
p
r
o
o
f
s
 
J
I
N
S
T
_
0
5
8
P
_
0
9
2
4

Published by IOP Publishing for Sissa Medialab

Received: September 20, 2024
Accepted: March 4, 2025

Published: ???, 2025

Low latency transformer inference on FPGAs for physics
applications with hls4ml

Zhixing Jiang ,𝑎,∗ Dennis Yin,𝑎 Yihui Chen,𝑎 Elham E Khoda,𝑏 Scott Hauck,𝑎

Shih-Chieh Hsu,𝑏 Ekaterina Govorkova,𝑐 Philip Harris,𝑐 Vladimir Loncar𝑐

and Eric A. Moreno𝑐

𝑎Department of Electrical and Computer Engineering, University of Washington
185 Stevens Way, Seattle, WA 98195, U.S.A.
𝑏Department of Physics, University of Washington
3910 15th Avenue NE, Seattle, WA 98195, U.S.A.
𝑐Department of Physics, Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.

E-mail: zx.jiang@utexas.edu

Abstract: This study presents an efficient implementation of transformer architectures in Field-
Programmable Gate Arrays (FPGAs) using hls4ml. We demonstrate the strategy for implementing
the multi head attention, softmax, and normalization layer and evaluate three distinct models. Their
deployment on VU13P FPGA chip achieved latency less than 2 μs, demonstrating the potential for
real-time applications. hls4ml’s compatibility with any TensorFlow-built transformer model further
enhances the scalability and applicability of this work.

Keywords: Data Processing; On-board data handling; Trigger algorithms; Trigger concepts and
systems (hardware and software)

ArXiv ePrint: 2409.05207

∗Corresponding author.

© 2025 The Author(s). Published by IOP Publishing Ltd on behalf of
Sissa Medialab. Original content from this work may be used under the

terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation
and DOI.

https://doi.org/xxxxxxx

https://orcid.org/0000-0002-9422-9396
mailto:zx.jiang@utexas.edu
https://doi.org/10.48550/arXiv.2409.05207
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


p
r
o
o
f
s
 
J
I
N
S
T
_
0
5
8
P
_
0
9
2
4

Contents

1 Introduction 1

2 Background 3
2.1 Detailed description of transformer architecture 3

3 Related work 5

4 Implementation detail 5
4.1 Multi-head attention layer 5
4.2 SoftMax layer 7
4.3 Layer normalization layer 8

5 Benchmark studies 9
5.1 Engine anomaly detection model 10
5.2 B-tagging model 10
5.3 Gravitational wave model 10

6 Performance, resource and latency estimation 11
6.1 Quantization 11
6.2 Parallelization 13

7 Conclusion 16

1 Introduction

Over the past few years, machine learning (ML) has firmly established itself as an indispensable tool
in diverse scientific and industrial fields, pushing the boundaries of innovation and productivity to
unprecedented levels. Among the rich suite of ML techniques available, the transformer architecture
has demonstrated exceptional prowess in handling a diverse array of complex problems. While its
initial fame was earned in the domain of natural language processing (NLP), its utility has since
transcended these bounds, proving to be also efficient in signal processing tasks. Examples of these
include processing data from the LHC [1], detecting gravitational waves [2–4], among many others.

The transformer model, introduced by Vaswani et al. [5], has revolutionized how we process
sequence data. In contrast to traditional sequence-processing models, which sequentially process
input data, transformers employ a unique mechanism of attention, allowing them to process data
components independently and in parallel. In particular, the transformer employs a mechanism called
the multi-head self-attention mechanism. This mechanism calculates the relationships or relevance
scores among all pairs of data components in a sequence, thereby effectively encoding contextual
information. With this design, transformers can capture long-range dependencies in sequence data, a
feature particularly beneficial for complex, multidimensional processing tasks.
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Transformer models, typically run on Graphics Processing Units (GPUs) and Central Processing
Units (CPUs), encounter latency issues during real-time data processing that inhibit their instant
response capability. This study suggests deploying transformers on Field-Programmable Gate Arrays
(FPGAs) to leverage their adaptability, energy efficiency, and parallel processing capacity, which
align with the demands of transformer computations. Recent work on deploying transformers on
FPGA includes [6–9]. We propose an automatic conversion approach using the hls4ml compiler,
an high-level synthesis (HLS) based tool [10], that supports various neural networks [11–14]. We
have extended hls4ml to transform any TensorFlow-based transformer model into an FPGA-friendly
format, enhancing the versatility of this method.

Deploying transformers on FPGAs unlocks the potential for real-time, resource-efficient processing
in various fields, extending beyond high-energy physics to encompass gravitational wave detection
and automotive anomaly recognition. The versatility of FPGAs is demonstrated in our benchmarks,
which include processing the high-frequency experiment of the LHC, as well as discerning intricate
gravitational wave signals and pinpointing anomalies in car engine operation. In each scenario, the
criticality of managing vast data streams at high speeds is paramount. To address the data deluge and
expedite analysis, these applications employ a refined online selection system, executing on hardware
like ASICs or FPGAs to efficiently process and triage data.

To handle the myriad of relevant tasks in diverse areas, we introduce transformer support in hls4ml,
which can efficiently convert any TensorFlow-built transformer model into an FPGA-compatible
form. The implementation ensures efficient resource utilization, low-latency performance, and model
compatibility, delivering an enhanced ML experience on FPGAs. The workflow of hls4ml, as shown
in figure 1, is designed with the aim of abstracting the complexities of FPGA programming. The
framework takes trained ML models, primarily from TensorFlow or PyTorch, and translates them into
HLS code. This code can then be synthesized into digital circuits using HLS tools. hls4ml maintains
a high degree of model compatibility, which is crucial in scenarios where the machine-learning
model may require regular updates or alterations. By bringing transformers to FPGAs, we extend
the benefits of transformer models to a range of low-latency applications, opening new possibilities
for real-time ML processing in various domains.

Figure 1. The workflow of hls4ml [10].

The paper is organized as follows: section 2 introduces the background of the transformer
architecture and the concept of using hls4ml. Section 3 discusses related works. Section 4 examines
the implementation details, providing an in-depth look at the process of implementing transformers.
Section 5 provides comprehensive benchmarks, including a car-engine anomaly detection task, a
B-tagging classification task, and a gravitational waves (GW) classification task. Finally, section 6
presents the performance, resource, and latency estimates.
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2 Background

2.1 Detailed description of transformer architecture

The transformer is a groundbreaking model introduced by Vaswani et al. [5] for processing sequence
data. This architecture has had a significant impact, particularly in the field of natural language
processing, while also demonstrating its utility in other areas, such as signal processing. The
architecture of the transformer is shown in figure 2. A transformer model consists of several blocks,
as shown in figure 3. Each block incorporates a multi-head self-attention (MHA) layer and a feed-
forward neural network layer. These layers are interconnected through residual connections and are
subsequently followed by layer normalization.

Figure 2. The architecture of the transformer model [15].

The MHA layer is the key to the transformer architecture. It has the ability to discern complex
dependencies in the data, regardless of their position in the sequence. Within the MHA layer, there are
multiple heads that compute distinct learned linear projections of the input data. The “multi-head”
aspect of the attention mechanism enables the model to focus on different features in the data
simultaneously, enhancing its ability to capture various types of information.

Each head within the MHA layer functions independently. For every head, three learnable
matrices, known as query (𝑄), key (𝐾), and value (𝑉) matrices, are defined. The input vector is then
linearly transformed by these matrices. For each head, these transformations are computed as follows:

𝑄 = 𝑊𝑞𝑋 (2.1)
𝐾 = 𝑊𝑘𝑋 (2.2)
𝑉 = 𝑊𝑣𝑋 (2.3)

– 3 –
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Figure 3. One transformer block. The green layers are existing hls4ml functionality, while the blue are new in
this paper.

In the above equations, 𝑋 is the input to the layer, and 𝑊𝑞, 𝑊𝑘 , and 𝑊𝑣 are trainable weight
matrices. The relationships among all data in a sequence are computed by attending to the 𝑄, 𝐾 , and
𝑉 matrices. This is achieved through the scaled dot-product attention mechanism, where the attention
score between any two positions in a sequence is computed as the dot product of their corresponding
𝑄 and 𝐾 vectors, scaled by the square root of their dimensionality, and then passed through a softmax
function to obtain attention probabilities. Finally, these probabilities are used to form a weighted sum
of the value (𝑉) vectors. Each row in the output matrix (𝑂ℎ) corresponds to the output for a particular
position in the sequence, computed as a weighted sum of all value vectors, with the weights given by
the attention probabilities. As described, the output, 𝑂ℎ, for each head is computed as:

𝑂ℎ = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 (2.4)

In the above function, 𝑑𝑘 is the dimensionality of the key vectors. After obtaining 𝑂 for each
head (𝑂1, 𝑂2, . . . , 𝑂𝑛), the outputs from all heads are then concatenated and linearly transformed
to yield the final output of the MHA layer:

𝑂final = Concat(𝑂1, 𝑂2, . . . , 𝑂𝑛)𝑊𝑜 (2.5)

where 𝑊𝑜 is another learned weight matrix, and 𝑛 is the number of heads.
This mechanism allows the transformer to allocate variable amounts of “attention”, or importance,

to different parts of the input sequence when processing data, leading to its outstanding performance
in numerous tasks.

– 4 –
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3 Related work

The study proposed by Wojcicki et al. [7] provided significant insights into implementing Transformer
Neural Networks (TNNs) on FPGAs. The team from Imperial College London created a customized
TNN architecture for FPGAs that notably outperformed GPU-based models in speed while maintaining
comparable accuracy. They also proposed a novel, model-independent, post-training quantization
search algorithm adaptable to various hardware environments. Besides the work from Wojcicki
et al. [7], other transformer implementations on FPGAs have been developed, such as those by Li
et al. [6], Peng et al. [16], Tzanos et al. [8], Hong et al. [17], and Han et al. [9]. However, these
works mainly focus on the FPGA implementation of specific models. Our research extends this by
developing an auto-converting mechanism for all transformer models generated by Keras, broadening
the applicability and flexibility of transformer models on FPGAs.

4 Implementation detail

This section outlines the specific implementation details of various components of the transformer
architecture, focusing on the multi-head attention (MHA) layer, SoftMax layer, and normalization
layer. These layers are implemented on FPGA hardware using the hls4ml tool, with each layer’s
implementation carefully optimized to deliver efficient resource utilization and performance.

4.1 Multi-head attention layer

The MHA layer is an important component of the transformer architecture, and its efficient imple-
mentation plays a crucial role in the successful integration of transformer models into FPGAs. The
MHA layer’s operation was described in section 2.1.

Implementing the MHA layer involves several complex operations, including linear projections,
matrix multiplications, application of the SoftMax function, and final concatenation with another
linear projection. To efficiently manage these operations, the implementation process is designed
as four sequential pipeline stages, as shown in figure 4.

Stage 1 Stage 2 Stage 3 Stage 4

Figure 4. The pipeline stages for the MHA layer.

The first stage of the MHA layer is the linear projection stage. This stage initiates the transformation
process by transforming the original input sequence into three distinctive components - Query (𝑄),
Key (𝐾), and Value (𝑉) vectors. These vectors are produced by applying separate weight matrices
(𝑊𝑄, 𝑊𝐾 , and 𝑊𝑉 ) to the input, as shown in the equation (2.1).

– 5 –
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Inside this stage, a matrix times a vector operation is performed at each time step. In other
words, the stage 1 itself is also a pipelined process, which would produce one row of the output
matrix at each time step, with each row representing a time step of data. To optimize FPGA resources,
vectors from this stage are stored in a FIFO memory structure as shown in the figure 5. There are
multiple FIFO memories stacking together in order to increase the bandwidth. The number of FIFO
memories depends on the number of reuse factor (the concept of reuse factor is introduced in the
section 6.2) and the number of outputs of the previous layer.

Figure 5. The data streaming structure between layers using FIFO memory.

The second stage marks the beginning of the attention computation, involving the dot product
between the 𝑄 and 𝐾 matrices to produce the score matrix. Here, we perform a dot product between
the 𝑄 vector and the 𝐾 matrix, as shown in figure 6, calculating a relevance score for each pair of
input data elements in the sequence. After matrix multiplication, we apply a scaling factor

√
𝑑𝑘 , which

is shown in equation (2.4), where
√
𝑑𝑘 is a pre-calculated constant for a given trained model. The

resulting matrix of scores is then passed to the SoftMax function, which is implemented using a
lookup table. The output of the SoftMax function is stored in a FIFO memory for later processing.
The implementation of the SoftMax function is explained in section 4.2.

Figure 6. The 𝑄 and 𝐾 multiplication in hardware. 𝑄 is stored in FIFOs, while the 𝐾 can be fully partitioned
into the register.

Meanwhile, a matrix reshape operation is performed on the matrix 𝑉 . In the previous step, the
𝑉 vectors were stored row-wise for fast data writing into memory, but in stage 3, we need to access
the matrix 𝑉 both column-wise and row-wise concurrently. Thus, in stage 2, we perform a matrix
reshape, which enables the matrix 𝑉 to become fully accessible.

To implement this operation efficiently on FPGAs, careful data flow and resource management are
crucial. To enable parallel data access, 𝐾 vectors are loaded into a two-dimensional register, allowing
simultaneous retrieval of all 𝐾 data points. This design not only supports parallel computation but also
provides flexibility by allowing users to adjust the partition factor to control the data flow. As matrix
multiplication proceeds row-by-row, this configuration ensures that all 𝐾 vectors are immediately
available, thereby facilitating fast, parallel processing.

– 6 –
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The third stage of the MHA layer implementation involves the second matrix multiplication. In
this process, the scaled and SoftMax-applied relevance scores are multiplied by their corresponding
𝑉 vectors. Similar to the 𝐾 vector in the previous step, for this stage, the 𝑉 vectors are stored in a
fully accessible register. This choice of memory allows each vector in 𝑉 to be accessed in parallel
during the multiplication process, ensuring the efficient use of computational resources and boosting
the speed of the operation. Concurrently, one row of the relevance score matrix, now stored in the
FIFO memory after the SoftMax application, is loaded. This row is then multiplied by the 𝑉 matrix to
generate a new row in the output attention vector. This process is repeated until all rows of the score
matrix have been processed. Essentially, this third stage works like a weighted sum operation, where
the relevance scores weight the 𝑉 vectors. The outcome is an attention vector that preserves important
information from the input data while discarding less relevant details. The resultant attention vector
is stored in an output FIFO memory, ready for the next stage of processing.

The fourth stage of the MHA layer implementation involves two key processes: the concatenation
of the output from all attention heads and the subsequent linear transformation of the concatenated
result. Each attention head provides an output vector, stored in the FIFO memory after the second
matrix multiplication. These output vectors are loaded row by row, aligning with the temporal
sequencing of the data. Once loaded, the outputs are concatenated together to form a single, unified
data stream. This process effectively amalgamates the attention vectors from all heads, capturing the
diverse contextual insights each head has extracted from the input data. Following concatenation,
the data stream is passed through a linear layer. This transformation serves to map the concatenated
output to the desired dimensionality, effectively forming the final output of the MHA layer. The linear
layer is also pipelined; it reads one row of data and outputs one row at a time. This stage manages
the output from all heads and efficiently generates the final output.

4.2 SoftMax layer

In the MHA layer, SoftMax computation translates the raw scores from the dot product of the Query
(Q) and Key (K) matrices into probabilities, indicating the relevance of different data elements in
the sequence. The original SoftMax formula in hls4ml was:

𝑆𝑖 =
©«
𝑘∑︁
𝑗=1
𝑒 (𝑧 𝑗−𝑧𝑖 )

ª®¬
−1

where 𝑧𝑖 and 𝑧 𝑗 are individual elements of the input sequence, and 𝑘 represents the total number of
elements. This formula required each SoftMax output 𝑆𝑖 to calculate the exponent of the difference
between 𝑧 𝑗 and 𝑧𝑖 , sum these values across all elements, and then invert the result. This process had to
be repeated for each element, leading to a total of 𝑘2 operations, which was computationally intensive.

In response to this complexity, the SoftMax layer has been restructured to use a simpler formula:

𝑆𝑖 =
©«
𝑘∑︁
𝑗=1
𝑒𝑧 𝑗

ª®¬
−1

× 𝑒𝑧𝑖

This restructured formula was implemented through a three-step process, as shown in figure 7,
reducing computational overhead while maintaining the accuracy of the output.

– 7 –
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Exp LUT
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+ 
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Exp
Buffer

×
Output

Inv
LUT

Stage 1 Stage 2 Stage 3

Figure 7. The pipeline stages of the custom SoftMax layer.

The first stage is an element-wise exponentiation computation using the lookup table for all input
values. This step yields a sequence of 𝑒𝑧 𝑗 values for each element in the sequence.

The second stage involves calculating the sum of the exponent values obtained in the first step.
The sum is computed once for all elements in the sequence, inverted using an inversion lookup table,
and the result stored in a register, which computed the value for (∑𝑘

𝑗=1 𝑒
𝑧 𝑗 )−1.

The third stage is an element-wise multiplication. The inverted sum from the register is multiplied
element-wise with the 𝑒𝑧 𝑗 values for each element in the sequence. This process yields the SoftMax
outputs for all elements.

The revamped implementation of the SoftMax layer streamlines the computation, marking a
significant improvement over the traditional approach. It considerably reduces the computation load
and ensures an efficient and effective transformation of the MHA layer outputs into probability scores
because it has a total of 𝑘 operations instead of 𝑘2.

4.3 Layer normalization layer

Layer normalization is crucial in the transformer model, as it standardizes the features of the input
sequence across individual time steps. This process helps stabilize the neural network’s learning and
enhances the transformer’s performance. Implementing the Layer Normalization layer involves multiple
stages, each dedicated to a specific calculation within the normalization formula, as shown in figure 8.

The first stage calculates the mean value of the sequence for a given time step. This mean
is obtained by summing all the elements 𝑥 [ 𝑗] for 𝑗 in the range 𝑘 and then multiplying by 1/𝑘 ,
where 𝑘 is the total number of elements.

mean =

∑𝑘
𝑗=1(𝑥 [ 𝑗])
𝑘

The second stage computes the deviation from the mean (𝐷𝑀) for each element in the vector 𝑥.
The deviation, 𝑑𝑚 [ 𝑗], for each element 𝑗 in 𝑥 is calculated as 𝑥 [ 𝑗] − mean.

𝐷𝑀 [ 𝑗] = (𝑥 [ 𝑗] − mean𝑖) for 𝑗 in range(𝑘)

The third stage calculates the variance, which measures how spread out the elements in the
sequence are. This is done by squaring the deviation of each element, summing them, and then
multiplying by 1/𝑘 .

var =
∑𝑘
𝑗=1(𝐷𝑀 [ 𝑗]2)

𝑘

– 8 –
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The fourth stage is computing the normalized values. Each normalized value 𝑥𝑖 normalized is
calculated by multiplying DM by the inverse of the square root of the variance.

𝑥𝑖 normalized =
𝐷𝑀
√

var

The term 1√
var is computed using a lookup table (LUT), enabling resource-efficient computation.

The fifth stage calculates the final output. Each normalized value is scaled by a trainable parameter
(𝛾) using a dot product unit, and a trainable offset (𝛽) is added.

output𝑖 = 𝑥𝑖 normalized × 𝛾 + 𝛽

k inputs
Mean
Calc
Unit

DM 
Calc
Unit

Input
Buffer

Var 
Calc
Unit k inputs

Exp LUT

DM Buffer

×
Dot

Product
Unit

Output

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 8. The pipeline stages of the layer normalization layer.

5 Benchmark studies

In this Benchmark Studies section, we evaluate three distinct transformer models, each trained on a
unique, complex dataset. These three datasets provide a view of potential applications of transformer
models in FPGA deployments for different use cases. Our first model is a binary classifier that
identifies anomalies in car engine data. This dataset has 3244 trainable parameters. The second model
is a multi-class classifier trained on B-tagging data, a dataset obtained from CERN’s Large Hadron
Collider (LHC), which includes a larger parameter space with 9135 trainable parameters. Finally, our
third model is based on the LIGO dataset, aiming to differentiate gravitational wave signals from
background noise. This model handles 3394 parameters. All models are trained using TensorFlow
and Keras. Details on the hyperparameters and specifications of each model can be found in table 1.

Table 1. Specifications of models.

Parameter Engine B-tagging GW
Seq. Length 50 15 100
Input Vec. Size 1 6 2
No. of Transf. Blocks 3 3 2
Hidden Vec. Size 16 64 32
Output Vec. Size 2 3 1
Trainable Param. 3244 9135 3394

– 9 –
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5.1 Engine anomaly detection model

The first model is a binary classifier trained on a dataset that monitors and identifies anomalies within
car engines. The FordA dataset we used is from the UCR/UEA archive [18], offering measurements
collected from different engines in operation, with each engine’s normal behavior considered as one
class and any deviation from that normal behavior categorized as an anomaly, forming the second class.
As the data is sourced directly from operating engines, it poses real-world challenges such as varying
operational conditions, noise, and non-stationarity, making it a robust dataset for our model training.

As the first model in our series, we strived for a balance between simplicity and performance.
We chose to forego the normalization layer for this model to maintain simplicity, but it does
incorporate residual connections, which help prevent the vanishing gradient problem and facilitate
deeper models. After the last MHA layer, the data enters two dense layers that further process
the encoded representations. The final layer is a SoftMax layer, which provides a probabilistic
distribution over the two classes: normal and anomalous. The SoftMax layer essentially classifies
whether the instance falls into the normal or the anomalous category based on the values received
from the preceding dense layers. Despite its simplicity, this model achieves an accuracy of 98%
on the validation set, showcasing its effectiveness.

5.2 B-tagging model

To benchmark our implementations, we study the open data samples from the Compact Muon Solenoid
(CMS) experiment, which contain top quark pairs decaying hadronically with a center-of-mass energy
of 7 TeV [19]. These events contain many bottom quark jets (b jets), charm quark jets (c jets), and
jets from light quarks and gluons (light jets) originating from top quark decay.

Jets are collimated showers of particles that result from the decay and hadronization of quarks
and gluons. At the LHC, an interesting jet signature emerges from overlapping quark-initiated showers
produced in decays of heavy Standard Model particles like bottom quarks. The jets in the dataset
are labeled as b, c, or light jets, depending on whether they contain bottom quarks, charm quarks, or
neither, respectively. The task of identifying heavy jets like b jets from c jets and light jets is called
flavor tagging. The main feature that separates b jets (and c jets) from light jets is the presence of
the displaced vertex corresponding to the decay of the hadron containing the b (or c) quark. These
hadrons are long-lived due to their mass, and the decay time depends on their momenta.

Our proposed algorithm aims to identify the presence of tracks consistent with these displaced
vertices using a transformer architecture. The structure of the B-tagging transformer model is more
complex than the engine anomaly detection model, with around 9,000 parameters, notably more than
the MHA layers in the Engine Anomaly Detection Model. The increased complexity of this model
helps capture the nuanced relationships in the input data, as the input vectors are more complicated
than in the first dataset. The final layer is a SoftMax layer, which provides a probabilistic distribution
across the output classes, in this case representing different types of jets. Like the previous model,
the B-tagging model also employs residual connections to circumvent potential issues related to the
vanishing gradient problem and to allow the learning process to build deeper models.

5.3 Gravitational wave model

The transformer architecture is suitable for time series data. Specifically, it can be useful for the
classification of different sources of gravitational waves detected by Advanced LIGO [2] and Advanced

– 10 –
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VIRGO [3], and KAGRA [4]. The challenge of signal detection at GW facilities is the presence
of high-amplitude noise and the presence of glitches that can mimic a signal. A transformer-based
classifier is trained to distinguish between signals and backgrounds, represented both by glitches and
noise, and signals. We use the dataset collected by the LIGO detectors during the first half of the third
observing run (O3a), which took place between 1st April 2019 and 1st Oct 2019. The background
dataset has excess power glitches [20] and known GW-events removed. We create the glitch dataset by
using the Transient instrumental glitches (often of unknown origin) flagged by Omicron [20] as having
excess power. The time-series data are downsampled from 16384 Hz to 2048 Hz. For signals simulated
Binary Black Hole (BBH) mergers and simulated sine-Gaussian (SG) events are used. Simulated
signals are injected on top of the real background to imitate as closely as possible real-life detection.
The detailed description of the signal simulation parameters can be found in [21].

The transformer model for the LIGO dataset is more complicated than other models, primarily
due to its longer sequence length (100 time steps). This model also incorporates layer normalization
and residual connections, further bolstering its analytical capabilities. Following the final MHA
layer, the data goes through two dense layers for additional computation and transformation. The
model’s structure concludes with a final sigmoid layer, which curates the outputs into a probability
distribution suitable for signal background classification. This model demonstrates impressive efficacy
in identifying gravitational wave signals, as it achieves an Area Under the Receiver Operating
Characteristics curve (AUC) of 97.8%. Detailed comparisons of each model’s performance in
TensorFlow and hls4ml are presented in the following sections.

6 Performance, resource and latency estimation

Understanding the balance between performance, resource usage, and latency is fundamental when
designing and implementing models on FPGAs. In this section, we delve into the nuances of our process,
focusing on the optimizations made and the results obtained. Our process uses Vivado HLS 2019.2 and a
Xilinx Ultra Scale FPGA VU13P. This large FPGA is used across all models to ensure a fair comparison
of performance. In a significant deviation from conventional practices, our models don’t use floating-
point representations. Instead, we have quantized these representations and used fixed points in the
FPGA inference. Initially, we deployed post-training quantization and then incorporated quantization-
aware training. Additionally, we examined the trade-off between resource usage and the speed of model
throughput, using the concept of the reuse factor for parallelization. In the following subsections, we
explore in detail the facets of post-training quantization, quantization-aware training, and parallelization.

6.1 Quantization

Quantization, specifically in the domain of machine learning, entails the process of diminishing the
numerical precision of a model’s parameters. Floating-point numbers, known for their expansive
dynamic range, have usually been used in processing data in CPU or GPU. However, when transitioning
to hardware implementations, like FPGA, fixed-point numbers are favored due to their reduced demand
on memory and computational resources, making the computation much faster than with floating-point.
For instance, consider an unsigned fixed-point number composed of 4 integer bits and 3 fractional bits.
This numerical representation can store values ranging from 0 to 15.875, with a granularity, or step size,
of 0.125. This ability to discretize values in such a manner, coupled with reduced resource demands,
makes fixed-point numbers an good choice for FPGA-based machine learning implementations.
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One method to convert from a floating-point range to a fixed-point range is post-training
quantization (PTQ). In this approach, after the model has been trained with floating-point numbers, we
convert it fixed point values within a hardware description language suitable for FPGA implementations
using hls4ml. To enhance quantization quality, we also explored quantization-aware training (QAT).
This technique trains the model while making it cognizant of its quantization constraints, often yielding
superior accuracy compared to the PTQ approach. Our QAT implementation leverages the Qkeras
package [22], extension of the Keras library tailored for quantization-aware training. The package
equips neural network layers with quantization functionality. It’s important to highlight, however, that
the current version of Qkeras does not support certain layers, specifically MHA, SoftMax, and Layer
Normalization. To address this gap, we enhanced the package by incorporating quantizers for each of
these layers, thus achieving their quantized versions within the Qkeras environment.

In hls4ml, the bit precision for the fixed point can vary between layers, granting users control
over precision. For the sake of testing and comparison, we kept the same precision across all layers.
However, within hls4ml, there are different types of bits. For example, an accumulation type of bit
usually has a larger integer bit width. We set this as a larger fixed number, 10 bits including the sign
bit, and altered the fractional bit width for testing precision under different bit lengths.

The AUC metrics, for different bit widths, are graphically depicted in figure 9, 10, and 11.
It is crucial to understand that these AUC metrics are derived from comparing the outputs of the
Keras/QKeras model and the hls4ml model, rather than comparing the hls4ml output with the
ground truth of the dataset, because we are primarily interested in the capability of hls4ml to replicate
the output of the Keras and QKeras model accurately.

The plots provide us with insight into the relationship between bit width and model performance,
as each model achieved its best performance, indicated by the AUC ratio, with a specific fractional
bit width. After analysis, we deduced the optimal bit width for each model’s implementation on the
FPGA. For the engine anomaly detection model, we use 6 integer bits for both PTQ and QAT models;
for the B-tagging model, it’s 10 bits for the PTQ model and 6 bits for the QAT model; and for the
gravitational wave model, it’s 6 bits for both PTQ and QAT models. In later sections, we will use
these settings as fixed values to evaluate the speed and resource usage of the model.
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Figure 9. The AUC plot of the car engine anomaly detection model. Most accuracy overlaps with each other.
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Figure 10. The AUC plot of the B-tagging model. The QAT’s result remains invalid at 0.5 until 6 fractional bits.
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Figure 11. The AUC plot of the gravitational wave anomaly detection model. Most accuracy overlaps with
each other.

6.2 Parallelization

Parallelization is another key aspect of FPGA optimization in hls4ml, coordinated mainly through a
parameter mechanism known as “reuse”. This parameter represents the number of multiplication oper-
ations to be performed by each digital signal processing (DSP) block for a given matrix multiplication.

In cases where the reuse factor is set to 1, leading to a fully parallel configuration, each
multiplication is handled independently by a separate DSP and can, therefore, occur concurrently.
As we increase the reuse factor, the number of required DSPs decreases. However, this reduction
comes at a cost: the latency and initiation interval of layer computations increases proportionally to
the reuse. To explore the implications of this trade-off, we synthesized all three benchmark models
with varying values of the reuse factor and fractional bit precision. We quantified the results across
multiple FPGA resource categories such as onboard FPGA memory (BRAM), DSPs, registers, and
programmable logic elements like flip-flops (FFs) and lookup tables (LUTs).
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In hls4ml, the synthesis of a model can follow one of two strategies: latency strategy, which
aims to minimize latency, or resource strategy, which focuses on reducing resource utilization. The
transformer architecture’s complexity necessitates parallel processing of data across multiple time
steps and feature dimensions. Consequently, we employed a layered strategy: smaller components
like the dense layer, normalization layer, and SoftMax layer within the MHA block adhered to
the latency strategy, thus producing outputs every cycle. On the other hand, the top level of the
transformer model, due to its larger size, invariably followed the resource strategy. In this manner,
the design is optimized for low resource utilization by leveraging the same hardware to execute
operations across multiple stages.

The minimum and maximum latencies for each model are cataloged in table 2, 3, and 4.
Figures 12, 13, and 14 depict the usage of DSPs, FFs, and LUTs respectively for each model across
different reuse factor values. Here, the reuse factor values are represented as 𝑅. All results are
from Vivado mapped designs.

A noticeable trend across all resources is their general increase with decreasing values of 𝑅 and
increased precision. For FFs and LUTs, this increase is approximately linear, whereas DSP utilization
remains consistent until the precision surpasses the DSP input width. Upon exceeding this threshold,
an additional DSP is employed for computations. Another fact we can discover from the plot is that
latency shows the opposite trend to FF and LUT utilization. Thus, similar to other architectures
supported by hls4ml (like CNNs or RNNs), reuse can be manipulated to reduce FF and LUT counts
while incurring a latency penalty. This flexibility is critical for users to tune resource usage and
latency, allowing synthetic designs to meet specified requirements.
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Figure 12. The resource usage plot of the car engine anomaly detection model.
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Figure 13. The resource usage plot of the B tagging model.
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Figure 14. The resource usage plot of the gravitational wave anomaly detection model.
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Table 2. Latency and clock period analysis for different reuse values of the car engine model.

Quantization
Type

Reuse clk (ns)
Interval
(cycle)

Latency
(cycles)

Latency
(us)

PTQ
R1 7.423 119 257 1.908
R2 4.367 218 456 2.280
R4 4.367 318 756 3.780

QAT
R1 7.423 119 257 1.908
R2 4.367 218 456 2.280
R4 4.367 318 756 3.780

Table 3. Latency and clock period analysis for different reuse values of the B-tagging model.

Quantization
Type

Reuse clk (ns)
Interval
(cycle)

Latency
(cycles)

Latency
(us)

PTQ
R1 6.577 49 269 2.077
R2 6.215 65 449 3.467
R4 4.723 100 768 5.853

QAT
R1 6.568 48 266 2.055
R2 6.210 63 445 3.440
R4 4.722 99 767 5.848

Table 4. Latency and clock period analysis for different reuse values of the gravitational wave model.

Quantization
Type

Reuse clk (ns)
Interval
(cycle)

Latency
(cycles)

Latency
(us)

PTQ
R1 6.577 212 537 3.532
R2 6.215 412 1035 6.433
R4 4.723 612 1835 9.175

QAT
R1 6.577 210 532 3.499
R2 6.215 411 1033 6.420
R4 4.723 611 1834 9.170

Furthermore, the reuse factor influences how array partitioning and memory storage are executed
in the transformer model. In conventional hls4ml approaches, all values are stored in registers without
BRAM utilization. However, in the transformer architecture, not all values need to be accessed in
parallel. Hence, we also used the reuse factor to partition array values and store them in BRAM,
leading to more efficient memory usage.

7 Conclusion

This paper introduces an effective way to apply transformer models using hls4ml. Our work opens
up new opportunities for various fields, particularly in physics research, where quick and accurate
computations are critical. Beyond that, the approach we’ve developed can be applied wherever
transformer models are used, extending the benefits of our work to many other areas.
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The approach we’ve developed has several significant benefits. The pipeline structure we use
speeds up the inference time, making computations faster. By using a combination of post-training
and quantization-aware training strategies, our models achieve high accuracy with less resource usage
compared to the typical floating-point precision approach. This balance between speed, accuracy, and
efficient use of resources makes our method a powerful tool for any application using FPGA.

Looking ahead, there are many exciting possibilities to build on this work. We could add masking
ability to the MHA layer to make transformer models more flexible. We could also develop a version
of our transformer implementation that uses sparse computations for the dense layer, a growing trend
in deep learning that can save resources. By continuing to innovate in this way, we aim to make
hls4ml an even more effective tool for deploying deep learning.
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