
1

Configuration Compression for Virtex FPGAs
Zhiyuan Li

Motorola Labs,
Motorola Inc.

Schaumburg, IL 60196 USA
azl086@motorola.com

Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, WA 98195 USA

hauck@ee.washington.edu
Abstract
Although run-time reconfigurable systems have been
shown to achieve very high performance, the speedups
over traditional microprocessor systems are limited by the
cost of configuration of the hardware. Current
reconfigurable systems suffer from a significant overhead
due to the time it takes to reconfigure their hardware. In
order to deal with this overhead, and increase the compute
power of reconfigurable systems, it is important to develop
hardware and software systems to reduce or eliminate this
delay. In this paper, we explore the idea of configuration
compression and develop algorithms for reconfigurable
systems. These algorithms, targeted to Xilinx Virtex
series FPGAs with minimum modification of hardware,
can significantly reduce the amount of data needed to
transfer during configuration. In this work we have
extensively investigated current compression techniques,
including Huffman coding, Arithmetic coding and LZ
coding. We have also developed different algorithms
targeting different hardware structures. Our readback
algorithm allows certain frames to be reused as a
dictionary. In addition, we have developed frame
reordering techniques that better uses the regularities by
shuffling the sequence of the configuration. We have also
developed a wildcard approach that can be used for true
partial reconfiguration. The simulation results
demonstrate that a factor of 4 compression ratio can be
achieved.
Introduction
FPGAs are often used as powerful hardware for
applications that require high-speed computation
[Compton02]. One major benefit provided by FPGAs is
the ability to reconfigure during execution. However, the
advantages of run-time reconfiguration do not come
without a cost. By requiring multiple reconfigurations to
complete a computation, the time it takes to reconfigure
the FPGA becomes a significant concern. The serial-shift
configuration approach, as its name indicated, transfers all
programming bits into the FPGA in a serial fashion.
Recent devices have moved to cutting-edge technology,
resulting in FPGAs with over one million gates. The
configuration’s size for such devices is over one megabyte
[Xilinx00]. It could take milliseconds to seconds to
transfer such a large configuration using the serial-shift
approach.
Many techniques have studied to reduce the configuration
overhead. These include configuration prefetching
[Hauck98], configuration caching [Li00], and
configuration compression. Configuration compression
that can reduce the total number of write operations to load

a configuration [Hauck99, Li99]. Unfortunately, most of
the previous compression techniques cannot be applied to
the new generation FPGA such as Xilinx Virtex series
[Xilinx00] with millions of gates. A LZ-based approach
[Dandalis01] is applicable to any SRAM-based FPGA.
However, without considering the individual features
within the configuration bitstream this approach does not
compress the bitstream efficiently. In this paper, we
propose compression approaches that work efficiently on
Xilinx Virtex devices.

The goal of configuration compression for reconfigurable
systems is to minimize the amount of configuration data
that must be transferred. Configuration compression is
performed at compile-time. Once compressed, the bit-
streams are stored in off-chip memory. During
reconfiguration at run-time, the compressed bit-stream is
transferred onto the reconfigurable device and then
decompressed. The processes of compression and
decompression are shown in Figure 1.

Compressor
Configuration

bit-stream

Compressed
bit - stream Configuration

storage

(Off-chip)

(a) The compression stage (compile - time)

Configuration
storage

(Off-chip)

Compressed
bit-stream

Decompressor
Decompressed

bit - stream Configuration
memory

(On-chip)

Reconfigurable Device (FPGA)

(b) The Decompression stage (run - time, on - chip)

Figure 1: The original configuration data is compressed at
compile-time (a). When reconfigurations occur, the
compressed data is transferred to the decompressor on the
reconfigurable device (b).

As can be seen in Figure 1, two issues must be resolved
for configuration compression. First, an efficient
compression algorithm must be developed. Second, since
decompression is performed on-chip, building a
decompressor should not result in significant hardware
overhead.

Furthermore, any configuration compression technique
must satisfy the following two conditions: (1) the circuitry
generated from the decompressed bit-stream must not
cause any damage to reconfigurable devices, and (2) the
circuitry generated must result in the same outputs as those
produced by circuitry generated from the original

2

configuration data. Consequently, most configuration
compression research does not involve lossy techniques
since any information loss in a configuration bit-stream
may generate undesired circuitry on reconfigurable
devices, and, even worse, may severely damage the chips.

Lossless compression techniques satisfy the above
conditions naturally, because the decompressed data is
exactly the same as the original configuration data.
Lossless data compression is a well-studied field, with a
variety of very efficient coding algorithms. However,
applying these algorithms directly may not significantly
reduce the size of the configuration bit-stream, because a
number of differences exist between configuration
compression and general data compression.

Configuration Compression Vs. Data Compression

The fundamental strategy of compression is to discover
regularities in the original input and then design
algorithms to take advantage of these regularities. Since
different datatypes possess different types of regularities, a
compression algorithm that works well for a certain data
input may not be as efficient as it is for other inputs. For
example, Lempel-Ziv compression does not compress
image inputs as effectively as it does text inputs.
Therefore, in order to better discover and utilize
regularities within a certain datatype, a specific technique
must be developed. Existing lossless compression
algorithms may not be able to compress configuration data
effectively, because those algorithms cannot discover the
potential specific regularities within configuration bit-
streams.

Since decompression is performed on-chip, the
architecture of a specific device can have an equally
significant impact on compression algorithm design.
Lossless data compression algorithms do not consider this
architecture factor, causing the following problems:

(1) Significant hardware overhead can result from
building the decompressor on-chip. For example, a
dictionary-based approach, Lempel-Ziv-Welch coding
requires a significant amount of hardware to maintain a
large lookup table during decompression.

(2) The decompression speed at run-time may offset the
effectiveness of the compression. For example, in
Huffman compression, each code word is decompressed
by scanning through the Huffman tree. It is very hard to
pipeline the decompression process, and therefore it could
take multiple cycles to produce a symbol. As the result,
the time saved from transferring compressed data is
overwhelmed by slow decompression.

(3) Certain special on-chip hardware that can be used as
decompressor may be wasted. For example, wildcard
registers on the Xilinx 6200 series FPGAs can be used as
decompressors. Unfortunately, no existing algorithm has
been developed to take advantage of this special feature.

Realizing the unique features required for configuration
compression, we have focused on exploring regularity and
developing proper compression techniques for various
devices. However, any technique will be limited if it can
merely apply to one device. Therefore, our goal is to
investigate the characteristics of different configuration
architecture domains, and develop efficient compression
algorithms for a given domain. In order to find the best
approach to reduce the size of the configuration file, we
will consider general-purpose compression techniques
such as Huffman, Arithmetic and Lempel-Ziv coding, as
well as a wildcarded approach.

Xilinx Virtex FPGAs

Each Virtex [Xilinx00] device contains configurable logic
blocks (CLBs), input-output blocks (IOBs), block RAMs,
clock resources, programmable routing, and configuration
circuitry. These logic functions are configurable through
the configuration bit-stream. Configuration bit-streams
that contain a mix of commands and data can be read and
written through one of the configuration interfaces on the
device. A simplified block diagram of a Virtex FPGA is
shown in Figure 1.

Left IO
Bs

Left B
lock Select RA

M

IOBs

IOBs

Right Block Select Ram

Right IO
Bs

CLBs

Figure 2: Virtex architecture.

The Virtex configuration memory can be visualized as a
rectangular array of bits. The bits are grouped into vertical
frames that are one bit wide and extend from the top of the
array to the bottom. A frame is the atomic unit of
configuration, meaning that it is the smallest portion of the
configuration memory that can be written to or read from.
Frames are grouped together into larger units, called
columns. In Virtex devices, there are several different
types of columns, including one center column, two IOB
columns, multiple block RAM columns, and multiple CLB
columns. As shown in Figure 3, each frame sits vertically,
with IOBs on the top and bottom. For each frame, the first
18 bits control the two IOBs on the top of the frame, then
18 bits are allocated for each CLB row, and another 18 bits
control the two IOBs at the bottom of the frame. The
frame then contains enough “pad” bits to make it an
integral multiple of 32 bits.

3

Frame 2 Frame N

………

Top
IOBs
CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

…

18
bits
18
bits

18
bits

18
bits

18
bits

…

Frame 1

Top
IOBs
CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

…

18
bits
18
bits

18
bits

18
bits

18
bits

…

Top
IOBs

CLB
R1

CLB
R2

CLB
Rn

Btm
IOBs

…

18
bits

18
bits

18
bits

18
bits

18
bits

…

Figure 3: Virtex frame organization.

The configuration for the Virtex device is done through
the Frame Data Input Register (FDR). The FDR is
essentially a shift register into which data is loaded prior to
transfer to configuration memory. Specifically, given the
starting address of the consecutive frames to be
configured, configuration data for each frame is loaded
into the FDR and then transferred to the frames in order.
The FDR allows multiple frames to be configured with
identical information, requiring only a few cycles for each
additional frame, thus accelerating the configuration.
However, if even one bit of the configuration data for the
current frame differs from the previous frame, the entire
frame must be reloaded.
Algorithms Overview

As we mentioned, well-known techniques -- including
Huffman [Huffman52], Arithmetic [Witten87] and LZ
[Ziv77] coding -- are very efficient for general-purpose
compression, such as text compression. However, without
considering features of the bit-stream, applying these
techniques directly will not necessarily reduce the size of
the configuration file. Given the frame organization
described above, it is likely that traditional compression
will either miss or destroy the regularities contained in the
configuration files. For example, the commercial tool gzip
achieves a compression factor of 1.85 in our benchmark
set, much less than is achievable.

In this work, we will consider general-purpose
compression approaches including Huffman, Arithmetic
and Lempel-Ziv coding because of their proven
effectiveness. In addition, we will extend the wildcard
approach used for Xilinx 6200 [Hauck99] bit-stream
compression. Before we discuss the details of our
compression algorithms, we will first analyze the potential
regularities in the configuration files.

Regularity Analysis

Current Virtex devices load whole frames of data at a
time. Because of the similarity of resources in the array,
we can expect some regularity between different frames of
data. We call this similarity inter-frame regularity. In

order to take advantage of this regularity, the frames
containing the same or similar configuration data should
be loaded consecutively. For example, an LZ77
compression algorithm uses recently loaded data as a
fixed-sized dictionary for subsequent writes, and by
loading similar frames consecutively, the size of the
configuration files can be greatly reduced. The current
Virtex frame numbering scheme, where consecutive
frames of a column are loaded in sequence, can be a poor
choice for compression. After analyzing multiple
configuration files, we discovered that the Nth frame of all
columns are more likely to contain similar configuration
data since they control identical resources. Therefore, if
we clustered together all of the Nth frames of the columns
in the architecture, we can achieve a better compression
ratio. Of course, changing the order of the frames will
incur an additional overhead by providing the frame
address, but the compression of frame data may more than
compensate for this overhead. Note that Huffman and
Arithmetic coding are probability-based compression
approach, meaning that the sequence that the configuration
data is written will not affect the compression ratio.

Regularity within frames may be as important as regularity
between frames. This intra-frame regularity exists in
circuits that contain similar structures between rows. To
exploit this regularity we will modify the current FDR
with different frame buffer structures and develop the
corresponding compression algorithms. For Lempel-Ziv
compression, the shift-based FDR fits the algorithm
naturally. However, extending the size of the FDR
structure to a larger window can provide even greater
compression ratios, though this must be balanced against
potential hardware overheads. For the wildcarded
approach, the structure of the Wildcard Registers used in
Xilinx 6200 can be applied to the FDR of Xilinx Virtex
FPGAs to allow multiple locations within the FDR to be
written at the same time.

Symbol Length

Even though the configuration bit-stream is packed with
32-bit words for the Virtex devices, much of the regularity
will be missed if the symbol length is set to 32-bit or other
powers of two. As was shown in Figure 3, each CLB row
within a frame is controlled by an 18-bit value, and the
regularities we discussed above exist in the 18-bit
fragments rather than 32-bit ones. In order to preserve
those regularities we will break the 32-bit original
configuration bit-stream. In addition to regularity, two
other factors are considered to determine the length of the
basic symbol. First, for Lempel-Ziv, Arithmetic and
Huffman coding, the length of the symbol could affect the
compression ratio. If the symbol is too long, the potential
intra-symbol similarities will likely be overwhelmed. On
the other hand, very short symbols, though retaining all the
similarities, will significantly increase coding overhead.
Second, since decompression is done at run-time, the

4

potential hardware cost should be considered. For
example, both Huffman and Arithmetic coding are
probability-based approaches which require that the
probabilities of symbols be known during decompression.
Retaining long symbols and their probabilities on-chip
could consume significant hardware resources. In
addition, transferring the probability values to the chip
could also represent an additional configuration overhead.

As discussed above, using 18-bit symbols will retain the
regularities in the configuration bit-stream. However, for
Huffman and Arithmetic coding, the probabilities of 218
symbols need to be transferred and then retained on-chip
to correctly decompress the bit-stream. Clearly, this is not
possible to implement and will increase configuration
overhead. Therefore, we choose to use 6-bit or 9-bit
symbols for Huffman, Arithmetic and Lempel-Ziv
compressions. Using 6-bit or 9-bit symbols will preserve
the potential regularities in the bit-streams and limit
additional overheads.

Notice that the number of bits in the 32-bit words packed
in each frame may not necessarily be a multiple of six or
nine. Therefore, if we simply take the bit-steams and
break them into 6-bit or 9-bit symbols, we will likely
destroy inter-frame regularity. To avoid this, during the
compression stage we will attach the necessary pad bits to
each frame to make it a multiple of six or nine. This
represents a pre-processing step for each of the
compression algorithms.

Huffman coding

The goal of Huffman coding is to provide shorter codes to
symbols with higher frequency. Huffman coding assigns
an output code to each symbol, with the output codes
being as short as one bit or considerably longer than the
original symbols, depending on their probabilities. The
optimal number of bits to be used for each symbol is
log2(1/p), where p is the probability of a given symbol.
The probabilities of symbols are sorted, and a prefix
binary tree is built based on the sorted probabilities, with
the highest probability symbol at the top and the lowest at
the bottom. Scanning the tree will produce the Huffman
code. Figure 4 shows a set of symbols (a) and its
corresponding Huffman tree (b). Given a string
“XILINX” the resultant Huffman code is 1110110010111,
using 13 bits.
Huffman compression for Virtex devices consists of two
simple steps:

1. Convert the input bit-stream into a symbol stream.

2. Perform Huffman coding over the symbol stream.

The problem with this scheme lies in the fact that the
Huffman codes must be an integral number of bits long.
For example, if the probability of a symbol is 1/3, the
optimum number of bits to code that symbol is around 1.6.
Since Huffman coding requires an integral number of bits

to the code, assigning a 2-bit symbol leads to a longer
compressed code than is theoretically possible.

L X

N

I

0 1

0 1

0 1

Symbols I N L X

Frequency 0.6 0.2 0.1 0.1

(a) (b)

Figure 4: An example of Huffman coding. A set of 4
symbols and their frequencies are shown in (a). The
corresponding Huffman tree is shown in (b).

Another factor that needs to be considered is
decompression speed. Since each code word is
decompressed by scanning through the Huffman tree, it is
very hard to pipeline the decompression process.
Therefore it could take multiple cycles to produce a
symbol. Also, it is difficult to parallelize the decoding
process, because Huffman is a variable-length code.

Arithmetic Coding

Unlike Huffman coding, which replaces each input symbol
by a code word, Arithmetic coding takes a series of input
symbols and replaces it with a single output number. The
symbols contained in the stream may not be coded to an
integral number of bits. For example, a stream of five
symbols can be coded in 8 bits, with 1.6-bit average per
symbol. Like Huffman coding, Arithmetic coding is a
statistical compression scheme. Once the probabilities of
symbols are known, the individual symbols are assigned to
an interval along a probability line, and the algorithm
works by keeping track of a high and low number that
bracket the interval of the possible output number. Each
input symbol narrows the interval. As the interval becomes
smaller, the number of bits needed to specify it grows.
The size of the final interval determines the number of bits
needed to specify a stream. Since the size of the final
interval is the product of the probabilities of the input
stream, the number of bits generated by Arithmetic coding
is equal to the entropy. Figure 5 shows the process of
Arithmetic coding for string “XILINX” over the same
symbol set used for Huffman coding. The generated code
is 11110011011, two bits shorter than the Huffman code.

Note that the basic idea described above is difficult to
implement, because the shrinking interval requires the use
of high precision arithmetic. In practice, mechanisms for
fixed precision arithmetic have been widely used.

The Arithmetic compression for Virtex devices consists of
two steps:
1. Convert the input bit-stream into a symbol stream.
2. Perform the fixed-precision Arithmetic coding over the
symbol stream.

5

The problem with this algorithm is that Arithmetic coding
considers the symbols to be mutually unrelated
(independent). However, the regularities existing in the
configuration bit-stream may cause certain symbols to be
related to each other. Therefore, this approach may not be
able to yield the best solution for configuration
compression. One solution to this problem is to combine
multiple symbols together and discover the probabilities of
the combined symbols. However, this will cause
additional overhead by transferring and retaining a
significant amount of probability values.

Symbol LowRange HighRange

0.0 1.0
X 0.9 1.0
I 0.9 0.954
L 0.9432 0.9486
I 0.9432 0.94644
N 0.945144 0.951624

X 0.950994 0.951644

Symbols I N L X
Frequency 0.6 0.2 0.1 0.1

(a) (b)
Figure 5: An example of Arithmetic coding. The same
symbol set used for the Huffman coding is shown in (a).
The coding process for string “XILINX” is shown in (b).
The final interval, represented by the last row in (b),
determines the number of bits needed.

Lempel-Ziv-Based (LZ) Compression

Recall that Arithmetic coding is a compression algorithm
that performs better on a stream of unrelated symbols. LZ
compression is an algorithm that more effectively
represents groups of symbols that occur frequently. This
dictionary-based compression algorithm maintains a group
of symbols that can be used to code recurring patterns in
the stream. If the algorithm spots a sub-stream of the input
that has been stored as part of the dictionary, the sub-
stream can be represented in a shorter code word. The
related symbols caused by the regularities in the
configuration bit-stream make LZ algorithms an effective
compression approach.

There are variations of LZ compression, including LZ77
[Ziv77], LZ78 [Ziv78] and LZW [Welch84]. In general,
LZ78 and LZW will achieve better compression than
LZ77 over a finite data stream. A lookup table is used to
maintain occurred patterns for LZ78 and LZW. However,
the excessive amount of hardware resources required to
retain the table for LZ78 and LZW during decompression
prevent us from considering those schemes for
configuration compression. The “sliding window”
compression of LZ77 requires only a buffer, and the shift-
based FDR fits the scheme naturally, though hardware
must be added to allow reading of specific frame locations
during execution.

The LZ77 compression algorithm tracks the last n symbols
of data previously seen, where n is the size of the sliding
window buffer. When an incoming string is found to
match part of the buffer, a triple of values corresponding

to the matching position, the matching length, and the
symbol that follows the match is output. For example, in
Figure 6, we find that the incoming string 3011 is in buffer
position 3 with match length 4, and the next symbol is 0.
So the algorithm will output codeword (3, 4, 0).

 1 6 3 0 1 1 6 3 3
 0 0 7 5 4 3 4 3011 043455

43455 Output: 3, 4, 0

(a)

(b)
6 4 3

 3 0 0 7 5 4 3 4 3 0 1 1 0

Figure 6: The LZ77 sliding window compression example.
Two matches found are shown in gray. LZ77 selects the
longer match “3011”, and the resultant codeword is (3, 4,
0). (a) shows the sliding window buffer and the input
string before encoding. (b) shows the buffer and input
string after encoding.

Standard LZ77 compression containing the three fields
will reach entropy over an infinite data stream. However,
for a finite data stream, this format is not very efficient in
practice. For the case when no matching is found, rather
than outputing the symbol, the algorithm will produce a
codeword containing three fields, wasting bits and
worsening the compression ratio. An extension of LZ77,
called LZSS [Storer82], will improve coding efficiency. A
threshold is given and if the matching length is shorter
than the threshold, only the current symbol will be output.
When the matching length is longer than the threshold, the
output codeword will consist of the index pointer and the
length of the matching. In addition, to achieve correct
decompression, a flag bit is required for each code word to
distinguish the two cases.

As mentioned above, the FDR in Virtex devices can be
used as the sliding window buffer, and LZSS can take
advantage of the intra-frame regularity naturally.
However, since the current FDR can contain only one
frame of configuration data, using it as the sliding window
buffer will not take full advantage of inter-frame
regularities. Thus, we modify the FDR to the structure
shown in Figure 7. As can be seen in Figure 7, the bottom
portion of the modified FDR, which has same size as the
original FDR, can transfer data to the configuration
memory. During decompression the compressed bit-
stream is decoded and then fed to the bottom of the
modified FDR. Incoming data will be shifted upwards in
the modified FDR. Configuration data will be transferred
to the specified frame once the bottom portion of the
modified FDR is filled with newly input data. In addition,
configuration data that is written to the array can be
reloaded to the bottom portion of the modified FDR. This
lets a previous frame be reused as part of the dictionary,
and the inter-frame regularity is better utilized.
Specifically, before loading a new frame, we could first
read a currently loaded frame from the FPGA array back
to the frame buffer, and then load the new frame. By
picking a currently loaded frame that most resembles the

6

new frame, we may be able to exploit similarities to
compress this new frame.

Extended
FDR

FPGA
array

Bitstream

Figure 7: The hardware model for LZ77 compression.

While this technique will be slow due to delays in sending
data from the FPGA array back to the FDR, there may be
ways to accelerate this with moderate hardware costs. In
current Virtex devices, the data stored in the Block Select
RAMs can be transferred to logic very quickly. We can
exploit this feature by slightly modifying the current
hardware to allow the values stored in the Block Selected
RAMs to be quickly read back to the modified FDR. By
providing the fast readback from only the Block Select
RAMs, we efficiently use the Block RAMs as caches
during reconfiguration to hold commonly requested frames
without significant hardware costs. Also, the size of the
modified FDR must be balanced against the potential
hardware cost. In our research, we allow the modified
FDR to contain two frames of data. This will not
significantly increase hardware overhead, yet it will utilize
the regularities in the configuration stream [richmond01].

Finding regularities in a configuration file is a major goal.
LZ compression performs well only in the case where
common strings are found between the sliding window
buffer and incoming data. This requires quite a large
buffer to find enough matches for general data
compression. However, for configuration compression,
the hardware costs will restrict the size of the sliding
window buffer. Thus, performing LZ compression
directly over the datastream will not render the desired
result. In order to make compression work efficiently for
a relatively small buffer, we need to carefully exploit the
data stream, finding regularities and intelligently
rearranging the sequence of frames to maximize matches.
In the following sections, we discuss algorithms that apply
LZSS compression, targeting the hardware model
described above. These algorithms are all realistic but

require different amounts of hardware resources and thus
provide different compression ratios.

The Readback Algorithm

The goal of configuration compression is to take
advantage of both inter-frame and intra-frame regularities.
In the configuration stream, some of the frames are very
similar. By configuring them consecutively, higher
compression ratios can be achieved. An FPGA’s readback
feature allows us to read back the frame that most
resembles the new frame into the modified FDR and thus
reuse it as a dictionary. This increases the number of
matches for LZSS, permitting us to fully use regularities
within the bit-stream. For example, in Figure 8, four
frames are to be configured, and frames (b), (c) and (d) are
more like (a) than like each other. Without readback,
inter-frame regularities between (c), (d) and (a) will be
missed. However, with the fast readback feature, we can
temporarily store frame (a) in the Block Select RAMs,
reading it back to the modified FDR and using it as a
dictionary when other frames are configured. This fast
readback will significantly increase the utilization of inter-
frame regularities with negligible overhead. Since the
modified FDR is larger than the size of the frame, LZSS
will be able to use intra-frame regularities naturally.

a b c d e f g h

a b c d e x x x

x y y d e f g h

(a)

(b)

(c)

a b c j k f g h
(d)

Figure 8: Example to illustrate the benefit of readback.
(b), (c), and (d) resemble to (a). By reusing (a) as a
dictionary, better compression can be achieved.

Discovering inter-frame regularities represents an issue
that will influence the effectiveness of compression.
Based on the hardware model we proposed above, the
similarity between the frame in the modified FDR and the
new incoming frame is the key factor for compression.
More specifically, we seek to place a certain frame in the
modified FDR so that it will most aid the compression of
the incoming frame. In order to obtain such information,
each frame is used as a fixed dictionary in a preprocessing
stage, and LZSS is applied to all other frame, which are
called beneficiary frames. Note that LZSS is performed
without moving the sliding window buffer, meaning that
the dictionary will not be changed. This approach
excludes potential intra-frame regularities within each

7

beneficiary frame, providing only the inter-frame
regularity information. The output code length represents
the necessary writes for each beneficiary frame based on
the dictionary, and shorter codes will be found if the
beneficiary frame resembles the dictionary.

Once this process is over, a complete directed graph can
be built, with each node standing for a frame. The source
node of a directed weighted edge represents a dictionary
frame, and the destination node represents a beneficiary
frame. The weight of each edge denotes the inter-frame
regularity between a dictionary frame and a beneficiary
frame. One optimization performed is to delete the edges
that present no inter-frame regularity between any two
frames. Figure 9(a) shows an example of the inter-frame
regularity graph.

Given an inter-frame regularity graph, our algorithm seeks
an optimal configuration sequence that maximizes the
inter-frame regularities. Specifically, we seek a subset of
the edges in the inter-frame regularity graph such that
every node can be reached and the aggregate edge weight
is minimized. Solving this problem is equivalent to
solving the directed minimum spanning tree problem,
where every node has one and only one incoming edge,
except for the root node. Figure 9(b) shows the
corresponding optimal configuration sequence graph of
Figure 9(a). In the configuration sequence graph, a frame
with multiple children needs to be stored in Block Select
RAMs for future readback. For example, in Figure 9(b), a
copy of frame A will be stored in Block Select RAMs and
read back to the modified FDR to act as a dictionary.

A

B

D

F

C

10

30
30

30
50

60
30

E 60

40
60

30
20

30

40

60

F

E

B C D

A

40

 (a) (b)

Figure 9: Seeking optimal configuration sequence. An
inter-frame regularity graph is shown in (a). The
corresponding optimal configuration sequence graph is
shown in (b).
Now we present our Readback algorithm:

1 Convert the input bit-stream into a symbol stream.

2 For each frame, use it as a fixed dictionary and
perform LZSS on every other frame.

3 Build an inter-frame regularity graph using the values
computed in step 2.

4 Apply the standard directed minimum spanning tree
algorithm [Chu65] on the inter-frame regularity graph
to create the configuration sequence graph.

5. Perform pre-order traversal starting from the root. For
each node that is being traversed:

5.1. If it has multiple children, a copy of it will be
stored in an empty slot of the Block Select
RAMs.

5.2. If its parent node is not in the modified FDR,
read the parent back from the Block Select
RAMs.

5.3. Perform LZSS compression.

5.4. If it is the final child traversed of the parent
node, release the memory slot taken by the
parent.

Step 2 measures inter-frame regularities between frames.
Results are used to build the inter-frame regularity graph
and the corresponding configuration sequence graph in
Steps 3 and 4 respectively. The Pre-order traversal
performed in Step 5 uses the parent frame of the currently
loading frame as a dictionary for LZSS compression. Note
that a copy of the currently loading frame will be stored in
the Block Select RAMs if it has multiple children in the
configuration sequence graph. Also, additional overhead
from setting configuration registers will occur if frames to
be configured are not contiguous.

One final concern for our Readback algorithm is the
storage requirement for the reused frames. Analyzing
configuration sequence graphs, we found that although a
large number of frames need to be read back, they are not
all required to be held in the Block Selected RAM at the
same time, and they can share the same memory slot
without conflict. For example, in Figure 10, both frame A
and frame B need to be read back. Suppose the left sub-
tree was configured first; then frame A will occupy a slot
in the Block Selected RAMs for future readback. Once
the configuration of the left tree is complete, the memory
slot taken by frame A can be reused by frame B during
configuration of the right sub-tree.

A B

Figure 10: An example of memory sharing.

We have developed an algorithm using a bottom-up
approach that accurately calculates the memory slots
necessary. By combining it with our Readback algorithm,
usage of the Block Select RAMs can be minimized. The
details of the algorithm are as follows:

8

1. For each node in the configuration sequence graph,
assign 0 to the variable V and number of children to
C.

2. Put each node whose children are all leaves into a
queue.

3. While the queue is not empty:

3.1. Remove a node from the queue.

3.2. If it has one child, V = Vchild, else V =
max(largest Vchild, (second largest Vchild + 1)).

3.3. For its parent node, C = C -1. If C = 0, put the
parent node into the queue.

Figure 11 shows an example of our Memory Requirement
Calculation algorithm. At left is the original configuration
sequence graph. At right shows the calculation of the
memory requirement using a bottom-up approach. The
number inside each node represents the number of
memory slots necessary for configuring its sub-trees. As
can be seen, only two memory slots are required for this
14-node tree. It is obvious that the memory required by a
node depends on the memory required by each of its
children. One important observation is that the memory
required by the largest sub-tree can overlap with the
memory required for other sub-trees. In addition, since the
last child of a node to be configured can use the memory
slot released by its parent, the memory required by
configuring all sub-trees can equal that of configuring the
largest sub-tree. Since the pre-order traverse will scan the
left sub-trees before the right ones, we should readjust the
configuration sequence graph to set each node in the sub-
tree that requires the most memory as the rightmost sub-
tree. In order to apply the memory minimization to our
compression, we modify Step 4 of our readback algorithm
as follows:

4. Apply the standard directed minimum spanning tree
algorithm on the inter-frame regularity graph to create
the configuration sequence graph. Perform the
Memory Calculation algorithm, and the largest sub-
tree for each node is set as the rightmost sub-tree.

0

0 0

0 1

1

2

0

0 0

1

2

1

0 0

(a) (b)

Figure 11: An example to illustrate our Memory
Requirement Calculation algorithm. A configuration
sequence graph is shown in (a), and the corresponding
memory requirement calculation procedure is shown in
(b).

Active Frame Reordering Algorithm

The Readback algorithm allows frames to be read back to
the modified FDR to achieve effective compression.
However, the delay and hardware alterations required for
the Block Selected RAM readback may not be acceptable.
Some applications may restrict the use of the Block Select
RAMs. In order to take advantage of the regularities
within the configuration bit-stream, we have developed a
frame reordering algorithm that does not require frame
readback.

As can be seen in our readback algorithm, frame
reordering enhances compression by utilizing inter-frame
regularities. This idea can still be applied to applications
without the readback feature. In our readback algorithm,
once the inter-frame regularity graph is built, a
corresponding configuration sequence graph can be
generated, and traversing the configuration sequence graph
in pre-order can guarantee the maximum utilization of the
regularities discovered. However, without frame
readback, traversing the configuration sequence graph
might not necessarily be the optimal solution, since parent
nodes cannot be reused as a dictionary. Our Active Frame
Reordering algorithm uses a greedy approach to generate a
configuration sequence that allows each frame to be used
as a dictionary only once. It still takes the inter-frame
regularity graph as input. However, instead of using the
directed MST approach to create a configuration sequence,
a spanning chain will be generated using a greedy
approach. The details of the algorithm are as follows:

1. Convert the input bit-stream into a symbol stream.

2. For each frame, use it as fixed dictionary and perform
LZSS on every other frame.

3. Build an inter-frame regularity graph using the values
that resulted from Step 2.

4. Put the two frames connected by the minimum weight
edge into a set. Let H be the head and T be the tail of
this edge.

5. While not all frames are in the set:

5.1. For all incoming edges to H and outgoing edges
from T, find the shortest one that connects to a
frame not in the set. Put that frame into the set.
The frame is set to H if the edge found is an
incoming edge to H; otherwise set the frame to
T.

6. Perform LZSS compression on the chain discovered
in Step 5.

The basic idea of the algorithm is to grow a spanning
chain from the two ends. Step 5 finds a frame not in the
chain with the shortest edge either coming into an end or
going out from the other. This greedy process is repeated
until all frames are put in the spanning chain. For

9

example, in Figure 9, the order of the frames to be put into
the chain discovered by our algorithm is ABDFEC (the
configuration sequence will be DABFEC). The cost of the
sequence is 160, slightly larger than the optimal spanning
chain (150). Starting from one end of the discovered
spanning chain, LZSS can be performed to generate a
compressed bit-stream.

Fixed Frame Reordering Algorithm

One simple algorithm is to reorder the frames such that the
Nth frame of each column is consecutive. Performing
LZSS over the sequence generated by the simple
reordering takes advantage of the regularities within
applications. The overhead of setting the configuration
registers can be eliminated using this fixed frame order,
since the order that frames appear is fixed for all
configurations.

Wildcarded Compression for Virtex

Since the Wildcard Compression [Hauck99] achieves good
results for the Xilinx 6200 FPGAs, we would like to apply
it to Virtex FPGAs. For Virtex configurations, multiple
rows within a frame can contain the same configuration
data. Instead of configuring them one by one, the
wildcarded approach allows these rows to be configured
simultaneously. To apply the wildcarded approach to
Virtex, an address register and a wildcard register will be
added as an augmented structure to the FDR. They will
allow specified rows within the FDR to be configured.

For circuits with repetitive structures, multiple frames
could be very similar, yet not completely identical. By
allowing the FDR to be addressable, we take advantage of
this inter-frame regularity. Instead of loading the whole
frame, we can load only the differences between frames.
For example, in Figure 12, two frames need to be
configured, and the second frame has only three values
different from the first one. In this case, only the
configuration data for the 3 different values needs to be
loaded. In addition, if the three different rows can be
covered by a wildcard, one write is enough to configure
the whole second frame. This structure will also support
true partial reconfiguration. More specifically, for each
frame to be reconfigured, rather than loading the entire
frame, we can simply load the difference from the current
configuration. Note that adding the Address Register and
Wildcard Register represents additional hardware cost.
Moreover, extra bits for the address and wildcard need to
be transferred for every write.

The Wildcard algorithm consists of 2 stages. In the first
stage we reorder similar frames so they will be configured
consecutively. This creates a sequence in which the
number of writes necessary for configuring each frame is
greatly reduced. In the second stage, we find the
wildcards covering the writes for each frame and thus
further reduce the configuration overhead. The first stage

takes advantage of inter-frame regularities while the
second stage focuses on intra-frame regularities.

Figure 12: An example of inter-frame compression using
addressable FDR.

In the first stage, we discover the number of non-matching
rows between each pair of frames; the result indicates the
extent of similarity between the frames. An undirected
graph is built to keep track of the regularities, and a near
optimal sequence needs to be discovered. Since each
frame is configured exactly once, finding the sequence
based on the regularity graph is equivalent to solving the
traveling salesman problem. An existing algorithm is an
approximation with a ratio bound of two for the traveling-
salesman problem with triangle inequality [Lawler85].
Given a complete undirected graph G = (V, E) that has a
nonnegative integer cost c(u, v) associated with each edge
(u, v)∈E, cost function c satisfies the triangle inequality if
for all vertices u, v, w ∈V, c(u, w) ≤ c(u, v) + c(v, w).
Since the differences between frames satisfy the triangle
inequality, we can apply the approximation algorithm on
our compression algorithm. The details of our Wildcard
algorithm are as follows:

1. Convert the input bit-stream into an 18-bit symbol
stream.

2. For each pair of frames, identify the different 18-bit
symbols between them.

3. Build a regularity graph using the results from Step
2.

4. Perform the Approx-TSP-Tour algorithm [Lawler85]
to determine the order of frames to be configured.

5. For each frame configuration, use the Wildcard
algorithm to find the wildcards to cover the
differences.

Results

All algorithms are implemented in C++ on a Sun Sparc
Ultra 5 workstation and were run on a set of benchmarks
collected from Virtex users. Detailed information about
the benchmarks is shown in Table 1.

Figure 13 shows simulation results for compression
approaches using 6-bit symbols; the wildcard approach
uses 18-bit symbols. The left 10 benchmarks are
automatically mapped and use more than 50% of the chip
area. The “Geo. Mean” column is the geometric mean of
the 10 benchmarks. The three right-most benchmarks are

10

either hand mapped or use only a small percentage of the
chip area, and are included to demonstrate how hand
mapping or low utilization affects compression. Figure 14
demonstrates simulation results for 9-bit symbols (The
Wildcard algorithm is not shown, since it uses only 18-bit
symbols.).

Table 1: Information for Virtex benchmarks.
Bench
mark Source Device Chip

Utilization Mapping

Mt1mem0 Rapid 400 >80% Auto

Mt1mem1 Rapid 400 >80% Auto

Mars USC 600 Unknown Auto

RC6 USC 400 Unknown Auto

Serpent USC 400 Unknown Auto

Rijndael USC 600 Unknown Auto

Design1 HP 1000 >70% Auto

Pex North
eastern 1000 93% Auto

Glidergun Xilinx 800 >80% Hand

Random Xilinx 800 >80% Hand

U1pc Xilinx 100 1% Auto

U50pc Xilinx 100 50% Auto

U93 Xilinx 100 >90% Auto

As can be seen in the figures, the readback algorithm
performs better than other algorithms for both 6-bit and 9-
bit cases for most of the benchmarks. This is because the
Readback algorithm takes full advantage of inter-frame
regularities within the configuration bit-stream by reusing

certain frames as dictionaries. Though they cannot fully
utilize inter-frame regularities, the reordering techniques
still provide fairly good results without using the Block
Select RAMs as a cache. The Active Reordering
algorithm performs better than the Fixed Reordering
algorithm since active reordering can better use inter-
frame regularities by actively shuffling the sequence of
frames, while fixed reordering can utilize only the
regularities given by the fixed sequence.

Surprisingly, although the wildcard approach can exploit
both inter-frame and intra-frame regularities, it still yields
worse compression ratios than the active reordering
scheme for most of the benchmarks. There are several
reasons for this. First, the wildcard approach requires
address and wildcard specifications for each write, adding
significant overhead to the bit-stream. The additional
overhead overwhelms the benefits provided by the
regularities within the applications. Second, the wildcard
approach requires a comparison between the same rows of
the given frames to discover inter-frame regularities.
Consequently, the similarity the wildcard approach can
discover is aligned in rows, and any unaligned similarities
that benefit the LZ-based approaches will not help
wildcards. For example in Figure 15, the Wildcard
algorithm cannot discover the inter-frame regularity
between frame A and frame B. However, the regularity
can be exploited for LZ-based approaches. Third, the
Wildcard approach requires that enough rows covered by a
wildcard share the same configuration value to achieve
better compression. However, even the XCV1000, which
is a relatively large device, has only 64 rows and it is not
likely to find enough rows covered by a wildcard that have
the same configuration value. For many cases, each
wildcard contains only one row, and the address/wildcard
overhead is still applied.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Mem0 Mem1 mars rc6 serpent rijndael design1 Pex U50pc U93 Geo.
Mean

Glider Rand U1pc

Pe
rc

en
ta

ge
 o

f t
he

 o
rig

in
al

Huffman
Arithmetic
Readback
Active order
Fixed order
wildcard

Figure 13: The simulation results for 6-bit symbol.

11

Figure 14: The simulation results for 9-bit symbol.

The probability-based Huffman and Arithmetic coding
techniques perform significantly worse than other
techniques, since they do not consider regularities within
the bit-stream. The Huffman approach did worse than
the Arithmetic approach, simply because of its
inefficient coding method. Adding the fact that these
two approaches require significant hardware for the
decompressor, we will not consider using them for
configuration compression.

 Frame A values Frame B values

Row 1 1 2

Row 2 2 3

Row 3 3 4

Row 4 4 5

Row 5 5 6

Figure 15: Unaligned regularity between frames.
The wildcard approach will miss this regularity,
while the LZ-based approaches will take advantage
of them.

Don’t Cares
In an FPGA configuration it is possible to find
configuration bits who’s value is unimportant to the
functioning of the circuit. For example, the
configuration of unused logic blocks usually is
unimportant. Our previous research [Li99] shows that
with the help of these Don’t Care bits within the
configuration datastream, higher compression ratios can
be achieved. Although Xilinx does not disclose the
information necessary to discover Don’t Cares in the
Virtex applications, we can still evaluate the potential
impact of the Don’t Cares for Virtex compression. In
order to make an estimate, we randomly turn some bits
of the data stream into Don’t Cares and bound the impact
of Don’t Cares on our Readback algorithm.

In practice, the discovered Don’t Care bits need to be
turned to ‘0’ or ‘1’ to produce a valid configuration bit-
stream. The way that the bits are turned affects the
frame sequence and thus the compression ratio. Finding
the optimal way to turn the bits may take exponential
time. We have used a simple greedy approach to turn
these bits to create an upper-bound for our Readback
algorithm. The configuration sequence graph is built
taking into account the Don’t Cares. We greedily turn
the Don’t Care bits into ‘0’ or ‘1’ to find the best
matches. Note that once a bit is turned, it can no longer
be used as a Don’t Care. To discover the lower-bound,
we do not turn the Don’t Care bits; thus, they can be
used again to discover better matches.

0%

20%

40%

60%

80%

100%

120%

DC 0% DC 10% DC 20% DC 30% DC 40% DC 50%

Don't Care percentage

pe
rc

en
ta

ge
 o

f o
rig

in
al

al

go
rit

hm

lower bound

upper bound

Figure 16: Estimate Result for Virtex bitstream with
Don’t Cares.
Figure 16 demonstrates the potential effect of Don’t
Cares over the benchmarks listed in Table 3.2. The X-
axis is the percentage of the don’t cares we randomly
create and the Y-axis is the normalization over the
results without considering Don’t Cares. As can be seen
in Figure 16, by using upper-bound approach a factor of
1.3 improvement can be achieved on applications
containing 30% Don’t Cares, while a factor of 2
improvement can be achieved using the lower-bound
approach.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Mem0 Mem1 mars rc6 serpent rijndael design1 Pex U50pc U93 Geo.
Mean

Glider Rand U1pc

Pe
rc

en
ta

ge
 o

f t
he

 o
rig

in
al

Huffman
Arithmetic
Readback
Active order
Fixed order

12

Hardware Costs
Since decompression must be performed on-chip,
hardware costs for building decompressors must be
evaluated to determine whether our compression
algorithms are viable techniques. In this work we focus
on the hardware implementation of the LZ decompressor
because its compression algorithms outperform other
approaches. We have implemented this LZ
decompressor, and demonstrated the hardware cost is
minimal. The overall increase in area is less than 1% for
Virtex 1000 or larger devices [Richmond01].
Conclusions

One of the major problems in reconfigurable computing
is the time and bandwidth overheads due to
reconfiguration. This can overwhelm the performance
benefits of reconfigurable computing, and reduce the
potential application domains. Thus, reducing this
overhead is an important consideration for these systems.
In this paper we have researched current compression
techniques, including Huffman coding, Arithmetic
coding and LZ coding for the Virtex FPGA. We have
also developed different algorithms targeting different
hardware structures. Our Readback algorithm allows
certain frames to be reused as a dictionary and
sufficiently utilizes the regularities within the
configuration bit-stream. Our Frame Reordering
algorithms exploit regularities by shuffling the sequence
of the configuration. The simulation results demonstrate
that a factor of four compression ratio can be achieved.
We believe the configuration compression algorithms we
developed can be extended to any similar reconfigurable
devices without significant modifications.

References

[Chu65] Y. J. Chu and T. H. Liu. On the
shortest arborescence of a directed
graph. Science Sinica, v.14, pp.1396-
1400, 1965.

[Compton02] K. Compton, S. Hauck,
Reconfigurable Computing: A Survey
of Systems and Software, ACM
Computing Surveys, Vol. 34, No. 2.
pp. 171-210. June 2002.

[Dandalis01] Andreas Dandalis, Viktor Prasanna.
Configuration Compression for FPGA-
based Embedded Systems.
ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays,
2001.

[Hauck98] S. Hauck. Configuration Prefetch for
Single Context Reconfigurable
Coprocessors. ACM/SIGDA
International Symposium on Field-
Programmable Gate Arrays, pp. 65-
74, 1998.

[Hauck99] S. Hauck, Z. Li, E. Schwabe.
Configuration Compression for Xilinx
6200 FPGA, IEEE Transactions on
Computer-Aided Design of Integrated
Circuits and Systems, Vol. 18, No. 8,
pp. 1107-1113, August, 1999.

[Huffman52] D. A. Huffman. A Method for the
Construction of Minimum Redundancy
Codes. Proceedings of the Institute of
Radio Engineers 40, pp 1098—1101,
1952.

[Lawler85] E. L. Lawler, J. K. Lenstra, A. H. G.
Rinnooy Kan, and D. B. Shmoys. The
Traveling Salesman Problem. John
Wiley and Sons, New York, 1985.

[Li99] Z. Li, S. Hauck, Don’t Care Discovery
for FPGA Configuration Compression.
ACM/SIGDAInternational Symposium
on Field-Programmable Gate Arrays,
pp. 91-100, 1999.

[Li00] Z.Li, K. Compton, Scott Hauck.
Configuration Caching Management
Techniques for Reconfigurable
Computing”. IEEE Symposium on
FPGAs for Custom Computing
Machines, pp. 87-96, 2000.

[Richmond01] Melany Richmond. A Lemple-Ziv
based Configuration Management
Architecture for Reconfigurable
Computing. Master’s Thesis,
University of Washington, Dept. of
EE, 2001.

[Storer82] J.A. Storer, T. G. Syzmanski. Data
Compression via Textual Substitution.
Journal of the ACM, 29:928-951,
1982.

[Welch84] T. Welch. A technique for high-
performance data compression. IEEE
Computer, pp 8-19, June 1984.

[Witten87] I. H. Witten, R. M. Neal, J. G. Cleary.
Arithmetic Coding for Data
Compression. Communications of the
ACM, vol. 30, pp. 520-540, 1987.

[Xilinx00] Xilinx, Inc. Virtex II Configuration
Architecture Advanced Users’ Guide.
March, 2000.

13

[Ziv77] J. Ziv, and A. Lempel. A universal
algorithm for sequential data
compression. IEEE Transactions on
Information Theory, pp 337-343, May
1977.

[Ziv78] J. Ziv, and A. Lempel. Compression
of individual sequences via variable-
rate coding. IEEE Transactions on
Information Theory, pages 530-536,
September 1978.

