
University of Washington, Dept. of CSE, Technical Report, 1995.

Abstract

Multi-chip, board-level designs form a large portion of
today’s digital system designs. Unfortunately, traditional
methods for debugging these designs, such as prototype
fabrication, wire-wrap and software simulation, are
inadequate. Prototype fabrication is time-consuming and
it is difficult to isolate errors, wire-wrap is complex and
error-prone, and simulation is too slow for full testing.
Recent advances in FPGA-based systems offer hope for
significant improvements in board-level prototyping, yet
currently focus exclusively on ASIC prototyping. In this
paper, we present Springbok, an integrated system for
board-level prototyping that promises near-speed testing
with the construction and modification simplicity of
software simulation. It is composed of an integrated
software system for mapping designs to a flexible,
extensible hardware implementation platform. This allows
designs to take advantage of FPGA flexibility while using
the complex chips that will implement the final design.

Introduction

Developing today’s complex and high-speed designs
usually requires fabrication of a test board. This allows at-
speed testing of the hardware design in the target
environment. Unfortunately, there is a high lag time
introduced, both because of the actual fabrication time and
also because one must wait until late in the development
cycle, since the entire design must be specified fully before
it can be built. Thus, incremental development and testing
is impossible. Bug fixes are difficult and time-consuming,
especially with multi-layer boards, and isolating
subcircuits for testing is almost impossible. The cost of
multiple fabrication runs also makes this technique
unattractive.

The traditional alternative for developing digital systems is
to use simulation to debug portions of a system, and then
use wire-wrap prototype for complete system testing.
Unfortunately, wire-wrap has many problems, which has
caused many designers to abandon it. Primarily, it
requires a large amount of effort to connect the
components, introducing a large potential for errors and a
significant lag time. Even when the system is built, wire-
wrap complicates testing because wiring cannot easily be
changed to isolate subcircuits for fear of introducing new
errors, and incorrect or defective wire-wrap must always
be considered a potential culprit in any anomalous

behavior. Futhermore, wire-wrap cannot handle many
high-speed systems.

Using software simulation for complete system debugging
is promising, but has many problems of its own. While it
offers a great deal of flexibility and removes concerns of
implementation medium failures, it is much slower than
the other alternatives. It is possible to speed the
simulation up somewhat by abstracting away some details
of individual chips, for example replacing a
microprocessor with some predetermined instruction
traces, but this can both limit the testable behaviors and
introduce new errors. Even with these optimizations,
simulation is still orders of magnitude slower than the
target system. Also, without a physical prototype the
system cannot be tested in the target environment, and
much of a system’s interface behavior remains untested.
Each of these problems greatly limits the scope of testing
possible in a purely simulation-based approach, making it
unsuitable for many complex systems.

One can draw parallels between the problems of board-
level prototyping and those of ASIC development. Until
recently, ASIC design and debugging were also limited by
the speeds of software simulation. However, FPGA-based
logic emulation systems (such as those developed by
Quickturn [Varghese93]) have been recently introduced,
giving ASIC designers the benefits of software simulation
with several orders of magnitude higher speed. However,
the approach taken by ASIC logic emulators is not
sufficient for designs involving multiple complex chips.
While today’s logic emulators are capable of mapping an
entire microprocessor into FPGAs, they require an
extremely large number of FPGAs to do so. When one
considers a complete board-level design containing
perhaps a microprocessor, several memories and other
controller chips, it is clear than the cost to map these
circuits into FPGAs is prohibitive. Even worse, elements
such as A/D converters cannot be implemented in FPGAs
at all. Thus, while the general concept of harnessing
FPGAs to help the board-level designer has merit, the
methods used for FPGA-based ASIC emulators are
inadequate for system design.

In the rest of this paper we will discuss Springbok, a
system being developed to aid in the development and
debugging of board-level designs. We discuss the
proposed architecture and mapping tools. We also
consider Field-Programmable Interconnects (FPICs),
another promising approach to circuit board testing, and

Springbok: A Rapid-Prototyping System
for Board-Level Designs

Scott Hauck, Gaetano Borriello, Carl Ebeling
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

2

compare them to the Springbok system. We then discuss
our current status, as well as some overall conclusions.

The Springbok Architecture

The Springbok system is based on the philosophy that to
develop and test board-level designs one needs a practical
way to use many of the actual chips of the final system for
incremental development and testing, without incurring
the effort and expense of either wire-wrap or complete
board fabrication. Our approach is to allow the important,
complex chips comprising a design to be embedded in an
FPGA-based structure, which uses these FPGAs for both
the routing and rerouting of signals, as well as the
implementation of random logic (Figure 1). To allow a
specific circuit to be implemented in this structure, the
Springbok system is composed of a baseplate with sites for
daughter cards. The daughter cards are large enough to
contain an arbitrary device on the top, as well as an FPGA
on the bottom. Note that the device can be a chip, I/O
elements such as switches and LCD interfaces, or whatever
else is necessary to implement the system. If necessary,
daughter cards can be built that span several locations on
the baseplate to handle higher space or bandwidth
requirements. The daughter cards plug into the baseplate,
which handles power, ground, and clock distribution,
FPGA programming, and inter-daughter card routing.
The baseplates include support for communicating with a
host computer, both for downloading programming and for
uploading data captured during prototype runs. The
baseplates are constructed such that they can be connected
with each other, forming an arbitrarily large surface for

placing daughter cards. The inter-daughter card routing
structure is a 1-hop mesh, with the specific pin
interconnections as detailed in [Hauck94a]. In many ways,
this approach is similar to mesh-connected
multiprocessors, as well as the approach suggested in
[Seitz90].

An important feature of Springbok is the ability to insert
system-specific chips on daughter cards placed into the
array. This also allows us to include other, specialized
daughter cards. For example, early in the design cycle the
specific chips to be used to implement much of the logic
may be unspecified. Thus, instead of adding only chip-
carrying daughter cards into the array, cards with only
FPGAs on them could be included. As in most other
FPGA systems, there is also the potential that the simple
connection scheme described above will not be able to
accommodate all the logic or routing assigned to a given
location. However, as opposed to a fixed FPGA array, we
can insert “extender” cards between a daughter card and
the baseplate to deal with these problems (Figure 2). If the
logic assigned to a given FPGA will not fit, an extender
card with another FPGA can be inserted to handle some of
the logic. If too many signals need to be routed along a
given link, an extender card spanning several daughter
card positions can be added, with new routing paths
included on the inserted card. Note that while most
routing limitations can be dealt with by Virtual Wires
[Babb93], a method for multiplexing several circuit wires
onto one physical connection, added cards for routing will
reduce the reliance on Virtual Wires, thus decreasing both
area and cycle time. For signals that must go long

Device

Device

Device

FPGA

Device

FPGA

Daughter Card

Device

FPGA

Daughter Card

Device

FPGA

Daughter Card

Device

Daughter Card

FPGA

Figure 1. The Springbok interconnection pattern (left), and two connected Springbok baseplates with four
daughter cards (right). The card at front is similar to the other daughter cards, but is shown upside-down.

3

distances in the array, sets of extender cards with ribbon
cable connections can be inserted in the array to carry
these long-distance wires. Also, at the edge of the
mapping where edge effects can limit available bandwidth,
dummy daughter cards that simply contain hard-wired
connections between their neighbors can be inserted.
Thus, the Springbok approach to resource limitations is to
add resources wherever necessary to map the system. In
contrast, a fixed array cannot afford a failure due to
resource limitations, since it would then have to redo the
costly step of mapping to all the constituent FPGAs. Thus
fixed arrays must be conservative on all resource
assignments, underutilizing resources throughout the
system, while Springbok simply fixes the problems locally
as they arise. Note that since Springbok was introduced
[Hauck94d], a similar system called Cobra has been
developed [Koch94], which shares Springbok’s ability to
provide a flexible resource mix on a per-mapping basis.

Another important benefit of Springbok is how it supports
hardware subroutines. In many design environments,
there will not be just one system developed, but instead a
family of products may be built. Many of these products
have subsystems shared across the entire family. For
example, a company developing disk controllers would
have SCSI interfaces on most of its products, as well as an
interface to the host computer’s bus (e.g., [Katz93]). In
Springbok, such heavily replicated elements can be
fabricated or wire-wrapped as a single daughter card, and
from then on used as a hardware subroutine for all

subsequent designs. One could use a similar approach in a
wire-wrap domain by developing prototyping boards with
these functionalities fabricated on the board. However, in
such a system one must fix the number and type of these
subroutines ahead of time, and this mix cannot be
increased. Thus, a prototyping board designed with one
SCSI interface would be useless for prototyping a two
SCSI port controller, and a board for one type of computer
bus could not be used for a different bus. In Springbok
this is not an issue, because the number and type of
daughter cards can vary from system to system, and cards
with functionality not even considered in the first system
of a family can be added easily in later designs.

While the construction of the Springbok system fixes many
problems encountered in rapid-prototyping, there are two
important concerns that remain. The physical wires in the
target system are replaced with digital connections in
Springbok, and while speeds achieved may be orders of
magnitude faster than simulation, they will still be less
than the final system speeds. The problem with the way
Springbok handles wires is that not all physical wires in
mapped systems are used in a purely digital, unidirectional
manner. While some systems use analog subsystems, this
is beyond the scope of Springbok, and any such systems
will need to be either included as specialized daughter-
cards, or not handled at all. For non-unidirectional flow,
signals such as buses and bi-directional signals must be
handled. There are two ways these can be handled in
Springbok (see Figure 3). For most systems, the chip

Device

Device Device Device

Device Device

Figure 2. Non-device daughter cards and extender cards, including cards to add more FPGA logic (top left),
bandwidth (double-sized card at top right), long-distance communication (middle), and edge bandwidth (bottom
middle and bottom right). All but the edge bandwidth cards have FPGAs on the bottom.

4

allowed to drive the signal can easily be determined either
by the state of certain control signals, or by a simple state-
machine. In these cases, logic can be added to reconfigure
the unidirectional wires and pins according to the required
signal flow. In cases where this may be too difficult to
handle, a wired-OR (or wired-AND) can replace the
signal, with pull-down resistors on all connected chip pins.
Specifically, when no-one is driving the signal, all pins
will be pulled down to 0, and the signal is 0. In such a
case either no-one will be reading, or a pull-down resistor
is included in the original circuit (cases where the circuit
to be mapped has a pull-up resistor on the signal can be
handled by a wired-AND). If the chip supposed to be
driving the signal is outputting a 0, the same situation
holds, and the signal is valid at 0. If a chip drives a 1, the
FPGA this leads to can sense this value, determine that
this is the chip that should be driving the signal, and
configure the wires accordingly.

The second problem mentioned above, that a Springbok
mapping will almost always be somewhat slower than the
system being prototyped, causes several concerns. First of
all, one of the goals of a prototype is to test the system in
the actual target environment. However, other systems
that interact with the circuit will be expecting certain
timing assumptions to be upheld, such as those contained
in a bus protocol. This same problem has been
encountered by ASIC logic emulator vendors such as
Quickturn, and their customers have dealt with this by
building protocol-specific buffering solutions. Such an
approach would work equally well with Springbok. An
even better answer is detailed in [Hauck95a], which
presents a programmable interface transducer board design
that can handle many different protocols, as well as a
discussion of how it can be applied in many situations.
The second part of the slow-down problem is that the chips
used in the system must be slowed down as well. Many
chips can be operated at the slower clock rate and they will
function properly. Springbok mappings will operate fast
enough that charge leakage from dynamic nodes will not
be an issue for most chips. The primary concern is for
phase-locked loops that can only operate at certain
frequencies. Solutions include stalling processor chips
through manipulation of an explicit stall signal or
insertion of stall instructions into the chip’s instruction
stream, dummy data and buffering for pipelined chips, or

even replacement of restrictive chips with slower members
of the chip family or mappings into FPGA logic.

The Springbok Mapping Tools

As in the case of logic emulators, the target architecture is
only half the system. Just as important as a flexible
implementation medium is the need for an integrated
software system to map target designs onto the
architecture.

The overall software system flow in Springbok is shown in
Figure 4. The mapping tools start with a structural
description of the system to be mapped, where the system
logic can either be assigned to specific chips, or possibly
have portions of random logic that have not yet been
assigned to chips. Through a series of steps this logic is
mapped down to a form that can be placed onto the
Springbok architecture, producing both a floorplan
describing how daughter cards and extender cards must be
placed onto baseplates, and programming files for
configuring the individual FPGAs.

The first step in the mapping process is chip replacement.
We expect Springbok to handle systems ranging from
those with only the critical components specified, the rest
left as random logic, to those with most or all the logic
implemented with specific chips. All logic not assigned to
chips in the original structural description will be handled
by FPGAs in Springbok, and the Springbok system may
decide to assign logic mapped to chips in the description to
FPGAs as well. For example, in a completely specified
design, a chip that simply buffers signals might be
included in the original description, but would not be
necessary in the Springbok prototype. Thus, by replacing
this chip with the corresponding logic, the resulting
mapping might save some hardware. Also, logic placed
into a specific FPGA in the source description restricts the
placement choices in the Springbok implementation, and
might also be removed. Finally, since Springbok is fairly
FPGA-intensive, mappings will be more compact if a
certain proportion of the system is random, unassigned
logic.

The next step, partitioning and global placement,
determines the overall layout of the Springbok mapping.
It must decide which daughter cards to use, where to place
them, and what logic will be implemented by each of these
cards. Standard methods for partitioning such as k-way

FSM FSMO

O

GND GND

FSM: If (O = 1) PinMode = OUTPUT
 Else PinMode = INPUT

FSM FSM

FSM: If (MyTurn() = 1) PinMode = INPUT
 Else PinMode = OUTPUT

Figure 3. Two methods for handling bi-directional signals. Using an FSM when direction information can be
maintained or inferred from control signals (left), and a wired-OR for less determinable directionality (right).

5

partitioning are difficult to use for this problem, since
these algorithms ignore the locality required in mesh
communication patterns, and generally require that the
number of partitions be predetermined. As opposed to
most current systems, the size and composition of the
Springbok substrate is flexible, expanding or contracting
to map the target system efficiently. This flexibility makes
the partitioning more difficult, but allows greater
optimization opportunities. To handle this problem, we
have decided to apply iterative bi-partitioning, which has
the advantages of both fast run-times, as well as the ability
to handle limited interconnections. To apply iterative
bipartitioning to an arbitrary topology, we have developed
an algorithm to automatically decide the order of the
partitionings necessary to optimize to an arbitrary topology
[Hauck95c]. We then can apply our bipartitioning
algorithm, which is based on the Fiduccia-Mattheyses
variant of the Kernighan-Lin algorithm [Hauck95b]. Our
optimized version of this algorithm is quite fast, and yields
results significantly better than the current state-of-the-art.

After partitioning and global placement, routing must be
considered. Deciding which intermediate FPGAs to route
through is fairly straightforward, and is very similar to the
single-FPGA routing problem. That is, the software must
find routes in a fixed routing topology, with finite
resources, simultaneously attempting to make all the routes
fit and possibly optimize for delay. Thus, we can use the
research on single-FPGA routing (such as
[McMurchie95]) to handle this portion of the routing
problem. However, this leaves the pin assignment
problem, the problem of determining which I/O pins to use
to route between the FPGAs. Specifically, if FPGAs A and
B are directly connected, and the global router has decided
to route a signal between them, there will be some
connections between the FPGAs that will work better than
others to route the signal. One connection may be closer
to the route’s destination than the others. To handle the
pin assignment problem for multi-FPGA systems, we have
developed a technique that reduces the routing resource
usage in the system, reducing area requirements and delay,

while also speeding up the mapping process [Hauck94b,
Hauck94c].

With partitioning, global placement, and routing
completed, it is then necessary is to place and route the
individual FPGAs. For these tasks we can use one of
several reasonable commercial software packages
available. For Springbok we would simply need to ensure
that the output of previous stages matches the place and
route software’s demands, and determine how to capture
information on failures. This information is important
because Springbok does not include significant margins to
ensure every logic assignment to an FPGA will succeed,
but instead fixes problems as they occur. As shown in the
software flow diagram, any mappings that fail are fixed by
software that inserts extender cards into the Springbok
array. Then, partitioning and global routing are rerun,
which maintain as much of the previous mapping as
possible while easing demands on the failing FPGAs.
Note that this portion of the flow is also important for
incremental alteration of a prototype. Specifically, as a
system is debugged errors will need to be fixed, hopefully
without requiring a completely new mapping of the circuit.
By extending the partitioning and global routing steps to
handle incremental alterations to fix failed FPGA
mappings, we also have support for bug fixes.

Springbok vs. an FPIC-based Approach

As mentioned earlier, another promising approach for the
rapid prototyping of board-level designs is Field-
Programmable Interconnects (FPICs), such as those
developed by Aptix [Aptix93]. An FPIC is a chip that can
create an arbitrary interconnection of its pins. In the case
of the Aptix chips, there are 936 user pins per chip, and
the connections formed are passive path wire connections.
This latter feature is helpful, since it means that the
concerns Springbok has with bi-directional signals such as
buses are easily handled with Aptix products. To use these
chips for prototyping, Aptix provides circuit boards
consisting of a large grid of holes for inserting arbitrary
chips. These holes are grouped into sections, with all

Structural
Circuit

Description

Chip
Replacement

Partitioning
& Global
Placement

Global Routing
& Virtual Wires

FPGA Place
& Route

Programming
Files

Floorplan

FailuresExtender Card
Insertion

Failures

Failures

Figure 4. Springbok software flow diagram.

6

holes in a section leading to pins on the same FPIC. The
FPIC chips communicate between themselves with direct
hardwired connections. There are about 50-140
connections between each pair of Aptix FPICs (the exact
number varies by the Aptix board chosen). Power and
ground routing are handled by separate buses distributed
throughout the grid, and jumpers can be used to connect
chip pins to the power and ground lines. Clock
distribution is supported with special low-skew paths in
the Aptix chips. Mapping to such a system is easier than
for Springbok, since all that is necessary is to partition the
chips into sections while minimizing wire crossings, and
then route the signals through the FPICs.

There are several differences between Springbok and an
FPIC approach to rapid-prototyping of board-level designs.
As mentioned earlier, the software for an FPIC approach is
simpler, and there is no difficulty with bi-directional
signals. However, these benefits are outweighed by several
problems. Most importantly, an FPIC approach is quite
expensive. If we use every available user pin on an Aptix
board, the cost is about $4.5 - $5 a pin for the FPICs and
boards themselves (This assumes that Aptix FPIC/D’s
[Aptix93] are used. Cost savings can be achieved by using
FPIC/R’s, but with a significant loss in testability).
Unfortunately, one will rarely use all the pins, both
because of fragmentation due to chip package sizes and
because of the large step function on grid sizes.
Specifically, boards are sized in roughly 1500 pin
increments, forcing one to use a board that is 750 pins too
large on average. Also, since a mapping that is a few pins
too large for the board chosen cannot be mapped, the size
of the FPIC board must be chosen conservatively,
anticipating size increases during debugging. All of these
factors will tend to drive actual per pin costs much higher
than the baseline. In contrast, we expect the per pin cost
of a Springbok mapping to be significantly less. Also,

since many Springbok mappings will use the FPGAs of the
underlying routing structure to also handle some of the
circuit logic, the number of chip pins found in the typical
Springbok mapping will be less than an Aptix mapping.
Thus, much of the silicon used to implement Springbok
will already be required in the target mapping, serving to
decrease costs.

A second problem with the pure FPIC approach is that of
flexibility. As stated earlier, if a mapping requires more
pins than the Aptix board allows, there is no way of
mapping it short of buying a larger board and extra FPICs,
each costing several thousand dollars. In contrast, the
Springbok system easily expands to larger sizes, with all
that is required to add more capacity is the addition of
another baseplate. Thus, instead of requiring several
Aptix boards in several sizes, Springbok baseplates can be
used in any size mapping. Also, the Aptix boards have a
fixed 50-140 pin limit on communication between FPIC
sections of the grid. Again, if this number is exceeded,
there is no way of mapping the prototype. In Springbok,
capacity can be added to deal with any pin limitations.
Also, Virtual Wires, the method used in Springbok to ease
some pin limitations, cannot be directly used in an FPIC
system since the FPICs do not have programmable logic
with which to multiplex signals. Thus, to use Virtual
Wires an FPIC system would have to add extra FPGAs,
FPGAs that will also increase the number of pins in the
mapping, pins that must also pay the per-pin costs.

Just as many of the Springbok FPGAs will be used to
implement logic from the system being mapped, other
portions of the FPGAs will be required to slow down chips.
Both Springbok and FPIC mappings will operate slower
than the target system. As discussed earlier, some chips
cannot simply be clocked at a slower rate, but instead
require special additional logic to operate correctly. In

FPICFPIC

Figure 5. An FPIC based prototyping board [Aptix93].

7

Springbok, this logic can be accommodated in the FPGAs
connecting that chip into the Springbok routing structure.
In an FPIC system, extra FPGAs would have to be added
to handle this functionality, increasing total pin count.
More importantly, these added FPGAs are not directly
connected to the chip to be slowed, but instead must
communicate with it through the FPIC. The FPIC
introduces delays of at least 5ns in each direction. This
reduces the portion of the clock period available in the
FPGA slowing the chip, making it harder to perform these
slowing functions.

A final limitation of the FPIC approach is that it does not
support hardware subroutines well. As discussed earlier,
in many design environments there are common
subsystems used in several different circuits. In
Springbok, these subsystems can be built into custom
daughter cards, and then used freely in subsequent
mappings. In an FPIC system one would need to develop a
custom board (an activity Aptix supports with special
software) which would contain the subsystem logic as well
as the FPICs and the pin grid. This means not only that
the resulting new board would be more complex than that
necessary for the Springbok system, it also establishes a
limit on both the number of such subsystems and the
number of chip pins that can be used. This is because both
the number of subsystems as well as the size of the pin grid
is fixed on any specific Aptix board. Again, in the
Springbok system, building a custom daughter card only
fixes the type and amount of logic used for that daughter
card. The individual Springbok mappings are still free to
choose the type and number of custom daughter cards to
use in any particular system, and the mapping can still
grow to any size.

Note that while we have spent most of this section
discussing the difficulties with using a purely FPIC
solution to board-level prototyping, an interesting
alternative is to add FPICs into the Springbok framework.
FPICs could be included on extender cards, cards that
could help ease routing in hotspots of a given mapping.
Also, special connections could be built into the baseplates
that could lead to a centralized FPIC hub. These baseplate
connections would connect a small number of pins on
every daughter card position to the centralized FPIC hub.
In this way, a network for more efficiently handling long-
distance connections could be built without requiring many
ribbon-cable extender boards scattered throughout the
array. In each of these cases, the FPICs are used
sparingly. Hopefully, this could yield a system with all of
Springbok’s advantages, while harnessing the power of
FPICs to perform relatively quick, arbitrary connection
patterns. Whether the added functionality is worth the
increased cost is unclear currently, and requires further
study.

Status

We are currently well into the development of the
Springbok system. Work on Springbok’s mesh routing
topology has been completed, yielding topologies with
higher bandwidth, lower delay, and reduced I/O pin usage
[Hauck94a]. With this we have gained an understanding
of how the Springbok baseplates and standard daughter
cards should be constructed, though we have not yet
fabricated the actual hardware. We have also examined
how the external interfaces of a prototype can be supported
[Hauck95c].

On the software end of the Springbok system, we have
completed work on an efficient bipartitioning algorithm
[Hauck95b], as well as methods for recursively applying
bipartitioning to an arbitrary topology [Hauck95c]. We
have also developed pin assignment software [Hauck94b,
Hauck94c], which handles part of the global routing step.

Conclusions

As we have shown, Springbok is a novel approach to the
rapid-prototyping of board-level designs that offers many
advantages over current systems. Its flexible architecture
accommodates a great range of system sizes and
topologies. With the ability to solve problems as they
occur, Springbok more efficiently uses its resources than
fixed FPGA-based systems, which require a very
conservative style. Including arbitrary devices and
subsystems into the Springbok structure allows even
greater efficiency and accuracy. Finally, the use of FPGAs
instead of FPICs for the routing structure reduces overall
costs, decreases cost steps, and more easily handles the
functionality necessary to interface to timing-inflexible
components.

References

[Aptix93] Aptix Co, Data Book, San Jose, CA, 1993.

[Babb93] J. Babb, R. Tessier, A. Agarwal, "Virtual Wires:
Overcoming Pin Limitations in FPGA-based Logic
Emulators", IEEE Workshop on FPGAs for Custom
Computing Machines, pp. 142-151, 1993.

[Hauck94a] S. Hauck, G. Borriello, C. Ebeling, “Mesh
Routing Topologies for Multi-FPGA Systems”,
International Conference on Computer Design, pp.
170-177, 1994.

[Hauck94b] S. Hauck, G. Borriello, “Pin Assignment for
Multi-FPGA Systems (Extended Abstract)”, IEEE
Workshop on FPGAs for Custom Computing
Machines, pp. 11-13, 1994.

[Hauck94c] S. Hauck, G. Borriello, “Pin Assignment for
Multi-FPGA Systems”, University of Washington,
Dept. of Computer Science & Engineering
Technical Report #94-04-01, 1994.

8

[Hauck94d] S. Hauck, G. Borriello, C. Ebeling,
“Springbok: A Rapid-Prototyping System for
Board-Level Designs”, ACM/SIGDA 2nd
International Workshop on Field-Programmable
Gate Arrays, 1994.

[Hauck95a] S. Hauck, G. Borriello, C. Ebeling,
“Achieving High-Latency, Low-Bandwidth
Communication: Logic Emulation Interfaces”,
University of Washington, Dept. of Computer
Science & Engineering Technical Report #95-04-
04, 1995.

[Hauck95b] S. Hauck, G. Borriello, “An Evaluation of
Bipartitioning Techniques”, Chapel Hill Conference
on Advanced Research in VLSI, pp. 383-402, 1995.

[Hauck95c] S. Hauck, G. Borriello, “Logic Partition
Orderings for Multi-FPGA Systems”, ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, pp. 32-38, 1995.

[Katz93] R. Katz, P. Chen, A. Drapeau, E. Lee, K. Lutz,
E. Miller, S. Seshan, D. Patterson, “RAID-II:
Design and Implementation of a Large Scale Disk
Array Controller”, Research on Integrated Systems:
Proceedings of the 1993 Symposium, pp.23-37,
1993.

[Koch94] G. Koch, U. Kebschull, W. Rosenstiel, “A
Prototyping Environment for Hardware/Software
Codesign in the COBRA Project”, Third
International Workshop on Hardware/Software
Codesign, 1994.

[McMurchie95] L. E. McMurchie, C. Ebeling,
“PathFinder: A Negotiation-Based Performance-
Driven Router for FPGAs”, ACM/SIGDA
International Symposium on Field Programmable
Gate Arrays, pp. 111-117, 1995.

[Seitz90] C. L. Seitz, “Let’s Route Packets Instead of
Wires”, Advanced Research in VLSI: Proceedings
of the Sixth MIT Conference, pp. 133-138, 1990.

[Varghese93] J. Varghese, M. Butts, J. Batcheller, "An
Efficient Logic Emulation System", IEEE
Transactions on VLSI Systems, Vol. 1, No. 2, pp.
171-174, 1993.

