a pipelined program counter CGRA mitigates the cost of prologue 

and epilogue specific code by effectively merging it with the steady state loop behavior.  Each 
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domain executes II operations for the current mode iteration and then proceeds to the subsequent 

iteration determined by the lead domain.  For each mode iteration M, the domains execute IIM 

operations for the current mode, staggered based on offset assignments.  The overall program 

length is the sum of the IIs of all modes.  In contrast, modulo scheduled CGRAs require 

significant extra control logic to represent prologue and epilogue behavior.  The tradeoff between 

these two architectural styles is ultimately highly dependent on the target application.  For the 

target signal processing applications in this work, results in Chapter 10 will demonstrate that 

Offset Pipelining offers a compelling execution model. 

3.4 ARCHITECTURE SUPPORT 

Based on the Mosaic architecture [VE10], this sections describes the changes made to facilitate 

Offset Pipelined execution on these CGRAs.  Other architectures could be modified to add the 

necessary support or may already include the required mechanisms.  The features outlined here 

are a minimum set to manage the staggered execution described in this chapter. 

There are two related features that must be added to support Offset Pipelining on Mosaic 

devices.  The first is replacement of the modulo counter controller with program counters 

capable of changing the program sequence.  Other than the lead domain, all other program 

counters in the device are delayed versions of that controlling program counter so these units 

must also be able to receive a program counter value to retrieve domain configurations during 

execution.  The individual program counters allow each domain to be assigned a unique offset to 

execute in the staggered Offset Pipelined style.  The other feature needed for Offset Pipelining is 

a mechanism to propagate the program counter value from the lead domain out to all other 

domains in the device.  This can be accomplished with a single dedicated interconnect channel 

for program counter values.  The program counters and associated interconnect must support 

deterministic distribution of the lead program counter to ensure the Offset Pipelined schedule is 

respected as it relies on the fixed offset relationship and associated issue slot windows. 
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Chapter 4. OFFSET PIPELINING TOOL CHAIN OVERVIEW 

This chapter provides an overview of and ancillary information about the tool chain 

infrastructure.  The Offset Pipelining tool chain is organized like SPR [FCV+09] in that the flow 

consists of scheduling, placement, and routing to perform application mapping to the target 

CGRA.  Additional aspects of the tool chain include the device database representation and the 

preparation and form of the application netlist consumed by the tools specific to Offset 

Pipelining. 

4.1 PHASE OVERVIEW 

Placement and routing are well understood components of traditional FPGA and ASIC 

implementation flows, while scheduling is more commonly associated with general purpose or 

VLIW compilation.  By incorporating features of both tool flow styles, applications targeting 

Offset Pipelined CGRAs in this work are mapped with a tool chain composed of scheduling, 

placement and routing.  Each phase consumes and generates a Xilinx Design Language (XDL) 

[SWS+11] netlist.  The scheduler takes a device as the target for mapping. 

The Offset Pipelining tool chain developed for this work is illustrated in Figure 4.1.  While 

each phase builds on previous work in the literature, the implementation was written from 

scratch to accommodate extensive modifications required for Offset Pipelining, particularly for 

scheduling and routing.  The tools are built on container data structures for the target device and 

application netlist from the Torc [SWS+11] project. 
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Figure 4.1. Tool chain overview. 

 

4.1.1 Scheduling 

Offset Pipelined Scheduling is introduced in Chapter 5.  The scheduling phase of the 

implementation consumes the application netlist and device parameters as input.  The output of 

scheduling consists of three interdependent items.  Each mode is assigned an II value that defines 

the schedule length for the mode.  A collection of domain offsets determines the degree of 

staggering among the available domains for execution based on the target device parameters.  

The primary output of scheduling is time slot assignment for each operation in the netlist.  The 

mode IIs, offsets and target device are annotated at the top level of the XDL netlist, while each 

operation receives a time slot assignment.  These annotations describe the complete scheduling 

of the netlist on the target device resources, but without determining physical locations on the 

device.  While scheduling adopts concepts from previous work such as a list scheduler at its core 

and a height based priority scheme, fixed issue slot windows across multiple modes and the 

flexibility from independent IIs makes this a novel approach. 

4.1.2 Placement 

The placement phase, introduced in Chapter 6, assigns domain offsets to specific physical 

domains on the target device.  It also places netlist operations on the domains as well.  The 

placement always reflects the offset assignment and makes no changes to the schedule.  Domain 
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assignments for operations and offset assignments for the domains are the only additions to the 

netlist made by this phase.  This is largely based on the SPR placer though includes 

modifications to reflect the fixed issue slot windows tied to domains used in Offset Pipelining.   

4.1.3 Routing 

Introduced in Chapter 8, the routing phase adds interconnect configuration data to the netlist.  

Resources necessary to connect net terminals are added to the design at this stage.  The complete 

netlist captures all the information necessary to describe the mapping of the application to the 

device.  The router is based on QuickRoute likewise used in SPR.  However, it is extensively 

modified to support different possible paths a signal may traverse as a byproduct of Offset 

Pipelining.  Static routing in this style is unique to Offset Pipelining requiring a novel approach. 

4.1.4 Feedback Between Phases 

While the tool chain is usually considered a sequence from beginning to end, situations arise 

where a particular stage cannot make progress.  The placement phase may be unable to find a 

solution that is even possible to route.  In this situation, extra information is added to the netlist 

to capture problematic components of the design and the netlist is passed back to the scheduler.  

The scheduler provides a new solution reflecting the feedback from the placer in order to address 

the problem. 

Similarly, feedback could be provided by the router to either placement or scheduling in 

order to help resolve congestion.  Routing feedback is not included in the prototype tool chain 

because part of its evaluation is based on the channel width necessary to route designs.  

Targeting a specific device with a fixed channel width would benefit from the additional 

feedback from routing in order to complete a successful mapping of the target application. 

4.2 APPLICATION PREPARATION 

The Offset Pipelining tool chain, starting with the scheduler, consumes an XDL netlist 

representing the application dataflow graph.  The tool chain represents the back end of a 

compilation framework for CGRAs.  A complete tool chain for Offset Pipelining would include 

front end compilation, which is not explored in this work.  In order to develop application 
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benchmarks to evaluate the system and provide realistic tests, code is written in stylized C.  A 

conversion utility produces the XDL netlist from the source code and also adds annotations 

based on execution frequency of the modes. 

4.2.1 Single Assignment Form 

The benchmark C code is written in a static single assignment form in order to facilitate 

conversion to the XDL netlist.  This is a manual effort that provides effective control over the 

resulting netlist.  The process could be readily automated since single assignment form is 

commonly used in compilers as an intermediate representation for optimization.  The C 

implementation results can also be compiled and executed for convenient comparison with 

reference code to ensure correctness. 

Most operations correspond to C operators that map to an ALU or LUT.  Memory and 

stream operations are represented as function calls that provide the appropriate behavior when 

executing the C program, and are mapped to the appropriate resource by the tool chain.  

Applications must be written to conform to the physical memory limits of the architecture.  This 

means that any array must fit within a physical memory block available in the device.  Larger 

memories must be constructed from a collection of physical blocks with this composition 

managed explicitly by the application.  The ternary operator, ? :, is used to represent phi nodes in 

the dataflow graph. 

The variables in the C implementation represent nets in the dataflow graph.  Most nets are 

transient, passing data between operations in a mode; others are loop carried nets, used to hold 

loop indices, accumulator values, or control information.  Loop carried nets may have multiple 

source operations depending on the dataflow graph.  Constants are converted into nets that do not 

have an explicit source.  The location of a constant is determined by the router. 

4.2.2 Netlist Creation Utility 

The netlist consumed by the main tool chain is generated by an auxiliary tool that converts the C 

implementation to an XDL file.  This tool, written specifically for this work, parses the code and 

performs error checking to ensure that the code follows the stylized rules expected for netlist 

conversion.  Given the single assignment form of the C implementation, the conversion is trivial, 

with each line becoming an operation in the resulting dataflow graph. 
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Modes are annotated using C labels by the programmer.  All assignment statements which 

become schedulable operations must appear after a label in the code.  Operations are assigned to 

the mode corresponding to the last label parsed.  The C “goto” statement is used to provide the 

necessary loop control.  Conditional goto statements become branch operations for the lead 

program counter and represent transitions to other modes.  An unconditional goto can be used to 

handle default mode transition behavior. 

The variables converted to nets used by several operations correspond to nets with multiple 

sinks.  In addition, the single assignment rule is slightly relaxed, allowing a variable to be 

assigned once per mode.  This means that some nets may have multiple sources as well. 

A net is often composed of more than a single pair of source and sink.  Multi-sink nets are 

handled in conventional routing by seeding the search for subsequent sinks with the currently 

routed portion of the net.  In the multi-mode routing needed for Offset Pipelining, this approach 

presents a challenge because a given point on an existing partial net may not be guaranteed to be 

live or complete with respect to a new sink being added to the net.  A simpler approach is to 

decompose multi-terminal nets into two terminal nets for routing.  This simplifies reasoning 

about mode transition complexity at the expense of requiring the router to allow the sharing of 

resources for nets with common terminals. 

Limitations of the XDL format are also bypassed through multi-terminal net decomposition.  

Feedback from the placer to scheduler is accomplished with net annotations indicating where 

additional scheduling slack is necessary.  Since the XDL format only allows annotations of nets 

and not individual terminals, a net annotation is a blunt tool.  Two terminal nets allow for more 

targeted annotations. 

One complexity introduced by Offset Pipelining is that a given path from a source to sink 

may be contingent on a particular run time execution sequence.  This makes the traditional 

FPGA routing approach of extending a net from previously routed sinks difficult.  The portion of 

a net already routed may not even be accessible to a sink being routed or an incomplete subset of 

possible paths to a given sink may be part of the existing path.  For these reasons, all nets are 

decomposed into two terminal pairs for routing.  The routing problem is explored in section 8.2. 



 

 

36

4.2.3 Mode Execution Frequency Annotations 

In moving to a multi-mode representation of the target applications, understanding the relative 

performance impact of different adjustments to the application is important.  Some scheduling 

decisions are driven by mode execution frequency discussed in section 5.2.4.1.  This helps to 

minimize the performance impact when an II needs to be increased to complete the mapping.  

The netlist includes annotations of how many initiations of a given mode occur during a sample 

execution of the code.  For applications that do not have data dependent loop bounds, this 

provides an exact ratio for the mode execution frequencies.  In other cases, the quality of the 

annotations depends on the data set upon which the compiled code executes.  The designer may 

adjust these values directly to influence how the application is handled by the tools.  This type of 

adjustment can make it easy to bias the mapping results based on expected properties of the input 

at runtime. 

The profiling information provided to the Offset Pipelining tool chain controls per mode II 

increment decisions made during scheduling in order to minimize the impact of increasing the II 

on the overall application.  While this information is an advantage for Offset Pipelining, it is not 

an unfair one in comparison to a modulo scheduling approach because the execution counts in 

question would not change the modulo scheduling.  In a monolithic scheduling, there is only one 

II for the entire body of code. 

4.2.4 Desirable Application Features 

In order to convert a baseline single mode implementation into multiple modes, the control logic 

to manage the transitions between modes must be added.  An application might be decomposed 

into modes in different ways.  Modes should ideally be as independent of one another as 

possible.  Modes are beneficial when they reduce the amount of unused code executing.  

However, adding a mode adds additional control logic, so it should be done judiciously, with 

awareness of the control implications.  Modes should be compact and efficient, but adding too 

many will increase the control logic needed to orchestrate the execution. 

Another issue is increasing II due to adding conditional branch operations necessary for 

mode transitions.  For loops with constant bounds, pre-calculating the branch in previous loop 
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iterations avoids lengthening recurrence loops.  The overhead of mode transition appears as more 

resources are added to the target device and the implementation becomes recurrence limited. 

A sequence of loop bodies is a great candidate for mode decomposition.  Excluding 

compiler transformations that may merge or interleave these neighboring loops, it is clear that 

while one loop is executing, others are idle.  In a modulo scheduled regime targeting sequenced 

loops, any idle loop code consumes issue slots, potentially increasing the II.  SPR supports 

mutual exclusion [Fri11] to alleviate this issue somewhat, but it has two drawbacks: the 

application must still be mapped into a single II and it consumes additional configuration 

memory which may add unnecessary cost.  Offset Pipelining allows loop bodies to coexist on the 

same physical resources with the recognition that their execution is mutually exclusive, but 

provides for separate IIs and consumes instruction memory for exactly the number of operations 

needed.  The overhead of Offset Pipelining is a more capable program counter unit and network 

to propagate control information across the device. 

4.3 ARCHITECTURE GENERATION 

The Offset Pipelining tool chain targets devices represented as Torc [SWS+11] DDB objects.  

The Torc device database, DDB, presents an API designed to interact with the resources in 

commercial Xilinx FPGAs.  Custom Mosaic CGRA devices were developed using a tool to 

generate files consumed by the Torc database build scripts.  While the physical resources in the 

CGRAs targeted by Offset Pipelining use the DDB interface, additional infrastructure was 

developed to enable the necessary mode and issue slot tracking to reflect the time multiplexed 

nature of the CGRA architecture.  The application netlist contained in XDL and the DDB object 

for the target device together capture all information necessary for input to the tool chain. 

The device database is used in all stages of the tool chain to query the device composition.  

The scheduler and placer rely on the logic site resource information to build the data structures to 

track utilization while they execute.  The router takes advantage of the site pin information to 

determine the source and sink locations.  It then relies on interconnect connectivity information 

to perform the routing. 
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4.3.1 Domain Composition 

The domain composition is based on previous work on modulo scheduled CGRA architectures as 

part of the Mosaic project [VE10].  This section provides details on the available resources.  

Table 4.5 summarizes the resources available in each domain. 

 

Table 4.5. Domain resource composition. 

Resource Quantity 
32-bit ALU 2 
4-LUT 2 
4 KB 2 port memory 1 
Register file 1 
Stream port 1 
Program counter 1 

 

 

4.3.1.1 32-bit ALU 

The 32-bit arithmetic logic unit (ALU) is the primary computation element in the architecture.  

The interface is shown in Table 4.6 for ports connected to the general purpose interconnect.  

Other inputs, such as the opcode, are driven by the configuration plane set by the tools.  The unit 

performs two input arithmetic, bitwise and comparison operations.  The predicate input S allows 

the ALU to act as a multiplexor for selecting one of the inputs to pass to the output.  Comparison 

operations produce output on port P which can be configured to produce a carry or overflow bit.  

All operations are single cycle with the exception of the multiply operation which is pipelined 

with two cycle latency. 

 

Table 4.6. ALU Interface. 

Port Width Description 
A 32 Operand input 
B 32 Operand input 
O 32 Function output 
P 1 Flag output 
S 1 Predicate input 
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4.3.1.2 4-LUT 

Two conventional four input lookup tables (LUTs) are available for handling single bit logic 

often used for managing control in signal processing applications.  All LUT inputs and output are 

single bit, with the LUT configuration provided by the configuration plane.  The pair of LUTs 

per domain is inherited from the Mosaic architecture though in that architecture they were 3-

LUTs.  

4.3.1.3 2 Port Memory 

The 4 KB memories are available in the domains, similar to block RAM in conventional FPGAs.  

The port interface is shown in Table 4.7.  A write enable allows data dependent control of the 

write port.  The read port is always active without risk of unintended side effects. 

 

Table 4.7. Memory Interface. 

Port Width Description 
A 32 Write port address 
B 32 Read port address 
D 32 Write port input 
O 32 Read port output 
W 1 Write enable 

 

 

4.3.1.4 Register File 

While represented as a site type in the device database, a register file is treated as a special type 

of routing resource rather than a logic resource, since no operations are explicitly mapped to a 

register file.  Register files have only 32 entries and do not expose address ports because this is 

part of the configuration plane managed by the tools rather than the application.  The write 

enable values are bundled with the data as a valid bit which will be discussed in the next section.  

While Mosaic used rotating register files which were well matched to a modulo scheduling 

mapping, this work uses conventional register files. 
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Table 4.8. Register File Interface. 

Port Width Description 
D 32 Write port input 
O 32 Read port output 

 

 

4.3.1.5 Stream Port 

The stream port provides a first-in-first-out (FIFO) style streaming interface to and from the 

CGRA.  It may also be used as a mechanism to communicate between partitions of the CGRA 

depending on the application.  The read portion provides an empty flag E that may be read to 

ensure data is valid.  The full flag F may be used to avoid overwriting data on the write half.  

Applications are responsible for properly reading the empty and full signals and correctly stalling 

execution such as described in [PH12].  Full and empty flags can be set to thresholds to allow 

stall signals to propagate across the device in a manner similar to program counter distribution.  

The stream port and memory would likely be combined in a practical device. 

 

Table 4.9. Stream Port Interface. 

Port Width Description 
D 32 Write port input 
E 1 Read port empty output 
F 1 Write port full output 
O 32 Read port output 
R 1 Read port read input 
W 1 Write port write input 

 

 

4.3.2 Interconnect Organization 

The pipeline program counter CGRAs employ a register rich, island style interconnect fabric.  

Within a domain, signals can be routed to be consumed in the next cycle via a crossbar as used in 

Mosaic CGRAs.  Moving to an adjacent domain requires at least two cycles.  Each multiplexor 

in the interconnect has a registered output, leading to the heavily pipelined execution style on 

which Offset Pipelining relies. 
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Figure 4.2. Domain interconnect organization. 

 

4.3.2.1 Valid Bit 

All 32-bit interconnect resources include an additional bit that is routed along with the data.  This 

extra value is used as a write enable for values routed to a register file.  This is necessary when a 

value is routed to a register file in a run time dependent manner the details of which will be 

introduced in Chapter 8.  At run time, only one path will be valid.  The valid bit ensures that the 

correct data is written to the register file based on the run time execution sequence. 
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Chapter 5. OFFSET PIPELINED SCHEDULING 

In order to realize the potential of Offset Pipelining, applications need to be scheduled to 

leverage the staggered execution model introduced in Chapter 3.  The Offset Pipelined 

Scheduling (OPS) algorithm must not only efficiently schedule operations but also produce per 

mode II values and domain offset assignments that act as constraints on the scheduling. 

In this chapter, we present the details of the novel scheduling algorithm.  The algorithm 

consists primarily of an outer loop that sets per mode IIs and an inner loop that combines 

operation scheduling and offset adjustment to achieve a schedule within those IIs.  The core of 

this approach is the Offset Reservation Table, which tracks the available issue slots of all 

domains for all modes.  The scheduling example in section 3.2 introduced the intuitive process of 

scheduling detailed in this chapter. 

5.1 OFFSET RESERVATION TABLE 

The issue slot window provided by each resource is the basis for constructing the offset 

reservation table (ORT) used by OPS.  The ORT is analogous to the modulo reservation table 

(MRT) used in iterative modulo scheduling [Rau94] and is likewise used to track resource 

utilization during scheduling.  It is constructed using the collection of domain offsets, per mode 

II information, and the composition of resources in each control domain.  Each logic resource in 

the device provides II issue slots, starting at the domain offset to which it belongs.  Issue slot 

times are measured relative to the first issue slot in a domain with offset 0.  There are separate 

issue slots offered by a resource for each mode.  An ORT is defined by the set of domain offsets 

and mode IIs. 

An example ORT is shown in Figure 5.1.  The application for this example has three modes 

with IIs 2, 1, and 3, respectively.  There are two domains shown with offsets of 0 and 2.  Note 

that in this simplified example, the table shows a single issue slot for each domain which 

assumes that the domain contains only a single resource.  An ORT for the target architecture in 

this work includes issue slots for each schedulable resource in the domain, further differentiated 

by the resource type.  While each mode has its own set of issue slots, the domain offset is fixed 

across all modes.  This is a key feature of the execution model that allows different mode 

iterations to be effectively interleaved.  Modes provide a significant benefit but must also be 
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applied judiciously to avoid underutilized modes that leave unused issue slots throughout the 

reservation table. 

 

 

Figure 5.1. Example Offset Reservation Table. 

 

Traditional modulo scheduling fits all operations in the target application into II cycles by 

placing the operations into time slots modulo the maximum schedule length of II cycles.  In 

contrast, OPS domain offsets are set to provide issue slots at the necessary times for the 

operations in the dataflow graph. 

5.2 ALGORITHM OVERVIEW 

Before discussing the details of the scheduling algorithm, a brief outline is presented here to 

guide the subsequent discussion.  A pseudocode representation of OPS is shown in Figure 5.2.  

OPS consists of two nested loops.  The inner loop alternates between a scheduling pass and 

adjusting domain offsets.  The outer loop controls II increments when the inner loop cannot find 

a legal schedule.  The basic operation scheduling is a greedy as-soon-as-possible approach with a 

prioritization scheme based on IMS.  With this basic organization in mind, the following 

subsections cover the different facets of the algorithm. 

 

Mode 0 Mode 1 Mode 2

Domain 0 Domain 1 Domain 0 Domain 1 Domain 0 Domain 1

Time Offset 0 Offset 2 Offset 0 Offset 2 Offset 0 Offset 2

0

1

2

3

4



 

 

44

 

Figure 5.2. Top level Offset Pipelined Scheduling algorithm. 

5.2.1 Operation Scheduling 

Operation scheduling occurs in the context of an ORT.  The central concept for scheduling is an 

as-soon-as-possible approach that attempts to schedule the target netlist into the ORT built from 

the current IIs and offsets.  Figure 5.3 illustrates scheduling the dataflow graph on the left into 

the ORT on the right.  Operations are ordered by height in the dataflow graph.  An operation may 

only be scheduled after all of its predecessors. 

The core list scheduling function is modified to operate in a loose or tight mode.  In tight 

mode, operations must be scheduled into legal issue slots available in the ORT.  The loose mode 

relaxes this constraint by allowing operations to be scheduled without a legal issue slot if there is 

an unused time slot available from an earlier cycle; however, each such loosely scheduled 

operation consumes one of these issues slots.  Loose scheduling is performed within the offset 

adjustment phase (Figure 5.2 line 8) because a subsequent increase in a domain offset may move 

unused issue slots later in order to handle the loosely scheduled operations.  During the offset 

adjustment phase, loose scheduling primarily provides feedback.  The inner loop body attempts a 

tight scheduling (Figure 5.2 line 6).  When successful, this terminates the algorithm with a 

completed schedule.  Failure leads to offset adjustment. 

 

1 initializeIIs()
2 do {
3    initializeOffsets()
4    do {
5       buildORT()
6       if ASAPschedule(tight)
7          return SUCCESS
8       offsetsUpdated = offsetAdjustment()
9    } while (offsetsUpdated)
10    IIsUpdated = incrementIIs()
11 } while (IIsUpdated)
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Figure 5.3. As-soon-as-possible operation scheduling. 

5.2.2 Delay Calculation and Operation Prioritization 

The delay calculation extends the technique used by IMS [Rau94] for ensuring that 

operation dependencies are enforced during scheduling.  Dependencies within an iteration are 

simple; an operation must be scheduled after all of its predecessors.  In modulo scheduling, the 

delay calculation includes an expression for dependencies that cross iteration boundaries to 

reflect the earliest schedule position in the next iteration.  This relationship is shown in Equation 

5.3 where the iteration distance multiplied by the II is subtracted from the operation delay of the 

source operation which corresponds to transition across the iteration boundary.  Note that for 

intra-iteration dependencies, the iteration distance is 0. 

ݕ݈ܽ݁ܦ  = ݕ݈ܽ݁ܦܱ݁ܿݎݑܵ − ܫܫ) ∗  (5.3) (݁ܿ݊ܽݐݏ݅ܦ݊݅ݐܽݎ݁ݐܫ

For Offset Pipelining, the delay calculation between two operations, as measured between 

their inputs, is more complex than the IMS case since each mode has its own II.  This delay is 

described by Equation 5.4 with parameters described in Table 5.10 and handles both intra-

iteration and inter-iteration dependencies. 

ݕ݈ܽ݁ܦ  = ݕ݈ܽ݁ܦܱ݁ܿݎݑܵ −  (5.4) ݏܫܫℎݐܽܲݐݏ݁ݐݎℎܵ݉ݑܵ

With multiple IIs, OPS replaces the II adjustment by evaluating the sequence of possible 

mode transitions between two operations in order to determine the smallest number of cycles 

between them.  The sum of mode IIs of the intervening iterations between source and sink, 

including the source mode, but excluding the sink mode, provides the same conceptual behavior 

for the delay calculation as the IMS approach.  However, it has been augmented to support the 

multi-mode execution model.  This minimum distance ensures that the schedule will be correct 

for any run time distance between the operations. 
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Table 5.10. Delay calculation parameters. 

Parameter Description 
SourceOpDelay Delay of the operation driving the net 
SumShortestPathIIs Sum of mode IIs for shortest sequence of iterations from 

source to destination, excluding the destination mode. 
 

 

When scheduling a new operation, the delay expression is added to the time slot of each 

operation driving the new operation.  The maximum value among all inputs driving the new 

operation determines the earliest time the operation may be scheduled in order to ensure all 

inputs are available. 

Operation ordering for OPS is accomplished with a height based priority scheme similar to 

IMS.  The difference again reflects the multi-mode nature of the target netlists and leverages the 

delay calculation discussed to provide the criticality heuristic.  The algorithm is otherwise the 

same as IMS; a temporary predecessor node is added to all operations in the dataflow graph and 

a depth first traversal labels operation priorities. 

5.2.3 Offset Adjustment 

With a scheduling mechanism in hand, the next aspect to address is setting the domain offsets.  

The concept of offset adjustment is to judiciously increase offsets to provide issue slots for 

operations not currently assigned.  The offset adjustment process is done in two phases, 

illustrated in Figure 5.4.  The first deterministically increments offsets in search of a legal 

scheduling via front-end and back-end shaping.  If the deterministic process fails, then a heuristic 

offset exploration phase continues the search for a legal scheduling described in 5.2.3.3. 

The interplay between as-soon-as-possible scheduling and the deterministic offset 

adjustment ensures that offsets are adjusted conservatively.  This means that an offset will never 

be set later than necessary to provide issue slots to the current loose scheduling incarnation.  The 

algorithm resorts to a heuristic adjustment only when the deterministic phase exhausts all 

possibilities. 
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Figure 5.4. Offset adjustment pseudo code. 

 

Offsets start at their architectural minimums, reflecting the earliest a control flow change 

calculated in the lead domain can reach each of the other domains in the architecture.  Offset 

adjustment continues until a legal scheduling is found or if one of two failure conditions is 

reached.  It may be that no offsets remain at 0, indicating that inter-mode dependencies cannot be 

met at the current II assignments.  Alternatively, the latest issue slot may exceed the length of a 

fully sequential schedule, which also indicates the current II settings are too small. 

5.2.3.1 Front-end Shaping 

The shapeOffsets function (Figure 5.4 line 4) is broken into two phases, front-end shaping and 

back-end shaping.  Front-end shaping takes the loosely scheduled netlist and attempts to increase 

the offsets based on the time slots assigned to operations at the beginning of the schedule.  The 

idea is to shift offsets later when the early issue slots are unused.  Since the scheduling is as-

soon-as-possible, any unused issue slots occurring before the earliest scheduled operations are 

not needed, so the associated domain offsets can be increased without changing the schedule.  

This may also improve later portions of the schedule by freeing these issues slots.  As with back-

end shaping discussed in the next section, this process is guaranteed to be conservative. 

Front-end shaping starts with a set of offsets and a loose schedule of the application onto 

those offsets; this guarantees that there is an issue slot for each operation either at or before that 

operation’s current schedule.  Note that this step will not change the scheduled time of any 

operation, which happens during ASAP scheduling only.  Front-end shaping iterates through the 

1 offsetsChanged = false
2 do {
3    ASAPschedule(loose)
4    updated = shapeOffsets()
5    if (updated) offsetsChanged = true
6 } while (updated)
7 if (!offsetsChanged) {
8    generateOffsetCandidates()
9    foreach (offsetCandidate)
10       ASAPschedule(loose)
11    offsetsChanged = pickOffsetCandidate()
12 }
13 return offsetsChanged
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domains from smallest to largest current offset and assigns operations to domains.  For each 

domain, if there is no free operation in any mode at the time of the first issue slot of that domain, 

that offset is increased until there is one.  As many operations as possible are assigned to the 

issue slots of this domain.  This process continues through all of the domains. 

An example of front-end shaping can be found in Figure 5.5.  Grey boxes represent 

operations scheduled at the listed times and the rectangular outlines represent the issue slots 

available on the domains, with offsets noted above them.  The horizontal positions of the 

operations in the figure have no special significance other than to provide visual intuition about 

where operations and issue slots exist in the schedule and domain offset assignments.  Since the 

scheduling algorithm places operations as soon as possible, there are extra issue slots at cycle 1 

that can never be used by the target netlist.  The front-end shaping moves these offsets later 

based on the earliest operations that could use these issue slots. 

 

 

Figure 5.5. Before and after front-end shaping of a single mode with II = 3. 

 

5.2.3.2 Back-end Shaping 

Back-end shaping also increments offsets, but focuses on the operations scheduled latest rather 

than earliest.  The process begins with all domains marked as unadjusted with their current offset 

settings from previous adjustment steps and all operations are marked as unassigned.  The 

domain with the largest offset is moved, if necessary, late enough so that it offers an issue slot at 

the scheduled time of the latest unassigned operation.  Then, for each mode M, the IIM latest 
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unassigned operations are assigned to this domain.  The algorithm iterates until unassigned 

operations are exhausted. 

An example of this shaping is shown in Figure 5.6: the rightmost ALU is moved to offset 4 

to provide an issue slot for 14, and operations 12-14 are handled by this ALU.  Though it is 

impossible to actually schedule operations 12-14 into a domain with offset 4, since none of these 

instructions can issue in cycle 4, this is a conservative, lower-bound assignment of offsets that 

can be heuristically improved during offset exploration described in the next section.  Operation 

11 and those preceding can be addressed by the other domains without further offset adjustment. 

 

 

Figure 5.6. Before and after back end shaping.  The initial schedule is infeasible.  Subsequent 

scheduling passes will move operation 6 to a later cycle. 

 

As with front-end shaping, back-end shaping makes conservative adjustments to the offsets.  

Consider the scenario in Figure 5.7 with a single mode application with an II of 2.  This example 

is the simplest situation that illustrates the conservative nature of back-end shaping.  There are 2 

unassigned operations that are both scheduled for time t, all other operations have earlier time 

slots.  The algorithm will assign a domain to offset t-1, which provides an issue slot at times t-1 

and t.  Both of the two unassigned operations are assigned to this single domain, even though 

neither is ready to issue at time t-1.  Recall that this is as soon as possible scheduling.  This 

choice is made because the optimal answer is unclear.  Assigning an offset of t to the domain 

forces one operation to be moved later.  On the other hand, two domains with offset t-1 provides 

each operation with a valid issue slot.  The conservative offset assignment is taken during the 
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shaping portion of offset adjustment and a subsequent offset exploration step resolves the 

ambiguity. 

 

 

Figure 5.7. Allocating offsets at the back end. 

 

5.2.3.3 Offset Exploration 

Front-end and back-end shaping are conservative processes that will never increase offsets 

beyond the bounds of the as-soon-as-possible scheduling.  When this deterministic shaping 

makes no further adjustments to the offsets, the offset exploration routine takes over.  This 

process is unique to the Offset Pipelined Scheduling algorithm.  The process evaluates possible 

incremental changes to the offset assignment and heuristically selects one for further shaping 

passes.  The possible candidates are generated by incrementing each offset individually, ignoring 

duplicate offset configurations; e.g., if there were 3 domains with offset 6, we would only try 

incrementing one to offset 7.  Each candidate configuration is scheduled in loose mode and the 

numbers of operations without issue slots (dangling operations) are tallied.  The offset candidate 

set with the fewest dangling operations is selected.  In the event of a tie, we select the candidate 

that increments the lowest offset.  The dangling operations heuristic intuitively provides a 

measure of how close to a complete schedule each offset candidate set is. 

5.2.3.4 Offset Initialization 

At the beginning of the offset adjustment loop (line 3 of Figure 5.2), offsets are initialized to the 

lowest values that can be legally placed.  The example in Figure 5.8 illustrates how these 

minimums are set for a 4x4 device with nearest neighbor program counter communication.  

Device sizes range from 1x2 to 5x5 for evaluating Offset Pipelining in this work with this 

example providing a convenient visual sample.  For the devices in this work, the lead domain is 

placed in the middle of the device with offset set to 0.  The minimum offset of all other domains 
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is the Manhattan distance from the lead, corresponding to the inter-domain interconnect 

organization of the target devices based on the Mosaic project.  These values represent the 

number of cycles necessary to send control information to the domains in order to form the 

execution pipeline. 

 

 

Figure 5.8. Minimum offsets for a 4x4 domain device. 

 

5.2.4 II Adjustment 

OPS resorts to II adjustment when the offset shaping and exploration do not yield a successful 

scheduling.  While an application targeted with IMS has a single II that is incremented when 

scheduling fails, OPS must manage multiple modes with independent IIs, complicating the 

adjustment process.  Rather than pessimistically increment all modes, OPS selects a single mode 

for II increment to provide more flexibility for the scheduling and offset adjustment phase of the 

algorithm. 

When an IMS pass fails to find a legal schedule, the only option is to increment the II.  In 

Offset Pipelining, the ability to increment the II of individual modes lets performance of the 

overall application degrade more gracefully.  For example, an IMS application that increments 

the II from 2 to 3 reduces throughput to two thirds.  Assuming that the same application can map 

to two modes for Offset Pipelining, each with an II of 2, if the application can be scheduled with 

one mode at an II of 2 and the other at 3, then the effective II for the application is less than 3.  

The value depends on the relative execution frequencies of the two modes making it clearly 

preferable to increment the II of the less frequently executed mode. 

2

1

32 2

0

1

2

2

1

1

3

43 32



 

 

52

5.2.4.1 Selecting a Mode for II Increment 

Applications scheduled with OPS include mode priority information derived from profiling the 

runtime behavior of the application.  The frequency of execution of each mode captures how 

many iterations of each mode is executed for a sample data set or may also be derived from fixed 

loop bounds.  These annotations might also be set manually by the developer such as for a PET 

scanner where the likelihood of events may be carefully characterized.  A higher priority 

corresponds to a more frequently executed mode.  It is desirable to minimize the IIs of higher 

priority modes in order to provide the best overall application performance. 

To select a mode for II increment, the priority information is used to calculate an overhead 

value for each mode.  The overhead is the product of mode priority and the ratio of current mode 

II to minimum mode II calculated at initialization.  This calculation serves to track how much the 

II has been changed by the II increment process, scaled by the priority.  The OPS algorithm 

prefers to increment the lowest overhead mode since this will minimize the impact on overall 

application performance.  However, this preference is capped at two times the overhead of any 

other mode, heuristically selected to avoid skewing the IIs too far out of concern for situations 

where a lower overhead mode might have its II bloated but ultimately not provide additional 

slack where necessary during scheduling.  The cap was never triggered across the benchmarks 

evaluated. 

5.2.4.2 II Initialization 

The initial IIs for OPS are calculated in a manner similar to IMS, beginning with resource 

limited IIs calculated for each mode.  However, recurrence limited IIs require a different 

approach in OPS than in IMS.  Each mode is first isolated by considering nets that are only 

connected to operations in that mode.  A recurrence II is calculated for each isolated mode using 

a maximum cycle ratio routine as used by IMS. 

In order to resolve inter-mode recurrence loops, the entire netlist is processed with the 

maximum cycle ratio algorithm.  A positive cycle indicates that there is not enough time around 

the loop to accommodate the operations that comprise it.  All modes that have an operation 

involved in a positive cycle become candidates for II increment using the II increment priority 

scheme discussed above. 
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5.2.5 Iterating to a Solution 

The three main components of the OPS algorithm work together to search for IIs and offsets that 

can accommodate a legal scheduling of the target application.  OPS takes inspiration from IMS 

in its iterative approach.  The algorithm attempts to schedule the application and then adjusts the 

offsets to improve the fit of the netlist operations on the available issue slots.  Iteration of this 

inner loop explores the offset assignment space.  If no legal scheduling is found, the outer loop 

increments an II to make more issue slots available, adding flexibility to the scheduling at the 

expense of some application performance.  This combination of scheduling, offset, and II 

adjustment embodies the iterative approach of OPS. 

5.2.6 Accepting feedback from placement 

As an application moves through the tool chain, it may be discovered that the original scheduling 

is infeasible.  The scheduler can be provided feedback in the form of net annotations to insert 

additional delay between operations.  Nets in the XDL netlist can include a property for extra 

delay which forces the operations to be scheduled further apart, akin to latency padding found in 

SPR.  This allows the scheduler to address placement or routing constraints that could not be 

resolved by these later stages, creating a new schedule with more flexibility to work around these 

issues. 

5.2.7 Spare Domains 

A device may provide more resources than the application dataflow strictly needs from an issue 

slot perspective, perhaps due to a large recurrence II.  These spare domains can be useful in the 

later stages of the tool chain if assigned reasonable values where the domains provide issues slots 

to increase the flexibility for the subsequent placement and routing phases.  This is done after the 

main scheduling algorithm has successfully completed.  The strategy employed to assign offsets 

to these domains starts by generating histograms of operation schedule times and available issue 

slots for occupied domains.  Taking the square of the number of operations divided by the 

available issue slots (Equation 5.5) at each time provides a score that represents the occupancy 

and number of operations scheduled at each time.  Spare domain offsets are assigned one at a 

time to provide the maximum cumulative score reduction.  This heuristic prioritizes assigning 



 

 

54

spare domain offsets to cover schedule times with the most operations and the fewest unused 

issue slots.  In the event of a tie, the offset value that occurs least frequently in the collection of 

offset assignments is selected to more evenly distribute offset values to facilitate placement.  The 

example in Figure 5.9 illustrates a spare domain assignment which adds a domain with offset 1.  

Note that an offset of 2 would provide the same score reduction, but the tie breaker favors an 

offset of 1.  No dependency information is shown as it has no bearing on the spare domain 

assignment.  The process evaluates a histogram of operation schedule times. 
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 (5.5) 

 

 

Figure 5.9. Spare domain offset assignment. 

5.2.8 Memory and Stream Operations 

Operations involving reading and writing to memory blocks in a domain require special 

consideration in the scheduler.  While most operations are stateless, memory and stream 

operations do have side effects.  In particular, a pair of memory operations that write and read a 

particular memory must reside on the same physical memory block.  While the scheduler does 

not manage placement directly, it must still guarantee that such a placement is possible.  Note 

that the domain memory block access latencies are fixed, accessing off chip memory must go 

through a stream. 

In order to ensure memory operations will have a legal placement, the scheduler checks that 

a domain exists that can support these operations on the same resource.  The first check is 

illustrated in Figure 5.10 on the left.  The cases shown here have write (W) and read (R) 
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operations associated with the same memory block.  If the operations reside in the same mode 

and are separated by more than II cycles, the scheduling will fail and require an II increment of 

the mode in question due to the fixed issue slot windows of Offset Pipelining.  The second case 

on the right can be resolved by offset adjustment to provide a domain that covers both operations 

in the schedule. 

Scheduling stream operations uses the same checks for cases where a stream is both written 

to and read from within the target application.  This may be used for multi-kernel applications on 

the same device [WKY+12].  In this case, a stream is effectively a FIFO in the application.  

However, when used as top level IO for the application, these tests do not apply since such 

streams will be either read from or written to, but not both within the scope of the application. 

 

 

Figure 5.10. Memory operation scheduling cases. 

5.3 EVALUATION 

Offset Pipelined Scheduling is evaluated in comparison to IMS.  The target architecture is based 

on work that explored resource composition for modulo scheduled CGRAs [VE10] in the Mosaic 

project.  While the overall tool chain will be compared to SPR and PA-SPR in Chapter 10, here 

we focus exclusively on scheduling.  Without access to the PA-SPR scheduler, the baseline SPR 

scheduling implementation of IMS serves as a comparison point to illustrate the advantages of 

Offset Pipelining for modal signal processing applications. 
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5.3.1 Benchmarks 

The benchmark applications used in this evaluation are summarized in Table 5.11.  These 

applications represent a set of signal processing algorithms typical for CGRAs.  In order to 

compare performance between the OPS and IMS implementations, the numbers of cycles needed 

to execute a given benchmark are normalized to the recurrence limited cycle count of the 

corresponding IMS implementation.  This provides insight into the performance of OPS relative 

to IMS and allows the applications to be compared to each other.  Figure 5.11 shows results for 

the five benchmarks when scheduled onto four different device sizes. 

 

Table 5.11. Applications for OPS Evaluation. 

Application Description 
Bayer Bayer filtering, includes threshold and black 

level adjustment 
DCT 8x8 discrete cosine transform 
DWT Jpeg2000 discrete wavelet transform 

K-means K-means clustering with three channels and 
eight clusters 

PET Positron emission tomography event detection 
and normalization 

RabinKarp Hash based string matching  
RSA Encryption and decryption with 32-bit key 

 

 

The applications represent a cross section of signal processing algorithms typical for 

CGRAs.  In order to compare performance between the OPS and IMS implementations, the 

numbers of cycles needed to execute a given benchmark are normalized to the recurrence limited 

cycle count of the corresponding IMS implementation.  This provides insight into the 

performance of OPS relative to IMS and allows the applications to be compared to each other.  

Figure 5.11 shows results for the five benchmarks when scheduled onto four different device 

sizes measured in domains. 
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Figure 5.11. OPS vs IMS execution cycles normalized to recurrence limited II across various 

device sizes. 

 

The IMS implementation reaches the recurrence limit for all applications.  The DWT and 

Bayer implementations outperform IMS for all resource quantities because the multi-mode 

implementation cleanly separates a sequence of loop bodies into modes and has the mode 

transitions pre-calculated and pipelined.  These features lower the effective recurrence limit of 

this implementation compared to the complex control required to coordinate predicated 

execution of the same code using IMS.  On small devices, applications show significant 

improvement over IMS due to avoiding issuing unused operations from inactive modes on every 

iteration, making targeting more than a single loop body much less efficient for IMS.  PET also 

sees a substantial benefit particularly on smaller devices due to unbalanced mode execution 

frequencies.  Of the two modes in this application, the larger mode executes rarely while the 

smaller mode benefits from a small II and is executed very frequently. 

From an architecture perspective, OPS relies on relatively small control domains rather than 

fewer large ones.  Setting the domain offsets provides the flexibility to map the target application 
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efficiently and to strike a balance between mutually exclusive mode execution and more limited 

issue slot windows. 

Note that the Bayer, DCT and DWT applications have deterministic loop bounds throughout 

and therefore do not depend on the actual data set.  K-means and PET are data dependent.  The 

sample data for K-means converges in three iterations and the PET dataset contains events on 

average every 25 samples.  Despite the data dependent convergence, the modes of K-means 

execute with the same relative frequency, there is also cluster assignment and then cluster 

update.  The PET application performance is data dependent and would yield different results as 

the ratio of samples to events changes. 

5.3.2 Scheduling Behavior 

To help demonstrate how the OPS algorithm executes, Figure 5.12 shows the offset assignment 

of the domains for each tight scheduling pass during scheduling.  Each line represents the 

progression of a domain offset assignment while the algorithm is searching for a legal schedule.  

Recalling Figure 5.2, in this example there are two II increments that occur before the 4th and 

8th tight scheduling passes indicated by the re-initialization of the domain offsets.  The final 

offset progression finishes with a successful scheduling on the 13th iteration.  From a netlist 

perspective, the inner loops of the DCT were unrolled to provide more computational work 

relative to the control overhead.  The final DCT offset spacing is relatively uniform, spreading 

out a single iteration over a long latency, while allowing adjacent iterations to coexist in time on 

the CGRA. 
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Figure 5.12. DCT offset progression example.  Each line represents a domain offset 

assignment as it is adjusted over the course of the scheduling algorithm. 

 

Next consider the 8-mode DWT.  Figure 5.13 shows the individual mode IIs for scheduling 

on 1 to 10 domains.  The sum of the IIs of all modes represents the total program length needed 

at each device size in order to hold the instructions for all modes.  The line overlay is the length 

of the schedule for an IMS implementation.  While the OPS implementation has a larger overall 

program size, it outperforms the IMS implementation due to the benefit of reduced execution 

overhead.  While larger program size may seem problematic, particularly on a CGRA, the actual 

values for the benchmarks are modest, particularly for larger devices.  A practical architecture 

will also have a maximum supported instruction memory size which left unused is wasted.  In 

this case, OPS provides better performance of the application leverages available resources. 

OPS runtime is fast, not exceeding approximately 10 seconds for any of the schedules 

generated in this evaluation running on modest commodity hardware.  This is negligible 

compared to the runtimes of the placement and routing portions of the tool chain. 
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Figure 5.13. DWT mode IIs.  Stacked bars are OPS mode IIs.  The line is the IMS II. 

5.3.3 Results 

Figure 5.14 presents the ratio of OPS to IMS cycles to provide a speed-up metric.  The geometric 

mean is also included, aggregating across all applications.  As more resources are provided, the 

IMS implementation eventually reaches its recurrence limit and OPS provides no additional 

benefit in terms of performance.  The multi-mode DWT application is an exception with the OPS 

version outperforming IMS due to a fundamentally lower recurrence II.  Much of the predication 

necessary in the control logic of the IMS version is eliminated in OPS.  There is a twofold 

advantage of Offset Pipelining.  OPS can achieve the same performance as an IMS 

implementation with fewer resources or provide better performance with the same number of 

resources when resource limited. 
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Figure 5.14. OPS vs IMS performance summary. 

 

 

When provided with enough resources, the applications eventually attain their recurrence 

limit.  In this case, there are enough resources available that, despite wasted issue slots, the 

application can still be scheduled for maximum performance.  However, for the various device 

sizes where applications are resource limited, OPS provides an average speed up of 1.94 times 

over a modulo scheduled solution.  The results presented so far represent only the scheduled 

applications.  The following chapters detail the placement and routing phases of mapping 

culminating in a complete tool chain evaluation in Chapter 10. 

OPS provides significantly better performance when resources are limited, but when only 

considering scheduling there comes a point where IMS can reach the same performance as OPS 

at the intrinsic recurrence loops.  Since this IMS solution would be significantly larger than the 

corresponding OPS solution, IMS will likely have greater challenges when placement and 

routing are also considered.  Chapter 6 and Chapter 8 introduce corresponding placement and 

routing phases for an Offset Pipelining tool chain. 

The integration of conditional branch support for complex control flow operations 

significantly increases the computational density achievable on pipelined program counter 

CGRAs while also broadening the range of applications supportable by these systems.  The OPS 
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algorithm automatically schedules operations, sets mode IIs, and assigns domain offsets to 

achieve a high performance and dense implementation. 
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Chapter 6. PLACEMENT 

The placement phase provides the next step after scheduling in mapping an application to the 

device.  Placement assigns operations and domain offsets to the available physical resources.  

This work adopts a simulated annealing approach to placement developed to support the 

scheduling constraints of Offset Pipelining.  The scheduler guarantees that the domain offsets 

and per mode IIs will provide sufficient issue slots for the scheduled operations.  The placer must 

assign offsets to the physical domains and also assign operations to issue slots in those domains.  

An initial placement assigns domains and operations randomly while respecting the scheduled 

time slots.  This is followed by the annealing phase to improve the quality of the placement and 

follows the VPR [BR97] cooling schedule.  Different move types and the cost function 

formulation are the major features of the placement phase specifically developed for, and unique 

to, Offset Pipelining. 

6.1 MOVE TYPES 

The move function is responsible for making changes to the placed design in order to explore the 

space of possible placements during the annealing process.  There are two types of moves made 

for placement: an operation move and an offset move.  The move type is selected randomly, 

weighted by the proportion of movable items in the design of each type.  By selecting the move 

type randomly, all moves made during annealing are managed by the VPR cooling schedule 

which avoids introducing additional heuristic decisions in the placement process.  Both of these 

move types preserve the schedule constraints while exploring possible placements for the 

scheduled netlist. 

6.1.1 Operation Move 

An operation move procedure randomly selects an operation and then selects a legal destination 

based on the schedule constraints.  An operation may be moved to an issue slot at the same time 

in the appropriate mode.  For example, operation A in Figure 6.1 can move to domain 0 or 2 

while remaining at time 1.  This corresponds to moving along the row at its scheduled time.  

Some operations will be more constrained than others depending on the number of issue slots 
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available at a given time, a result of offset assignments made during scheduling.  Operation B 

only has two legal positions while operation C cannot be moved. 

 

 

Figure 6.1. Offset Reservation Table demonstrating operation mobility during placement. 

 

If the selected destination is occupied, the operations are swapped.  This approach 

guarantees that the scheduling is respected after any move and operations remain legally 

scheduled.  Note that while operation C cannot be moved through an operation move, it may be 

moved through an offset move discussed next. 

6.1.2 Offset Move 

The offset move swaps the entire contents of a domain, including the offset and all operations.  

The pair of domains are selected randomly, the essence of simulated annealing, allowing for full 

exploration of the design space.  Moving the offsets alone would not be feasible because the 

offset defines the specific issue slot times available on the domain.  The example in Figure 6.2 

illustrates the effect of swapping domain offsets on a simple linear architecture.  In this case, the 

offset reservation tables as seen in Chapter 5 become an explicit representation of the physical 

arrangement of resources and the associated issue slots.  Moving offsets is an important piece of 

the placement optimization because it allows a larger block of operations to move as a cluster.  

This helps the placer avoid local minima due to highly connected groups of operations, where 

moving a single operation would never be favorable from a cost perspective.  For cases where 

the issue slots on a domain are the only ones at a particular time, the offset move is the only way 

to move these operations.  Note that in the example, domain 3 is now the lead domain since its 
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offset is zero.  Offsets are initialized as described in 5.2.3.4 to reflect the minimum offsets 

possible in the architecture. 

 

 

Figure 6.2. Illustration of a domain swap. 

 

6.2 COST FUNCTION 

The cost function distills the quality of the placement to a value for evaluating the progress of the 

algorithm.  In order for the placement to be viable for routing, it must be possible to route each 

signal in the application.  Dealing with congestion is left to the router, but the placer will not 

complete successfully until all signals can individually be routed.  The cost function aggregates 

over each source/sink pair the difference between the best case route latency and the required 

schedule latency, illustrated in Figure 6.3.  When the slack term is positive, the pair of terminals 

cannot be routed within the required latency.  For example, if the minimum latency of the 

placement is 3 but the schedule requires a latency of 2, the net cannot be routed so the cost is 

multiplied by ten to encourage further annealing improvement.  The factor of ten cost adjustment 

is empirically selected to severely penalize illegal nets while still allowing them to be 

probabilistically accepted during the annealing process.  Scaling by ten ensures that a net that is 

short even a single cycle will outweigh the negative slack of a net that has sufficient latency to 

transit corner to corner in a 5x5 domain device in nine cycles.  A successful placement 

minimizes the cost function with no net violating its required latency such that each source and 

sink pair in the design can be routed.  Negative slack terms minimize wire length as a secondary 

goal, favoring nets shorter than the latency requires. 
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Figure 6.3. Placement cost function applied to each source/sink pair. 

 

The cost function also includes a term that drives organization of the domain offsets.  A 

legal placement requires that each domain, other than the leader at offset 0, must be adjacent to a 

domain with a smaller offset in order to propagate program counter values for Offset Pipelining.  

Figure 6.4 illustrated an example domain offset arrangement following placement.  Note that 

each domain receives the program counter value from an adjacent domain with a smaller offset 

creating a rooted tree from the leader at offset 0.  Figure 6.5 shows the portion of the cost 

function that allows the annealing to optimize the offset arrangement.  If the smallest adjacent 

offset is less than the domain in question, the cost contributed is just the difference between the 

offsets to encourage a sequential arrangement.  Otherwise, the domain does not have an adjacent 

domain it can receive the program counter value from.  This situation is penalized by the offset 

difference multiplied by the total number of issue slots available on the domain representing the 

need to move the entire domain contents to improve the placement. 

 

 

Figure 6.4. Example domain offset assignments after placement showing program counter 

propagation. 

cost = 0;
foreach (source:sink pair) {
slack = MinPlacedLatency(source, sink) - ScheduleLatency(source, sink);
if (slack > 0) slack *= 10;
cost += slack;
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Figure 6.5. Placement cost function for domain offset arrangement. 

 

6.3 FEEDBACK TO SCHEDULING 

If the placer cannot find a routable placement, there is no use in running the router since it would 

fail.  In this case, nets that cannot meet their latency requirement are annotated with the amount 

of extra delay needed along that path and the design is scheduled again as noted in 5.2.6.  The 

scheduler produces a new solution recognizing the added latency requirements for the previously 

failing nets to provide more flexibility in placement in order to find a routable solution.  The 

design is passed to the router when a suitable placement is achieved. 

The initial scheduling pass often is too optimistic in terms of offset assignments.  For the 

benchmark applications in this work, an average of four scheduling and placement passes 

execute before a routable placement is achieved.  The number of passes tends to increase when 

IIs are small or when the application is recurrence limited with an abundance of resources. 

6.4 PLACEMENT EXAMPLES AND BEHAVIOR 

The effectiveness of the placer is seen by observing that initial placements are not routable while 

the final successful placements are routable assuming sufficient interconnect resources.  In this 

section we qualitatively examine placer behavior.  It is difficult to visualize scheduled 

application dataflow graphs for Offset Pipelining.  A detailed visualization must illustrate the 

spatial dimensions of the architecture, the temporal dimension of the schedule, and the additional 

temporal dimension of modes.  We instead take a high level view by looking at the resulting 

offset arrangement after placer execution. 

foreach (domain) {
if (domain.offset == 0) continue;
smallestNeighbor = getSmallestAdjacentOffset(domain);
offsetDifference = domain.offset – smallestNeighbor;
if (offsetDifference <= 0)
cost += (1 - offsetDifference) * domain.totalIssueSlots;

else
cost += offsetDifference;

}
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The example in Figure 6.4 shows a domain offset placement for a Bayer filtering benchmark 

on a 4x4 device.  An initial random offset arrangement is organized in the final result.  Offsets 

are generally placed adjacent to others in the sequence of a sorted list of the offsets.  This means 

that the offsets can be visited in increasing order starting from offset 0 constructing a rooted tree 

of domains in the device as shown.  The placer occasionally even produces an offset assignment 

in a spiral or zigzag arrangement though this is not the case in the example here.  

A path formed by the offset sequence in the resulting placements makes sense from a 

routing standpoint.  Dependencies are most often among operations that are scheduled close 

together.  Keeping sequential offsets close together provides issue slots at a given time that are 

physically close together to facilitate routing as modeled by the cost function.  This can be seen 

in the scheduling examples in Figure 6.6.  If we consider a one-dimensional architecture, the 

diagram on the left represents a placement where offsets are arranged in an increasing sequence 

whereas the right shows a random ordering.  Operation 12 depends on 9 and we can see that the 

random placement will not allow the signal to be routed with that scheduling and placement 

since the signal would need to traverse the entire device in a single cycle.  However, the 

placement on the left places these issue slots close together making routing for that signal 

possible.  The cost function drives both the arrangement of domain offsets and operations on the 

available issue slots in order to optimize the overall placement through the simulated annealing 

framework. 
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Figure 6.6. Routing considerations for a placed netlist. 
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Chapter 7. PIPELINED ROUTING 

It is important to understand the routing problem for conventional modulo scheduled CGRAs 

before introducing EveryTime routing for Offset Pipelined systems in Chapter 8.  This chapter 

provides an overview of existing techniques providing background information exclusively.  It is 

assumed that the reader has a basic understanding of applying shortest path algorithms to 

conventional routing.  Relying on this foundation, we introduce existing work on negotiated 

congestion for global routing alongside pipelined routing. 

The PathFinder [ME95] negotiated congestion algorithm for global routing is reviewed first 

before modifications are introduced to support the Offset Pipelining execution model in Chapter 

8.  QuickRoute [LE04] provides the main framework for the EveryTime signal router.  Lastly, an 

overview of PipeRoute [SEH03] introduces the phased search concept used by the EveryTime 

router to support certain net types in an application. 

The entire collection of routed nets for an application must coexist on the available 

resources.  The negotiated congestion approach pioneered by PathFinder resolves resource 

contention through incremental cost adjustments and iterative re-routing of the design.  This 

technique is particularly well suited to optimization across multiple competing objectives. 

Conventional routing for an FPGA involves determining the specific path each signal in the 

design will take to connect source and destination.  The pipelined routing problem adds a latency 

requirement for each path.  Whereas an FPGA route is evaluated based on the delay along the 

path, a pipelined route visits registered interconnect points that extend a path across multiple 

cycles in the resulting design.  This problem cannot be solved with efficient shortest path 

algorithms.  The QuickRoute and PipeRoute algorithms provide solutions that have addressed 

this problem. 

7.1 PATHFINDER 

In addition to routing individual nets, a mechanism is needed to orchestrate the global routing of 

the design.  Trying to route each net in turn and allowing no resource reuse is problematic.  Since 

the earlier nets effectively have priority, the later nets must avoid conflicting with those 

previously routed.  This leads to the issue of determining the best order to route the nets of the 
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designs to achieve a successful routing.  PathFinder addresses the problem by allowing the 

conflicts to occur and systematically increasing resource costs throughout the process. 

 ܿ = (ܾ + ℎ) ∗   (7.6)

PathFinder defines the cost of a node as shown in Equation 7.5 where bn is the base cost of 

using the resource n, hn is a history cost incremented during routing, and pn represents the 

number of nets occupying the resource n.  The base cost for routing is often a delay term, while 

in pipelined routing the latency of the resource is generally prioritized.  The pn and hn terms will 

be explained with two examples described in the PathFinder paper [ME95]. 

The example in Figure 7.1 has three sources Si and corresponding sinks Di.  There are three 

routing nodes, A, B, and C, with the base costs labeled on the graph edges.  Individually, the 

minimum cost path for each signal would route through B.  If the router is only capable of 

avoiding conflicts with paths already routed, then the order that the signals are routed will 

determine which signal will use B.  This may lead to a globally more expensive solution or even 

fail to route all the nets.  Only when signal S2 is routed first is the optimal cost solution achieved.  

Consider three scenarios routing the three signals Sx to the corresponding destinations Dx, with 

each choosing the lowest cost route available: 

 Routing order S1, S2, S3 leads to S1 on B, S2 on A, and S3 on C with a total cost of 14. 

 Routing order S3, S2, S1 leads to S3 on B, S2 on A and S1 is unroutable. 

 Routing order S2, S1, S3 leads to S2 on B, S1 on A and S3 on C with a total cost of 12. 

 

 

Figure 7.1. Example of first order congestion. 
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The pn term in the cost function alleviates this first order congestion, providing the ability to 

resolve any ordering of the signals during routing.  For the first routing pass, all signals use B.  

With contention on this resource, signals see an increased pB value, which promotes exploration 

of alternative paths.  There is no explicit conflict between nets during routing; instead, the cost 

function is adjusted to encourage nets to avoid a congested resource. 

A second problem the PathFinder formulation addresses is second order congestion.  In 

these cases, congestion resolution requires nets not involved in a conflict to move to different 

resources.  Such an example is illustrated in Figure 7.2.  If the signals are initially routed in order 

1, 2, 3, S1 will occupy B, and both S2 and S3 will pass through C.  Since S1 is not using a 

contested node, it will never be rerouted away from B to make room for S2 to use B.  S3 would 

need to be routed first in order for the routing of S1 to find the alternate route through A in a 

conflict avoidance style. 

The hn term is increased during each routing pass that a resource n is contested.  As this 

added cost builds over multiple passes, S2 will eventually take the less expensive path through B 

and subsequently S1 will move to A, making room for S3 to use C.  The impact of hn is a 

permanent increase in the cost of the node to encourage the router to explore other paths. 

 

 

Figure 7.2. Example of second order congestion. 

 

Negotiated congestion resolution is a powerful tool helping ensure that resources go to the 

nets that need them most.  It is also an architecture adaptive solution that avoids the pitfalls of a 

global routing approach that relies on ordering the nets. 
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7.2 QUICKROUTE 

The difficulty with conventional shortest path algorithms for pipelined routing is that once a 

node is visited by the search, it is assumed that it was found by the shortest path and can only be 

visited once by the algorithm.  In pipelined routing, the first time a node is visited may not be 

part of a path that reaches the destination with the correct latency.  Even if it does reach the 

destination at the right time, the signal may not have traversed the shortest path to get there. 

The example in Figure 7.3 illustrates the limitations of a conventional routing approach 

when applied to pipelined routing.  The net being routed has a source S and destination D with a 

signal flight time of 2 cycles.  In this case, we assume that resources A and B each have a latency 

of one cycle, so both must be visited to reach D at the correct time.  In a conventional shortest 

path algorithm, both A and B would be visited directly from S and would not be revisited.  This 

would not explore the path from A to B, which must be used to meet the 2 cycle flight time 

requirement.  A brute force approach to addressing this shortcoming lets the search revisit nodes 

to ensure that all possible paths are explored.  The shortest path with the correct latency will be 

found using a brute force search but at the cost of exploring an exponential number of paths. 

 

 

Figure 7.3. The pipelined routing problem 

 

Instead of tracking every possible path, the QuickRoute algorithm caps the number of times 

a node may be visited during the search.  A node may be visited k times at each latency l.  For 

example, with k = 2, a node may only be visited twice at l = 1, may be visited up to two times at 

l = 2, and so on.  Limiting the number of times a node can be revisited significantly prunes the 
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search space.  Even with a heavily pruned search, the authors found that limiting QuickRoute to 

k = 1 produced superior results to prior work on PipeRoute. 

7.3 PIPEROUTE 

The predecessor to QuickRoute, PipeRoute introduced an optimal routing approach for finding a 

path with one cycle of latency from source to sink.  This 1-Delay router was further generalized 

for arbitrary delay paths and pipelined multi-terminal nets.  We focus here only on an aspect of 

the 1-Delay router as it inspires a feature of the EveryTime router. 

The phased search is the key concept used in PipeRoute to visit a registered resource along 

the path.  Consider the example shown in Figure 7.4 routing from S to K.  There are two registers 

available, R0 and R1, and A through H are other interconnect resources.  The router must find 

the shortest path that visits R0 or R1 before reaching the destination.  Routing begins with a 

phase 0 search at S.  The 0 above S indicates that the node was visited during the phase 0 search.  

In Figure 7.5, the neighbors of S are visited during phase 0. 

 

 

Figure 7.4. Beginning route from S to K with phase 0 search. 

 

 

Figure 7.5. Neighbors of S explored during phase 0. 

 

At the next expansion, register R0 is visited in Figure 7.6.  The “fromA” annotation 

indicates that the node was visited from A.  This is important, assuming an undirected graph, to 
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avoid reusing the edge that reached the register along the explored path.  Visiting a register 

begins a phase 1 search from that point.  Figure 7.7 shows the expansion from R0 visiting G 

during phase 1 while G is also visited from D in phase 0.  The destination K is visited from D as 

well, but since it is from a phase 0 search, no register exists along the path and the search 

continues. 

While PipeRoute describes the pre and post register portions of the search as phases, this is 

somewhat confusing.  Both phase 0 and phase 1 portions of the search proceed simultaneously 

depending on whether a register has been visited along the explored path.  This is evident in 

Figure 7.7 where G is visited by both phase 0 from D and phase 1 from R0. 

 

 

Figure 7.6. Next level expansion at phase 0 discovers register R0. 

 

 

Figure 7.7. Phase 1 search begins from R0 while phase 0 search continues, finding R1. 

 

The final step for the example is shown in Figure 7.8 with the path via A, R0, and G 

highlighted.  The first time the destination is visited during the phase 1 search guarantees that the 

path is the shortest and also includes a single register.  The EveryTime router adapts this phased 

search concept to QuickRoute to visit register file resources along a path for particular net types 

and is described in section 8.7.1. 
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Figure 7.8. K is visited during phase 1 search that started from R0. 

 

PipeRoute also assumes that registers can be bypassed.  In conventional FPGA pipelined 

routing, this is important since the router is usually trying to meet a particular timing 

specification.  This means that the phase 1 search can continue through subsequent registers 

visited on a path and still meet the 1-delay requirement.  Unlike FPGA routing, Mosaic CGRA 

routing is strictly pipelined and registers cannot be bypassed. 
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Chapter 8. EVERYTIME ROUTING 

In Chapter 6 we developed a complete placement approach for Offset Pipelined devices.  We 

now turn to the challenge of routing in these devices.  As done for an FPGA, routing must be 

precomputed with only one signal allowed to use a given resource at a time.  However, the new 

requirements of an Offset Pipelined system introduce complexities that require special handling 

in the routing algorithm. 

To aid in this discussion, we first present two styles of diagrams that will be used to 

illustrate the challenges of these systems and the algorithmic innovations we have developed to 

solve them.  We then provide an overview of the EveryTime router before going into the full 

details of the algorithm. 

8.1 ROUTING ABSTRACTIONS 

During the placement discussion, we presented tables with domains given as columns and 

timeslots as rows.  For routing, we will extend these with a simplified routing structure used to 

help illustrate points throughout our routing discussion.  As shown in Figure 8.1, we consider a 

simple one dimensional architecture with single cycle routing available between adjacent 

domains.  Signals that travel longer distances must do so over multiple clock cycles.  The real 

architectures we consider are more complex, but this abstraction is sufficient for discussion 

purposes.  A line traversing a box in the figure represents a mux configuration within the 

enclosing domain.   Registers are at the horizontal boundaries between boxes, making the cycle 

boundaries visually obvious. 

The other concept that will be important for subsequent discussions is the sequencing of 

mode execution on the device.  That is, what are the possible execution sequences for a given 

application?  This is not a single fixed trace, since the lead domain in an Offset Pipelined 

application can dynamically determine the next mode to execute.  Instead, it is an execution 

graph that indicates the potential orderings of modes for a specific application.  An example of a 

mode transition diagram is shown in Figure 8.2, which is representative of a simple loop with 

preamble mode A of II = 3, loop body B of II = 1 executing zero or more times, and epilogue C 

of II = 1. 
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Figure 8.1. Simplified routing architecture 

 

 

Figure 8.2. Example mode transition diagram. 

 

8.2 THE OFFSET PIPELINED ROUTING PROBLEM 

In many ways, the challenge of routing for an Offset Pipelined device is similar to the challenge 

of routing for an FPGA or a modulo counter based CGRA: signals must be sent from source to 

sink in an efficient manner through a predefined interconnect, and congestion between signals 

must be resolved.  However, there are several unique features of Offset Pipelined systems that 

require careful consideration and innovation to solve. 

To illustrate each of these issues, consider the example in Figure 8.3, the same example used 

for introducing the Offset Pipelining execution model in Chapter 3.  The code includes a 

preamble and a fast inner loop.  Note that the IIs in the mode transition diagram were selected for 

illustration purposes.  Although the code looks fairly straightforward, it raises several complex 

issues for a routing algorithm to solve for Offset Pipelined execution: 

Domain 0 Domain 1 Domain 2 Domain 3

Registered 
routing muxes

at cycle 
boundaries

A0

C0

A1

B0

A2
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 Nets with multiple sources 

 Routing resources that exist in multiple modes 

 Nets traversing distant portions of the iteration space 

 Nets with unknown flight time 

 

 

Figure 8.3. Example code and mode transition diagram. 

 

8.2.1 Nets with Multiple Sources 

Consider the signal count in the example code.  The value of count is created both in the 

preamble via the read of a stream and in the loop body via the decrement operation.  This means 

that during routing, the net actually has two sources.  One could simplify this by inserting 

explicit phi nodes, which would become multiplexor functions computed in the functional units.  

However, since the while loop would then contain a recurrence loop from the phi node to the 

decrement and back, this would inevitably increase the II of the inner loop.  We instead allow for 

multiple sources and leverage the mode invocation order of Offset Pipelining to handle the path 

selection implicitly via the routing.  This situation is illustrated in Figure 8.4a, depicting an 

iteration of mode A followed by two iterations of B, and so forth. 

 

8.2.2 Routing Resources May Have to Exist in Multiple Modes 

In Figure 8.4b, we show what happens when mode B executes twice and highlight the routing of 

the count signal from the decrement operation to the writeStm operation within each of the two 

while (true) {

id = readStream(0);

count = readStream(0);

while (count > 0) {

count--;

writeStream(count, 1);

}

writeStream(id, 1);

}

Mode Transition Diagram

A0

C0

A1

B0

A2
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iterations.  Notice that the second count routing stays completely within the green mode B, while 

the first count goes through a domain executing the last cycle of the red mode A.  Even if we re-

routed the count signal to go down first, it would still sometimes go through mode B and other 

times go through mode C in blue.  That the routing of a single signal may require configuring 

resources in multiple modes simultaneously is a fundamental requirement of the Offset 

Pipelining execution strategy and requires careful design of the routing algorithm. 

 

 

Figure 8.4. Example execution traces for variable count: (a) multiple source net; (b) 

traversing resources in multiple modes; (c) moving through resources several iterations away 

from source and sink. 

 

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 2 Offset 5

0 count--

1 count--

2 writeStm

3 writeStm

4

5

6 count--

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 2 Offset 5

0 count-- writeStm

1 count--

2

3

4

5 writeStm

6 count-- writeStm

Domain 0

Time Offset 0

0

1 readStm

2

3 count--

4 count--

5

6

(a) (b) (c)
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Figure 8.5. Possible active cycles relative to a known mode iteration. 

 

8.2.3 Nets Traversing Distance Portions of the Iteration Space 

The example in Figure 8.4c moves the writeStm to the rightmost domain.  Consider the path for 

the last green mode iteration starting at time 1.  At time 4, this path is transiting the second cycle 

of the red mode two iterations later than the source.  However, for a given green iteration, there 

are actually four different domain configurations that could be active at that point on the path: 

A1, A0, C0, or B0, depending on whether the source iteration was the last, 2nd to last, 3rd to last, 

or that at least 4 more green iterations occurred.  Routing in Offset Pipelining often requires us to 

consider very different positions in mode iteration space.  Figure 8.5 introduces a table used for 

capturing this information.  Each box contains the modes and issue slots which could be active 

relative to a green mode B iteration, with the subscripts denoting iteration distance.  Note that the 

four entries at time 3 in the table correspond to the list above.  To route on an Offset Pipelined 

device, this information must be maintained in order to consider all possible execution 

sequences. 

8.2.4 Nets with Unknown Flightime 

Consider signal id, whose value is read during mode A and is written in mode C, meaning this 

signal must be “live” during any and all intervening iterations of mode B.  However, we would 

only know the number of B iterations at runtime.  Thus, the signal must travel fast enough to get 

from the read to the write in the case where count is zero and mode B never executes, but must 

maintain the value during any intervening iterations of B.  This situation is illustrated in Figure 

8.6, with count equal to 0 on the left and 2 on the right. 

Time

-3 A0-1 A1-2 A2-3 B0-3

-2 A1-1 A2-2 B0-2

-1 A2-1 B0-1

0 B00

1 B01 C01

2 A02 B02 C02

3 A12 A03 B03 C03

A0

C0

A1

B0

A2
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Figure 8.6. Net with a run time defined flight time. 

 

Given the complexities of these scenarios, it is clear that Offset Pipelined routing must 

manage constraints which have not been studied previously.  By careful application of existing 

techniques and the introduction of new approaches, we have developed a novel, efficient routing 

algorithm for these systems which is presented in the following sections. 

8.3 SIGNAL ROUTER COSTS IN DIFFERENT DEVICE STYLES 

Routers for many styles of reconfigurable devices use the negotiated congestion cost model 

pioneered by PathFinder, where signal routes allow resource sharing, but the cost of congested 

resources are gradually increased until the congestion is resolved.  This formulation is also at the 

heart of our EveryTime router.  However, the question of the costs of resources and how those 

costs are incurred during routing requires careful consideration.  We will start by reviewing how 

routing is done on standard devices and then extend this to Offset Pipelined devices. 

 

Domain 0 Domain 1

Time Offset 0 Offset 2

0 readStm writeStm

1

2

3

4 readStm writeStm

5

6

Domain 0 Domain 1

Time Offset 0 Offset 2

0 readStm writeStm

1

2

3

4

5

6 readStm writeStm
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Figure 8.7. Configuration styles for (a) FPGAs, (b) modulo counter CGRAs, and (c) Offset 

Pipelined CGRAs. 

 

A representation of a 2:1 FPGA routing mux is shown in Figure 8.7a.  During routing, there 

may be two signals that both wish to route through this mux, but because an FPGA is statically 

configured, only one of the signals can actually use this resource.  To deal with this, Pathfinder 

associates a cost with the use of this mux, and all routes that wish to traverse this mux pay that 

cost. 

Figure 8.7b shows the case for routing resources in a modulo scheduled CGRA, such as 

those targeted by SPR [FCV+09], which uses an extension of PathFinder.  The programming of 

the mux in this case is actually handled by II different programming bits, each at a different issue 

slot of the modulo schedule.  Multiple signals can share the same mux, as long as they do so 

during different time slots.  Thus, if we are attempting to route signals S0, S1, and S2 through 

this mux and S0 needs it at time 0, and S1 and S2 at time 1, only S1 and S2 are conflicting and 

see an added congestion cost.  We consider the routes contending for the programming bits of 

the mux, rather than for the mux itself.  As such, the routing costs are maintained for all issue 

slots of a mux and signal routes only see the costs for time slots on a mux that they are actually 

using.  This method for negotiation is how SPR handles modulo counter pipelined routing. 

The Offset Pipelined routing problem is similar to modulo counter routing in SPR: The 

control of each routing resource is handled by multiple programming bits and signals can share 

the mux if they use it at different times.  Consider the example in Figure 8.8, where we are 

routing three intra-iteration routes, i.e., signal SA from A2 to A2 between the two domains, 

signal SB from B0 to B0, and signal SC from C0 to C0.  We will focus on a routing mux at the 

boundary connecting the two domains.  For these paths, signal SA traverses the mux at timeslot 

B0, and signal SC traverses the mux at timeslot A0, and thus do not conflict.  However, what 

C I0 I1 I2 I3 A0 A1 A2 B0I4 I5 C0

Modulo 
Counter

Program 
Counter

(a) (b) (c)
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about signal SB?  The signal routing must be the same no matter which B iteration we are in, so 

the successful routing of SB requires use of the mux at both timeslot B0 (for B iterations 

followed by a subsequent B iteration) and timeslot C0 (for the final B iteration before C).  Thus, 

the routing of signal SB requires the proper setting of the mux in two time slots, and therefore 

congestion minimization must happen for each of the time slots it uses.  For this specific 

example, signals SA and SB would both see the costs of using the mux at time slot B0, SB also 

sees the costs of timeslot C0, and SC sees the costs of timeslot A0.  Note that in this example 

there may not actually be a conflict between SA and SB if they both call for the same 

configuration of the mux in cycle B0.  This is similar to the static resource sharing in SPR. 

 

 

Figure 8.8. Resource costs for routing. 

8.4 EVERYTIME ROUTER OVERVIEW 

The EveryTime approach provides solutions to the aforementioned challenges faced in routing 

multi-mode Offset Pipelined systems.  At a high level, routing a net using the EveryTime 

concept creates a single path that consumes all resources across every iteration that could be 

active at each node along the path.  This guarantees that the path is complete for all possible run 

time mode sequences.  While this seems like a costly approach, only one path is actually active 

at run time for the actual execution sequence.  The single path concept implicitly encapsulates 

any run time behavior. 

Domain 0 Domain 1

Time Offset 0 Offset 2

0 A2 A0

1 B0 A1

2 B0 A2

3 C0 B0

4 A0 B0

5 A1 C0

SA

SB

SB

SC



 

 

85

The proposed solution is based on two observations.  The first is that, even with the multi-

mode execution style, each signal is generated at a particular time and location and must arrive at 

the destination time and location regardless of what may happen along the way.  The routing cost 

for a resource is based on the use at a given issue slot.  The cost of a route using a resource is the 

sum of the costs of all issue slots that could be active at that point on the path. 

The second observation is that not all nets have a fixed flight time despite the statically 

scheduled nature of Offset Pipelining.  The router must be able to reconcile different paths 

among possible execution sequences.  EveryTime routing takes advantage of register file 

resources in a new way to synchronize these paths.  By breaking these signals into fixed delay 

paths from source to a register file and from the register file to the sink, the variable delay 

portion of the path is confined to the register file. 

There are several advantages of the EveryTime approach.  The core routing is 

straightforward with no complex multi-path handling.  It can handle arbitrary mode transition 

diagrams and uses negotiated congestion to resolve resource contention.  The use of register files 

to handle variable signal flight time maintains the single path nature of the routing. 

By limiting the router to a single physical path, possibly better solutions may be overlooked 

that involve merging different, independent paths rather than the unified EveryTime path.  There 

may then be a channel width penalty for the EveryTime approach; however, the benefit of 

avoiding merge and synchronization issues favors a simplified routing approach to multi-mode 

routing.  The Chapter 10 evaluation will also demonstrate that any such overhead is small in 

practice by comparing EveryTime routing to SPR and a flattened FPGA-like architecture. 

8.5 EVERYTIME TABLES 

The central issue in routing in an Offset Pipelined system is tracking the active mode and 

iteration at a given time and place.  This section introduces the concept of the EveryTime table 

that is used to determine which modes and times are active at a given distance from the source 

and/or sink while routing.  These tables are calculated based on the scheduled and placed 

application, since they are dependent on the mode IIs and domain offset assignments.  During 

routing, these tables are constant and provide reference for the active set of modes and times.  

EveryTime tables represent the iteration space relative to a particular mode iteration, allowing 

the router to track the set of possible active resources anywhere and anytime on the device 
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relative to an anchor point.  An anchor point is usually the mode containing the source of the net, 

though in cases where the signal flight time is not fixed, the sink serves as a second anchor. 

8.5.1 Dealing with Iteration Space 

Routing on a modulo scheduled architecture requires tracking use of physical resources for each 

time slot in the schedule, effectively unrolling the architecture graph in time to represent the 

available resources.  Adding the dimension of independent modes means that physical resources 

must be tracked by mode as well as time within each mode.  The router must understand how to 

traverse the possible mode transitions and track the utilization of a resource in multiple modes 

and times simultaneously. 

For modulo scheduling, the next cycle is always known through an increment and modulo 

operation.  In an Offset Pipelined system, moving forward or backward in time relative to a 

known point can lead to one of multiple possible modes and times in different iterations as 

illustrated in Figure 8.5.  In the most basic case, within a domain, moving forward in time one 

cycle has two possibilities: either the next cycle is still within the II cycles of the current iteration 

or the next cycle is in a new iteration.  The new iteration can be found through traversal of the 

mode transition diagram.  Consider an iteration of mode B in the example shown in Figure 8.9 

on the left.  We place the iteration of mode B at time 0 and then construct new entries by 

examining the mode transition diagram.  At time 2, a new iteration of either mode B or mode C 

begins, as shown in the table.  By time 4, there are three possibilities: a second iteration of mode 

B, an iteration of C following the iteration of B, or the last cycle of an iteration of C that 

immediately followed the initial mode B iteration that anchors the table.  When we move 

between domains (Figure 8.9 right), we must shift the entries in the table by the difference in 

offsets between the two domains. 
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Figure 8.9. EveryTime table for mode B (left).  EveryTime tables set to different offsets 

(right).  Mode transition diagram for the EveryTime tables (bottom). 

 

Entries in the table represent possible mode/times that could be active at run time.  A letter 

denotes the mode and a number the cycle of the associated mode iteration from the mode 

transition diagram.  This table captures all possible run time mode execution sequences and 

provides some intuition about the cost of using a resource for routing a net.  Subscripts track the 

iteration offset relative to the anchor iteration with subscript 0. 

We can see that moving further away from the anchor increases the uncertainty of 

determining which mode and iteration is executing.  From a routing cost perspective, moving 

away from the anchor generally becomes increasingly costly corresponding to this run time 

uncertainty.  The router will try to avoid large sets of active modes and times by preferring 

cheaper paths through resources with less run time uncertainty, but costly routes are handled 

seamlessly through the EveryTime formulation. 

8.5.2 Fused Source and Destination Relative Timing 

While many nets in a design will remain within a single iteration, nets also connect different 

iterations and modes in order to move data.  In this case, two EveryTime tables, one associated 

with the source and the other with the sink can be combined to prune the space of active 

mode/time combinations required to connect source and sink.  This will be explored further in 

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

-3 A1-2 B1-2 C2-2 A0-2 B0-2 C1-2 A0-3 B0-3 B1-3 C1-3

-2 A0-1 B0-1 A1-2 B1-2 C2-2 A1-3 B1-3 C0-2 C2-3

-1 A1-1 B1-1 A0-1 B0-1 A0-2 B0-2 C1-2

0 B00 A1-1 B1-1 A1-2 B1-2 C2-2

1 B10 B00 A0-1 B0-1

2 B01 C01 B10 A1-1 B1-1

3 B11 C11 B01 C01 B00

4 B02 C02 C21 B11 C11 B10

5 A02 B12 C12 B02 C02 C21 B01 C01

6 A12 B03 C03 C22 A02 B12 C12 B11 C11

A0 B0 C0A1 B1 C1 C2

Time

-3 A1-2 B1-2 C2-2

-2 A0-1 B0-1

-1 A1-1 B1-1

0 B00

1 B10

2 B01 C01

3 B11 C11

4 B02 C02 C21

5 A02 B12 C12

6 A12 B03 C03 C22
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later sections, but the high level idea is to intersect a source relative table and a sink relative table 

with the appropriate shift in time to provide the set of mode/times that will complete the path 

under any runtime scenario.  Note that for an intra-iteration net, the EveryTime table for the 

source and sink is the same, so no further pruning would be possible. 

8.5.3 Reachability 

The EveryTime tables can also be pruned through analysis of modes that can be legally reached 

from the source enroute to the sink.  The basic idea is that the router should not visit resources 

that cannot be active with the given source and sink pair.  This is a more detailed analysis 

compared to simply applying an EveryTime table to determine the active set. 

An example of this situation in Figure 8.9 concerns a variable that is updated in loop B, and 

the last version of the value is required for an operation in mode C.  It is important that the 

correct value be passed to C, which can be handled during routing by not allowing the path to 

traverse resources in a subsequent iteration of B.  A second example can be found if an 

application might branch to different modes, an example of which is shown in the Figure 8.10 

mode transition diagram.  A net with a source in A1 and a sink in the immediately following 

iteration at B0 would never traverse the alternate iteration of mode C following A.  These entries 

would be pruned from the EveryTime table when routing this net. 

 

 

Figure 8.10. Mode transition graph with variable distance between modes A and D. 

 

8.6 LOCKED NETS 

We consider nets with a constant flight time to be “time locked,” having a flight time 

independent of the run time mode execution sequence.  The following examples demonstrate 

EveryTime routing using EveryTime tables to account for the possible execution sequences that 

may arise at run time. 

A0
B1

D0
C1

A1
B0

C0
D1

C2
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8.6.1 Nets with No Iteration Delay 

A net whose source and sink are contained within one iteration is the most basic case.  Imagine a 

net in Figure 8.9 (right) has a source in B00 of the left domain and a sink in B10 on the right 

domain.  As the router explores the available resources at a given distance from the source, the 

modes and times these resources will be active can be found in the table.  Ignoring congestion for 

the moment, in order to use the minimum number of resources to route this net, it is clearly 

desirable to remain within the active iteration if possible, otherwise the net will exist in multiple 

iterations at some point along the path. 

However, this isn’t always possible for two reasons.  An intervening offset, such as domain 

1 in the example, may have a much larger or smaller offset.  This would lead to the table for the 

domain being shifted up or down such that, in order to traverse that domain, there would 

necessarily be several active modes and times.  The second issue faced in routing is simply 

congestion; the net may have to find an alternate route, possibly through less desirable resources 

that have additional mode/times active. 

8.6.2 Iteration Delayed Nets 

An iteration delayed net differs from the intra-iteration net in that the source and sink use 

different tables anchored by their respective modes.  Figure 8.11 shows an example of the source 

relative table on the left for B10 on domain 1 and the sink relative table on the right for mode C01 

on domain 2.  Note that the sink has a subscript of 1 representing the iteration delay relative to 

the source.  What is unique about an iteration delayed net is that these two tables can be 

intersected to prune some of the active mode/times for routing.  This helps to ignore resources 

that are not necessary for a given scenario, thereby avoiding overpaying for the path and without 

repeated calculation of the active set of mode/times. 

Figure 8.12 shows the merged tables that prune the space between the source and sink 

iterations.  Note that at times 3, 4 and 5 on domain 1, only one mode is active since we know the 

sink exists in this iteration.  This technique works for all cases where the time of flight is known.  

Thus, for the mode transition diagram in Figure 8.11 we can handle single iteration delayed nets 

from A to B, B to A, B to B, B to C, C to A and C to B.  Iteration delayed nets from A to A, A to 

C or C to C cannot be handled using merged tables alone since there is an unknown number of B 
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iterations leading to variable signal flight times.  Choice in execution paths is even supported as 

long as the flight time is fixed, as seen in Figure 8.13 where mode B or mode C follows A. 

 

 

Figure 8.11. Source and sink relative routing tables for a net from mode B to mode C. 

 

 

Figure 8.12. Merged routing table. 

8.7 UNLOCKED NETS 

The main limitation for EveryTime routing as described so far is that the signal flight time must 

be known.  For conventional pipelined routing on an FPGA, this is always the case.  However, 

for Offset Pipelining, we must also be able handle nets whose flight time isn’t known until run 

time.  To solve this problem, the EveryTime router has the net visit a register file along the path.  

The register file can hold a value as long as necessary before the net proceeds to the sink.  The 

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

0 B00 A1-1 B1-1 A1-2 B1-2 C2-2

1 B10 B00 A0-1 B0-1

2 B01 C01 B10 (source) A1-1 B1-1

3 B11 C11 B01 C01 B00

4 B02 C02 C21 B11 C11 B10

5 A02 B12 C12 B02 C02 C21 B01 C01

6 A12 B03 C03 C22 A02 B12 C12 B11 C11

7 A03 B03 B13 C13 A12 B03 C03 C22 B02 C02 C21

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

0 B00 A1-1 B1-1 A1-2 B1-2 C2-2

1 B10 B00 A0-1 B0-1

2 C01 B10 A1-1 B1-1

3 C11 C01 B00

4 C21 C11 B10

5 A02 C21 C01 (sink)

6 A12 A02 C11

7 B03 A12 C21

A0 B0 C0A1 B1 C1 C2

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

0 B00 A1-1 B1-1 A1-2 B1-2 C2-2

1 B10 B00 A0-1 B0-1

2 C01 B10 (source) A1-1 B1-1

3 C11 C01 B00

4 C21 C11 B10

5 A02 C21 C01 (sink)

6 A12 A02 C11

7 B03 A12 C21



 

 

91

approach involves tracking net flight time first from the source until a register file is visited and 

then to the sink after departing the register file.  This allows the signal to propagate in a run time 

dependent way while still being routed statically.  The identification of an appropriate register 

file is handled automatically during routing as part of the EveryTime approach for unlocked nets.  

The additional support for unlocked nets treats register files as a special type of routing resource 

in order to eliminate the aspect of the unknown flight time.  However, register files are still valid 

routing resources for other signals.  PathFinder negotiation manages access to all routing 

resources including the register files. 

 

 

Figure 8.13. EveryTime table for fixed flight time multi-path net. 

8.7.1 Decoupled Source and Destination Relative Timing 

The previous discussion of EveryTime tables for locked nets was based on knowing how far the 

signal had propagated from the source and therefore how many cycles were left before it would 

reach the sink.  For a net that does not have a fixed flight time, this is not possible.  The problem 

of guaranteeing a register file along the path that can hold the unlocked net value is solved using 

a series of steps.  All routing from the source to the register file is source-relative, meaning that 

the set of possible executing modes and times is computed relative to the source mode.  All 

routing from the register file to the sink is sink-relative, where we compute the set of possible 

executing modes and times with an EveryTime table anchored to the sink mode.  In this way we 

essentially convert the time unlocked route into two time locked signals stitched together via a 

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

-3 B1-2 C1-2 B0-2 C0-2 A0-3

-2 D0-1 B1-2 C1-2 A1-3

-1 D1-1 D0-1 B0-2 C0-2

0 A00 (source) D1-1 B1-2 C1-2

1 A10 A00 D0-1

2 B01 C01 A10 D1-1

3 B11 C11 B01 C01 A00

4 D02 B11 C11 A10

5 D12 D02 (sink) B01 C01

6 A03 D12 B11 C11

7 A13 A03 D02

A0
B1

D0
C1

A1
B0

C0
D1
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register file.  Note that the register file used is dynamically determined via a phased search 

concept adapted from PipeRoute [SEH06]. 

Although the exact time allowed to send the signal from source to sink is unknown, since 

there are many possible run time execution sequences, we can use the mode transition diagram to 

find the minimum such delay.  Thus, the path must travel from source to register file and register 

file to sink within the minimum delay.  In this way, the communication will complete no matter 

which mode sequence executes at run time. 

Figure 8.14 illustrates the scenario for an unlocked net routing from A10 in domain 0 to C02 

in domain 1.  The left table is anchored to the source while the right is anchored to the sink.  In 

the diagram, the tables are placed relative to each other based upon the shortest flight time, a 

single B iteration, but a route must support a dynamically determined number of B mode 

iterations. 

The PipeRoute phased search is adapted in the EveryTime router to guarantee a register file 

waypoint for unlocked nets.  Routing begins in the first phase using a source relative EveryTime 

table.  Upon visiting a register file, the search begins a second phase switching to a sink relative 

EveryTime table to find the destination.  The lowest cost route to the destination implicitly 

selects a register file along the way by requiring a second phase search to discover the sink. 

 

 

Figure 8.14. Unlocked net routed with a register file. 

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

-1 C2-1 C1-1 B1-2

0 A00 C2-1 C0-1

1 A10 (source) A00 C1-1

2 B01 A10 C2-1

3 B11 B01 A00

4 B02 C02 B11 A10

5 B12 C12 B02 C02 B01

6 B03 C03 C22 B12 C12 B11

7 A03 B13 C13 B03 C03 C22 B02 C02

8 A13 B04 C04 C23 A03 B13 C13 B12 C12

9 A04 B04 B14 C14 A13 B04 C04 C23 B03 C03 C22

Domain 0 Domain 1 Domain 2

Time Offset 0 Offset 1 Offset 3

-5 A1-3 B1-3 C2-3 A0-3 B0-3 C1-3 A0-4 B0-4 B1-4 C1-4

-4 A0-2 B0-2 A1-3 B1-3 C2-3 A1-4 B1-4 C0-3 C2-4

-3 A1-2 B1-2 A0-2 B0-2 A0-3 B0-3 C1-3

-2 B0-1 A1-2 B1-2 A1-3 B1-3 C2-3

-1 B1-1 B0-1 A0-2 B0-2

0 C02 B1-1 A1-2 B1-2

1 C12 C02 (sink) B0-1

2 C22 C12 B1-1

3 A03 C22 C02

4 A13 A03 C12

5 B04 A13 C22

A0 B0 C0A1 B1 C1 C2
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8.7.2 Architecture Considerations 

While the concept of a net passing through a register file waypoint is straightforward, the net is 

nevertheless being routed using the EveryTime concept.  This means that the register file might 

be visited when multiple modes and times are active relative to the source.  However, only one 

sequence actually occurs at run time.  In order to ensure that the correct value is written to the 

register file, the architecture must include a valid bit with the data to enable writing to the 

register file.  The enable signal is therefore asserted in a runtime dependent way when the 

desired value should be written.  Figure 8.15 revisits our earlier example from Figure 8.3 

showing two different execution traces.  On the left, no green iterations execute between red and 

blue while two execute on the right.  For this example, we assume the register file has write 

through so the value is both written and read at time 2 for the left example.  With the possibility 

of either a blue iteration or a green iteration executing at time 2 relative to the source, the valid 

bit provides the mechanism to ensure the correct value is written to the register file.  In the 

example on the right, the valid bit is set at time 2, but not at times 3 or 4.  Only register file 

writes need to be protected this way since the write is a stateful operation while a speculative 

read operation is not. 

 

 

Figure 8.15. Example demonstrating the valid bit write enable for register files. 
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8.8 EVERYTIME ROUTER 

The EveryTime router is based on QuickRoute for pipelined routing.  Rather than operating 

directly on an architecture graph, the routing process is augmented with EveryTime tables as 

previously described.  For unlocked nets, the EveryTime router also ensures that a register file 

waypoint is included on the path.  This is accomplished by changing from a source relative to 

sink relative search when a register file is visited and then requiring that the sink be visited at the 

appropriate latency during the sink relative phase to successfully route the net. 

The PathFinder cost metrics rely purely on the available time slots provided by each mode.  

This is akin to the SPR unrolled datapath graph that represents the time slots available for each 

physical resource in the device.  These data structures provide convenient accounting of the 

PathFinder metrics, but are not used directly for routing.  They are instead populated based on 

the EveryTime table data for a given path.  From a cost perspective, a path must pay for the use 

of all the mode/times that could be active along the path.  For example, if a resource is used 

where six different mode/times are possible, the cost of this resource is the sum of the costs of 

each of the six mode/time possibilities.  This will encourage routes to use paths that are less 

uncertain, but allow paths to use whatever resources are necessary to achieve the required signal 

connectivity. 

The EveryTime tables are pre-calculated based on mode IIs and assigned offsets.  Preparing 

to route a given net involves aligning and merging tables if the net is locked.  In order to expand 

a node in the architecture during routing, the domains of the wires in question are used to index 

into the EveryTime table to determine the active mode/times at the given distance from the 

source or sink.  The tables allow movement among domains and through time relative to the 

source and/or sink.  There is no need to traverse the mode transition diagram to calculate when 

the signal exists. 
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8.9 RESOLVING CONGESTION 

PathFinder provides the mechanism to resolve congestion.  A given net consumes whatever 

mode/times are part of the active set for each node in the path.  PathFinder evaluates the 

mode/time occupancy information to address present and history sharing costs. 

While conventional routing algorithms support nets with a single source but multiple sinks, 

offset pipelined netlists also involve nets with multiple sources in certain situations.  For 

example, in Figure 8.4 left, the signal is initialized in one mode and updated in another and, 

therefore, has two possible sources.  This is reasonable since the dynamic execution pattern will 

determine which source actually generates a given signal at run time. 

Our EveryTime router handles this by decomposing all nets into two-terminal source-sink 

pairs, which are routed independently.  However, we must now resolve the merging of the two 

sources: Once an iteration of a loop begins, the two sources of the loop index must enter this 

loop body mapping at the same point.  We use PathFinder to negotiate this shared join point by 

tracking the configuration of muxes in the architecture.  The separate source-sink routes of the 

signal are routed independently and can share resources between the paths freely since they 

represent the same signal, but an incompatible mux configuration between the two paths is 

penalized.  Thus, if the two routes join at the entrance point to the loop body, there is no penalty, 

but any other join is penalized and negotiated by PathFinder.  Our EveryTime router creates an 

implicit phi node to join the paths, created as a side-effect of which mode precedes the loop body 

iteration in the run time execution.  Formulating multiple source merging and the EveryTime 

concept as PathFinder negotiation provides global routing based on proven techniques 

8.10 ROUTING CONSTANTS 

Routing constants calls for another type of router.  In this case, a sink is known but no source is 

assigned.  Here we perform a reverse search from the sink using EveryTime expansion following 

the same cost metrics as QuickRoute to find an available register file read port.  PathFinder’s 

present and history sharing values also apply to these paths and ensure they are negotiated on the 

same footing as all other nets.  In practice, register file ports are plentiful across the benchmark 

set and are usually found in the same domain as the sink.  Even in highly utilized scenarios, 

constant routing is unlikely to become a major source of conflict because unlike the majority of 
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nets, including unlocked net, constants do not have a specific flight time that must be met.  This 

flexibility means they can use less contested resources and take circuitous paths to an available 

register file port. 

8.11 FEEDBACK TO SCHEDULING OR PLACEMENT 

The prototype tool chain does not include feedback to scheduling and placement from the router.  

In order to evaluate routing performance, the architecture channel width is swept to determine 

the minimum channel width necessary to route designs.  This stresses the performance of the 

router in order to focus on evaluation rather than meeting constraints of a specific target 

architecture. 

For use with a fixed architecture, a practical tool chain would include feedback to the 

scheduler and placer to loosen constraints in these phases to provide enough flexibility to 

complete routing.  One possibility would be to annotate nets that remain in a conflicted state 

after a certain number of PathFinder iterations.  These nets could be assigned additional slack in 

scheduling to stretch out the overall schedule to make it easier for placement and routing to find 

a solution.  A second alternative would include analysis of channel utilization which the placer 

could use to search for a better resource arrangement in advance of routing.  These metrics might 

be used to recognize possible congestion in advance of routing to guide scheduling and 

placement in order to map applications to specific architectures with fixed routing resources.  

This type of feedback to the scheduler is akin to the feedback from placement discussed in 6.3 

and gives the tool chain the opportunity to continue searching for a successful mapping rather 

than failing. 

8.12 EVALUATION 

The placement and routing phases of the tool chain are evaluated in two ways.  The first 

compares against a hypothetical flattened architecture while the second comparison is made to an 

SPR implementation for modulo scheduled CGRAs.  The target architecture is based on Mosaic, 

work that explores resource composition for modulo scheduled CGRAs [VE10]. 

The first architecture is “flattened” to provide a likely unachievable theoretical lower bound 

modeling the best possible implementation that might be attained by the Offset Pipelined placer 
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and router.  Our goal is to apply existing techniques to this flattened architecture and measure the 

relative algorithm efficiency via the resulting channel widths, a standard approach for router 

evaluation in the FPGA literature.  Channel width measures the amount of inter-domain 

interconnect resources.  By sweeping the channel width, the router can be stressed to determine 

the minimum channel width required for a given application.  We transform the Offset Pipelined 

placement and routing problem into a more standard pipelined FPGA routing problem that will 

have similar or relaxed constraints.  We remove mode transitions and instead have only a single 

configuration where every domain has logic resources equal to the Offset Pipelined resources 

multiplied by the total schedule length.  Thus, if in the Offset Pipelined case we have two modes 

with IIs of 2 and 3, the flattened architecture has 5 times as many logic resources per domain 

than the Offset Pipelined device.  Signals are pipelined so that if the minimum flight time in the 

schedule is N, the signal must go through exactly N registers in the flattened architecture.  In this 

way, the two architectures have the same scheduling, placement and essentially the same routing 

constraints, but the additional complexity of mode transitions and issue slot windows have been 

eliminated.  The router for the flattened architecture is a QuickRoute implementation for 

pipelined routing. 

The flattened architecture comparison normalizes channel width to the best result we could 

expect if signals were evenly distributed among the cycles of the Offset Pipelined version.  The 

channel width attained by a flattened implementation is divided by the total schedule length of 

the corresponding Offset Pipelined implementation and rounded up to produce this lower bound. 

The channel width results in Figure 8.16 show that the Offset Pipelined tool chain achieves 

mappings with channel widths of approximately a 10% overhead compared to a flattened 

architecture using QuickRoute, demonstrating that our algorithm is quite close in efficiency to 

the existing router even though it must deal with a more complex problem.  Raw channel widths 

are presented in Figure 8.17.  Note that the overhead corresponds to an average of about 0.6 of a 

channel across our benchmark suite for the Offset Pipelined device, which is a minor penalty. 

In many cases, the channel width overhead using EveryTime routing is a single channel.  

For a scenario where the EveryTime router uses 5 channels compared to 4 for the flattened 

implementation the overhead would be 25%.  With an average of 10% across the benchmarks, 

we find that the EveryTime router does not require an unreasonable amount of routing resources 

to support the Offset Pipelined execution model. 
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Figure 8.16. Channel widths for EveryTime router normalized to flattened architecture. 

 

 

Figure 8.17. Absolute channel widths for EveryTime router compared to flattened baseline. 

 

Our second comparison is to a basline SPR implementation.  While the FPGA-like baseline 

is a useful tool to evaluate the channel width requirements of the EveryTime router, SPR is a 

more closely related CGRA tool taking advantage of modulo scheduling and time multiplexed 

resources.  Results for this second comparison are shown in Figure 8.18 comparing Offset 
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Pipelining to SPR.  In SPR we are restricted to the single modulo counter based implementation 

of existing systems, while the EveryTime router makes use the Offset Pipelining execution style. 

 

 

 

Figure 8.18. Channel width for EveryTime router compared to SPR. 

 

 

Figure 8.19. Absolute channel widths for EveryTime router compared to baseline SPR. 
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As seen in the graph, the channel width requirements are heavily influenced by the 

application.  For applications like the discrete wavelet transform and bayer filtering with many 

modes, the EveryTime router requires fewer channels by allowing resources to be more 

effectively shared in time.  The DCT on the other hand with only two modes uses slightly more 

channels.  Overall, EveryTime routing of the Offset Pipelined implementations uses about 0.9x 

the channels of SPR.  The raw channel width values are presented in Figure 8.19. 

The results presented here validate the practicality of EveryTime routing for Offset 

Pipelined CGRAs.  Channel widths remain in a realm comparable to existing techniques while 

enabling the benefit of the modal execution model. 
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Chapter 9. SPR AND PREDICATE AWARE SPR 

One body of previous work warrants special attention as the progenitor of Offset Pipelining and 

is introduced in this chapter as background.  The broader scope of related work will be covered 

in Chapter 11.  Offset Pipelining is a continuation of work on CGRA compilation techniques 

initially unified in the Schedule, Place, and Route (SPR) tool.  The SPR scheduler is based on 

IMS, the placer on simulated annealing, and the router on QuickRoute.  SPR was further refined 

[Fri11] to take advantage of predicate-aware mutual exclusion, further improving its 

performance. 

Managing control flow of an application on modulo scheduled CGRA architectures requires 

a mechanism for converting control dependencies into data dependencies to facilitate software 

pipelining.  As noted in Chapter 2 motivating the development of Offset Pipelining, this requires 

all control paths simultaneously consuming resources in the mapped application.  A second 

inefficiency is that in low II applications, extra configuration memory in the device is idle.  The 

baseline SPR implementation was enhanced to apply this extra memory to address the resource 

consumption of more complex control flow in CGRAs. 

This chapter begins by providing an overview of predicate aware sharing.  This is followed 

by a discussion of the baseline SPR implementation and its integration into the Offset Pipelining 

tool flow for evaluation purposes.  While an implementation was not available for direct 

comparison, predicate aware SPR (PA-SPR) is then introduced with attention to how its potential 

performance will be compared to that of Offset Pipelining in Chapter 10. 

9.1 PREDICATE AWARE SHARING 

A conventional processor changes the instruction execution sequence in order to handle 

conditional execution.  The example in Figure 9.1 might execute only the sum or difference 

depending on the value of diff for each iteration of the loop by using conditional branch 

operations.  Controlling the program counter in this manner allows a processor to execute only 

the useful instructions for a given iteration.  This is feasible and often preferred on a processor 

because instructions are small.  On the other hand, a single CGRA instruction is very large in 

comparison making it difficult to change instructions in a data dependent manner at run time. 
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Figure 9.1. Example to motivate predicate aware sharing. 

 

Control flow changes for a statically scheduled CGRA can instead be represented using 

predication.  The predicated dataflow graph for the Figure 9.1 example is illustrated on the left in 

Figure 9.2.  In this case, both the sum and difference are computed but the comparison operation 

controls which result is retained by selection via a phi node. 

 

 

Figure 9.2. Predication (left) and predicate aware sharing (right) of Figure 9.1. 

 

It is clear in the example that only one of the conditional paths will execute on a given 

iteration.  Predicate aware sharing recognizes this property and allows these operations to coexist 

on the same hardware resource and selects which instruction will execute at run time, illustrated 

in Figure 9.2 on the right.  This is distinct from the conventional processor approach since the 

schedule issues the same instruction address in either case.  The selection of the operation is 

controlled by the result of the comparison in a data dependent fashion at run time. 

for (i = 0; i < n; i++)
{

diff = a[i] – b[i];
if (diff > 0)

sum = sum + diff;
else

sum = sum – diff;
}
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A clear benefit is gained by reducing the size of the dataflow graph, evident when 

comparing the predicated and predicate aware sharing versions in Figure 9.2.  Issuing fewer 

operations reduces pressure in the routing phase.  In this case, the recurrence limited II, defined 

by the recurrence loop from sum’ back to sum, is also reduced by eliminating the explicit phi 

node from the predicated approach.  Even if the mux operation can be combined with either the 

add or subtract in the functional unit of the target device, the other operation would need to 

execute in the prior cycle, requiring an II of 2 for the example. 

The benefits of predicate aware sharing come at the cost of additional hardware support.  An 

operation is selected through a combination of the modulo schedule and run time predicate bits.  

A diagram of modulo counter configuration selection is shown in Figure 9.3.  The counter 

directly controls the address of the configuration retrieved on each cycle of the schedule.  There 

are a variety of ways to insert predicate bits into the configuration process.  Figure 9.4 illustrates 

the approach taken by PA-SPR to augment the modulo counter, effectively changing the address 

based on predicate bits for configuration lookup. 

 

 

Figure 9.3. Modulo counter controlled configuration memory. 

 

 

Figure 9.4. Predicate bits combined with modulo counter controlled configuration memory. 

 

A closer examination of Figure 9.4 illustrates some of the tradeoffs with predicate aware 

sharing in SPR.  If the II of the application is large, more bits of the modulo counter are needed 
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to represent the full schedule.  In this case, few or no bits may be available for predicate aware 

sharing.  On the other hand, a short schedule may allow many predicate bits to influence 

configuration selection.  Code with greater control flow complexity and a larger II may limit the 

effectiveness of predicate aware sharing because the number of predicate bits and therefore the 

opportunity for shared issue slots is limited. 

9.2 BASELINE SPR 

The baseline SPR implementation maps dataflow graphs in a modulo scheduled fashion to the 

target CGRA, as noted previously.  This is an important comparison point because the Offset 

Pipelining infrastructure includes an SPR implementation capable of running the benchmarks 

presented in this work.  While the applications for SPR and Offset Pipelining differ in their 

organization due to the decomposition into modes for the latter, they were written to be 

comparable, performing exactly the same computation in both versions.  This allows direct and 

fair comparison between SPR and the Offset Pipelining flow. 

9.3 UPPER BOUND FOR PA-SPR PERFORMANCE 

The complete predicate-aware SPR system is a complex combination of tight integration with a 

front-end compiler and augmented scheduling, placement, and routing.  Although it has some 

similarities to Offset Pipelining, the details of the algorithms are different, and the resulting 

mappings have different tradeoffs.  Although it is important to compare Offset Pipelining to PA-

SPR, we do not have a complete PA-SPR system available for this testing.  Instead, we develop a 

bound on possible PA-SPR performance that we can use for comparison purposes. 

Recall from our previous discussion of scheduling in PA-SPR that the resulting mappings 

have a single II, which must be large enough to have an issue slot for all instructions in the 

application.  Mutually exclusive operations, those that can never be active simultaneously at run 

time, can be assigned to the same issue slot.  In a multi-mode application, operations from 

different modes are mutually exclusive, and thus can share issue slots.  Therefore the best case 

for a PA-SPR scheduling is to fit the design into the footprint of the worst-case mode, the mode 

that requires the largest II when scheduled independently.  Ignoring inter-mode constrains, if 

each mode M independently requires an II of IIM either because of resource constraints or intra-
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mode recurrence loops, then the overall application cannot have an II smaller than the largest 

such mode II.  Inter-mode constraints and scheduler inefficiencies may make the system require 

a larger II, but it cannot be smaller. 

For our PA-SPR comparison, we use the largest per-mode II among all of the modes in the 

application to calculate performance.  The limiting II can be computed with our toolchain.  We 

assume that this ideal schedule II survives placement and routing despite these steps generally 

increasing the II.  This provides an optimistic estimate for PA-SPR results. 

While we use ideal inter-mode sharing to calculate PA-SPR performance, predicate aware 

sharing is not limited to these modes.  Intra-mode sharing, such as in Figure 9.1, is possible as 

well.  However, across the set of benchmarks used in this work, we find that the worst case 

modes are recurrence limited such that further sharing will be unable to reduce the II used to 

calculate PA-SPR performance.  We therefore have a reasonable, even optimistic, upper bound 

for PA-SPR performance used to evaluate Offset Pipelining. 

Given this optimistic baseline, where might Offset Pipelining still perform better compared 

to PA-SPR?  Compared to PA-SPR, Offset Pipelining satisfies inter-mode constraints, and will 

have some increases to the achieved IIs due to the requirements of full placement and routing.  

However, while Offset Pipelining will pay the per-mode II for each iteration, PA-SPR is forced 

to pay the worst case II for each iteration.  Locked to this II is an inherent inefficiency of the PA-

SPR computation model.  Thus, for the baseline at least, PA-SPR may appear more favorable 

when all modes are roughly the same size, or inter-mode constraints significantly impact the 

overall mapping quality, while OPS will benefit when modes are less balanced, especially when 

the most frequently executed mode is not the most costly in terms of recurrence or resource 

requirements.  We expect Offset Pipelining to perform better for benchmarks that exhibit multi-

mode behavior. 
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Chapter 10. TOOL CHAIN EVALUATION 

This chapter evaluates the complete Offset Pipelining tool chain as compared to SPR.  Results 

presented in Chapter 5 demonstrate the potential benefits of the scheduling approach compared 

to IMS, the scheduling phase of baseline SPR.  Chapter 8 established that the EveryTime router 

generates solutions within reasonable bounds in terms of available routing resources on a target 

device.  The following sections cover the benchmark applications in more detail and then assess 

the performance of the complete Offset Pipelining tool chain.  We first perform a direct 

comparison with a full baseline SPR implementation for single mode applications and then move 

on to multi-mode application mapping compared to SPR and the upper bound on PA-SPR 

performance described in 9.3. 

10.1 BENCHMARKS 

The benchmark applications provide a set of signal processing algorithms, typical candidates for 

CGRA mapping.  While the Mosaic project [CFV+07] included the Macah [YCF+08, Ylv10] 

front end compiler for generating dataflow graphs for the SPR tool chain, there was insufficient 

support available to develop or modify a comparable infrastructure for Offset Pipelining.  

Instead, applications are written in C in a style that facilitates conversion to dataflow graphs that 

can be consumed by the tools.  An example of this style is shown in Figure 10.1 making the 

single assignment nature of the code apparent.  The applications were written directly in this 

style but were compared against reference implementations to ensure correct behavior. 

The netlist conversion tool enforces that each variable be written only once and be defined 

before use.  Without a compiler comparable to Macah, this form allows straightforward 

conversion to a dataflow graph.  Each line of code becomes an operation and variables represent 

the net connections in the resulting netlist.  Since a static single assignment (SSA) form is 

commonly used in compiler intermediate forms, it would be feasible to generate dataflow graphs 

through a compiler front end such as LLVM [LA17]. 

A loop variable is represented as a pair of values in the code, one for the current iteration 

and one for the next.  This is illustrated in Figure 10.2 with s0 and s0_loop.  The current value 

for a given iteration is s0_loop and is used to calculate the new value of s0.  At the end of the 

iteration, s0_loop is updated with the new value for the subsequent iteration. 
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Figure 10.1. C code example of static single assignment form. 

 

 

Figure 10.2. Representing loop carried nets. 

 

10.1.1 Dataflow Graph Conversion to XDL 

The dataflow graphs are stored as XDL files using the Torc [SWS+11] infrastructure.  Torc 

provides a comprehensive API for this file format and is used to represent the application 

through all phases of the mapping.  Scheduling adds domain offset and operation time slot 

information.  Placement assigns physical positions to domain offsets and operations.  Routing 

completes the implementation by recording the necessary interconnect configuration in the nets.  

An example of a portion of an XDL netlist is shown in Figure 10.3 to highlight its structure.  The 

design element contains information about the applications including the number of modes, 

execution counts and the mode transition graph for EveryTime table construction.  The inst 

elements represent the dataflow operations corresponding to statements from the original C code.  

Lastly, net elements contain the connections between operations and also hold the extra delay 

annotations for feedback between stages. 

B2 = B1 & Const7;
C1 = A_loop >> Const6;
C2 = C1 & Const7;
D1 = A_loop & Const512;
row = D1 != Const512;
sreset = A2 == Const0;
writeval = A2 == Const7;
rowsreset = (sreset && row);
rowwrite = (writeval && row);
z0 = C2 * Const8;
z2 = A2 + z0;
z4 = B2 + z0;
ReadMemory(z9, z2, 0);

z5 = z3 - z4;
z6 = z5 + s0_loop;
s0 = rowsreset ? z5 : z6;
...
s0_loop = s0;
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XDL netlists support multiple source and sink terminals (outpins and inpins, respectively) 

but this is not used for the Offset Pipelining tool chain.  Instead, nets are decomposed into two 

terminal pairs and tagged with indices that informs the tools to treat nets with a common index as 

a single logical net.  During placement, individual sinks must be annotated, but XDL only 

supports configurations at the net granularity, so a net is needed for each sink.  This is merely an 

artifact of using XDL as the netlist container.  The index ensures that logical nets with multiple 

sources and/or sinks can share routing resources, otherwise PathFinder would interpret a reuse of 

resources as a conflict that must be resolved.  Without the need to annotate an individual sink, 

we would use a conventional representation as shown in Figure 10.3 where the nets represent the 

complete net connectivity. 

 

 

Figure 10.3. XDL netlist example prior to scheduling. 

 

The XDL netlist is modified as it passed through each phase of the tool chain.  Figure 10.4 

shows these changes following scheduling.  The design element now includes the target device 

as well as the domain offsets and IIs assigned during scheduling.  Operations are assigned time 

slots and the initial nets are decomposed into two terminal pairs. 

design "dct_singlecounter_2mode_pipejump_netlist" mosaic2-1 v1.0, cfg "MODE_COUNT::2 
_ExecutionCount:0:512 _ExecutionCount:1:512 _ModeGraphNode:0:0 _ModeGraphNode:1:1 
_ModeGraphTransition:0:1 _ModeGraphTransition:0:0 _ModeGraphTransition:1:0 
_ModeGraphTransition:1:1";

...
inst "C2_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::BITAND";
inst "D1_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::BITAND";
inst "row_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::NOTEQUAL";
inst "col_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::EQUAL";
...
net "C2",

outpin "C2_op" O,
inpin "z0_op" A,
inpin "x0_op" A,
cfg "WIDTH::32"
;

net "row",
outpin "row_op" P,
inpin "rowsreset_lop" B,
inpin "rowwrite_lop" B,
inpin "z10_stmread" R,
cfg "WIDTH::1"
;

...
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Figure 10.4. XDL netlist example after scheduling. 

 

10.1.2 Applications 

This section provides details of the various benchmark implementations.  A summary of the 

applications is shown in Table 10.12 with a brief description of each.  In order to provide a 

comparison to existing work, each application is written in two forms.  The first is a monolithic 

version relying on predication for use with SPR to provide baseline performance.  The second 

version takes advantage of the Offset Pipelined execution model to avoid executing unnecessary 

operations and limits the amount of predication.  The table includes the total number of 

operations in the single and multi-mode versions of the applications, along with the mode count 

for the multi-mode Offset Pipelined version. 

Note that the Bayer, DCT, and DWT applications have deterministic loop bounds 

throughout and, therefore, do not depend on the actual data sets.  The other benchmarks are data 

dependent.  For example, the sample data for K-means converges in three iterations and the PET 

dataset contains events every 25 samples on average. 

 

design "dct_singlecounter_2mode_pipejump_netlist" mosaic2-1 v1.0, cfg " 
DEVICE::m2_dp32c32_2x2 MODE_COUNT::2 OFFSETS::0,2,9,16, _ExecutionCount:0:512
_ExecutionCount:1:512 _II:0:5 _II:1:7 _ModeGraphNode:0:0 _ModeGraphNode:1:1 
_ModeGraphTransition:0:1 _ModeGraphTransition:0:0 _ModeGraphTransition:1:0 
_ModeGraphTransition:1:1";

...
inst "C2_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::BITAND TIMESLOT::3";
inst "D1_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::BITAND TIMESLOT::4";
inst "row_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::NOTEQUAL TIMESLOT::2";
inst "col_op" "MOSAIC_ALU_SITE", unplaced, cfg "MODE::0 OP::EQUAL TIMESLOT::2";
...
net "C2_0",

outpin "C2_op" O,
inpin "z0_op" A,
cfg "WIDTH::32 INDEX::6"
;

net "C2_1",
output "C2_op" O,
inpin "x0_op" A,
cfg "WIDTH::32 INDEX::6"
;

...
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Table 10.12. Offset Pipelining Benchmark Applications 

Application Description Single mode OPs Multi-mode OPs Mode Count 
Bayer Bayer filtering, including threshold 

and black level adjustment 
161 139 4 

DCT 8x8 discrete cosine transform 96 103 2 
DWT Jpeg2000 discrete wavelet transform 85 102 8 

K-means K-means clustering 121 142 4 
PET Positron emission tomography event 

detection and normalization 
77 78 2 

Rabin Karp String matching 101 115 3 
RSA Encryption and decryption 116 128 4 

 

 

In order to compare performance among the different implementations, the number of cycles 

needed to execute test cases is recorded and normalized against the recurrence limited cycle 

count of an IMS scheduling.  This provides insight into the performance of OPS relative to IMS 

and further allows the applications to be compared to one another. 

10.1.2.1 Bayer 

This Bayer filter application performs a black level adjustment, edge padding, and the bayer 

demosaicing, as found in digital camera processing pipelines.  The Offset Pipelined version is 

broken into four modes; the first is the black level adjustment, the second and third handle 

padding the image, and the fourth performs demosaicing. 

10.1.2.2 Discrete Cosine Transform 

An 8x8 DCT implementation is logically broken into two modes, one pass over the rows of the 

image, the other over the columns.  This implementation is built using a single counter with 

bitwise operations used to pick the appropriate values for indexing into coefficient and 

temporary memory locations.  The coefficients are not calculated in the dataflow graph; instead, 

they are assumed to be pre-calculated and available in a memory block when the application is 

running.  It is a fixed point implementation. 

10.1.2.3 Discrete Wavelet Transform 

The wavelet transform comes from Jpeg2000 and implements a 9/7 forward transform.  Like the 

DCT, it is a fixed point solution.  The algorithm goes through two phases of prediction and 

update before scaling the result and packing the results for output in a total of eight modes.  This 

sequence of loops makes this implementation a great candidate for OPS since only one loop is 
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active at a time and both intra and inter-loop iterations can be aggressively pipelined and 

interleaved. 

10.1.2.4 K-means 

This application was written to cluster into eight groups with three data channels.  By far the 

most complex application with multiple nested loop bodies for multiple channels, centroid 

weighting, flags and temporary memory use, it nevertheless has a clear top level decomposition 

into cluster assignment and centroid update modes. 

10.1.2.5 Positron Emission Tomography 

The PET application [HDL+09] would be used to detect and assign high resolution time 

information to scintillator crystal events in a medical scanning system.  It is broken into two 

phases.  The threshold phase determines if the sensor has detected the beginning of an event.  

The normalization phase then computes the detailed arrival time and total energy.  This is the 

smallest application and rapidly hits its recurrence limit. 

10.1.2.6 Rabin-Karp 

The Rabin-Karp algorithm is used for string matching.  It is organized into three modes, one for 

setup, one for the main processing loop, and a third for a fast inner loop.  Including a large 

conditional block in the main loop, this application is notably different from others such as the 

DCT which has no conditionals. 

10.1.2.7 RSA 

The final application is an RSA encryption and decryption block with a 32-bit key.  The two 

modes correspond to the encryption and decryption phases selectable at run time.  Like the DCT, 

this application has two modes that are close to the same size, which lends itself to efficient 

sharing.  However, unlike the DCT, the RSA application has significantly more single bit control 

logic. 

10.2 SINGLE MODE APPLICATIONS IN OPS COMPARED TO SPR 

Our first step in evaluating Offset Pipelining is to examine its performance for single mode 

applications against baseline SPR performance.  By taking each application through both the 
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Offset Pipelining and SPR tool flows, we can determine the degree to which the added 

scheduling constraints of Offset Pipelining impact performance without the primary advantage of 

multiple modes. 

For a single mode application, only the scheduling phase is unique.  The placement and 

routing portions for single mode applications are indistinguishable from SPR.  This is 

noteworthy for routing since, without the complexity of multiple modes, the EveryTime router is 

identical to QuickRoute on which it is based. 

Figure 10.5 compares Offset Pipelined Scheduling (OPS) and IMS without subsequent 

placement and routing using a geometric mean of normalized throughout across all seven 

benchmarks.  Performance for each application is normalized to the ideal recurrence limited 

throughput of the monolithic version.  The OPS Single Mode data is the OPS algorithm applied 

to the same monolithic dataflow graph as IMS while the OPS data targets the multi-mode 

versions of the application.  We see that OPS applied to a single mode application is less 

effective compared to IMS.  Performance for IMS is 1.85x better than Offset Pipelining and 

more than 2.2x better on 6 or fewer domains.  This deficit decreases to less than 1.2x at 16 

domains or more. 

Consider the added issue slot window constraint in Offset Pipelining, described in section 

5.1.  When there are few resources, this becomes a limiting factor since the domain offsets 

dictate where issue slots will be.  In order to meet the needs of the application, Offset Pipelining 

may need to maintain a higher II to provide sufficient issue slots with only a few domains 

available to adjust.  For applications with a large latency and few resources, the OPS algorithm 

must rely on the II to meet the issue slot needs of the dataflow graph.  When applications support 

multiple modes, Offset Pipelining can share resources among the modes and is able to overcome 

the issue slot limitation somewhat in extremely resource poor situations.  Figure 10.6 and Figure 

10.7 provide the II data for the scheduling results. 
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Figure 10.5. OPS to single mode applications. 

 

 

Figure 10.6. Scheduling II data for Bayer, DCT, DWT, and K-means benchmarks. 
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Figure 10.7. Scheduling II data for PET, RabinKarp, and RSA benchmarks. 
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Focusing on the strengths of Offset Pipelining, we consider the multi-mode applications using 

the Offset Pipelining tool flow including placement and routing, referred to as OPSPR in the 

figures.  Figure 10.8 compares Offset Pipelining to the SPR baseline, which are complete 

implementation flows through routing, as well to the PA-SPR performance bound discussed in 

section 9.3 across the benchmark set.  While PA-SPR takes advantage of resource sharing 

similarly to Offset Pipelining, it cannot take advantage of independent IIs.  This added flexibility 

gives Offset Pipelining the edge for more mode oriented applications. 

In addition to the independent IIs, the implied phi nodes at mode transitions help eliminate 

some operations from the dataflow graphs and allow for more compact placement.  When these 
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Multiple modes and implied phi nodes facilitate the improved performance we see over the SPR 

and PA-SPR solutions. 
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implementation that does include the implementation flow, Offset Pipelining provides 1.7x better 

performance on the evaluated benchmarks. 

 

  

Figure 10.8. Offset Pipelining vs SPR and PA-SPR bound with performance normalized per 

benchmark to throughput of recurrence limited monolithic version. 
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 OPS – Offset Pipelined scheduling for multi-mode dataflow graph. 

 OPSPR – Full Offset Pipelining implementation. 
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There are a few notable features of these results for evaluating Offset Pipelining.  Most 

obviously, Offset Pipelining is inferior to modulo scheduling for single mode applications.  On 

the other hand, highly modal applications such as Bayer and DWT provide significantly better 

performance than a modulo scheduled approach when resource limited.  The PET application 

also sees a substantial performance advantage with Offset Pipelining on few resources despite 

having only two modes.  The key feature of this application is that a simple mode with a short 

recurrence II executes significantly more frequently than a much larger mode that executes very 

infrequently.  Such an application would be limited using PA-SPR because it must accommodate 

the larger mode II. 

 

 

Figure 10.9. Cycles to execute Bayer benchmark. 
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Figure 10.10. Cycles to execute DCT benchmark. 

 

 

Figure 10.11. Cycles to execute DWT benchmark. 
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Figure 10.12. Cycles to execute K-means benchmark. 

 

 

Figure 10.13. Cycles to execute PET benchmark. 
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Figure 10.14. Cycles to execute RabinKarp benchmark. 

 

 

Figure 10.15. Cycles to execute RSA benchmark. 
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Chapter 11. RELATED WORK 

This chapter draws comparisons to other architectures and tools to position Offset Pipelining in 

the broader context of reconfigurable computing research.  We focus on comparing features of 

Offset Pipelining and pipelined program counter (PPC) architectures to highlight the unique 

aspects of this work and introduce alternative approaches that have been explored in the 

literature, each with unique strengths and goals. 

The scope of computing hardware and software is enormous even restricted to the realm of 

reconfigurable computing.  This work adds to the list of efforts focused on CGRA architectures 

and tools.  The majority approach innovation from an architecture perspective with many 

examples such as RaPiD [ECF96], MATRIX [MD96], MorphoSys [SLL+00], and REMARC 

[MO98].  Such architecture explorations established the performance and power efficiency 

benefits of CGRAs though tools lagged behind [ECF97] and adopted conventional parallel 

programming techniques to extract parallelism.  However, this approach misses the critical 

component of development productivity that stunts commercial enthusiasm.  The most closely 

related work is the Mosaic project including SPR, previously discussed in Chapter 9. 

The PPC CGRA presented in this work is a direct descendent of the Mosaic CGRA [VE10].  

Sharing a similar resource composition and interconnect organization, the fundamental 

difference lies in how configuration contexts are retrieved for execution.  As noted in Chapter 3, 

we replace modulo counter control with pipelined program counters to facilitate the Offset 

Pipelining execution model. 

11.1 ARCHITECTURE 

Research focused on CGRAs has demonstrated the potential performance advantages compared 

to commodity architectures, for a variety of applications, each with different approaches to 

device organization and resource composition including Mosaic [VE10], DVLIW [ZFM+05], 

RaPiD [ECF96], and ADRES [MVV+03].  Roadmaps such as those from UC Berkeley 

[ABC+06] and DARPA [KBB+08] have highlighted the limits of conventional architectures as 

fabrication technology continues to advance.  A desire for high performance with greater power 

efficiency, both at large scales for datacenters and small scales for embedded and mobile devices 
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helps drive interest in and development of CGRAs.  This section reviews features of our PPC 

CGRAs compared to existing architectures. 

11.1.1 Pipelined Program Counters 

There are a variety of control mechanisms explored in CGRA research.  RaPiD uses a standalone 

controller for managing heavily pipelined loop nests, Morphosys relies on a host processor for 

context selection, and Mosaic context selection is controlled by modulo counters.  Modulo 

counter control has also appeared in Tabula [Teig12] FPGAs.  In the majority of cases, device 

resources can be time multiplexed, in order to take advantage software pipelining and spatial 

locality in the application mapping. 

While a VLIW machine maintains a conventional program counter and the ability to move 

in and out of modulo scheduled regions of an application, this is too costly for CGRAs.  A spatial 

architecture necessarily has a much larger per cycle configuration size so the effectively 

unbounded program size of a VLIW processor is not practical.  Our proposed pipelined program 

counters allow a greater variety of run time control than a modulo counter working within the 

constraints of CGRA architectures. 

Even though each domain in a PPC CGRA uses a program counter for sequencing, this 

functionality should not be confused with the flexibility of a conventional processor.  The 

program must still be short since all configuration memory is considered to be on chip, with the 

device statically scheduled.  This is also distinct from a massively parallel processor array 

(MPPA) like Ambric [BJW07] in that there is a separate interconnect network for propagating 

program control information to be discussed in 11.1.4. 

11.1.2 CGRAs as Accelerators 

The majority of CGRA research assumes an accelerator architecture with the device connected to 

a host processor.  The host is responsible for organizing data for consumption by the CGRA and 

managing the overall computation.  Projects like Mosaic, ADRES, DVLIW, and many others fall 

into this category.  Massively Parallel Processor Arrays or MPPAs such as Ambric [BJW07] 

move away from this notion somewhat, offering a more autonomous solution.  This highlights a 

distinction between CGRAs and MPPAs, where does control of the execution reside?  Our 
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pipelined program counter architecture is statically scheduled just as Mosaic CGRAs and most 

others are.  This limits the program length compared to conventional processors. 

Our target architecture is based on the Mosaic CGRA [VE10].  Broadly, the Mosaic device 

is constructed from a 2-D array of clusters.  Each cluster is composed of a number of 

computational resources connected to a local crossbar and inter-cluster communication occurs 

over a grid interconnect.  While this work replaced modulo counters with pipelined program 

counters, the architecture is otherwise similar.  Experiments with Mosaic explored a variety of 

topics including front end compilation with Macah [YCF+08, Ylv10], the back end CAD tools 

[FCV+09], and architecture optimization [VE10].  Note that “control domain” in this work is 

synonymous with “cluster” in the previous work on SPR [Fri11].  We adopt the term domain to 

reflect the addition of the program counter that provides these clusters with additional flexibility 

when scheduling. 

11.1.3 Compute Resources 

Each CGRA architecture has its own mix of available resources.  Despite these differences, they 

all contain arithmetic, logic, and memory resources onto which a computation is mapped.  

Refinements to the Mosaic CGRA included different types of ALUs to better match the 

requirements of the targeted applications. 

Conventional register files perform poorly in modulo scheduled architectures due to name 

collisions in the schedule requiring code duplication.  Rotating register files alleviate this 

problem in modulo scheduling [RG81].  On the other hand, our modal execution model does not 

allow these collisions as a consequence of the explicit issue slots windows.  PPC CGRAs replace 

rotating register files with conventional ones given the difficulty of maintaining register 

renaming across mode boundaries.  As in the Mosaic project, our CGRAs also include FPGA 

style look-up table (LUT) resources to handle logic that would map inefficiently to word wide 

ALUs.  Stateless computation resources can receive a different configuration for each cycle of 

the schedule, up to a maximum supported by the device. 

Small memory blocks, comparable to memory blocks available in FPGAs, are available 

throughout the devices.  Some CGRAs offer a more heterogeneous organization with memory 

available in generally larger blocks on an edge of the device rather than distributed throughout 

[PFK+06]. 



 

 

123

The Tabula [Teig12] SpaceTime architecture was a commercial product similar to a CGRA 

using a modulo counter mechanism for time multiplexing.  While most CGRAs are dominated 

by word oriented resources, these devices were LUT based.  The tool chain was designed to not 

expose time multiplexing to the developer instead providing a conventional FPGA tool chain 

abstraction for the underlying hardware.  A purported benefit of this approach was to present 

memory blocks in the architecture as highly multi-ported with the user clock exposed to the 

designer a fraction of the context switching clock.  This would effectively multiply the number 

of physical ports by the schedule length and presents a significantly different architectural model 

to the designer. 

11.1.4 Interconnect 

Scalable tile to tile communication for spatial architectures can be accomplished with an island 

style interconnect organization.  Like FPGA architectures [BR97], each tile is connected to its 

neighbors in a regular pattern across the device.  Mosaic explores static and dynamic 

interconnect resources to evaluate the tradeoff between mapping quality and cheaper resources 

[VEWC+09].  Static interconnect has only one configuration for the life of the application, 

similar to FPGA interconnect.  Dynamic resources receive a new configuration each cycle of the 

schedule.  Our architecture uses dynamic interconnect resources exclusively since we are not 

focusing on optimizing the architecture, a task left for future work.  Each domain in our devices 

contains a crossbar to provide intra-domain connectivity in the same way as Mosaic CGRAs.  

Inter-domain communication is a limited resource for routing subject to negotiated congestion 

[ME95] discussed in section 8.9.  The interconnect is register rich, allowing the target device to 

operate at a specified frequency regardless of the application mapping.  A fixed frequency, up to 

1 GHz on a 65nm process for Mosaic, eliminates the challenge of timing closure found in 

conventional FPGA design, though it is replaced by the pipelined routing problem. 

Pipelined program counter CGRAs add an additional interconnect network to handle 

program counter information.  Each domain, other than the leader, receives its program counter 

over this network from adjacent domains.  The network is configured to ensure that each domain 

receives the program counter value at the appropriate latency relative to the leader to properly 

sequence program execution.  The replacement of modulo counters with program counters, and 

the addition of the program counter routing network, are the two features that define the PPC 
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CGRA in contrast to the Mosaic architectures.  Expected overhead for these modifications 

depends on the granularity of control domains in the target architecture and the resource 

composition.  For Mosaic architectures, related work on dataflow driven execution control 

[PH12] concludes that this and other modifications to support distributed stalling mechanisms 

would be a less than 2% area overhead. 

11.2 SCHEDULING 

Modulo scheduling has a long history in conventional VLIW compiler literature [Rau94, 

WP95, LGA+96] before being adopted for CGRA mapping in Mosaic [FCV+09], ADRES 

[MVV+03], and the architecture targeted by edge-centric modulo scheduling [PFK+06].  While 

SPR adopted iterative modulo scheduling [Rau94], other approaches such as swing modulo 

scheduling [LGA+96] and edge-centric modulo scheduling [PFM+08] have been explored as 

well for software pipelining onto CGRA architectures.  Swing modulo scheduling works to limit 

register pressure by minimizing the number simultaneous live values in the resulting schedule.  

Edge-centric modulo scheduling focuses on routing optimization, ultimately producing a 

placement as a byproduct.  All of these techniques share the limitation of mapping the target 

code to a single modulo schedule.  Enhanced loop flattening [YEH10] and predicate aware 

sharing [Fri11] work together to avoid this drawback, but as the control complexity of the target 

application increases, mapping quality suffers. 

When targeting multi-mode applications, Offset Pipelining offers a mapping approach to 

optimize individual software pipelined portions of the application, while retaining the benefits of 

a short, statically scheduled program.  Modulo scheduling with multiple initiation intervals 

[WP95] provides a similar solution to this problem for conventional VLIW machines.  

Unfortunately, this is not feasible on CGRA architectures due to longer program length and an 

inability to distribute the necessary changes in control flow on a cycle by cycle basis.  Developed 

specifically for CGRAs, Offset Pipelining recognizes these issues by staggering issue slot 

windows through assigning domain offsets.  Other CGRAs that share this staggered approach 

[PFK+06] remain confined to a single II through modulo scheduling. 

Alternative scheduling approaches include formulating the problem for optimization with 

simulated annealing [KGV83, MVV+02] or moving to a different execution model.  MPPAs 

such as Ambric [BJW07] are composed of discrete processors.  These architectures are less 
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tightly integrated than typical CGRAs but can support modulo scheduling across the array.  

However, they are typically configured by writing individual communicating programs or using 

traditional parallel programming techniques.  While this may be preferred for multi-core 

architectures, it is difficult to scale applications to architectures like Ambric with hundreds of 

processors. 

11.3 ROUTING 

Beyond the routing background introduced in Chapter 7, most routing for CGRAs is produced as 

a byproduct of the placement process, usually in conjunction with register assignment.  CGRAs 

that are mapped in this way [HMS+2013, PFK+2006] are more closely related to conventional 

VLIW machines, lacking a rich programmable interconnect.  As a descendent of the Mosaic 

project, PPC CGRAs rely on pipelined routing [LE04] and negotiated congestion [ME95] to 

connect the dataflow operations in the application. 

11.4 REFINING MAPPING TECHNIQUES 

Research on CGRAs has shifted somewhat from the architectural focus of early works toward 

refining mapping tools.  Targeting the CGRA in [PFK+06], EPIMap [HSV12] explores a 

heuristic approach to dataflow graph transformation to optimize mapping while REGIMap 

[HSV13] splits the mapping approach into a scheduling and merged placement and routing phase 

focusing on register assignment.  Analytical approaches to graph transformation have also been 

explore [LYL+13], competitive with REGIMap for mapping quality.  Addressing access to 

memory for CGRA systems looks at the broader infrastructure for practical application of these 

architectures.  The organization of memory resources and managing data movement have been 

explored [YLS+10] along with transforming the application to avoid conflicts in memory access 

[YLS+11]. 

There continues to be innovation in the architecture space as well with an emphasis on 

mapping efficiency.  Modifying the functional units to support dual issue [HSV14] requires 

significant compiler support for merging these operations.  Approaches based on head 

predication [RSH15] to avoid unnecessary fetch overhead focuses on maximizing energy 
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efficiency.  This refined previous work on a full predication technique that required 

corresponding mutually exclusive operations on the same functional units [HCL13]. 
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Chapter 12. CONCLUSION 

This dissertation presents the Offset Pipelining execution model and an accompanying set of 

algorithms to map applications to CGRAs supporting that execution model.  Offset Pipelined 

Scheduling enables more efficient mapping of multi-mode signal processing applications, 

improving the flexibility of CGRA systems.  The EveryTime router solves new challenges faced 

by Offset Pipelining and provides a practical implementation strategy complementing existing 

tools like PA-SPR that excel for single mode applications.  These tools contribute to broadening 

the utility of CGRA systems.  The intention of this work is to contribute to the drive toward 

accessible hybrid computing solutions to leverage the potential of spatial computing 

architectures. 

12.1 EXECUTION MODEL 

The Offset Pipelining approach software pipelines target code with a granularity finer than that 

of a monolithic modulo schedule while working within the limits of CGRA architectures.  A 

statically scheduled device supporting more complex branching control flow simplifies hardware 

design while trying to maintain processor-like flexibility.  The independent mode IIs afford the 

flexibility to optimize individual portions of the target code for improved throughput.  The 

tradeoff of fixed issue slot windows determined by II and offset constrains operation mapping.  

However, the offset constraints also help ensure that control information is given sufficient time 

to propagate across the device at run time, a limitation not found in conventional VLIW 

architectures. 

The benchmark applications in this work highlight the benefits of Offset Pipelining in taking 

advantage of multi-mode execution.  For target code comprised of a single loop with little 

conditional execution, predicate aware modulo scheduling is a superior approach.  Very large 

and complex applications likewise may not be suitable for mapping to a CGRA.  Since a 

pipelined program counter CGRA can easily support modulo scheduling, PPC architectures 

should be considered a more capable replacement for the conventional modulo scheduled CGRA 

given the expanded scope of application complexity that can be efficiently mapped. 
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12.2 SCHEDULING 

The Offset Pipelined Scheduling algorithm maps applications to take advantage of the execution 

model.  Adopting an iterative approach, the algorithm explores the scheduling space to fit the 

application to the available resources.  OPS shows improvement over modulo schedules for some 

selected applications, particularly in resource limited situations.  When the application is 

recurrence limited, the resulting mapping often requires fewer resources for a more compact 

implementation.  This helps maintain a high degree of locality, helpful for subsequent placement 

and routing.  The new scheduling algorithm is further evaluated against PA-SPR which 

approaches the problem of conventional predicated execution on CGRAs in a different way.  

While Offset Pipelining has an advantage for highly modal applications with different IIs, PA-

SPR can optimize intra-mode mutual exclusion.  These two approaches might be combined to 

offer a more powerful suite of tools for CGRA mapping. 

12.3 ROUTING 

Offset Pipelining and the associated scheduling algorithm tend to increase routing complexity to 

accommodate the expanded branching run time behavior.  The EveryTime router tracks the set of 

possible locations and times that resources may be active during routing in order to guarantee 

signals arrive under any possible run time execution sequence.  The routing formulation is 

compatible with a negotiated congestion framework for resolving global routing contention.  The 

approach is able to handle the Offset Pipelining execution model and route designs with 

comparable channel widths to prior work.  The ability to route designs with little overhead 

despite the increased complexity demonstrates that the benefits of Offset Pipelining can be 

realized in practical implementation. 

12.4 RETROSPECTIVE 

The idea for Offset Pipelining grew out of a desire to continue CGRA development in the vein of 

the Mosaic project.  It was driven by the question of how to get better performance out of 

CGRAs.  This depends a great deal on the application.  Many practical scenarios will be limited 

by factors outside the underlying the computing substrate.  Still others may be limited by details 

of the algorithm solving a particular problem.  However, I saw a need to increase the scope of 
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code that is typically mapped to CGRAs.  The computationally intensive inner loops of 

applications are the primary target of most work in reconfigurable computing.  Whether it is an 

FPGA, CGRA or even a GPU, a host processor usually manages the marshalling of data to an 

accelerator.  While this is a useful model for a wide range of important applications, if the 

CGRA is more powerful and can efficiently handle modal application behavior, this can avoid 

expensive off-chip communication.  Offset Pipelining offers an execution model designed to 

support different phases of application execution beyond an inner loop.  Supporting per-mode IIs 

allows optimization of inner loops, but also surrounding code, making a PCC CGRA a more 

flexible platform for signal processing. 

Evaluating Offset Pipelining in the context of the broader array of computing options, we 

can see the challenge of promoting CGRAs as a competitive platform.  Despite slowing single 

threaded performance increases, multi-core processors continue to improve power efficiency and 

have an enormous advantage of flexibility and rapid development.  GPUs likewise offer 

impressive performance for certain classes of applications and offer a palatable programming 

model.  Development productivity sinks rapidly for FPGAs while gaining the benefit of highly 

customized hardware solutions.  Unfortunately, CGRAs do not yet make a compelling case 

compared to established devices.  The tools are immature compared to conventional hardware or 

software flows and there are many subtleties in the various hardware implementations. 

12.5 LIMITATIONS 

The results presented in this work are promising.  However, a more critical perspective is equally 

important to evaluating the conditions under which Offset Pipelining and the associated mapping 

algorithms are useful.  The benchmarks selected for our evaluation all include significant modal 

behavior making them good candidates for Offset Pipelining.  Applications without this feature 

would be mapped no better, and usually worse, than with existing techniques. 

Many applications can be decomposed into a series of processing steps that form a pipeline 

of communicating processes.  This eliminates the modal behavior desirable for Offset Pipelining.  

Moving large amounts of data around a device is increasingly a dominant factor in energy 

consumption [KBB+08], but such a pipeline might be preferable to maximize throughput.  Offset 

Pipelining would likely be less useful in these scenarios, but could still be competitive if the 

available hardware is highly constrained or if efficiency is preferred over raw throughput. 
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Unlike the Mosaic project, this work does not include a front end compiler generating 

dataflow graphs for scheduling.  With hand written benchmarks, it was infeasible to customize 

many versions to target various device sizes.  The result that Offset Pipelining excels in a 

resource limited regime could be bolstered if the applications were automatically tuned to the 

available resources.  This would make it easier to remain resource limited during the mapping to 

avoid recurrence limited performance. 

One of the main goals in exploring the use of spatial architectures like CGRAs is to promote 

scalable hardware and an accompanying execution model.  While control in modulo scheduled 

CGRAs can be readily distributed among replicated modulo counters, this is not the case for 

Offset Pipelining.  Run time control is ultimately centralized in the offset 0 domain.  For 

applications significantly larger than the benchmarks used here, this centralization may 

ultimately limit the potential scalability. 

A practical architecture might also include computational elements with larger latencies than 

those explored here.  In this work, the majority of operations execute in a single cycle with 

multiplication being the exception with a two-cycle latency.  As latencies increase, the mapped 

domain offsets likely increase as well which puts more pressure on the EveryTime router as the 

number of possible execution paths go up with increased offset spacing.  To avoid 

overprovisioning the channel width, striking the correct balance in the device architecture is 

important. 

12.6 FUTURE WORK 

There are a wide variety of areas to explore related to Offset Pipelining.  This initial foray into 

the execution model and algorithms demonstrates a prototype tool flow but certainly does not 

thoroughly explore all aspects of the system.  This sections points out some areas where further 

research may be fruitful and imagines Offset Pipelining as a component in a larger CGRA tool 

suite. 

12.6.1 Front End Compiler 

The algorithms presented in this work form the central pieces of a tool flow for mapping to PPC 

CGRAs, but notably absent here is a front end compiler for generating dataflow graphs that can 

be consumed by OPS.  Just as the Macah [Ylv10] compiler provided an auto-tuning mechanism 
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for SPR mapped applications in the Mosaic project, corresponding work for Offset Pipelining 

could provide a suite of optimizations for PPC CGRAs.  This effort might include automatic or 

programmer specified mode decomposition, transformations such as loop unrolling, and a 

facility to specify an optimization formula to help tailor the application to the hardware before 

beginning the back-end mapping flow.  The LLVM [LA17] compiler infrastructure, while 

focused on conventional processor architectures, uses a SSA intermediate representation well 

suited to providing input to a back end CGRA flow. 

12.6.2 Scheduling Alternatives 

The algorithms themselves could be significantly refined to explore alternative scheduling, 

placement, and routing strategies as well as automatic application tuning based on feedback from 

the mapping tools.  OPS is inspired by iterative modulo scheduling, but integrating concepts 

from alternatives like edge-centric modulo scheduling or swing modulo scheduling could 

improve scheduling.  Providing a greater degree of architecture awareness during scheduling 

would also be useful in improving mapping quality.  While the bulk of dataflow graph 

optimization would likely reside in a front-end compiler, the scheduling process might also 

integrate some automatic tuning.  Lastly, the offset shaping process seems like a ripe target for 

improvement, perhaps by formulating the problem as an integer linear program as a starting 

point. 

12.6.3 Device Architecture 

The device architecture itself should also be explored in terms of domain and interconnect 

composition.  A detailed architecture exploration would highlight features that are useful for 

Offset Pipelining that may be different from conventional CGRAs.  While the Mosaic project 

indicated that scheduled resources are preferable for the bulk of the interconnect, this is not 

necessarily the case for Offset Pipelining if static routes can be effectively shared at mode 

transitions.  Crossbar depopulation and the tile connectivity pattern should similarly be explored. 

A major concession made while developing Offset Pipelining was to remain limited to a 

homogenous architecture.  The original plan to provide different domain types with different 

resource compositions proved to be problematic for the scheduling algorithm and defining the 

target architecture required some baseline understanding of how applications are mapped to the 
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device.  With this initial work completed based on the Mosaic cluster composition, it would be 

an interesting extension to solve the heterogeneous scheduling problem and optimize the 

architecture around this capability. 

12.6.4 Offset Pipelining as a Component 

While the focus of this work has been on multi-mode application mapping, there is an 

important broader perspective to consider for CGRA mapping tools.  CGRAs supporting Offset 

Pipelining have two inherent properties that would facilitate use in a larger tool chain 

infrastructure.  The pipelined program counters can be configured to perform as modulo counters 

for existing tool flows such as PA-SPR that leverage modulo scheduling, so for code consisting 

of a simple loop, these tools may be preferable to an Offset Pipelined approach.  These CGRAs 

could also be decomposed into independent regions that do not have a fixed scheduling 

relationship.  One region might be modulo scheduled while another Offset Pipelined.  They can 

then communicate through asynchronous channels to build a larger application out of multiple 

subprogram kernels.  Provided the application can be partitioned effectively, such a tool chain 

could use the best tool for each portion of the application to map to a region of the device.  As 

noted in [PH12], the area overhead for mechanisms to support distributed stalling and program 

counters would be a less than 2%. 

The decision to use modulo scheduling or Offset Pipelining comes down to three major 

factors:  

 How complex is the control flow of the target code? 

 How many resources are available for the mapping? 

 How sensitive is the application to latency? 

It is clear that a single loop matches the modulo scheduling paradigm.  Applying Offset 

Pipelining to a single loop with no branching can be no better than modulo scheduling.  It may 

be worse if the constraint of issue slot windows limits the scheduling. 

An application with significant branching can still be modulo scheduled by using 

predication or predicate aware sharing to provide the necessary control flow.  Such an 

application might still achieve recurrence limited performance if enough resources are available.  

However, even with abundant resources, the application will eventually become limited by 

communication due to the physical placement of operations on the device.  In the extreme, a 
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large application with significant branching that has been modulo scheduled will be limited by 

how quickly control information can be propagated across the device. 

On the other hand, Offset Pipelining is designed to support diverse control flow, particularly 

when an application has distinct phases of execution.  It offers better performance by allowing 

each mode to execute with its own II rather than a single II for the entire application. 

Predicate aware sharing introduced in Chapter 9 provides some of the same advantages as 

Offset Pipelining.  Operations can share physical resources, saving issue slots and providing a 

more compact implementation, which is beneficial for subsequent tool phases.  Predicate aware 

sharing is particularly powerful for managing conditional behavior in inner loops where 

conventional predication would consume a larger number of resources.  On the other hand, the 

benefit of multiple, independent IIs in Offset Pipelining is suitable for applications that include a 

sequence of loops, with each implemented as an independent mode.  This organization helps 

optimize each mode in relative isolation to improve overall throughput.  A further refinement to 

the Offset Pipelining tool chain would add support for predicate aware sharing to further broaden 

the scope of applications that can be efficiently mapped. 

A combination of predicate aware sharing with the multi-mode support of Offset Pipelining 

would provide a versatile infrastructure for CGRA application mapping.  While a sequence of 

loop bodies would be best handled by Offset Pipelining to leverage independent IIs, predicate 

aware sharing would be applied to conditional execution within the modes to further compact the 

resulting mapping. 

Offset Pipelining offers an alternative execution model for modal applications on CGRAs.  

While useful for these applications, it does not replace other techniques like PA-SPR.  Other 

research as part of the Mosaic project [Kni10] explored decomposing applications into 

asynchronous communicating kernels and partitioning the target device to allow different 

computations to coexist simultaneously.  Offset Pipelining becomes a tool for implementation 

within a region of the device managed by a higher level partitioning tool such as the Mosaic 

floorplanner [WKY+12].  This opens the door for further optimization tools that refine the 

implementation strategy to fit larger and more complex applications on CGRA devices. 
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12.6.5 Machine Learning Applications 

An excellent example of an application space that might benefit from CGRAs is machine 

learning.  Exploring benchmarks in this space on Offset Pipelined CGRAs would be very 

interesting, perhaps suggesting new features to add to the architectures or adjustments to the 

mapping tools to reflect this area of research.  Modal application support in Offset Pipelining 

might be particularly useful for online training and execution of neural networks allowing the 

device to rapidly switch between these modes.  Companies like Google are already exploring 

custom silicon for these applications in support of the TensorFlow framework [AAB+16].  

CGRA architectures could become a central component of integrating machine learning into 

practical solutions.  They can be configured to accelerate the long running, compute intensive 

dataflow graphs inherent in TensorFlow applications and can additionally support the modest 

control needs.  IBM has taken a different approach to machine learning with spatial computing 

[MAA+11].  Their neuromorphic architecture aims to mimic biological systems with very low 

power consumption and asynchronous signaling across the network of neuron cores. 

Other companies are exploring machine learning using existing devices rather than custom 

architectures.  Besides a neuromorphic approach, IBM researchers are also integrating FGPAs 

with POWER servers [Wittig16] demonstrating significant efficiency gains.  Microsoft has 

moved beyond research, using FPGAs initially for accelerating search [PCC+14] and continues 

to refine the architecture [CCP+16] applying FPGAs to deep learning.  The combination of 

reconfigurability to accommodate new applications and customized datapath precision have 

proved highly capable while remaining within a reasonable power budget.  CGRAs tailored to 

machine learning would adopt the desired datapath width to move toward an architecture with 

the benefits of reconfigurability combined with resources optimized for the application domain. 

12.7 PARTING THOUGHT 

The goal of Offset Pipelining is to explore possible techniques to get the most performance and 

efficiency out of available silicon resources.  By giving designers more flexibility in application 

mapping, this work increases the scope of CGRA applications, making the CGRA a more 

compelling option for future research and commercial viability.  Offset Pipelining attempts to 
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strike a balance between practical hardware architectures and automatic high quality mapping.  

Hopefully this work serves to accelerate future development of CGRA technologies. 
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