
STATIC VERSUS SCHEDULED INTERCONNECT IN
COARSE-GRAINED RECONFIGURABLE ARRAYS

Brian Van Essen,† Aaron Wood,‡ Allan Carroll,† Stephen Friedman,† Robin Panda,‡

Benjamin Ylvisaker,† Carl Ebeling,† and Scott Hauck‡

†Dept. of Computer Science and Engineering and ‡Dept. of Electrical Engineering
University of Washington, Seattle, WA 98195

†email:{vanessen, allanca, sfriedma, ben8, ebeling}@cs.washington.edu
‡email: {arw82, robin, hauck}@ee.washington.edu

ABSTRACT

Spatially-tiled architectures, such as Coarse-Grained Re-
configurable Arrays (CGRAs), are powerful architectures
for accelerating applications in the digital-signal processing,
embedded, and scientific computing domains. In contrast
to Field-Programmable Gate Arrays (FPGAs), another com-
mon accelerator, they typically time-multiplex their process-
ing elements and are word rather than bit-oriented. These
differences lead us to re-examine some of the traditional
architecture choices made for FPGAs as we move to these
coarser-granularity architectures. In this paper we study the
efficiency of time-multiplexing global interconnect as archi-
tectures scale from single-bit to multi-bit datapaths.

Using the Mosaic infrastructure, we analyzed the design
trade-offs involved in static vs. time-multiplexed routing for
global interconnect channels, as well as the benefit of in-
cluding a dedicated bit-wide control interconnect to supple-
ment the word-wide datapath of a CGRA. We show that a
time-multiplexed interconnect is beneficial in these coarse-
grained systems, reducing the area-energy product to 0.32×
the area-energy product of a fully static interconnect. We
also show that for our benchmarks, which include single-bit
control logic, providing both word and bit-wide interconnect
resources further reduces the area-energy product to 0.94×
that of an exclusively word-wide interconnect.

1. INTRODUCTION

The continued scaling of transistor densities has made pro-
grammable spatial processors, like Field-Programmable Gate
Arrays (FPGAs), increasingly attractive for a variety of com-
putationally demanding applications. Due to the high degree
of parallelism available in this family of chips, it is possible
to achieve high performance and energy efficiency relative
to conventional processors.

Though FPGA-based designs achieve impressive results,
application-specific integrated circuits (ASICs) still enjoy a

wide performance gap in terms of logic density, clock fre-
quency, and energy efficiency [1]. As many have observed,
one major inefficiency in FPGAs is that the majority of logic
and routing resources are configured at the bit granularity,
even though many applications naturally represent data in
8-, 16-, or 32-bit words. This observation has led to the de-
sign and study of a wide variety of coarse-grained reconfig-
urable arrays (CGRAs), including RaPiD [2], ADRES [3],
MATRIX [4], Tartan [5], MorphoSys [6], and HSRA [7].

Coarse-Grained Reconfigurable Arrays are composed of
a sea of word-wide processing elements (PEs), distributed
storage, and interconnect resources. They are similar to
FPGAs, but with ALUs as the fundamental compute ele-
ment instead of LUTs. Another important difference is that
most CGRAs allow the configuration of compute (and pos-
sibly interconnect) resources to change on a cycle-by-cycle
basis. Supporting this time-multiplexing requires small, dis-
tributed configuration memories and some control circuitry,
which are amortized across the word-wide resources. Time-
multiplexing in this fashion is less attractive for FPGAs be-
cause each programming bit in an FPGA controls less logic
than in a CGRA. Thus, the additional configuration memory
would consume a large portion of the chip.

This paper addresses the question of how flexible the in-
terconnect should be in CGRAs. We focus on the intercon-
nect because it accounts for a large portion of both the area
and energy consumption in spatial architectures. At one ex-
treme, FPGA-like architectures require that interconnect re-
sources be configured in exactly one way for the entire run
of an application. At the other extreme are architectures that
allow every interconnect resource to be configured differ-
ently on a cycle-by-cycle basis. In this paper we investigate
this tradeoff, comparing architectures at both extremes and
mixtures that combine each of these styles of resources.

The optimal tradeoff between scheduled and static re-
sources will likely depend on the word-width of the inter-
connect, since the overheads associated with some techniques

Fig. 1. CGRA Block Diagram - Clusters of 4 PEs connected
via a grid of switchboxes.

may be much larger in a 1-bit interconnect than with a 32-
bit interconnect. To explore this possibility we consider
the area, power, and channel width at different word-widths
and maximum hardware supported initiation interval (II), as
well as investigating hybrid bitwidth architectures that have
a mixture of single-bit and multi-bit interconnect resources.

1.1. Architecture of a CGRA

Like most spatial architectures, CGRAs are tiled and can be
hierarchically clustered. For our studies, compute and stor-
age elements are grouped into processing elements (PEs),
which are then interconnected to form clusters. The clusters
use a global interconnect to communicate. Figure 1 shows
a simple picture of this hierarchical structure using a grid
interconnect. Spatial arrangements for PEs and clusters are
most commonly meshes or grids [3, 5, 6], which we explore;
other patterns, such as linear arrays [2] and fat-pyramids [7],
have also been studied.

1.2. Related Work

Recent FPGA architectures include coarse-grained compo-
nents, such as multipliers, DSP blocks and embedded mem-
ories. This trend blurs the line between FPGAs and CGRAs,
but even the most extreme commercial architectures still de-
vote most logic resources to single bit components, and to
our knowledge no commercial FPGA has word-wide inter-
connect or a scheduled (time-multiplexed) configuration sys-
tem.

The interconnects of some early CGRA architectures,
such as RaPiD [2] and Matrix [4], combined the concepts of
static configuration and scheduled switching to some extent.
However, in neither project was there a systematic study of
the optimal mixture of the two kinds of resources.

The ADRES [3] and DRESC [8] projects are very sim-
ilar to the Mosaic project. They provide architecture ex-
ploration and CGRA-specific CAD algorithms, but ADRES
studies were limited to time-multiplexed interconnect in much
smaller CGRA fabrics. In [9], the area and energy trade-
offs between various interconnect patterns are studied. The
experiments presented here instead focus on the balance of
scheduled and static resources, rather than topology.

2. THE MOSAIC INFRASTRUCTURE

The goal of the Mosaic project [10] is to explore architec-
ture, compiler, and programming language challenges re-
lated to CGRAs. To support these explorations, we are cre-
ating tools for developing CGRA applications, architectures,
compilers, and measurement frameworks. The system is
composed of the Macah language and compiler [11], the
SPR CGRA mapping tool [12], an architecture generator
plugin for Electric VLSI [13], and a Verilog-based simula-
tion system using post-layout SPICE simulation timing and
energy data.

2.1. Benchmarks

Table 1 lists our benchmark set. We have carefully con-
structed inner loops in Macah so that each application has
an interesting kernel with sufficient parallelism, which was
then mapped through the Mosaic tool chain. The inner loops
are software pipelined [15], and the Min II column indicates
the minimum number of clock cycles between starting con-
secutive loop iterations (i.e. initiation interval), which is de-
termined by the largest loop carried dependence. The other
parameters provide insight into the size and composition of
each benchmark, e.g. LiveIns is the number of scalar con-
stants loaded into the kernel.

The applications in our interconnect study represent the
computationally intensive cores of various algorithms used
in DSP, embedded, and scientific computing. We include a
FIR filter, 2D convolution, dense matrix multiplication, K-
means clustering, a matched filter, CORDIC, and a heuristic
motion estimator.

2.2. Compilation

To rapidly explore a variety of architectures, we program-
matically compose Verilog primitives to fully specify an ar-
chitecture instance. The resulting composition is denoted a
datapath graph and contains all information needed to per-
form placement, routing, and power-aware simulation.

Table 1. Benchmark Applications and Simulated Architectures
DFG operations # CGRA

Application Min II ALU Memory Accesses Stream IO LiveIns PE clusters Grid Size
64-tap FIR filter 2 199 0 1 195 64 10x10
240-tap FIR filter (Banked Mem) 6 284 48 1 177 30 7x8
2D convolution 4 180 6 1 189 30 7x8
8x8 Matrix multiplication 4 361 0 64 218 36 8x8
8x8 Matrix mult. (Small Stream) 9 402 0 16 224 16 6x6
K-means clustering (K=32) 7 525 32 33 189 25 7x7
Matched filter 4 193 30 13 88 20 6x7
Smith-Waterman 5 342 11 5 109 25 7x7
CORDIC 2 178 0 5 46 30 7x8
8×8 Motion estimation [14] 5 465 16 9 189 30 7x8

The compiled Macah program for our infrastructure is
a dataflow graph representing the computation that will be
mapped to a particular hardware instance. Mosaic maps the
dataflow graph onto the CGRA’s datapath graph with the
SPR CGRA mapping tool [12]. SPR is able to handle a mix-
ture of time-multiplexed and statically configured resources,
which allow us to evaluate our different architectural param-
eters using the same benchmarks. This resulting CGRA con-
figuration is then executed in a Verilog simulator.

2.3. Circuit Area and Energy Modeling

Recognizing that the energy consumption of a logic struc-
ture can be highly dependant on the input data sequence
[16], we use simulation-driven power modeling. We char-
acterized the fundamental interconnect circuits from full-
custom layouts in a 65nm process. With this approach, we
provide realistic values for a particular process and, more
importantly, comparable results for different topologies, al-
lowing us to assess architectural decisions.

We use the Verilog PLI to account for energy consump-
tion as the simulation progresses. The values accumulated
are derived from our transistor-level circuit models. The
high level of detail for these simulations requires long run-
times. Currently, simulating a large highly utilized architec-
ture for a few tens of thousand clock cycles can take as long
as 20 hours. To reduce this burden we scale the input sets
down to small, but non-trivial, sizes. Applications that are
well-suited to CGRAs tend to be regular enough that the be-
havior of a kernel on a small set of inputs is representative
of the behavior on much larger set of inputs.

3. EXPERIMENTAL SETUP

The channel width of our CGRA, like an FPGA, is the num-
ber of independent communication channel pairs between
clusters of PEs. Thus, on a 32-bit architecture one chan-
nel (or “track”) contains 32 wires, and a channel pair has
two unidirectional tracks, oriented in opposite directions. A

cluster0

W1
S3 (non-terminal)

S1 (terminal)

N2 (non-terminal)
N0 (terminal)

E0

cluster0

S3 (non-terminal)
S1 (terminal)

N2 (non-terminal)
N0 (terminal)

E1

E3

E2

W0

W2

W3

phase
phase

Scheduled Static

or

Fig. 2. Block diagram of a horizontal slice of a switchbox
with channel span 2. Shaded grey boxes represent configu-
ration SRAM.

primary goal of this study is to understand the tradeoff be-
tween required minimum channel width and the flexibility
of each channel, i.e. is it statically configured or scheduled.
A statically configured channel is like an FPGA intercon-
nect track; it is configured once for a given application. A
scheduled channel changes its communication pattern from
cycle to cycle of execution, iterating through its schedule of
configurations. In our architectures the scheduled channels
use a modulo-counter and a cyclic-schedule.

To explore the benefits versus overhead of these sched-
uled interconnect channels, we mapped and simulated the
benchmarks described in Table 1 to a family of CGRAs.
These architectures vary in the ratio of scheduled to stati-
cally configured interconnect channels.

3.1. Architecture Setup

For this study we explore clustered architectures with a grid
topology. Within each CGRA family there was a common
set of compute (or PE), IO, and control clusters. The clus-

ters were arranged in a grid, with PE clusters in the center
and IO and control clusters on the outer edge . Computing
and interconnect resources within the cluster were sched-
uled, and all scheduled resources supported a maximum II
of 16, unless otherwise stated.

The datapath of the PE compute cluster contains 4 arith-
metic and logic units (ALUs), 2 memories, 2 sets of load-
able registers for live-in scalar values, and additional dis-
tributed registers. The control path contains 2 look-up tables
(LUTs), 2 flipflops for boolean live-in values, and additional
distributed flipflops. Given our focus on the interconnect,
the PE cluster is simplified by assuming that the ALU is
capable of all C-based arithmetic and logic operations re-
quired, including multiplication and data dependent multi-
plexing. The components in the cluster are connected to
each other and a global interconnect switchbox via a sched-
uled crossbar. Refining the intra-cluster logic and intercon-
nect resources, will be the subject of future work.

The IO clusters are designed to feed data to and from
the computing fabric. Each IO cluster contains 4 stream-in
and 4 stream-out ports, one set of loadable registers, a set of
word-wide and single-bit scan-able registers than can trans-
fer live-out variables to a host processor, and distributed reg-
isters for retiming. As with the PE cluster, all components
are connected via a scheduled crossbar that also provides ac-
cess to the associated switchbox. Four of the IO clusters are
replaced with control clusters that are the superset of a PE +
IO cluster with auxiliary logic that provides loop control.

Each cluster is connected to a switchbox, which are them-
selves connected to form the global cluster-to-cluster grid.
Communication between clusters and switchboxes, and be-
tween switchboxes, use single driver, unidirectional channel
pairs [17]. The switchbox topology follows a trackgraph-
style pattern. All terminal (i.e. sourced) tracks are regis-
tered leaving the switchbox. Additionally, connections that
go into the cluster, or between horizontal and vertical chan-
nels, are registered leaving the switchbox. All interconnect
channels had a span of 2 – they were registered in every
other switchbox. The switchbox layout is shown in Figure
2, based on Figure 5 from [17]. The statically configured
channels replace the configuration SRAM bits shown in the
bottom of Figure 2 with a single SRAM bit.

In order to determine the length of wires in the global
interconnect, we use a conservative estimate of 0.5mm2 per
cluster, based loosely on a CU-RU pair in the Ambric archi-
tecture [18]. The area consumed by the switchbox is com-
puted from our circuit models.

3.2. Benchmark Sizing

Our benchmarks were designed with parameters to adjust
the degree of parallelism, the amount of local buffering, etc.
Each parameter was then adjusted to a reasonable value that
balanced application size versus time to place and route the

design and time to simulate the application on an architec-
ture. The circuit was mapped to the smallest near-square
(NxN or NxN-1) architecture such that no more than 80% of
the ALUs, memories, streams and live-ins were used given
the min II of the application. The resulting compilation
and simulation times for applications were 30 minutes to 20
hours, depending on the complexity of the application and
the size of the architecture.

3.3. VLSI Circuit Modeling and Simulation

Our VLSI layouts of components used to build the intercon-
nect topology provide realistic characterization data for our
study. Each component provides area, delay, load, slew rate,
inertial delay, static power, and dynamic energy for model-
ing purposes. Area and static power estimates are based on
a sum of the values for the individual components required.
The delay for the longest path between registers, is used to
estimate a clock period for the device. Registers that are
unused in the interconnect are clock-gated to mitigate their
load on the clock tree; statically for single-bit channels and
word-wide static channels, and on a cycle-by-cycle basis for
word-wide scheduled channels.

For simulation of the 8-, 16- and 24-bit interconnect, the
architecture was regenerated with these settings. However,
our ALU models remained 32-bit and we did not rewrite the
benchmarks for correct functionality with 8-, 16-, or 24-bit
widths. Instead, we only recorded transitions on the appro-
priate number of bits, masking off the energy of the upper
bits in the interconnect. This approximated the interconnect
power for applications written for narrower bit widths.

3.4. Static versus Scheduled Channels

Scheduled interconnect channels can be reconfigured on a
cycle-by-cycle basis, which carries a substantial cost in terms
of configuration storage and management circuitry. Static
configuration clearly offers less flexibility, but at a lower
hardware cost. We explore the effects of different mixtures
of scheduled and static channels by setting the scheduled-
to-static ratio and then finding the minimum channel width
needed to map a benchmark. For example, with a 70%/30%
scheduled-to-static split, if the smallest channel width K-
means mapped to was 10 channels, 7 would be scheduled
and 3 static.

We measure the area needed to implement static and
scheduled channels, and the energy dissipated by those cir-
cuits during the execution of each benchmark. At a given
channel width, lower scheduled-to-static ratios are better area-
wise. However, as we decrease the scheduled-to-static ra-
tio, we expect that the number of tracks required will in-
crease, thus increasing the area and energy costs. Note that
our placement and routing tools [12] support static-sharing,
which attempts to map multiple signals onto static tracks in

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
o

rm
al

iz
ed

 t
o

 1
0

0
%

 S
ta

ti
c

In
te

rc
o

n
n

ec
t

Percent Scheduled Channels

Energy

Area

Channel Width

Area-Energy

Fig. 3. Area, channel width, energy, and area-energy metrics
as 32-bit interconnect becomes more scheduled.

different phases of the schedule; the signals have to config-
ure the track in the same way so that a single configuration
works for all signals that share a track.

4. RESULTS AND ANALYSIS

We divide our results into four sections, each focusing on
a different issue in the interconnect. We start with a 32-
bit interconnect and adjust the scheduled-to-static channel
ratio. Next we vary the interconnect width down to 8-bit.
From there we look at the impact of maximum II supported
by the hardware. The last section explores the addition of
single-bit interconnect resources for control signals.

To generate the data, we ran each benchmark with three
random placer seeds and used the result that gave the best
throughput (lowest achieved II), followed by smallest area
and lowest energy consumption. By using placements with
the same II across the entire sweep, the performance is in-
dependent of the scheduled-to-static channel ratio. The data
was then averaged across all benchmarks.

4.1. Interconnect Scheduled/Static Ratio

Intuitively, varying the ratio of scheduled-to-static channels
is a resource balancing issue of fewer “complex” channels
versus more “simple” channels. Depending on the behav-
ior of the applications, we expect that there will be a sweet
spot for the scheduled-to-static ratio. Figure 3 summarizes
the results for channel width, area, energy, and area-energy
product when varying the ratio of scheduled-to-static chan-
nels in the interconnect. Each point is the average across
our benchmark suite for the given percentage of scheduled
channels. The data is for 32-bit interconnects and hardware
support for II up to 16. All results are normalized to the
fully static (0% scheduled) case. We observe improvements
in all metrics as the interconnect moves away from static
configuration, all the way to 100% scheduled. By making

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
re

a-
E

n
er

g
y

N
o

rm
al

iz
ed

 t
o

 1
0

0
%

 S
ta

ti
c

In
te

rc
o

n
n

ec
t

Percent Scheduled Channels

32-bit DPG

24-bit DPG

16-bit DPG

8-bit DPG

Fig. 4. Area-energy product for different datapath word-
widths, as the interconnect becomes more scheduled.

the interconnect more flexible, the number of required chan-
nels is reduced to 0.38×, which translates into 0.42× area
and 0.75× energy consumption. This is despite the area and
energy overhead required to provide the configurations to
these scheduled channels. Overall, the area-energy product
is reduced to 0.32× that of the fully static interconnect.

4.2. Datapath Word-Width and Scheduled/Static Ratio

For a 32-bit interconnect, Figure 3 shows that having en-
tirely scheduled channels is beneficial. However, for lower
bitwidths, the overhead of scheduled channels is a greater
factor. Figure 4 shows the area-energy trends for archi-
tectures with different word-widths. We observe that fully
scheduled is best for all measured bitwidths, but as the data-
path narrows from 32-bits down to 8-bits the advantage of
a fully scheduled interconnect is reduced. However, it is
still a dramatic improvement over the fully static baseline.
Our previous result for a 32-bit interconnect showed a 0.32×
reduction in area-energy product. With the narrower inter-
connect, we see reductions to 0.34×, 0.36×, and 0.45× the
area-energy product of the fully static baseline for 24-, 16-
and 8-bit architectures respectively.

To explain this trend, we first look at the energy con-
sumed when executing a benchmark in more detail, followed
by the area breakdown of the interconnect. Figure 5 shows
the energy vs scheduled-to-static ratio in the categories:

• signal - driving data through a device or along a wire
• cfg - reconfiguring dynamic multiplexors and static

and dynamic energy in the configuration SRAM
• clk - clocking configured registers
• static - static leakage (excluding configuration SRAM)

There are two interesting behaviors to note: first, the
static channels have less energy overhead in the configura-
tion system. So, if two CGRAs have the same number of
channels then the energy consumed will go down as the per-
centage of static channels increased. However, the overhead

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 30 50 70 100 0 30 50 70 100

E
n

er
g

y
 (

µ
J)

Percentage Scheduled Channels

signal energy

cfg energy

clk energy

static energy

8-bit DPG32-bit DPG

Fig. 5. Average energy for global routing resources.

of a scheduled channel is small at a datapath width of 32-
bits, and so the energy reduction is small. The percentage
of the energy budget consumed by configuration overhead
does increase dramatically at narrower datapath widths.

The second behavior is a non-obvious side-effect of shar-
ing static channels, as detailed in [12]. When multiple sig-
nals share a portion of a static interconnect they form a large
fanout tree that is active in each phase of execution. As a
result, each individual signal is driving a larger load than
necessary, and so the additional dynamic energy consumed
outweighs the energy saved due to reduced overhead. This
behavior is one of the contributing factors that forces the sig-
nal energy to go up as the interconnect becomes more static.

Figure 6 details the breakdown of the interconnect area
vs. the scheduled-to-static ratio. As with energy overhead,
we observe that the configuration system’s area is tiny for
fully static systems, and a small portion of the fully sched-
uled 32-bit interconnect. However, at narrower datapath
widths, the area overhead of the configuration system ac-
counts for a non-trivial portion of the interconnect, up to
19% for the fully scheduled case. All other areas are di-
rectly dependent on the channel width of the architecture,
and dominate the configuration area. As channels become
more scheduled, the added flexibility makes each channel
more useful, reducing the number of channels required.

In summary, Figures 4, 5, and 6 show that the over-
head required to implement a fully scheduled interconnect
is reasonably small. However, as the bitwidth of the data-
path narrows, those overheads become more significant. At
bitwidths below 8-bit a static interconnect will likely be the
most energy-efficient, though a scheduled interconnect is
likely to be the most area-efficient until we get very close
to a single-bit interconnect.

4.3. Hardware Supported Initiation Interval

Each architecture has a maximum initiation interval, set by
the number of configurations for the CGRA that can be stored
in the configuration SRAM. For an application to map to the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 30 50 70 100 0 30 50 70 100

A
re

a
(m

m
2
)

Percentage Scheduled Channels

cfg area

mux area

register area

driver area

8-bit DPG32-bit DPG

Fig. 6. Average area for global routing resources.

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

A
re

a-
E

n
er

g
y

N
o

rm
al

iz
ed

 t
o

 1
0

0
%

 S
ta

ti
c

In
te

rc
o

n
n

n
ec

t

Percent Scheduled Channels

Max II=16 32-bit DPG

Max II=64 32-bit DPG

Max II=128 32-bit DPG

Max II=16 8-bit DPG

Max II=64 8-bit DPG

Max II=128 8-bit DPG

Fig. 7. Area-energy product for 32- and 8-bit datapath word-
widths and maximum supported II of 64 and 128 configura-
tions, as the interconnect becomes more scheduled.

CGRA the application’s II must be less that or equal to the
CGRA’s maximum supported II.

Our results indicate that scheduled channels are bene-
ficial for word-wide interconnect. However, the overhead
associated with scheduled channels changes with the num-
ber of configurations supported. Figure 7 shows the area-
energy curves for 32-bit and 8-bit datapaths with hardware
that supports an II of 16, 64 or 128. The curve for an II of
128 on an 8-bit datapath is most interesting. In this config-
uration the overhead of the scheduled channels dominates
any flexibility benefit. For the other cases, fully scheduled
is a promising answer. Note that support for a max II of
16 to 64 in the hardware is a reasonable range in the design
space, given that 9 is the largest II requirement for any of
our existing benchmarks. A related study [19] showed that
an II of 64 would cover >90% of loops in MediaBench and
SPECFP, and that the maximum II observed was 80.

4.4. Augmenting CGRAs with Control Specific Resources

The datapath applications we used for benchmarks are dom-
inated by word-wide operation; however, there is still a non-

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 0 30 50 70100 0 30 50 70100
 0

 5

 10

 15

 20

 25

 30

 35

A
re

a-
E

n
er

g
y

N
o

rm
al

iz
ed

 t
o

 3
2

-b
it

 1
0

0
%

 S
ta

ti
c

In
te

rc
o

n
n

ec
t

C
h

an
n

el
 W

id
th

Percent Scheduled Control Path Channels

area-energy

32-bit channels

1-bit channels

Integrated Arch.Split Arch.32-bit Only

Fig. 8. Comparison of 32-bit only, split, and integrated in-
terconnects. Area-energy is shown on the left y-axis and 32-
and 1-bit channel width on the right y-axis.

trivial amount of single-bit control logic within each kernel.
One major source of this control logic is due to if-conversion
and predication; another is loop bound control. Since our
architectures can only execute a fixed schedule, to achieve
data dependent control flow if-statements must be predi-
cated such that both possible outcomes are executed and the
correct result is selected using the single-bit predicate. It
is common in our applications for 20-30% of the dataflow
graph to be control logic. Routing 1-bit signals in a 32-bit
interconnect wastes 31 wires in each channel. Given the ob-
servations of §4.2, the optimal interconnect will be different
for control and datapath signals.

The obvious alternative is an interconnect that includes
both 32-bit and 1-bit resources, optimized to the demands of
each signal type. We experiment with two distinct combina-
tions of word-wide and single-bit interconnects, split and in-
tegrated. For the split architecture, there are disjoint single-
and multi-bit interconnects, where each port on a device is
connected to the appropriate interconnect. For the integrated
architecture datapath signals are restricted to the 32-bit in-
terconnect, while control signals can use either the 32-bit
or 1-bit interconnect, hopefully reducing inefficiencies from
resource fragmentation. The integrated and split architec-
ture use a fully scheduled 32-bit interconnect and the 1-bit
interconnect is tested with a range of scheduled-to-static ra-
tios.

As we see in Figure 8, adding a single-bit interconnect
reduces the channel width of the multi-bit interconnect. This
translates into a reduced area-energy product, though it did
not vary significantly with the single-bit interconnect’s sched-
uled-to-static ratio. Given a similar area-energy product, a
fully static single-bit interconnect is simpler to design and
implement, and thus may be preferable. The variations in
the single-bit channel width for the integrated architecture
likely results from the increased complexity in the routing
search space, making it more challenging for the heuristic

algorithms to find good solutions. Even if we only examine
the benchmarks that achieved a smaller channel width in the
integrated tests, we see that there is no measurable improve-
ment in area-energy product. This leads us to conclude that
the integrated architecture is not worth the additional com-
plexity or reduction in SPR’s performance.

We can compare the results for a split architecture with a
scheduled 32-bit and a static 1-bit interconnect to the sched-
uled 32-bit only baseline from 4.1. We see a reduction in the
number of scheduled channels to 0.88× that of the baseline,
though there should be roughly one 1-bit channel for each
32-bit channel. Alternatively, we can view this as replacing
1.6 32-bit channels with 12.7 1-bit channels. Note that the
routing inside the clusters is also more efficient in the split
architecture than the 32-bit only architecture, since separate
control and data crossbars will be more efficient than one
large integrated crossbar. This effect is beyond the scope of
our current measurement setup. Comparing split to sched-
uled 32-bit only, the overall area and energy are reduced to
0.98× and 0.96× respectively, and area-energy product im-
proves to 0.94×. The split architecture’s area-energy prod-
uct is 0.30× that of the 100% static datapaths without dedi-
cated control resources.

5. CONCLUSIONS

In this paper we explored the benefits of time-multiplexing
the global interconnect for CGRAs. We found that for a
word-wide interconnect, going from 100% statically con-
figured to 100% scheduled (time-multiplexed) channels re-
duced the channel width to 0.38× the baseline. This in turn
reduced the the energy to 0.75×, the area to 0.42×, and the
area-energy product to 0.32×, despite the additional config-
uration overhead. This is primarily due to amortizing the
overhead of a scheduled channel across a multi-bit signal. It
is important to note that as the datapath width is reduced, ap-
proaching the single bit granularity of an FPGA, the sched-
uled channel overhead becomes more costly. We find that
for datapath widths of 24-, 16-, and 8-bit, converting from
fully static to fully scheduled reduces area-energy product
to 0.34×, 0.36×, and 0.45×, respectively.

Another factor that significantly affects the best ratio of
scheduled versus static channels is the maximum degree of
time-multiplexing supported by the hardware, i.e. its max-
imum II. Supporting larger II translates into more area and
energy overhead for scheduled channels. We show that for a
32-bit datapath, supporting an II of 128 is only 1.49× more
expensive in area-energy than an II of 16, and a fully sched-
uled interconnect is still a good choice. However, for an
8-bit datapath and a maximum II of 128, 70% static (30%
scheduled) achieves the best area-energy performance, and
fully static is better than fully scheduled.

Lastly, while CGRAs are intended for word-wide appli-

cations, the interconnect can be further optimized by pro-
viding dedicated resources for single-bit control signals. In
general, we find that augmenting a fully scheduled datapath
interconnect with a separate, fully static, control-path inter-
connect reduces the number of datapath channels to 0.88×
and requires a control-path of roughly equal size. As a result
the area-energy product is reduced to 0.94×. This leads to
a total area-energy of 0.30× the base case of a fully static
32-bit only interconnect, a 3.3× improvement.

In summary, across our DSP and scientific computing
benchmarks, we have found that a scheduled interconnect
significantly improves channel width, area, and energy of
systems with moderate to high word-widths that support a
reasonable range of time-multiplexing. Furthermore, the ad-
dition of a single-bit, fully static, control-path is an effective
method for offloading control and predicate signals, thus fur-
ther increasing the efficiency of the interconnect.

6. ACKNOWLEDGEMENTS

This work was supported by Department of Energy grant
#DE-FG52-06NA27507, and NSF grants #CCF0426147 and
#CCF0702621. Allan Carroll was supported by an NSEDG
Fellowship.

7. REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and
ASICs,” in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. New York, NY, USA: ACM
Press, 2006, pp. 21–30.

[2] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD -
Reconfigurable Pipelined Datapath,” in International Work-
shop on Field-Programmable Logic and Applications, R. W.
Hartenstein and M. Glesner, Eds. Springer-Verlag, Berlin,
1996, pp. 126–135.

[3] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwere-
ins, “ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix,” in In-
ternational Conference on Field-Programmable Logic and
Applications, vol. 2778, Lisbon, Portugal, 2003, pp. 61–70,
2003.

[4] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources,” in IEEE Symposium on FPGAs
for Custom Computing Machines, 1996, pp. 157–166.

[5] M. Mishra and S. C. Goldstein, “Virtualization on the Tartan
Reconfigurable Architecture,” in International Conference on
Field-Programmable Logic and Applications, 2007, pp. 323–
330.

[6] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “MorphoSys: an integrated reconfigurable
system for data-parallel and computation-intensive applica-
tions,” IEEE Transactions on Computers, vol. 49, no. 5, pp.
465–481, 2000.

[7] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek, and A. De-
Hon, “HSRA: high-speed, hierarchical synchronous recon-
figurable array,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM Press, 1999, pp.
125–134.

[8] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauw-
ereins, “DRESC: a retargetable compiler for coarse-grained
reconfigurable architectures,” in IEEE International Confer-
ence on Field-Programmable Technology, 2002, pp. 166–
173.

[9] A. Lambrechts, P. Raghavan, M. Jayapala, B. Mei,
F. Catthoor, and D. Verkest, “Interconnect Exploration for
Energy Versus Performance Tradeoffs for Coarse Grained
Reconfigurable Architectures,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 17, no. 1, pp. 151–155,
Jan. 2009.

[10] “Mosaic Research Group.” [Online]. Available:
http://www.cs.washington.edu/research/lis/mosaic/

[11] A. Carroll, S. Friedman, B. Van Essen, A. Wood,
B. Ylvisaker, C. Ebeling, and S. Hauck, “Designing a Coarse-
grained Reconfigurable Architecture for Power Efficiency,”
Department of Energy NA-22 University Information Tech-
nical Interchange Review Meeting, Tech. Rep., 2007.

[12] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebel-
ing, and S. Hauck, “SPR: an architecture-adaptive CGRA
mapping tool,” in ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. New York, NY, USA:
ACM, 2009, pp. 191–200.

[13] Sun Microsystems and Static Free Software, “Elec-
tric VLSI Design System.” [Online]. Available:
http://www.staticfreesoft.com/

[14] C. Zhu, X. Lin, L. Chau, and L.-M. Po, “Enhanced Hexago-
nal Search for Fast Block Motion Estimation,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 14,
no. 10, pp. 1210–1214, October 2004.

[15] M. Lam, “Software pipelining: an effective scheduling tech-
nique for VLIW machines,” in ACM SIGPLAN conference on
Programming Language design and Implementation. New
York, NY, USA: ACM Press, 1988, pp. 318–328.

[16] A. Chandrakasan and R. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proceedings of the
IEEE, vol. 83, no. 4, pp. 498–523, 1995.

[17] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and
single-driver wires in FPGA interconnect,” in IEEE Interna-
tional Conference on Field-Programmable Technology, Dec.
2004, pp. 41–48.

[18] M. Butts, A. M. Jones, and P. Wasson, “A Structural Ob-
ject Programming Model, Architecture, Chip and Tools for
Reconfigurable Computing,” in IEEE Symposium on Field-
Programmable Custom Computing Machines. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 55–64.

[19] N. Clark, A. Hormati, and S. Mahlke, “VEAL: Virtualized
Execution Accelerator for Loops,” in IEEE International
Symposium on Computer Architecture. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 389–400.

