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Abstract—This paper presents tools that automate the 

creation of domain-specific CPLDs, targeted for SoC. By 
tailoring full-crossbar based CPLDs to the domains that they 
support, we provide results that beat fixed reconfigurable 
architectures by 5.5x to 11.8x on average in terms of area-delay 
product. We also create sparse-crossbar based CPLD 
architectures, using a novel switch smoothing algorithm that 
makes the crossbars amenable to layout. This algorithm 
reduced the wire jog pitch of our largest layout from 48 to just 3, 
allowing for a compact VLSI layout. These sparse-crossbar based 
CPLDs require just .37x the area and .30x the delay of our full-
crossbar based CPLDs. We also address the question of how best 
to add resources to a CPLD in order to support future, unknown 
circuits, concluding that the best strategy is to add 5% to the 
crossbar switch density and to provide additional PLAs of the 
same size found in the base architecture. 
 

Index Terms— Automation, CPLD, Domain-Specific, System-
on-a-Chip 
 

I. INTRODUCTION 

 ystem-on-a-Chip (SoC) designs are becoming more and 
more commonplace in the VLSI community, and one 

question that remains unanswered is how well reconfigurable 
logic will fit into this new design paradigm. SoC allows the 
integration of several distinct components on a single piece of 
silicon, but does so at the cost of increased design complexity. 
This complexity is usually alleviated through the use of 
hardware description language (HDL) designs which are 
synthesized to standard cells, or through the use of pre-made 
and pre-tested intellectual property (IP) cores.  

Reconfigurable logic is composed of hardware resources 
whose function can be modified through the setting of 
configuration bits. As such, it merges much of the flexibility 
provided by general-purpose processors with the performance 
provided by custom hardware. Reconfigurable logic is useful in 
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the SoC realm because it can provide cost-free upgradability, 
coprocessing hardware, conformity to varying protocols, or 
even uncommitted testing resources to an SoC design. 
Reconfigurable architectures can also be personalized to fit the 
needs of the SoC, as the “domain” of the chip will be known in 
advance, and the paradigm of IP reuse makes it particularly 
easy to incorporate reconfigurable logic into SoC as pre-made 
IP. 

We feel that the integration of reconfigurable logic into SoC 
designs will depend largely on three factors: the performance, 
cost, and development time of the reconfigurable architectures. 
The Totem Project at the University of Washington is our 
attempt to address all these factors by automating the creation 
of domain-specific reconfigurable architectures. Automation 
allows us to provide quick turn-around time, creating domain-
specific architectures shrinks the performance gap between our 
reconfigurable logic and fixed logic, and we will be able to 
retain the low cost and high-flexibility that reconfigurable 
devices are renowned for. 

This paper deals with the creation of domain-specific CPLD 
architectures, a project termed Totem-CPLD. CPLDs are 
relatively small reconfigurable architectures that typically use 
PLAs or PALs as their functional units, and which connect the 
units using a single, central interconnect structure. We will be 
creating domain-specific PLA -based CPLDs by optimizing the 
sizes of their PLAs in terms of inputs, product terms, and 
outputs, and by reducing the connectivity of their interconnect 
structures. 

II. BACKGROUND 

Of exis ting research, the most applicable to this work is  
“Product-Term Based Synthesizable Embedded Programmable 
Logic Cores” by A. Yan and S. Wilton [1]. In this paper they 
explore the development of synthesizable programmable logic 
cores based on PLAs, which are implemented in standard cells. 
Their methodology provides easy integration into an existing 
HDL-based flow, and while they provide some performance 
gains by tailoring to specific applications, the eventual 
standard cell implementation negates much of these gains. 

In another related work, highly regular reconfigurable 
“Glacier” PLA (GPLA) structures are proposed [2]. The 
architecture stacks multiple PLAs in a uni-directional structure 
using river routing to connect them together, resulting in a 
structure that benefits from both high circuit regularity and 
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predictable area and delay formulation. GPLAs are similar to 
our work in that they are hard programmable cores that can be 
integrated into SoC, but their interconnect is overly sparse, 
and is restricted by the need for directionality.  

Finally, as a precursor to Totem-CPLD we performed work in 
which we explored the feasibility of making domain-specific 
reconfigurable PLAs and PALs [3]. In that work we wrote an 
architecture generation tool that mapped domains of circuits to 
either a PLA or a PAL in such a way that it could remove some 
of the unneeded programmable connections in the arrays. By 
doing this intelligently, we were able to remove 60%-70% of 
the programmable connections in the arrays, which provided 
delay gains of 15% to 30%. Depopulating the arrays in a PLA 
is very restrictive to future mappings, however, so we chose 
not to use PLA depopulation in Totem-CPLD. 

In this paper we will first introduce a method for creating 
domain-specific full-crossbar based CPLD architectures, 
targeted for SoC. We will then show how performance gains 
can be achieved by utilizing sparse-crossbars in the CPLD 
architecture. Last, we will touch on the question of how to add 
resources to our CPLDs in order to maximize the likelihood that 
future circuits will be supported by the architectures. 

III. FULL-CROSSBAR BASED CPLDS 

The tool flow for creating domain-specific full-crossbar 
based CPLDs is shown in Fig. 1. To begin the process, the 
customer provides us with a domain specification that contains 
the circuits that need to be supported. These circuits are fed 
into an Architecture Generator, which finds a CPLD 
architecture that efficiently supports the selected domain, 
outputting the description of this architecture. The architecture 
description is then sent to a Layout Generator which creates a 
full VLSI layout of the specified CPLD architecture. The 
circuits and the architecture description are also fed into a 
Place & Route Tool, which is responsible for creating the 
configuration bitstreams that implement the circuits on the 
domain-specific architecture. 
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Fig. 1. The High Level Totem-CPLD Tool Flow 

A. Architecture Generator 

The Architecture Generator is responsible for reading in 
multiple circuits and finding a CPLD architecture that supports 
the circuits efficiently. We use a search algorithm to make calls 
to a tech-mapper named PLAmap, after which the results are 
analyzed according to area and delay models that we have 
developed. The algorithm then makes a decision to either make 
further calls to PLAmap, or to exit and use the best CPLD 
architecture that has been found. PLAmap assumes full 

connectivity between the PLAs, and the Architecture 
Generator accommodates this by connecting all the PLAs 
through a full crossbar. 

The Architecture Generator is responsible for finding a PLA 
size that leads to an efficient CPLD architecture for the given 
domain. PLAs are specified by their number of inputs (IN), 
product terms (PT), and outputs (OUT), so the search space 
for the Architecture Generator is three-dimensional. In order to 
keep the runtime or our tool reasonable, we needed to develop 
an algorithm that provides good results while only sampling a 
reasonable amount of this large search space. 

Preliminary testing of LGSynth93 [4] circuits provided 
results that helped guide our algorithm development. We 
found that a ratio of 1 to 2 to .5 for the IN, PT, and OUT 
variables respectively provided effective architectures, 
especially in the area of 10-20-5 sized PLAs. Additionally, we 
observed that the 3-D search space is generally well shaped, 
meaning that results tend to get better as you approach more 
optimal points. This latter observation led us to the concept of 
breaking the 3-D space into three 1-D spaces, which can be 
searched sequentially and in much less time. 

Architectures are evaluated using the metric of area-delay 
product. When reported for a domain, the area-delay product 
consists of the worst-case area implementation in the domain 
(since the reconfigurable CPLD must be large enough to hold 
each of the circuits), multiplied by the average delay of the 
domain. The area model for this calculation is derived from the 
actual sizing of the VLSI layout components that we created, 
and the delay model was acquired by performing an hspice 
static timing analysis of the components. 

1) Search Algorithm 
We developed several algorithms in order to find effective 

CPLD architectures, and the most effective was our “Run M 
Points” algorithm. This algorithms break up the 3-D search 
space into 1-D steps by searching for good IN, OUT, and PT 
sizes, in that order.  

The algorithm starts by varying IN from 4 to 28, with a step 
size of 4, and looks at PLAs with a 1x-2x-.5x IN-PT-OUT ratio. 
The best data point is noted, and the space around it is 
explored, maintaining this IN-PT-OUT ratio. This is continued 
with the best existing point until M points have been explored 
for this 1-D step. 

We next lock the IN and PT values from the best point in the 
previous 1-D step, and we optimize for outputs. We range the 
OUT value from 1 to 25, with a step size of 4, and explore this 1-
D space by varying only the OUT value. Again, the best point 
is found, and the space around it explored. This is repeated 
until M points have been explored in this step. 

In the PT step, the IN and OUT values are obtained from the 
best previous data point and are locked. PT values are then 
ranged from 2 to 90 with a step size of 8, and the above process 
is repeated. For the PT step, slightly more than M points are 
searched in order to allow the 1-D space to be explored to the 
same granularity as the previous 1-D spaces. 
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Experimentation with the Run M Points algorithm showed 
that we should use a value of M=15. Additionally, we found 
that it  was worthwhile to run a second iteration of the above 1-
D steps, but using a new ratio in the IN optimization step. The 
algorithm initially assumes that the PLAs should be in a 1x-2x-
.5x relationship in terms of IN, PT, and OUT, but this is just a 
rough guideline. After the first iteration finds a good data point 
with a desired IN-PT-OUT ratio, a second iteration of the 
algorithm is run with this new IN-PT-OUT relationship for the 
first step, exploring the 3-D search space using a relationship 
that the domain has already been shown to prefer. For example, 
if the first iteration (three 1-D steps) chose a 10-30-8 
architecture, then the IN-PT-OUT relationship for the next 
iteration would be 1x-3x-.8x. 

Another important note is that many domains we tested 
migrated to small input values during the input step (i.e. a 4-8-2 
PLA). These algorithms are then left with very little flexibility 
for the corresponding output and product term steps, 
becoming strictly input limited. To alleviate this, we added a 
modification to algorithm. If the input step chose a PLA with 4 
or fewer inputs, the output step was run both with the PLA 
found in the input step (4-8-2 or smaller) and with a 10-20-5 
PLA. Both of these branches were propagated to the product 
term step, and the best overall result of the two branches was 
taken, effectively alleviating the problem. 

B. Layout Generator 

The Layout Generator takes the architectures description 
from the Architecture Generator and turns it into a full VLSI 
layout. It does this by tiling pre-made, highly optimized layout 
cells into a full CPLD layout. The Layout Generator runs from 
Cadence’s command line, and uses a SKILL routine that was 
written by Shawn Phillips [5]. The layouts are designed in the 
TSMC .18µ process. The PLAs are implemented in pseudo-
nMOS in order to provide a compact layout. 

C. Full-Crossbar CPLD Methodology 

We created five domains of circuits for our major testing. 
The combinational and sequential domains consist of files 
gathered from LGSynth93, and are simply grouped for their 
combinational or sequential characteristics. The remaining 
three domains consist of floating point, arithmetic, and 
encryption files respectively. These were all HDL files, 
accumulated from OpenCores.org, Altera software developers, 
Quartus 2 megafunctions, and floating point libraries. Table 1 
shows the number of circuits and ranges of inputs, outputs, 
and gates for each domain. 

TABLE 1 
T HE DOMAINS USED IN O UR WORK  

Domain Circuits Inputs Outputs Gates
Combinational 21 5-178 1-123 8-2350
Sequential 13 4-35 1-23 77-552
Floating Point 12 22-67 22-57 24-9895
Arithmetic 10 28-34 16-33 302-4392
Encryption 6 261-452 132-387 4876-23637  

The domain-specific CPLD architectures are compared to 
results obtained by implementing the domains in fixed CPLD 
architectures. We have chosen three different fixed 
architectures to which to compare our results, all of which will 
use a full crossbar to connect the PLA units in order to 
conform to our area and delay models. 

The first architecture uses 10-12-4 PLAs, as suggested by a 
1991 analysis of PLA sising in reconfigurable architectures [6]. 
Secondly, our own initial analysis using several LGSynth93 
circuits showed that 10-20-5 PLAs tended to show good 
performance. Third, we will compare against a Xilinx 
CoolRunner-like architecture. The CoolRunner [7] uses 36-48-
16 PLAs, so we will compare our domain-specific results to a 
fixed CPLD architecture that uses 36-48-16 PLAs. Note that we 
are NOT making a direct comparison to any existing CPLD 
architecture. By implementing everything using our own 
physical layouts, we intend to remove the designer from the 
cost equation and simply show the advantages obtained by 
making domain-specific architectures. 

D. Full-Crossbar CPLD Results 

We ran our algorithm on each of the five domains to acquire 
domain-specific architectures, and we also mapped each 
domain to the fixed architectures described above. These 
results are shown in Table 2. All results are normalized to the 
values obtained with the Run M Points algorithm. The bottom 
row shows the geometric mean for area*delay. 

TABLE 2 
ARCHITECTURE RESULTS FOR DOMAIN-SPECIFIC AND FIXED 

ARCHITECTURES.  
Xilinx El Gamal Observed

36-48-16 10-12-4 10-20-5
Arch A*D A*D A*D A*D

Sequential 14-38-4 1.00 2.28 2.67 2.35
Arithmetic 10-22-2 1.00 46.49 46.71 18.73
Combinational 12-70-4 1.00 9.40 9.46 4.10
Floating Point 8-18-2 1.00 31.60 14.58 9.00
Encryption 8-32-2 1.00 7.43 4.28 3.22
Geo. Mean 1.00 11.85 9.41 5.55

Domain
Domain Specific

 
From Table 2 it is apparent that domain-specific CPLD 

architectures are a win over fixed architectures. The algorithm 
that we developed always came up with a better CPLD 
architecture than any of the fixed architectures. On average, 
the fixed architectures perform 5.5x to 11.8x worse than the 
domain-specific architectures found by the Run M Points 
algorithm in terms of area*delay. 

To be thorough, we wanted to test our reconfigurable 
architectures against the best fixed architectures we could find. 
We have already found the architectures that each domain 
prefers by using our search algorithms, so it makes sense that 
these architectures might work well as fixed architectures. 

TABLE 3 
RESULTS OF RUNNING EACH DOMAIN ON THE DOMAIN-SPECIFIC 

ARCHITECTURES FOUND BY OUR BEST ALGORITH M 
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Domain Best 12-70-4 14-38-4 8-18-2 10-22-2 8-32-2
Combinational 1.00 1.00 2.74 3.61 4.38 2.83
Sequential 1.00 2.22 1.00 3.61 2.85 4.13
Floating Point 1.00 3.90 4.24 1.00 1.14 1.02
Arithmetic 1.00 6.21 6.80 1.82 1.00 1.80
Encryption 1.00 1.20 1.28 1.01 1.39 1.00
Geo. Mean 1.00 2.30 2.52 1.89 1.82 1.85  

Table 3 shows the area-delay performance of each domain 
mapped to the architectures found using our best algorithm. 
Results are normalized to the domain-specific architecture 
results. Notice that the new fixed architectures still perform 1.8x 
to 2.5x worse than the domain-specific architectures, even 
though we hand picked them to go well with our domains. 

IV. SPARSE-CROSSBAR BASED CPLDS  

Full crossbar implementations cause CPLDs to scale quite 
poorly, and area can be drastically improved by utilizing sparse 
crossbars. When using sparse crossbars, there is no guarantee 
that a signal from the interconnect can reach any PLA input, so 
a router must be employed. This section presents a method for 
creating domain-specific sparse-crossbar based CPLDs for use 
in SoC devices. We will define a crossbar as the connection 
matrix that provides connectivity between the general 
interconnect wires and the input wires of a single PLA. The 
same high level tool flow from Fig. 1 is still appropriate, 
although we will need to modify the Architecture Generator 
and the Place & Route Tool in order to create and map to the 
sparse-crossbar based CPLDs. 

A. Architecture Generator 

For sparse-crossbar based CPLDs the process of 
architecture generation has additional steps, as a Crossbar 
Generator is used to create sparse crossbars of different switch 
counts, and a Router is employed to determine the smallest 
sparse crossbar which allows all the circuits in the domain to 
be routed on the CPLD. This is done in the form of a binary 
search on the sparse crossbar switch count. 

1) Crossbar Generator 
When creating sparse crossbars, the objective is to maximize 

the routability of the crossbar for a given switch count, where 
routability is defined as the likelihood that an arbitrarily chosen 
subset of inputs can be connected to outputs. While switch 
placement is deterministic for crossbars that provide full 
capacity, it is not obvious how the switches should be placed 
in a sparse crossbar in order to maximize routability. This 
problem, though, has been effectively addressed by a sparse-
crossbar-generation tool created by Lemieux and Lewis [8]. 
They use simulated annealing and a hamming-distance based 
cost function to move switches within a crossbar, ultimately 
acquiring a sparse crossbar with an effective switch 
distribution. We utilize this sparse-crossbar-generation 
algorithm in our tool flow, and also add to it in order to make 
the crossbars amenable to layout. 

a) Switch Smoother 

The sparse crossbars acquired from the algorithm in [8] will 
have switch distributions that look fairly random. Because of 
this, there are likely to be regions in the crossbars that have 
relatively high or low switch densities. The preceding 
algorithm has ensured that our crossbar is highly routable, but 
it has not ensured that the switches are spread out in such a 
manner that they will lead to an efficient layout.  

The switches and their corresponding SRAM bits determine 
the area required by the crossbar, as the input and output 
wires can simply be brought in on metal layers above these 
devices. In order to achieve a compact layout, therefore, it is 
desirable to pack the switches as closely as possible. This is 
easy for a full crossbar, shown on the left of Fig. 2, because 
there is a switch at the intersection of every input and output 
wire. When we use a sparse crossbar, there are fewer switches 
per input line, and this causes the input lines to be more 
closely packed. Jogs are now necessary to connect input lines 
to some of their switches, as shown on the right of Fig. 2. In 
order to keep the switches packed tightly, we must limit the 
number of vertical jogs required in our sparse crossbars. 
Otherwise, the pitch required by the vertical jogs would start to 
dominate the east-west dimension of the crossbar layout.  

Inputs
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P

Programmable Switch

Connection Points

  

Inputs

Outputs

Jogs

 
Fig. 2. Layout of full crossbars (left) and sparse crossbars (right) 

In a layout with N input wire pitches per vertical switch 
pitch, we can minimize the number of vertical jogs by requiring 
that each output line be attached to exactly one switch per 
every N input lines. This ensures that each input line attaches 
to a switch that is underneath it. The input lines in our sparse 
crossbar can be permuted, so we can move them around in 
order to enforce this property. 

The switch smoothing algorithm operates by ordering the 
crossbar input lines such that each output line is attached to 
roughly one switch per every N input lines. It does this in a 
greedy fashion, placing one input line at a time such that this 
property is enforced. This is achieved by minimizing the cost 
function shown below as each input line is placed. In this 
equation for an n input, m output sparse crossbar, x is the 
current output line, Sx is the number of switches that have 
been placed in output line x, P is the current input line, and N 
is the number of input lines per switch pitch in the layout. The 
cost function ensures that no output line drifts far from having, 
at any point, exactly one switch per every N input lines that 
have been placed. This, in turn, assures that horizontal wires in 
our resulting layout will connect to switches that are relatively 
close to the horizontal wire, requiring few wire jogs pitches. 
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B. Layout Generator 

 
Fig. 3. A sample sparse-crossbar based CPLD layout 
The Layout Generator functions the same as for full-

crossbar based CPLDs, except that it now creates sparse 
crossbars instead of full crossbars. Again, all the necessary 
building blocks have been efficiently laid out, and must be 
intelligently tiled in order to create a sparse-crossbar based 
CPLD. Fig. 3 displays a sparse-crossbar based CPLD that was 
created using this process. 

C. Place & Route Tool 

Just as with our full-crossbar based CPLDs, the task of PLA 
placement is unnecessary for our sparse-crossbar based 
CPLDs due to the fact that all signals in the interconnect span 
the entire device, and connect to each PLA equally. Our Place 
& Route Tool must simply compose of PLAmap, which is used 
to map incoming circuits to CPLDs, and Pathfinder [9], which is 
used to route the signals on the CPLD architectures. 

D. Sparse-Crossbar CPLD Results 

We have chosen a layout topology that restricts us to 8 or 
fewer jog pitches per crossbar output. Table 4 displays the pre-
smoothing and post-smoothing jog pitches required of the 
sparse crossbars that we created for our five domains (the 
performance of these architectures appears later in this 
section). As the table shows, four of the five crossbars would 
have resulted in severe area penalties in the final layouts if the 
crossbar-smoothing algorithm had not been applied. 

TABLE 4 
RESULTS OF RUNNING TH E SWITCH SMOOTHING A LGORITHM ON 

CROSSBARS ACQUIRED FOR EACH DOMAIN 

Inputs Outputs Switches Pre-Smoothing Post-Smoothing
Sequential 155 14 293 6 2
Arithmetic 613 21 1216 12 3
Combinational 735 14 2647 19 2
Floating Point 1574 18 4627 17 3
Encryption 5002 23 32099 48 3

Crossbar Required Jog PitchesDomain

 
Our goal in using sparse crossbars is to reduce the area and 

delay of our CPLD architectures. Table 5 displays the area, 
delay, and area-delay product results obtained by using 
sparse-crossbar based CPLD architectures, compared to the 
results for full-crossbar based architectures. Our search 
algorithm found different PLA sizes for our new CPLD 
architectures, migrating to other effective architectures that 
were better able to leverage the use of sparse crossbars. The 

best sparse-crossbar-based CPLDs are shown to require .37x 
the area, .30x the delay, and .11x the area-delay product of our 
best full-crossbar CPLDs. 

TABLE 5 
FULL AND SPARSE -CROSSBAR BASED CPLD RESULTS 

Domain Arch Area Delay A*D Arch Area Delay A*D
Sequential 14-38-4 1.00 1.00 1.00 14-18-4 0.36 0.48 0.17
Arithmetic 10-22-2 1.00 1.00 1.00 3-16-2 0.31 0.25 0.08
Combinational 12-70-4 1.00 1.00 1.00 14-52-3 0.40 0.39 0.15
Floating Point 8-18-2 1.00 1.00 1.00 18-55-3 0.37 0.21 0.08
Encryption 8-32-2 1.00 1.00 1.00 23-79-4 0.41 0.27 0.11
Geo. Mean 1.00 1.00 1.00 0.37 0.30 0.11

Full Crossbar Sparse Crossbar

 

V. ADDING CAPACITY TO CPLDS 

Many SoC designers will not know the circuits that they 
wish to implement in reconfigurable logic on their devices. In 
these instances, the designer will usually know the domain of 
the circuits that they will implement in reconfigurable logic, just 
not the exact specifics of the circuits. In this situation our 
goals change slightly, as we now wish to create an architecture 
that not only supports the sample circuits, but which is as 
likely as possible to support an unknown circuit in the same 
domain. 

To simulate this situation, we took our domains, removed 
circuits from them, and acquired domain-specific architectures 
for the reduced domains. We then reintroduced the removed 
circuits, and added resources in different ways to see which 
resource strategy picked up these circuits most effectively. 

Multiple resource strategies were attempted, including 
strategies which add switches to our sparse crossbars, and 
strategies which use larger PLAs or more PLAs. Hybrid 
strategies which merge these base strategies were also 
attempted. Our results showed us that the most effective 
strategy was to add 5% to the number of switches in the 
crossbars, and to use additional PLAs of the same size that are 
in the base architecture.  More details can be found in [10]. 

VI. CONCLUSION 

In this paper we presented a complete tool flow for creating 
domain-specific CPLDs for System-on-a-Chip devices. We 
presented a novel architecture generation algorithm which was 
able to find CPLD architectures that effectively supported 
specific application domains. Using this algorithm, we found 
full-crossbar based CPLD architectures that outperformed 
representative fixed architectures by 5.5x to 11.8x in terms of 
area-delay product. We were then able to get another 9x 
improvement on area-delay by using sparse-crossbars in the 
CPLDs. Vital to the implementation of sparse-crossbars was a 
novel switch-smoothing algorithm, which was able to reduce 
the number of vertical wire jogs in a layout from 48 to 3 in the 
largest architecture. 

This paper also presented a Layout Generator which takes 
pre-made layout units and tiles them to make full VLSI CPLD 
layouts in the TSMC .18-micron process. We also touched 
upon the concept of adding capacity to our domain-specific 
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CPLDs, concluding that it is good to add 5% to the switch 
density of the sparse crossbars used in the CPLD architectures 
and PLAs of the base size. 
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