Benchmarking High Level Synthesis for Machine Learning
Implementations versus Hand-optimized SystemVerilog

Waiz Khan, Caroline Johnson, Scott Hauck, Shih-Chieh Hsu, Geoff Jones

Introduction

High Level Synthesis for Machine Learning (HLS4ML)
enables rapid prototyping of Machine Learning models
into hardware designs.

P . -,! as
] " Ce-processing kernel
/ \ -
.' | hils 4 ml
| R 3 /
\ / W, % =
".\ | |. comprossed '| '/HLS \\ /
Uswal maching learn .|.g__ J';_-/ "
softwore warkflo !

[11

Performance can be optimized by adjusting parameters
such as Compression, Precision, and Resource Reuse
factors.

—>—p—p—p reuse = 4
O use 1 multiplier 4 times

reuse =1
use 4 multipliers 1 time each

p N = mult | peyse =2
O/ . O use 2 multipliers 2 times each
p—p| muit

(11

Are HLS4ML's implementations efficient compared to
lower-level implementations?

FPGA Resources Used

- LUTs
30 { =&~ DFFs
DSPs
25 1 Dashed: HLSaML e
M Solid: Hand-optimized LT
o 5
g 20 5 &
515
e
-4
10
5 __k_.,-/'"/r“'r’ﬁ--
0] ®
4 6 8 10 12 14 16 18 20

Bitwidth

2D Conv Layer, Stride 2

Reuse Factor of 9:

PERFORMANCE Min Period (ns) Latency (cycles Latency (ns) |l (cycles) Il (ns)

HLS4ML - 256 6.2 592.5 3673.5 459.75 2850.45
HLS4ML - 128 6.9 463.5 3198.15 395.25 2727.225
Us 6.9 219 15111 105.75 729.675
Model RESOURCES LUTs Total LUTs DFFs RAM DsP

HLS4ML - 256 256 707 7073 11031 2 18
HLS4ML - 128 128 6502 8799 35 24
Us 231 2318 865 0.5 24
Available On Chip 693120 86640 1470 3600
HLS4ML 256 1.02% 12.73% 0.14% 0.44%
HLS4ML 0.94% 10.16% 0.24% 0.67%
Us 0.33% 1.00% 0.03% 0.67%

Percentage of Max Resource Utilization vs. Iteration Interval

30 4
@ hisdaml conv reuse 3 .
A hisdaml conv reuse 9
25 @ usconvreuse3

A usconvreuse 9
g
o 20
@
a
=]
-]
v 15
]
2 A
&
x 10 L A
o
=

54
@
A
0
500 1000 1500 2000 2500

Il ins)

Hand-implemented Conv2D Layer (stride of 2) with Reuse Factor of 9
achieves better performance than the HLS4ML implementations.

52.8% lower latency
73.2% faster iteration interval
64.3% fewer total LUT's used

90.2% fewer DFFs used

Batch Normalization Layer

Currently under development, small scale model functional

Batch Norm Layer algorithm:

Cycle 0 1.2 3 4 5 B 1 8 9 10 1
input first batch (4) Process firstbaich (4) ., GG first batch (4)
. Progess second batch (4]

Inpait third batch (4)

Batch size of 4, pipelined to three major stages, each taking four cycles

Values processed in the following order: (each step takes one cycle)
Batch Mean, Batch Variance, Normalize value, Scale & Shift

Pipelined for efficiency to allow for parallel usage of resources

Small Scale Model Results: (values are in fixed point, 8 integer bits, 8 fraction bits)

B8 (outputvalues, converted to decimal)
-1.343
-0.449
0.494
1.340

Conclusion

The possibility to improve CONV2D implementation in HLS4ML to be
faster or efficient is demonstrated. The lower-level implementation required
fewer resources to produce a model with lower latency.

Batch Normalization layer can be implemented efficiently in hardware but
will require large LUTs to accelerate some parts of the computation.

Next Steps

Implement an HLS4ML-inspired SystemVerilog implementation of Conv2D,
stride 2 to improve performance

Implement a scaled-up batch norm layer, to compare with HLS4ML

References

» = %ol

[1]). Duarte et al 2018 JINST 13 P07027 NSF OAC-2117997

