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Abstract 
As we move to System-on-a-Chip (SoC), where multiple types of resources are integrated on a single chip, it 
is important to consider how to best integrate reconfigurability into these systems.  Reprogrammable logic 
can add general computing ability, provide run-time reconfigurability, or even be used for post-fabrication 
modifications.  Also, by catering the logic to the SoC domain, additional area/delay/power gains can be 
achieved over current, more general reconfigurable fabrics. This paper presents tools that automate the 
creation of domain specific PLAs and PALs for SoC, including an Architecture Generator for making 
optimized arrays and a Layout Generator for creating efficient layouts.  By intelligently mapping netlists to 
PLA and PAL arrays, we can reduce 63%-75% of the programmable connections in the array, creating delay 
gains of 17%-32% over unoptimized arrays. 

Introduction 
As device scaling continues to follow Moore’s Law, chip designers are finding themselves with more available chip 
real estate.  This is true in the design realm of System-on-a-Chip (SoC), where individual, pre-designed subsystems 
(memories, processors, DSPs, etc.) are integrated together on a single piece of silicon in order to make a larger 
device.  In this new world of SoC integration, it is natural to question the future of reconfigurable logic. 

Reconfigurable logic fills a useful niche between the flexibility provided by a processor and the performance 
provided by custom hardware.  Traditional FPGAs, however, provide this flexibility at the cost of increased area, 
delay, and power.  As such, it would be useful to tailor the reconfigurable logic to a user specified domain in order 
to reduce the unneeded flexibility, thereby reducing the area, delay, and power penalties that it suffers.  The 
dilemma then becomes creating these domain specific reconfigurable fabrics in a short enough time that they can be 
useful to SoC designers. 

The Totem project is our attempt to reduce the amount of effort and time that goes into the process of designing 
domain specific reconfigurable logic.  By automating the generation process, we will be able to accept a domain 
description and quickly return a reconfigurable architecture that targets that domain.  This will provide improved 
performance not only for implementing the designs used in architecture development, but also for implementing 
other similar designs that might become interesting in the future. 

Previous work on Totem [Phillips01, Sharma01, Eguro02, Compton03, Phillips04, Eguro05, Sharma05, Hauck06] 
has focused on using a 1-D RaPiD array [Ebeling96, Cronquist99] in order to provide reconfigurable architectures 
for domains that use ALUs, Multipliers, RAMs, and other coarse grained units.  But many domains do not benefit 
from the use of coarse-grained units, and would require a finer-grained fabric.  For example, users who want their 
reconfigurable logic to support state machines, control logic, or other random functions, would have little to no use 
for these coarse-grained units.  An appealing solution for these users would be to create reconfigurable PLAs and 
PALs, which are efficient at representing seemingly random or non-regular logic functions. 

PLAs and PALs are devices that directly implement two level sum-of-products style logic functions [Fleisher75].  
They do this with the use of a programmable AND-plane that leads to either a programmable OR-plane (PLA, 
shown in Figure 1) or a fixed OR-plane (PAL).  PLAs are slightly more flexible than PALs because of their 
programmable OR-planes, while PALs are usually smaller due to their fixed OR-plane. 

As shown, PLA and PAL arrays are defined by how many inputs, product terms, and outputs they can represent.  
Additionally, PAL arrays are constrained by the sizes of their fixed output gates.  These are variables that can be 
adjusted in order to provide arrays that are tailored to specific tasks.   
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Figure 1.  Example PLA.  PALs have fixed OR gates instead of the programmable OR-plane. 

A desirable aspect of PLAs and PALs is that they provide very predictable timing, an attribute that LUT-based 
reconfigurable architectures usually cannot provide.  The reconfigurable portion of an SoC is likely to be closely 
coupled with other blocks on the device, and the ability to provide predictable timing may be very attractive to SoC 
designers.  Additionally, the logic density of PLAs and PALs is very similar to LUT-based architectures when 
considering relatively small applications.  For example, control logic and random logic can usually be represented 
very efficiently with sum-of-products equations, and are therefore represented very well by these arrays.  Providing 
SoC designers with reconfigurable PLAs and PALs will give them the ability to support many different fine-grained 
functions, or even perform bug fixes or other post-fabrication modifications, all while providing respectable logic 
density and predictable timing. 

The next section of this paper presents some relevant background material, as well as a discussion of other related 
works.  We then cover the flow of our PLA/PAL generation tool, including its two major components – the 
Architecture Generator and the Layout Generator.  This is followed by a discussion of our research methodology 
and the results of our study.  We conclude with a discussion of the contributions of our work, as well as possible 
avenues of future work. 

Background 
Reconfigurable PLAs and PALs have existed for many years in commercially available CPLDs, and are produced 
by companies including Xilinx, Altera, and Lattice.  CPLDs are typically sets of reprogrammable PALs or PLAs 
connected by fairly rich programmable routing fabrics, with other hardware added to increase the functionality of 
the devices.  These commercial CPLDs, however, suffer from the same drawbacks as commercial FPGAs: their 
generality, while allowing them to be used in many domains, costs them in terms of area, delay, and power.  It 
would be desirable to tailor such devices to specific domains and requirement, which is exactly what Totem does. 

Many papers have been published with respect to PAL and PLA architectures, but very few of them have aimed at 
creating reconfigurable arrays or arrays for SoC.  The most applicable [Yan03] explores the development of 
unidirectional synthesizable programmable logic cores based on PLAs, which they call product term arrays.  In their 
process they acquire the high-level requirements of a design (# of inputs, # of outputs, gate count) and then create a 
hardware description language (HDL) representation of a unidirectional programmable core that will satisfy the 
requirements.  This HDL description is then given to the SoC designer so that they can use the same synthesis tools 
in creating the programmable core that they use to create other parts of their chip. 

Their soft programmable core has the advantages of easy integration into the ASIC flow, and it will allow users to 
closely integrate this programmable logic with other parts of the chip.  The core will likely be made out of standard 
cells, however, whose inefficiency will cause significant penalties in area, power, and delay.  In fact, their work has 
estimated that the use of a standard cell implementation would require 6.4x the area of a “hard” core implementation 
of the same fabric [Wilton05].  As such, using these soft cores only makes sense if the amount of programmable 
logic required is relatively small. 
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Our process differs from [Yan03] in that we create domain-specific hard cores to be used in SoC.  Our tools 
intelligently create a PLA or PAL architecture that fits the specifications provided by the designer, and use pre-
optimized layouts to create a small, fast layout of the array that can be immediately placed onto the SoC.  This 
results in area, delay, and power improvements over pre-made programmable cores or soft cores, and is automated 
in order to provide very fast turnaround time. 

Another similar work presents a high-performance programmable logic core for SoC applications [Han05].  Their 
architectures are similar to those in [Yan03] in that they are unidirectional and they use product term based logic, 
but they do so while using a unique dynamic logic family called OPL.  OPL is a precharged-high logic family, so 
only discharging is necessary upon function evaluation.  Due to this, they show that OPL designs provide 5x 
speedups over conventional circuit design styles when implementing circuits that map well to wide NOR gates.  The 
work also introduces a novel product-term-based logic structure that utilizes OPL-friendly NOR gates.  While most 
product-term-based reconfigurable logic provides a fixed input, product term, and output capacity, the logic 
structures proposed in this paper provide further gains by allowing these amounts to be variable.  This avoids the 
area losses caused by unutilized logic resources in most product-term-based designs, because most PLAs are only 
partially utilized. 

One important consideration for this OPL-based design is clock distribution, as the logic family requires successive 
clock phases to be present with very short separation times.  This requires considerable clock-generation overhead, 
which takes up area that could otherwise be utilized for logic.  Power consumption is also increased due to the need 
for a large number of minimally spaced clocks.  The goal of this device, though, was increased speed.  A test chip 
was produced and timing values extracted, and results showed that this new architecture provided an average 
speedup of 3.7x over a Xilinx Virtex-E FPGA. 

This work definitely shows that dynamic PLA-based reprogrammable logic is feasible, but only with a significant 
amount of design effort.  The design and generation of multiple, minimally spaced clocks is a significant task.  More 
importantly, any changes that are made to the logic resources will require significant redesigning of the clocks in 
order to ensure that correct timing is still achieved.  We wish to automate the process of creating reprogrammable 
PLA and PAL architectures, which involves choosing the appropriate array sizes on the fly.  Automatically 
specifying and laying out a functional clock network for dynamic reprogrammable logic is simply too great of a task 
for a fully automated process, therefore leading us to eliminate dynamic logic families from our consideration. 

While we have chosen not to use standard cells or dynamic logic to implement our reconfigurable arrays, we believe 
that the algorithms that are presented in this paper would still be effective for designs using these styles.  The idea of 
tailoring a reconfigurable fabric to better fit an application domain is largely implementation independent: regardless 
of the specific implementation of the resources, area, delay, and power gains can be expected simply due to the 
removal of unutilized resources.  This was displayed in our work utilizing RaPiD arrays, would carry over into 
PLAs/PALs made of standard cells or dynamic logic, and would even carry over into more traditional 2-dimensional 
island style FPGA implementations. 

In a third related work, a highly regular “River” PLA (RPLA) structure is proposed which provides ease of design 
and layout of PLAs for possible use in SoC [Mo02].  Their proposal is to stack multiple PLAs in a uni-directional 
structure using river routing to connect them together, resulting in a structure that benefits from high circuit 
regularity with predictable area and delays.  Also touched upon is a reconfigurable version of RPLA, called Glacier 
PLA (GPLA), which would retain the benefits of RPLA in addition to being programmable. 

GPLAs are similar to our work in that they are hard programmable cores that can be integrated into SoC.  Their 
focus on circuit regularity and area/delay predictability prevent them from obtaining high performance, however.  
Our arrays will be tailored to the specifications of the designer, allowing us to both better suit their exact needs and 
to make modifications that will result in better area, delay, and power performance. 

Much work has been done on the software tools for minimizing sum-of-products style equations so that they will 
require smaller PLA or PAL arrays for their implementation.  To date, the most successful algorithm for minimizing 
these equations is Espresso, which was developed at Berkeley in the 1980s [Brayton84]. 

Espresso runs faster and is more effective than other minimization existing methods.  Espresso’s basic strategy is to 
iteratively expand its terms (in order to encompass and remove other terms) and then reduce its terms (to prepare for 
a new, different expansion).  This expand and reduce methodology results in a final equation that has a near-optimal 
number of product terms.  Espresso also reduces the number of literals in the equation, which is equivalent to 
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minimizing the number of connections that need to be made in the PLA or PAL array. 

Tool Flow 

Our domain-specific PLAs/PALs are created using the flow shown in Figure 2.  The input from the customer is a 
specification of the target domain, containing a set of circuits (in .pla format) that the target architecture must 
support.  In addition to the circuits, there may be a combination of delay or area requirements that the architecture 
will need to meet.  The goal is to create a reconfigurable architecture that efficiently supports the provided circuits, 
and which is thus likely to efficiently support future circuits that might arise in the same computational domain. 

Circuits

Espresso

Minimized
Sum-of-Products Circuits

Architecture Generator

PLA/PAL Description

Layout Generator

Layout for Reconfigurable
PLA/PAL

Configuration
Files  

Figure 2.  Our PLA/PAL Generation tool flow. 

The circuits are first processed by Espresso in order to minimize the number of product terms and literals that they 
contain.  For PLAs this is done using Espresso’s default options, and for PALs we run Espresso independently on 
each PAL output, since the output sharing normally performed by Espresso would be detrimental to PAL 
implementations.  The use of Espresso allows us to implement the circuits using less silicon. 

The resulting minimized circuits are then fed into the Architecture Generator, which attempts to create the smallest 
single PLA or PAL array that is capable of supporting every circuit.  Only one circuit can be executing in the 
hardware at any given time.  The Architecture Generator outputs information specifying the chosen PLA or PAL 
array, and also provides configuration files for configuring each circuit on the specified PLA or PAL. Additionally, 
any delay or area requirements provided by the customer can be checked after the Architecture Generator creates the 
array, as we have accurate models for calculating array delay and area. 

After the Architecture Generator creates an array specification, this specification is fed to the Layout Generator, 
which creates a layout of the array in the native TSMC .18μ process.  This layout includes the PAL/PLA array as 
well as the hardware necessary for programming the array. 
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Architecture Generator 

The Architecture Generator must read in multiple circuits and create a PLA/PAL array capable of supporting all of 
the circuits.  The tool is written in C++.  The goal of the Architecture Generator is to map all the circuits into an 
array that is of minimum size and which has as few programmable connections as are necessary.   For a PLA, 
minimizing the number of inputs, outputs, and product terms in the array is actually trivial, as each of them is simply 
the maximum occurrence seen across the set of circuits.  For a PAL we minimize the number of inputs and outputs 
the same way as for a PLA, and we minimize the number of product terms in the array by making each output OR 
gate as small as possible. 

Non-programmable PLAs and PALs can achieve further area gains by using folding techniques [Makarenko86].  In 
a typical PLA, only about half of the inputs are involved in any PLA product term, which seems to advocate the 
“column folding” of a PLA as shown in Figure 3.  Programmable PLAs and PALs, as opposed to non-programmable 
PLAs and PALs, must be able to support many disparate array mappings.  Using column folding on the array 
drastically hinders the connectivity of the PLA or PAL array, and we feel that this fixed segmentation of the AND-
plane is restrictive for our application.  Row folding is similarly considered to be too restrictive, and is therefore not 
considered in this work. 

F0 F1

X0 X1 X3X2

X4 X5 X7X6

 

Figure 3.  An example of simple column folding.  Notice that inputs cannot feed any product term. 

The results of removing programmable connections from our arrays is displayed in Figure 4 - the top shows the 
layout of a complete PLA array, while the bottom shows a PLA with unneeded programmable connections removed.  
This removal can improve delay by removing capacitive elements from the signal paths, improve power 
consumption by improving switching time and removing current leakage paths, and might reduce the area after a 
compactor is applied to the layout. 

Figure 5 displays the problem that we face when trying to minimize the number of programmable connections that 
are necessary in the array.  In this example we are trying to map two circuits to the same array (for the sake of this 
example the circuits, grey and black, implement the same function).  A random mapping of the product terms 
(Figure 5, left) is shown to require 23 programmable connections, while an intelligent mapping (Figure 5, right) is 
shown to require only 12 programmable connections - a 48% reduction. 

In this simple example the circuits happen to be the same, so we were able to obtain a perfect mapping.  Circuits that 
are not identical will also have optimal mappings, which will result in a reduced number of programmable 
connections.  Having fewer connections might allow us to compact the array to save area, and it will lower the 
capacitance, which will make our array faster. 

In order to map circuits intelligently, we must come up with a mapping algorithm.  A reasonable starting point is to 
apply a cost of 1 to a spot where we need a programmable connection, and a cost of 0 to a spot where we don’t.  
This accurately represents our problem because more programmable connections will yield a higher cost – which 
directly represents the higher area and delay values that the array will produce.  Programmable connections in 
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different locations should produce similar penalties in terms of area and delay, so applying a cost of 1 to all 
connections is appropriate. 

Using this 0/1 cost model, each possible product term matching between two circuits can be assigned a total cost.  
This converts the product term matching problem into a well-studied problem called optimum bipartite matching, or 
optimum assignment.  An algorithm exists for finding the optimum bipartite matching in O(m4) time, where m for us 
is the number of product terms.  The optimal algorithm was developed by Kuhn and Munkres [Asratian98]. 

 

 

Figure 4.  Example of full (top) and sparse (bottom) PLA layouts. 
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Unfortunately, our problem is to map n circuits onto the array, and n is likely to be greater than two.  Our literature 
search found no efficient algorithms that can find the optimal matching given more than two circuits.  One 
possibility, however, is to perform the Kuhn/Munkres Algorithm on two circuits at a time, and to use a tree structure 
to combine the mappings.  This is shown in Figure 6.  In this example we show two different ways of mapping four 
circuits (N0 – N3) together.  Unfortunately, we feel that these methods would lead to poor mappings due to the 
greedy nature of the formulation. 

F0 F1

X0 X1 X3X2           

F0 F1

X0 X1 X3X2  

Figure 5.  The left PLA shows two circuits mapped randomly, requiring 23 programmable connections.  
On the right they are mapped intelligently, requiring only 12 connections. 

N0 N1

N3

N2N’

N’’

N’’’

N0 N1 N2 N3

N’ N’’

N’’’

 

Figure 6.  Tree options for using the Kuhn/Munkres algorithm. 

For our application, simulated annealing has proven to be very successful at mapping circuits to an array.  The 
algorithm’s goal is to minimize the number of programmable connections.  We define a basic “move” as being the 
swapping of two product term rows within a circuit (we will introduce more complicated moves later), and the 
“cost” of a mapping is the number of programmable bits that it requires.  The traditional annealing concept of a 
bounding box has no notion here, as our metric is not distance dependent, so any product term can swap with any 
other product term from the same circuit in a given move.  For our annealing we use the temperature schedules 
published in [Betz97]. 

The development of a cost function requires serious consideration, as it will be the only way in which the annealer 
can measure circuit placements.  The previously mentioned cost function, in which we applied a cost of 1 to 
locations requiring a programmable bit and a cost of 0 to locations not requiring a bit, initially seems reasonable for 
our annealer.  But looking deeper, the use of a simple 1/0 cost function would actually hide a lot of useful 
information from the annealer.  The degree to which a programmable bit is required (how many circuits are using 
the array location) is also useful information, as it can tell the annealer how close we are to removing a 
programmable connection. 
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Figure 7 displays this notion.  In this example, we have one programmable connection used by two circuits and 
another connection used by five circuits.  Both locations require a programmable bit, but it would be much wiser to 
move to situation A than to situation B, because situation A brings us closer to freeing up a connection. 

The cost function that we developed captures this subtlety by adding diminishing costs to each circuit that uses a 
programmable connection.  If only one circuit is using a connection the cost is 1; if two circuits use a connection it 
costs 1.5; three circuits is 1.75, then 1.875, 1.9375, and so on.  Referring again to Figure 7 and using this cost 
function, moving to A is now a cost of -.45 (a good move) while moving to B is a cost of .19, which is a bad move.  
The cost function is )1(5.2 −−= xCOST , where x is the number of circuits that are using a position.  As seen, each 
additional circuit that loads a position incurs a decreasing cost.  For example, going from 7 to 8 is much cheaper 
than going from 1 to 2. 

2 5

1 6 3 4

A) B)  

Figure 7.  Example of possible annealer moves. 

Because PLAs and PALs are structurally different, we need an annealing algorithm that can work on both types of 
arrays.  Additionally, we don’t know what hardware might exist on the SoC at the periphery of our arrays.  The 
existence of crossbars at the inputs and outputs to our arrays would allow us to permute the input and output 
locations between circuit mappings.  For example, circuit1 might want the leftmost array input to be in0 while 
circuit2 wants it to be in3.  An external crossbar would allow Totem to accommodate both circuits and decrease the 
area and delay of the required array, giving the user further benefits. 

Thus we are presented with a need for four annealing scenarios: using a PLA with fixed I/O positions, using a PLA 
with variable I/O positions, using a PAL with fixed I/O positions, and using a PAL with variable I/O positions.  The 
differences between the annealing scenarios are shown in Figure 8.  Given a PLA with fixed I/O positions, the only 
moves that we can make are swaps of product terms within a circuit (A).  However, given variable I/O positions (B) 
we can also make swaps between the inputs of a circuit or between the outputs of a circuit, which will likely provide 
us with further reduction in programmable connection cost. 

The outputs in a PAL put restrictions on where the product terms can be located, so the PAL with fixed I/O positions 
only allows product terms to be swapped within a given output OR gate (C).  In the PAL where we can vary the I/O 
positions, we actually order the outputs by size (number of product terms) for each circuit such that the larger output 
gates appear at the bottom.  This minimizes the overall sizes of the output OR gates.  We are then permitted to make 
three types of moves: swapping input positions, swapping product term positions, and swapping output positions of 
equal size, as shown in (D). 

The simulated annealing algorithm always chooses random items when attempting to make a move, whether they 
are product terms, inputs, or outputs.  For PLAs with variable I/O positions, 50% of the moves are product term 
swaps and 50% are I/O swaps, with the ratio of input to output swaps equal to the ratio of inputs to outputs.  For 
PALs with variable I/O positions, 50% of the moves are product terms and 50% are input moves, with the output 
moves not currently considered because results showed no gain from including them. 
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When the Architecture Generator is done annealing, it creates a file that completely describes the array.  This file is 
then read by the Layout Generator so that a layout of the array can be created.  The Architecture Generator also 
outputs a configuration file for each circuit so that the circuit can be implemented on the created array. 

f0 f1

X0 X1 X3X2 A                

f0 f1

X0 X1 X3X2 B
 

 

X0 X1 X3X2

f0

f1

C                
X0 X1 X3X2

f0

f1

D
 

Figure 8.  Allowable annealing moves for the four scenarios. 

Layout Generator 

The Layout Generator is responsible for taking the array description created by the Architecture Generator and 
turning it into a full layout.  It does this by combining instances of pre-made layout cells in order to make a larger 
design (Figure 9).  After the cells are laid down, a compaction tool is optionally run on the design in order to create a 
more compact layout.  The Layout Generator runs in Cadence’s LayoutPlus environment, and uses a SKILL routine 
that was written by Shawn Phillips [Phillips04, Phillips05].  Designs are made in the native TSMC .18μ process. 

Figure 4 shows two PLAs that our Layout Generator created: the first PLA displays the compactness of our layouts, 
while the second array gives an example of the array depopulation that our algorithm achieves.  Very small arrays 
have been shown for clarity, but the arrays we create are often orders of magnitude larger.  Pre-made cells exist for 
every part of a PLA or PAL array, including the decoder logic needed to program the arrays.  The Layout Generator 
simply puts together these pre-made layout pieces as specified by the Architecture Generator, thereby creating a full 
layout.  The input file created by the Architecture Generator contains cell names and layout positions, and the 
SKILL routine must simply iteratively place the units as it is instructed. 

Most existing reconfigurable PLA or PAL based reconfigurable architectures use a pseudo-nMOS or “sense 
amplifying” design style [XILINX00], as shown in Figure 10.  PLAs and PALs are well suited to pseudo-nMOS 
logic because the array locations need only consist of small pull-down transistors controlled by a programmable bit, 
and only pull-up transistors are needed at the edges of the arrays.  The programmable bits (not shown) are in series 
with the pull-down transistors in the arrays.  These compact pseudo-nMOS structures provide tight layouts and low 
signal propagation delays for PLAs and PALs, at the cost of increased static power dissipation. 
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Figure 9.  Sparse PLA layout, and the corresponding basic tiles used by the Architecture Generator. 

f0 f1X0 X1X0 X1

VDD

VDD

GND GND GND

GND

GND

GND

 

Figure 10.  A PLA created using pseudo-nMOS. 

We have chosen to implement our PLA and PAL arrays using pseudo-nMOS.  In addition to good area and delay 
performance, pseudo-nMOS arrays are very regular, making their layouts amenable to piecewise, additive 
construction.  This allows the Layout Generator to create efficient PLAs and PALs out of a limited number of layout 
units.  Programmable PLA/PAL layout styles such as static CMOS [Xilinx00] do not scale in a regular fashion, and 
are not as well suited to automatic layout generation.  Non-programmable PLAs often use dynamic logic styles, but 
dynamic styles add significant complications to the clock generation and distribution in our reconfigurable arrays, 
and are not suited for a fully automated process.  Be reminded, however, that our architecture generation algorithms 
would work for any of these implementation styles, and that the use of pseudo-nMOS is not critical to the 
conclusions of this work.  Our algorithms can be expected to provide area, delay, and power gains largely 
independent of the hardware implementation style. 

With respect to transistor sizing, we examined the range of PLA and PAL arrays that our tool flow was creating and 
we sized our transistors in order to provide good performance for what we found to be a representative array size.  In 
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the ideal case, we would be able to size every transistor according to the exact specification of the array that we are 
creating.  This is a prohibitively large design space, however, and would require far too many layout units to be 
available for Layout Generation, as well as complicating the process of tiling the units into compact full arrays.  We 
therefore are accepting a reasonably small amount of performance degradation in order to retain a flow that is 
amenable to automation. 

Another positive aspect about the use of pseudo-nMOS is that it makes the delay calculations for the arrays quite 
simple.  In CMOS design, an RC model is often used to obtain first-order estimates of propagation delays 
[Uyemura99].  Using this model, a cutoff transistor is represented by an open circuit, and an active transistor is 
represented by a closed switch in series with a resistor.  The delay is then based on the charging or discharging of 
some output capacitance in response to a change in input voltage.  Figure 11 shows this for an inverter circuit. 

Rp

Rn

Cout Vout

Vin

SWp

SWn

VDD

 

Figure 11.  The RC model for an inverter [46] 

Using this RC model, the propagation delay through a transistor can be estimated by Equation 1 (derivation found in 
[Uyemura99]).  In this equation, X is a constant, R is the resistance of the transistor, and Cout is the output 
capacitance.  Since we will not be changing the sizes of any of the transistors in our arrays, the value of the 
resistance R is constant for a given transistor and can be absorbed into the constant X.  Noting this, the delay through 
any transistor in our PLA/PAL array is now estimated to be linearly proportional to the output capacitance. 

outprop CRXt **=                                                                                                                  (1) 

All that remains is to determine the worst-case propagation path in our pseudo-nMOS PLAs.  All AND-plane array 
locations are laid out the same, and will contribute the same capacitance to the corresponding signal path.  This is 
also true of the locations in the OR-plane.  We are neglecting some very small capacitive variations that will be 
caused by differences in location within the AND-plane or OR-plane, but these are small enough to be insignificant. 
By summing the propagation delays through each of these sections, we obtain the propagation delays through the 
PLA: one for a rising output and one for a falling output.  Greater detail on this derivation can be found in 
[Holland05]. 

We consequently used hSpice simulations to acquire timing characteristics for a wide range of our reprogrammable 
PLA and PAL arrays, varying their sizes in terms of inputs, outputs, and product terms.  Applying these results to 
our RC models of the arrays, we were able to derive a direct relationship between the delay of a signal and the 
number of programmable locations seen by the signal.  The worst-case delay of an array can then be calculated by 
finding the path that is connected to the largest number of programmable connections.  Removing more 
programmable connections tends to improve the worst-case path through the array, resulting in predictable delay 
improvements. 
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Methodology 

The use of PLAs and PALs restricts us to the use of .pla format circuits.  The first source of circuits is the Espresso 
suite (the same circuits on which the Espresso algorithm was tested).  A second set of circuits comes from the 
benchmark suite compiled by the Logic Synthesis Workshop of 1993 (LGSynth93).  As a whole, these circuits are 
commonly used in research on programmable logic arrays.  The circuits are generally fairly small, but this suits our 
needs as this work focuses on single arrays, not CPLDs. 

Table 1.  The circuits used, with their information and groupings. 

Group Circuit Inputs Outputs P.Terms Connections
ti 47 72 213 2573

xparc 41 73 254 7466
b2 16 17 106 1941

shift 19 16 100 493
b10 15 11 100 1000

table5.pla 17 15 158 2501
misex3c.pla 14 14 197 1561
table3.pla 14 14 175 2644
newcpla1 9 16 38 264

tms 8 16 30 465
m2 8 16 47 641
exp 8 18 59 558
seq 41 35 336 6245

apex1 45 45 206 2842
apex3 54 50 280 3292

1

2

3

4
 

Table 1 gives information on the main circuits that we used for gathering results, including the number of inputs, 
outputs, product terms, and programmable connections.  In sum-of-products notation, each occurrence of a variable 
is called a literal.  For a PAL, the number of literals is equal to the number of programmable connections that are 
needed in the array.  For a PLA one must add the number of literals to the number of product terms in the equations 
in order to obtain the total number of programmable connections in the array. The connection counts in Table 1 are 
for PLA representations.  The circuits are grouped according to size, as this will be a factor in how well our 
algorithms perform. 

Results 

Programmable Connection Reductions 

The Architecture Generator uses simulated annealing to reduce the total number of programmable bits that the 
resultant array will require.  While tools like VPR can have annealing results where costs are reduced by orders of 
magnitude, such large cost improvements are not possible for our annealer because our cost function is very 
different. 
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A

B

Cost = 20
Bits = 20

Cost = 15
Bits = 10  

Figure 12.  The best possible cost reduction for two circuits is 25%, which is 50% fewer programmable 
connections. 

In actuality, the best cost improvement that our annealer can obtain is bounded, as shown by Figure 12.  In part A 
we have the worst possible placement of the two circuits, and in part B we have the best possible placement.  Notice 
that our cost only goes from 20 to 15, while the total number of actual bits we require goes from 20 to 10.  These are 
actually the bounds of a two circuit anneal: the cost function can never improve more than 25%, and the number of 
programming bits required can never improve more than 50%.    Similarly, with three circuits the best improvement 
in cost function occurs when three circuits are initially mapped to unique locations, but are all mapped onto the same 
locations in the final placement.  For this case the maximum cost function improvement is 41.7%, while the optimal 
reduction in the number of programming bits is 66.7%.  Similar analysis can be performed on groups of four or 
more circuits. Since reducing the number of bits is our final objective, the results that we present will show the 
number of bits required for a mapping rather than the annealing cost. 

Determining the minimum possible programming bit cost of a circuit mapping is very difficult.  As previously 
mentioned, there is an O(n4) exact algorithm for determining the minimum cost of a two circuit mapping, but we 
have chosen not to implement the exact algorithm because we will often be dealing with more than two circuits. 

Because of this, however, we do not have a method for determining the optimal bit cost of an arbitrary mapping.  
But we can know the optimal mapping of a circuit mapped with itself: it is simply the number of connections in the 
circuit, as all the connections from the first circuit should map to the same locations as the connections from the 
second circuit.  This can be done with any quantity of the same circuit, and the optimal solution will always remain 
the same.  By doing this we can see how close our annealing algorithms come to an optimal mapping. 

Table 2 shows the results obtained from applying this self-mapping test to several circuits using each of the four 
algorithms on a dual processor Intel Xeon 3.0 GHz machine with 512KB of L2 cache.  The “optimal” column shows 
the number of programmable connections required in the perfect mapping, the “random” column shows the 
connections required after our algorithms randomize the mappings, and the “achieved” column shows the results 
obtained by our algorithms.  The table shows that when two circuits are mapped with themselves using the PLA-
fixed algorithm that the final mapping is always optimal.  The PLA-variable algorithm had difficulty with only one 
circuit, shift, which was 15.21% from optimal.  Note that for this example the random placement was 93.91% worse 
than optimal, so our algorithm still showed major gains. 
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Table 2.  Running the algorithms on multiple occurrences of the same circuit.  The "Error" column 
denotes deviation from the optimal result. 

Alg. Netlist # Netlists Optimal Random Achieved Error Runtime
shift 2 493 823 493 0.00% 10
table5.pla 2 2501 3976 2501 0.00% 17
newcpla1 2 264 436 264 0.00% 2
m2 2 641 920 641 0.00% 2
tms 2 465 647 465 0.00% 1
shift 2 493 956 568 15.21% 26
table5.pla 2 2501 4155 2501 0.00% 55
newcpla1 2 264 449 264 0.00% 4
m2 2 641 979 641 0.00% 5
tms 2 465 684 465 0.00% 2
shift 2 399 637 399 0.00% 3
table5.pla 2 6312 9901 6312 0.00% 26
newcpla1 2 250 336 250 0.00% 1
m2 2 557 798 557 0.00% 2
tms 2 548 772 548 0.00% 1
shift 2 399 737 452 13.28% 12
table5.pla 2 6312 10352 6312 0.00% 392
newcpla1 2 250 396 250 0.00% 2
m2 2 557 859 557 0.00% 9
tms 2 548 876 548 0.00% 9
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For the PAL-fixed algorithm, all of the tests returned an optimal result.  The PAL-variable algorithm had a similar 
result to the PLA-variable algorithm, as the shift circuit was only able to get 13.28% from optimal (vs. 84.71% from 
optimal for a random placement).  The near optimal results shown in Table 2 give us confidence that our annealing 
algorithms should return high quality mappings for arbitrary circuit mappings as well. 

Table 3 shows the results of running the PLA-fixed and PLA-variable algorithms on the different circuit groups 
from Table 1.  The reduction in bit cost is the difference in the number of programmable connections needed 
between a random mapping of the circuits and a mapping performed by the specified algorithm.  In the table, all 
possible 2-circuit mappings were run for each specific group and the results were then averaged.  The same was 
done for all possible 3-circuit mappings, 4-circuit, etc., up to the number of circuits in the group. 

There are some interesting things to note from the results in Table 3.  Firstly, the PLA-variable algorithm always 
finds a better final mapping than the PLA-fixed algorithm.  This is to be expected, as the permuting of inputs and 
outputs in the PLA-variable algorithm gives the annealer more freedom.  The resulting solution space is much larger 
for the variable algorithm than the fixed algorithm, and it is intuitive that the annealer would find a better mapping 
given a larger search space.  The practical implications of this are that an SoC designer will acquire better area and 
delay results from our reconfigurable arrays by supplying external hardware to support input and output 
permutations – although the area and delay overhead of the crossbar would need to be considered to see if the 
overall area and delay performance is still improved. 

Another thing to notice is that the reduction always increases as the number of circuits being mapped increases.  
This, too, is as we would expect, as adding more circuits to a mapping would increase the amount of initial disorder, 
while the final mapping is (hopefully) always close to optimally ordered.  Note that this does not say that we end up 
with fewer connections if we have more circuits, it only says that we reduce a greater number of connections from a 
random mapping.  The trends shown in Table 3 for the PLA algorithms hold for the PAL algorithms as well. 
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Table 3.  Average improvement in programming bits for PLA-Fixed and PLA-Variable algorithms over 
random placement as a function of circuit count. 

Group # Circuits PLA-Fixed PLA-Var.
1 2 3.62% 14.27%

2 10.19% 14.52%
3 16.26% 22.97%
4 20.20% 28.52%
5 23.15% 32.49%
6 25.64% 35.46%
2 9.41% 16.44%
3 14.33% 23.20%
4 17.79% 29.81%
2 3.41% 19.02%
3 6.01% 28.83%

2

3

4
 

Another important concept is how well circuits match each other, as higher reductions will be possible when the 
circuits being mapped have similar sizes or a similar number of connections.  With regards to array size, any circuits 
that are far larger than another circuit will dominate the resulting size of the PLA or PAL array, and we will be left 
with a large amount of space that is used by only one or few circuits, resulting in poor reduction.  If the size of the 
resulting array is close to the sizes of each circuit being mapped to it then we would expect the array to be well 
utilized by all circuits.  This is shown in Figure 13, which shows the bit reduction vs. array utilization.  The array 
utilization is defined as the percentage of the final PLA’s area that is being utilized by both circuits.  The PLA-
variable algorithm was used for these results, and the circuit pairs were chosen at random from the entire Espresso 
and LGSynth93 benchmark suites. 
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Figure 13.  The bit reduction obtained vs. percent array utilization for random circuit pairs. 

Mapping circuits with a similar number of connections also results in better reductions.  If circuit A has far more 
connections than circuit B then the total number of connections needed will be dominated by circuit A: even if we 
map all of the connections from circuit B onto locations used by circuit A we will see a small reduction percentage 
because B contained so few of the overall connections.  It is intuitive that having a similar number of connections in 
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the circuits being mapped will allow a higher percentage of the overall programmable connections to be removed.  
This is shown in Figure 14, where we used the PLA-variable algorithm on random circuit pairs from the benchmark 
suites.  A connection count of 80% means that the smaller circuit has 80% of the number of connections that the 
larger circuit has. 
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Figure 14.  The bit reduction obtained vs. connection count agreement for random circuit pairs. 

We used Hspice to develop delay models of the PLA and PAL arrays that we create.  Table 4 shows the delay and 
programmable bit results obtained for several runs of the algorithms, along with average improvements over the full 
arrays and the random arrays (circuits randomly placed and unneeded connections removed).  All algorithms show 
improvements in delay over the full and random placements.  

The PLA-Variable algorithm does better than the PLA-Fixed algorithm with respect to programmable connections 
because of the input and output permutability that it is allowed.  This does not scale directly to delay improvements, 
however, as the algorithms have no concept of path criticality, and the connections that they remove are often from 
non-critical paths.  Thus, further reduction in connections does not always lead to further reduction in delay. 

Table 4.  Reductions obtained in number of programmable bits and delay for PLA/PAL algorithms.  
Count is the number of benchmarks in that test.  All columns other than Full are normalized to Full.  
Improvements are geometric mean improvement across the full set shown. 

Netlists Count Full Rand. PLA-F PLA-V Full Rand. PLA-F PLA-V Full Rand. PAL-F PAL-V Full Rand. PAL-F PAL-V
misex3c.pla, table3.pla 2 8274 0.444 0.383 0.362 3620 0.853 0.802 0.802 16856 0.412 0.388 0.375 7641 0.814 0.789 0.786
alu2, f51m 2 2156 0.317 0.258 0.250 1708 0.633 0.537 0.532 2320 0.328 0.304 0.267 1667 0.629 0.579 0.548
ti, xparc 2 42418 0.231 0.223 0.193 5343 0.857 0.854 0.845 156604 0.190 0.188 0.173 18421 0.775 0.764 0.757
b2, shift, b10 3 5830 0.496 0.431 0.389 2329 0.887 0.858 0.832 27512 0.244 0.228 0.214 7780 0.659 0.617 0.616
newcpla1, tms, m2 3 1598 0.626 0.539 0.487 1268 0.975 0.959 0.952 2592 0.415 0.365 0.327 1731 0.952 0.943 0.843
gary, b10, in2, dist 4 6664 0.519 0.399 0.304 2760 0.963 0.946 0.931 13718 0.362 0.308 0.222 4480 0.770 0.689 0.666
newcpla1, tms, m2, exp 4 2124 0.621 0.505 0.450 1459 0.973 0.907 0.941 3132 0.509 0.442 0.359 1966 0.907 0.879 0.778
gary, shift, in2, b2, dist 5 7480 0.590 0.470 0.396 2785 0.979 0.950 0.939 28842 0.317 0.277 0.230 8055 0.692 0.630 0.613
b2, shift, b10, table5.pla, 
misex3c.pla, table3.pla

6 18321 0.360 0.268 0.247 4015 0.926 0.749 0.777 73948 0.220 0.176 0.145 13746 0.684 0.592 0.549

- 55.5% 63.0% 67.2% - 11.3% 17.1% 17.2% 68.2% 71.5% 75.5% 24.2% 29.0% 32.4%
- - 16.9% 26.3% - - 6.6% 6.7% - - 10.5% 22.8% - - 6.3% 10.8%Improvement vs. Random

Improvement vs. Full

PLA Algorithms PAL Algorithms
Programmable Bits Delay (ps) Programmable Bits Delay (ps)
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Similar to the performance of the PLA algorithms, the PAL-Variable algorithm performs better than the PAL-Fixed 
algorithm in terms of both programmable connections and delay.  This is again because of the extra flexibility 
provided by the variable algorithm, in permuting inputs and outputs. 

On average, the PLA-Fixed and PLA-Variable algorithms improved upon the delay of a full PLA array by 17.1% 
and 17.2% respectively.  The PAL-Fixed and PAL-Variable algorithms improved upon the delay of a full PAL array 
by 29.0% and 32.4% respectively.  Overall delay improvements of 6.3% to 10.8% were achieved vs. a random 
placement. 

Area Reductions 

In the Architecture Generator, unneeded programmable connections are removed from the PLA and PAL arrays that 
we create.  This leaves the arrays full of randomly distributed empty space that a compaction tool should be able to 
leverage in order to make a smaller, more compact layout.  We took several PLA and PAL layouts and applied 
Cadence’s compactor to them, but found that the compactor was unable to reduce the area of any of the arrays (and 
in fact resulted in a larger area implementation in all cases).  For example, applying the compactor to the 
depopulated PLA from Figure 4 resulted in the layout shown in Figure 15. 

 

Figure 15.  The result of applying a compactor to the sparse PLA from Figure 4.  This layout is actually 
5% larger than the uncompacted layouts in Figure 4. 

The failure of the compactor is due to the high regularity of PLA and PAL arrays, and the cross-connections 
between all of the units.  The compactor iteratively attempts to compact in the vertical and horizontal directions, but 



18 

PLAs and PALs have strong vertical and horizontal relationships between array elements which prevent the 
compactor from making any headway. 

Conclusions 

In this paper we have presented a complete tool flow for creating domain specific PLAs and PALs for System-on-a-
Chip.  We have presented an Architecture Generator that, given netlists as an input, maps the netlists onto a PLA or 
PAL array of minimal size which uses a near-optimal number of programmable connections.  Results show that, as 
the number of netlists being mapped to an array increases, the bit reduction between a random mapping and an 
intelligent mapping increases. 

We also presented a Layout Generator that takes PLA or PAL descriptions from the Architecture Generator and 
successfully creates optimized layouts by tiling pre-made layout units.  Delay improvements of 17% to 32% were 
achieved over full arrays, but compaction was unable to provide us with any area improvements.  The largest 
improvements were obtained when the PLA/PAL inputs and outputs were permutable, but an SoC designer would 
need to examine the overhead of input and output crossbars in order to decide whether an area or delay gain would 
actually be achieved.  Our designs utilized a pseudo-nMOS design style, but we emphasize that similar performance 
improvements should be achieved from other implementation styles, including standard cells and dynamic logic. 

If the PLA or PAL array being created will only be used to implement the circuits that were used to design the array, 
then depopulating the arrays is a good idea as it will provide delay gains over a fully populated array.  If other 
designs are going to be implemented on the array, however, the removal of programmable connections would make 
it unlikely that a future circuit would successfully map to the array.  Thus the removal of programmable connections 
from a PLA or PAL is not suggested if unknown circuits are going to be mapped to the array in the future. 

Generally speaking, realistic PLA and PAL arrays are limited in size due to area and delay considerations, and 
cannot support very large circuits.  When performing large amounts of computation, better performance can be 
achieved through the use of architectures that utilize a large number of smaller functional units.  Thus, techniques 
such as our work on Totem-CPLD [Holland05, Holland05a] are needed to group domain-specific PLAs and PALs 
into higher capacity domain-specific CPLDs. 

Further Work 
In our Layout Generator, the greatest hurdle was the amount of cross-constraints between different elements in the 
system.  These cross-constraints limited the ability of the compactor to optimize the layout.  A better alternative 
would be to design the Layout Generator from the start to use compactable layouts.  For example, the drivers at the 
edges of the layouts were optimized for packing well when surrounding a fully populated array.  However, if we 
packed these units less tightly, perhaps by having two staggered rows at the periphery, then we might achieve better 
compaction results.  Similar techniques have worked well in our sparse crossbar Layout Generator for domain-
specific CPLDs [Holland05]. 
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