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Abstract 
 

Contrary to prevailing consumer conceptions of efficient silicon use, previous research efforts have 
shown that designing routing-poor FPGAs may yield significant area gains.  In this paper we show 
that conventional wirelength-centric placement tools are unable to deal with the challenges that 
routing-limited CAD problems present.  We believe that this problem is present given today’s 
architectures and will become more important as devices scale. 

 
1 Introduction  
 

Although the FPGA user base has pushed manufacturers to constantly improve LUT utilization, this practice 
does not insure the best use of the underlying silicon.   Unfortunately, a huge amount of interconnection resources are 
required to provide very high routability across a wide range of circuits for today’s large gate-count devices.  This 
problem is further complicated by the natural square arrangement of FPGA tiles since the Rent’s exponent is somewhat 
tied to the perimeter of the array.  Either way, routing-poor reconfigurable architectures will become a fact of life in the 
future. Unfortunately, since conventional placement tools do not consider the difficulties that might be encountered 
during routing, they will tend to produce very tight placements that are unable to be routed given the available 
resources.  In this paper we demonstrate this phenomenon using VPR and the twenty “Toronto Place and Route 
Challenge”  MCNC benchmark netlists. 
 
2 Problem Formulation 
 

While functional pieces of an FPGA, such as LUTs and monolithic multipliers/memory cores, only occupy 
approximately 5-10% of the overall die area in current generation FPGAs, the communication pieces necessary to allow 
near-100% logic utilization occupy the vast majority of the silicon.  The work in [2] investigated how LUT utilization 
was tied to area utilization of the device.  Investigating hierarchical FPGA architectures, the author found that requiring 
100% LUT utilization ended up creating very large devices and that by maintaining 60-70% LUT utilization one could 
half that area.  While these findings are limited to the specific type of architectures that the author explored, this does 
introduce some doubt that it is wise to pursue extremely high LUT utilization. 

Another scenario that might cause the bulking of routing resources is that very small, highly interconnected 
sections of a netlist might dictate the overall interconnection architecture.  To determine the channel width necessary for 
a given netlist, the popular place and route suite, VPR [1], places the netlist using simulated annealing, then performs a 
binary search increasing and decreasing the number of wires per routing channel to determine the minimum allowable 
global channel width.  While VPR chooses to globally decide the minimum channel width for architecture flexibility 
and design ease, this also means that a small, highly interconnected portion of the circuit dicates the channel width for 
the entire chip.  This is seen in Figure 1a and 1b.  However, this does not accurately reflect the average routing 
requirements of the chip since the majority of the circuit will likely be a more regularly connected datapath.  If this 
highly connected region were to be spread out, as shown in Figure 1C, this would more evenly distribute the routing 
needs of the chip and the maximum necessary channel width would be greatly reduced.  Unfortunately, most existing 
placement tools are unable to realize this routing distribution since they utilize wirelength-centric cost functions.  In this 
way, they are only able to minimize wirelength without consideration for congestion. 

 



 
 

Figure 1 A,B,C – Channel Width Moderation 
1A shows only a small portion of the circuit is highly connected and requires a wide channel width.  1B shows that CAD and design 
issues cause channel widths across the chip to increase to accommodate this small sub-circuit.  1C shows that this highly connected 
region could be spread out so that the overall routing resource requirements are more evenly distributed throughout the chip. 
 
A more serious consequence of this failure goes beyond architecture exploration and development and into 

fundamental placement and routing for realistic architectures.  If we attempt to recreate the work done in [2] for island-
style FPGAs or we follow the natural routing-poor scaling tendencies of 2-D arrays, we realize that today’s CAD tools 
are unable to successfully map to architectures that have limited routing resources.  In these cases, they fail to place and 
route despite the fact that viable mappings exist.  For example, consider the case shown in Figure 2A and 2B.  Figure 
2A is the result of the normal VPR place and route toolflow.  The same relative placement and routing should work if 
we only have an architecture that is quadruple the size, but with half the channel width and double the segment length.  
Unfortunately, it is unlikely that a wirelegth-centric placement will find this arrangement. 

 
 

 
Figure 2 A,B – Logic and Routing Array Growth 
The 4x4array shown in 2A has a channel width of 2X.  The 8x8 array shown in 2B should be only marginally larger if we give it a 
channel width of 1X and double the segment length.  The placement via conventional CAD tools is far too clustered to route on the 
modified architecture despite that a viable placement exists. 
 

3 Testing and Results 
 
To demonstrate the shortcomings of conventional placement and routing tools we forced VPR into slightly 

routing-constrained, but logic-rich architectures.  First, we determined the desired routing channel width given a logic-
bound architecture.  We chose to map these netlists to the Toronto “4x4_sanitized”  architecture which features four 4-
LUTs per CLB, and both buffered and unbuffered length 4 segments. The default settings of VPR provide a netlist with 
the smallest square architecture that it will fit on.  After placement, it performs a binary search to find the minimum 
channel width that will allow the netlist to route.  These results are shown in Figure 3.  After finding the minimum 
desired channel width, we re-ran VPR, but provided an architecture that had one, two or three fewer tracks than the 
circuit desired in the logic-bound case.  To offset the new lack of routing, we allowed the array to grow up to four times 
the minimum square array.   



 
Netlist # CLBs Array Size (N2) Tracks CW – 1 CW – 2 CW – 3 

alu4 390 20 33 fail   
apex2 485 23 43 fail   
apex4 335 19 41 fail   
bigkey 427 27 24 1 fail  
clma 2133 47 51 fail   
des 415 32 24 fail   

diffeq 379 20 29 0 fail  
dsip 343 27 25 fail   

elliptic 906 31 40 2 fail  
ex1010 1201 35 45 2 fail  
ex5p 278 17 43 1 1 fail 
frisc 894 30 43 fail   

misex3 361 19 37 fail   
pdc 1187 35 61 fail   

s298 490 23 28 4 fail  
s38417 1609 41 36 fail   

s38584.1 1614 41 35 1 41  
seq 448 22 40 fail   
spla 955 31 56 0 fail  

tseng 266 17 25 fail   

 
Figure 3 – Logic-bound and Routing-Restr icted Architecture Results 
The first 3 columns show the results of running the 20 Toronto benchmarks through VPR in the normal logic-bound array and 
binary-search channel width manner.  Note that the netlists in red are I/O bound, not logic bound.  The three final columns show the 
results when given an architecture that has 1, 2 or 3 fewer tracks than desired in the logic-bound case.  The array was allowed to 
grow to four times the original, logic-bound array size before being declared a failure.  When successful, we indicate how many 
additional rows and columns needed to route the netlist. 
 
As Figure 3 shows, 60% of the netlists fail when only given even one less routing track per channel.  

Furthermore, this falls to 90% when two less routing tracks are given.  Finally, all of the netlists fail when given three 
less routing tracks.  These results are particularly surprising when examined more closely.  First, the average channel 
width is 38 tracks.  This means that one, two and three less routing track only corresponds to an average of less than 
3%, 6% and 8%, respectively, fewer tracks per channel.  Given that the netlists were given architectures that approached 
400% more overall chip-wide routing resources, we can virtually guarantee that viable mappings existed, but that VPR 
was unable to find them.  Furthermore, we can see that 2 of the netlists routed in exactly the same sized array, that is, 
the previously found binary search “minimum” was not real lower bound but subject to some variations due to random 
placement variations.  In those cases, the channel width minus two test was really the channel width minus one case.  Of 
course, these random variations might also affect our results in the opposite manner – we declared a failure, but the 
circuit can place and route given fewer routing tracks if we start with a different placement seed.  While more extensive 
testing could increase the accuracy of our results, we still believe that the basic findings are true – conventional 
wirelength-centric placement is not sufficient given routing-poor reconfigurable architectures. 
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