

©Copyright 2020

Richa Rao

Implementation of Long Short-Term Memory Neural Networks in

High-Level Synthesis Targeting FPGAs

Richa Rao

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical and Computer Engineering

University of Washington

2020

Committee:

Scott Hauck

Shih-Chieh Hsu

Program Authorized to Offer Degree:

Department of Electrical and Computer Engineering

Abstract

Field programmable gate arrays (FPGAs) offer flexibility in programmable systems, making them

ideal for hardware implementations of machine learning algorithms. The effectiveness of machine

learning (ML) methods has been demonstrated successfully in particle physics computations,

particularly in Large Hadron Collider (LHC) physics. Their use in FPGA hardware, however, has

been restricted due to the complex implementation and significant resource demands. Thus, the

need for FPGA resource estimation, as well as a means to simplify ML implementation on FPGAs

is being fulfilled by HLS4ML [1] (High-Level Synthesis for Machine Learning). HLS4ML is a

framework that translates traditional open-source machine learning package models into HLS, and

thus maps neural networks directly onto an FPGA using HLS tools. Facilitating a drastic decrease

in firmware development time against traditional VHDL/Verilog algorithms, HLS4ML increases

accessibility across the user community. By understanding the mechanism of this framework, we

implement a Long Short-Term Memory (LSTM) network targeting an FPGA. We take a Top

Tagging LSTM model and translate it to HLS code. Further, using an HLS tool we obtain reports

and analyze the overall latency and resources required by the model. The motivation for using

LSTMs, its current state of development, and my personal work on the inclusion of this neural

network into the HLS4ML framework are explained in this thesis.

CONTENTS

1. Outline ... 1

2. Neural Networks .. 1

2.1 Neural Network Components .. 2

2.2 Training and Inference .. 3

2.3 Types of Neural Networks ... 3

3. Recurrent Neural Networks ... 5

3.1 Types of RNNs .. 6

3.1.1 Long Short-Term Memory ... 7

3.1.2 Gated Recurrent Unit .. 10

4. Field Programmable Gate Arrays and Neural networks .. 12

4.1 High-Level Synthesis for Machine Learning .. 12

4.2 Why is HLS4ML needed? ... 13

4.3 HLS4ML framework ... 14

4.4 Neural Network models and machine learning packages in HLS4ML 16

5. Application in Physics ... 17

5.1 Deep Neural Networks for top tagging.. 18

6. Long Short-Term Memory RNNs in HLS4ML ... 20

6.1 KERAS LSTM model configuration ... 20

6.1.1 Dataset used .. 21

6.1.2 Model Performance .. 22

6.2 LSTM inference process .. 23

6.3 Adding recurrent layers into the framework .. 25

6.4 Verification of KERAS model vs C simulation .. 26

6.5 LSTM model on FPGA – Resource Utilization .. 27

6.6 KERAS DNN Top Tagging model vs KERAS LSTM Top Tagging model 28

7. Conclusion ... 30

8. Next Steps .. 30

9. References ... 31

10. Acknowledgements ... 33

Appendices .. 34

Appendix A: LSTM in HLS4ML .. 34

Appendix B: KERAS Training .. 34

Appendix C: Automation of Data Acquisition Testing ... 35

1

1. Outline

When we think about implementing a neural network on a hardware platform for application in real

life scenarios, we realize that it has various aspects to it. There are pre-requisites that need to be

understood well to go ahead with the implementation. In sections to come, we will discuss pre-

requisites such as a basic understanding of neural networks and their types and the reason we prefer

field programmable gate arrays to implement these networks.

Further, we will talk about a framework called HLS4ML that makes the task of putting a neural

network onto an FPGA much easier with the help of High-Level Synthesis (HLS) and also discuss

what HLS is.

Finally, we look at the applications of this project in the field of physics, post which we delve into

the specifics of this thesis and how we can use the knowledge of the abovementioned pre-requisites

and apply it to implement a long short-term memory neural network onto an FPGA.

2. Neural Networks

Neural networks can be thought of as a software implementation of the human brain. Similar to

how humans learn and perform tasks such as being able to differentiate between a dog and cat,

neural networks are also capable of “training” or learning and performing an “inference” or task.

Fig 1a. shows a typical neural network representation.

Fig 1a: Neural Network [16]

2

2.1 Neural Network Components

 Neurons: In Fig 1a, the green, blue, and purple spheres represent “neurons”. They are used

to process information that is sent to a neural network.

 Layers: A simple network has at least one input layer, one output layer and one hidden

layer. Deeper or more complicated neural networks can have several hidden layers.

 Weights and biases: The arrows shown in Fig 1a represent the weights. These weights

represent the relative importance of the connection between neurons. Fig 1b shows the

mathematical calculations between inputs, weights, biases and activation functions in a

neural network.

Fig 1b: Neural Network Mathematics

 Activations: These are activation functions such as sigmoid, tanh, softmax etc. that help

keep values within a certain range in the neural network.

o Sigmoid: Sigmoid Activation function outputs a value between 0 and 1 for any

given input (Fig 1c).

o Tanh: Tanh Activation function outputs a value between -1 and 1 for any given

input and has a steeper gradient as compared to sigmoid (Fig 1c).

o Softmax: Softmax Activation function outputs a probability distribution over the

predicted classes in case of a classification neural network model (Fig 1d).

Fig 1c: Sigmoid and Tanh activation functions [17]

3

Fig 1d: Softmax activation function

2.2 Training and Inference

One of the most common methods of training a neural network is by providing it with a dataset

along with the expected output for each input in the dataset. For example, a dataset consisting of

labeled images of dogs and cats, can be given to a network. These images are sent from the input

side of the neural network to the output side, passing through all the hidden layers. Once it reaches

the output, the obtained value is compared with the expected value (which was made available to

the network). An error is calculated which must be minimized in order to help the neural network

predict values closer to the expected values. It is important to note that these neural networks are

mathematical models and interact with layers within only with numbers.

Backpropagation is an algorithm that is used in training networks. In simple terms, at the end of

each forward pass while training, an error/cost function is calculated based on the obtained output

vs the expected output. This error is then used to adjust the weights and biases such that for a given

input, we receive and output close to the expected output. This process of going back and adjusting

the weights and biases is backpropagation and is done to reduce the error as much as possible. Once

the network is trained, we can test its prediction accuracy with the process of inference. In the

example stated above, we give as input, an unlabeled image of a dog or a cat and check if it is able

to predict the right output.

2.3 Types of Neural Networks

There are different types of neural networks that are defined, each with its own strength. Different

neural networks can deal with different applications and work with varying datasets. Some take

images as inputs, while others prefer a sequence of inputs.

Some examples are:

4

 Deep Neural Networks (DNN): They have more than one hidden layer

 Recurrent Neural Networks (RNN): They are useful in predicting data that relies on

context, for example- text generation.

 Convolutional Neural Networks (CNN): They work very well with images as inputs.

The work in this thesis is primarily based on a certain type of neural network, called the Long Sort-

Term Memory neural network which is a modified version of an RNN. In the next section, we will

look into the working of these neural networks.

5

3. Recurrent Neural Networks

Unlike traditional feedforward neural networks, Recurrent Neural Networks have a memory aspect

to them. These neural networks can use their internal memory state to process inputs given in the

form of a sequence. These are generally preferred in cases where the output depends on a series of

inputs. Some common applications include natural language processing, text prediction, and speech

recognition.

The term “Recurrent” in this neural network indicates that the same set of tasks are performed

recurrently to each element in the input sequence in turn, and the output of each of these tasks plays

a part in the overall prediction by the RNN. RNNs are currently the only class of artificial neural

networks to possess this feature and are expected to deliver higher prediction accuracy for

sequential data or in data where context matters, as in the case of text prediction.

A typical RNN architecture is shown in Fig 2.

Fig 2: Unrolled RNN [12]

Although the above stated benefits stand true for RNNs in theory, practically vanilla RNNs are

limited to looking back only few steps. This is attributed to how vanilla RNNs are trained.

As mentioned in section 2.2, backpropagation is a method used to train neural networks. Based on

the type of neural network, this algorithm can be modified to best suit the network. In RNNs this

training algorithm is called Backpropagation Through Time (BPTT) as it is applied to sequential

data and we go back in timesteps to adjust the weights and biases. Conceptually, BPTT works by

unrolling all input timesteps. Errors are calculated at each timestep and accumulated. Then the

network is rolled back up and the weights are updated. For example, for an input sequence

consisting of a thousand timesteps, a single weight update requires calculating thousand errors, one

for each timestep. The amount by which the weights get updated is proportional to the partial

derivative of the error function with respect to the current weight also called as the gradient. In case

of vanilla RNNs, this gradient tends to get smaller over various training iterations and after a point

6

becomes so vanishingly small that it barely updates the weights and the neural networks stops

training completely. This is termed as the vanishing gradient problem.

Due to this, vanilla RNNs are rarely used in practical scenarios. To solve the problem of vanishing

gradients, the RNN architecture can be modified. Two such architectures are called the Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) respectively. In the HLS4ML

framework, we have successfully implemented an LSTM and will move on to implement a GRU.

3.1 Types of RNNs

The two types of RNNs that are most widely used are Long Short-Term Memory RNNs (LSTMs)

and Gated Recurrent Unit RNNs (GRUs).

Long Short-Term Memory networks – routinely called “LSTMs” – are a special kind of RNN,

capable of overcoming the issues that arise due to long term dependencies. LSTMs are designed

such that retaining information for prolonged time periods is the default setting for the RNN.

Unlike traditional RNNs, where each cell has an extremely simple structure as shown in Fig 3.,

LSTMs have gates that can regulate the flow of information. A typical LSTM cell has three gates-

forget, input, and output. In Fig 4, these are depicted as the three sigmoid layers.

Fig 3: RNN Cell [12]

7

Fig 4: LSTM Cell [12]

GRUs, like LSTMs, also mitigate the vanishing gradient issue while using fewer parameters when

compared to LSTMs. Considered as a variation of LSTMs, GRUs are preferred in certain scenarios.

The number of gates present within the cell of a GRU is reduced to just two (sigmoid layers: rt and

zt in Fig 5) as opposed to three gates in an LSTM. A typical GRU cell is shown in Fig 5 and details

about the two GRU gates is mentioned is section 3.1.2.

Fig 5: GRU cell [12]

3.1.1 Long Short-Term Memory

This section explains in detail the working of an LSTM cell. As mentioned in section 3.1, an LSTM

has 3 gates: Forget gate, Input gate and, Output gate. The input to each of these gates is the same

i.e., the input of current timestep (xt) and the output from the previous timestep (ht-1).

Along with the above inputs, the cell state (Ct) runs through the LSTM cell carrying the memory

of the cell. This is the cell state (memory) variable (Ct) that acts like a conveyor belt. It runs straight

down the entire chain of LSTM cells, with only some minor linear interactions with the gates. It is

crucial that this variable is not confused with the LSTM cell output.

8

In Fig 6-9[12], the description of the notations are as follows:

 Wf, Wi, WC, Wo: Weight matrices w.r.t gates and cell state

 bf, bi, bC, bo: Biases w.r.t gates and cell state

 σ: Sigmoid Activation function outputs a value between 0 and 1 for any given input.

 tanh: Tanh Activation function outputs a value between -1 and 1 for any given input and

has a steeper gradient as compared to sigmoid.

 *: Hadamard product, an operation used to multiple two matrices of the same dimensions.

For example, matrix A with dimension [2 X 5] can be multiplied elementwise with matrix

B of dimension [2 X 5]. As opposed to matrix multiplication that requires the number of

columns in matrix A to be equal to the number of rows in matrix B.

The 3 gates determine the following:

 Information to get rid of at each timestep

 Information to carry to the next timestep

 Output at each timestep

Breaking down the LSTM cell in Fig 4, we can understand the how the above determinations are

made.

Information to get rid of at each timestep

Forget Gate (ft) is responsible in deciding what part of the cell state from the previous timestep (Ct-

1) must be forgotten. The sigmoid activation, also called as recurrent activation, is used to output

values between 0 and 1, where 1 represents “completely keep this” while 0 represents “completely

get rid of this.” Fig 6 shows the working of the forget gate along with its mathematical equation.

Fig 6: Forget Gate [12]

9

Information to carry to the next timestep

Input gate is responsible in determining if information should be saved to the cell state or should

be left behind.

Now that the data to be eliminated has been taken care of by the forget gate, we need to evaluate

what data must be carried to the next timestep. This is done in two parts. The first part involves the

input gate (it), which is also a sigmoid layer (Fig 7). It determines what data carried by the cell state

must be updated and carried forward to the next timestep.

The second part is a tanh layer that creates a vector of new values (C̃t), that can be added to the

current cell state. Tanh activation pushes the values between -1 and 1 and inhibits the data that we

do not wish to add to the cell state.

Fig 7. Input Gate and new values added to cell state [12]

Finally, as seen in Fig 8, the information to carry to the next timestep is decided from the outputs

of the input gate, new values added to the cell state, forget gate and, the cell state from the previous

timestep.

Fig 8: Cell state computation [12]

10

Output at each timestep

The Output Gate (ot) and the Cell state decide the output at each timestep.

The output gate, which is also a sigmoid layer, decides which parts of the cell state we wish to

output. Finally, we put the cell state through tanh and multiply it by the output of the sigmoid gate,

to determine the hidden state for the next LSTM cell (ht) [12].

Fig 9: Output computation [12]

3.1.2 Gated Recurrent Unit

This section explains in detail the working of a GRU cell.

As mentioned in section 3.1, a GRU has 2 gates called the Reset gate (rt) and the Update gate (zt).

The input to each of these gates is the same: the input of the current timestep (xt) and the output

from the previous timestep (ht-1).

A GRU can be considered as an optimized version of an LSTM where the two GRU gates are used

to perform the same function as the three gates of an LSTM.

Fig 10[12] shows the computations involved within a GRU cell.

The 2 gates determine the following:

 Information to get rid of at each timestep

 Information to carry to the next timestep

 Output at each timestep

Information to get rid of at each timestep

To correlate GRU w.r.t LSTM, in Fig 10, ht-1 acts as the conveyor belt. This is the output from the

previous GRU cell and also holds the memory and carries it through the GRU layer. The reset gate

(rt) decides how much of the memory must be forgotten before going on to the next GRU cell.

11

Information to carry to the next timestep

The update Gate (zt) combines the function of the forget gate and input gate of an LSTM into one

and decides how much of the past information must be passed along to the next GRU cell.

Output at each timestep

Finally, using the reset and update gate outputs, the vector ht is calculated which is the output at the

current timestep and also the memory that is carried to the next timestep.

Sigmoid and Tanh activations play a similar role in GRU as in LSTM. In Fig 10, Wz, Wr and W

are weight matrices w.r.t the gates and cell state.

Fig 10: GRU cell [12]

Now that we understand how an LSTM processes information and learns the relationship between

inputs and outputs, we now must look at which hardware platform would be suitable to carry this

network and perform relevant tasks. In the next section we look at how and why FPGAs are well

suited for this part.

12

4. Field Programmable Gate Arrays and Neural networks

Field Programming Gate Arrays are one of the most obvious solutions that come to mind when we

consider the implementation of neural networks. Their highly functional and adaptable architecture

helps them handle different algorithms in computing, while accommodating memory resources in

the same device. FPGAs are programmable devices that offer indisputable advantages in terms of

flexibility. In addition, they have low power consumption and high speed making them well-suited

to ML applications. With neural networks transforming in many ways and reaching out to more

industries, it is useful to have the adaptability FPGAs offer.

In the field of machine learning, FPGAs are preferred for the task of inference as opposed to training

as the two differ in their requirements. Training is the process by which a neural network determines

a set of weights and biases to best relate a set of inputs to their outputs, and inference is the process

of using these weights and biases to predict an output for a certain input. Training is primarily a

throughput bound workload and insensitive to latency. On the other hand, inference can be much

more latency sensitive [8]. The fact that FPGAs are extremely effective in parallelizing

mathematical operations required for an inference comes into play here.

With all the benefits of implementing a machine learning algorithm or neural network on a FPGA

stated above, the question now remains, what is the best approach of doing it? Hardware description

languages like Verilog and VHDL are at a very low level of abstraction and hence coding for highly

complicated neural networks is an extremely tedious job. Thankfully, we do have ways to simplify

this using High-Level Synthesis.

4.1 High-Level Synthesis for Machine Learning

High-Level Synthesis (HLS) works at a higher level of abstraction as compared to hardware

description languages (HDL), and has the ability to go from complex algorithms written in a high-

level language such as SystemC or C/C++ to register transfer level (RTL) HDL such as Verilog or

VHDL This enables accurate implementation of the algorithm in RTL without having to write it

manually. Additionally, detailed profiles for power and performance are also made available at the

end of synthesis.

There are numerous tools that can be utilized to perform the aforementioned HLS process in an

accurate manner. With the help of these tools, designers can use a more intuitive and algorithmic

programming language and avoid writing HDL from scratch. They handle the micro-architecture

13

and transform HLS code into fully timed RTL implementations, automatically creating cycle-by-

cycle detail for hardware implementation. The (RTL) implementations are then used directly in a

conventional logic synthesis flow to create a gate-level implementation.

4.2 Why is HLS4ML needed?

HLS4ML is a user-friendly software that aims towards providing an efficient and fast translation

of machine learning models to HLS. The software uses the ML models/networks that have been

trained using ML packages, such as Tensorflow, PyTorch, Keras etc., as inputs. This input is then

translated to provide a hardware description language RTL implementation as output.

HLS4ML also provides the user with flexibility to define parameters within the framework to best

suit their needs. Parameters such as precision of the calculations in the model, and parallel/serial

implementation of the algorithm with varying levels of pipelining, can be controlled by the user.

Fig 11 shows the workflow of the HLS4ML framework, where the blocks in blue are the steps

carried out within the software.

Fig 11. HLS4ML workflow [7]

Utilizing this framework allows the user to greatly reduce the time to obtain results by enabling

fast prototyping of the model implementation on an FPGA. As an added benefit, this option of

controlling parameters allows the user to adjust the balance between performance, resource

utilization and latency requirements.

14

4.3 HLS4ML framework

Fig 11 shows a typical workflow to translate a model into a FPGA implementation using HLS4ML.

This package is used for the automatic translation of a trained neural network that is specified by

the model’s architecture, weights, and biases, into HLS code [7].

The modules that work together within HLS4ML are described below:

Converter: This module defines each layer of the neural network and creates python objects for

it. Layers such as “Conv1D”, “Dense”, “LSTM” etc. must be defined within this converter to be

interpreted by the framework. HLS4ML currently supports four ML packages (Tensorflow,

PyTorch, Keras, Onnx); thus, for each of these packages, a separate converter is scripted.

HLS Model: In this module of HLS4ML, each layer is described as a class, and within each class

the parameters passed on to the final HLS code are defined. Examples of some parameters are

weights, biases, activation etc. This class also defines the output shape of the specified layer based

on attributes from the converter.

Templates: This is a module which defines the layer configuration and function templates. Based

on the layer name from the HLS Model, the right template is found for each of the layers and pasted

into the parameters header file for the final HLS code. This module also contains an include list

definition, where a set of header files are associated with each layer type. This enables the right

header files to be included in the final code based on the layers that are picked up.

Algorithm: The algorithms (the mathematical blocks of the neural network) are defined as header

files, which are mentioned in the include list of their respective layers. The exact calculations that

take place between the inputs and weights, based on their sizes, are defined within these header

files. There is a separate algorithm defined for each layer type.

Vivado Writer: The Vivado writer consolidates all the above modules together and provides a

holistic structure. This module consists of functions that define the contents of the final HLS code.

It specifies where the data gets picked up from and added to the final code. For example, there are

functions for writing the contents of the HLS testbench, HLS main, header files and also the weights

and biases per layer. Additionally, it also writes the build script that builds the Vivado project from

C simulation to C/RTL CoSimulation.

To understand the working of HLS4ML framework end-to-end, it is important to know the inputs

given to the framework, parameters that can be modified by the user before passing the inputs and

15

the contents of the output folder. As outlined in Fig 12, the input is fed into the framework using

a YAML file with the described format. Here, we can see that the trained model is given as a JSON

file and its weights as an H5 file. There is the added flexibility of defining parameters like precision

and reuse factors. Pertinent details such as clock period and the target FPGA are also provided in

this file.

Fig 12: Sample YAML file

The above mentioned YAML file also names the output directory and project as shown. The

contents of the output directory follow the hierarchy as shown in Fig 13.

Fig 13: Output directory hierarchy

16

4.4 Neural Network models and machine learning packages in HLS4ML

Machine learning packages currently supported by HLS4ML are:

 Keras

 Tensorflow

 PyTorch

 Onnx

The following four types of neural network architectures are either fully supported or currently

under test in HLS4ML:

 Fully Connected NNs (multi-layer perceptron)

 Boosted Decision Trees

 Convolutional NNs (1D/2D)

 Recurrent NNs – LSTMs (as provided by my work within this thesis)

The above models are trained on different types of datasets based on the type of neural network.

For example, convolutional neural networks work best with an image as input; hence, they are

provided with jet images as inputs. On the other hand, recurrent neural networks work best with a

sequence of input data, and therefore are provided with lists of particle properties belonging to a

single jet.

The latencies of inference of these models are intended to be at most 1µs.

17

5. Application in Physics

Up until now, we have established how powerful machine learning algorithms can be and what role

HLS4ML plays in implementing them on FPGAs. In this section we discuss how ML plays an

important role in the field of physics.

The Large Hadron Collider [13], which is the world’s largest and most powerful particle accelerator

generates particle physics data used to address fundamental open questions in physics. The

experiments that take place in the LHC result in a dataset too large for manual interpretation, and

machine learning has taken a pivotal role in this field [15]. The utilization of machine learning in

physics has broadened the horizon while pushing boundaries on the size of data that can be mined

and assessed. One of the applications of machine learning in physics is the task of Top Tagging,

which is the discrimination of jets originating from hadronic decays of a top quark from light-flavor

and gluon originated jets [4].

Top Tagging:

Within the LHC, when two proton beams collide, they result in the production of jets (Fig 14). A

jet is a collection of particles resulting from that collision. The particles associated with a single jet

can be studied or evaluated using the features the jet possesses. Based on this evaluation, we can

classify the jets into various types. Of these types, five of them are mentioned below:

 quark (q)

 gluon (g)

 W boson (W)

 Z boson (Z)

 top (t)

In the above classification, by “quark” we actually mean light quarks such as up, down, or strange

and by “top” we mean the top quark. W, boson, Z boson and gluon are types of forces that exist

between quarks.

Moreover, the features associated with each particle are:

 pT: Transverse Momentum

 eta: Pseudo Rapidity

 phi: Azimuthal Angle

 E: Energy

18

 deltaR: Relative angular distance w.r.t jet axis

 pdgID: Particle identification information

Based on the type of neural network model used to evaluate the jet substructure, some or all of the

above features are used to characterize each particle.

Fig 14 shows a cartoon of the proton – proton collision that result in a particle jet. When these jets

propagate through a detector, they deposit energy in the hadronic calorimeters. This deposited

energy or signals can be reconstructed to form a jet using algorithms and thus be used for research

purposes.

Fig 14. Proton-proton collision and resulting jet [3]

Why top tagging? The top quark is the heaviest known elementary particle [11] and has a

correspondingly short lifetime and thus behaves differently as compared to the other quarks (up,

down, strange, charm, and bottom). This also means that it decays much before it can combine to

form other particles and passes its spin information to its decay products which is why the only

way to study the properties of top quarks is through its proxy – top jet. Due to its large mass, it

stands out from rest of the quarks and therefore is of keen interest to researchers in the field [11].

5.1 Deep Neural Networks for top tagging

In 2018, a paper was submitted by the HLS4ML group describing the use of the HLS4ML

framework for fast inference of deep neural networks (DNN) [1]. This section provides details

about the type of inputs given, model architecture, performance of the model and resource

estimates.

Input type: The input provided to the network are collimated showers of particles that result from

the decay and hadronization of quarks q and gluons g, termed “Jets”. These jets can be represented

as grayscale images, RGB images, sequences of particles, or a set of physics-inspired high-level

features [1]. In the case of DNNs, the input is a set of physics-inspired high-level features.

19

DNN architecture: Two DNN architectures built on the Keras ML package were used in this paper

for different purposes. The first is a fully-connected neural network with three hidden layers used

to categorize the five classes of jets (q, g, W, Z, t), while the second is a one-hidden layer model

used for top tagging.

Model performance: Receiver Operating Characteristics (ROC) curve and Area under curve

(AUC) are the performance metrics used to quantify the model performance (Refer section 6.1.2).

Optimal performance with no loss of classification power corresponds to AUC = 1. This metrics

can be used to guide tuning, such as deciding the number of integer bits and number of fractional

bits (precision parameter). For the DNN model used, the precision was set to <16,6>, where 16 is

the bit width and 6 is the integer bits. This implies the fractional bits equate to 10 (Refer Fig 15).

Fig 15: Precision

Resource estimates: Table 1[1] summarizes the resource usage for the uncompressed DNN model.

Table 1: DNN resource estimates

Parameters DNN

FPGA Targeted xcku115-flvb2104-2-i

Precision <16,6>

Reuse Factor 1

Latency (ns) 75

Utilization % - DSP [14] 60

Utilization % - Logic (LUT + FF) [14] 13

After the successful implementation of DNNs for the application of top tagging, the HLS4ML team

aims towards implementing different types of neural networks for the same application while

leveraging the uniqueness of respective neural networks.

The next section discusses my effort towards adding LSTMs into the HLS4ML framework.

20

6. Long Short-Term Memory RNNs in HLS4ML

To incorporate the LSTM layer into HLS4ML framework, the steps mentioned in section 4.3 must

be followed. Details about the model configuration, input data, model performance and resource

utilization are mentioned in the subsections below.

6.1 KERAS LSTM model configuration

The KERAS LSTM model that is provided as input to the HLS4ML framework is given in the form

of:

 Model: Stored in the form of a JSON file that describes the model layers and activations

 Weights: Consists of the trained weights and biases. Stored in the form of an H5 file.

MODEL:

Fig 16 represents a block diagram of the model with details pertaining to each layer.

As seen, the LSTM model used is basic, with just one LSTM layer. Additionally, the shape of the

input is [20 X 6], where 20 is the number of particles provided for each inference and 6 are the

features per particle.

Fig 16: LSTM Model Configuration

WEIGHTS:

Weights from the LSTM layer and Dense layer are saved in the KERAS weights file.

LSTM weights: This layer has two types of trained weights that are stored in KERAS in the form

of two big matrices. The first matrix stores the kernel weights and the second matrix stores the

recurrent kernel weights. Kernel weights are the weights stored per layer in a neural network and

applied to the input at the current timestep; whereas, recurrent kernel weights are special to RNNs

21

and are applied to the output of the previous timestep. The big matrices are divided into 4 equal

parts that correspond to the 3 LSTM gates and one cell state for inference computation. Fig 17

explains the order in which these weights are stored along with their shapes.

Fig 17: KERAS weight storage

Dense weights: This layer has a single weights matrix with the shape [320 X 5]. Details about how

these weights are used in inference are provided in section 6.2.

6.1.1 Dataset used

The dataset used to train the KERAS LSTM model is located at [9]. This consists of particles that

are characterized by 6 features. These features are labeled as:

 j1_ptrel

 j1_etarot

 j1_phirot

 j1_erel

 j1_deltaR

 j1_pdgid

These features (also mentioned in section 5) are used to characterize a particle. However, these

features are normalized at the data processing stage of training and the relative feature values a.k.a

normalized feature values are sent as input to the neural network.

22

In order to identify an input as a top jet, each of these features have a range of values they fall

within. Of the 6 features mentioned above, based on the type of neural network we can use all or

some of the features. For example:

 CNN2D: A 2-dimensional convolutional neural network takes only features j1_ptrel,

j1_etarot and j1_phirot in the form of a 2-dimensional image as input.

 LSTM: A Long Short-Term Memory network takes all 6 features of all the particles as a

sequence of inputs.

The output of the LSTM network has a shape of [1 X 5] as described in section 6.1, where the 5

probabilities correspond to q, g, W, Z and t, which stand for the different types of jets as mentioned

in section 5.

A high probability of “t” in the output indicates that the particles given as input had features in the

desired range of a top jet.

6.1.2 Model Performance

There are two performance parameters used to measure the performance of a neural network model:

1. Receiver operating characteristics curve: Also known as ROC curve, is often used as a

performance metric for classification models in machine learning. This curve plots two

parameters (False Positive Rate (FPR) vs True Positive Rate (TPR)) at thresholds ranging

from 0.0 to 1.0 (as shown in the x-axis of Fig 18). Fig 18 shows the ROC curve of the

KERAS LSTM model, where the TPR is the signal efficiency and FPR is the background

efficiency.

o Signal Efficiency (TPR): Defined as the ratio of the number of top jets identified

as top to the total number of top jets.

o Background Efficiency (FPR): Defined as the ratio of the number of non-top jets

identified as top to the total number of non-top jets.

To understand what a threshold value is, consider an example: a threshold value of 0.7

means that a probability in the range [0.0 – 0.69] is a negative outcome (0) and a probability

in [0.7 – 1.0] is a positive outcome (1). These threshold values are w.r.t the probability

outcomes of the neural network model under consideration. The curves in Fig 18 are FPR

vs TPR at different threshold values. The higher the signal efficiency and the lower the

23

background efficiency means the better the performance of the classification model. For

example, in Fig 18, t tagger has a high signal efficiency corresponding to respectively lower

background efficiency as compared to other taggers and thus has maximum accuracy of

92.9%.

Fig 18: ROC curve

2. Area Under ROC Curve: Also known as AUC, this performance parameter measures the

area under the ROC curve. In simple terms, higher the AUC, better the model at predicting

0s as 0s and 1s as 1s.

6.2 LSTM inference process

This section explains in detail the LSTM inference process mathematically with respect to the

KERAS LSTM model.

Input layer: For each inference, we provide the data of 20 particles. Each particle data is of shape

[1 X 6]. Thus for 20 particles, the shape is 20 [1 X 6] = [20 X 6]. This data is sent to the next layer

i.e., LSTM layer.

LSTM layer: As this layer receives 20 particles, we require 20 LSTM cells to perform

computation on each of these particles. In short, one LSTM layer uses the same LSTM cell 20

times. The computations in each cell is shown in Fig 19. As seen in this figure, each LSTM cell

produces an output (ht) of shape [1 X 16]. As we have 20 LSTM cells and each cell produces an

output of shape [1 X 16], the shape of the output from the LSTM layer will be 20 [1 X 16] = [20 X

16]. This becomes the input to the next layer.

24

Fig 19: LSTM cell computation

The above figure shows the inputs, outputs, and computation in one LSTM cell along with the

shape of each parameter. Table 2 provides the label description for Fig 19.

Table 2: Label description for Fig 19

Label Description

ht-1 Output at time t-1

Ct-1 Cell state at time t-1

it Input at time t

i Input Gate

f Forget Gate

o Output Gate

C̃t New values added to Cell state

Wi, Wf, Wo, Wc Kernel weights for each gate and cell state

bi, bf, bo. bc Kernel biases for each gate and cell state

Ui, Uf, Uo, Uc Recurrent kernel weights for each gate and cell state

g Recurrent Activation

p Kernel Activation

ht Output at time t

Ct Cell state at time t

* Hadamard product

25

Dense layer: The LSTM output data of shape [20 X 16] is then flattened to [1 X 320] and sent as

input to the Dense layer. This input [1 X 320] is multiplied with the dense weights [320 X 5] to

produce an output of shape [1 X 5]. It is then passed through the SoftMax activation that results in

the final 5 probabilities.

6.3 Adding recurrent layers into the framework

To add the recurrent layers such as LSTM and GRU into the framework, the modules mentioned

in section 4.3 must be modified to include these layers.

Fig 20 shows a block diagram that explains the 4 main modules in the framework that need

modifications in order to add a neural network layer.

Fig 20: HLS4ML setup

keras_to_hls.py: As we are working with a KERAS LSTM model, the KERAS converter needs

modification. Here, the LSTM layer is defined based on the layer definition in the Keras

documentation [2]. In addition to this, the “recurrent activation”, which is specific to RNNs, is also

defined as a Python object in this converter and passed on to the HLS model.

hls_model.py: In this script, LSTM is defined as a class. Within this class, the output shape of the

LSTM is defined as the product of the number of particles and the state parameters. We also define

a recurrent bias array populated with all zeros in order to utilize the dense multiplication algorithm

26

for the LSTM layer. Apart from this, the following parameters are defined: weights, biases,

recurrent weights, activation, and recurrent activation. These parameters are made available in the

final HLS code.

templates.py: As seen in section 6.1, each LSTM cell performs activation as well as multiplications

with weights and adding of biases within it. To incorporate this feature, the LSTM template is

defined accordingly. The activation and multiplication templates are called within the LSTM

template. This is unique to RNNs as their recurrent behavior require calculations within the cell, as

opposed to just from previous layers.

nnet_recurrent.h: This is the header file which describes the calculations within each LSTM cell.

Here two LSTM algorithms have been formulated. The first one is an algorithm based on section

6.2 and two new parameters, called the cell output and cell state, are defined. The second algorithm

is a modified version of the first, the only variance being that the two new parameters are defined

as static arrays. This is done in order to reuse the same matrix multiplication logic again, as opposed

to creating a new one for every iteration. This reduces resource utilization and is thus preferred.

However, both of the algorithms are defined in terms of a single particle, and thus we require an

additional logic that loops over all particles. This looping function is called from within the final

HLS code and the subsequent LSTM algorithm is used for computation.

6.4 Verification of KERAS model vs C simulation

The HLS model of a neural network that is generated when a trained model is passed through the

HLS4ML framework must be verified against its KERAS model to ensure correct and efficient

conversion by the framework. This is done by providing the same input values to both the HLS and

KERAS models and checking whether the outputs from both of these models match.

A Python code was written that loads the KERAS LSTM model configuration (JSON) and weights

(H5) and provides the prediction output for any dummy input given. To obtain the output prediction

from the HLS model, the same dummy input was hardcoded into the HLS testbench and a C

simulation was run using Vivado HLS. As part of the verification, multiple dummy inputs were

given and the predictions from both the models were compared.

27

6.5 LSTM model on FPGA – Resource Utilization

Vivado HLS generates a synthesis report that provides details on performance as well as area of

the RTL design. In this section, we analyze the resources utilized on the targeted FPGA and

understand the factors that affect it. The FPGA resources required by the model depend on multiple

aspects. Some of them are:

 Quantization: This is the precision chosen for the inputs, weights, and biases. The

quantization applied to this model was a fixed-point precision <16,6>. This value is chosen

keeping in mind the trade-off between model performance and resource utilization. A

higher precision can enhance model performance; however, it can also considerably

increase the amount of FPGA resources.

 Parallelization: This parameter decides the number of times a given multiplier is reused

within a layer computation. If the “Reuse factor” equals 1, it means that the system is

completely parallel.

Based on the above dependencies, the following firmware implementation metrics are monitored

for the LSTM network implementation:

 Resources: This includes DSPs, FFs and LUTs

 Latency: Time it takes to compute the entire network

 Initiation interval: Time before a new set of inputs can be accepted.

As mentioned in section 6.3, two different algorithms were tested for the LSTM implementation.

The results for both these algorithms are given in Table 3.

28

Table 3: Resource Utilization

Parameters LSTM Algorithm LSTM Static Algorithm

FPGA Targeted xcku115-flvb2104-2-i xcku115-flvb2104-2-i

Precision <16,6> <16,6>

Reuse Factor 1 1

Latency (µs) 1.35 1.35

Initiation interval (ns) 5 1350

Utilization (%) – DSPs 326 43

Utilization (%) – FFs 48 6

Utilization (%) – LUTs 104 10

Utilization (%) – BRAM 11 ~0

As seen in Table 3, the resource utilization in the LSTM Algorithm implementation is fairly large.

One way to reduce the resources being used is to stop the pipeline and use static arrays. The LSTM

static algorithm does exactly this. The static array reuses the same matrix multiplication algorithm

repeatedly.

The DSP utilization is reduced by ~86%, FF utilization is reduced by ~87.5%, LUT utilization is

reduced by ~90% and BRAM utilization is reduced by ~100%. However, as there is no pipeline,

the initiation interval has increased from 5ns to 1.35µs.

Another point to note is that, ideally, the HLS4ML framework works towards generating networks

that operate within a 1µs latency. As the KERAS LSTM model used has an input sequence of 20

particles, a latency higher than 1µs is expected due to limitations in the hls4ml framework and

would require serious optimizations to ensure a smaller latency. However, reducing the input

sequence to 10 particles would solve this issue.

6.6 KERAS DNN Top Tagging model vs KERAS LSTM Top Tagging model

In this section, we will compare the Keras DNN Top Tagging model discussed in section 5.1 with

the Keras LSTM static Top Tagging model discussed in section 6. The comparison is based on the

model performance (using ROC curves) and overall resource utilization.

29

DNN vs LSTM Model Performance

Fig 21 shows the ROC curves of both the top tagging models. Looking at the accuracy numbers,

we can see that the performance of the DNN model is slightly better than the LSTM model.

Fig 21: DNN vs LSTM ROC Curves

DNN vs LSTM Resource Utilization

Table 4 shows the resource utilization numbers for DNN vs LSTM model targeted on a specific

FPGA.

Table 4: DNN vs LSTM Resource Utilization

Parameters DNN LSTM Static

Input particles 16 20

FPGA Targeted xcku115-flvb2104-2-i xcku115-flvb2104-2-i

Precision <16,6> <16,6>

Reuse Factor 1 1

Latency (ns) 75 1350

Utilization (%) – DSPs 60 43

Utilization (%) – FFs + LUTs 13 8

30

7. Conclusion

In this thesis, we described the steps taken to implement a Long Short-Term Memory neural

network into the HLS4ML framework. The modifications made to the framework are for a specific

ML package called Keras. To start with, we considered a Top tagging trained LSTM model that

takes a sequence of 20 particles as input and performs inference. We studied the framework in

detail such that the information that can be used to add any new layer into HLS4ML. Further, we

understood the basics of recurrent neural networks and two of its modified versions – LSTM and

GRU.

Specifics about the LSTM model used, and mathematical calculations involved in each inference

with respect to the data were studied. Once the LSTM was successfully implemented, we went on

with a two-step verification process. The first one involved the verification between the KERAS

LSTM model versus the HLS model generated by the framework. The second verification was

performed by the HLS tool – Vivado HLS, that confirmed the model functionality between HLS

and RTL. Finally, we analyzed the reports generated to understand the overall resource utilization

and latency per inference and discussed the possible causes of the obtained results.

The code for the implementation is located on GitHub and further details are mentioned in

Appendix A.

8. Next Steps

While the implementation of the LSTMs into the framework is functional and has been extensively

tested on the KERAS LSTM Top tagging model to receive the latency and resource utilization of

the targeted FPGA, this is just the beginning in terms of exploring the future of LSTM models in

the field of particle physics. As mentioned in section 6.5, that a model with 20 particles is bound

to yield a latency greater than 1µs owing to the limitations of the framework, the immediate next

step would be to test the latency and mapping out the resource utilization for a model that takes in

10 particles as input.

Further, training a new LSTM model with a deeper architecture and performing inference using the

framework will help identify not just if the prediction accuracy is considerably better, but also

analyze the FPGA resources required by the model.

Finally, another class of RNNs, called the GRU (refer section 3.1.2), can be added to the framework

following an implementation similar to the LSTM.

31

9. References

[1] Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., Ngadiuba, J., Pierini, M.,

Rivera, R., Tran, N. and Wu, Z., 2018. Fast inference of deep neural networks in FPGAs for particle

physics. Journal of Instrumentation, 13(07), pp.P07027-P07027.

[2] Team, K., 2020. Keras Documentation: Keras API Reference. [online] Keras.io. Available at:

<https://keras.io/api/> [Accessed 16 May 2020].

[3] Cms.cern. 2020. Jets At CMS And The Determination Of Their Energy Scale | CMS Experiment.

[online] Available at: <https://cms.cern/news/jets-cms-and-determination-their-energy-scale>

[Accessed 16 May 2020].

[4] Egan, S., Fedorko, W., Lister, A., Pearkes, J. and Gay, C., 2017. [online] Available at:

<https://arxiv.org/pdf/1711.09059.pdf> [Accessed 16 May 2020].

[5] Medium. 2020. Understanding RNN And LSTM. [online] Available at:

<https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e> [Accessed 16 May

2020].

[6] En.wikipedia.org. 2020. High-Level Synthesis. [online] Available at:

<https://en.wikipedia.org/wiki/High-level_synthesis> [Accessed 16 May 2020].

[7] Fastmachinelearning.org. 2020. HLS4ML ꞏ Gitbook. [online] Available at:

<https://fastmachinelearning.org/hls4ml/> [Accessed 16 May 2020].

[8] J. Fowers et al., "A Configurable Cloud-Scale DNN Processor for Real-Time AI," 2018

ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles,

CA, 2018, pp. 1-14, doi: 10.1109/ISCA.2018.00012.

[9] Cernbox.cern.ch. 2020. Cernbox. [online] Available at:

<https://cernbox.cern.ch/index.php/s/AgzB93y3ac0yuId> [Accessed 16 May 2020].

[10] Xilinx.com. 2020. [online] Available at:

<https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug871-vivado-high-

level-synthesis-tutorial.pdf> [Accessed 16 May 2020].

[11] Gallinaro, M., 2013. Top quark physics: A tool for discoveries. Journal of Physics: Conference

Series, 447, p.012012.

[12] Colah.github.io. 2020. Understanding LSTM Networks -- Colah's Blog. [online] Available at:

<https://colah.github.io/posts/2015-08-Understanding-LSTMs/> [Accessed 16 May 2020].

32

[13] CERN Accelerating science. (n.d.). Retrieved from

https://home.cern/science/accelerators/large-hadron-collider

[14] Hep.ucl.ac.uk. 2020. [online] Available at: <https://www.hep.ucl.ac.uk/seminars/slides/11-01-

2019-Ngadiuba_UCLSeminar_HLS4ML.pdf> [Accessed 27 May 2020].

[15] 2020. [online] Available at: <https://www.nature.com/articles/s41586-018-0361-2>

[Accessed 29 May 2020].

[16] En.wikipedia.org. 2020. Neural Network. [online] Available at:

<https://en.wikipedia.org/wiki/Neural_network> [Accessed 29 May 2020].

[17] Nwankpa, Chigozie Enyinna, et al. Activation Functions: Comparison of Trends in Practice

and Research for Deep Learning. 8 Nov. 2018, arxiv.org/pdf/1811.03378.pdf.

33

10. Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.

1934360.

The work presented in this document is a result of exuberant MS journey that involved numerous

individuals contributing to its culmination.

First and foremost, I would like to thank my advisors, Scott Hauck and Shih-Chieh Hsu who have

been pivotal since the beginning. Their constant support and advice have helped me both in my

professional and personal growth. The opportunity to work at CERN is one of my most cherished

memories and I owe it to my advisors. I am grateful for having them as my guides during this

tumultuous journey.

A big shout out to the HLS4ML team where I was a part of something bigger than myself. The

work being done, and the individuals have inspired me to work hard and achieve what I have

achieved today. The learnings and experience from the team will last a long time to come.

I am grateful to Nhan Tran for onboarding me onto the team and introducing me to the project at

the early stages that has developed so beautifully today. Thank you to Vladimir Loncar for get me

accustomed to the HLS4ML framework and bearing with my constant queries that facilitated the

integration of my work into the framework. My gratitude towards Philip Harris for helping me

understand the base of my work: RNNs and LSTMs which acted as the foundation for my work

presented herein.

I cannot be profuse enough in thanking my parents Shrinivas Naidu and Radhika Naidu for always

believing in me and keeping me on my toes with their words of encouragement and support.

My undying love and graciousness for my sister, Varsha Rao, for always being by my side through

the highs and the lows; picking me up, cheering me on and giving me the emotional support to get

through all the tough times that I encountered.

Thank you to the rest of my family and friends who have been there, directly, or indirectly, guiding,

supporting, and assisting me through a journey that was just as memorable as it was difficult.

The words of support, the advices that came as one-liners, the time you all have invested in me

along with the effort, have all amalgamated to be my rock and my guiding light. My gratitude to

you all is unfathomable and cannot be expressed in words.

34

Appendices

Appendix A: LSTM in HLS4ML

Relevant repositories:

 https://github.com/richarao/hls4ml/tree/keras-lstm

 https://github.com/hls-fpga-machine-learning/hls4ml/tree/recursive2

Presentations:

 https://indico.cern.ch/event/919468/

 https://indico.cern.ch/event/900197/

 https://indico.cern.ch/event/889243/

Appendix B: KERAS Training

In the work presented in my thesis, the KERAS LSTM model used for the application of top tagging

was a trained model already saved in the HLS4ML repository. To ensure the model being used was

as per specifications and trained on the right dataset, I performed the training of a new KERAS

LSTM model. This training also came in handy in the final testing phase of the framework to ensure

it could efficiently translate LSTM models with different configurations as well.

The location of the repository used for training was:

https://github.com/hls-fpga-machine-learning/keras-training

Below are some of the performance evaluation plots generated for this model. Fig 22 shows the

ROC curves, Fig 23 shows the accuracy between training and validation dataset and Fig 24 shows

the normalized confusion matrix.

35

 Fig 22: ROC Curves Fig 23: Accuracy

Fig 24: Confusion Matrix

Appendix C: Automation of Data Acquisition Testing

I spent my summer of 2019 interning at the European Organization for Nuclear Research (CERN),

where I worked on a project entirely separate from my work on the HLS4ML framework. During

my 3 months there, I worked on a project that focused on the automation of data acquisition testing.

Data acquisition is one of the most important tasks conducted at CERN during particle collisions.

There are detectors present in different layers to capture this data. These detectors have firmware

that is upgraded with time and needs to be tested to verify if the data being collected is accurate.

This data is then passed through the post analysis phase.

I created a testing framework that would automatically perform checks on the current firmware and

produce reports which could be used for the post analysis in case of any errors.

36

When data acquisition is performed manually, it could take a couple days as the checks use multiple

tools. By automating the testing procedure, the functionality of the firmware can be determined

within few minutes. Hence, it saves time taken to determine the error, which then could be used to

analyze the cause of error instead.

Some of the checks conducted were:

 Fragment check

 BUSY signal check

 TIMEOUT signal check

 RodMon Checks

 ROD Registers

 BOC Registers

 FW/SW loading check

The DAQ Testing document that explains each of the above checks is located at:

https://gitlab.cern.ch/atlas-pixel/docs/pixelibltestingnote

Presentations given during the internship:

 Project Introduction (23rd Jul): https://indico.cern.ch/event/803420/

 Update ppt (20th Aug): https://indico.cern.ch/event/803422/

 Final ppt (9th Sep): https://indico.cern.ch/event/846497/

