
 1

Abstract—This paper presents tools that automate the

creation of domain-specific CPLDs, targeted for SoC. By
tailoring full-crossbar based CPLDs to the domains that they
support, we provide results that beat fixed reconfigurable
architectures by 5.5x to 11.8x on average in terms of area-delay
product. We also create sparse-crossbar based CPLD
architectures, using a novel switch smoothing algorithm that
makes the crossbars amenable to layout. This algorithm
reduced the wire jog pitch of our largest layout from 48 to just 3,
allowing for a compact VLSI layout. These sparse-crossbar based
CPLDs require just .37x the area and .30x the delay of our full-
crossbar based CPLDs. We also address the question of how best
to add resources to a CPLD in order to support future, unknown
circuits, concluding that the best strategy is to add 5% to the
crossbar switch density and to provide additional PLAs of the
same size found in the base architecture.

Index Terms— Automation, CPLD, Domain-Specific, System-
on-a-Chip

I. INTRODUCTION

 ystem-on-a-Chip (SoC) designs are becoming more and
more commonplace in the VLSI community, and one

question that remains unanswered is how well reconfigurable
logic will fit into this new design paradigm. SoC allows the
integration of several distinct components on a single piece of
silicon, but does so at the cost of increased design complexity.
This complexity is usually alleviated through the use of
hardware description language (HDL) designs which are
synthesized to standard cells, or through the use of pre-made
and pre-tested intellectual property (IP) cores.

Reconfigurable logic is composed of hardware resources
whose function can be modified through the setting of
configuration bits. As such, it merges much of the flexibility
provided by general-purpose processors with the performance
provided by custom hardware. Reconfigurable logic is useful in

Manuscript received March 14, 2006. Mark Holland was supported by

an NSF Fellowship, and Scott Hauck by a Sloan Fellowship.
M. Holland was with the University of Washington, Seattle, WA

98195 USA. He is now with Annapolis Micro Systems in Annapolis, MD
21401 USA (email mholland@gmail.com).

S. Hauck is with the University of Washington, Seattle WA 98195
USA (email shauck@ee.washington.edu).

the SoC realm because it can provide cost-free upgradability,
coprocessing hardware, conformity to varying protocols, or
even uncommitted testing resources to an SoC design.
Reconfigurable architectures can also be personalized to fit the
needs of the SoC, as the “domain” of the chip will be known in
advance, and the paradigm of IP reuse makes it particularly
easy to incorporate reconfigurable logic into SoC as pre-made
IP.

We feel that the integration of reconfigurable logic into SoC
designs will depend largely on three factors: the performance,
cost, and development time of the reconfigurable architectures.
The Totem Project at the University of Washington is our
attempt to address all these factors by automating the creation
of domain-specific reconfigurable architectures. Automation
allows us to provide quick turn-around time, creating domain-
specific architectures shrinks the performance gap between our
reconfigurable logic and fixed logic, and we will be able to
retain the low cost and high-flexibility that reconfigurable
devices are renowned for.

This paper deals with the creation of domain-specific CPLD
architectures, a project termed Totem-CPLD. CPLDs are
relatively small reconfigurable architectures that typically use
PLAs or PALs as their functional units, and which connect the
units using a single, central interconnect structure. We will be
creating domain-specific PLA -based CPLDs by optimizing the
sizes of their PLAs in terms of inputs, product terms, and
outputs, and by reducing the connectivity of their interconnect
structures.

II. BACKGROUND

Of exis ting research, the most applicable to this work is
“Product-Term Based Synthesizable Embedded Programmable
Logic Cores” by A. Yan and S. Wilton [1]. In this paper they
explore the development of synthesizable programmable logic
cores based on PLAs, which are implemented in standard cells.
Their methodology provides easy integration into an existing
HDL-based flow, and while they provide some performance
gains by tailoring to specific applications, the eventual
standard cell implementation negates much of these gains.

In another related work, highly regular reconfigurable
“Glacier” PLA (GPLA) structures are proposed [2]. The
architecture stacks multiple PLAs in a uni-directional structure
using river routing to connect them together, resulting in a
structure that benefits from both high circuit regularity and

Automatic Creation of Domain-Specific
Reconfigurable CPLDs for SoC

Mark Holland, Scott Hauck

S

 2

predictable area and delay formulation. GPLAs are similar to
our work in that they are hard programmable cores that can be
integrated into SoC, but their interconnect is overly sparse,
and is restricted by the need for directionality.

Finally, as a precursor to Totem-CPLD we performed work in
which we explored the feasibility of making domain-specific
reconfigurable PLAs and PALs [3]. In that work we wrote an
architecture generation tool that mapped domains of circuits to
either a PLA or a PAL in such a way that it could remove some
of the unneeded programmable connections in the arrays. By
doing this intelligently, we were able to remove 60%-70% of
the programmable connections in the arrays, which provided
delay gains of 15% to 30%. Depopulating the arrays in a PLA
is very restrictive to future mappings, however, so we chose
not to use PLA depopulation in Totem-CPLD.

In this paper we will first introduce a method for creating
domain-specific full-crossbar based CPLD architectures,
targeted for SoC. We will then show how performance gains
can be achieved by utilizing sparse-crossbars in the CPLD
architecture. Last, we will touch on the question of how to add
resources to our CPLDs in order to maximize the likelihood that
future circuits will be supported by the architectures.

III. FULL-CROSSBAR BASED CPLDS

The tool flow for creating domain-specific full-crossbar
based CPLDs is shown in Fig. 1. To begin the process, the
customer provides us with a domain specification that contains
the circuits that need to be supported. These circuits are fed
into an Architecture Generator, which finds a CPLD
architecture that efficiently supports the selected domain,
outputting the description of this architecture. The architecture
description is then sent to a Layout Generator which creates a
full VLSI layout of the specified CPLD architecture. The
circuits and the architecture description are also fed into a
Place & Route Tool, which is responsible for creating the
configuration bitstreams that implement the circuits on the
domain-specific architecture.

Architecture
Generator

Layout
Generator

Place & Route
ToolArchitecture

Description
Architecture
Description

Layout
Masks
Layout
Masks

Configuration
Bitstream

0110010111…
Circuits

sig0 sig1 sig8
00 1
sig2 sig3 sig9
1- 1
…

sig0 sig1 sig8
00 1
sig2 sig3 sig9
1- 1
…

Fig. 1. The High Level Totem-CPLD Tool Flow

A. Architecture Generator

The Architecture Generator is responsible for reading in
multiple circuits and finding a CPLD architecture that supports
the circuits efficiently. We use a search algorithm to make calls
to a tech-mapper named PLAmap, after which the results are
analyzed according to area and delay models that we have
developed. The algorithm then makes a decision to either make
further calls to PLAmap, or to exit and use the best CPLD
architecture that has been found. PLAmap assumes full

connectivity between the PLAs, and the Architecture
Generator accommodates this by connecting all the PLAs
through a full crossbar.

The Architecture Generator is responsible for finding a PLA
size that leads to an efficient CPLD architecture for the given
domain. PLAs are specified by their number of inputs (IN),
product terms (PT), and outputs (OUT), so the search space
for the Architecture Generator is three-dimensional. In order to
keep the runtime or our tool reasonable, we needed to develop
an algorithm that provides good results while only sampling a
reasonable amount of this large search space.

Preliminary testing of LGSynth93 [4] circuits provided
results that helped guide our algorithm development. We
found that a ratio of 1 to 2 to .5 for the IN, PT, and OUT
variables respectively provided effective architectures,
especially in the area of 10-20-5 sized PLAs. Additionally, we
observed that the 3-D search space is generally well shaped,
meaning that results tend to get better as you approach more
optimal points. This latter observation led us to the concept of
breaking the 3-D space into three 1-D spaces, which can be
searched sequentially and in much less time.

Architectures are evaluated using the metric of area-delay
product. When reported for a domain, the area-delay product
consists of the worst-case area implementation in the domain
(since the reconfigurable CPLD must be large enough to hold
each of the circuits), multiplied by the average delay of the
domain. The area model for this calculation is derived from the
actual sizing of the VLSI layout components that we created,
and the delay model was acquired by performing an hspice
static timing analysis of the components.

1) Search Algorithm
We developed several algorithms in order to find effective

CPLD architectures, and the most effective was our “Run M
Points” algorithm. This algorithms break up the 3-D search
space into 1-D steps by searching for good IN, OUT, and PT
sizes, in that order.

The algorithm starts by varying IN from 4 to 28, with a step
size of 4, and looks at PLAs with a 1x-2x-.5x IN-PT-OUT ratio.
The best data point is noted, and the space around it is
explored, maintaining this IN-PT-OUT ratio. This is continued
with the best existing point until M points have been explored
for this 1-D step.

We next lock the IN and PT values from the best point in the
previous 1-D step, and we optimize for outputs. We range the
OUT value from 1 to 25, with a step size of 4, and explore this 1-
D space by varying only the OUT value. Again, the best point
is found, and the space around it explored. This is repeated
until M points have been explored in this step.

In the PT step, the IN and OUT values are obtained from the
best previous data point and are locked. PT values are then
ranged from 2 to 90 with a step size of 8, and the above process
is repeated. For the PT step, slightly more than M points are
searched in order to allow the 1-D space to be explored to the
same granularity as the previous 1-D spaces.

 3

Experimentation with the Run M Points algorithm showed
that we should use a value of M=15. Additionally, we found
that it was worthwhile to run a second iteration of the above 1-
D steps, but using a new ratio in the IN optimization step. The
algorithm initially assumes that the PLAs should be in a 1x-2x-
.5x relationship in terms of IN, PT, and OUT, but this is just a
rough guideline. After the first iteration finds a good data point
with a desired IN-PT-OUT ratio, a second iteration of the
algorithm is run with this new IN-PT-OUT relationship for the
first step, exploring the 3-D search space using a relationship
that the domain has already been shown to prefer. For example,
if the first iteration (three 1-D steps) chose a 10-30-8
architecture, then the IN-PT-OUT relationship for the next
iteration would be 1x-3x-.8x.

Another important note is that many domains we tested
migrated to small input values during the input step (i.e. a 4-8-2
PLA). These algorithms are then left with very little flexibility
for the corresponding output and product term steps,
becoming strictly input limited. To alleviate this, we added a
modification to algorithm. If the input step chose a PLA with 4
or fewer inputs, the output step was run both with the PLA
found in the input step (4-8-2 or smaller) and with a 10-20-5
PLA. Both of these branches were propagated to the product
term step, and the best overall result of the two branches was
taken, effectively alleviating the problem.

B. Layout Generator

The Layout Generator takes the architectures description
from the Architecture Generator and turns it into a full VLSI
layout. It does this by tiling pre-made, highly optimized layout
cells into a full CPLD layout. The Layout Generator runs from
Cadence’s command line, and uses a SKILL routine that was
written by Shawn Phillips [5]. The layouts are designed in the
TSMC .18µ process. The PLAs are implemented in pseudo-
nMOS in order to provide a compact layout.

C. Full-Crossbar CPLD Methodology

We created five domains of circuits for our major testing.
The combinational and sequential domains consist of files
gathered from LGSynth93, and are simply grouped for their
combinational or sequential characteristics. The remaining
three domains consist of floating point, arithmetic, and
encryption files respectively. These were all HDL files,
accumulated from OpenCores.org, Altera software developers,
Quartus 2 megafunctions, and floating point libraries. Table 1
shows the number of circuits and ranges of inputs, outputs,
and gates for each domain.

TABLE 1
T HE DOMAINS USED IN O UR WORK

Domain Circuits Inputs Outputs Gates
Combinational 21 5-178 1-123 8-2350
Sequential 13 4-35 1-23 77-552
Floating Point 12 22-67 22-57 24-9895
Arithmetic 10 28-34 16-33 302-4392
Encryption 6 261-452 132-387 4876-23637

The domain-specific CPLD architectures are compared to
results obtained by implementing the domains in fixed CPLD
architectures. We have chosen three different fixed
architectures to which to compare our results, all of which will
use a full crossbar to connect the PLA units in order to
conform to our area and delay models.

The first architecture uses 10-12-4 PLAs, as suggested by a
1991 analysis of PLA sising in reconfigurable architectures [6].
Secondly, our own initial analysis using several LGSynth93
circuits showed that 10-20-5 PLAs tended to show good
performance. Third, we will compare against a Xilinx
CoolRunner-like architecture. The CoolRunner [7] uses 36-48-
16 PLAs, so we will compare our domain-specific results to a
fixed CPLD architecture that uses 36-48-16 PLAs. Note that we
are NOT making a direct comparison to any existing CPLD
architecture. By implementing everything using our own
physical layouts, we intend to remove the designer from the
cost equation and simply show the advantages obtained by
making domain-specific architectures.

D. Full-Crossbar CPLD Results

We ran our algorithm on each of the five domains to acquire
domain-specific architectures, and we also mapped each
domain to the fixed architectures described above. These
results are shown in Table 2. All results are normalized to the
values obtained with the Run M Points algorithm. The bottom
row shows the geometric mean for area*delay.

TABLE 2
ARCHITECTURE RESULTS FOR DOMAIN-SPECIFIC AND FIXED

ARCHITECTURES.
Xilinx El Gamal Observed

36-48-16 10-12-4 10-20-5
Arch A*D A*D A*D A*D

Sequential 14-38-4 1.00 2.28 2.67 2.35
Arithmetic 10-22-2 1.00 46.49 46.71 18.73
Combinational 12-70-4 1.00 9.40 9.46 4.10
Floating Point 8-18-2 1.00 31.60 14.58 9.00
Encryption 8-32-2 1.00 7.43 4.28 3.22
Geo. Mean 1.00 11.85 9.41 5.55

Domain
Domain Specific

From Table 2 it is apparent that domain-specific CPLD

architectures are a win over fixed architectures. The algorithm
that we developed always came up with a better CPLD
architecture than any of the fixed architectures. On average,
the fixed architectures perform 5.5x to 11.8x worse than the
domain-specific architectures found by the Run M Points
algorithm in terms of area*delay.

To be thorough, we wanted to test our reconfigurable
architectures against the best fixed architectures we could find.
We have already found the architectures that each domain
prefers by using our search algorithms, so it makes sense that
these architectures might work well as fixed architectures.

TABLE 3
RESULTS OF RUNNING EACH DOMAIN ON THE DOMAIN-SPECIFIC

ARCHITECTURES FOUND BY OUR BEST ALGORITH M

 4

Domain Best 12-70-4 14-38-4 8-18-2 10-22-2 8-32-2
Combinational 1.00 1.00 2.74 3.61 4.38 2.83
Sequential 1.00 2.22 1.00 3.61 2.85 4.13
Floating Point 1.00 3.90 4.24 1.00 1.14 1.02
Arithmetic 1.00 6.21 6.80 1.82 1.00 1.80
Encryption 1.00 1.20 1.28 1.01 1.39 1.00
Geo. Mean 1.00 2.30 2.52 1.89 1.82 1.85

Table 3 shows the area-delay performance of each domain
mapped to the architectures found using our best algorithm.
Results are normalized to the domain-specific architecture
results. Notice that the new fixed architectures still perform 1.8x
to 2.5x worse than the domain-specific architectures, even
though we hand picked them to go well with our domains.

IV. SPARSE-CROSSBAR BASED CPLDS

Full crossbar implementations cause CPLDs to scale quite
poorly, and area can be drastically improved by utilizing sparse
crossbars. When using sparse crossbars, there is no guarantee
that a signal from the interconnect can reach any PLA input, so
a router must be employed. This section presents a method for
creating domain-specific sparse-crossbar based CPLDs for use
in SoC devices. We will define a crossbar as the connection
matrix that provides connectivity between the general
interconnect wires and the input wires of a single PLA. The
same high level tool flow from Fig. 1 is still appropriate,
although we will need to modify the Architecture Generator
and the Place & Route Tool in order to create and map to the
sparse-crossbar based CPLDs.

A. Architecture Generator

For sparse-crossbar based CPLDs the process of
architecture generation has additional steps, as a Crossbar
Generator is used to create sparse crossbars of different switch
counts, and a Router is employed to determine the smallest
sparse crossbar which allows all the circuits in the domain to
be routed on the CPLD. This is done in the form of a binary
search on the sparse crossbar switch count.

1) Crossbar Generator
When creating sparse crossbars, the objective is to maximize

the routability of the crossbar for a given switch count, where
routability is defined as the likelihood that an arbitrarily chosen
subset of inputs can be connected to outputs. While switch
placement is deterministic for crossbars that provide full
capacity, it is not obvious how the switches should be placed
in a sparse crossbar in order to maximize routability. This
problem, though, has been effectively addressed by a sparse-
crossbar-generation tool created by Lemieux and Lewis [8].
They use simulated annealing and a hamming-distance based
cost function to move switches within a crossbar, ultimately
acquiring a sparse crossbar with an effective switch
distribution. We utilize this sparse-crossbar-generation
algorithm in our tool flow, and also add to it in order to make
the crossbars amenable to layout.

a) Switch Smoother

The sparse crossbars acquired from the algorithm in [8] will
have switch distributions that look fairly random. Because of
this, there are likely to be regions in the crossbars that have
relatively high or low switch densities. The preceding
algorithm has ensured that our crossbar is highly routable, but
it has not ensured that the switches are spread out in such a
manner that they will lead to an efficient layout.

The switches and their corresponding SRAM bits determine
the area required by the crossbar, as the input and output
wires can simply be brought in on metal layers above these
devices. In order to achieve a compact layout, therefore, it is
desirable to pack the switches as closely as possible. This is
easy for a full crossbar, shown on the left of Fig. 2, because
there is a switch at the intersection of every input and output
wire. When we use a sparse crossbar, there are fewer switches
per input line, and this causes the input lines to be more
closely packed. Jogs are now necessary to connect input lines
to some of their switches, as shown on the right of Fig. 2. In
order to keep the switches packed tightly, we must limit the
number of vertical jogs required in our sparse crossbars.
Otherwise, the pitch required by the vertical jogs would start to
dominate the east-west dimension of the crossbar layout.

Inputs

Outputs

P

Programmable Switch

Connection Points

Inputs

Outputs

Jogs

Fig. 2. Layout of full crossbars (left) and sparse crossbars (right)

In a layout with N input wire pitches per vertical switch
pitch, we can minimize the number of vertical jogs by requiring
that each output line be attached to exactly one switch per
every N input lines. This ensures that each input line attaches
to a switch that is underneath it. The input lines in our sparse
crossbar can be permuted, so we can move them around in
order to enforce this property.

The switch smoothing algorithm operates by ordering the
crossbar input lines such that each output line is attached to
roughly one switch per every N input lines. It does this in a
greedy fashion, placing one input line at a time such that this
property is enforced. This is achieved by minimizing the cost
function shown below as each input line is placed. In this
equation for an n input, m output sparse crossbar, x is the
current output line, Sx is the number of switches that have
been placed in output line x, P is the current input line, and N
is the number of input lines per switch pitch in the layout. The
cost function ensures that no output line drifts far from having,
at any point, exactly one switch per every N input lines that
have been placed. This, in turn, assures that horizontal wires in
our resulting layout will connect to switches that are relatively
close to the horizontal wire, requiring few wire jogs pitches.

 5

∑
∀

−
x

x N
P

S 2)(

B. Layout Generator

Fig. 3. A sample sparse-crossbar based CPLD layout
The Layout Generator functions the same as for full-

crossbar based CPLDs, except that it now creates sparse
crossbars instead of full crossbars. Again, all the necessary
building blocks have been efficiently laid out, and must be
intelligently tiled in order to create a sparse-crossbar based
CPLD. Fig. 3 displays a sparse-crossbar based CPLD that was
created using this process.

C. Place & Route Tool

Just as with our full-crossbar based CPLDs, the task of PLA
placement is unnecessary for our sparse-crossbar based
CPLDs due to the fact that all signals in the interconnect span
the entire device, and connect to each PLA equally. Our Place
& Route Tool must simply compose of PLAmap, which is used
to map incoming circuits to CPLDs, and Pathfinder [9], which is
used to route the signals on the CPLD architectures.

D. Sparse-Crossbar CPLD Results

We have chosen a layout topology that restricts us to 8 or
fewer jog pitches per crossbar output. Table 4 displays the pre-
smoothing and post-smoothing jog pitches required of the
sparse crossbars that we created for our five domains (the
performance of these architectures appears later in this
section). As the table shows, four of the five crossbars would
have resulted in severe area penalties in the final layouts if the
crossbar-smoothing algorithm had not been applied.

TABLE 4
RESULTS OF RUNNING TH E SWITCH SMOOTHING A LGORITHM ON

CROSSBARS ACQUIRED FOR EACH DOMAIN

Inputs Outputs Switches Pre-Smoothing Post-Smoothing
Sequential 155 14 293 6 2
Arithmetic 613 21 1216 12 3
Combinational 735 14 2647 19 2
Floating Point 1574 18 4627 17 3
Encryption 5002 23 32099 48 3

Crossbar Required Jog PitchesDomain

Our goal in using sparse crossbars is to reduce the area and

delay of our CPLD architectures. Table 5 displays the area,
delay, and area-delay product results obtained by using
sparse-crossbar based CPLD architectures, compared to the
results for full-crossbar based architectures. Our search
algorithm found different PLA sizes for our new CPLD
architectures, migrating to other effective architectures that
were better able to leverage the use of sparse crossbars. The

best sparse-crossbar-based CPLDs are shown to require .37x
the area, .30x the delay, and .11x the area-delay product of our
best full-crossbar CPLDs.

TABLE 5
FULL AND SPARSE -CROSSBAR BASED CPLD RESULTS

Domain Arch Area Delay A*D Arch Area Delay A*D
Sequential 14-38-4 1.00 1.00 1.00 14-18-4 0.36 0.48 0.17
Arithmetic 10-22-2 1.00 1.00 1.00 3-16-2 0.31 0.25 0.08
Combinational 12-70-4 1.00 1.00 1.00 14-52-3 0.40 0.39 0.15
Floating Point 8-18-2 1.00 1.00 1.00 18-55-3 0.37 0.21 0.08
Encryption 8-32-2 1.00 1.00 1.00 23-79-4 0.41 0.27 0.11
Geo. Mean 1.00 1.00 1.00 0.37 0.30 0.11

Full Crossbar Sparse Crossbar

V. ADDING CAPACITY TO CPLDS

Many SoC designers will not know the circuits that they
wish to implement in reconfigurable logic on their devices. In
these instances, the designer will usually know the domain of
the circuits that they will implement in reconfigurable logic, just
not the exact specifics of the circuits. In this situation our
goals change slightly, as we now wish to create an architecture
that not only supports the sample circuits, but which is as
likely as possible to support an unknown circuit in the same
domain.

To simulate this situation, we took our domains, removed
circuits from them, and acquired domain-specific architectures
for the reduced domains. We then reintroduced the removed
circuits, and added resources in different ways to see which
resource strategy picked up these circuits most effectively.

Multiple resource strategies were attempted, including
strategies which add switches to our sparse crossbars, and
strategies which use larger PLAs or more PLAs. Hybrid
strategies which merge these base strategies were also
attempted. Our results showed us that the most effective
strategy was to add 5% to the number of switches in the
crossbars, and to use additional PLAs of the same size that are
in the base architecture. More details can be found in [10].

VI. CONCLUSION

In this paper we presented a complete tool flow for creating
domain-specific CPLDs for System-on-a-Chip devices. We
presented a novel architecture generation algorithm which was
able to find CPLD architectures that effectively supported
specific application domains. Using this algorithm, we found
full-crossbar based CPLD architectures that outperformed
representative fixed architectures by 5.5x to 11.8x in terms of
area-delay product. We were then able to get another 9x
improvement on area-delay by using sparse-crossbars in the
CPLDs. Vital to the implementation of sparse-crossbars was a
novel switch-smoothing algorithm, which was able to reduce
the number of vertical wire jogs in a layout from 48 to 3 in the
largest architecture.

This paper also presented a Layout Generator which takes
pre-made layout units and tiles them to make full VLSI CPLD
layouts in the TSMC .18-micron process. We also touched
upon the concept of adding capacity to our domain-specific

 6

CPLDs, concluding that it is good to add 5% to the switch
density of the sparse crossbars used in the CPLD architectures
and PLAs of the base size.

REFERENCES
[1] A. Yan, S. Wilton, “Product Term Embedded Synthesizable Logic

Cores'', IEEE International Conference on Field-Programmable
Technology, 2003.

[2] F. Mo, R. K. Brayton, “River PLAs: A Regular Circuit Structure”,
DAC, 2002.

[3] M. Holland, S. Hauck, “Automatic Creation of Reconfigurable
PALs/PLAs for SoC”, FPL, 2004.

[4] “1993 LGSynth Benchmarks”,
<http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cbl.ncsu.edu/CB
L_Docs/lgs93.html> (March 25, 1997).

[5] S. Phillips, “Automating Layout of Reconfigurable Subsystems for
Systems-on-a-Chip”, PhD Thesis, University of Washington, Dept.
of EE, 2004.

[6] J. Kouloheris, A. El Gamal, “FPGA Performance vs. Cell
Granularity”, Proc. Custom Integrated Circuits Conference, 1991.

[7] Xilinx, Inc., CoolRunner-II CPLD Family: Advance Product
Specification, March 12, 2003.

[8] G. Lemieux and D. Lewis, Design of Interconnection Networks for
Programmable Logic, Boston, Kluwer Academic Publishers, 2004.

[9] L. McMurchie, C. Ebeling, "PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs", Proceedings of the 1995
ACM Third International Symposium on Field-Programmable
Gate Arrays, pp. 111-117, February 1995.

[10] M. Holland, S. Hauck, “Automatic Creation of Product -Term-
Based Reconfigurable Architectures for System-on-a-Chip”, PhD
Thesis, University of Washington, Dept. of EE, 2005.

