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Abstract 

Field programmable gate arrays (FPGAs) offer a flexible hardware platform on which machine 

learning algorithms can be efficiently implemented. However, developing these algorithms on 

FPGAs can be prohibitive due to complex implementation details. We use the HLS4ML (High-

Level Synthesis for Machine Learning) framework to translate models trained using traditional 

machine learning libraries into C++ which can then be translated into FPGAs firmware using 

High-Level Synthesis (HLS). We propose an alternative approach for convolutional neural 

networks within the HLS4ML framework. Using the new approach on benchmark convolutional 

neural network (CNN) models, we show a potential reduction of FPGA critical resource 

consumption by up to 30% and latency by up to 12%. Lastly, we describe the process in which 

we integrate the proposed approach in the HLS4ML framework.  
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1 Introduction 

In the last decade, Convolution Neural Networks (CNNs) have become a standard for high-

quality in machine vision related tasks [1]. Leveraging the availability of big data, CNNs have 

grown bigger, more accurate and more computationally intensive, thus requiring dedicated 

hardware for deployment. Field Programmable Gate Arrays (FPGAs) offer a flexible hardware 

platform to efficiently implement CNNs but require specialized expertise. High Level Synthesis 

for Machine Learning (HLS4ML) is an open-source framework that seeks to bridge the expertise 

gap [2]. By providing a user-friendly interface and toolset, HLS4ML facilitates the deployment 

of machine learning models on FPGAs [2]. In this thesis, we propose an alternative approach for 

convolutional layers within the HLS4ML framework. We demonstrate its performance on an 

example CNN architecture optimized for both resource utilization and latency. 

This thesis is organized as follows: Section 2 provides an overview of neural networks and an 

introduction to CNNs. Section 3 introduces HLS4ML and establishes the necessity for an HLS-

based approach to FPGA development. Section 4 discusses two convolution implementations for 

FPGAs. Section 5 introduces the benchmark models and examines performance metrics for both 

implementations. Section 6 describes the integration process for supporting multiple convolution 

implementations. Conclusions and further steps are given in Section 7 and 8, respectively. 
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2 Neural Networks 

2.1 Overview  

Neural networks are inspired by the neural connections in the human brain. They are a network 

of nodes, each emulating a neuron, that receives, processes and passes data to neighboring nodes. 

In a neural network, these connections are represented as edges, as seen in Figure 1, and each 

edge is assigned a weight that reflects the degree of attention given to the input. The network is 

made up of multiple layers of neurons wherein each of the neurons outputs a non-linear function 

of the input connections.   

 

Figure 1. Simplified view of a feedforward neural network. Each circle represents an individual neuron. Edges 

between nodes are indicated by black arrows. The weight for each input is shown as the boldness of the arrow. [3] 

2.2 Basic Components 

The simplest architecture for neural networks is the multi-layer perceptron (MLP) [4]. This class 

of neural networks is organized in a similar fashion to Figure 1.  MLPs consists of at least three 

layers of nodes: an input layer, hidden layer, and output layer. The hidden layer can be composed 

of one or more layers and are used to identify features in the input. The nodes compute a non-

linear function of the sum of weighted inputs. 

 
𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑖

) = 𝑓(𝐖𝐱 +  𝐛) 

 

 

(1) 
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Equation (1) describes the output computation for a MLP node. We multiply the weight matrix 

W with the input vector x and add a bias term b. This result is then input into a non-linear 

function, called the activation function, f and output to connected nodes. 

Activation functions are added on the output of MLP nodes to introduce non-linearity into the 

network. This non-linearity assists the network in learning complex patterns in the data. Without 

an activation function, the nodes can at best learn linear boundaries as the computation of Wx + 

b. 

These activation functions have a few properties that are desirable.  

1. Differentiable. In order to perform backpropagation (the algorithm used in training neural 

networks), each operation performed within the network needs to be differentiable. 

2. Low computational cost. Every node will use an activation function, so it should be efficient 

to compute. 

3. Non-saturating gradients. In neural networks, we use the gradient to determine the best 

direction to adjust the parameters of the network in order to minimize prediction errors. In 

networks with many layers, the gradient with respect to the output will tend to disappear in 

early layers. This phenomenon is known as vanishing gradients and is caused by the 

activation function driving the gradient towards zero. When the gradient is close to zero, the 

network is essentially unable to learn because the weight updates during backpropagation 

become negligible. 

Some commonly used activation function includes the sigmoid, tanh, rectified linear unit 

(ReLU), and softmax functions. Of these functions, sigmoid and tanh can lead to vanishing 

gradients and are not commonly used in convolutional neural networks. 

2.3 Training and Inference 

Neural networks are deployed in two stages: training and inference. During the training phase, 

the network is fed an annotated dataset with expected outputs for each input. These data samples 

are used to compare the model predictions against the expected values and to penalize the model 

via a loss function when updating the model’s weights. After each round of predictions, we 

perform an operation called backpropagation where the network parameters are iteratively 

updated based on the loss function penalty [5]. This process of propagating the errors is essential 

for improving the predictive power of the neural network. The rate at which a neural network 

learns is defined by the learning rate. The learning rate is an important parameter that describes 

the degree that the model should adjust based on the error. Training with a high learning rate can 

change network weights significantly and cause convergence issues, while training with a low 

learning rate may result in long training times. 

In the second stage, inference, the trained network makes predictions on new unseen data 

samples. While training is conducted offline, inference can be either offline or deployed online. 
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As such, the inference latency or throughput becomes an important factor when choosing the 

deployment hardware. This thesis focuses on the algorithmic design for convolutional layers to 

accelerate the inference phase on FPGAs. 

2.4 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a class of neural networks that are often used to 

analyze images. They are composed of a pipeline of convolutional, pooling, and fully connected 

layers. Each layer computes a feature map from the input feature map that contains progressively 

higher-level features. For example, if we train a CNN for the task of face identification, the low-

level features might be edges, the mid-level features might be parts of a face, and the high-level 

features might be multiple parts of a face.  

Typically, in CNN architectures, the number of feature maps (output channels) will increase, and 

the input size will decrease as we go deeper in the network. Each successive stage in the network 

will condense the features maps from the previous stage.  

2.4.1 Convolutional Layer 

Convolutional layers are the core component of CNNs. They perform the feature extraction 

process via a convolution operation. For a given input image of height H, width W, input 

channels C and output feature maps N, we shift a J x K window, called the kernel, across the 

image. At every position where the window completely overlaps the input feature map, we 

compute the Frobenius inner product of the convolutional kernel weights and the input region. 

This product computes a single output which is the summation of the elementwise product of the 

two matrices as shown in Figure 2. This process repeats for every input channel C and output 

channel N pair.  

 

Figure 2. An example convolution operation on a 5x5 image with a 3x3 weight kernel (outlined in red). The output 

(outlined in blue) has size 3x3 because there are only 9 positions where the kernel can fully overlap the input image. 

The first output is computed as −1 × (6 + 2 + 7 + 1) + 4 × 2 = −8. 
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In the example shown in Figure 2, the output image is smaller than the input image due to the 

overlapping kernel constraint. In many cases, this is undesirable as it gives less attention to edge 

pixels, so it is common to add additional zero-padding to the image to allow the kernel to fully 

scan the entire image equally. When we pad the image, we add (J – 1) / 2 pixels to the left and 

right side of the image and (K – 1) / 2 pixels to the top and bottom of the image. This ensures 

that the convolutional output is the same size as the input. 

Additionally, when computing the convolution, we typically only slide the kernel one pixel at a 

time. The number of pixels that the kernel is shifted for each convolution is called the stride. 

Increasing the stride has the effect of downsampling the image. For example, instead of using a 

default stride of (1, 1), we can elect to use a stride of (2, 2). This will cause the kernel to slide 

two pixels right for every horizontal shift and two pixels down for every vertical shift. The 

output image will then be half as wide and half as tall as the original image. 

2.4.2 Pooling Layer 

Pooling layers are periodically inserted in between successive convolutional layers. They are 

primarily used to reduce the spatial size of the feature maps and are useful for extracting 

dominant features. Like convolution, we slide a window across the image and compute the 

pooling operation when the window fully overlaps the input feature map. The stride is typically 

set to be the same as the pooling window size such that no pixel is pooled more than once. 

There are two different types of pooling that are commonly used: max pooling and average 

pooling. Figure 3 illustrates an example of both types pooling operations on a 4x4 image. Max 

pooling takes the maximum value within the window while average pooling averages all values 

within the window.  

 

Figure 3. Comparison of MaxPooling and AveragePooling in two-dimensions with a (2, 2) pooling window. The 

different pooling windows are indicated by color. 

Pooling layers also utilize padding if the feature map size is not a multiple of the pooling 

window size.  

 



6 

 

2.4.3 Fully Connected Layer 

Fully connected layers are inserted at the end of the CNN pipeline. These layers operate 

identically to the multi-layer perceptron, but instead of using the input directly, they use the 

learned feature maps from the convolutional layers. 

2.4.4 Other Layers 

After each convolutional layer, we insert an activation layer. This activation works the same as 

the activations used in the multi-layer perceptron networks and adds non-linearity to the pipeline. 

Recent CNN architectures use the Rectified Linear Unit (ReLU) function which has reduced 

training time and computational complexity when compared to tanh or sigmoid activations [6]. 

However, the ReLU function has a gradient of 0 when the input is less than 0 and can cause 

neurons to become inactive and only output 0 for any input. Alternative variants of the ReLU 

activation have been proposed such as the parameterized ReLU (PReLU) or leaky ReLU where 

the negative values are multiplied by a small scalar [7]. 

 

Figure 4. Plot from Krizhevsky et al. showing a 6x faster convergence rates of ReLU (solid) compared to tanh 

(dashed) activations in training [6]. 

Batch normalization layers were also introduced to accelerate training by (1) normalizing inputs 

to zero mean and unit variance and (2) rescaling and offsetting the normalized values [8]. During 

training, for each mini batch (or group) of inputs, we compute the mean μ𝐵 and variance σ𝐵
2  

across the mini batch and normalize the inputs. Then the network learns two additional 

parameters: a scaling parameter γ and bias parameter β for each output feature map. These 

additional parameters help to preserve model expressivity by allowing training to determine if 

normalization is needed. 

Equation (2) describes the batch normalization computation during inference.  During inference, 

the averaged mini batch mean 𝜇𝐵𝑘 and variance 𝜎𝐵𝑘
2  are used to normalize the inputs and the 

learned parameters γ and β rescale and shift the normalized result. 
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 �̂�𝑖 ⟵
𝑥𝑖 − μ

𝐵𝑘

√σ𝐵𝑘
2 + ϵ

 

(2) 
  

 𝑦𝑖 ⟵ γ�̂�𝑖 + β ≡ 𝐵𝑁γ,β(𝑥𝑖) 

 

Batch normalization layers regularize training by normalizing inputs based on the mini batch 

statistics [8]. Since a given training sample is unlikely to be grouped with the exact same 

minibatch, the network sees unique inputs every training loop. Other research has shown that 

batch normalization has the effect of smoothing the optimization landscape [9]. By smoothing 

the gradients, we can use larger learning rates as the gradient will remain an accurate estimate 

even over larger steps [9]. 

2.5 Neural Networks on Hardware 

Neural networks come with a large computational cost, and thus often require dedicated 

hardware to run efficiently. The most widely used hardware platform to deploy neural networks 

are Graphical Processing Units (GPUs) since their parallelized architecture and high-bandwidth 

memory make them suited for the repeated vector and matrix operations required by neural 

networks [10].  

However, Field Programmable Gate Arrays (FPGAs) have shown superior performance 

compared to GPUs in terms of energy efficiency (performance per watt). FPGAs also have a 

highly configurable architecture that helps them adapt to different algorithms. Recent trends 

towards sparser networks and more compact data types favor FPGA devices as they can handle 

the irregular parallelism and custom data types [10]. 

However, designing algorithms for FPGAs can be difficult due to the lower level of abstraction 

of hardware description languages (HDL) like Verilog or VHDL. Additional attention must be 

given to implementation details that go beyond the design of the algorithm. In the next section, 

we will discuss tools that can assist in developing algorithms on FPGAs, namely, high level 

synthesis. 
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3 High-Level Synthesis for Machine Learning  

3.1 High-Level Synthesis 

High-level synthesis (HLS) refers to the process in which a design, written in a language like 

SystemC or C++, is translated to a register transfer level (RTL) implementation in a hardware 

description language (HDL) [11]. The higher level of abstraction of HLS enables users to 

develop algorithms without needing to write the HDL manually. 

During the HLS process, the high-level code is analyzed and converted in an HDL language, like 

Verilog or VHDL, that accurately replicates the algorithmic behavior. The HLS tools handle the 

microarchitecture and timing to generate a cycle-by-cycle timed hardware implementation. The 

generated RTL can then be used in standard synthesis flows to create gate-level implementations 

that go onto the FPGA. 

3.2 Motivation for HLS4ML 

High-Level Synthesis for Machine Learning, also referred to as HLS4ML, is an open-source 

Python framework for implementing machine learning algorithms in firmware [2]. This 

framework simplifies the HLS process, providing both command line and Python interfaces to 

convert, build, and compile models into an RTL implementation. It enables users to rapidly 

prototype machine learning models on FPGAs while balancing performance, utilization, and 

latency requirements. 

HLS4ML utilizes a YAML configuration file that can either be edited locally or through the 

Python API to configure various hardware implementation parameters. These parameters control 

aspects such as the degree of parallelism, compression, computation precision, and pipelining in 

the generated RTL. Additionally, each parameter can also be specified on a global, layer type, or 

by-layer level, thus providing the users with tools to fine tune their implementations to suit their 

applications. 

The HLS4ML framework supports a variety of popular machine learning libraries: 

• Keras/TensorFlow/QKeras 

• PyTorch 

• ONNX 

Currently, the following machine learning models are either supported or in development by 

HLS4ML community:  

• fully connected neural networks (multi-layer perceptrons) 

• boosted decision trees (BDT)  

• convolutional neural networks (CNN)  

• recurrent neural networks (RNN). 
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3.3 HLS4ML Framework 

 

Figure 5. Diagram of the hls4ml workflow. Blocks outlined in orange are part of the usual ML workflow. Blocks in 

blue are involved in the HLS4ML workflow. Blocks in black are part of the hardware synthesis workflows. [2] 

Figure 5 illustrates the role of HLS4ML as an intermediate step bridging the gap between 

software and hardware workflows. Specifically, it takes a trained machine learning model and 

outputs a hardware IP block which can then be integrated into more complex designs or into a 

kernel for CPU co-processing.  

 

Figure 6. An example YAML configuration file. This configuration generates a project for a pre-trained model 

called “myproject”. It targets a Xilinx Virtex UltraScale+ FPGA using a clock speed of 5 nanoseconds. The 

HLSConfig category specifies HLS-related configuration parameters.  

HLS4ML takes a YAML file, like the one shown in Figure 6, as an input to configure the 

generation of the project directory. This YAML file specifies parameters such as the model, 
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project name, target Xilinx part, clock speed and backend. It is also used to specify hardware or 

HLS-related parameters like IO type, precision, strategy, reuse factor, etc. Tuning these 

parameters are vital for controlling timing and utilization. 

3.4 Workflow 

Within the HLS4ML workflow, there are several additional steps as shown in Figure 7.  

 

Figure 7. Intermediate steps in the HLS4ML workflow. The blue steps are part of the HLS process but are 

streamlined by using the HLS4ML framework. 

Each step in the HLS4ML workflow is described below: 

ML model: Starting from a pre-trained machine learning model from a supported library, 

HLS4ML reads the model file and generates a project directory that implements the model in 

C++ using HLS4ML layers. These layers are specially written to leverage user optimization 

directives. This conversion step can be fine-tuned by configuring parameters in the YAML 

configuration file.  

HLS4ML project: The generated project directory contains all the required files to perform 

HLS. Figure 8 shows the file hierarchy after converting a model into an HLS4ML project. The 

firmware directory contains all the C++ source code separated into Vivado HLS data types 

(ap_types), HLS4ML layers (nnet_utils), model weights (weights) and model top level 

(myproject). During the ML model to HLS4ML project conversion process, additional 

optimizations like pruning or quantization can be applied. 

C Simulation: During this step, a simulation of the C++ implementation of the machine learning 

model is run. C simulation can be used to quickly and easily validate the correctness and 

functionality of the C++ code prior to synthesizing the design. The simulation outputs are also 

used during the co-simulation step to verify the correctness of the RTL implementation. 

C Synthesis: While there are multiple commercially available HLS tools, the HLS4ML 

workflow primarily supports the Vivado HLS (now Vitis HLS) tool developed by Xilinx [12]. 

When the C synthesis step is run, the C++ implementation is converted into HDL—both in 

Verilog and VHDL—and utilization and timing reports are generated. The HLS workflow is the 

same for both languages, but results may differ due to implementation differences. The 

utilization estimates are generally an upper limit as the later Vivado synthesis step will further 
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optimize RTL and decrease utilization. The timing reports provide an estimate for the latency 

and initiation interval in clock cycles.  

 

 

Figure 8. File hierarchy of generated HLS4ML project directory. 

Co-simulation: During co-simulation, the RTL implementation of the model is simulated using 

user-provided inputs from the tb_data directory or using zeroes as inputs. In pipelined designs, 

inputs may be requested before previous transactions complete. In this case, the latency is 

measured as the number of cycles between the first data input and the last data output. The 

initiation interval (II) is defined as the number of cycles between data ready signals.  

Vivado Synthesis: The Vivado HLS tool outputs a set of HDL files that implement the model in 

RTL. These files can be used to generate a gate-level implementation by using Vivado synthesis, 

and later, an IP block. During this process, new resource utilization and timing reports are 

generated. These reports are more accurate estimations of the final values as they represent the 

actual gates utilized on the FPGA. 
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4 Convolutional Layer Implementations 

In this section, we will explain the design paradigm and structures used in HLS4ML. We present 

two different approaches to convolutional layer implementations on FPGAs. The two 

implementations examined in this section—the line buffer and the encoded convolution 

implementations—are architected by Dr. Philip Harris at MIT and Dr. Vladimir Loncar at 

CERN, respectively [13] [14].  

4.1 Streaming Design Paradigm 

The ability for field programmable gate arrays (FPGAs) to perform multiple operations in 

parallel make them well suited for neural network inference.  To exploit the parallel nature of 

FPGAs, we make use of stream processing wherein computations occur as data is produced or 

received. Stream processing contrasts batch processing, often used in graphics processing units, 

in which data is aggregated into batches and then processed all at once.  

Under the streaming paradigm, each module, which in our case is a neural network layer, is 

designed to perform computations on a single pixel. Since layers do not necessarily have the 

same consumption rate or latency, we are required to buffer values either in an array or in a 

stream. In this implementation, these buffers are implemented as first in, first out (FIFO) buffers 

in hardware. FIFO buffers only support sequential access and have additional constraints on the 

read (pop) and write (push) operations but use fewer resources than array-based buffers [14]. 

Vivado HLS provides directives called pragmas that are directly inserted in the C++ code and 

assist the compiler in optimizing the RTL design. In particular, the pragmas dataflow, pipeline, 

and stream are important for stream processing.  

The dataflow pragma directs the compiler to pipeline at a function-level and increases 

concurrency and overall design throughput. Ordinarily, functions are executed sequentially and 

block the execution of downstream functions. With the dataflow pragma, functions can overlap 

in operation if there are no data dependencies present. Suppose we have a two functions, A and 

B. If function A computes a value k, which is then used in function B, then there exists a data 

dependency between function A and B. In this case, function B cannot execute until function A 

has computed and written value k. 

The pipeline pragma applies instruction-level parallelism to reduce latency in loops. Pipelining a 

loop runs all operations concurrently and enables the loop to accept new inputs every N clock 

cycles, where N is called the initiation interval (II). 

The stream pragma is used to specify a variable as streaming and implements it using a FIFO, 

instead of random-access memory (RAM). Selection of an appropriate FIFO depth is important. 

A shallow FIFO buffer may cause issues by deadlocking the pipeline, a state where data cannot 

flow through the pipeline due to unfulfilled data dependencies. Too deep and hardware resources 

are wasted.  
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Under the streaming paradigm, inputs can be processed with low latency since operations can 

occur concurrently and data is constantly flowing through the system. However, this model also 

presents significant challenges in scheduling these operations as to not cause dependencies or 

deadlocking the pipeline. However, HLS tools can help automate the process. Through 

intelligent usage of directives, in the form of pragmas, users are able further tune the pipelining 

process. 

4.2 Convolutions on FPGAs 

A direct implementation of convolution requires six nested loops over an input feature map of 

size (H, W, C) for N output feature maps and convolutional kernel of size (J, K) [1]. We can 

model the computation for a single pixel of output Y as a function of the input X, weights Θ, and 

bias β [14]. In Equation (3), we compute a single pixel of output Y. The input feature map X has 

dimensions 𝐻 × 𝑊 × 𝐶, the weight matrix Θ has dimensions 𝐽 × 𝐾 × 𝐶 × 𝑁 and the bias vector 

β has dimension N [14].    

 

 ∀𝑣, 𝑢, 𝑛 ∈ [1, 𝑉] × [1, 𝑈] × [1, 𝑁] 

𝑌[𝑣, 𝑢, 𝑛] = β[𝑛] + ∑ ∑ ∑ 𝑋[𝑣 + 𝑗, 𝑢 + 𝑘, 𝑐]Θ[𝑗, 𝑘, 𝑐, 𝑛]

𝐾

𝑘=1

𝐽

𝑗=1

𝐶

𝑐=1

 
(3) 

 

Implementing the convolution described in Equation (3) would result in high latency due to the 

additional clock cycle penalty for entering or exiting a loop [14]. This penalty can be address by 

pipelining the loops via parallelization using the unroll directive. However, due to the size of the 

convolution layer loops, the size of the RTL implementation and resource utilization would 

become enormous [14].  

On other hardware platforms, like software processors (CPUs or GPUs), convolutions are 

mapped as General Matrix Multiplications (GEMMs). This mapping is often performed using 

algorithms like im2col or kn2row [15]. For example, in the im2col algorithm, if we consider each 

possible valid position of the convolutional kernel and each corresponding input window 

(patches), we can construct a kernel patch matrix by flattening the kernels into row vectors and 

stacking them and an input patch matrix by flattening each input window into a column vector 

and appending them as shown in Figure 9. Performing a dense multiplication of the kernel matrix 

and the input patch matrix yields an output patch matrix which contains all the output channels in 

row-major order. 
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Figure 9. Multiple Channel Multiple Kernel (MCMK) convolution using the im2col algorithm [15]. 

The approach taken by HLS4ML adapts the GEMMs approach, but instead of batch processing 

the entire matrix at once, we only compute the output for a single input window or single column 

vector at a time. This coincides with the streaming processing approach as we can construct the 

column vectors as each pixel is read and enables usage of existing matrix-vector multiplication 

routines in HLS4ML. 

4.3 Line Buffer 

The line buffer implementation is an additional implementation for HLS4ML convolutional 

layers introduced by this thesis. It uses a chain of shift registers to keep track of previously seen 

pixels and a sliding window to buffer the kernel elements. Additionally, a pair of counters is used 

to keep track of the position of the current pixel in the image.  

 

Figure 10. Color coded diagram demonstrating the buffer update process when a new pixel is read. We allocate two 

shift registers (red and blue) and an input window buffer (yellow). Reading pixel “a” causes pixel “b” and “c” to 

be popped from the shift register chain. Pixels “a”, “b”, and “c” are then used to update the input window. 
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Figure 10 demonstrates the two update operations that the line buffer performs each time a new 

pixel is read from the input streams. We name the two operations (1) shift line buffer and (2) 

kernel shift. 

We will assume that the input is a single channel to simplify the discussion, but for a multi-

channel input, the operations are simply replicated for each channel independently. We will also 

assume that the input is two-dimensional. A one-dimensional convolution using the line buffer 

implementation will perform similarly, but only requires the kernel shift operation. 

During the shift line buffer operation, the new pixel is pushed into the end of the shift register 

chain. This push operation causes all the contents of the shift register to shift by one element 

downstream. In the event where a shift register is full, the element at the head of the shift register 

will be popped. When this occurs, the popped pixel is pushed at the end of the next shift register 

in the chain. This process propagates through the entire shift register chain. 

 

At the same time, we perform the kernel shift operation. This operation updates the contents of 

the input window. In the previous operation, shift line buffer, each time a pixel is read from the 

input stream a push and pop operation are propagated through the shift register chain. The pixels 

that are popped from the shift registers are stacked with the input pixel into a column vector and 

are pushed as the rightmost column of the input window. Any pixels that are popped from the 

input window are dropped. Both operations are completed in a single clock cycle. 

 

Given a convolution with a kernel size of J × K and an input image of size H × W, the minimum 

required size of the shift register is an array of J - 1 shift registers of depth W. Each shift register 

keeps track of a row’s worth of pixels. Only J – 1 shift register are required as the input window 

also contains the last K pixels popped from the topmost shift register.  

 

Figure 11. Snapshot of two steps of the line buffer implementation. Previous state (left) and state after reading a 

pixel from the input stream (right). Input image is 6x6 and the kernel is 3x3. The pixels contained in the input 

window buffer are outlined in red.  
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Figure 11 illustrates both operations occurring in tandem. The input image is of size 6x6 and the 

convolution kernel is of size 3x3. When pixel a is read from the input stream, indicated by the 

transition from the left state to the right state in the figure, we push it into shift register #2. This 

causes pixel 0 to be popped from shift register #2 and then pushed into shift register #1. And 

subsequently, pixel Z is popped from shift register #1. The input window is updated with a 

column vector composed of the input pixel a and popped pixels 0 and Z. 

 

The output pixel can be computed when the pixel position pointers meet certain conditions. 

These pointers are updated after each iteration of reading the input stream and updating the 

internal state, regardless of whether an output pixel is computed. 

The conditions to compute an output pixel is modeled by the following set of equations: 

𝑋𝑝𝑖𝑥𝑒𝑙 > 𝐽 − 1 

𝑌𝑝𝑖𝑥𝑒𝑙 > 𝐾 − 1 

𝑚𝑜𝑑(𝑋𝑝𝑖𝑥𝑒𝑙 − 𝐽 − 1, 𝑋𝑠𝑡𝑟𝑖𝑑𝑒) = 0 

𝑚𝑜𝑑(𝑌𝑝𝑖𝑥𝑒𝑙 − 𝐾 − 1, 𝑌𝑠𝑡𝑟𝑖𝑑𝑒) = 0 

When these conditions evaluate to true, the output pixel is computed by performing a dense 

multiplication with the weight vector.  

4.4 Encoded Convolution 

The encoded convolution is the current implementation for convolution in the HLS4ML 

framework. It is a direct adaptation of the GEMMs approach discussed in Section 4.2, but only 

considers a single column of the input matrix, or input window, at a time. 

We assume that J = K (square kernel) and that the stride is less than the kernel width and height. 

In this implementation, we allocate a stream for each element in the kernel, resulting in an array 

of 𝐾2 streams. The depth of these streams is determined by a function of the output width and 

the kernel width. Each pixel in the input image is assigned a pre-computed 𝐾2 bit instruction 

which is used to mask which streams are updated during the update iteration. 
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Figure 12. Side-by-side comparison of the encoded buffer and the im2col input patch matrix. Encoded convolution 

constructs the input patch matrix using mask instructions but processes the matrix one column at a time. 

As shown in Figure 12, each column-wise slice of the stream array represents a single input 

window and a column of the input matrix. The mask instructions construct the input matrix by 

copying the input pixel to the streams—or matrix rows—to which it contributes. 

We compute the mask instruction based on all the possible input windows which contain the 

pixel. Figure 13 illustrates the mapping from mask indices to the instruction bit order and the 

computation of an example instruction. In this example, four different input windows contain the 

highlighted pixel. If we examine just the blue input window, we find that the pixel occupies 

position 1 in the window. Therefore, in the mask, we set position 1 to have a mask value of 1 to 

indicate that the highlighted pixel contributes to the stream corresponding to index 1. This 

process is repeated for each input window that contains the pixel.  

 

Figure 13. Bit mapping (left) and computation of a mask instruction (right). Colored boundaries indicate input 

windows that contain the highlighted pixel. The mask for a given pixel position is computed as the superposition of 

the pixel in each input window.  
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There are two operations performed every cycle when using the encoded convolution 

implementation: 

1. compute scaled indices 

2. compute output 

The compute scaled indices operation performs an instruction lookup based on the current pixel 

position. These instructions are computed during the HLS4ML model conversion process and are 

saved as part of the layer parameters. Since the image is of size H × W, the instructions array is 

HW elements long; however, this can be compressed significantly by removing duplicate 

instructions as shown in Figure 14.   

 

Figure 14. Compression of the instruction array with a 3x3 kernel and unit stride. The left image shows the binary 

mask instructions by pixel. Bolded regions indicate duplicated instructions. On the right image, we compress the 

duplicated instructions into a compressed array of size H’×W’. [14] 

During the instruction lookup, the pixel width and height indices are remapped to the 

compressed coordinates and are used to index into the instruction array. The bits of the 

instruction are organized in row-major order wherein the bit index increases as we move along a 

given row. 

After the instruction is retrieved for the current pixel, it is used to update the layer’s internal state 

during the compute output operation. Each bit in the instruction corresponds to a specific stream. 

In Figure 15, the decimal instruction is 43810 which corresponds to a binary value of 

1101101102. It masks streams 1, 4, and 7 and copies the input pixel to streams 2, 3, 5, 6, 8, and 9. 

Figure 15 show different slices of the internal buffer and their corresponding input windows 

overlaid on the input image in red. If we look at a slice in the middle of the buffer as shown in 

Figure 15b, we can see the incomplete column vector and its corresponding input window scope.  

When the last stream index is written, we can compute an output pixel by reading a column of 

pixels from the stream array and compute the dense multiplication with the weight matrix. This 
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approach does not need to perform complex comparison logic to determine when an output pixel 

can be computed as it is encoded as part of the precomputed instructions. 

 

(a) (b) 

Figure 15. Snapshot of the encoded convolution layer’s internal state. Figure 15a shows a fully populated input 

window slice and Figure 15b shows an incomplete input window slice. Input image is 6x6 and kernel size is 3x3. The 

current pixel’s instruction is shown in the top-left (110110110b = 438d). The right side shows the internal state for 

each stream. The red outline indicates the input window scope. The blue outlined pixel in the output indicates the 

current output pixel. 

4.5 Differences in Implementation 

While both implementations use different structures to buffer data—the line buffer uses shift 

registers, and the encoded convolution uses streams—they both synthesize to shift registers 

during gate-level implementation.  

The primary difference between the line buffer and encoded implementations is how they buffer 

all the pixels between the first and last element of the input window and the number of replicated 

pixels. The line buffer allocates   𝐾 –  1 buffers of depth W for the rows of the image, while the 

encoded implementation allocates 𝐾2 buffers of depth 𝐾(𝑊– 𝐾 + 1) for the elements in the 

input window. 

However, the line buffer implementation has a clear use case in scenarios where there is a non-

square kernel or when the convolutional stride exceeds the size of the kernel. In the more 

common case, with a square kernel and unit stride, the resource utilization and latency of the 

implementations are more important.  

In the next section, we will further examine the resource utilization and latency of both 

implementations in this scenario and make a recommendation for each implementation. 
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5 Performance 

In this section, we will discuss the metrics, test setup, and performance results from comparing 

the line buffer and encoded convolution implementations. 

5.1 Metrics 

There are two primary metrics by which we compare the performance of the two 

implementations: (1) resource utilization and (2) latency and initiation interval. 

5.1.1 Resource Utilization 

Resource utilization refers to how much of the on-chip resources the RTL or gate-level 

implementation uses. There are four different types of resources that are of particular interest in 

the utilization reports: flip-flops, lookup tables, digital signal processors, and block RAMs.  

• Flip-flops (FFs) are used to save a logical state between clock cycles. On a triggering clock 

edge, the flip-flop will take a snapshot of the logical value on its input and maintain it on the 

output until the next triggering clock edge. 

• Lookup tables (LUTs) implement combinational logic as a truth table. They come in several 

variants depending on the number of inputs. 

• Digital signal processors (DSPs) are used to perform arithmetic-intensive operations. A 

single DSP unit can perform a multiply-accumulate (MAC) operation in one clock cycle.  

• Block RAMs (BRAMs) are synchronous memory primitives that are used to store and fetch 

data. They have limited read and write ports that can be used to access the memory every 

clock cycle. 

In addition to the device primitives, there are HLS4ML parameters that affect the resource 

utilization: strategy, quantization and reuse factor (RF). An example configuration file is shown 

in Figure 16. 

 

Figure 16. An example YAML configuration file. This configuration will be optimized for resources, use a fixed 

point <16,6> data format and use a reuse factor of 256. 
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HLS4ML supports two different strategy configurations: resource and latency. The resource 

strategy is targeted towards larger models and optimizes for resource utilization by reusing 

existing hardware to complete operations in multiple stages. In contrast, the latency strategy 

optimizes for minimum latency by further unrolling (parallelizing) operations. However, this 

option is limited to small models as the unrolling process greatly increases resource utilization 

and can quickly reach the Vivado HLS partitioning limit. Changing the strategy also changes the 

underlying implementation of some layers.  

Quantization refers to the precision of the data type used for the inputs, weights and biases. In 

this study, we use fixed-point precision <16, 6> which is 16 bits wide and has 6 integer bits. 

Increasing precision (using more bits) can increase model performance at the cost of greater 

resource utilization.  

Reuse factor specifies how many times each DSP primitive is reused for dense multiplication 

operation. A reuse factor of 1 fully parallelizes the multiplication operation. However, for large 

models, low reuse factor is not feasible as the number of DSP units on the FPGA are limited. The 

DSP utilization is inversely proportional to the reuse factor; a reuse factor of 4 would use a 

quarter of the DSPs as a reuse factor of 1. 

5.1.2 Latency and Initiation Interval  

Latency is defined as the number of clock cycles that it takes an operation to resolve. This is 

measured as the time from when the first data element is fed into the FPGA to when the last 

result element is retrieved from the FPGA. 

Initiation interval (II) describes the number of clock cycles before a new set of inputs can be 

accepted. It is also the inverse of the throughput—one output per II clock cycles. The initiation 

interval is not necessarily the same as the latency due to function and loop pipelining and is often 

lower than the latency. 

5.2 Comparison Model 

We use the CNN model architecture described by Table 1 to benchmark the performance of both 

convolution implementations. In this study, we opted to use a dummy CNN architecture instead 

of existing CNNs, as our objective is to study the resource utilization of the convolutional layers. 

The size of the models, in terms of weights, is scaled by increasing the number of output feature 

maps N. The first Conv2D layer uses a 5 × 5 kernel and subsequent Conv2D layers use a 3 × 3 

kernel. All pooling layers use a pooling window of size 2 × 2. Lastly, we have a single fully-

connected layer with 8 output neurons. 
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Table 1. Benchmark model architecture. Models are scaled by increasing the number of output feature maps N. 

Each Conv2D layer uses unit stride and is grouped with BatchNorm and Leaky ReLU activation layers. Each 

convolution uses “same” padding which adds additional zero padding to maintain the input size. 

Layer Output Dimensions Parameters 

Input (16, 16, 3) 0 

Conv2D, 5x5 (16, 16, N) 80N 

Pooling2D, 2x2 (8, 8, N) 0 

Conv2D, 3x3 (8, 8, 2N) 18N2 + 10N 

Conv2D, 3x3 (8, 8, 2N) 36N2 + 10N 

Pooling2D, 2x2 (4, 4, 2N) 0 

Flatten 32N 0 

Dense 8 256N + 8 

Total Weights 54N2 + 356N + 8 

 

We examine four different configurations of the dummy model: N = 4, N = 8, N = 32, and N = 

64. These models range from a total of 2,256 learnable parameters to 243,336 learnable 

parameters. Models are named based on the number of output feature maps N of the first 

Conv2D layer and will be denoted as model<N>. 

For latency optimized convolution, we examine metrics for model4 and model8. Using latency 

optimized convolution for more than N = 8 with our CNN architecture exceeds the Vivado HLS 

partitioning limit of 4,096 unrolled loop iterations. 

For resource optimized convolution, we examine metrics for model8, model16, and model64. 

5.3 Testing Configuration  

For both implementations, the reuse factor is chosen to best match the optimizations strategy.  

• For the resource-optimized strategy, we choose an initiation interval target of 10,000 

cycles.  

• For latency-optimized strategy, we use the lowest reuse factor possible for the bottleneck 

(slowest) layer and adjust the remaining reuse factors to be less than or equal to the 

bottleneck layer’s initiation interval. 

All studies are performed using the io_stream IOType parameter and ap_fixed<16, 6> data 

types. We target a Xilinx Virtex Ultrascale+ VU9P FPGA module (part xcvu9p-flgb2104-2-i) 

with a clock speed of 5 nanoseconds. We use Vivado HLS 2019.2 as the backend for HLS.  

For the latency and initiation interval measurements, we examine both the RTL latency 

estimation after C synthesis and the co-simulation results for an all-zero input. The C synthesis 

estimates are based on the absolute longest path through the design. The co-simulation timing 
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metrics are actual measured values based on the simulation data set. We also measure the 

average transaction time by averaging the time between successive transactions. 

For resource utilization, we look at only the post-Vivado synthesis utilization reports. During 

Vivado synthesis, the RTL design is transformed into a gate-level representation, so post-

synthesis utilization estimates are more accurate than those at earlier stages. 

5.4 Results 

5.4.1 Resource-Optimized  

In this section, we compare the performance of both implementations on three different models: 

model8, model32 and model64. These three models have 6,232, 66,376, and 243,336 parameters, 

respectively. 

Table 2. Resource-optimized timing metrics. Latency and initiation interval are measured in clock cycles. Bolded 

values are the lower of the pair. Wall Clock latency is measured using a clock period of 5 ns. 

 Model8 Model32 Model64 

Timing Metrics Line Buffer Encoded Line Buffer Encoded Line Buffer Encoded 

Clock Period (ns) 4.299 4.299 4.366 4.366 4.374 4.374 

Clock Uncertainty 0.62 0.62 0.62 0.62 0.62 0.62 

Avg Transaction Time 9,545 9,609 9,545 9,609 9,545 9,609 

Cosim Latency 23,030 23,290 23,030 23,290 23,183 23,333 

Cosim II 13,487 13,683 13,487 13,683 13,640 13,726 

Csynth Latency 15,627 15,730 15,564 15,667 15,656 15,759 

Csynth II 14,801 14,901 14,801 14,901 14,801 14,901 

Wall Clock Latency (µs) 115.15  116.45 115.15  116.45 115.91 116.66 

 

In terms of latency, both implementations performed similarly with resource-optimized strategy. 

The difference in clock cycles is less than 1% of each other.   

Table 3. Resource-optimized utilization. Bolded values indicate the lower of the pair. SRLs are Shift Register LUTs. 

Bolded values are the lower of the pair. 

 Model8 Model32 Model64 

Resources Line Buffer Encoded Line Buffer Encoded Line Buffer Encoded 

LUT 20,749 30,082 85,663 110,625 189,609 261,718 

FF 30,230 34,495 95,669 101,200 229,161 244,617 

DSP 91 91 649 649 2,065 2,065 

BRAM 59 134 288 363 754 829 

SRL 3,904 7552 15,040 30,208 41,483 74,059 

Clock Period 3.431 3.516 3.692 4.698 3.513 4.627 
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However, if we look at the resource utilization, the difference between the two implementations 

becomes more pronounced. In terms of FF and LUTs, we observe an 30% reduction in LUTs and 

between 5% to 12% reduction in FFs. Since both implementations use the same reuse factors, 

there is no difference in DSP utilization. Across all three models, there is a difference in 

utilization of 75 BRAMs. Lastly, in terms of shift register LUTs (SRLs), we observe a 45% to 

50% reduction in utilization.  

5.4.2 Latency-Optimized  

In this section, we compare the performance of both implementations on two different models: 

model4 and model8. These two models have 2,256 and 6,232 weights, respectively.  

Since latency strategy fully parallelizes the convolutional layers, we can only examine the small models as the 

larger models—like model32 or model64—will not fit within the FPGA’s limited resources. Table 4 compares the 

timing metrics and  

Table 5 compares the resource utilization.  

Table 4. Latency-optimized timing metrics. Latency and initiation interval are measured in clock cycles. Bolded 

values are the lower of the pair. Wall Clock latency is measured using a clock period of 5 ns. 

 Model4 Model8 

Timing Metrics Line Buffer Encoded Line Buffer Encoded 

Clock Period (ns) 4.299 4.299 4.292 4.366 

Clock Uncertainty 0.62 0.62 0.62 0.62 

Avg Transaction Time 1,204 1,460 1,204 1,460 

Cosim Latency 2,694 3,086 2,657 3,102 

Cosim II 1,492 1,628 1,455 1,644 

Csynth Latency 1,746 1,748 1,706 1,708 

Csynth II 1,204 1,204 1,204 1,204 

Wall Clock Latency (µs) 13.47 15.43 13.28 15.51 

 

While the C synthesis latency and initiation interval estimates are the same for both models, we 

observe a significant reduction of approximately 12% in co-simulation latency and initiation 

interval. The average transaction time, as measured by the co-simulation timestamps, shows a 

reduction of 256 clock cycles or 18%.  
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Table 5. Latency-optimized utilization. SRLs are Shift Register LUTs. Bolded values are the lower of the pair. 

 Model4 Model8 

Resources Line Buffer Encoded Line Buffer Encoded 

LUT 51,912 58,287 142,113 152,616 

FF 31,771 33,188 67,801 73,456 

DSP 195 195 522 522 

BRAM 26 101 46 121 

SRL 2,048 3,776 3,904 7,552 

Clock Period 6.605 6.791 5.897 5.940 

 

In terms of resources, we observe a similar reduction in LUT and FF utilization, but to a lesser 

degree—about 10%—compared to the resource-optimized approach. Like the resource-

optimized strategy, the difference of 75 BRAMs is present as well. The longest path, as denoted 

by the clock period, exceeds the target of 5 nanoseconds, and will require a slower clock speed to 

meet timing.  

5.5 Super Wide Input 

For images with a significantly larger width than kernel, the encoded convolution approach uses 

K2 more buffer elements to keep track of previously read pixels.  

In these results, we examine the performance of both convolutional implementations on model 

with a super wide input. The model examined here is different from the previous test CNN 

models and is summarized in Table 6. For this model, we focus primarily on the resource 

utilization, particularly BRAM and SRLs, between the two implementations. 

Table 6. Super wide CNN architecture. 

Layer Output Dimensions Reuse Factor Parameters 

Input (1024, 32, 3) - - 

Conv2D, 3x3 (1024, 32, 32) 15 2,560 

Conv2D, 3x3 (1024, 32, 128) 12 37,504 

Pooling2D, 4x2 (256, 16, 128) - - 

Pooling2D, 4x2 (64, 8, 128) - - 

Pooling2D, 4x2 (16, 4, 128) - - 

Pooling2D, 4x2 (4, 2, 128) - - 

Flatten 1024 - 0 

Dense 8 8192 8,200 

Total Weights 48,264 
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We choose an architecture quickly increases the number of parameters of the convolutional layer 

and then reduces the spatial dimensions to avoid the Vivado HLS partitioning limit of 4096 

elements. 

Table 7. Resource-optimized resource utilization for super wide CNN model. 

 Super wide CNN 

Resources Line Buffer Encoded 

LUT 488,488 628,229 

FF 257,830 231,438 

DSP 3,394 3,394 

BRAM 10,940 10,941 

SRL 31,936 88,064 

Clock Period 3.681 5.113 

The total resource utilization after hardware synthesis is described by Table 7. We observe a 

23% reduction in LUTs, but a 11% increase in FF utilization. Overall, combined FF and LUT 

utilization decreased by 13%. The SRL usage decreases by 64% when using the line buffer 

implementation compared to the encoded implementation.  

We attribute the difference in FF utilization to the implementation of the Pooling2D layers—

which use the same computing algorithm as the convolutional layers. The encoded Pooling2D 

use fewer FFs and more LUTs than line buffer Pooling2D. Since the pooling layers are more 

numerous in our example architecture, their contribution has a greater effect on the overall 

utilization.  

5.6 Discussion 

The line buffer implementation shows a significant reduction in overall LUT and FF utilization 

compared to the current encoded convolution implementation. It also halves the shift register 

LUT (SRL) utilization.  

This difference in SRLs can be attributed to the difference in approach of both implementations. 

For each input pixel, the line buffer approach replicates the pixel at most twice: once for pushing 

into the shift register and another for updating the input window. On the other hand, the encoded 

convolution approach replicates pixels up to 𝐾2 times—or the number of elements in the 

kernel—which requires additional primitives for buffering. As we increase the size of the input, 

we observe that the difference in allocated SRLs grows. 

The difference in BRAMs—75 BRAM primitives—occurs in the implementation of the first 

Conv2D layer. Instead of using SRL primitives to implement the streams used to buffer pixels, 

Vivado implements each stream using a BRAM instance. Since the first Conv2D layer uses a 5 × 

5 kernel for 3 input feature maps, it generates a total of 75 streams to record the internal state. 

In terms of wall time, the line buffer implementation has a wall clock latency of 115 

microseconds when using resource optimizations and a wall clock latency of 13 microseconds 
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when using latency optimizations. These latency values can be further reduced by streaming 

multiple images instead of a single image at a time. 

Given the significant resource and potential latency savings, we recommend using the line buffer 

implementation for convolution operations.  

  



28 

 

6 Integration into HLS4ML 

In Section 3, we discussed HLS4ML’s role in streamlining firmware implementations of 

machine learning algorithms. In this section, we will discuss how we generate the HLS4ML 

projects from trained ML models and how the line buffer convolution implementation is 

integrated. 

6.1 HLS4ML modules 

The HLS4ML framework is divided into several modules which each perform a specific step of 

the model conversion. These modules are described below: 

Converters: The converters module contains a collection of Python modules that perform the 

conversion of the trained ML model to a HLS4ML model dictionary.  Each supported ML library 

(Keras, Tensorflow, ONNX, PyTorch) have separate files dedicated to converting the library’s 

model. 

Model: The model module defines the HLS4ML configuration, model, and layer definitions. The 

configuration class is used to read the YAML configuration and store the parameters internally. 

Parameters, like reuse factor or strategy, are stored in an internal attribute dictionary that is 

attached to the model object.  The model class builds and optimizes the layer graph and defines 

Python API routines.  

Each supported layer is implemented as a separate Python class. A layer class is composed of 

three functions: initialization, C++ configuration and template configuration. The initialization 

function assigns the layer-specific parameters such as shape, weights, bias, or reuse factor. The 

C++ and template configurations define how the layer appears in the generated C++ project and 

which parameters are defined in its C++ parameters, respectively. 

Templates: The templates module contains the configuration and function templates, as well as 

all the HLS4ML project files. These templates implement C++ structs with missing fields for 

each layer as shown in Figure 17. During the writing process, these fields are populated with 

layer-specific parameters and written to the HLS4ML project. This module also contains the 

library of header files for the HLS layer C++ implementations. 

Writer: The writer module generates the C++ project from the HLS4ML model object. It is 

composed of functions for writing various components of the C++ project such as the top-level 

project, testbench, weights and biases and parameters. The writer module operates in two stages. 

First, it copies the project skeleton from the template module into a new project directory. 

Second, it builds the C++ model layer-by-layer using the predefined layer templates and filling 

in missing values with layer parameters.  
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Figure 17. Pooling1D configuration template. The blue fields are populated with layer-specific parameters during 

the writing step. 

Report: The report module implements utility functions for fetching, parsing, and printing HLS-

generated report files. These report files can be found in the Vivado HLS project directory at a 

fixed path but can be more easily accessed by calling one of the API functions from this module. 

6.2 Convolution Integration 

Although the line buffer implementation seems to be the best implementation strategy across the 

board for the limited cases examined in this thesis, we chose not to completely replace the other 

approach. Instead, we added the line buffer as an alternative.  

To support both implementations of convolution, we add the ConvImplementation configuration 

parameter. This parameter, which is defined in the YAML configuration, supports the linebuffer 

or encoded values and is used to select at HLS4ML compile time which implementation is used. 

Internally, the ConvImplementation is written to the project’s parameters header file as a C++ 

enum class. Several modifications to the HLS4ML modules are required to implement this new 

parameter. 

hls_model.py: The YAML configuration is stored as a Python dictionary object during the 

converter step. However, HLS4ML only exposes parameters that are part of the HLSConfig class 

to the layer definitions. On initialization, the HLSConfig object initializes its fields and parses 

the YAML config to retrieve the parameters. We add three new fields to HLSConfig for the 

ConvImplementation parameter that define its value on model, layer type, or individual layer 

level. Additionally, we implement a “get” access function which returns the parameter value 

starting from the bottom of the hierarchy. These steps allow the YAML configuration parameters 

to be accessible within the HLS4ML framework. 

hls_layer.py and vivado_templates.py: Next, we define how the parameters are used. The 

ConvImplementation parameter affects the convolution, pooling, and separable convolution 

layers. For each of these layers, we add an implementation parameter to the template like that in 
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Figure 17. Similarly, in the layer definition, we use the accessor function to retrieve and set the 

implementation value from the HLS configuration. 

nnet_conv_stream.h: In the convolution stream header file, we define an enum class for the 

implementation parameter that has one of two values: linebuffer or encoded. For each layer’s 

header file, stored in the templates module, we add a wrapper function which calls one of the 

implementation top-level function based on the value of the layer’s implementation parameter.  

6.3 Optimization Functions 

To achieve the best utilization results for both implementations, we make optimizations to the 

reuse factor for each model in the benchmark model. This optimization is implemented by 

another configuration parameter, TargetCycles, which is used at model conversion to compute 

the reuse factor based on the layer’s dimensions. The TargetCycles parameter is discussed in 

further detail in Appendix B. 

HLS4ML also implements optimizations as functions in the optimizers submodule within the 

model module. These optimization functions are called on every node—or layer—in the model 

graph and must implement two functions: match and transform. The match function returns a 

Boolean value that determines whether the current node should be optimized using the current 

optimization function. The transform function implements the optimization routine and is called 

if the match function returns true. 

An example optimization function is the bn_fuse.py function. This function performs the batch 

normalization fuse operation which simplifies the batch normalization formula from Equation (2) 

when a batch normalization layer is paired with a convolutional layer. The batch normalization 

operation first normalizes the input and scales and shifts based on learned parameters γ and β. 

Since the normalization mean and standard deviation are fixed during inference, we can reduce 

the operations to a single bias vector.  

 𝑦𝑖 ⟵ γ�̂�𝑖 + β = γ
𝑥𝑖 − μ

𝐵𝑘

√σ𝐵𝑘
2 + ϵ

+ β =
γ

√σ𝐵𝑘
2 + ϵ

𝑥𝑖 − γ
μ

𝐵𝑘

√σ𝐵𝑘
2 + ϵ

+ β (4) 

 

The batch normalization can be reformulated into a single scalar and single bias vector as shown 

in Equation (4). The single scalar vector can be combined with the convolutional layer’s weights 

and so we require only a single bias vector to be stored. This reduces both the number of layers 

(from two to one) and the amount of storage, typically BRAMs, required to perform the batch 

normalization operation. 

To use an optimization function, it must also be imported and registered in the initialization file 

for the optimizer submodule. This will add it to the list of optimization functions that are called 

on the model graph during the optimization routine.  
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7 Conclusion 

In this thesis, we examine an alternate line buffer implementation for convolution layers in 

HLS4ML and compare its performance against the existing encoded implementation. We 

establish the necessity for efficient convolutions on FPGAs and introduce the HLS tools to 

achieve it. Using an example, scalable CNN architecture, we study the resource utilization and 

latency metrics of both implementations and show that, post Vivado synthesis, there is a 30% 

reduction in LUTs, 10% reduction in FFs and nearly 50% reduction in shift register LUTs when 

resource optimized. We also show a 12% decrease in latency and initiation interval using the line 

buffer implementation with latency optimizations. For single image streaming, we achieve a 

latency of 113 microseconds for resource optimized and 13 microseconds for latency optimized 

designs. Further, we describe the process of integrating a convolution implementation via a 

configuration parameter into the HLS4ML framework. 

 

8 Next Steps 

Reduction in resource utilization enables larger models to be implemented using the limited on-

board FPGA resources. Alternatively, models can be duplicated across FPGA die slices (or 

Super Logic Regions) if their utilization fits within the die’s resources. Each Super Logic Region 

(SLR) can operate independently and contain all the components necessary to run. Fitting models 

onto a single SLR best leverages spatial locality and the internal high-speed interconnects. This 

allows for higher overall processing throughput as multiple models can be run in parallel and 

independently.  

Resource surpluses can be used to increase parallelization by decreasing the reuse factor. This 

allows us to complete convolution operations in fewer clock cycles. However, the number of 

DSP units is limited by the number of multiplication operations in the layer. For large models, 

this is not an issue since the number of multiplications far exceeds the number of available DSP 

units. For small models, or more latency sensitive models, we might be interested in running 

faster than a fully parallelized implementation. 

One idea to further accelerate small models is to process more than one pixel at once. This would 

require that multiple input windows be processed simultaneously. We can adapt the line buffer to 

read and process multiple pixels by increasing the width of the input window buffer to hold 

multiple input windows.  

For example, if we consider two pixels at a time and a 3×3 kernel, we will need an input window 

buffer of size 3×4 pixels. For each pixel, we update the shift register chain and the input window 

buffer with new elements. Then, we need to extract each individual input window from the 

buffer and compute the dense multiplication result.  

With this strategy, we will spend a couple more clock cycles to prepare data but will spend the 

same number of cycles to compute the result since all dense multiplies can occur concurrently. 



32 

 

This will consume additional resources for each instance of a dense multiplier but can reduce the 

overall inference latency.  

9 Beyond the Line Buffer 

We present four areas for future optimization beyond the line buffer convolution: reuse factor, 

single stream processing, per-channel and per-layer quantization, and sparse convolution. 

While the TargetCycles parameter attempts to balance the initiation interval for all layers in a 

model, there are cases where the measured initiation interval in co-simulation is significantly 

different from the target. The exact formulation for the reuse factor when specifying 

TargetCycles is discussed in Appendix B and is based on empirical patterns observed in a few 

models. Further studies on a wider variety of models are necessary to better balance and more 

accurately achieve the targeted initiation interval in co-simulation and hardware 

implementations. 

Currently, the buffers between layers are implemented in hardware as an array of streams. 

However, this approach can use a significant amount of BRAM primitives as each individual 

stream is implemented as at least one BRAM. For CNN models with many output feature maps, 

BRAM utilization can drastically increase. One proposed approach to reduce the number of 

BRAMs is to use a single stream between layers by also packing channel data. The single stream 

takes clock cycles equal to the number of input feature maps to fully read the input. In cases 

where the reuse factor is much greater than the number of input feature maps, the increase in 

latency is not as significant. 

Quantization is an area of active research and, typically, refers to the reduction of precision used 

for model weights or activations. The reduction in precision often leads to poorer model 

performance, but also can lead to significant resource savings as fewer resources are necessary to 

store data. Research using quantization at different granularities, specifically on a per-layer or 

per-channel basis for convolution, has shown to reduce model size without significant 

performance loss and achieve significant speedups on CPU and DSP platforms [16]. 

Lastly, sparse convolutions are another area of active research for applications where 

convolutions operate on sparse inputs or pruned weights. Since most elements are zero, compute 

cycles are wasted computing trivial convolutions and performance suffers from extraneous 

memory accesses. Previous research has proposed architectures for improving the spatial 

locality, and input and output reuse for sparse operations [17] [18]. Implementing these 

architectures for sparse matrix multiplications has shown to result in lower latency and power 

savings compared to the traditional im2col approach. 
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Appendices 

Appendix A : Relevant Code 

• Master branch of HLS4ML: https://github.com/Keb-L/hls4ml  

• Convolutional Neural Network branch: https://github.com/Keb-L/hls4ml/tree/cnn_merge 

• Pull Request #332 contribution: https://github.com/fastmachinelearning/hls4ml/pull/332 

 

Appendix B : Optimal Reuse Factor 

Reuse factor is one of the most important tunable parameters in the HLS4ML configuration. It 

serves as a knob by which users can change the level of parallelization in the RTL 

implementation. However, it requires significant user involvement through manual tuning, after 

project generation, to achieve the best results. The reuse factor is defined as a global value that is 

applied equally to all layers, but not all layers execute with the same throughput. We can further 

optimize resource utilization without incurring any latency penalties by leveraging this fact. 

If we have two consecutive convolution layers, one with an 8×8 pixel output and a second with a 

4×4 output, then we expect the first layer to take four times as long to process its input pixels as 

the second layer. The first layer requires 64 dense multiplications, and the second layer requires 

16 dense multiplications to compute the result.  

The initiation interval of the RTL implementation is based on the layer that has the longest 

initiation interval. Therefore, given the previous example, the second layer spends three-quarters 

of its time waiting for the previous layer to generate an output. By increasing the reuse factor, we 

can slow the execution of the second layer to match the throughput of the first layer and 

minimize the number of idle cycles. This also reduces parallelization and uses fewer resources 

without impacting the overall initiation interval or throughput.  

Balancing reuse factor across layers within a model is the concept behind the TargetCycles 

parameter introduced by HLS4ML Pull Request #332. The TargetCycles parameter sets an 

initiation interval clock cycle target. For each supported layer (Convolutional and Dense), the 

reuse factor is estimated according to the Equation (5). The TargetCycles value is described by 

𝑇𝑇𝑎𝑟𝑔𝑒𝑡. We define the number of clock cycles required to move data around as 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑. And 

lastly, we define 𝑁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑠 as the number of dense multiplications calls in the layer.  

 
𝑅𝐹 =

𝑇𝑇𝑎𝑟𝑔𝑒𝑡 − Toverhead

𝑁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑠
 (5) 

 

Further studies are necessary to refine the computation of the optimal reuse factor. While the 

TargetCycles parameter has shown to significantly reduce resource utilization, it does not 

necessarily achieve the target initiation interval.  

https://github.com/Keb-L/hls4ml
https://github.com/Keb-L/hls4ml/tree/cnn_merge
https://github.com/fastmachinelearning/hls4ml/pull/332

