
Automating the Layout of Reconfigurable Subsystems Via Template
Reduction

Shawn Phillips, Akshay Sharma, Scott Hauck

Department of Electrical Engineering
University of Washington, Seattle, WA

{phillips, akshay, hauck}@ee.washington.edu

1. Introduction

In the traditional FPGA design space there is a
limit to the number and variety of FPGAs that
can be supported – large NREs due to custom
fabrication costs and design complexity means
that only the most widely applicable devices are
commercially viable. However, a unique
opportunity exists in the system-on-a-chip (SoC)
design space. Here, an entire system, including
memories, processors, DSPs, and ASIC logic are
fabricated together on a single silicon die.
FPGAs have a role in this design space as well,
providing a region of programmability in the
SoC that can be used for run-time
reconfigurability, bug-fixes, functionality
improvements, multi-function SoCs, and other
situations that require post-fabrication
customization of a hardware subsystem. This
gives rise to an interesting opportunity: since the
reconfigurable logic will need to be custom
fabricated along with the overall SoC, that
reconfigurable logic can be optimized to the
specific demands of the design.

The goal of the Totem project [1, 2, 3] is to
reduce the design time and effort in the creation
of a custom reconfigurable architecture. The
architectures that are created by Totem are based
upon the applications and constraints specified
by the designer. Since the custom architecture is
optimized for a particular set of applications and
constraints, the designs are smaller in area and
perform better than a standard FPGA while
retaining enough flexibility to support the
specified application set, with the possibility to
support applications not foreseen by the
designer.

2. Totem

The goal of the Totem project is to create tools

to generate domain-specific reconfigurable
architectures based on designers' needs. One
way the Totem project can achieve its goal is to
remove as much flexibility as possible from a

reconfigurable device, while still supporting the
particular algorithms or domain that concerns a
designer. While the gains of removing unneeded
overhead are apparent, creating a custom
reconfigurable architecture is a time consuming
and costly endeavor; thus, another goal of the
Totem project is to automate the creation of
these custom architectures. The overall Totem
design flow can be broken into three parts: high-
level architecture generation, VLSI layout
generation, and place-and-route tool generation.

The focus of this work is the automatic
generation of mask layouts, which is performed
by the VLSI layout generator. The layout
generator will receive, as input from the high-
level architecture generator, the Verilog
representation of the custom circuit. We are
currently investigating three possible methods of
automating the layout process: standard-cell
generation [1], circuit generators, and template
reduction. Here we present the template
reduction method.

3. Template Reduction Method

 The idea behind template reduction is to start
with a full-custom layout that provides a superset
of the required resources, and the removal of
those resources that are not needed by a given
domain. The goal of the Template Reduction
Method is not only the removal of unneeded
routing resource, but also the removal of
unneeded functional units.

During template reduction, the removal of
resources is done by automatically editing the
layout to eliminate the transistors and wires that
form the unused resources, as well as
automatically replacing programmable
connections with fixed connections or breaks for
flexibility that is not needed. In this way, we can
get most of the advantage of a full custom
layout, while still optimizing towards the actual
intended usage of the array.

Template reduction has been broken into three
tasks. The first is the creation of a feature rich

macro cell, which is used as an initial template
that will be reduced and compacted to form the
final circuit. The second is the creation of the
reduction list that identifies the resources that
should be removed. The final task is the
implementation of the reductions on the
template, followed by the compaction of the
resultant circuit.

4. Results on Benchmarks

We are using five sets of netlist to evaluate the
template reduction method. All of the netlist sets
have been compiled using the RaPiD compiler
[4]. The five benchmark sets are:
• Radar – used to observe the atmosphere using

FM signals
• Image Processing – a minimal image

processing library
• FIR –six different FIR filters, two of which

time-multiplex use of multipliers
• Matrix Multiply – five different matrix

multipliers
• Sorters – two 1D sorting netlists and two 2D

sorting netlists
The template reduction method is able to

reduce the number of functional units by an
average of 45%, and the routing resources by an
average of 75%. Through these reductions, we
have found that the template reduction method
produces circuits that are on average 53.4%
smaller and 13.9% faster than the unreduced
template.

5. Conclusions and Future Work

With the advent of SoCs, it is now possible to
reduce the NRE cost of creating custom
reconfigurable devices. This presents some
interesting possibilities for high performance
reconfigurable circuits that are targeted at
specific application domains, instead of random
logic. Automation of the design flow is required
if these new custom architectures are to be
designed in a timely fashion.

The template reduction method is able to
leverage full custom designs, while still
removing unneeded resources. This enables it to
create circuits that perform at or better than that
of the initial full custom template. In this work
we have shown that the automation of the layout
portion of the design flow is possible using a
template reduction methodology. Through
profiling we have created a feature rich macro
cell as our template. We have found that the

template reduction method produces circuits that
are 53.4% smaller and 13.9% faster than the
unreduced template.

It is becoming evident that no single method is
able to produce architectures that meet a
designer’s constraints in all cases. Template
reduction works well when a specified
architecture is a subset of an existing full-custom
template, and thus is able to leverage the benefits
of full-custom design. The standard-cell method,
on the other hand, can support any arbitrary
FPGA design, even though circuits created by
this method have decreased performance and an
area penalty when compared to full-custom
designs.

In future work we will be investigating the
circuit generator method, which will complement
the template reduction and standard-cell
methods. The combination of these three
methods will provide a wide spectrum of
approaches, with each being the appropriate
method in different situations. In the end, we
hope to provide designers with the ability to
create reconfigurable devices that were
historically the province of ASICs.

6. Acknowledgements

The authors would like to thank the RaPiD
group, especially Carl Ebeling and Chris Fisher,
for the RaPiD-I layout used in this research. We
also are indebted to Larry McMurchie for
support on the Cadence tool-suite. This work
was funded in part by grants from NSF and
NASA. Scott Hauck was supported in part by an
NSF CAREER award and an Alfred P. Sloan
Research Fellowship.

7. References

[1] S. Phillips, S. Hauck, "Automatic Layout of
Domain-Specific Reconfigurable Subsystems for
System-on-a-Chip", ACM/SIGDA Symposium on
Field-Programmable Gate Arrays, pp. 165-173, 2002.
[2] K. Compton, S. Hauck, "Totem: Custom
Reconfigurable Array Generation", IEEE Symposium
on FPGAs for Custom Computing Machines
Conference, 2001.
[3] K. Compton, A. Sharma, S. Phillips, S. Hauck,
"Flexible Routing Architecture Generation for
Domain-Specific Reconfigurable Subsystems",
International Conference on Field Programmable
Logic and Applications, pp. 59-68, 2002.
[4]. D. C. Cronquist, P. Franklin, S.G. Berg, C.
Ebeling, "Specifying and Compiling Applications for
RaPiD", IEEE Symposium on FPGAs for Custom
Computing Machines 1998

