

©Copyright 2022

Matthew Trahms

Generalized Machine Learning Quantization Implementation for

High Level Synthesis Targeting FPGAs

Matthew Trahms

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical and Computer Engineering

University of Washington 2022

Committee:

Scott Hauck

Shih-Chieh Hsu

Program Authorized to Offer Degree:

Department of Electrical and Computer Engineering

University of Washington

Abstract

Generalized Machine Learning Quantization Implementation for

High Level Synthesis Targeting FPGAs

Matthew K Trahms

Chair of the Supervisory Committee:

Dr. Scott Hauck

Department of Electrical and Computer Engineering

The Large Hadron Collider produces a large amount of data while operating, approximately one

petabyte of data per second. The collider is currently undergoing an upgrade to collide more

particles and produce even more data. In order to handle this large quantity of data, high

throughput and low latency algorithms are required to filter interesting collision results out of the

rest of the data collected by the sensors attached to the collider. Machine learning algorithms can

be used for this filtering task with comparable accuracy to the traditional filtering algorithms and

provide a wide range of accelerator options. FINN and hls4ml are frameworks to deploy machine

learning models on Field Programmable Gate Arrays for high throughput, low latency

acceleration options. FINN utilizes Brevitas, a quantization aware training library. Using

Brevitas, I trained a particle tracking network and demonstrated equivalent accuracy at lower bit

precision than post training quantization. As a cross organizational project, the hls4ml and FINN

teams collaborated to develop the QONNX standard for quantized machine learning model

representation. In order to integrate QONNX into hls4ml, I implemented new transformations to

support the unique structures of QONNX.

CONTENTS

Introduction ……………………………………………………………………………………… 1

1. The Large Hadron Collider …………………………………………………………………… 1

 1.1 ATLAS ……………………………………………………………………………………. 2

 1.2 CMS ………………………………………………………………………………………. 3

2. Machine Learning …………………………………………………………………………….. 3

 2.1 Layer Types ………………………………………………………………………………..

4

 2.2 Network Architectures ……………………………………………………………………. 6

 2.2.1 FACILE ………………………………………………………………………………. 8

 2.2.2 Interaction Network Graph Neural Network ………………………………………… 9

 2.3 Quantization ……………………………………………………………………………... 11

3. FINN ………………………………………………………………………………………… 14

 3.1 Brevitas ………………………………………………………………………………….. 16

 3.2 FINN Flow ………………………………………………………………………………. 19

 3.3 Multi-Threshold Layers …………………………………………………………………. 21

 3.4 Implementation of the FACILE Architecture in FINN ………………………………….. 22

4. hls4ml ………………………………………………………………………………………... 25

 4.1 Model Ingestion and HLSModel ………………………………………………………... 26

 4.2 Optimization Passes ……………………………………………………………………... 26

 4.3 QONNX …………………………………………………………………………………. 27

 4.3.1 QONNX Ingestion and Transformation …………………………………………….. 30

5. Conclusion …………………………………………………………………………………... 31

6. Next Steps …………………………………………………………………………………… 31

7. Acknowledgements ………………………………………………………………………….. 33

1

Introduction

The Large Hadron Collider produces approximately one petabyte of data per second when in

operation [1]. Machine learning algorithms are being explored as a way to process data while the

Large Hadron Collider is operating. In order to process the large quantities of data produced by

the Large Hadron Collider, high algorithm throughput is needed. Field programmable gate arrays

(FPGAs) are being explored as a way to accelerate machine learning algorithms for this task.

This thesis will explore two tools, FINN and hls4ml, used to deploy machine learning algorithms

on FPGAs, as well as different strategies to reduce the logical complexity of the calculations

involved, and propose a new model format for low bit width machine learning models.

This thesis is organized into 6 sections. Section 1 introduces the problem space for the rest of the

paper: high energy physics tasks at the Large Hadron Collider. Section 2 provides an overview of

machine learning, relevant models for this paper, and quantization. Section 3 introduces FINN,

an FPGA machine learning tool. Section 3 also explores an example of quantization aware

training as well as deploying a model onto an FPGA. Section 4 introduces hls4ml, explains the

process to optimize and synthesize a model, and introduces work on QONNX, a unified

quantized machine learning model format.

1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the largest and most powerful particle accelerator in the

world. The LHC collides particles to measure the resulting particle showers emitted by the

collision [2]. The quantity of particle collisions provide an interesting challenge for data

processing, because of the large quantity of data generated in a small time window [1]. This is a

2

suitable application for a high throughput, low latency algorithm to filter unnecessary data. Deep

learning networks are being explored as a method for filtering because of the ready availability

of acceleration options [3].

The LHC is composed of multiple detector experiments that measure different aspects of the

collisions. This section will introduce the two relevant detectors for the rest of this paper:

ATLAS and CMS, both general purpose detectors.

1.1 ATLAS

The ATLAS detector is the largest general purpose detector at the LHC [4] with the focus on

interactions involving massive subatomic particles [5]. ATLAS is composed of several layers of

detectors: an inner layer consisting of pixel detectors and trackers, electromagnetic and hadron

calorimeters, a muon spectrometer, and all surrounded by superconducting magnet systems to

direct charged particles [5].

All of the detector layers produce a lot of data which is then fed to the trigger and data

acquisition system. The trigger is a process to determine when a special event is occurring and

the data should be processed. This decision needs to be made in less than 2.5 microseconds and

the system processes up to 100,000 events per second. From there, the events go to the second

level trigger system, which conducts detailed analyses of each event in 200 microseconds and

sends 1000 events per second to data storage for offline analysis [5].

3

1.2 CMS

The CMS detector is another large general purpose detector at the LHC [6]. Like ATLAS, CMS

is composed of several layers: a tracker to track the position of particles through a magnetic

field, an electromagnetic calorimeter, a hadronic calorimeter, a large magnet to direct particles,

and muon detectors [6].

Similar to ATLAS, each of the CMS detector layers produce a lot of data which is fed to the

trigger and data acquisition system. Similarly to ATLAS, CMS uses a two tiered trigger system.

The level 1 trigger selects 100,000 interesting events per second with new data entering the data

processing pipeline every 25 nanoseconds. From there, the data is transferred to the high level

trigger, where 100 events per second are selected from the 100,000 events selected by the level 1

trigger. The latency of this process is less than a tenth of a second for each event [6].

2 Machine Learning

Machine learning is the process of designing algorithms that can automatically improve through

training [7]. This thesis will be focused on deep learning, a subset of machine learning defined

by using neural networks with three or more layers [8]. Machine learning algorithms, also known

as models, are often composed from different functions, also known as layers [9]. Some of these

layers have trainable parameters known as weights [10]. These parameters are trained using a set

of sample data with known results and a loss function to determine the magnitude of error of the

output produced by the model [10]. This section will explore different layer types, explain

algorithms relevant to the Large Hadron Collider, and provide some context for the challenges

deploying machine learning models on FPGAs.

4

2.1 Layer Types

Machine learning models can be composed of many different types of functions, also known as

layers. Different layer types implement different functions. These functions operate on multi-

dimensional matrices known as tensors [11]. Some layers implement simple nonlinear functions.

These functions are known as activation functions [12]. They apply a function to each element in

a tensor. An example of an activation function is the rectified linear unit (ReLU). Figure 1 shows

the graph of the output of the ReLU function compared to the input. This function will be applied

to each element in a ReLU layer.

Fig. 1: The output of the ReLU activation function as a function of the input. [13]

These nonlinear functions allow machine learning models to approximate nonlinear functions by

applying nonlinear transformations to the outputs of different layers in the model [12].

5

The main layer types used in models are known as dense layers and convolutional layers. Dense

layers, also known as linear layers or fully connected layers, can be visualized as a set of neurons

connected to each other with different pathways [14], similar to neuron structures within a brain.

Fig. 2: A visualization of the structure of a fully connected layer [14]

The blue circles on the left in the figure above represent the input neurons to this layer. The blue

circles on the right hand side of the figure represent the output neurons. The paths between the

input neurons and output neurons are the neuron connections. Each neuron connection is

weighted [14]. Some paths may be weighted stronger than others. In the figure above, this is

represented with the thickness of the line. These weights are learned during the training process

[10]. Additionally, dense layers may have a learned bias term to add an additional offset to each

output of the layer [10]. The result of the entire layer can be calculated by doing a cross product

multiplication of the inputs with the array of weights, and adding in the bias term [15].

6

While dense layers do an all-to-all connection between inputs and outputs, convolutional layers

apply a small series of filters, or kernels, over an input [16]. These filters contain learned values

to detect features within the image. This results in an output resembling a heatmap of the feature

detected by the kernel. Figure 3 shows this process of applying a convolutional kernel to an input

tensor.

Fig. 3: Applying a convolutional kernel to an input tensor [17]

Convolutional layers have an advantage over dense layers for image processing due to the

reduced number of parameters required for training and a lower reliance on feature location

within the image, due to the filters of the convolutional layer being applied at all positions of the

input tensor [16].

2.2 Network Architectures

There are many possible combinations of the machine learning layers discussed in the previous

section. Some models are feedforward networks, meaning that an input feeds directly to an

output through a series of layers; FACILE, which will be discussed in more detail in this section,

is an example of a feedforward network. Alternatively, complex networks may have branches

7

and joins within the network. Figure 4 shows a residual network architecture, which is an

example of a complex, non-feedforward architecture.

Fig. 4: A residual network architecture. Each box represents a different layer, while each arrow

represents the flow of data from one layer to another. Notice that the intermediate outputs feed

not only to the layer directly after, but also to additional layers in the architecture. Dotted lines

represent transitions between blocks with different dimensions which are resolved with linear

projection. [18]

This section will discuss two relevant network architectures for high energy physics: the

FACILE network architecture, and the interaction network GNN architecture. We will cover the

problem that is being addressed with the network, how the network is structured to solve the

problem, the training process, and the results when compared to a traditional algorithm for

solving the problem.

2.2.1 FACILE

8

The FACILE network architecture is a simple regression architecture. The network is designed to

estimate energy deposited by particles in each cell of the CMS hadron calorimeter (HCAL) [3].

Hadron calorimeter reconstruction is used as a prototype application because of the high

accuracy requirement for reconstruction. The machine learning algorithm must have high

accuracy because HCAL measures sensitive events, such as a Higgs boson decaying into bottom

quarks [3]. If the machine learning algorithm cannot reconstruct these events with similar

accuracy to the traditional algorithm, then it will not make sense to replace the traditional

algorithm with a machine learning algorithm. This section will cover the network architecture,

how the network is trained, and performance relative to the traditional algorithm.

The network takes in 15 inputs consisting of information about the charge deposited,

coordinates, and gain. The network consists of a pattern of batch normalization, densely

connected, and rectified linear unit layers. The dense layers have a decreasing number of neurons

going from the input densely connected layer to the output dense layer [3]. This structure is

illustrated in figure 5.

9

Fig. 5: The HCAL FACILE network architecture is a small, feedforward model used to estimate

the energy of particles deposited in each cell of the CMS hadron calorimeter

The model is trained on a sample exceeding 1 million HCAL events separating into training and

testing sets [3]. Network loss is evaluated using a mean squared error function and compared to

the non-machine learning algorithm.

2.2.2 Interaction Network Graph Neural Network

Tracking the path of charged particles produced by particle collisions is essential to high energy

physics tasks such as particle reconstruction and vertex finding [19]. Current state of the art

algorithms produce lower accuracy predictions tracking charged particles as the particle beam

intensity increases and more particles collide within the same window of time [19]. Machine

learning is being explored as a solution to the problem of decreased accuracy due to increased

beam intensity [19]. The LHC is undergoing an upgrade which will increase the intensity of the

beam and result in more collisions per second [20]. This task will become more important as

beam intensity increases.

Particle paths, or tracks, can be represented as mathematical graphs [19]. Detector hits can be

viewed as nodes and track segments can be viewed as edges [19]. Nodes represent individual

detector hits and have data associated with them such as position and energy. Edges represent

possible paths of particles from one node to another. The task of this network is to determine

which paths of edges represent accurate particle tracks [19]. For the problem of particle tracking,

a series of nodes and edges are given to the network and the network needs to determine the

10

correct edges within the graph [19]. Graphs are generated by connecting nodes closest to each

other geometrically [21].

Fig. 6: The structure of an interaction network. Notice how the graph input is transformed from

the structure on the left to the structure on the right as it passes through the network. [21]

Graph neural networks (GNNs) work by performing a series of graph transformations on a graph

dataset input to transform the graph nodes and edges based on learned parameters [19].

Interaction networks are a subset of GNNs that are capable of reasoning about nodes and their

relations to each other. Figure 6 is a representation of an interaction network. The x terms

represent nodes while the a terms represent edges between nodes. Φ terms represent the

multilayer perceptrons performing these transformations [19]. This is accomplished with a

relational submodel that makes predictions based on edges and an object submodel that makes

predictions based on nodes [19]. Together, these submodels predict node and edge and transform

11

the graph using a message passing system to alter the graph [19]. In this case the relational model

and object models are both simple fully connected networks with ReLU activation layers [19].

This model is trained on the TrackML dataset. The dataset is a simulated set of proton collision

events developed for a particle tracking challenge [21]. The collisions are simulated at high

luminosity conditions, similar to those expected at the LHC [21].

2.3 Quantization

Most calculations done for machine learning algorithms are calculated using floating point

binary numbers. Floating point binary numbers use a format to describe fractional components as

well as integer components. Standard floating point numbers are 32 bits long and broken into

three main sections: the sign, the exponent, and the fraction [22]. This structure is shown in

figure 7.

Fig. 7: The 32 bit floating point format, notice the different sections of the number and their bit

widths [23].

The sign bit indicates whether the number is positive or negative, with zero being positive and

one being negative [22]. The exponent serves effectively as an exponential multiplier of the

fractional part of the number, with the value represented by the exponent being two to the power

of the number represented in the exponent field. Additionally, the value in the exponent field is

12

actually represented as the binary value in that field minus 127 [22]. The fractional portion of the

number, also known as the mantissa, is the number itself with each bit location representing a

position after the binary point. For example, the leftmost bit in the fraction section can be viewed

as 0.5, the next one as 0.25, and the next as 0.125. This pattern continues. Additionally, the

fraction section has an implicit one in the one's position to make the total format of the number

resemble scientific notation [22]. This format allows for a representation of a large range of

numbers with a sliding scale of precision based on the magnitude of the number represented [22].

Floating point allows for the representation of a large range of numbers, but the hardware

required to implement floating point operations is more complex than the hardware required to

implement integer operations [24]. In order to implement machine learning models on FPGAs, it

is desirable to reduce the hardware complexity required to implement these operations in order to

ensure that the hardware will fit on the targeted FPGA and be able to run with a faster clock and

higher throughput [24]. In order to accomplish this, the weights of the deployed model need to be

converted to something closely resembling an integer value. This process is known as

quantization. There are two main approaches to quantization values to integer values: fixed point

quantization and scaled integer quantization [24][25].

Fixed point quantization works on a similar principle to floating point numbers, although much

simpler to implement in hardware. Fixed point numbers have a number of bits dedicated to the

integer portion of the number and a number of bits dedicated to the fractional portion of the

number [24]. These fixed point numbers can represent fractional numbers to some extent, but

have a limited range and precision when compared to floating point numbers [24]. However, if

13

the weights of the model being quantized are all within a set range, a fixed point quantization

scheme may be suitable for acceleration because the hardware to implement arithmetic

operations with fixed point numbers is very similar to the hardware required to implement the

same operations on integers [24].

Scaled integer quantization works by shifting and scaling numbers to fit within an integer range.

In order to quantize a number in a scaled integer format, a scale factor needs to be determined in

addition to a potentially optional offset value [25]. The offset value shifts all quantized values

into the range for. Once the number is shifted, it is then scaled using the scale factor. This

ensures that all values should fall within the integer range of the selected bit width. From there,

values are rounded or truncated to produce integers [25]. Inputs that fall outside the quantizable

range may overflow if not handled. A common way to handle these inputs is to hold them to the

boundary of quantization [25]. That way the value is represented as closely as possible to the

original value. This quantization scheme is convenient because the hardware required to

implement operations on numbers quantized in this way is nearly identical to the hardware

required to implement operations on integers [25].

Whether quantization is implemented with fixed point quantization or scaled integer

quantization, some loss of precision will occur with the model conversion [21]. There are two

main approaches to the quantization process: post training quantization (PTQ) and quantization

aware training (QAT) [21]. Post training quantization takes the floating point trained model and

truncates/rounds the model to fit within the quantization parameters [21]. In most cases, this

causes a drop in accuracy because the model weights are changed from the trained values in

14

order to fit within the quantization range. On the other hand, quantization aware training

provides some information about the quantization parameters to the training process. The

training process uses this information to ensure that the weights are already adjusted to the

quantization range. This allows the training process to minimize or eliminate the drop in

accuracy from quantizing the model [21]. Later sections will compare the accuracy of machine

learning models with quantization aware training to models using post training quantization.

3 FINN

FINN is a framework developed primarily by Xilinx Research for transforming, synthesizing,

and deploying machine learning models on FPGAs [26]. FINN trains to achieve extremely low

bit width models for acceleration. Lower bit width models consume less FPGA area and can

generally be accelerated to higher throughputs and lower latencies than higher bit width models

using FINN. Additionally, FINN has specific requirements for layer ordering for high throughput

and resource utilization [27], meaning that existing model architectures may require minor

modifications to achieve reasonable performance in FINN. FINN is based around 5 main

components: Brevitas, FINN ONNX, FINN transformations, High Level Synthesis, and

deployment tools.

Brevitas is the quantization aware training library developed by Xilinx in conjunction with FINN

for quantization aware training (QAT). This library allows users to train at the target precision of

the final implementation, which tends to increase the accuracy of the model while performing

inference. Users can create their model in Brevitas, train at a low, scaled integer bit width, and

export it to a format that FINN can accelerate.

15

FINN provides a utility to convert Brevitas models directly to an internal representation known

as FINN ONNX. FINN ONNX, based on ONNX, adds support for quantization and additional

layers which are related to the hardware representations of layer types, such as multi-threshold

layers [28]. Multi-threshold layers provide a way to represent the remaining unquantized floating

point operations as a set of comparators. FINN also provides transformation utilities to replace,

reorder, and combine layers within the FINN ONNX model in equivalent ways [29]. For

example, sequential matrix multiplication layers can be combined, which reduces the total

resources required to synthesize the model. Once the FINN ONNX model is optimized by

combining layers, then FINN provides utilities to synthesize and deploy the model on an FPGA

[30].

This section will explain the different components of FINN as background. Once the background

on the FINN framework is explained, this section will explain the process of converting an

existing machine learning model architecture into a FINN accelerated machine learning

implementation on an FPGA.

3.1 Brevitas

Xilinx developed a quantization aware training library known as Brevitas [28]. Brevitas is based

on the Pytorch machine learning library. Brevitas has layer specific replacements for major

machine learning layers, such as linear and activation layers. Brevitas uses a scaled integer

quantization scheme [31], meaning that network inputs are converted to integers by scaling and

shifting them using scale and shift values learned on the dataset [31]. By doing this conversion to

16

integers, Brevitas and FINN can execute machine learning operations on integer values instead

of floating point values. Brevitas is useful for training networks for synthesis and deployment in

FINN, as well as quantization aware training as part of numerical studies. This section will cover

the process of converting model architectures from Pytorch models to Brevitas models, as well

as specific implementations for high energy physics.

Brevitas is an extension of the Pytorch machine learning framework [31], which means that

converting Pytorch models to Brevitas quantized models can be done by swapping the Pytorch

layers for quantized Brevitas layers and retraining. Brevitas has layer replacements available for

matrix multiplication layers, activation layers, and convolution layers [31]. When constructing

these layers, the constructor takes an additional argument that serves as the quantizer. Brevitas

supports different quantization schemes depending on the desired bit width and network function

[31]. This paper will focus on the scaled integer quantization scheme, and its usage in

quantization aware trained networks for high energy physics.

The scaled integer quantization scheme works by generating an offset and scale factor for each

of the input values to the machine learning network [31]. The offset and scale values work by

offsetting the input to change the input range and then scaling the input to fit within the integer

range of the bit width that is desired for the quantization aware training. If an input that exceeds

the minimum or maximum value of the scaled integer representation is given as an input, then

the value is clamped to the limit value [31]. This works to ensure that all input values to the

network are within the expected range, while also preventing overflow.

17

Being based on Pytorch, Brevitas provides an interface to do numerical studies on quantization

aware training for applications outside of FINN. One such example of a network where this was

applied was the Interaction Network GNN discussed in section 2.2.2 of this paper. The

interaction network was designed in Pytorch and synthesized at various bit widths in the hls4ml

project using post training quantization [21]. There were questions around the accuracy that was

achievable at lower bit width using quantization aware training. In order to answer those

questions, I converted the unquantized Pytorch layers to Brevitas quantized layers. Once

implemented, I trained the network on an equivalent training set as the unquantized model. I

trained the model in a quantization sweep with a step of every two bits from two bits up to

eighteen bits quantized. Once the models were trained, they were saved and evaluated against the

post training quantization models of the same bit widths and the results were graphed.

18

Fig. 8: The AUC of the quantization aware trained interaction network GNN trained in Brevitas

compared with the post training quantization version quantized in hls4ml [21]

As figure 8 illustrates, quantization aware training in Brevitas maintains higher Area Under the

Curve (AUC) at lower bit widths than post training quantization at comparable or even higher bit

widths. AUC is a measurement of classifier accuracy. The “curve” in this context is a plot where

the y axis is the true positive rate and the x axis is the false positive rate. Points along the curve

can be calculated by varying the threshold for the classifier at which it considers an output as a

positive result. Networks with a higher AUC are more accurate than those with lower AUC

scores [32]. The two comparisons being done here are the evaluation with full graphs and

evaluation with graphs truncated at the 95th percentile of graph size [21]. Larger graphs are

reduced in size by not processing any more nodes and edges than are in the 95th percentile.

These nodes and edges are assumed to be falsely classified. The reason for truncation in this

context is to reduce the total graph size in order to reduce the hardware resource consumption of

a fixed latency FPGA model [21]. In both cases, the quantization aware trained model either

exceeds or closely matches the post training quantization model, with strong performance at

extremely low bit widths.

3.2 FINN Flow

In order to convert a Brevitas model to hardware, FINN includes a series of steps to optimize and

synthesize the machine learning model to hardware [33]. Broadly speaking, these stages can be

categorized into 3 different stages of transformation: optimization, implementation, and

synthesis. Once synthesized, FINN also provides a convenient interface to deploy and evaluate

19

models on supported FPGA boards [30]. This section will explain the different stages of the

FINN flow more in depth, from a Brevitas model to evaluating on an FPGA.

Brevitas provides a direct function to export the model to a format known as FINN ONNX [28].

This is the first stage of transformation. The model is changed from a modified version of a

Pytorch internal representation to a modified ONNX internal representation. This modified

ONNX internal representation will remain in use until the model is synthesized to an FPGA.

During this process, unquantized floating point operations are converted to multi-threshold layers

[29]. The next section will explain multi-threshold layers in more depth. For the purposes of this

section, multi-threshold layers can be understood as a generalized floating point conversion.

From there, the model proceeds into the optimization stage of the FINN flow. This stage is

focused around reordering and combining layers in order to reduce the total number of layers and

hardware requirements to synthesize the model [33]. Specific transformation functions exist to

combine common combinations of layers into mathematically equivalent layers [33]. For

example, multiplication operations can be absorbed into multi-threshold layers by changing the

threshold values within the multi-threshold layer, while transpose operations can be absorbed

into resize operations by changing the order of the outputs [34]. Reordering functions exist to

reorder specific layer combinations in an attempt to maximize the number of combinations that

can occur within the network [33]. For example, add operations with a constant term can be

moved past multiplication operations by changing the value of the constant term, which may

place a multiplication operation in a position where it can be absorbed by a multi-threshold

operation. This system is able to combine a large number of layer combinations; however not

20

everything can be combined successfully [27]. This is the main reason that FINN is sensitive to

layer orderings within the network. If specific orderings of layers occur within the network, the

network may not be able to be optimized to as low an FPGA resource consumption or as high of

a throughput as a functionally equivalent model with different layer orderings [27].

Once layer reordering and combination is finished, the model continues to the implementation

stage. In this stage, the model is converted to high level synthesis (HLS) compatible C

implementations of the layers [33]. From there, the layers can be synthesized into an FPGA

deployable dataflow. Simulations can occur at key points during this synthesis flow. From there,

the dataflow representation of the machine learning network can be deployed on an FPGA.

Inference can be performed using a Xilinx PYNQ interface to measure potential throughput as

well as test inference to ensure that the network performs as expected [30].

21

Fig. 9: The complete FINN flow from end to end. [35]

3.3 Multi-Threshold Layers

While quantized replacements for many machine learning layer types exist in Brevitas, not every

operation has a quantized replacement. For example, FINN does not have specific

implementations of quantized activation functions. Activation functions are implemented as

multi-threshold layers as a way to abstract activation functions and Multi-Threshold layers exist

22

to convert the remaining floating point operations to a representation that is equivalent, while

being simpler to implement in hardware [25].

Multi-threshold layers work by converting floating point operations into equivalent sets of

comparisons with constants sweeping over a range [25]. Every comparison where the input is

greater than the constant registers as true. As these thresholds are met, they are accumulated to

form the output result. For example, a ReLU layer may have a minimum threshold of one in

order to ensure that the input value is greater than zero in order to output anything greater than

one. From there, the thresholds would increase by one. This can be accomplished using a finite

number of comparators because there is a limited range of values in a given quantization scheme.

For example, a multi-threshold layer with 8-bit quantization does not need to compare from

negative infinity to infinity. Comparisons only need to exist in the range from -128 up to 127. As

the input increases in value, the accumulated output of the multi-threshold layer also accumulates

a higher and higher result [25]. As discussed in previous sections, these thresholds can be

modified in order to combine multi-threshold layers with other operations in the network.

3.4 Implementation of the FACILE Architecture in FINN

With this understanding of the FINN flow, from network construction to acceleration, this thesis

can now explore the process of translating and accelerating an existing network architecture for

comparison to existing network acceleration methods. The FACILE network architecture exists

to estimate the energy of particles based on Hadron Calorimeter (HCAL) hit data [3]. This is an

example of an application requiring high throughput inference [3]. The FACILE architecture also

serves as a point of comparison between FINN and hls4ml, because acceleration of the FACILE

23

architecture is well documented both using hls4ml on FPGAs and using GPU acceleration [3].

This section will cover the procedure to convert the FACILE network to a Brevitas

implementation, the modifications to the architecture to facilitate FINN synthesis of the model,

the synthesis process, and throughput results from the synthesized model.

The FACILE network architecture was initially implemented in Tensorflow. The architecture

was initially replicated in Pytorch by Vladimir Ovechkin. The initial implementation of the

network can be visualized with the figure below.

Fig. 10: The unquantized, original FACILE network architecture

I modified the network to substitute in quantized versions of the layers using Brevitas.

Additionally, I added a quantized layer at the start of the network to set the quantization for

multi-threshold layers at the start of the network. I performed additional layer reorderings after

receiving advice from the FINN development team to allow for maximum layer reordering and

combination for ease of synthesis. The final network architecture is represented by figure 11.

24

Fig. 11: The modified, FINN compatible FACILE network architecture

I then trained the quantized model and compared it to the unquantized version using the train and

validate mean square error values. The quantized model was able to achieve equivalent error

values at 8 bits of quantization and near equivalent error values at 4 bits of quantization. Table 1

shows the specific error results at these different precisions. Validation error is significantly

higher than train error. This is likely due to overfitting on the train dataset. This could be caused

in part by the transition from Keras to Pytorch and an error being made converting the training

script. Because the validation error is significantly higher for unquantized and quantized

performance, the overfitting should not be a problem for the purposes of this thesis, as it is not

the quantization that is causing the increase in validation error.

Table 1: Train and validation errors of FACILE models at different levels of quantization

Quantization Level Train Error Validation Error

Original, unquantized model .16 6

8 bit quantization .1 5

4 bit quantization .21 9.3

25

I deployed the quantized model on an AVnet Ultra96-V2 FPGA board, which uses a Xilinx Zynq

UltraScale+ MPSoC ZU3EG A484 FPGA. The model was able to synthesize at both 8 and 4 bit

precision. Testing the model using the PYNQ interface yielded a throughput of 4,000 inferences

per second. Synthesis in hls4ml was done using an Alveo U250, which is a datacenter accelerator

card, while the Ultra96-V2 is a small consumer grade FPGA. The hls4ml synthesized version

was able to achieve 80 million inferences per second of throughput [3]. Compared to the hls4ml

synthesized version, the FINN version was not able to achieve nearly as high levels of

throughput, however that is likely due in large part to the differences in FPGA. The Ultra96-V2

is designed for edge applications and is easily acquirable as a consumer, while the Alveo U250 is

a datacenter focused FPGA designed for high throughput applications.

4 hls4ml

High Level Synthesis for Machine Learning (hls4ml) is another tool to generate FPGA

implementations of machine learning models. The driving force behind the development of

hls4ml has been the potential for applications for high energy physics [36]. FINN and hls4ml are

quite similar but differ in a few key ways. Both hls4ml and FINN target Xilinx FPGAs using the

Vivado HLS synthesis tool, both require network quantization in order to synthesize networks,

and both use an internal representation and transformations to optimize the machine learning

model for FPGA deployment [36]. Unlike FINN, hls4ml uses fixed point quantization where

FINN uses scaled integer quantization [21]. Additionally, while FINN uses multi-threshold

layers to convert activation functions, hls4ml has individual implementations of activation

functions in HLS [37]. FINN and hls4ml are similar enough to inspire a collaboration. This

section will start with background on the model ingestion, the internal representation, and the

26

optimization passes. Then this section will introduce QONNX, a collaborative effort between the

FINN and hls4ml teams to develop a standard representation for quantized machine learning

models. Finally, this section will discuss the development effort to integrate QONNX support

into hls4ml.

4.1 Model Ingestion and HLSModel

hls4ml supports multiple machine learning model formats, such as QKeras, Pytorch, and

Tensorflow models [37]. In order to accommodate these different machine learning model

formats, hls4ml converts the machine learning model into an internal representation known as

HLSModel [37]. This process is known as model ingestion. During this process, the machine

learning model is treated as a graph with layers being viewed as nodes. Each node is recreated

and weights are translated into the HLSModel format. If nodes have associated quantization

information, that is also translated into the HLSModel format, otherwise the quantization

information is assumed to be the default quantization specified during the ingestion process for

the model. By doing this ingestion, hls4ml is able to accept a wide variety of machine learning

model formats and perform optimizations largely independent of the format of the machine

learning model [37].

4.2 Optimization Passes

Once the model is converted to HLSModel, hls4ml performs a series of optimization passes to

merge layers and improve the synthesizability of the model. This process is very similar to the

streamlining process in FINN. Some layers can be combined together. For instance, batch

27

normalization layers can be combined with dense and convolutional layers by combining the

biases and weights. These transformation passes are implemented in Python and are executed

before the model is converted to a HLS transformation. Each transformation is implemented as

its own class with two functions: match and transform [47]. The match function takes the node

being transformed and returns whether this transformation can be run on the node. In most cases,

that check consists of checking the type of node on which this transformation is being executed,

checking attributes of the node, and potentially attributes of the surrounding nodes. The

transformation function takes the node and the whole model and performs the optimization pass

[37]. In the case of a fusion operation, this consists of modifying the attributes of either the

current node or the parent and removing the other one. Transformations are registered in a map

of passes. When it is time to optimize the model, the optimization passes are iterated through and

called on each node in the graph. If the transformation matches the node based on the match

function, then the transformation is applied to the node. By iterating through the transformations

and the nodes, the optimizer is able to stop applying transformations when no more valid

transformations are found.

4.3 QONNX

QONNX is a generic quantized machine learning model format developed as a collaboration

between the hls4ml and FINN teams. It is based on the ONNX machine learning model

representation format with a major addition: quant nodes. Quant nodes serve as an interface to

convey quantization information without requiring different quant nodes for different layer types.

QONNX is able to achieve this by simply wrapping unquantized nodes into a format that takes 2

inputs where one input is the quant node containing the weight quantization information.

28

Fig. 12: The planned approach to creating a shared model format between hls4ml and FINN.

Figure 12 shows the different possibilities for interoperability using the QONNX model format.

Models otherwise unsupported by FINN and hls4ml can be ingested and synthesized by using

QONNX as an intermediate representation. This allows for post training quantized models in

Pytorch and Tensorflow to be used in FINN, as well as adding support for QKeras models.

Additionally, this approach allows for Brevitas quantization aware trained models to be

synthesized in hls4ml.

Quant nodes can feed into nodes to specify how the weights should be quantized. They can also

be placed between nodes to specify the quantization of downstream nodes. This means that both

input and weight quantization can be handled with a single type of node. Figure 13 shows how

quant nodes interact with surrounding nodes. Notice the structure of quant nodes feeding into the

convolution nodes independently as a way to quantize weights. Additionally, quant nodes can sit

29

between conv nodes and their inputs as a way to identify quantization attributes within the

model. The application of quant nodes to dense layers is similar to the application to conv nodes.

Fig. 13: One portion of a QONNX model graph. Notice how a quant node feeds into the Conv

nodes as a way to quantize weights. Other quant nodes feed into the MaxPool and out from the

BatchNormalization layers as a way to specify quantization parameters within the model.

30

FINN and hls4ml will support the QONNX format in the near future, and there are tools in

process to convert from Brevitas and QKeras to QONNX [38]. The next section will go into

detail around the process of implementing support for QONNX into hls4ml.

4.3.1 QONNX Ingestion and Transformation

As mentioned previously, weights and quantization information are transferred into HLSModel

layer by layer. This aspect makes QONNX an outlier in terms of model ingestion. QONNX

models don’t store quantization information within each layer. Quant nodes store the

quantization information for layers and exist as separate nodes within the QONNX graph. The

approach to handle that oddity is to create a new quant node class in HLSModel. This quant node

class is unsynthesizable and exists only as an intermediate representation. Once the full model is

ingested as HLSModel, a new set of optimization passes need to be applied. These optimization

passes are designed to wrap the quantization information from the quant nodes into the nodes

that they are quantizing. Additionally these nodes need to remove the quant nodes, since they are

not synthesizable. Once this is accomplished, the QONNX ingested HLSModel can go through

the same set of transformations as other HLSModels. Figure 13 showcases the process for

translating a QONNX graph into an HLSModel internal representation.

Fig. 13: The QONNX conversion process to HLSModel

31

5 Conclusion

This thesis examined the increase in accuracy possible using the same machine learning model

quantized to the same bit width using quantization aware training instead of post training

quantization. This thesis demonstrated that by using quantization aware training, comparable

results were achievable with approximately ½ the number of bits used in computation when

compared to post training quantization. Additionally, this thesis followed the process to

reproduce, train, and deploy a machine learning model using the FINN toolset developed by

Xilinx. From this, the thesis covered the efforts to create a cross-organizational standard for

quantized machine learning network representation known as QONNX. This thesis covered the

development effort to integrate QONNX model ingestion into the hls4ml project, specifically the

necessary transformations to convert from a QONNX representation of a model to something

synthesizable.

6 Future Work

While a first pass at integrating QONNX ingestion into hls4ml has been integrated, this is still

highly in development. There are many features to test and expand with the current version.

Model output parity has been verified for smaller models; however latency, throughput, and

resource utilization has not been verified to be equivalent. Additionally, there are limitations to

the QONNX models that can be ingested. There is a current bug with a convolutional model

being tested where array allocation is extremely high for a kernel, which keeps the model from

synthesizing. Additionally, this has only been tested with smaller, feedforward architectures.

Testing this process with different network architectures will be necessary to ensure the

robustness of the ingest process. Special optimization procedures also exist for QKeras and

32

QONNX models. Eventually, these different optimization passes should be combined into a

unified set of optimization passes with just a couple unique passes to integrate quantization

layers into the layers being quantized. Finally, this ingestion process should be brought forward

into the new hls4ml architecture.

33

7 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.

1934360.

I would like to thank both of my advisors, Dr. Scott Hauck and Dr. Shih-Chieh Hsu for their

guidance and support. It has been a pleasure working with both of them, starting as an

undergraduate research assistant, up through graduation, and all through this thesis. Scott’s

technical insights and ability to know which questions to ask to clarify concepts has been

incredibly helpful in driving my understanding through this project. Shih-Chieh’s insights into

the physics and mechanisms behind the Large Hadron Collider were invaluable to my

understanding of the projects I was working on. I would not have been able to do this without

them.

Thank you to Nhan Tran for onboarding me onto the hls4ml team and always being helpful when

I was looking for places to contribute. Thank you to Jovan Mitrevsky for working with me to

understand the hls4ml framework and working with me to find specific contributions that I could

make to the QONNX ingestion into hls4ml. Thank you to Javier Duarte and Abdelrahman Elabd

for working with me to find a place for my work on quantization aware training of the particle

tracking GNN in the paper in progress.

I am also thankful to the FINN team at Xilinx and Yaman Umuroglu for answering my questions

around FINN and helping me implement FACILE in FINN.

34

I would like to thank my parents, Rob Trahms and Lisa Trahms who have always encouraged me

to be the best version of myself. They have been a great inspiration, support, and motivation

while pursuing this degree.

Thank you to my friends and family who supported me not only pursuing this degree, but in my

life outside of school, and in my future plans and aspirations.

35

References

[1] “CERN Data Centre passes the 200-petabyte milestone,” CERN.
https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-
milestone.

[2] CERN, “The Large Hadron Collider | CERN,” Cern, 2019.
https://home.cern/science/accelerators/large-hadron-collider.

[3] D. Rankin et al., "FPGAs-as-a-Service Toolkit (FaaST)," 2020 IEEE/ACM
International Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 2020, pp. 38-47, doi: 10.1109/H2RC51942.2020.00010.

[4] “About,” ATLAS Experiment at CERN. https://atlas.cern/about.

[5] “ATLAS Fact Sheets,” ATLAS Experiment at CERN. https://atlas.cern/resources/fact-
sheets.

[6] “Detector | CMS Experiment,” cms.cern. https://cms.cern/detector.

[7] T. M. Mitchell, Machine learning. Singapore: Mcgraw-Hill, 1997.

[8] IBM Cloud Education, “What is Deep Learning?,” www.ibm.com, May 01, 2020.
https://www.ibm.com/cloud/learn/deep-learning.

[9] “List of Deep Learning Layers - MATLAB & Simulink,” www.mathworks.com.
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html.

[10] “Weight (Artificial Neural Network),” DeepAI, May 17, 2019.
https://deepai.org/machine-learning-glossary-and-terms/weight-artificial-neural-
network.

[11] “Tensor,” DeepAI, May 17, 2019. https://deepai.org/machine-learning-glossary-and-
terms/tensor.

[12] “Activation Function,” DeepAI, Sep. 27, 2020. https://deepai.org/machine-learning-
glossary-and-terms/activation-function.

[13] “ReLU — PyTorch 1.8.0 documentation,” pytorch.org.
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html.

[14] D. Battini, “Learn Coding Neural Network in C#: Define layers and activations,”
Tech-Quantum, Mar. 14, 2019. https://www.tech-quantum.com/learn-coding-neural-
network-in-c-define-layers-and-activations/.

[15] “Linear — PyTorch 1.10 documentation,” pytorch.org.
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear .

36

[16] “What are Convolutional Neural Networks?,” www.ibm.com.
https://www.ibm.com/cloud/learn/convolutional-neural-networks.

[17] Podareanu, Damian & Codreanu, Valeriu & Aigner, Sandra & Leeuwen, Caspar &
Weinberg, Volker. (2019). Best Practice Guide - Deep Learning.
10.13140/RG.2.2.31564.05769.

[18] Tiwari, Mohit & Tiwari, Tripti & Kassab, Manal & Roy, Anit & Chaudhary, Deepa &
Onyema, Edeh. (2020). Detection of Coronavirus Disease in Human Body Using
Convolutional Neural Network. 29. 2861-2866.

[19] G. DeZoort et al., “Charged Particle Tracking via Edge-Classifying Interaction
Networks,” Computing and Software for Big Science, vol. 5, no. 1, Nov. 2021, doi:
10.1007/s41781-021-00073-z.

[20] “New technologies for the High-Luminosity LHC,” CERN.
https://home.cern/science/accelerators/new-technologies-high-luminosity-lhc .

[21] A. Elabd et al., “Graph Neural Networks for Charged Particle Tracking on FPGAs,”
submitted to Frontiers

[22] “IEEE Standard for Floating-Point Arithmetic,” 2020, doi:
10.1109/ieeestd.2019.8766229.

[23] “Difference between fixed and floating point,” Electrical Engineering News and
Products, Sep. 15, 2017. https://www.eeworldonline.com/difference-between-fixed-
and-floating-point/ .

[24] L. S. Rosa, C. F. M. Toledo, and V. Bonato, “Accelerating floating‐point to fixed‐
point data type conversion with evolutionary algorithms,” Electronics Letters, vol. 51,
no. 3, pp. 244–246, Feb. 2015, doi: 10.1049/el.2014.3791.

[25] T. Alonso et al., “Elastic-DF: Scaling Performance of DNN Inference in FPGA
Clouds through Automatic Partitioning,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 15, no. 2, pp. 1–34, Jun. 2022, doi: 10.1145/3470567.

[26] “What is FINN?,” finn. https://xilinx.github.io/finn/about.

[27] T. B. Preuser, G. Gambardella, N. Fraser, and M. Blott, “Inference of quantized
neural networks on heterogeneous all-programmable devices,” 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar. 2018, doi:
10.23919/date.2018.8342121.

[28] “Brevitas Export — FINN documentation,” finn.readthedocs.io.
https://finn.readthedocs.io/en/latest/brevitas_export.html.

[29] “Network Preparation — FINN documentation,” finn.readthedocs.io.
https://finn.readthedocs.io/en/latest/nw_prep.html.

37

[30] “Hardware Build and Deployment — FINN documentation,” finn.readthedocs.io.
https://finn.readthedocs.io/en/latest/hw_build.html.

[31] “Brevitas,” GitHub, Feb. 22, 2022. https://github.com/Xilinx/brevitas.

[32] Google, “Classification: ROC Curve and AUC | Machine Learning Crash Course,”
Google Developers, 2019. https://developers.google.com/machine-learning/crash-
course/classification/roc-and-auc.

[33] M. Blott et al., “FINN- R,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 11, no. 3, pp. 1–23, Dec. 2018, doi: 10.1145/3242897.

[34] “Xilinx/finn,” GitHub, Feb. 20, 2022. https://github.com/Xilinx/FINN

[35] “End-to-End Flow — FINN documentation,” finn.readthedocs.io.
https://finn.readthedocs.io/en/latest/end_to_end_flow.html

[36] T. Aarrestad et al., “Fast convolutional neural networks on FPGAs with hls4ml,”
Machine Learning: Science and Technology, vol. 2, no. 4, p. 045015, Jul. 2021, doi:
10.1088/2632-2153/ac0ea1.

[37] “hls4ml,” GitHub, Feb. 22, 2022. https://github.com/fastmachinelearning/hls4ml.

[38] H. Borras, Y. Umuroglu, “QONNX and FINN,” finn, Nov. 03, 2021.
https://xilinx.github.io/finn/2021/11/03/qonnx-and-finn.html.

38

Appendix 1 - Publications

For each of the publications below, I am listed as an author and the material closely relates to the

topics of my thesis. For the first three (FPGAs-as-a-Service Toolkit (FaaST), FPGA-Accelerated

Machine Learning Inference as a Service for Particle Physics Computing, GPU coprocessors as

a service for deep learning inference in high energy physics) I was an undergraduate at the

University of Washington. I was a graduate student for the latest publication (Graph Neural

Networks for Charged Particle Tracking on FPGAs). As an undergraduate, I worked to

implement a REST server for FPGA machine learning inference using AWS instances. This

work provided useful insights for FPGAs-as-a-Service Toolkit (FaaST) as well as GPU

coprocessors as a service for deep learning inference in high energy physics. That research was

especially relevant to the FACILE comparison using an Alveo U250. Those measurements were

accomplished using a datacenter GPU and recorded in the same paper. Also as an undergraduate,

I worked on measuring the throughput and accuracy of Microsoft’s Brainwave machine learning

service. My research helped publish the FPGA-Accelerated Machine Learning Inference as a

Service for Particle Physics Computing. My research used ResNet-50 and is most relevant in the

description of a residual network and in the discussion of metrics for analyzing network

performance. As a graduate student, I converted the particle tracking interaction network to

Brevitas for quantization aware training purposes, which allowed me to compare and contrast

quantization aware training to post training quantization in Graph Neural Networks for Charged

Particle Tracking. The section on the interaction network GNN is based on that research entirely.

39

D. Rankin, S. Hauck, S. Hsu, M. Trahms et al., "FPGAs-as-a-Service Toolkit (FaaST)," 2020

IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable

Computing (H2RC), 2020, pp. 38-47, doi: 10.1109/H2RC51942.2020.00010.

J. Duarte, S. Hauck, S. Hsu, M. Trahms et al. “FPGA-Accelerated Machine Learning Inference

as a Service for Particle Physics Computing,” 2019 Comput Softw Big Sci 3, 13,

https://doi.org/10.1007/s41781-019-0027-2

J. Krupa, S. Hauck, S. Hsu, M. Trahms et al. “GPU coprocessors as a service for deep learning

inference in high energy physics,” Mach. Learn.: Sci. Technol. 2 035005

A. Elabd, S. Hauck, S. Hsu, M. Trahms et al. “Graph Neural Networks for Charged Particle

Tracking on FPGAs,” 2022 submitted to Frontiers https://arxiv.org/abs/2112.02048

40

Appendix 2 - Software Repositories

Brevitas and FINN implementation of FACILE - https://github.com/kf7lsu/pytorchFACILE

Brevitas Tracking Interaction Network - https://github.com/kf7lsu/interaction_network_paper

QONNX ingest into hls4ml - https://github.com/fastmachinelearning/hls4ml/blob/ingest-

qonnx/hls4ml/model/optimizer/passes/matmul_const_to_dense.py

