
Efficient Implementation of Transformer Inference
via a Tiled-Based Architecture on an FPGA*

1st Ling-Chi Yang
Institute of Electronics

National Yang Ming Chiao Tung University
HsinChu, Taiwan

hisky1256.ee11@nycu.edu.tw

2nd Chi-Jui Chen
Graduate Degree Program of College of Electrical and Computer Engineering

National Yang Ming Chiao Tung University
HsinChu, Taiwan

silencekugel.ee11@nycu.edu.tw

3rd Trung Le
Electrical and Computer Engineering

University of Washington
Washington, USA

tle45@uw.edu

4th Bo-Cheng Lai
Institute of Electronics

National Yang Ming Chiao Tung University
HsinChu, Taiwan
bclai@nycu.edu.tw

4th Scott Hauck
Electrical and Computer Engineering

University of Washington
Washington, USA

hauck@uw.edu

4th Shih-Chieh Hsu
Physics

University of Washington
Washington, USA

schsu@uw.edu

Abstract—This paper presents an ultra-low-latency imple-
mentation of a machine learning inference algorithm called a
”Transformer”. In this research, we utilized the FlashAttention-
2 algorithm on an FPGA, which is a device that has greater
on-chip memory resources compared to a GPU. This involved
transitioning from row-wise to tile-wise data accesses and using
smaller tiles to create a more fine-grained pipeline. To address
the challenge of low efficiency on dataflow architecture due to
limited memory ports and data conflicts, we implemented a set of
ping-pong buffers that allow interleaved access without stalling
the computation of the attention mechanism. Our proposed
Dataflow architecture demonstrates a significant increase in
power efficiency, achieving improvements of 61% to 321% over
existing FPGA-based transformer accelerators.

Index Terms—FPGA, transformer, machine learning, infer-
ence, flash attention, energy-efficient, dataflow

I. INTRODUCTION

In recent years, due to significant data movement and low
arithmetic intensity, general-purpose platforms such as GPUs
and CPUs have encountered challenges in efficiently exe-
cuting Transformer inference. Consequently, domain-specific
accelerators implemented on FPGA or ASIC platforms, which
have energy constraints, have been developed to enhance
Transformer performance.

To address these challenges, the algorithms FlashAttention-
2 [1] change the access from row-wise to tile-wise in the
softmax without any accuracy drop, reducing bandwidth and
the lifetime of attention weights, thus decreasing on-chip
memory usage.

Despite the significant reduction in bandwidth and space in
FlashAttention-2 when implemented on GPUs, the following
issues still exist:

• The delay caused by High-Bandwidth Memory (HBM)
transfers is still much greater than the time taken for K
and V matrix multiplications. FPGAs, which have more
on-chip memory, may not require data transfers to HBM.

• Even though the number of non-linear operations is
reduced, their computational time cannot be ignored.
FPGAs offer more flexibility with bit-level operations,
allowing fast lookup tables to bypass this computation
time for fixed-point operations.

• Although the FlashAttention-2 algorithm on GPUs pro-
vides adjustability in parallelism along the sequence
length direction, it does not offer block partitioning in
the head (hidden) dimension to fit cache sizes. We have
utilized the reconfigurability of Block RAM on FPGAs
and fine-tuned the Flash Attention algorithm to provide
better memory utilization.

However, even though FPGAs can better utilize the charac-
teristics of FlashAttention-2 to significantly reduce the mem-
ory space needed for attention calculations to be independent
of N (though other variables still require O(N) storage), there
are still many challenges to be addressed:

• Each tiled variable is dependent, which prevents Xilinx
Vivado from using dataflow optimization to further re-
duce latency, resulting in low DSP and BlockRAM usage
efficiency.

• Most of the FPGA optimizing tools currently use fixed-



point data types. However, for Transformers, each layer’s
output often contains a few very large values in unpre-
dictable channels within the same token, causing quanti-
zation to require precision sacrifices to avoid numerical
overflow.

• Due to the limited Bonded IO (IOB) on FPGAs, it is
not possible to transmit all channel data at once, necessi-
tating data reordering to implement tile-based streaming
transmission to reduce kernel IO transfer rates.

Based on the above analysis and optimizations, we have
developed a more efficient Transformer on FPGAs. The main
contributions are as follows:

• We propose using a ping-pong buffer to interleave access
to attention tiles to eliminate this dependence, enabling
higher granularity of pipelining between different tiles
and further improving hardware utilization.

• We used post-training quantization with a small amount
of calibration data to determine the precision of each
layer and variable to achieve high quality mixed precision
inference.

• We provide all directions of tiling factors for users to
adjust the transfer rate and computation rate between
layers according to specific hardware specifications or
latency requirements.

II. ATTENTION ALGORITHM

The formulas for standard attention can be referenced in
equations 1, 2, and 3. As one can see, softmax is accessed row-
wise, which requires creating a buffer of at least the sequence
length to store the attention. By using the formula for flash
attention mentioned in [2], we can apply correction factors
by calculating the exponential of the differences between two
local maximums and local sums (such as alpha and beta
in the equations) to split the softmax processing, shown in
equations 4, 5 and 6. This approach reduces the bandwidth and
buffer size needed for attention storage, while also shortening
the lifetime of the attention variables to allow concurrent
computation of the matrix multiplications QiK

T and PiV .

Si =
QiK

T

√
N

(1)

Pi = Soft(Si) (2)

Oi = PiV (3)

Si = [S(i,0), S(i,1)] ∈ R1×T (4)

Pi = [α · Soft(Si,0), β · Soft(Si,1)] ∈ R1×T (5)

Oi = [α · Soft(Si,0)V, β · Soft(Si,1)V ] ∈ R1×T (6)

III. TILE-BASED ARCHITECTURE

A. Layer Normalization

LayerNorm(x) =
x− µ√
σ2 + ϵ

· γ + β (7)

The formula 7 for Layer Normalization uses an inverse of
the square root table to obtain the reciprocal of the standard

1/N

1/N

variance

Invert
Sqrt
Table

Row Buffer

mean

Scale Bias

FIFO

FIFO

Fig. 1: Architecture of Layer Normalization

deviation. Additionally, since the data needs to be accessed
again after calculating the variance, the row buffer in Figure 1
is used to temporarily store a row of data, avoiding the need
to access the entire matrix. Also, since we use fixed-point
arithmetic, we can disregard the calculation of epsilon.

B. Multi-Head Self-Attention (MHSA)

InProj
Weight

PIPOK

PIPOQ
Linear

Projection

Flash
Attention PIPOV

PIPOO

Linear
Projection

OutProj
Weight

Fig. 2: Architecture of Multi-Head Self-Attention

The overall architecture uses Output Stationary Matrix Mul-
tiplication for Input Linear Projection, significantly shortening
the lifetime of input data and eliminating the need for an
input buffer. Conversely, Output Linear Projection employs
Input Stationary Matrix Multiplication, which greatly reduces
output data transmission latency and eliminates the need for
an output buffer. Additionally, to ensure different batches can
run simultaneously in MHSA as shown in Figure 2, double on-
chip memory (block RAM) is used in an interleaved read-write
manner as a ping-pong buffer to eliminate storage conflicts
between different batches.

IMU

EXP
Table

Masking

m(j) l(j)
m(j-1) l(j-1)

EXP
Table

Row Sum

0

OMU

1/sqrt(H)
Invert
Table

PIPO

PIPOK

PIPOQ

PIPOO

PIPOV

Fig. 3: Architecture of Tiled Flash Attention

C. Feed Forward Network

FFN, similar to MHSA, significantly reduces storage space
and increases hardware utilization through the properties of
Output Stationary, Input Stationary, and PIPO.



IMU ReLU OMU

PIPOhidden

InProj
Weight

OutProj
Weight

Fig. 4: Architecture of Feed Forward Network

D. Overall Architecture

The overall structure shown in Figure 5, which connects the
three layers mentioned above via FIFOs. Notably, to support
long life-cycle data for the residual connection, a deeper
FIFO is needed to store multiple batches of data, preventing
deadlock and stalling. The entire model’s input and output
are connected to High Bandwidth Memory (HBM) via AXI-
streams. Since most activations and weights are stored in on-
chip memory, access to HBM is infrequent.

E. Task Scheduling

From the Xilinx Vivado waveforms, we can observe how
can these tasks are scheduled by HLS PRAGMA DATAFLOW,
shown in Figure 7. This design offers four parameters for
users to adjust parallelism: BT , BN , BH , and BF , which
can be used to modify the degree of parallelism for each
stage of computation. The required number of blocks can
be derived as T = seq len/BT , N = embedded dim/BN ,
H = hidden dim/BH , and F = ff dim/BT . To maximize
hardware efficiency and avoid stalls, it is essential to ensure
that the number of cycles required for each stage is as close
as possible, ideally satisfying T ≃ N ≃ F .

IV. EXPERIMENTS

A. Benchmark and Accuracy of Quantization Model

Neural Data Transformer (NDT) [9] and its extensions
[3], [8] are prominent transformer-based architectures in neu-
roscience domain. The models aim to infer the underlying
neural firing rates of animals performing behavioral tasks. In
this paper we implemented the NDT model and evaluated
its performance on the Neural Latents Benchmark, using
the MC MAZE dataset with co-bps as the evaluation metric
[5]. In our experiments, we used 182 neural channels and
180 tokens as model inputs. Using floating-point NDT, we
achieved 0.3634 co-bps, whereas mixed-precision fixed-point
NDT reached 0.3613, an approximately 0.57% accuracy drop
(Figure 6).

B. Power, Resource Utilization and Latency

The power and resource utilization after using the 2023
Vitis HLS and Vivado place and route is shown in Table I.
Additionally, we recorded the simulation results on the Xilinx
Alveo U55C with a 200MHz clock. It is evident that storing
all activations and weights in on-chip memory, along with the
use of FIFOs to avoid stalls and deadlocks, has nearly maxed
out the BRAM capacity of the board. Therefore, using a small

amount of HBM to reduce BRAM usage could be a potential
improvement for the future.

BRAM DSP FF LUT Interval Power
96.16% 21.25% 2.39% 56.23% 1.146 ms 24.079 W

TABLE I: Power, Resource Utilization and Latency

V. RELATED WORK

FTRANS [4] uses FFT/IFFT to speed up the model. FT
[6] compresses the model using mixed block and vector-wise
pruning methods. ViA [7] accelerates using a coarse-grained
pipeline and multiple DRAM accesses. Compared to these
three methods in Table II, this paper employs fewer external
memory accesses, instead utilizing more on-chip memory to
provide higher bandwidth, achieving better hardware efficiency
and throughput. We achieved a 61% to 321% efficiency
improvement in GOPS per watt efficiency.

Related
Works

FTRANS [4] FT [6] ViA [7] Ours

Year 2020 2021 2022 2024
Model RoBERT TinyBert Swin-T NDT
Board VCU 118 Alveo

U200
Alveo
U50

Alveo
U55C

Frequency
(MHz)

- - 300 200

Power
(W)

25.13 25 39 24

Throughput
(GOPS)

170 75.94 309.6 307.68

Efficiency
(GOPS/W)

6.76 3.04 7.94 12.82

TABLE II: Related Work

VI. CONCLUSION

In this paper, we primarily address (1) reducing External
memory access times to increase hardware efficiency, (2)
enhancing throughput with a large number of PIPO and
FIFO, and (3) providing Dataflow architecture and mixed-
precision optimization to finely adjust the bitwidth of variables
in each layer, resulting in lower accuracy drop and reduced
resource utilization. Additionally, we achieved a 61% to 321%
efficiency improvement compared to the previous transformer-
based model on FPGA using Xilinx Alveo U55C with a
200M frequency. Moreover, implementing mixed-precision
computation with NDT only incurred a 0.57% decrease in co-
bps.

REFERENCES

[1] T. Dao, Flashattention-2: Faster attention with better
parallelism and work partitioning, 2023. arXiv: 2307 .
08691 [cs.LG].



LN

External Memory Interface

HBM

LN MHSA

x Number of blocks

Add LN FFN Add

FIFO

Fig. 5: Overall Architecture. The FIFO depth in the residual connection is approximately 4x the input array.

Fig. 6: Mixed precision configuration. s0 refers to the precision of the layer normalization scale. in proj w1 refers to Input
Projection Weight for Input Linear Projection of MultiHeadSelfAttention. r0 refers to the precision of result(activation).

LN

T*N*H

ILP

Add

LN

FlashAtt
OLP

ILP ILP ILP ILP
FlashAtt FlashAtt FlashAtt FlashAtt

OLP OLP OLP OLP
Add Add Add Add

LN LN LN

LN LN LN LN LN
FFN
Add

T*T*H

T*N*H

FFN FFN FFN FFN
Add Add Add Add

T*N*F

Fig. 7: Task Scheduling. LN, ILP, OLP, FFN refer to Layer Normalization, Input Linear Projection, Output Linear Projection,
Feed Forward Network, respectively. T, N, H, F refer to the number of tiles in the sequence length direction, the embedded
dimension, the hidden dimension of Multi-Head Self-Attention, the hidden dimension of Feed Forward Network.

[2] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness,” in Advances in Neural Information Pro-
cessing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35, Cur-
ran Associates, Inc., 2022, pp. 16 344–16 359. [Online].
Available: https : / / proceedings . neurips . cc / paper files /
paper /2022 /file /67d57c32e20fd0a7a302cb81d36e40d5-
Paper-Conference.pdf.

[3] T. Le and E. Shlizerman, “Stndt: Modeling neural
population activity with spatiotemporal transformers,”
Advances in Neural Information Processing Systems,
vol. 35, pp. 17 926–17 939, 2022.

[4] B. Li, S. Pandey, H. Fang, et al., “Ftrans: Energy-efficient
acceleration of transformers using fpga,” vol. 7, 2020.
DOI: 10 . 1145 / 3370748 . 3406567. [Online]. Available:
https : / / arxiv . org / pdf / 2007 . 08563 . pdf (visited on
12/13/2022).

[5] F. Pei, J. Ye, D. Zoltowski, et al., “Neural latents bench-
mark’21: Evaluating latent variable models of neural
population activity,” arXiv preprint arXiv:2109.04463,
2021.

[6] P. Qi, E. H.-M. Sha, Q. Zhuge, et al., Accelerating
framework of transformer by hardware design and model
compression co-optimization, 2021. arXiv: 2110.10030
[cs.LG].



[7] T. Wang, L. Gong, C. Wang, et al., “Via: A novel vision-
transformer accelerator based on fpga,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 4088–4099, 2022. DOI:
10.1109/TCAD.2022.3197489.

[8] J. Ye, J. Collinger, L. Wehbe, and R. Gaunt, “Neural data
transformer 2: Multi-context pretraining for neural spik-
ing activity,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[9] J. Ye and C. Pandarinath, “Representation learning for
neural population activity with neural data transformers,”
arXiv preprint arXiv:2108.01210, 2021.


