
1 

Configuration Compression for Virtex FPGAs 
Zhiyuan Li 

Motorola Labs,                                               
Motorola Inc. 

Schaumburg, IL  60196 USA 
azl086@motorola.com 

Scott Hauck 
Department of Electrical Engineering 

University of Washington 
Seattle, WA 98195 USA 

hauck@ee.washington.edu 
Abstract  
Although run-time reconfigurable systems have been 
shown to achieve very high performance, the speedups 
over traditional microprocessor systems are limited by the 
cost of configuration of the hardware.  Current 
reconfigurable systems suffer from a significant overhead 
due to the time it takes to reconfigure their hardware.  In 
order to deal with this overhead, and increase the compute 
power of reconfigurable systems, it is important to develop 
hardware and software systems to reduce or eliminate this 
delay.  In this paper, we explore the idea of configuration 
compression and develop algorithms for reconfigurable 
systems.  These algorithms, targeted to Xilinx Virtex 
series FPGAs with minimum modification of hardware, 
can significantly reduce the amount of data needed to 
transfer  during configuration.  In this work we have 
extensively investigated current compression techniques, 
including Huffman coding, Arithmetic coding and LZ 
coding.  We have also developed different algorithms 
targeting different hardware structures.  Our readback 
algorithm allows certain frames to be reused as a 
dictionary.  In addition, we have developed frame 
reordering techniques that better uses the regularities by 
shuffling the sequence of the configuration.  We have also 
developed a wildcard approach that can be used for true 
partial reconfiguration.  The simulation results 
demonstrate that a factor of 4 compression ratio can be 
achieved. 
Introduction 
FPGAs are often used as powerful hardware for 
applications that require high-speed computation 
[Compton02]. One major benefit provided by FPGAs is 
the ability to reconfigure during execution.  However, the 
advantages of run-time reconfiguration do not come 
without a cost.  By requiring multiple reconfigurations to 
complete a computation, the time it takes to reconfigure 
the FPGA becomes a significant concern.  The serial-shift 
configuration approach, as its name indicated, transfers all 
programming bits into the FPGA in a serial fashion.  
Recent devices have moved to cutting-edge technology, 
resulting in FPGAs with over one million gates.  The 
configuration’s size for such devices is over one megabyte 
[Xilinx00].  It could take milliseconds to seconds to 
transfer such a large configuration using the serial-shift 
approach.   
Many techniques have studied to reduce the configuration 
overhead.  These include configuration prefetching 
[Hauck98], configuration caching [Li00], and 
configuration compression. Configuration compression 
that can reduce the total number of write operations to load 

a configuration [Hauck99, Li99]. Unfortunately, most of 
the previous compression techniques cannot be applied to 
the new generation FPGA such as Xilinx Virtex series 
[Xilinx00] with millions of gates. A LZ-based approach 
[Dandalis01] is applicable to any SRAM-based FPGA.  
However, without considering the individual features 
within the configuration bitstream this approach does not 
compress the bitstream efficiently.  In this paper, we 
propose compression approaches that work efficiently on 
Xilinx Virtex devices. 

The goal of configuration compression for reconfigurable 
systems is to minimize the amount of configuration data 
that must be transferred.  Configuration compression is 
performed at compile-time.  Once compressed, the bit-
streams are stored in off-chip memory.  During 
reconfiguration at run-time, the compressed bit-stream is 
transferred onto the reconfigurable device and then 
decompressed.  The processes of compression and 
decompression are shown in Figure 1. 
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Figure 1:  The original configuration data is compressed at 
compile-time (a).  When reconfigurations occur, the 
compressed data is transferred to the decompressor on the 
reconfigurable device (b).   

As can be seen in Figure 1, two issues must be resolved 
for configuration compression.  First, an efficient 
compression algorithm must be developed.  Second, since 
decompression is performed on-chip, building a 
decompressor should not result in significant hardware 
overhead.   

Furthermore, any configuration compression technique 
must satisfy the following two conditions: (1) the circuitry 
generated from the decompressed bit-stream must not 
cause any damage to reconfigurable devices, and (2) the 
circuitry generated must result in the same outputs as those 
produced by circuitry generated from the original 
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configuration data.  Consequently, most configuration 
compression research does not involve lossy techniques 
since any information loss in a configuration bit-stream 
may generate undesired circuitry on reconfigurable 
devices, and, even worse, may severely damage the chips.  

Lossless compression techniques satisfy the above 
conditions naturally, because the decompressed data is 
exactly the same as the original configuration data.  
Lossless data compression is a well-studied field, with a 
variety of very efficient coding algorithms.  However, 
applying these algorithms directly may not significantly 
reduce the size of the configuration bit-stream, because a 
number of differences exist between configuration 
compression and general data compression.   

Configuration Compression Vs. Data Compression 

The fundamental strategy of compression is to discover 
regularities in the original input and then design 
algorithms to take advantage of these regularities.  Since 
different datatypes possess different types of regularities, a 
compression algorithm that works well for a certain data 
input may not be as efficient as it is for other inputs.  For 
example, Lempel-Ziv compression does not compress 
image inputs as effectively as it does text inputs.  
Therefore, in order to better discover and utilize 
regularities within a certain datatype, a specific technique 
must be developed.  Existing lossless compression 
algorithms may not be able to compress configuration data 
effectively, because those algorithms cannot discover the 
potential specific regularities within configuration bit-
streams.   

Since decompression is performed on-chip, the 
architecture of a specific device can have an equally 
significant impact on compression algorithm design.  
Lossless data compression algorithms do not consider this 
architecture factor, causing the following problems: 

(1)  Significant hardware overhead can result from 
building the decompressor on-chip.  For example, a 
dictionary-based approach, Lempel-Ziv-Welch coding 
requires a significant amount of hardware to maintain a 
large lookup table during decompression. 

(2)  The decompression speed at run-time may offset the 
effectiveness of the compression.  For example, in 
Huffman compression, each code word is decompressed 
by scanning through the Huffman tree.  It is very hard to 
pipeline the decompression process, and therefore it could 
take multiple cycles to produce a symbol.  As the result, 
the time saved from transferring compressed data is 
overwhelmed by slow decompression.   

(3)  Certain special on-chip hardware that can be used as 
decompressor may be wasted.  For example, wildcard 
registers on the Xilinx 6200 series FPGAs can be used as 
decompressors.  Unfortunately, no existing algorithm has 
been developed to take advantage of this special feature.   

Realizing the unique features required for configuration 
compression, we have focused on exploring regularity and 
developing proper compression techniques for various 
devices.  However, any technique will be limited if it can 
merely apply to one device.  Therefore, our goal is to 
investigate the characteristics of different configuration 
architecture domains, and develop efficient compression 
algorithms for a given domain.  In order to find the best 
approach to reduce the size of the configuration file, we 
will consider general-purpose compression techniques 
such as Huffman, Arithmetic and Lempel-Ziv coding, as 
well as a wildcarded approach. 

Xilinx Virtex FPGAs 

Each Virtex [Xilinx00] device contains configurable logic 
blocks (CLBs), input-output blocks (IOBs), block RAMs, 
clock resources, programmable routing, and configuration 
circuitry.  These logic functions are configurable through 
the configuration bit-stream.  Configuration bit-streams 
that contain a mix of commands and data can be read and 
written through one of the configuration interfaces on the 
device.  A simplified block diagram of a Virtex FPGA is 
shown in Figure 1. 
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Figure 2:  Virtex architecture. 

The Virtex configuration memory can be visualized as a 
rectangular array of bits.  The bits are grouped into vertical 
frames that are one bit wide and extend from the top of the 
array to the bottom.  A frame is the atomic unit of 
configuration, meaning that it is the smallest portion of the 
configuration memory that can be written to or read from. 
Frames are grouped together into larger units, called 
columns.  In Virtex devices, there are several different 
types of columns, including one center column, two IOB 
columns, multiple block RAM columns, and multiple CLB 
columns.  As shown in Figure 3, each frame sits vertically, 
with IOBs on the top and bottom.  For each frame, the first 
18 bits control the two IOBs on the top of the frame, then 
18 bits are allocated for each CLB row, and another 18 bits 
control the two IOBs at the bottom of the frame. The 
frame then contains enough “pad” bits to make it an 
integral multiple of 32 bits. 



3 

 

Frame 2 Frame N 

……… 

Top 
IOBs 
CLB 
R1 

CLB 
R2 

CLB 
Rn 

Btm 
IOBs 

… 

18 
bits 
18 
bits 

18 
bits 

18 
bits 

18 
bits 

… 

Frame 1 

Top 
IOBs 
CLB 
R1 

CLB 
R2 

CLB 
Rn 

Btm 
IOBs 

… 

18 
bits 
18 
bits 

18 
bits 

18 
bits 

18 
bits 

… 

Top
IOBs

CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

… 

18
bits

18
bits

18
bits

18
bits

18
bits

… 

 
Figure 3:  Virtex frame organization. 

The configuration for the Virtex device is done through 
the Frame Data Input Register (FDR).  The FDR is 
essentially a shift register into which data is loaded prior to 
transfer to configuration memory.  Specifically, given the 
starting address of the consecutive frames to be 
configured, configuration data for each frame is loaded 
into the FDR and then transferred to the frames in order.  
The FDR allows multiple frames to be configured with 
identical information, requiring only a few cycles for each 
additional frame, thus accelerating the configuration.  
However, if even one bit of the configuration data for the 
current frame differs from the previous frame, the entire 
frame must be reloaded. 
Algorithms Overview 

As we mentioned, well-known techniques -- including 
Huffman [Huffman52], Arithmetic [Witten87] and LZ 
[Ziv77] coding -- are very efficient for general-purpose 
compression, such as text compression.  However, without 
considering features of the bit-stream, applying these 
techniques directly will not necessarily reduce the size of 
the configuration file.  Given the frame organization 
described above, it is likely that traditional compression 
will either miss or destroy the regularities contained in the 
configuration files.  For example, the commercial tool gzip 
achieves a compression factor of 1.85 in our benchmark 
set, much less than is achievable. 

In this work, we will consider general-purpose 
compression approaches including Huffman, Arithmetic 
and Lempel-Ziv coding because of their proven 
effectiveness.  In addition, we will extend the wildcard 
approach used for Xilinx 6200 [Hauck99] bit-stream 
compression.  Before we discuss the details of our 
compression algorithms, we will first analyze the potential 
regularities in the configuration files. 

Regularity Analysis 

Current Virtex devices load whole frames of data at a 
time.  Because of the similarity of resources in the array, 
we can expect some regularity between different frames of 
data.  We call this similarity inter-frame regularity.  In 

order to take advantage of this regularity, the frames 
containing the same or similar configuration data should 
be loaded consecutively.  For example, an LZ77 
compression algorithm uses recently loaded data as a 
fixed-sized dictionary for subsequent writes, and by 
loading similar frames consecutively, the size of the 
configuration files can be greatly reduced.  The current 
Virtex frame numbering scheme, where consecutive 
frames of a column are loaded in sequence, can be a poor 
choice for compression.  After analyzing multiple 
configuration files, we discovered that the Nth frame of all 
columns are more likely to contain similar configuration 
data since they control identical resources.  Therefore, if 
we clustered together all of the Nth frames of the columns 
in the architecture, we can achieve a better compression 
ratio.  Of course, changing the order of the frames will 
incur an additional overhead by providing the frame 
address, but the compression of frame data may more than 
compensate for this overhead.  Note that Huffman and 
Arithmetic coding are probability-based compression 
approach, meaning that the sequence that the configuration 
data is written will not affect the compression ratio. 

Regularity within frames may be as important as regularity 
between frames.  This intra-frame regularity exists in 
circuits that contain similar structures between rows.  To 
exploit this regularity we will modify the current FDR 
with different frame buffer structures and develop the 
corresponding compression algorithms.  For Lempel-Ziv 
compression, the shift-based FDR fits the algorithm 
naturally.  However, extending the size of the FDR 
structure to a larger window can provide even greater 
compression ratios, though this must be balanced against 
potential hardware overheads.  For the wildcarded 
approach, the structure of the Wildcard Registers used in 
Xilinx 6200 can be applied to the FDR of Xilinx Virtex 
FPGAs to allow multiple locations within the FDR to be 
written at the same time. 

Symbol Length 

Even though the configuration bit-stream is packed with 
32-bit words for the Virtex devices, much of the regularity 
will be missed if the symbol length is set to 32-bit or other 
powers of two.  As was shown in Figure 3, each CLB row 
within a frame is controlled by an 18-bit value, and the 
regularities we discussed above exist in the 18-bit 
fragments rather than 32-bit ones.  In order to preserve 
those regularities we will break the 32-bit original 
configuration bit-stream.  In addition to regularity, two 
other factors are considered to determine the length of the 
basic symbol.  First, for Lempel-Ziv, Arithmetic and 
Huffman coding, the length of the symbol could affect the 
compression ratio.  If the symbol is too long, the potential 
intra-symbol similarities will likely be overwhelmed.  On 
the other hand, very short symbols, though retaining all the 
similarities, will significantly increase coding overhead.  
Second, since decompression is done at run-time, the 
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potential hardware cost should be considered.  For 
example, both Huffman and Arithmetic coding are 
probability-based approaches which require that the 
probabilities of symbols be known during decompression.  
Retaining long symbols and their probabilities on-chip 
could consume significant hardware resources.  In 
addition, transferring the probability values to the chip 
could also represent an additional configuration overhead. 

As discussed above, using 18-bit symbols will retain the 
regularities in the configuration bit-stream.  However, for 
Huffman and Arithmetic coding, the probabilities of 218 
symbols need to be transferred and then retained on-chip 
to correctly decompress the bit-stream.  Clearly, this is not 
possible to implement and will increase configuration 
overhead.  Therefore, we choose to use 6-bit or 9-bit 
symbols for Huffman, Arithmetic and Lempel-Ziv 
compressions.  Using 6-bit or 9-bit symbols will preserve 
the potential regularities in the bit-streams and limit 
additional overheads. 

Notice that the number of bits in the 32-bit words packed 
in each frame may not necessarily be a multiple of six or 
nine.  Therefore, if we simply take the bit-steams and 
break them into 6-bit or 9-bit symbols, we will likely 
destroy inter-frame regularity.  To avoid this, during the 
compression stage we will attach the necessary pad bits to 
each frame to make it a multiple of six or nine.  This 
represents a pre-processing step for each of the 
compression algorithms. 

Huffman coding 

The goal of Huffman coding is to provide shorter codes to 
symbols with higher frequency.  Huffman coding assigns 
an output code to each symbol, with the output codes 
being as short as one bit or considerably longer than the 
original symbols, depending on their probabilities.  The 
optimal number of bits to be used for each symbol is 
log2(1/p), where p is the probability of a given symbol.  
The probabilities of symbols are sorted, and a prefix 
binary tree is built based on the sorted probabilities, with 
the highest probability symbol at the top and the lowest at 
the bottom.  Scanning the tree will produce the Huffman 
code.  Figure 4 shows a set of symbols (a) and its 
corresponding Huffman tree (b).  Given a string 
“XILINX” the resultant Huffman code is 1110110010111, 
using 13 bits. 
Huffman compression for Virtex devices consists of two 
simple steps: 

1.  Convert the input bit-stream into a symbol stream. 

2.  Perform Huffman coding over the symbol stream. 

The problem with this scheme lies in the fact that the 
Huffman codes must be an integral number of bits long.  
For example, if the probability of a symbol is 1/3, the 
optimum number of bits to code that symbol is around 1.6.  
Since Huffman coding requires an integral number of bits 

to the code, assigning a 2-bit symbol leads to a longer 
compressed code than is theoretically possible.   
 

L X

N

I 

0 1

0 1

0 1

Symbols I N L X 

Frequency 0.6 0.2 0.1 0.1 

(a)                                   (b)    

Figure 4:  An example of Huffman coding.  A set of 4 
symbols and their frequencies are shown in (a).  The 
corresponding Huffman tree is shown in (b). 

Another factor that needs to be considered is 
decompression speed.  Since each code word is 
decompressed by scanning through the Huffman tree, it is 
very hard to pipeline the decompression process.  
Therefore it could take multiple cycles to produce a 
symbol.  Also, it is difficult to parallelize the decoding 
process, because Huffman is a variable-length code. 

Arithmetic Coding 

Unlike Huffman coding, which replaces each input symbol 
by a code word, Arithmetic coding takes a series of input 
symbols and replaces it with a single output number.  The 
symbols contained in the stream may not be coded to an 
integral number of bits.  For example, a stream of five 
symbols can be coded in 8 bits, with 1.6-bit average per 
symbol.  Like Huffman coding, Arithmetic coding is a 
statistical compression scheme.  Once the probabilities of 
symbols are known, the individual symbols are assigned to 
an interval along a probability line, and the algorithm 
works by keeping track of a high and low number that 
bracket the interval of the possible output number.  Each 
input symbol narrows the interval. As the interval becomes 
smaller, the number of bits needed to specify it grows.  
The size of the final interval determines the number of bits 
needed to specify a stream.  Since the size of the final 
interval is the product of the probabilities of the input 
stream, the number of bits generated by Arithmetic coding 
is equal to the entropy.  Figure 5 shows the process of 
Arithmetic coding for string “XILINX” over the same 
symbol set used for Huffman coding.  The generated code 
is 11110011011, two bits shorter than the Huffman code. 

Note that the basic idea described above is difficult to 
implement, because the shrinking interval requires the use 
of high precision arithmetic.  In practice, mechanisms for 
fixed precision arithmetic have been widely used.   

The Arithmetic compression for Virtex devices consists of 
two steps: 
1.  Convert the input bit-stream into a symbol stream. 
2.  Perform the fixed-precision Arithmetic coding over the 
symbol stream.  



5 

The problem with this algorithm is that Arithmetic coding 
considers the symbols to be mutually unrelated 
(independent).  However, the regularities existing in the 
configuration bit-stream may cause certain symbols to be 
related to each other.  Therefore, this approach may not be 
able to yield the best solution for configuration 
compression.  One solution to this problem is to combine 
multiple symbols together and discover the probabilities of 
the combined symbols.  However, this will cause 
additional overhead by transferring and retaining a 
significant amount of probability values. 

Symbol LowRange HighRange

0.0 1.0
X 0.9 1.0
I 0.9 0.954
L 0.9432 0.9486
I 0.9432 0.94644
N 0.945144 0.951624

X 0.950994 0.951644

Symbols I N L X 
Frequency 0.6 0.2 0.1 0.1 

(a)                                 (b)    
Figure 5:  An example of Arithmetic coding.  The same 
symbol set used for the Huffman coding is shown in (a).  
The coding process for string “XILINX” is shown in (b).  
The final interval, represented by the last row in (b), 
determines the number of bits needed. 

Lempel-Ziv-Based (LZ) Compression 

Recall that Arithmetic coding is a compression algorithm 
that performs better on a stream of unrelated symbols.  LZ 
compression is an algorithm that more effectively 
represents groups of symbols that occur frequently.  This 
dictionary-based compression algorithm maintains a group 
of symbols that can be used to code recurring patterns in 
the stream.  If the algorithm spots a sub-stream of the input 
that has been stored as part of the dictionary, the sub-
stream can be represented in a shorter code word.  The 
related symbols caused by the regularities in the 
configuration bit-stream make LZ algorithms an effective 
compression approach. 

There are variations of LZ compression, including LZ77 
[Ziv77], LZ78 [Ziv78] and LZW [Welch84].  In general, 
LZ78 and LZW will achieve better compression than 
LZ77 over a finite data stream.  A lookup table is used to 
maintain occurred patterns for LZ78 and LZW.  However, 
the excessive amount of hardware resources required to 
retain the table for LZ78 and LZW during decompression 
prevent us from considering those schemes for 
configuration compression.  The “sliding window” 
compression of LZ77 requires only a buffer, and the shift-
based FDR fits the scheme naturally, though hardware 
must be added to allow reading of specific frame locations 
during execution.   

The LZ77 compression algorithm tracks the last n symbols 
of data previously seen, where n is the size of the sliding 
window buffer.  When an incoming string is found to 
match part of the buffer, a triple of values corresponding 

to the matching position, the matching length, and the 
symbol that follows the match is output.  For example, in 
Figure 6, we find that the incoming string 3011 is in buffer 
position 3 with match length 4, and the next symbol is 0.  
So the algorithm will output codeword (3, 4, 0). 

 1 6  3 0 1 1  6 3  3 
 0  0 7 5 4 3 4 3011 043455 

43455   Output: 3, 4, 0 

(a) 

(b) 
6 4 3 

 3 0 0 7 5 4 3 4 3 0 1 1 0 

 
Figure 6:  The LZ77 sliding window compression example.  
Two matches found are shown in gray.  LZ77 selects the 
longer match “3011”, and the resultant codeword is (3, 4, 
0).  (a) shows the sliding window buffer and the input 
string before encoding.  (b) shows the buffer and input 
string after encoding. 

Standard LZ77 compression containing the three fields 
will reach entropy over an infinite data stream.  However, 
for a finite data stream, this format is not very efficient in 
practice.  For the case when no matching is found, rather 
than outputing the symbol, the algorithm will produce a 
codeword containing three fields, wasting bits and 
worsening the compression ratio.  An extension of LZ77, 
called LZSS [Storer82], will improve coding efficiency.  A 
threshold is given and if the matching length is shorter 
than the threshold, only the current symbol will be output.  
When the matching length is longer than the threshold, the 
output codeword will consist of the index pointer and the 
length of the matching.  In addition, to achieve correct 
decompression, a flag bit is required for each code word to 
distinguish the two cases.   

As mentioned above, the FDR in Virtex devices can be 
used as the sliding window buffer, and LZSS can take 
advantage of the intra-frame regularity naturally.  
However, since the current FDR can contain only one 
frame of configuration data, using it as the sliding window 
buffer will not take full advantage of inter-frame 
regularities.  Thus, we modify the FDR to the structure 
shown in Figure 7.  As can be seen in Figure 7, the bottom 
portion of the modified FDR, which has same size as the 
original FDR, can transfer data to the configuration 
memory.  During decompression the compressed bit-
stream is decoded and then fed to the bottom of the 
modified FDR.  Incoming data will be shifted upwards in 
the modified FDR.  Configuration data will be transferred 
to the specified frame once the bottom portion of the 
modified FDR is filled with newly input data.  In addition, 
configuration data that is written to the array can be 
reloaded to the bottom portion of the modified FDR.  This 
lets a previous frame be reused as part of the dictionary, 
and the inter-frame regularity is better utilized.  
Specifically, before loading a new frame, we could first 
read a currently loaded frame from the FPGA array back 
to the frame buffer, and then load the new frame.  By 
picking a currently loaded frame that most resembles the 
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new frame, we may be able to exploit similarities to 
compress this new frame.   

Extended 
FDR 

FPGA
array

Bitstream 

Figure 7:  The hardware model for LZ77 compression. 

While this technique will be slow due to delays in sending 
data from the FPGA array back to the FDR, there may be 
ways to accelerate this with moderate hardware costs.  In 
current Virtex devices, the data stored in the Block Select 
RAMs can be transferred to logic very quickly.  We can 
exploit this feature by slightly modifying the current 
hardware to allow the values stored in the Block Selected 
RAMs to be quickly read back to the modified FDR.  By 
providing the fast readback from only the Block Select 
RAMs, we efficiently use the Block RAMs as caches 
during reconfiguration to hold commonly requested frames 
without significant hardware costs.  Also, the size of the 
modified FDR must be balanced against the potential 
hardware cost.  In our research, we allow the modified 
FDR to contain two frames of data.  This will not 
significantly increase hardware overhead, yet it will utilize 
the regularities in the configuration stream [richmond01]. 

Finding regularities in a configuration file is a major goal.  
LZ compression performs well only in the case where 
common strings are found between the sliding window 
buffer and incoming data.  This requires quite a large 
buffer to find enough matches for general data 
compression.  However, for configuration compression, 
the hardware costs will restrict the size of the sliding 
window buffer.  Thus, performing LZ compression 
directly over the datastream will not render the desired 
result.  In order to make compression work efficiently for 
a relatively small buffer, we need to carefully exploit the 
data stream, finding regularities and intelligently 
rearranging the sequence of frames to maximize matches.  
In the following sections, we discuss algorithms that apply 
LZSS compression, targeting the hardware model 
described above.  These algorithms are all realistic but 

require different amounts of hardware resources and thus 
provide different compression ratios. 

The Readback Algorithm 

The goal of configuration compression is to take 
advantage of both inter-frame and intra-frame regularities.  
In the configuration stream, some of the frames are very 
similar.  By configuring them consecutively, higher 
compression ratios can be achieved.  An FPGA’s readback 
feature allows us to read back the frame that most 
resembles the new frame into the modified FDR and thus 
reuse it as a dictionary.  This increases the number of 
matches for LZSS, permitting us to fully use regularities 
within the bit-stream.  For example, in Figure 8, four 
frames are to be configured, and frames (b), (c) and (d) are 
more like (a) than like each other.  Without readback, 
inter-frame regularities between (c), (d) and (a) will be 
missed.  However, with the fast readback feature, we can 
temporarily store frame (a) in the Block Select RAMs, 
reading it back to the modified FDR and using it as a 
dictionary when other frames are configured.  This fast 
readback will significantly increase the utilization of inter-
frame regularities with negligible overhead.  Since the 
modified FDR is larger than the size of the frame, LZSS 
will be able to use intra-frame regularities naturally. 

a b c d e f g h

a b c d e x x x

x y y d e f g h

(a)

(b)

(c)

a b c j k f g h
(d)

Figure 8:  Example to illustrate the benefit of readback.  
(b), (c), and (d) resemble to (a).  By reusing (a) as a 
dictionary, better compression can be achieved. 

Discovering inter-frame regularities represents an issue 
that will influence the effectiveness of compression.  
Based on the hardware model we proposed above, the 
similarity between the frame in the modified FDR and the 
new incoming frame is the key factor for compression.  
More specifically, we seek to place a certain frame in the 
modified FDR so that it will most aid the compression of 
the incoming frame.  In order to obtain such information, 
each frame is used as a fixed dictionary in a preprocessing 
stage, and LZSS is applied to all other frame, which are 
called beneficiary frames.  Note that LZSS is performed 
without moving the sliding window buffer, meaning that 
the dictionary will not be changed.  This approach 
excludes potential intra-frame regularities within each 
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beneficiary frame, providing only the inter-frame 
regularity information.  The output code length represents 
the necessary writes for each beneficiary frame based on 
the dictionary, and shorter codes will be found if the 
beneficiary frame resembles the dictionary.   

Once this process is over, a complete directed graph can 
be built, with each node standing for a frame.  The source 
node of a directed weighted edge represents a dictionary 
frame, and the destination node represents a beneficiary 
frame.  The weight of each edge denotes the inter-frame 
regularity between a dictionary frame and a beneficiary 
frame.  One optimization performed is to delete the edges 
that present no inter-frame regularity between any two 
frames.  Figure 9(a) shows an example of the inter-frame 
regularity graph.   

Given an inter-frame regularity graph, our algorithm seeks 
an optimal configuration sequence that maximizes the 
inter-frame regularities.  Specifically, we seek a subset of 
the edges in the inter-frame regularity graph such that 
every node can be reached and the aggregate edge weight 
is minimized.  Solving this problem is equivalent to 
solving the directed minimum spanning tree problem, 
where every node has one and only one incoming edge, 
except for the root node.  Figure 9(b) shows the 
corresponding optimal configuration sequence graph of 
Figure 9(a).  In the configuration sequence graph, a frame 
with multiple children needs to be stored in Block Select 
RAMs for future readback.  For example, in Figure 9(b), a 
copy of frame A will be stored in Block Select RAMs and 
read back to the modified FDR to act as a dictionary.   

A 

B 

D 

F 

C 

10 

30 
30 

30 
50 

60 
30 

E 60 

40 
60 

30 
20 

30 

40 

60 

F

E

B C D

A

40 

                       (a)                                                              (b) 

Figure 9:  Seeking optimal configuration sequence.  An 
inter-frame regularity graph is shown in (a).  The 
corresponding optimal configuration sequence graph is 
shown in (b). 
Now we present our Readback algorithm: 

1 Convert the input bit-stream into a symbol stream. 

2 For each frame, use it as a fixed dictionary and 
perform LZSS on every other frame. 

3 Build an inter-frame regularity graph using the values 
computed in step 2.   

4 Apply the standard directed minimum spanning tree 
algorithm [Chu65] on the inter-frame regularity graph 
to create the configuration sequence graph.   

5. Perform pre-order traversal starting from the root.  For 
each node that is being traversed: 

5.1. If it has multiple children, a copy of it will be 
stored in an empty slot of the Block Select 
RAMs. 

5.2. If its parent node is not in the modified FDR, 
read the parent back from the Block Select 
RAMs. 

5.3. Perform LZSS compression. 

5.4. If it is the final child traversed of the parent 
node, release the memory slot taken by the 
parent. 

Step 2 measures inter-frame regularities between frames.  
Results are used to build the inter-frame regularity graph 
and the corresponding configuration sequence graph in 
Steps 3 and 4 respectively.  The Pre-order traversal 
performed in Step 5 uses the parent frame of the currently 
loading frame as a dictionary for LZSS compression.  Note 
that a copy of the currently loading frame will be stored in 
the Block Select RAMs if it has multiple children in the 
configuration sequence graph.  Also, additional overhead 
from setting configuration registers will occur if frames to 
be configured are not contiguous.   

One final concern for our Readback algorithm is the 
storage requirement for the reused frames.  Analyzing 
configuration sequence graphs, we found that although a 
large number of frames need to be read back, they are not 
all required to be held in the Block Selected RAM at the 
same time, and they can share the same memory slot 
without conflict.  For example, in Figure 10, both frame A 
and frame B need to be read back.  Suppose the left sub-
tree was configured first; then frame A will occupy a slot 
in the Block Selected RAMs for future readback.  Once 
the configuration of the left tree is complete, the memory 
slot taken by frame A can be reused by frame B during 
configuration of the right sub-tree.   

 

A B 

 
Figure 10:  An example of memory sharing. 

We have developed an algorithm using a bottom-up 
approach that accurately calculates the memory slots 
necessary.  By combining it with our Readback algorithm, 
usage of the Block Select RAMs can be minimized.  The 
details of the algorithm are as follows: 
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1. For each node in the configuration sequence graph, 
assign 0 to the variable V and number of children to 
C. 

2. Put each node whose children are all leaves into a 
queue. 

3. While the queue is not empty: 

3.1. Remove a node from the queue. 

3.2. If it has one child, V = Vchild, else V = 
max(largest Vchild, (second largest Vchild + 1)). 

3.3. For its parent node, C = C -1.  If C = 0, put the 
parent node into the queue. 

Figure 11 shows an example of our Memory Requirement 
Calculation algorithm.  At left is the original configuration 
sequence graph.  At right shows the calculation of the 
memory requirement using a bottom-up approach.  The 
number inside each node represents the number of 
memory slots necessary for configuring its sub-trees.  As 
can be seen, only two memory slots are required for this 
14-node tree.  It is obvious that the memory required by a 
node depends on the memory required by each of its 
children.  One important observation is that the memory 
required by the largest sub-tree can overlap with the 
memory required for other sub-trees.  In addition, since the 
last child of a node to be configured can use the memory 
slot released by its parent, the memory required by 
configuring all sub-trees can equal that of configuring the 
largest sub-tree.  Since the pre-order traverse will scan the 
left sub-trees before the right ones, we should readjust the 
configuration sequence graph to set each node in the sub-
tree that requires the most memory as the rightmost sub-
tree.  In order to apply the memory minimization to our 
compression, we modify Step 4 of our readback algorithm 
as follows: 

4. Apply the standard directed minimum spanning tree 
algorithm on the inter-frame regularity graph to create 
the configuration sequence graph.  Perform the 
Memory Calculation algorithm, and the largest sub-
tree for each node is set as the rightmost sub-tree. 

0 

0 0

0 1 
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0 0

1

2

1

0 0

(a)                                        (b) 

Figure 11:  An example to illustrate our Memory 
Requirement Calculation algorithm.  A configuration 
sequence graph is shown in (a), and the corresponding 
memory requirement calculation procedure is shown in 
(b). 

Active Frame Reordering Algorithm 

The Readback algorithm allows frames to be read back to 
the modified FDR to achieve effective compression.  
However, the delay and hardware alterations required for 
the Block Selected RAM readback may not be acceptable.  
Some applications may restrict the use of the Block Select 
RAMs.  In order to take advantage of the regularities 
within the configuration bit-stream, we have developed a 
frame reordering algorithm that does not require frame 
readback. 

As can be seen in our readback algorithm, frame 
reordering enhances compression by utilizing inter-frame 
regularities.  This idea can still be applied to applications 
without the readback feature.  In our readback algorithm, 
once the inter-frame regularity graph is built, a 
corresponding configuration sequence graph can be 
generated, and traversing the configuration sequence graph 
in pre-order can guarantee the maximum utilization of the 
regularities discovered.  However, without frame 
readback, traversing the configuration sequence graph 
might not necessarily be the optimal solution, since parent 
nodes cannot be reused as a dictionary.  Our Active Frame 
Reordering algorithm uses a greedy approach to generate a 
configuration sequence that allows each frame to be used 
as a dictionary only once.  It still takes the inter-frame 
regularity graph as input.  However, instead of using the 
directed MST approach to create a configuration sequence, 
a spanning chain will be generated using a greedy 
approach.  The details of the algorithm are as follows: 

1. Convert the input bit-stream into a symbol stream. 

2. For each frame, use it as fixed dictionary and perform 
LZSS on every other frame. 

3. Build an inter-frame regularity graph using the values 
that resulted from Step 2.   

4. Put the two frames connected by the minimum weight 
edge into a set.  Let H be the head and T be the tail of 
this edge. 

5. While not all frames are in the set: 

5.1. For all incoming edges to H and outgoing edges 
from T, find the shortest one that connects to a 
frame not in the set.  Put that frame into the set.  
The frame is set to H if the edge found is an 
incoming edge to H; otherwise set the frame to 
T. 

6. Perform LZSS compression on the chain discovered 
in Step 5. 

The basic idea of the algorithm is to grow a spanning 
chain from the two ends.  Step 5 finds a frame not in the 
chain with the shortest edge either coming into an end or 
going out from the other.  This greedy process is repeated 
until all frames are put in the spanning chain.  For 
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example, in Figure 9, the order of the frames to be put into 
the chain discovered by our algorithm is ABDFEC (the 
configuration sequence will be DABFEC).  The cost of the 
sequence is 160, slightly larger than the optimal spanning 
chain (150).  Starting from one end of the discovered 
spanning chain, LZSS can be performed to generate a 
compressed bit-stream. 

Fixed Frame Reordering Algorithm 

One simple algorithm is to reorder the frames such that the 
Nth frame of each column is consecutive.  Performing 
LZSS over the sequence generated by the simple 
reordering takes advantage of the regularities within 
applications.  The overhead of setting the configuration 
registers can be eliminated using this fixed frame order, 
since the order that frames appear is fixed for all 
configurations. 

Wildcarded Compression for Virtex 

Since the Wildcard Compression [Hauck99] achieves good 
results for the Xilinx 6200 FPGAs, we would like to apply 
it to Virtex FPGAs.  For Virtex configurations, multiple 
rows within a frame can contain the same configuration 
data.  Instead of configuring them one by one, the 
wildcarded approach allows these rows to be configured 
simultaneously.  To apply the wildcarded approach to 
Virtex, an address register and a wildcard register will be 
added as an augmented structure to the FDR.  They will 
allow specified rows within the FDR to be configured. 

For circuits with repetitive structures, multiple frames 
could be very similar, yet not completely identical.  By 
allowing the FDR to be addressable, we take advantage of 
this inter-frame regularity.  Instead of loading the whole 
frame, we can load only the differences between frames.  
For example, in Figure 12, two frames need to be 
configured, and the second frame has only three values 
different from the first one.  In this case, only the 
configuration data for the 3 different values needs to be 
loaded.  In addition, if the three different rows can be 
covered by a wildcard, one write is enough to configure 
the whole second frame.  This structure will also support 
true partial reconfiguration.  More specifically, for each 
frame to be reconfigured, rather than loading the entire 
frame, we can simply load the difference from the current 
configuration.  Note that adding the Address Register and 
Wildcard Register represents additional hardware cost.  
Moreover, extra bits for the address and wildcard need to 
be transferred for every write. 

The Wildcard algorithm consists of 2 stages.  In the first 
stage we reorder similar frames so they will be configured 
consecutively.  This creates a sequence in which the 
number of writes necessary for configuring each frame is 
greatly reduced.  In the second stage, we find the 
wildcards covering the writes for each frame and thus 
further reduce the configuration overhead.  The first stage 

takes advantage of inter-frame regularities while the 
second stage focuses on intra-frame regularities.   

 
Figure 12:  An example of inter-frame compression using 
addressable FDR. 

In the first stage, we discover the number of non-matching 
rows between each pair of frames; the result indicates the 
extent of similarity between the frames.  An undirected 
graph is built to keep track of the regularities, and a near 
optimal sequence needs to be discovered.  Since each 
frame is configured exactly once, finding the sequence 
based on the regularity graph is equivalent to solving the 
traveling salesman problem.  An existing algorithm is an 
approximation with a ratio bound of two for the traveling-
salesman problem with triangle inequality [Lawler85].  
Given a complete undirected graph G = (V, E) that has a 
nonnegative integer cost c(u, v) associated with each edge 
(u, v)∈E, cost function c satisfies the triangle inequality if 
for all vertices u, v, w ∈V, c(u, w) ≤ c(u, v) + c(v, w).  
Since the differences between frames satisfy the triangle 
inequality, we can apply the approximation algorithm on 
our compression algorithm.  The details of our Wildcard 
algorithm are as follows: 

1. Convert the input bit-stream into an 18-bit symbol 
stream. 

2. For each pair of frames, identify the different 18-bit 
symbols between them. 

3. Build a regularity graph using the results from Step 
2. 

4. Perform the Approx-TSP-Tour algorithm [Lawler85] 
to determine the order of frames to be configured. 

5. For each frame configuration, use the Wildcard 
algorithm to find the wildcards to cover the 
differences. 

Results 

All algorithms are implemented in C++ on a Sun Sparc 
Ultra 5 workstation and were run on a set of benchmarks 
collected from Virtex users.  Detailed information about 
the benchmarks is shown in Table 1.   

Figure 13 shows simulation results for compression 
approaches using 6-bit symbols; the wildcard approach 
uses 18-bit symbols.  The left 10 benchmarks are 
automatically mapped and use more than 50% of the chip 
area.  The “Geo. Mean” column is the geometric mean of 
the 10 benchmarks.  The three right-most benchmarks are 
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either hand mapped or use only a small percentage of the 
chip area, and are included to demonstrate how hand 
mapping or low utilization affects compression.  Figure 14 
demonstrates simulation results for 9-bit symbols (The 
Wildcard algorithm is not shown, since it uses only 18-bit 
symbols.).   

Table 1:  Information for Virtex benchmarks. 
Bench  
mark Source Device Chip 

Utilization Mapping 

Mt1mem0 Rapid 400 >80% Auto 

Mt1mem1 Rapid 400 >80% Auto 

Mars USC 600 Unknown Auto 

RC6 USC 400 Unknown Auto 

Serpent USC 400 Unknown Auto 

Rijndael USC 600 Unknown Auto 

Design1 HP 1000 >70% Auto 

Pex North 
eastern 1000 93% Auto 

Glidergun Xilinx 800 >80% Hand 

Random Xilinx 800 >80% Hand 

U1pc Xilinx 100 1% Auto 

U50pc Xilinx 100 50% Auto 

U93 Xilinx 100 >90% Auto 

 

As can be seen in the figures, the readback algorithm 
performs better than other algorithms for both 6-bit and 9-
bit cases for most of the benchmarks.  This is because the 
Readback algorithm takes full advantage of inter-frame 
regularities within the configuration bit-stream by reusing 

certain frames as dictionaries.  Though they cannot fully 
utilize inter-frame regularities, the reordering techniques 
still provide fairly good results without using the Block 
Select RAMs as a cache.  The Active Reordering 
algorithm performs better than the Fixed Reordering 
algorithm since active reordering can better use inter-
frame regularities by actively shuffling the sequence of 
frames, while fixed reordering can utilize only the 
regularities given by the fixed sequence.   

Surprisingly, although the wildcard approach can exploit 
both inter-frame and intra-frame regularities, it still yields 
worse compression ratios than the active reordering 
scheme for most of the benchmarks.  There are several 
reasons for this.  First, the wildcard approach requires 
address and wildcard specifications for each write, adding 
significant overhead to the bit-stream.  The additional 
overhead overwhelms the benefits provided by the 
regularities within the applications.  Second, the wildcard 
approach requires a comparison between the same rows of 
the given frames to discover inter-frame regularities.  
Consequently, the similarity the wildcard approach can 
discover is aligned in rows, and any unaligned similarities 
that benefit the LZ-based approaches will not help 
wildcards.  For example in Figure 15, the Wildcard 
algorithm cannot discover the inter-frame regularity 
between frame A and frame B.  However, the regularity 
can be exploited for LZ-based approaches.  Third, the 
Wildcard approach requires that enough rows covered by a 
wildcard share the same configuration value to achieve 
better compression.  However, even the XCV1000, which 
is a relatively large device, has only 64 rows and it is not 
likely to find enough rows covered by a wildcard that have 
the same configuration value.  For many cases, each 
wildcard contains only one row, and the address/wildcard 
overhead is still applied. 
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Figure 13:  The simulation results for 6-bit symbol. 
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Figure 14:  The simulation results for 9-bit symbol. 

The probability-based Huffman and Arithmetic coding 
techniques perform significantly worse than other 
techniques, since they do not consider regularities within 
the bit-stream.  The Huffman approach did worse than 
the Arithmetic approach, simply because of its 
inefficient coding method.  Adding the fact that these 
two approaches require significant hardware for the 
decompressor, we will not consider using them for 
configuration compression.   

 Frame A values Frame B values 

Row 1 1 2 

Row 2 2 3 

Row 3 3 4 

Row 4 4 5 

Row 5 5 6 

Figure 15:  Unaligned regularity between frames.  
The wildcard approach will miss this regularity, 
while the LZ-based approaches will take advantage 
of them. 

Don’t Cares 
In an FPGA configuration it is possible to find 
configuration bits who’s value is unimportant to the 
functioning of the circuit.  For example, the 
configuration of unused logic blocks usually is 
unimportant.  Our previous research [Li99] shows that 
with the help of these Don’t Care bits within the 
configuration datastream, higher compression ratios can 
be achieved.  Although Xilinx does not disclose the 
information necessary to discover Don’t Cares in the 
Virtex applications, we can still evaluate the potential 
impact of the Don’t Cares for Virtex compression.  In 
order to make an estimate, we randomly turn some bits 
of the data stream into Don’t Cares and bound the impact 
of Don’t Cares on our Readback algorithm. 

In practice, the discovered Don’t Care bits need to be 
turned to ‘0’ or ‘1’ to produce a valid configuration bit-
stream.  The way that the bits are turned affects the 
frame sequence and thus the compression ratio.  Finding 
the optimal way to turn the bits may take exponential 
time.  We have used a simple greedy approach to turn 
these bits to create an upper-bound for our Readback 
algorithm.  The configuration sequence graph is built 
taking into account the Don’t Cares.  We greedily turn 
the Don’t Care bits into ‘0’ or ‘1’ to find the best 
matches.  Note that once a bit is turned, it can no longer 
be used as a Don’t Care.  To discover the lower-bound, 
we do not turn the Don’t Care bits; thus, they can be 
used again to discover better matches. 
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Figure 16:  Estimate Result for Virtex bitstream with 
Don’t Cares. 
Figure 16 demonstrates the potential effect of Don’t 
Cares over the benchmarks listed in Table 3.2.  The X-
axis is the percentage of the don’t cares we randomly 
create and the Y-axis is the normalization over the 
results without considering Don’t Cares.  As can be seen 
in Figure 16, by using upper-bound approach a factor of 
1.3 improvement can be achieved on applications 
containing 30% Don’t Cares, while a factor of 2 
improvement can be achieved using the lower-bound 
approach.   
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Hardware Costs 
Since decompression must be performed on-chip, 
hardware costs for building decompressors must be 
evaluated to determine whether our compression 
algorithms are viable techniques. In this work we focus 
on the hardware implementation of the LZ decompressor 
because its compression algorithms outperform other 
approaches.  We have implemented this LZ 
decompressor, and demonstrated the hardware cost is 
minimal.  The overall increase in area is less than 1% for 
Virtex 1000 or larger devices [Richmond01]. 
Conclusions 

One of the major problems in reconfigurable computing 
is the time and bandwidth overheads due to 
reconfiguration. This can overwhelm the performance 
benefits of reconfigurable computing, and reduce the 
potential application domains. Thus, reducing this 
overhead is an important consideration for these systems. 
In this paper we have researched current compression 
techniques, including Huffman coding, Arithmetic 
coding and LZ coding for the Virtex FPGA. We have 
also developed different algorithms targeting different 
hardware structures.  Our Readback algorithm allows 
certain frames to be reused as a dictionary and 
sufficiently utilizes the regularities within the 
configuration bit-stream.  Our Frame Reordering 
algorithms exploit regularities by shuffling the sequence 
of the configuration.  The simulation results demonstrate 
that a factor of four compression ratio can be achieved.  
We believe the configuration compression algorithms we 
developed can be extended to any similar reconfigurable 
devices without significant modifications. 
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