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ABSTRACT
Internet-based computing has significant potential for improving
most high-performance computing, including VLSI CAD.  In this
paper we consider the ramifications of the Internet on electronics
design, and develop two models for Web-based CAD.  We also
investigate the security of these systems, and propose methods
for protection against threats both from unrelated users, as well
as from the CAD tools and tool developers themselves.  These
techniques provide methods for hiding unnecessary information.
Such techniques will be key to the development of future
Internet-based CAD applications, since serious CAD users will
be unwilling to use any CAD methodology that risks exposing
their designs to outsiders.  By enabling Web-based CAD, these
techniques can improve CAD performance, enable collaboratory
design, and create a usage-based pricing methodology.
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1. Introduction
With the development of fabrication processes that can put tens
of millions of transistors on a single chip, the design process has
gotten so complex that human designers cannot create circuits on
their own.  VLSI CAD research efforts and software vendors
have successfully created tools to handle many of these mapping
tasks, making software an integral part of all complex circuit
design efforts.  However, while such tools can handle much of
the design process, making VLSI designers more productive,
these tools do not come without a price.  Due to the complexity
of the tasks undertaken by these VLSI CAD tools, the software
can take a significant amount of time to compute.  Runtimes of
hours or days are common for many tasks, and may grow to
weeks with future 100 Million transistor designs, slowing down
the development of these circuits.  For example, tools for using
logic emulators to speed up the mapping process can take a day
or more to operate [6], meaning that before simulation
acceleration hardware can be used the designer must wait a
significant amount of time.  For tasks such as design space
exploration, where multiple candidate circuit structures are
synthesized in order to determine the best approach to adopt,
multi-day runtimes are not surprising.  These delays increase

time-to-market, and reduce circuit quality by restricting the
number of alternative implementations that can be considered.

It is possible to speed up CAD algorithms via high-performance
computing systems.  Parallel Supercomputers and Networks-of-
Workstations can be brought to bear on most CAD problems,
speeding up the algorithms.  Custom hardware such as logic
emulators and simulation accelerators can speed up some
algorithms, particularly circuit simulation.  However, these
hardware resources can be extremely expensive, making them
unavailable to a large segment of the CAD user community.

A similar dynamic has occurred in general-purpose computing,
leading to the creation of Supercomputing centers.  Such centers
provide supercomputer access to a broad user community by
hooking these machines to a network and allowing remote
access.  We believe a solution to the performance problem for
VLSI CAD is similar: develop a Web-based CAD Compute
Center, providing both hardware and software for high-
performance computing, and make it accessible over the Internet
via a World-Wide-Web interface.  This will allow the cost of the
high-performance computing resources (supercomputers,
networks-of-workstations, and simulation accelerators/logic
emulators) to be amortized over a large user base, and give even
small VLSI design houses access to the computation resources
that are becoming a requirement for VLSI design.

Beyond just providing affordable access to high-performance
computing resources, a Web-based CAD Compute Center can
have several benefits for VLSI design.  By providing an Internet
interface to a design project’s CAD resources, it will enable user
groups distributed geographically to use a single set of tools, and
collaborate on a complex design project.  Collaborative design is
becoming much more important because the integration of
complete systems onto a single chip requires a large variety of
skills, skills that may not all be found at a single site.

The final benefit of a centralized CAD compute center is the
ability to implement a per-use pricing policy for CAD software.
Current CAD software is sold on a per-license (per-seat) basis,
meaning that an organization that ever wishes to use N copies of
a CAD tool simultaneously must pay for continuous use of those
N tools.  Thus, under the current pricing scheme there is no
differentiation between a casual user that uses a given capability
rarely, and thus is unwilling to pay a significant amount for a
tool, and power users that constantly use that tool.  Both software
companies and users are promoting a usage-based pricing
structure, where users are billed based upon the actual value
(measured in time executing the algorithm) the software delivers
to the user.  By creating a centralized CAD compute center such
a per-use pricing model can be implemented (and will be
required in order to fairly allocate computer time to the center’s
users), something that is much more difficult to do in today’s
model of software distributed to each end-user’s machine.



While such a CAD compute center has tremendous potential for
supporting current and future VLSI design, there are several
issues that must be addressed to make such a system a reality.  In
this paper we consider one of these problems, the development of
security protocols for maintaining the privacy of user designs
within an Internet-based computing paradigm.

2. Web-based CAD
There have been several research projects that have harnessed
the World Wide Web for providing access to VLSI CAD tools [2,
3, 7 - 11].  In general, there are two models for such systems: the
Applet model, and the Compute Center model.  Under the Applet
model the CAD algorithm is sent to the user’s machine as Java
Applets (or any other similar technology), and the algorithm
executes on the user’s machine.  Thus, in this model the user
must provide the compute resources for performing the CAD
task, meaning that there is no way to amortize the cost of high-
performance computing resources.  Under the Compute Center
model the design files are transferred to a centralized, shared
compute center, where the CAD algorithms are applied to the
design.  Thus, the tools operate on the resources of the center.

As with anything that operates over the Internet, data security is
an important concern for both Web-based CAD models.  The
design files for a VLSI chip represent a significant intellectual
property resource, and most users will be unwilling to use any
computing model that does not protect the secrecy of these files.
Note that even within a company Intranet, where CAD resources
are provided within a protected network accessible only to that
company’s computers, data security is still a significant concern
since access to design files is usually restricted to only those
employees working directly on that project.

The security challenges for a Web-based CAD system can be
broken into three categories: Client Security, Transmission
Security, and Server Security.  Client Security encompasses all of
the concerns of protecting data on the user’s machine from
attacks unrelated to the Web-based CAD system.  Transmission
Security deals with the need for ensuring that data transmitted
between the user and a Compute Server is not intercepted and
decrypted, and includes both information sent to and received
from the server.  Note that the Applet model does not include
these concerns since the data never leaves the user’s machine.
Finally, Server Security represents the concern that the Web-
based CAD tools and developers themselves may not be trusted,
and thus steps must be taken to minimize the amount of
information that can be obtained by the CAD tools.

Client and Transmission Security are faced by most Internet
systems, and thus we can use standard solutions to these
problems.  In order to protect machines connected to the Internet
techniques such as firewalls and other security protocols have
been developed.  Securing transmissions between the compute
center and the user can be handled by public-key encryption,
such as PGP.  All communications from the user to the compute
center will be encrypted by the center’s public key (ensuring that
only the compute center can decrypt the information), and
communication back uses the user’s public key.  Thus, we can
handle the Client Security and Transmission Security issues with
standard solutions from the Internet community, and therefore
they do not pose special problems for Web-based CAD.

Server Security is a problem somewhat unique to Web-based
CAD (and, as we will see, the solutions are very application-
specific).  Most security methods for Web-based systems
concentrate on keeping Java Applets and other Web-based tools
from gaining access to data they are not intended to view.  Thus,
restrictions are placed on file read and write operations.
However, the problem with Web-based CAD is that the user
must reveal parts of their design to the applets or compute center,
since the CAD tools need this information to perform their
optimizations.  However, the users do not want this information
divulged to others, since the circuit designs are often very
valuable intellectual property, and are kept as trade secrets.
Thus, even though the user may give information to the CAD
tools in order to allow them to optimize the design, there must be
some guarantees that the entire design is not then revealed to the
CAD tool owners, who may not be trusted.  For example, the
owners of the computer server or CAD applets may be university
researchers, and commercial VLSI design projects may be
unwilling to use such a system without strong guarantees that the
design data will be kept confidential (often requiring guarantees
stronger than even nondisclosure or confidentiality agreements).

In the rest of this paper we present new methods for Server
Security for Web-based CAD.  As we will see, these methods
primarily revolve around the idea that only the information
necessary to perform a given optimization should be supplied to
the CAD tool, while all other information should be hidden or
removed.  Note that similar techniques can be used for
benchmarking, releasing only those features of a circuit necessary
to test a given optimization, as well as the sale of cores and other
circuit components, where designs sold to customers must be
made as resistant to reverse-engineering as possible.

3. Data Security Techniques
The main challenge for Sever Security for Web-based CAD is the
fact that the CAD user must divulge information to the CAD tool
for it to perform its optimization, yet the user needs assurances
that this does not let others learn the details of their design.
Although intellectual property agreements may help, relying on
these agreements is too risky for many potential users.  The
solution to this dilemma is to make sure that only the information
necessary for the tool to perform its optimization is given to the
center.  For example, comments in an file do nothing to help the
CAD algorithms operate, and thus stripping the comments from
all files before submitting them to the Web-based CAD
algorithms helps limit the amount of information divulged.

While comment stripping is a universal information-hiding
transformation for circuits, since this removes information
unnecessary for any optimization algorithm, many other
transformations are not universal.  As we will see, some of the
methods for Server Security eliminate information that is unused
in some optimization steps, yet is required for others.  Thus, as
we consider different methods for Server Security, we must
realize that not all techniques can be used before each CAD
algorithm, and some methods will be only useful in specific
circumstances.  Also, some CAD optimizations, such as logic
synthesis and logic simulation, require a great deal of
information about the input circuit, and thus there are only
limited possibilities for information hiding.



To apply the information-hiding transformations proposed in this
paper it is necessary to develop programs to perform these
operations before the information is sent to the Web-based CAD
algorithm, as well as reintegration operations to replace the
hidden information into the results from the Web-based CAD
tools.  Note that this program cannot itself be part of the Web-
based CAD toolsuite, since it will have access to the raw design
files, and can itself be viewed as a security vulnerability.  The
answer to this problem is to provide simple information hiding
algorithms in source code, allowing users to verify that the
algorithm does not contain any security vulnerabilities.

In the sections that follow, we will discuss numerous methods for
providing Server Security for Web-based CAD.

3.1 Current Techniques
There are techniques that have already been developed for
protecting simulatable files, such as processor models and other
cores.  For example, Cadence provides an encryption method that
allows encrypted files to be distributed to end-users with some
hope that the design information cannot be recovered.  However,
this methodology protects the source files from direct observation
(similar to Transmission Security), but does not protect the
information from the Cadence CAD tools themselves.  In fact,
methods have already been demonstrated for coaxing the design
information out of Cadence’s Verilog-XL simulator [4].

A more promising approach is provided by LEDA’s KRYPTON
code scrambler.  The system hides information by renaming all
variable names in a circuit to a hard to read series of “I”, “1”,
“0”, and “O” characters, removing formatting and comments,
applying constant propagation, and other optimizations.  Note
that not only do these optimizations make it harder for a human
to understand the source code, by eliminating the original
variable names from the code this eliminates information from
the circuit, since in (well-written) code the variable names carry
information about the values they contain.  This alteration to
variable names should also be a universal transformation, since
most or all CAD algorithms should not need this information.

3.2 Netlist Flattening
Hierarchical circuit descriptions, such as those found in hardware
description languages, group together common subcircuits to
condense the circuit description, and highlight commonalties in
the circuit.  By replacing calls to subcircuits by the logic itself,
and removing hierarchy levels, this information can be removed
from the circuit without changing the circuit functionality.

3.3 Functionality Removal
CAD optimizations such as partitioning, placement, and routing
do not care about the exact functions computed in a circuit, but
instead view the circuit netlist as a graph consisting of only
connectivity information, and perhaps node size.  Thus, while the
CAD tool may take in circuit descriptions containing the exact
logic functionality, it is immediately thrown away.  Thus, when
using such a tool we can eliminate the logic functions, or replace
them with a default (i.e. all nodes become AND gates), before
submitting the design.  This removes most information from the
data provided to the CAD tool, while still allowing the tool to
perform its optimizations.

3.4 Net Direction Alteration
Even after the functionality in a circuit is removed, the direction
of signal flow can give hints to circuit behavior, such as bus
widths and other structures.  In some circuit representations it is
possible to simply remove the direction information, turning the
circuit into an undirected graph.  Other formats may require
signal directionality, making removing this information difficult.
For example, the XNF format (input to the Xilinx FPGA tools
[12]) requires each gate to have a single output, and generally
requires each net to have exactly one source.  Although we
cannot remove net directionality from such a circuit, we can
destroy the value of this information by reversing the direction of
some nets.  Simply reversing the direction of a single net will not
work, since the original source will no longer generate any
signals, and the original sink will generate two signals.  The
solution is to find a path in the circuit such that reversing all of
the signals on the path maintains the format requirements.  One
possibility is to find a directed path from a circuit input to any
output, and then reverse these signals.  Since along this path
every node will have been the source of one signal, and the sink
of another, when the signals are reversed this node will still be
the source of exactly one signal.  Another method is to perform
the same process for state bits instead of circuit I/Os, except that
a directed path must be found starting from the state bit’s output,
and leading to an input of that stateholding element (a directed
cycle containing the stateholding function).

It is important to realize that removing or changing the net
direction can only be done before certain optimizations.  The
main problem is that by removing net direction, or changing
signal directions, critical path information can be lost.  Thus, this
technique can be applied before area-optimization algorithms for
partitioning, placement, and routing, but may not be valid for
delay optimizing tools.  Slack assignment algorithms, where
critical path information is added to the circuit before the main
algorithm is run, may be tolerant of this data hiding technique as
long as the slacks are computed before nets are reversed.

3.5 Net Removal
Perhaps the most easily identifiable parts of a circuit are the
high-fanout signals, particularly clock and reset signals.  Once
these signals are found, the registers are easily determined,
giving an idea of the overall circuit structure.  However, for some
CAD algorithms these high-fanout nets are unnecessary, and in
fact their removal may improve the speed of the CAD tool.  For
example, partitioning and placement algorithms can normally
ignore very high fanout nets, since it is impossible to minimize
their length.  Routing algorithms for FPGAs can also ignore these
signals, since they will be carried on special resources, and need
not be considered during normal routing.  Thus, high fanout nets
can be removed before sending a design to such CAD tools,
helping to hide the stateholding functions in the circuit.

3.6 Circuit Partitioning
One method for speeding up CAD tools is to break down a large
design problem into smaller pieces.  For example, the placement
problem for a large VLSI chip can be broken down to a series of
subproblems, where each run of the placement tool places only a
fraction of the overall chip area.  This technique can also be
effective for hiding the details of the design being optimized.



Instead of giving a CAD tool the entire circuit to optimize, the
circuit is broken down into subproblems and separately
optimized.  As long as there is a way to break the problem into
subproblems without introducing significant inefficiencies this
methodology can be applied.  Note that it is critical to ensure that
the information needed to reconnect the pieces is hidden, so
reintegration information is retained at the user site.

Not only can splitting up a problem hide information by making
it hard to reassemble the circuit, it is possible to take this further
by adding bogus data to the processing, or optimizing unrelated
circuits at the same time.  Specifically, even though the CAD
tools may only see one part of the circuit at the time, they could
collect all input files received within a given time period and try
to merge them into a complete circuit.  Optimizing two or more
unrelated circuits at the same time will make it difficult to decide
which elements belong to which circuit.  However, details of the
circuit domain may leave characteristic features on the circuit,
making separation of unrelated subcircuits possible.  Bogus data
can instead be added to the data stream.  Although this will slow
down processing because the CAD tools must also optimize the
bogus data, this overhead can be kept small.  For example, if a
circuit is split into 100 subproblems, and 10 bogus subproblems
are also added, this means only a 10% overhead, yet significantly
complicates reverse-engineering.  A similar technique is used in
chip design, where bogus circuitry is added to otherwise unused
portions of the chip, complicating reverse-engineering attempts.
In order to generate this bogus data, modified portions of the
current design, or portions from other designs, can be used.

3.7 Component Simplification
High fanin nodes and high fanout signals can provide convenient
points of reference, aiding reverse-engineering.  For example, if
a repeated component is one of the few circuit structures using a
7-input logic gate, finding all 7-input gates in the circuit helps
find all instances of that component.  This can also be a
landmark for connecting data from different steps in the mapping
process.  For example, a partitioning algorithm may be given the
entire circuit, but with all information except connectivity
removed.  After partitioning a technology mapper would receive
complete information on the logic in each of the subcomponents.
With information from both steps, a user could look for
characteristic node fanins and net fanouts to determine which
inputs to the technology mapping algorithm correspond to which
partitions created by the partitioner, allowing for reintegration of
the subcomponents.  Finally, the grouping of logic into high-fanin
gates is the result of design decisions, containing information
similar to the hierarchy information described earlier.

The answer is to break all components down to smaller elements,
hiding this information.  For logic functions this is often easy,
since multi-input gates can be converted into trees of 2-input
functions.  Breaking up high fanout signals can be more difficult.
However, there are several approaches.  First, buffers can be
inserted, splitting the fanout among multiple drivers.  Also, the
source logic for this net can be duplicated, splitting the fanout
amongst the copies.  Finally, some algorithms require that all
multi-terminal nets be replaced with 2-terminal nets.  For
example, Spectral methods for logic partitioning often convert
multi-terminal nets to two terminal nets via clique expansion or
other methods [1].  This can be taken advantage of for Server

Security for Web-based CAD by performing the multi-terminal to
two terminal net conversion on the user’s machine with trusted
software, eliminating this information from the input netlists.

3.8 I/O Encryption & Splitting
For the specific case of logic simulation/emulation there are
modifications that can be done to the circuit to improve Server
Security.  For simulation the circuit does not have to have exactly
the same behavior as the real circuit, but the user must be able to
know from the simulation how the real circuit will behave.  For
example, we can add an inverter to one of the outputs of the
simulation, knowing that whatever the simulation does, the real
circuit will produce the opposite value on that output.  We can
extend this transformation further, radically changing the
interface behavior.  One simple method is to take two output
signals and replace one of them with the XOR of the two values.
Thus, if the circuit used to compute A and B, and now computes
A and A XOR B, we can recover the value of B by computing the
XOR of the two signals.  Similar optimizations can be applied to
the circuit inputs, and can be applied multiple times to further
encrypt the I/O behavior.  Even more complex I/O modifications
can be applied, as long as there is a relatively simple method for
recovering the circuit I/O behavior given the simulation behavior.

If we just add this extra logic as a wrapper around the original
circuit, someone aware of this transformation should be able to
recover the original circuit.  However, instead of XOR gates we
can use the equivalent AND-OR form, and then migrate these
gates into the circuit itself.  Specifically, the new gates can be
moved into the circuit via algebraic transformations to the circuit.
Distributive and associative laws of Boolean Algebra can be
used, integrating this logic into the complete simulation.
Applying these rules a random number of times (and thus
pushing the logic into the circuit a random distance) should make
it quite difficult to remove this I/O encryption.

One optimization to the I/O behavior that should be extremely
hard for an attacker to undo is to split the circuit inputs into
several separate signals.  For example, if an input to the circuit
fans out to three destinations, it can be replaced with three
separate inputs, each going to only one destination.  Thus, after
this transformation the CAD tool no longer knows that those
three destinations should always receive the same value, yet the
user of the circuit can easily ensure that this always happens.

For all of these I/O transformations, the effects can be hidden
from the user quite simply.  The user specifies the inputs to the
original circuit, and a simple software algorithm can generate the
corresponding inputs to the transformed circuit.  Once the CAD
tools create output for the simulation, the results are fed through
a similar transformation algorithm on the user’s machine, which
takes the simulation output and recreates the corresponding
output from the original circuit.  In this way, I/O encryption and
splitting can be used to help improve Server Security, while the
user will see no changes in the simulation behavior.

4. Data Security Technique Interactions
As discussed in the previous section, there are numerous ways to
provide Server Security for Web-based CAD.  These techniques
alter the circuit information sent to the CAD tool, minimizing the
amount of information that can be compromised if the CAD tools
or Compute Server proves to be untrustworthy or malicious.



Although these techniques cannot protect all data about a design,
since the CAD tools require information about the design being
optimized in order to operate, these techniques make it more
difficult to reconstruct the complete circuit description, and
minimize the vulnerability introduced by Web-based CAD.

As pointed out in the description of some of the security
techniques, not all optimizations can be used before some CAD
steps.  For example, although comment removal and variable
renaming can be applied before submitting the design to any
CAD tool, since these tools should not depend on these features
of the input netlist, I/O encryption and splitting can only be
applied in a limited set of circumstances since it alters the
behavior of the circuit being manipulated.

While some security techniques are simply inappropriate in some
circumstances, use of others may imply a tradeoff between
mapping quality or performance and data security.  For example,
net direction alteration changes the directionality of signals in a
circuit.  Such a transformation can be applied before most mincut
based partitioners, since these algorithms do not use information
on net directionality.  However, such a partitioner might use
logic replication, the process of duplicating logic nodes to reduce
the communication between partitions.  Such an optimization
does require circuit directionality, since when replicating a logic
node the output of that node is always removed from the cutset
because the signal is computed in each partition simultaneously,
while inputs to the logic node are forced into the cutset unless
their sources are also replicated.  This means that if a circuit

undergoes net direction alteration before partitioning, any
replication features in the partitioner must be turned off,
adversely affecting the resulting quality.

Some security techniques may impact CAD runtimes instead of
quality.  For example, techniques such as I/O encryption alter the
topology, reducing locality by connecting unrelated portions of
the circuit.  When this circuit is mapped to a logic emulator, the
loss of locality may increase the required communications in the
system, slowing down the emulator’s performance.  Thus, when
deciding which security transformations should be applied to a
circuit, the resulting impact on the quality and runtimes of the
CAD algorithms must also be considered.

5. Web-based CAD Data Security Testbed
In order to test the feasibility of our data security techniques, we
have developed a prototype encryption system.  Our program
begins with a circuit in XNF format, the format used by the
Xilinx FPGA toolsuite.  The algorithm transforms the circuit into
an encrypted form.  It also creates a dictionary file, which
contains the information needed to reverse the encryption steps
(Figure 1).  Via command line options various encryption
techniques can be applied.  Our system includes variable
renaming, node order alteration, functionality removal, and net
direction alteration.  The resulting file is a valid XNF file, which
can be submitted to CAD algorithms that accept XNF.

Results for running our encryption algorithm on some standard
benchmark circuits is shown in Table 1.  The results include the

                     Source:
SYM, <8112>, OUTFF
PIN, C, I, Clk_internal
PIN, D, I, cntrl/$MemWriter349
PIN, Q, O, MemWrite
END
SYM, $Instructionr11<31>_DFF_EN, DFF
PIN, C, I, Clk_internal
PIN, D, I, MemData<31>_internal
PIN, CE, I, cntrl/$stater370<0>
PIN, Q, O, $Instructionr11<31>
END
SYM, $ReadAddr27<63>, OR
PIN, 1, I, <5133>
PIN, 2, I, <5134>
PIN, O, O, $ReadAddr27<63>
END
SYM, $cntrl/$MemReadr136, OR
PIN, 1, I, $Instructionr11<29>
PIN, 2, I, $Instructionr11<26>, , INV
PIN, 3, I, <1500>
PIN, 4, I, <1662>
PIN, O, O, $cntrl/$MemReadr136
END

                             Dictionary:
I11O00O ReadData2<0> A -1
I1101001 ReadData2<3> A -1
I01O011 ReadData2<4> OR 3696 { 1 <3338> 2 <3339> O ReadData2<4> }
IO1OI001 ReadData2<1> OR 3705 { 1 <3344> 2 <3345> O ReadData2<1> }
I011O00 ReadData2<2> A -1

                              Encrypted:
SYM, I000000, AND
PIN, 1, I, I000000
PIN, 2, I, IO00000
PIN, O, O, I100000
END
SYM, II00000, AND
PIN, 1, I, I0O0000
PIN, 2, I, II00000
PIN, O, O, IOO0000
END
SYM, I1O0000, AND
PIN, 1, I, IIO0000
PIN, 2, I, I010000
PIN, O, O, I1O0000
END

Figure 1.  Encryption example, containing excerpts from the source, encrypted, and dictionary files.  Note that with the file order
randomization feature, the portions of the files shown do not correspond to the same regions of the circuit.  The source file is
altered to create the encrypted version, which in this case retains only the connectivity information.  A dictionary file is also
created which allows the source to be recreated from the encrypted version.  The dictionary would be retained by the user, while
the encrypted version is sent to the CAD center.



runtimes of the algorithm, as well as the percent of the nets
reversed.  Note that while we choose to randomly reverse half of
the circuit outputs and flip flops, this tends to result in an overall
reversal of about one third of the nets in the circuit.  However,
this is more than sufficient to make the direction of the nets in
the circuit useless for reverse engineering.

Circuit Nodes Time (sec) % Reversed

S38584 22,451 956.94 27%
s38417 25,589 769.86 27%
s35932 19,880 378.53 45%
s15850 11,071 107.41 29%
s9234 6,098 48.39 23%
s5378 3,225 22.09 28%
s1423 831 4.86 28%
s208 129 1.34 30%

Table 1.  Results from protecting benchmarks with
prototype data security algorithm.  Circuits had their signal
names encrypted, their order in the file randomized, the
functions removed, and half of all outputs and flip-flops
were used as starting points for net reversal.  The number
of nodes, runtimes, and the portion of nets reversed is
listed.  The runtimes include the time to create the
dictionary files to allow for undoing the encryption.

6. Conclusions
The Internet is revolutionizing most communication and
computation systems.  It also has the potential to radically change
the way future electronic systems are designed by creating a new
methodology for VLSI CAD.  However, just like every other
domain, security concerns with an Internet based computing
paradigm may overwhelm the potential benefits.

In this paper we presented two models of Web-based CAD:
Applets and Compute Centers.  We also demonstrated how the
security concerns of these systems can be broken down to Client,
Transmission, and Server security concerns.  Client security
entails the securing of the user’s machine against external
intrusion, and can be handled by firewall techniques currently in
place.  Transmission security encompasses concerns over
transporting information to a Compute Center, and can be
supported by public key encryption techniques.  The remaining
problem is server security, the concern that the CAD tools
themselves (or the creators of these tools) are not trustworthy,
and thus may divulge information given to these tools.

In this paper we proposed numerous new techniques for server
security for Web-based CAD, as well as demonstrated how
existing techniques can be harnessed for this new domain.
Techniques such as variable renaming and formatting and
comment removal eliminate the self-documenting code features
of hardware description languages, while netlist flattening and
component simplification removes grouping information.  Further
information hiding can be accomplished by understanding what
information in a circuit is not needed by a given CAD tool.
These techniques include functionality removal, net direction
alteration, and net removal.  Circuit partitioning can also serve to
hide information by only providing subportions of the circuit, and
potentially providing bogus data.  Finally, I/O encryption and
splitting can alter the interface of circuits under simulation,
complicating reverse-engineering attempts.

By combining these techniques together, a complete security
methodology for Web-based CAD can be provided.  This will
help create a Web-based CAD methodology that can provide
significant benefits for future VLSI design efforts.  Applet-based
CAD can enable collaborative design between geographically
distant designers and create a usage-based pricing methodology
for CAD software.  Compute Centers can provide these same
benefits, as well as providing high-performance computation
resources in an affordable manner by amortizing their costs
across a large user base.

7. Acknowledgements
This research was supported in part by a grant from the National
Science Foundation, and software donations from Xilinx, Inc.
We also wish to thank Mohammed Khalid from the University of
Toronto for providing example XNF files for use in this research.

8. References
[1] C. J. Alpert, A. B. Kahng, "Recent Directions in Netlist

Partitioning: A Survey", Integration: the VLSI Journal, Vol.
19, No. 1-2, pp. 1-81, 1995.

[2] C. Barrett, D. Dill, J. Levitt, SVC,
http://agamemnon.stanford.edu/levitt/vc.html, 1997.

[3] D. Chakrabarti, P. Joisha, P. Banerjee, The WADE Project,
http://cpdcser.ece.nwu.edu:8080/WADE/wade.html, 1997.

[4] J. Cooley, “SPY vs. SPY: the VMC Story”, Integrated
System Design, Vol. 8, No. 90, pp. 56-64, December, 1996.

[5] M. Enos, S. Hauck, M. Sarrafzadeh, “Replication for Logic
Bipartitioning”, ICCAD, pp. 342-349, 1997.

 [6] J. Gateley, “Logic Emulation Aids Design Process”, ASIC &
EDA, July, 1994.

[7] D. Lidsky, J. M. Rabaey “Early Power Exploration--a World
Wide Web Application”, Design Automation Conference,
June 1996.

[8] David Lidsky, PowePlay,
http://infopad.eecs.berkeley.edu/PowerPlay, 1997.

[9] P. Losleben, D. Boning, A. Bhandarkar, A. Gower, H.
Huang, E. Jhong, J. Jovanovic, P.-F. Lam, M. McIlrath, W.
Moyne, S. Narayan, L. Wang, S. Wang, T. Wu, E. Zhou,
National Research Enterprise, http://www-snf.stanford.edu/
ComputationalPrototyping/comproto/nre.html, 1997.

[10] A. R. Newton, F. Chan, N. Ghazal, M. Horton, H. Hse, A.
Hsia, S. Leung, K. Nguyen, M. Shilman, M. Spiller, S.
Szollar, J. Young, J. Zhang, Weld, http://www-
cad.eecs.berkeley.edu/Respep/Research/weld, 1997.

[11] K. Saraswat, J. P. McVittie, W. Abdel-Ati, S. Abdollahi-
Alibeik, D. Bang, P. Canupp, J. Han, Z.-K. Hsiau, M. Joshi,
P. Kapur, S. Ma, B. Shieh, Speedie,
http://speedie.stanford.edu, 1997.

[12] The Programmable Logic Data Book, San Jose, CA:  Xilinx,
Inc., 1994


