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Abstract

An FPGA Acceleration of Short Read Human Genomephtap

Corey Bruce Olson

Chairs of the Supervisory Committee:

Professor Carl Ebeling
Computer Science and Engineering

Professor Scott Hauck
Electrical Engineering

Field-programmable gate array (FPGA) based systeffey the potential for drastic
improvement in the performance of data intensiy@iegtions. In this thesis, we develop an
algorithm designed to efficiently map short reads & reference genome using a
reconfigurable platform. We also describe the Wwaré design of the algorithm running on
an FPGA, and we implement a prototype to map sikeads to chromosome 21 of the human
genome. We analyze the results of the prototypesyrunning on Pico Computing’s M501
board, and describe necessary changes for implergemfull scale version of the algorithm
to map reads to the full human genome. We thermpeoenour results to BFAST, which is a
current software program commonly used for shat nmapping, running on a pair of Intel
Xeon quad core processors with 24GB of availabl&BR The prototype system achieves a
14x speedup compared to BFAST for mapping readhtomosome 21, and the hardware
system implementing the full human genome mappisgpiojected to have a 692x
improvement in system runtime and a 513x improvernrepower.
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1 Introduction

Genomics is an emerging field, constantly presgntirany new challenges to researchers in
both biological and computational aspects of apgibmis. Genomics applications can be
very computationally intensive, due to the magretod data sets involved, such as the three
billion base pair human genome. Some genomicscgbioins include protein folding, RNA

folding, de novo assembly, and sequencing analygsig) hidden Markov models.

Many of these applications involve either searctardptabase for a target sequence, as done
with hidden Markov models, or performing computatido characterize the behavior of a
particular sequence, as performed by both protethRNA folding. Genomics applications
therefore require immense quantities of computatexmd they also tend to require the
movement and storage of very large data sets. eTHata sets are either in the form of a
database to be searched, as in sequence seardthirigdden Markov models, or in the form

of a sequence to be computed and operated updm,asuthe sequence of amino acids of a
protein being folded. These two challenges tenédd to long execution times for software

programs, which can result in a tool being unusédleesearchers.

One interesting application in genomics is shaatirgenome mapping. Short read mapping
attempts to determine a sample DNA sequence bytihacthe origin of millions of short
length reads in a known reference sequence. Genwpeing is performed in this manner,
because machines that sequence these short reaalsi@to do so in a very parallel manner,
producing reads at a much faster rate than traditisequencing technology. Base-calling
machines, such as lllumina’s HiSeq 2000 [1] or AgBiosystems’ 5500 Genetic Analyzer
[2], are currently capable of producing millions réfads per day, and their throughput is

improving at an exponential rate.

This exponential improvement in sequencing alsaiireg the improvement of short read
mapping, in order to keep up with the throughputhef machines. Numerous software tools
are readily available for short read mapping, idolg BFAST [3], Bowtie [4], BWA [5],

MAQ [6], and SHRIMP [7]. However, these currenttaafre tools (which are designed to



run on traditional CPUSs) are failing to keep uphaiihe rapid throughput improvements of

the base-calling technologies creating the shadse

Field-programmable gate arrays (FPGAs) contaigelaamounts of programmable logic,
which can be configured to perform any computatiat fits within the FPGA. FPGAs can
offer a dramatic increase in performance for comtomally intensive applications by
performing large numbers of computations in pakallan implementation of a short read
mapping algorithm on an FPGA could exploit the neim¢ parallelism in the problem,
thereby leading to a drastic reduction in shortl ne@pping time. Previous attempts of naive
short read mapping on an FPGA [8] have yielded lsspedup versus three software tools
on a standard processor, but these could be fullthezloped to greatly improve the runtime

and power consumption of short read genome mapping.

This thesis develops an algorithm targeting a regorable platform for the acceleration of
short read human genome mapping. It also implesnamngrototype of that algorithm on a
system designed to map short reads to chromoson@ #fe human genome. Finally, it
proposes changes to the designed algorithm andssiss how the prototype system can be
modified for mapping against the full genome. Thblowing sections of this thesis are

organized as follows:

* Chapter 2: Background provides background information on DNA, short read
mapping, and FPGAs.

» Chapter 3: Algorithm develops the proposed algorithm to efficiently nedport
reads to the human genome.

» Chapter 4: Alternatives discusses alternative solutions to the short reagping
problem that were considered during the project.

» Chapter 5: System Desigrprovides details of the hardware system implentemta
as well as system performance results.

» Chapter 6: Future Improvements describes improvements to the current system to

allow for fast and accurate full genome mapping.



2 Background

2.1 Reading DNA

DNA is a basic structure present in living cellsdartontains the genetic code used to
construct other cell components, such as proteidsRNA molecules. For years, scientists
have attempted to study DNA and its effect on vwaibealth concerns, but have struggled to
accurately isolate, characterize, and describe ggemenoncoding regions of the DNA
sequence. Study of DNA could identify possible egendefects and help to avoid serious

health concerns for an individual.

In order to read an organism’s genetic sequence,tlans compare it to a “healthy” or
“normal” genome, scientists must first be able &iedmine a sample DNA sequence by
reading the sequence of nucleotide bases. SinecamuNA is a three billion base pair

sequence, this is a very difficult computationad &mlogical problem.

2.1.1 Human Genome Project

The Human Genome Project was a 13 year governmpensered project created to

determine the composition of human DNA. The progan in 1990 and was completed in
2003, at a total cost of approximately three hillaollars [9]. During that time, the project

was able to identify all the genes in human DNAedaine a consensus three billion base
pair sequence that makes up the reference humammgerstore the genome information in

databases, and improve the sequencing tools fargfatnalysis [9].

In order to create the reference genome, the DNAuofierous individuals was sequenced,
and a consensus sequence was compiled to formetbeemce genome. This process was
only possible due to the fact that the genetic sege of all humans is very similar.

Therefore, the reference sequence is created thraygocess of comparing the sequence of
all individuals considered and determining a cosasrbase at every position in the genome,

as shown in Figure 1.

One possible difference between an individual's DEAd the reference sequence is a
situation where one nucleotide base has been egplayg a different base from the reference

sequence at a given position, which is called glsimucleotide polymorphism (SNP).



Another difference that may occur is a base from rifference genome, or a consecutive
sequence of bases, that does not appear in thdes®@MA, and is known as a deletion.
Similarly a base, or consecutive sequence of basag,appear in the sample DNA that does
not appear in the reference genome, and is knovanassertion. Insertions and deletions
are referred to agdels. Lastly, the human genome may contain a patteat dccurs
numerous times consecutively; however, the numibetinees that pattern occurs at the
location in the reference may be different thanitftgvidual’'s DNA, and this is known as a
copy number variation (CNV).

o[- ATAAGAGATAGCTCAGTAGCGTCTGACTGACTGACTGACTGACTGAACGTACGTAGCGGTACGA
25 ATACGAGATAGCTCAGTAGGGTCTGACTGACTGACTGACTGACTGAACGTACGTAGCGGTACGA
3 ATACGAGATAGCTCAGTAGCGTCTGACTGACTGACTGAAAGACTGAACGTACGTAGCGGTACGA
4: ATACGAGATAGCTCAGTAGCGTCTGACTGACTGACTGACTGACTGAACGTACGCAGCGGTACGA
S: ATACGAGATAGCACAGTAGCGTCTGACTGACTGACTGACTGACTGAACGTACGTAGCGGTACGA
consensus: ATACGAGATAGCTCAGTAGCGTCTGACTGACTGACTGACTGACTGAACGTACGTAGCGGTACGA

Figure 1: Construction of the consensus sequence del on samples from many individuals is
possible because human DNA is 99.9% similar. Redditates a difference in an individual's DNA
sequence from the reference genome at that base.

After the creation of the reference genome, redeasccan study genetic variations in
individuals and can potentially identify and treitsease that may be caused by genetic
defects. Other potential uses for this technolagyilude DNA forensics, evolutionary
studies, and agricultural improvements. Howevemajor problem faced by the human
genome project was the time and cost of sequerismgle human DNA sequence. By
2002, the project was able to sequence 1.4 bibases per year at an estimated cost of nine
cents per base [9]. At this rate, a single hum&ABequence would take approximately
two years to sequence and would cost $270,000h Bt cost and the throughput of the
sequencing technology needed to be greatly impraveatder for DNA sequencing to be
beneficial.

2.1.2 Next-Generation Sequencing

DNA sequencing technology began from traditionahdga sequencing in 1977 and has
evolved into two cutting-edge technologies withyeifferent methodologies; however, each
have similar basic principles. The overall goalboth methodologies is to determine the
biological DNA sequence, which can then be stucaed analyzed. To determine the

sequence of bases of a DNA sample in parallelDtd& sample is first replicated to produce



approximately 30 copies of the original DNA sequencThe copies of the replicated
sequence are then cut at random points througheugritire length of the genome, as shown
in Figure 2, producing short lengths of intact csaof base pairs known d®ort reads. This
methodology has enabled these short reads to lik inea massively parallel fashion;
however, accuracy limitations in base-calling, whis the process of determining the
sequence of bases within a read, has restrictedleagths to be much shorter than previous
Sanger sequencing reads.

| |
p.
l,'.
5 - 1 j
% New - New &
- \ 4
N , iy
- -
) )
v / |
. .\
>
( |74 3

Figure 2: DNA is replicated (left) by unzipping theoriginal double helix structure, thus allowing
nucleotide bases to attach to the exposed bases][1Duplicate DNA strands (right) are then cut at
random before base-calling [11].

The sequencing technologies differ slightly in tHease-calling approach. Pyrosequencing
technology, used in the 454 Life Sciences sequdnoer Roche, determines the sequence of
bases in a read by sequentially flowing bases t¢eemlates that are captured in tiny

microscopic wells [12]. The nucleotide base seqaesa then determined by measuring the
intensity of fluorescence, where a brighter lumityogndicates consecutive homogenous
bases. Pyrosequencing produces reads that amexapptely 400 base pairs in length, and a
single run generates hundreds of millions of nualeobases. An illustration of this

technology can be seen in Figure 3.



Figure 3: Pyrosequencing. Beads carrying single rsinded DNA fragments are deposited into
wells of a fiber-optic slide. Smaller beads with @yrophosphate enzyme for sequencing are then
deposited as well [11].

The alternative technology, used by lllumina, ApgliBiosystems, and Helicos sequencing
machines, targets only one base of the read pés but is able to complete this process in a
much more parallel fashion. This technology desotle read one base at a time by
iteratively attaching the complementary base of tlegt base in the read, along with a
fluorescent tag to identify the base and termin&dognsure multiple bases do not attach at
the same time to the same read. Next, the proeesis the fluorescent tag attached to the
base with a laser. Finally, the tag and terminaterremoved so the process can be repeated
for the next base, as shown in Figure 4 [12]. Téahnology produces 100 base pair reads,
which are much shorter than reads produced by pgrencing, but 20-30 billion bases can

be sequenced per run, yielding a much lower cash@®e in comparison to pyrosequencing.
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Figure 4: Sequencing technology used by lllumina &ches a nucleotide with a fluorescent tag to
the next base in the read, images the read to deteine the base, and removes the fluorescent tag
in order to move onto the subsequent base. [13]

Neither of these systems is capable of producimpgeresults, and errors arise in the base-
calling steps for many reasons. In pyrosequendirggread contains ten consecutive adenine
bases, it could be mistaken as being eleven addrases during the base calling step.
Similar errors can occur in the alternative seqirentechnology as well, and base-calling

errors are a leading factor that limits the reautb.

After sequencing, the short reads must be reasséniy a computer program into the full
genome. This can be accomplished in two ways. fiilsé technique, calledle novo
assembly, attempts to reconstruct the genome vatexternal information by looking for
overlapping subsequences of multiple short readsagtempting to chain them together to
form longer sequences, which are called contigssufing no read errors are present and
enough data is available from the entire genonig wbuld be analogous to putting together

a 100 million piece puzzle.

The second method, known as short read mapping,thsefact that a reference genome is
known, and that the DNA of all members of a specsesery similar to that reference

genome. Short read mapping attempts to determinerevin the reference genome a
particular read came from. Due to read errors dight differences between the sample

DNA and the reference genome, the reads will ngh pexrfectly to the reference, but their



relative position can still be used to reconstthet individual’'s DNA sequence. Figure 5
shows a set of short reads mapped to a very setiba of a reference genome. The red
bases represent differences from the referencengenite red ‘C’ shows an SNP whereas

the red ‘T’ shows a base-calling error.

Reference: ATAAGAGATAGCTCAGTAGCGTCTGACTGACTGAATAGCTCAGTGAACGTACGTAGCGGTACGA
Reads: ATARG AGCTCAGTAG GACTGACTGA GACTGAACGT GGTACGA
ATA GATAGCTCAG AGCCTCTGAC ATAGCTCAGT ACGTACGTAG TCGA

A AAGAGATAGC AGTAGCCTCT CTGACTGAAT TCAGTGAACG TAGCGGTACG
GAGATAGCTC AGCCTCTGAC CTGAATAGCT GAACGTACGT GGTACGA
ATAAGAGA GTAGCCTCTG GACTGAATAG TCAGTGAACG CGTAGCGGTA

Figure 5: Set of reads aligned to reference sequencBase C in red shows a difference between the
sample DNA and the reference. Red base T showsead error.

Next-generation sequencing machines have beenlyamgroving in throughput and cost
over the last ten years, as seen in Figure 6. ti@ee@rojects and monetary prizes for
advancements in this field, such as the Archon XZERor Genomics of ten million dollars
to be awarded to the team that can design a systgrable to sequencing 100 human

genomes in 10 days [13], have supported these teglthological improvements.

Cost per Genome

$100,000,000 3 .,
$10,000,000 Moore's Law

$1,000,000

I' National Human

Il
$10,000 |||" il "“Iml Genome Research
Institute

genome.gov/sequencingcosts

Figure 6: Recent costs to sequence a DNA sample qmaned to Moore’s Law. [14]



Improvements in sequencing technology have not gmtyduced the ability to rapidly
sequence the DNA of numerous individuals, and exgious genomes, but also resulted in a
much lower cost per run. These improvements aggesat that the computational analysis of
the sequenced data is quickly becoming the bottlefie human genome analysis. High-
throughput machines, such as Illlumina’s HiSeq 26¢iem can sequence 55 billion bases
per day [1]. Comparatively, BFAST, which is a shogad mapping software program,

running on a 16-core computer would take 3.5 daysdp that same amount of data.

2.2 Short Read Mapping

As described previously, short read mapping attertgppimap reads to the reference genome
in order to reconstruct a DNA sample. This mayrsedd in that the goal is to reconstruct a
DNA sample that is almost the same as a knownerber genome; however, it is these small
differences that may have interesting genetic nauiat which if studied could lead to a
greater understanding in the cause of certain gedeteases. Unfortunately, short read
mapping requires a large amount of system memody ianextremely computationally

intensive, which leads to long execution timestandard processors.

2.2.1 Algorithms

Short read mapping can be implemented with varadgerithms, but it is most commonly
accomplished with either an indexing-based solutbonby using the Burrows-Wheeler
transform [15]. The indexing based solution attenip find subsequences of each read that
match perfectly to a location in the reference gesowhile the Burrows-Wheeler transform
starts with a large list of possible locations thiah the read aligns and iteratively reduces
the list to a small set of locations. The indexsodution relies upon a final step that involves
using a Smith-Waterman [16] string matching aldonf which determines the best matching
location of the read in the reference. In the sextions we discuss each of these approaches

in turn.

2.2.1.1 Indexing Solution

Both solutions take advantage of the fact thatesltls came from a DNA strand that is very
similar to a known reference genome. If the saniplA were an exact replica of the

reference genome, and if there were no duplicatiobase-calling errors while generating

the short reads, then each of the short reads dimoatich perfectly to one or more locations
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in the reference. If this were true, a simple Boluwould be to create an index of the entire

reference genome that identifies the location iictvieach possible 76 base pair combination

occurs in the reference genome, assuming 76 baseeaa lengths. Figure 7 shows an

example creation and use of the simple indexingtswi for 10 base pair short reads.

Reference:
Position

Reads

Reference:

Read

AAAAAAAAAACTGAGACCCAGGAGTATGATCGCTGAGCGGCGTAAATAGCTTTTTTTTTT

000000000011111111112222222222333333333344444444445555555555
012345678901234567890123456789012345678901234567890123456789
: AAAAAAAAAA
AAAAAAAAAC
AAAAAAAACT,
Read Index Table

AAAAAAAAAA 0

AAAAAAAAAC 1

TTTTTTTTTC/
TTTTTTTTT/ 50

AAAAAAAANAACTGAGACCCAGGAGTATGATCGCTGAGCGGCGTAAATAGCTTTTTTTTTT
AGTATGATCG

Figure 7: Simple indexing solution shows the creain of the index table (red) by walking along the
reference and recording the reads that appear at evy location in the index table. Short reads are
used as an address into the index table (green),athe final alignment for the read is read from
the index table (blue).

Recall that the sample DNA is slightly differenorin the reference genome, and errors do

occur while generating the short reads, thus okeatls are guaranteed to perfectly match a

location in the reference genome. However, shatbsequences of the short read, even in

the presence of genetic differences and read ersbuld match perfectly to at least one

location in the reference, as can be seen in Figure
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Reference: CGAGTTGGATTTGAGACCCAGGAGTATGATCGCTGAGCGGCGTAAATAGCGCTATGACGT
Read : AGTAAGATCG
Seed : AGTA
GTAA
TAAG
AAGA
AGAT
GATC
ATCG

Figure 8: In the presence of a single nucleotide ponorphism (SNP) (shown in red), the read will
not map to the proper location in the reference, bushorter subsequences of the read, called seeds,
will still map to the reference if they do not conain the base with the SNP.

Assuming low enough genetic variation and read rerades, some of these shorter
subsequences, callededs, should match perfectly to at least one locatiorhie reference
genome. Because the seeds will match perfecttidaeference, an index of the reference
can be created for the desired seed length thaitatelvhich positions in the reference a given
seed occurs.

Read errors and genetic variations can occur apasyion in a read. An error at a position
in the read means that any seed that uses thawas®t map to the correct portion of the
reference genome, as can be seen in Figure 9 bgetke that causes the read to map to
location 41, which is shown in red. To combat tlaB possible seeds within a read are
looked up in the index, and the read will haveeédurther compared at each of the reference
locations specified by the seed lookups.
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Seed Index Table
AARA | O 1 2 3 4
AAAC | 7
AAAT | 43
Read: AGTAAGATCG
Seed: AGTA____~___——-—— - o
GTAA ISAGTA | 22
TAAG ;
AAGA = I”
GATC . r.;
AT
€6 ;GATC/ %b
1
TR
! ;l
TSN
. Iy \\.
, ; L
T 50 | 51 g2 [ 53] 54
5 ~

T

Reference: AAAAAAAAAACTGAGACCCAGGAGTATGATCGCTGAGCGG?ETAAATAGCTTTTTTTTTT
Read : AGTATGATCG
AGTAAGATCG
AGTATGATCG
AGTATGATCG

Figure 9: All seeds for a read are looked up in ineix table. Those seeds without the SNP produce
correct alignment positions in the reference, whilethe seeds with the SNP may produce an
incorrect alignment location.

The final comparison that is done for each spetifiesition can vary in the algorithms that
use the indexing based solutions. Some algoritso) as MAQ [6], take the portion of the
read that matches perfectly to the reference geramdesxtend the seed from its boundaries
within the read one base at a time in an attempjusmtify how well the read matches that
position in the reference. If the seed is fullyezxed so the entire read is matched to the
reference, then the read matches perfectly todferance at the test location. If not, this
extension process attempts to quantify how wellas able to extend the seed. An example

of this seed and extend method can be seen ind-igur

Reference: CGAGTTGGATTTGAGACCCAGGAGTATGATCGCTGAGCGGCGTAAATAGCGCTATGACGT

Read $ AGTAAGATCG
Seed : GATC
Extend : GATCG

AGATCG

Figure 10: In seed and extend method, a possibleigriment location is found for a read with the
seed method, and the seed is extended to determhmaw well it aligns at the location.
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The other manner of testing how well a read mateh&scation in the reference, as is the
case in BFAST [3], is by using a fully gapped afigent algorithm very similar to the
original Smith-Waterman [16] string matching algom. This is a dynamic programming
algorithm that iteratively attempts to compare sgoences of the two strings in order to
guantify the similarity of the two subsequenceshe Talgorithm grows the subsequences,
starting from an empty set, and adds a base terditle reference or read subsequence until
the full reference and read strings are compargdeach step, a similarity score is assigned
to the subsequences being compared, where theisdmssed only upon the similarity score
of shorter subsequences of the read, the referandethe base(s) that were just added to the

current subsequence for comparison. This will &gcdbed in greater detail in section 3.1.

After each of the possible locations identifiedtbg seed index lookup have been scored, the
one with the highest similarity score, as identifley either the Smith-Waterman step or the
seed extension step, is declared to be the alightoeation for the read. The indexing
solutions can quickly provide a list of possibleggament locations for a read, but they still
require the Smith-Waterman alignment algorithm t&tednine which of the positions
produces the best alignment. This process carebetwvne consuming, especially when the
number of locations for each read is large. Alle,index requires a large memory footprint
because approximately all locations in the refezggroduce a seed, with the exception of the

end of chromosomes.

2.2.1.2 Burrows-Wheeler Transform Solution

The second category of algorithm that attemptobeesthe short read mapping problem uses
a data compression structure called the Burrowsalégherransform (BWT) [15] and an
indexing scheme known as the FM-index [17]. Theeddea for searching the genome to
find the exact alignment for a read is rooted iffisurie theory. The BWT of a sequence of
characters is constructed by creating a squarexcaintaining every possible rotation of the
desired string, with one rotated instance of thmgtin each row, as shown in Figure 11.
The matrix is then sorted lexicographically, aned BWT is the sequence of characters in the

last column, starting from the top.
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$acaacg

aacg$ac

acaacgs$
acaacg$—+>acg$aca—>gcS$aaac

caacg$a

cg$acaa

g$acaac

Figure 11: Creation of the Burrows-Wheeler Transfom for the sequence ‘acaacg’ [4]. The
constructed matrix is shown in the middle, and thdinal compressed BWT is ‘gc$aaac’, as shown
on the right.

Once the BWT matrix has been constructed and sortéaktions of the original string that
begin with the same sequence will appear in cotisectows of the BWT matrix. At this
point, the original sequence can be searched farget subsequence by iteratively growing
the suffix of the target sequence and computingdnege of indices of the BWT matrix that

contain the target suffix.

During each iteration, the algorithm prepends oaselof the target sequence to the current
suffix and locates the first and last occurrenceshe newly added base in the Burrows-
Wheeler Transform that lies within the range ofited that was calculated in the previous
iteration. If the base is found within the defimadige of the BWT, the algorithm uses those
occurrences in the BWT to compute the new rangedi€es into the BWT matrix for the
next iteration, based on the current index rangéis is continued until the entire target
sequence is added to the suffix, and then theeamderlocations specified by the BWT within
the defined range are where the target sequencesoaithin the genome. Figure 12 shows

an example using the BWT matrix to map ‘aac’ toréference ‘acaacg.’
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aac aac aac

$ g $ g $ g

a c__a c_L aac c

a $ ac $ a $
2 a__ ac a a a
c a c a c a
g a c a c a
g c g c g c

Figure 12: BWT matrix is used to compute the locatin of string ‘aac’ in the original sequence by
iteratively prepending a base to the suffix of thesearch string, then computing the BWT table
index limits based upon the limits computed in th@revious iteration. [4]

For example, assume the user is trying to matchstguence ‘aac’ somewhere in the
reference sequence ‘acaacg’. The first step ppeapend the base ‘c’ to the originally empty
suffix and locate the first and last occurrencécofwithin the defined range of the BWT.
Since the range begins as the full range of the BIN& full BWT must be searched for the
first iteration. The BWT at the first and last @ntry is then used to compute the index range
for the next iteration, which will attempt to preykthe base ‘a’ to the suffix to form ‘ac’.
This repeats until all bases have been prepend#tteuffix, and the locations of the target

sequence have been found in the reference sequence.

The BWT has been shown to be a rapid way to sdarca substring within a reference in

the case of perfect matching, because each itardtesize of the index range for the current
suffix either remains the same size or reduceg&an and therefore converges to a result. In
other words, the search space for the target stiegins with the entire reference and
converges to only the points where the target seguappears. However, problems arise

with this algorithm in the presence of read ermrgenetic differences.

For example, assume the next base to be prepeadbd suffix is ‘c’, but no ‘c’ bases are
found within the valid range of the BWT due to angic mutation from the reference
genome. This situation means the ‘c’ base is ed@heSNP, an indel, a base-calling error, or
one of the bases before this base was some foram @frror. This leads to an exploding
search space and can cause slow runtimes for laugeers of read errors or genetic

variations.
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2.2.2 Comparison

These two solutions to the short read mapping probpresent different advantages. The
indexing solution is more accurate because of tifig f§apped alignment and therefore can
tolerate a larger read error rate. However, ium@s an extra Smith-Waterman alignment
step, yielding slower short read alignments unld#ss Smith-Waterman step can be

accelerated. Finally, even if all seeds for a rappear only in one location in the reference
genome, the algorithm still must perform all thenmoey accesses to an index. This means
the number of access to the index for the indesiolgtion is statically determined by the

read length and seed length.

Conversely, the BWT-based solution does not hasttic seed length; it can recognize if a
short read occurs in only one location in the miee genome, and if so, halt the processing
for this read, yielding faster processing timefie BWT-based solution is fast for reads with
low error rates, both read errors and genetic idiffees, but it may not align all reads due to

too many differences between the reference genochéha reads.

Software solutions, such as Bowtie [4] and BWA ¢ah align approximately seven billion
base pairs per CPU day, while advanced lllumina lsaling machines, such as the HiSeq
2000, can sequence up to 55 billion base pairgdagr18]. One potential solution to this
bottleneck is to accelerate the mapping phase Wygadvantage of the data parallelism in
the set of reads. The alignment of one read ierenftly independent of the alignment of
another read, and therefore ideally all reads cbaldligned in parallel. This can be done by
designing software to be run on expensive, largédescomputing systems composed of
general purpose processors, or by designing alglanardware system, which does not have
the restriction of sequential execution that preoes have, thereby enabling the concurrent

mapping of multiple reads.

2.3 FPGAs

One issue with using central processing units (JQRUslo computationally intensive data

processing is their inherent sequential nature.other words, traditional single threaded

CPUs execute a sequential program and are unalédeoadvantage of the parallelism that
exists in some applications, either data or tag&llparallelism. General purpose processors

attempt to take advantage of parallelism in appbos by utilizing numerous processing
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cores and partitioning the computation amongst éhogres, as is done in multi-core
processors or clusters. However, adding multiplee< for parallel processing requires the
addition of more logic than the required computaiounit, and that extra logic simply adds

power and delay overhead to an application.

Conversely, hardware systems can be designed toiexpe parallelism that exists in a

problem in order to produce a much higher compuonali throughput as compared to a CPU.
Hardware chips that are designed and fabricatéar¢et a specific design problem are called
application specific integrated circuits (ASICS)ASICs can perform computations in

parallel, resulting in a great speedup over a CPowever, ASICs require a large amount of
non-recurring engineering (NRE) costs in order & gdroduced, both for the design and
fabrication of the chip. This NRE cost can be amé that some projects simply cannot

produce enough income to cover the NRE costs, l@réfore the project is ruled a failure.

Field programmable gate arrays (FPGAs) can prosideiddle ground, which proves very
useful in some applications. FPGAs are a sea ainfegurable logic and programmable
routing that can be connected and configured t@omithe function of any digital circuit.
The combinational logic in an FPGA is implementesing static random-access memory
(SRAM) based lookup tables (LUTs), and the seqaérbtigic is implemented using
registers. They also contain additional featusegsh as digital signal processing (DSP)
blocks and large memories with low latency accessd. This allows FPGAs to perform
massively parallel computation, giving them a perfance advantage over CPUs, but can
also be reconfigured to fit multiple applicatiomghich can reduce and almost eliminate the
NRE costs of an ASIC.

The fine-grained parallelism in FPGAs gives thepedormance advantage over traditional
CPUs for applications requiring large amounts ohpatation on large data sets. The ability
to be reconfigured gives them a reusability adwgetaver ASICs. However, both
advantages are not without cost. Programming @&Ad has traditionally been difficult
because the designer has been required to writdaw-level hardware description language
(HDL), such as Verilog or VHDL, instead of commondaeasier to debug high level
software languages like C++. Also, the abilitbreprogrammed puts the FPGA at a large

speed and power disadvantage when performing lofyioations as compared to standard
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CMOS gates that are implemented in ASICs. In spitéhese costs, FPGAs can produce

great improvements in both system runtime and peaeings.

231 LUT

The lookup table (LUT) is the computational engiieghe FPGA, because it implements the
combinational logic required for all computatiorisookup tables are SRAM-based elements
that take an input N-bit number, which is usedraad@dress into an array, and returns a 1-bit
number. By programming the elements of the arrayhe lookup table, a designer can
implement any N-to-1 logical function. The SRAMskd lookup table provides re-
programmability to the system, but it causes th&tesy to run at an average of about 4x

slower clock speeds than standard CMOS logic [19].

2.3.2 Memory

Random access memory blocks are available on tli®ARB be used as local storage as
needed by the application. This memory can be @sedery fast access temporary data
storage for kilobits of data during operation, larger data sets must be stored in off-chip

memory.

Since lookup tables are implemented using SRAMscethme FPGA vendors such as Xilinx
Inc., allow the lookup tables, which are distrimiteroughout the FPGA, to also be used as a
distributed memory. Distributed memory can be gffea shift registers, first-in-first-out

gueues (FIFOs), or can even be chained togetlweabe larger memories, if necessary.

2.4 DRAM

Dynamic random-access memory (DRAM) is a type ofmwmey that stores data in a very

compact and efficient manner. DRAM retains datatoying charge on a capacitor, thereby
creating a densely packed memory; however, theegsof reading the stored data also
destroys the data that was stored. Also, the dapdases its charge over time, and without
being re-written, the stored data will be lost. pPmtect against this, DRAMs have a

controller that continually reads and re-writestlal bits of data that are stored in the DRAM
array. DRAM’s density makes them perfect for stgrdata sets that are too large to fit into

on-chip SRAM, but access into a random locatioBDRAM is slow.



19

DRAM’s hierarchical organization comprises multighanks, where each bank contains
many pages, each page contains many rows, andr@actontains many columns. In order
to read a location in DRAM, the proper bank, pamel row must first be opened by the
DRAM controller, which takes many clock cycles. d@ra row is opened, large blocks of
data can be read in consecutive clock cycles, antilew row must be opened. Thus,
sequential access into DRAM can be fast and efficibut random-access is very slow.
Therefore, a designer using DRAM wants to read ftbenmemory in a sequential access

pattern, as opposed to random access, in ordeaxonmize memory bandwidth.

To further improve the bandwidth to the DRAM, thentroller can have multiple banks of
the DRAM open at a time, which allows for a userdgad from as many rows in the system
as there are banks without the time penalty of mygea new row. Also, by pipelining reads
and writes to the DRAM, the controller can overéqeess times to different banks with the
time penalty to open a new row. Double data rBieR), which is the transmission of data
on the rising and falling clock edges, doubles DRAM data transmission bandwidth

without doubling the clock frequency.

2.5 Pico Computing

Pico Computing offers a reconfigurable computingstepn, which was used as the
development platform in this research project. Treehine comprises a computer running
Linux and a set of processor daughter card (PDCidanes. Each backplane may hold up
to six reconfigurable modules, which will be debed in section 2.5.1, containing an FPGA
and some memory. The machine has two quad-coeegdricessors, a 1 TB hard drive for

storage of large data sets, as required by gen@rocessing, and 24GB of main memory.

2.5.1 M501 and M503

The two Pico Computing modules of interest to tesearch project are the M501 and M503
modules. Both of these modules contain a singl@407 Virtex-6 FPGA, a PCI Express
host interface, and DRAM. Figure 13 shows an imaigthe M501 board while Figure 14
shows the front and back of the M503.
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Figure 13: M501 board from Pico Computing, with theVirtex-6 FPGA visible from the top view.
(20]

The LX240T Virtex-6 FPGA, which is a medium-sized@A in the Virtex-6 family,
provides approximately 240,000 logic cells [21}ie designer, which is quite large for most
applications. The x8 PCI Express provides the camoation interface with the host
processor. One limitation of the M501 module ie telatively small amount of DRAM
available, which is a maximum of 512MB. Howevax, 8501 modules may be placed on

the PDC backplane, allowing for massive computaiicihe system.
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Figure 14: M503 board from Pico Computing. Virtex6 FPGA can be seen from the top view (left)
and the two 4GB DDR3 modules are visible on the urdneath side of the module (right). [20]

The larger M503 card contains the same Virtex-6 ARG the M501 module, but contains
many upgraded systems on the board. The commiarictd the host processor is done
through x8 Gen2 PCle. The amount of DRAM possilsiehe module has been improved to
8GB (two 4GB SODIMMS), and DDR3 DRAM is used as opgd to the DDR2 DRAM on
the M501 module. Lastly, three 9MB QDRI SRAM chimre on the M503 module,
providing fast off-chip memory that is availablette FPGA logic.

2.5.2 Streaming interface

Pico Computing’s modules rely on a streaming iieef for efficient communication
between the reconfigurable system and the hostepsoc. Streaming interfaces can be
effective at transferring large amounts of datanfithe host processor to the reconfigurable
logic and back to the host processor through sep&@le communication interfaces. Each
interface is capable of achieving a peak bandwaditbout 600MB per second if transferring
large block sizes. Transferring data in large blsizes is much more efficient than small
block transfers.
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3 Algorithm

Mapping in the presence of read errors and acce@igng are both important aspects of
short read mapping, and therefore we implementraioam of the indexing solution here
instead of the BWT-based solution. To implemetd gdgorithm, we find all seeds for a
read, find the locations in the reference wheres¢heeeds occur, and perform Smith-
Waterman alignment at those locations. In otherdsiothe heart of our mapping algorithm
is the Smith-Waterman string matching algorithme ¥¢celerate the alignment of each read
by performing the Smith-Waterman comparison at enfgw identifiedcandidate alignment
locations (CALs) in the reference, and then choose the dw produces the highest
alignment score. We find the CALs for a read lgking them up in a large table, which we

call theindex table. An overview of the indexing solution can be seeRkigure 15.

short reads seeds CALs
> >  Index > Reference
reads alignments
> S-W & >

Figure 15: Overview of the indexing solution implemented in a hardware system. One module
finds the seeds for a read; one finds the CALs foeach seed; one looks up the reference data for
the CALs; and a final module performs the Smith-Waerman alignment on the short read and the
reference data.

We further accelerate this mapping process byiagatsystem with many Smith-Waterman
units, with which we can simultaneously align ma@#Ls for a read, or many CALs for

many reads. By partitioning the reference genoonesa multiple FPGAs and chaining them
in series with all reads flowing through all FPGAs are able to pipeline the alignment of
reads against different portions of the refererex@ogie. Further details of the algorithm and

its expected performance are described in thevimig sections.
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3.1 Smith-Waterman Alignment

The Smith-Waterman string-matching algorithm is omonly used to compare the similarity
of two strings. The fully gapped algorithm provédEccurate scoring, even in the presence of
indels, and its search space remains quadratmp@ssed to the exponential search space of
other algorithms such as BWT. The original Smitaté¥man algorithm was designed to
perform fully gapped local alignment, which will toh any subsequence of one string to any
subsequence of a reference string. A slightlyedgiit algorithm, called Needleman-Wunsch,
was conversely designed to globally align an erntids sequence to an entire reference

sequence [22].

Both of these algorithms can be implemented usystpsic arrays [23], but neither algorithm
accurately performs the alignment of a short readhe reference genome. Specifically,
what we want is the full sequence of read basespaibe aligned to a subsequence of the
reference genome. Another slight difference in goal from the original algorithm is the
manner in which long strings of inserted basesharelled. In the original Smith-Waterman
algorithm, all insertions or deletions were scoiteel same. However, long subsequences of
base pairs may be inserted or deleted into theemreée genome, as occurs in copy number
variations (CNVs), and the insertion or deletiomgigy will not be identical for every base
pair that is inserted or deleted from the referente deal with this, a model for sequence
scoring, known as the affine gap model, penalihesd long insertions or deletions (indels)
less. It applies a high penalty to the first bise string of insertions or deletions [24], and a
lower penalty to the subsequent indels. Figuresi®wvs an example of the gap penalty

difference between the affine gap model and thgiral Smith-Waterman algorithm.
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Figure 16: Affine Gap model scoring for Smith-Wateman alignment reduces the penalty for
extending gaps than for opening new gaps.

To modify the Smith-Waterman algorithm to fit odrgament goal of global read to local
reference alignment, we merely have to adjust tiiteai setup of the similarity matrix, as
shown in Figure 17. The first step of the Smitht&viaan algorithm sets the first row and
column of the similarity matrix to 0. We do seetfirst row of the similarity matrix to O,
which allows the alignment of the read to begiraay position in the reference sequence.
However, we initialize the first column of the mgfrexcept the cell in row 0, to very
negative numbers. This effectively forces the falid to align to the reference. As required
by the affine gap model, we maintain two more necaBj with the same dimensions as the
similarity matrix. These matrices are responsiblenfiaintaining scores for currently opened
insertions (reference gaps) and currently opertideke (read gaps), one matrix for each. A
cell in the similarity matrix is dependent upon jiedecessors in the similarity matrix, as
well as one neighbor in the read gap matrix andiortbe reference gap matrix. Therefore,
the computation can still be performed using syst@irays. More information regarding the
Smith-Waterman compute units and their hardwarebmafound in Maria Kim's Master’s
Thesis [25].
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Figure 17: Modified scoring array for newly created Smith-Waterman / Needleman-Wunsch
scoring matrix causes the entire read (red) to beligned to any subsequence of the reference (blue)
sequence. The score of a cell is computed as theximum of its neighboring cells after the
addition of their respective indel penalty or matchbonus. The diagonal cell gets a bonus if the
reference and read base match, and the other two @ws always have an associated indel penalty.

Now that we are able to align a read to a refersegeience of a given length, we can fill up
an FPGA with compute units, load them with shoddse and stream the reference to the
compute units. Assume we can fit 100 Smith-Watercwmnpute units operating at 250MHz
on each FPGA, we have a system containing four FR®@%& have a PCle bandwidth of
600MB per second, and we are mapping 200 milliorbd@ge pair reads. In the described
system, the Smith-Waterman alignment becomes ttikebeck, because it requires 500,000
iterations of streaming the full reference and @ering 400 Smith-Waterman computations,
each of which takes 12 seconds. This resultstota runtime of approximately 70 days.
This mapping time is much too long compared toghwunt of time required to sequence
the reads, which is less than one day, and theréifis is not a feasible solution [1].
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If we instead only align each read to a set of whatd alignment locations, i.e. a set of
locations to which the read possibly aligns, we gegatly reduce the runtime of the system.
For example, assuming that each of the short realgsneed to be aligned to four CALs, and
assuming all other system parameters remain the sarthe previous example, the time
required to read the reference data from DRAM amifopm the Smith-Waterman

alignments for all short reads drops from 70 dayapproximately 16 seconds.

3.2 Index table

In order to perform Smith-Waterman alignment oreaf CALs for each read, the CALs
must be identified for that read, either in a preegssing phase or online during the mapping
phase. The identification of CALs can be done loa EPGA during the runtime of the
algorithm, before the reads are aligned. CALs fawend by identifying places where
subsequences of a read, calleetls, appear in the referenc&ach seed, which consists of a
given number of consecutive base pairs from withiread (we use 22 base pairs), occurs at

zero or more locations in the reference genome.

Thus, we need something that will accept a reaghasput and efficiently produce all seeds
for that read. Also, we need a structure to mapesd to the set of locations in the reference
genome where that seed occurs. This structureshwiientifies the CALs for a given seed,
is called thandex table, and its use is shown in Figure 18. We use ttexrnable to identify
CALs for a seed, iterate over all seeds withinar@ccumulate the CALs, and align the read
at each of those accumulated CALs. This appearbet@a simple process, but clever
organization is required to create an index taie s both space and time efficient.

o —

seed1l CAL:s for seed1l
Read — seed2 Index Tabl CAL:s for seed2 - EALS
ca seed3 ndex fable CAL:s for seed3 lg:;a d

Figure 18: Index table structure should return a sé of candidate alignment locations in the
reference genome for a given seed.
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3.2.1 Index Table Structure

The index table contains one entry for every basstipn in the reference genome (except

for those bases that are ‘N’ or are near the era @dfromosome), and each entry stores the
seed that occurs at that location. In order td fdALs for a seed, we must search this large
array to find the complete list of CALs associatath the seed. If the seed length used in

the indexing solution is very short, every possided will have a set of CALs associated

with it, so we can use a direct mapping. Convgrdehg seeds will result in many seeds not

having any CALs associated with them, thereby teguin a sparse table. For this sparse

table, we use a hash table to map seeds to theif €ALs.

To store all the CALs and seeds from the refergges®me, we construct an array of seed-
CAL pairs, and sort the array by seed, therebyticrga structure we call th€AL table.

Given a seed, the user can search the array batsded is found, and all CALs associated
with that seed are in consecutive positions inaitiay. Unfortunately, each seed will have a
variable number of CALs, as seen in Figure 19 hgoet is no way to know exactly where a

given seed lies in the array.

Seed | CAL
AAAA 0
AAAA 1
AAAG 2
AAAT 367
AACA | 298
AAGA 3
TTTC | 900
TTTT 899

Figure 19: CAL table contains only those seeds thaiccur in the reference genome. Some seeds
occur multiple times (AAAA), and some do not occurat all (AAAC), so standard addressing is
impossible into this array.

Given a seed, our hash table provides an exactguairto the CAL table, which must then
be searched at the index specified by this poiftiethe set of CALs associated with the
search seed. Since the hash table stores pointerthe CAL table, we call it thpointer

table. When designing this hash table, we need to ihéter how to handle collisions and
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how to probe the hash table for the target enlifye do not allow collisions, we probe the
pointer table for the target seed, possibly reggimultiple DRAM accesses into the pointer
table for a single seed. Also, storing a pointar &ll possible seeds occurring in the
reference genome could potentially require a vargd pointer table. If we instead allow
collisions, we can probe for the desired set of €Alith the access into the CAL table,
because we can determine how many CALs must befreadthe CAL table to guarantee
we retrieve all CALs for the target seed. Thi®alsarantees we read the pointer table and
the CAL table at most one time each from DRAM.

Many seeds share a single pointer, and the steigtuthe CAL table pointed to by one of
those pointers is called@AL table bucket. CAL table buckets contain a variable number of
seed-CAL pairs. To find all CALs for a seed, teedis hashed, the hashed seed is then used
to obtain a pointer from the pointer table, thenpei is used to read all CALs in the specified
CAL table bucket, and only those CALs paired witlseled matching the target seed are
retrieved for later processing. Figure 20 showsegample pointer table and CAL table
using four base seeds, where the pointer from tirtgy table points to the start of a CAL

table bucket and CAL table buckets may contaired#fit numbers of CALs.

Pointer Table CAL Table
Address | Pointer Key | CAL
AAA —_—— ] ——— 3 A 0
AAC ~_ A 1
ARG - N G 2
N T 367
S N
TTT ~ . ~ A 298
~N A A 3
~
~
~
~Nal ¢ | 900
T 899

Figure 20: The pointer table uses the address podnh of the seed to get the pointer into the CAL
table. The key must now be matched against the késom the target seed during processing.

We hash the seed by simply taking the most sigmtibits of the seed as the hashed seed,
which we call theaddress bits, because they are used for the addresshathdsh table. All
seeds in the same CAL table bucket share the sddress bits, but they may differ by their
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least significant bits, which we call tikey bits. An example of this breakdown using a 22-
base seed, a 30-bit address, and 14-bit key isrshowigure 21. Since the address bits are
already used to obtain the pointer from the poitdabte, only key bits must be stored along
with CALs, which are used to match against thedasgped and differentiate between the
multiple seeds that share a CAL table bucket. i®jdhe key bits instead of the full seed bits
in the CAL table reduces the size of the CAL tdbden 26GB to 16GB, if using 30 bits of
the seed for address and 14 bits for key.

Seed =AAATGAGCCCCTGGGGGAGGGT
= 00000011100010010101011110101010100010101011

\ J
| |

Address Key

Figure 21: A seed is broken up into address and kegortions. Address is used to access the
pointer table and keys from the CAL table are matcled against the key from the seed.

At this point, we cannot reduce the number of moin the pointer table without increasing
the average number of CALs per CAL table accessweucan modify the amount of data
required for each pointer. Instead of having alhgers in the table be 32 bits, we can store a
full 32-bit pointer for every H pointer, which we call atart pointer, and a smaller field for
each of the other n-1 pointers, which we call affsend are relative to the full 32-bit pointer.
Similar to how seeds within the same bucket ontfedby the key bits, address bits of seeds
that hash to the same entry of the pointer talle therefore share a start pointer, only differ
by the least significant few bits, which we nowl¢hetag. The definition of address is now
reduced to those bits that are common for all sekdeng a start pointer, as shown in Figure
22.

Seed =AAATGAGCCCCTGGGGGAGGGT
= 00000011100010010101011110101010100010101011

| | LY_A | }

Address Tag Key

Figure 22: Least significant bits of previous addrss field now become a ‘Tag’ field.
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With each read from this pointer table, we woule lto get the pointer to the CAL table
bucket, as well as the number of CALs in that btickehis can easily be accomplished by
slightly changing the definition of the offset filsl Instead of having each field specify the
number of CALs before that bucket, each field gaecgy the number of CALs to the end of
the bucket, relative to the start pointer. Fomepke, offset[0] will store the number of CALs
in bucket[0]; offset[1] will store the number of €A in bucket[0] and bucket[1], and so on.
An example pointer table can be seen in FigureAB;h was created using four base seeds,

four bit addresses, two bit tags, and two bit keys.

Pointer Table
Address | Start Pointer | Off[0] Off[1] Off[2] Off[3]
AA 0 4 5 6 6
AC 6 3 6 8 8
AG 14 2 7 9 13
0
TT 890 -

Figure 23: Pointer table where the offsets specifihe offset to the end of the CAL table bucket.
For example, offset[0] specifies how many CALs ana bucket[0].

The pointer into the CAL table is found by addihg start pointer with offset[tag-1], and the
number of CALs is found by subtracting offset[tdgibm offset[tag]. The only exception
occurs when the tag bits are zero. When this happke pointer is simply the start pointer,
and the number of CALs in the CAL table bucketgsa to offset[0]. An example using the
pointer table and the CAL table for tag equals tan be found in Figure 24 and Figure 25.
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2) Tag
Pointer Table 7
off[0] | off[1] |Off[24

Start

Off[3] | 3) Pointer = Start + 1
1) Address 13] —)) ointer = Start + Off{ 1]

>
Start | Off[0] | Off[1] | Off[2] | Off[3] | 4) #CALs = Off[2] — Off[1]

Start | Off[0] | Off[1] | Off[2] | Off[3]

Figure 24: Example of using the pointer table forag = 2. Pointer is the start pointer of the seed’s
address + offset[tag-1]. Number of CALs to read fim the CAL table is the difference of
offset[tag] and offset[tag-1].

7) Key
CAL Table |

Key,CAL Key, CAL

5) Pointer

Key,CAL | Key,CAL | Key,CAL | Key,CAL | Key,CAL | Key,CAL
Key,CAL | Key,CAL | Key,CAL | Key,CAL | Key,CAL | Key,CAL

Figure 25: CALs are read from the CAL table (blue)starting at the start pointer and reading up
to but not including start pointer + number of CALs. Each of the key read from the CAL table is
matched against the target key, and matching keysgfeen) correspond to CALs that must be
processed by Smith-Waterman alignment.

Problems arise when CALs are not uniformly disti@ouamongst CAL table buckets. As
done in BFAST, seeds that appear more than eigmstiin the reference genome are
removed from the CAL table. Also, the size of tfitset field must be large enough to offset
the largest set of CAL table buckets sharing a comstart pointer. Thus, if the number of
CALs in each bucket were uniformly distributed oairCAL table buckets, the offset fields

in the pointer table, and hence the pointer taisigfi would be small. However, seeds that
appear in the reference genome are not uniforndyriduted throughout the CAL table

buckets, as shown in Figure 26.

To deal with this, a hashing function is used tdigeibute the CALs amongst CAL table
buckets by hashing the seed and inserting the GAthé bucket specified by the hashed
seed. When using the tables to find all CALs faread, each seed must first be hashed
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before it can be broken into the address, tag, kaydfields. Our hashing function was
developed by Cooper Clauson, and it permutes &lldiithe seed, XORs the upper half of
bits into the lower half of bits while the upperlthaf bits remains. These two steps are

repeated seven times to achieve a ‘good’ distiioutif CALS into buckets.

CALs per Bucket in CAL table
1E+09

o
100000000 & n
* o . Ideal

10000000 e, + Without Hash

= With Hash

1000000
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Number of CAL table Buckets
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1 10 100 1000
Number of CALSs in a CAL table Bucket

Figure 26: Distribution of CALs per CAL table bucket for the full human genome before hashing

(blue), using an ideal hashing function (green), ah after hashing the real data (red) plotted

against a log scale. The ideal hashing function widl distribute the CALs according to a Poisson

process, and the real hashing function distributethe original seeds very well over the entire set of
CAL table buckets with respect to the ideal values.

The structure described in this section, known hes €ALFinder, is responsible for the
following: finding all seeds for a read; hashingleaeed; looking up the hashed seed in the
pointer table; looking up the resulting pointertiie CAL table; and comparing the resulting

CALs to the target seed.

3.2.2 Index Table Analysis
Given a few assumptions, we can easily analyzesittee and performance of the resulting
pointer and CAL tables. Assume for the purposaradlysis that the read length used for

short read mapping is 76 base pairs, and we ubag? pair seeds as found in BFAST.
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Each read into the pointer table and the CAL tablereturn a block of data, but subsequent
accesses have no relation to each other, and ¢therefe will have very random memory
access patterns. Each seed of the read must kedlap in the pointer table and the CAL
table, and therefore this algorithm requires up16 random accesses into memory for each
read. After that, the read must be aligned viat&Waterman alignment at each CAL found
by these accesses into the CAL table, and theemdersequence must be read from memory,
which is also random in nature. This brings thenber of random memory accesses per read
to 110+CALs per read, or more generally, this nunide

Equation 1: Number of random memory accesses per a€l.

accesses per read = 2 * (read length — seed length + 1) + CALs per read

The CAL table contains an entry for almost evergleotide base in the reference genome,
which is about three billion. The only bases ia enome that do not have an entry in the
CAL table are either near an unknown base in tfexeace, which is marked as ‘N’, or are
within one seed length from the end of a chromosoiBach of these entries in the CAL
table must store the CAL, which is a 32-bit numtieat specifies the position of the base
from the start of the reference genome, and the Wbych is used to match against target
seeds during the processing of reads. Zero padsliunged to align the CAL table entries to a
32-bit boundary, and the resulting 64-bit CAL tablries, assuming keys are less than 32
bits, produce a final CAL table that is approxinates6GB.

The pointer table contains one entry for each ptssiombination of address bits, and each
of these entries contains a 32-bit start pointenglwith 2~tag offset fields. Assuming we
use 26 bits for address, 4 bits for tag, and 14 foit each offset, each entry in the pointer
table is 256 bits, resulting in a 2GB pointer tabl&€he full reference genome, which is
approximately 1GB (assuming a 2-bit per base emgpdnust also be stored in memory for
this algorithm to function properly. The final aggate memory footprint for this algorithm
with the specified assumptions is about 19GB, wischuite large for most reconfigurable

systems.

A concern with the stated algorithm is the numiferaodom memory accesses that must be

done for every read. Since we have to accessthetpointer table and the CAL table for
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every seed, we must randomly access the index dd@utimes per read. Thus, we should
attempt to reduce the number of memory accesseriel as possible. We can reduce the
average number of CALs per CAL table bucket byaasing the number of address and tag
bits, as shown in Figure 27. Using 26 bits forradd and 4 bits for tag yields an average of
2.8 CALs per CAL table bucket.

CALSs per Bucket
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Figure 27: Expected number of CALs per CAL table biket. Increasing the number of address +
tag bits used to access the pointer table by onedwces the number of CALs that must be read for
every CAL table bucket by a factor of two. Using 8 bits of address and 4 bits of tag means we use
30 bits of the seed to specify a CAL table bucketesulting in an average of 2.8 CALs per CAL
table bucket.

The total number of address and tag bits useddoifspa CAL table bucket sets the size of
the CAL table bucket, but the size of the point#ié¢ is determined by the ratio of address
bits versus tag bits. Figure 28 shows the mininsired pointer table versus number of
address bits where each series has a constant nofrdmdress + tag bits. This graph shows
the pointer table sizing if CALs are uniformly dibuted through all CAL table buckets.
However, they are not uniformly distributed, so uge more bits than the ideal case for each
offset in the pointer table, resulting in a 2GBrmer table instead of the ideal 1GB pointer
table when using 26 bits for address and 4 bitsafgr



35

Size of Pointer Table for Constant Number of CALSs per Bucket
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Figure 28: Minimum sizing of the pointer table acress various number of address and tag bits.
The ‘A+T=30’ series with A<25 shows that having toanany tag bits to obtain a desired number of

CALs per access results in an oversized table. Ceersely, not enough tag bits also results in a
larger than necessary pointer table, as can be seenthe ‘A+T=30’" series for A>26. To have 2.8

CALs per bucket on average, the pointer table sizés in the ‘A+T=30" series and results in a

minimum pointer table size of about 1GB.

We have specified that we use 26 bits for addreds4abits for tag, and now Figure 27 and
Figure 28 enable us to analyze that decision. @fddd to use 30 bits for address and tag
so each CAL table bucket would contain a small nemdf reads, which in this case is
slightly less than three. Figure 28 shows thatcaeld have used 29 or even 28 bits for
address and tag instead, which would decrease itkeo$ the pointer table but would
increase the number of CALs per CAL table buck&hese alternatives produce a pointer
table that still must be stored in DRAM, so therdased pointer table size may not be worth
the increased number of CALs per bucket. If wdyagathe sizing of address versus tag bits
by examining the ‘A+T=30’ series, we can see thatifg either 25 address bits with 5 tag
bits or 26 address bits with 4 tag bits producessthallest pointer table for that series.
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3.2.3 Index Table Performance

The CALFinder is analogous to an assembly lineh witany stages that accomplish a very
specific task. With the exception of the memorg &ans interfaces, each stage can produce a
new result every clock cycle. The stage that fialliseeds for a read must load the read in
multiple clock cycles if the read and read ID areager than the width of the bus interface to
the PCle, but once the read is loaded, it can girsipift the read and select the appropriate
bits to produce a new seed every clock cycle. I8itgj the hashing function can produce a
new hashed seed every cycle, either by a singge dtashing function or by pipelining the
hashing function through multiple stages, if regdito meet the system timing requirements.
Finally, the module that matches the keys from @#d table to the target seed uses one
clock cycle per CAL being compared. Thereforehd average CAL table access produces a
significant number of CALs, then this module can the bottleneck of the CALFinder
performance. However, we can replicate this matgimodule as many times as required to
match the throughput of the memory system, andlitne longer be the bottleneck of the

system.

The remaining stages of the CALFinder are the mgmaccesses, which are the reads into
the pointer table and the CAL table. Both the pmitable and the CAL table must be read
for every seed, and each of these accesses aamdom portions of the pointer and CAL
tables. Each random access into DRAM requiresa fienalty in order to open the desired
row in memory, which is many clock cycles long. sé| without a memory controller that
can pipeline read requests to the memory or dig&ilsead requests to different memory
chips, only one module can access the memory iata tin other words, when the pointer
table is being read, the CAL table must remain &ild vice-versa.

Because of this, the total throughput of the CAldéinwill likely be equal to the joint
throughput of the interface to the pointer tablel dahe CAL table. To improve this
bottleneck, the system memory controller shoulghelme read requests to the DRAM,
allowing for many read requests to be in flightdatme; permit multiple banks of DRAM to
be open at the same time, enabling different postiaf the memory to be quickly read; and
respond to read requests from a user system imartsfashion by checking if any of the

current requests can quickly be handled based @ruhrently open DRAM bank and row.
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These modifications should collectively result in passible factor of two or three
improvement in DRAM random access bandwidth.

3.3 Filter

As described thus far, the CALFinder will find allALs for all seeds within a read.
However, if a read aligns well to a location in tteference genome, many of the seeds
should return the same CAL. Also, if a given radigns perfectly to the reference genome
at a location, with the exception of a small numbgiinsertions or deletions, then many
seeds will return a CAL pointing to bases in thtemence genome that are close to one
another. It is possible that deletions will catlse ‘real’ start of a read, which is the base in
the reference that aligns to the first base ofréiael, to occur earlier in the reference genome
than that CAL states. A similar argument can bderfar both insertions and also the end of
a read. This means we must allow for a given nurobéndels, on either end of the read,
and must at least align the read against a secfitme reference genome defined by [CAL —
INDELS, CAL + READ_LENGTH + INDELS]. Finally, refence data read from DRAM
must be read at a minimum granularity, and the daloek of reference must be read for any
CAL that lies within that block of data. For thesmasons, a set of CALs that point to the
samereference bucket, or section of the reference that consists of \@erginumber of

consecutive bases, should only cause the readdbgoed once for that reference bucket.

3.3.1 Filter Structure

To remove redundant CALs, we can filter the CAlanirthe CALFinder before they are sent
for Smith-Waterman alignment with a module called €ALFilter. To filter the CALs, we
simply reduce the set of CALs from the CALFinderatget of CALs that describes unique
locales in the genome. To accomplish this, we Brbtract an offset to allow for a given
number of insertions when aligning the short readhe reference genome, and then we
bucketize the CALs so they point to a referencekbudnstead of a single base in the
genome, as shown in Figure 29. The CALs shoul@humketized to the width of a single
access to memory, since each read from memorypnollluce that many bases regardless
where the actual desired base falls within thab&egases.
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CAL CAL CAL CAL

Reference ,/” P \E/yip/’ L
.TTAGGGGCAGGTTCATGGGATTAGACGGTTAGGATTCCCGGAGAGAGATTTAGAGATGGTTGGGTTGAAAAA...
L Y N Y )
Reference Bucket Reference Bucket

Figure 29: CALs are modified so they no longer pointo individual bases in the reference genome
(red) but instead point to the first base of theirreference bucket (blue). Before bucketizing, we
subtract a 10 base offset to allow for insertionsiithe short read. Because of the indel offset, the
four CALs end up in two different reference buckets

This takes care of the CALs that are within the sdnocale by changing them all to point to
the same reference bucket, thereby making thenticdémvith respect to one another, but we
still have to reduce the identical CALs to a unige¢. This is accomplished with a simple
hash table, which attempts to store the list of €Ahat have been sent to the Smith-
Waterman alignment phase. We cannot store an famtgvery CAL though, because a table
with a single bit entry for every possible 64-basierence bucket is 5MB, which is too large
to hold in an FPGA memory.

Instead, we map many different CALs to a singleyeit the hash table by using the least
significant non-zero CAL bits (bucketization causies least significant bits of all CALs to
be zero) as the address into the table. A vemsionber is used as a quick way to clear the
hash table. Instead of clearing the hash tableedmh new read, which takes many clock
cycles, we can simply increment the version numidow each entry in the hash table must
store the version number along with the CAL, oleast the portion of the CAL not used as
the hash table address.

Figure 30 shows the steps taken in order to fiAts. An indel offset is first subtracted
from the input CAL into this system, which we ugelases for our allowed offset, and the
CAL is bucketized to a 64-base reference bucketdting the least significant six CAL bits
to zero. For each CAL for a short read, we reaal ftash table entry, specified by the hashed
CAL, and if both the version number and the CALretbthere matches the current version
number and CAL respectively, then this CAL is redimmt. The version number and CAL

are written into the hash table during the samekctrycle as the read, regardless of whether
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this CAL is redundant or not. Redundant CALs do mequire any further processing and

can be discarded, but non-redundant CALs must tigte@@ Smith-Waterman compute unit.

Hash Table
Version CAL

2) Previous

— version and
3) CAL and CAL read

1) CAL hashed version number
A (e .
written

) (- ) ——

Version Counter \

Figure 30: This figure shows the operation of the BLFilter. The version counter is incremented

for every new read. Each incoming CAL is first haked, and the location in the hash table
corresponding to the current CAL is read. The ver®n number and hashed CAL are also written

into the hash table. If the new CAL-version pair $ different than the data that was previously in
the table, this CAL is sent for Smith-Waterman aligiment.

3.3.2 Filter Analysis

In order to remove the redundant CALs from eackl,rd@& CALFilter requires some simple
control logic and a block of memory on the FPGAheTcontrol logic consumes very few
resources, and the memory on the FPGA is essgntiak since it is not needed by other
portions of the system.

We have stated that the CALFilter reduces the 8&Ad.s from the CALFinder to a unique
set of CALs that are sent for Smith-Waterman alignmbut we must further analyze how
this happens to understand what problems can ocldue. two types of errors that can occur
in this system are false negatives and false pesitiFalse positives, which occur when a
CAL for a read should be filtered by the CALFiltaut instead is sent onto the Aligner, can
occur if two CALs for a read hash to the same eatrg appear in an alternating sequence,
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such as ‘1, 2, 1, 2." These CALs will continuatlyerwrite each other in the hash table, and
the CALs will be sent for Smith-Waterman alignmemtre times than is necessary. This is
rare since our hash table has 1024 entries, and iavibe false positive case, we safely re-
check the redundant location with Smith-Watermagnahent, and therefore will not lose

any alignment sensitivity.

The more dangerous type of error is fhkse negative, which occurs when a version-CAL
pair appears to already exist in the hash tabldhercurrent read, but is actually leftover
from a previous read. This will result in the reaat being aligned at the CAL and leads to
inaccurate alignments. False negatives can otdineiversion number rolls over; two reads
have the same version number; these two reads #teasame CAL; and the location in the
hash table has not been overwritten between thehiat CALs, as shown in Figure 31. To
avoid this situation, we can clear the hash tatlienever the version number rolls over; the
hash table takes a long time to clear, but it anlyst be cleared when the version number
rolls over. Alternatively, we use a 32-bit versiommber, which is guaranteed to never roll

over unless aligning more than 2732 reads.
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Hash Table
Version CAL
5 0
82 64
31 128
2) CAL in new 74 192
read matches data 127 256
still in the table 56 320
_ 102 448
CAL=512
m 1 512 _ 3) CAL not sent
to S-W aligner

1) New read causes
version to rollover

Version = 1

Figure 31: A false negative will occur if the versin numbers match for two reads, they contain the
same CAL, and the location in the hash table is natverwritten in between the processing of the
two CALs.

To reduce the number of false positives for aldsgave can increase the size of the hash
table, which halves the number of false positivaselvery new bit used in the hash. If we
instead use another structure, such as a Blooen 6it a small CAM as a victim cache, we
can potentially reduce the number of false positige a faster rate than the factor of two
achieved by increasing the size of the hash talblewever, if the amount of extra work
required by the false positives is negligible ortlie Smith-Waterman step is not the
bottleneck of the system, the performance gain ftoendecrease in false positives may not

be worth the extra logic and design effort.

3.3.3 Filter Performance

The CALFilter is a simple change to the systemabse it can easily be inserted between the
CALFinder and the Smith-Waterman alignment unitt bhugreatly speeds up the Smith-
Waterman alignment step by reducing the total nundfeCALs to align. Without the
CALFilter, each CAL from the CALFinder must be alef. Therefore, if a read aligns

perfectly to a location in the reference genome,@ALFilter will eliminate 54 unnecessary
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alignments for 76 base-pair reads and 22 basespads. The CALFilter is able to read and
write the hash table for the same CAL in one cyalkich enables a CAL to be processed
every cycle. Since it is able to process one Caérg cycle, the CALFilter will not be the
bottleneck of the system, and the only cost offilker is the hardware resources and added
latency for each read. A software prototype magppinmillion short reads (reads were
sequenced from the full human genome) to chromos2ineeduced the number of aligned
CALs from 1.47 million to 481 thousand, which i@ reduction in the number of aligned
CALs if using the CALFilter.

3.4 Parallelization

Thus far, this algorithm has been described agjaesial process of steps for each read that
is being mapped to the reference genome. Howd#verway to improve throughput of an
algorithm on an FPGA is through parallel computati?Ve want to speed up this algorithm
by parallelizing as much of the computation as fbss\We can achieve this by partitioning
the data set across many compute nodes, as wedpésating the data required for all

compute nodes.

This algorithm relies heavily on the ability to mdly perform numerous Smith-Waterman
computations. Multiple Smith-Waterman computatioas be performed simultaneously by
placing many Smith-Waterman units on an FPGA. Atailer then dispatches short reads
and reference data to each of the units. The alentris responsible for: knowing when
compute units are ready to accept more data; lgokjm the reference genome data in the
memory; sending the read and the reference dasaSimith-Waterman unit; and collecting
all results for a read before reporting the scor@ alignment to the system. By packing as
many Smith-Waterman units onto an FPGA as posstnbe, by having a system with
multiple FPGAs, we can significantly improve thetime of a system that is limited by its

computation throughput.

Our system is limited by the memory bandwidth duéhe large number of random accesses
into the pointer table and CAL table for each redd. speed up accesses to the memory, we
can include multiple memories in the system, eadh vs own memory controller and

memory bandwidth. We can then partition the remplidata across the memories, and

assuming we have the same overall number of memefigrences, but they are now
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uniformly distributed to all memories, we can gamincrease in bandwidth proportional to
the number of memories. If we need to split themmaes across multiple FPGASs,
bandwidth to non-local memories may be reduced tudhe limited communication

bandwidth between the FPGAs. Therefore, if sphttacross multiple FPGAs, it may be

necessary to replicate some portion of the datdl imemories.

Each M503 board in the target system contains appedely 8GB of DRAM, which means
that we need at least three boards to contain@BBICAL table, the 2GB pointer table, and
the 1GB reference data. If we partition the inbgxcutting the reference genome into four
contiguous sections, we can create a CAL tablehasth table for each section. The hash
table remains the same size, which is 2GB, becawusest still contain all the pointers from
the original table. This can be modified laterrbglucing the number of bits used for address
and tag; however this is at the cost of an incieasenber of CALs from the CAL table for
every seed. The CAL table for each partition dtwito one quarter the size of the original
CAL table, and the same situation happens to tleeenrece data. Each FPGA is responsible
for aligning each read to one quarter of the refeeegenome; in doing so, we attempt to

increase the memory bandwidth by a factor of four.

However, if we partition the index across the bsdrd location in the reference genome, we
still have to perform 110 memory accesses per eaeghch board (55 into the pointer table
and 55 into the CAL table), thereby negating mudhthee improvement in memory
bandwidth. If we instead partition the index asrtise boards by one base of the seed, we
only need to access the pointer table if this ddhe current seed matches the partition’s
base. This reduces the number of index accessase@e by a factor of four. However, each
board may find the same CAL for a read as a prevartition, and therefore be forced to
perform Smith-Waterman alignment at this CAL, evfethe previous board already aligned
the short read at this CAL. These extra Smith-Waém alignments cause unnecessary
DRAM accesses to read the reference data, but dedaiCALs from previous boards in the
system can be avoided by pre-seeding the filtelm wWie CALs found for a read by previous
partitions. This may be a significant tradeofforder to receive a factor of four reduction in
the number of memory accesses per seed. A systemas the one shown in Figure 32
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could map reads to the full human genome, with damdrd mapping to one of the four

partitions, and the results from one board beimg &ethe following board.
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Figure 32: The host dispatches reads to one of tipgocessing FPGAs, and as the reads are passed
along, they are aligned to a different partition ofthe reference genome. The memory connected to
each FPGA contains the CAL table for that FPGA’s patition of the reference genome, the
reference data for the partition of the genome, and full pointer table, with each pointer table
only pointing into the CAL table for its associatedpartition.

More FPGASs can be added to the system, preferabtyitiples of four with each set of four
mapping short reads to the full human genome, hadeét of short reads to be mapped can
be partitioned amongst the sets of FPGAs. In othands, if we have two sets of four
FPGAs that each can align to the full genome, wediapatch half of the reads to the first
set for alignment, and the other half of the rezals be aligned by the second set of FPGAS,
thereby increasing the throughput of the systemabfactor of two. This throughput
improvement could continue in this manner until B@e communication link can no longer

send reads fast enough to all sets of FPGAs.

4 Alternatives
Many algorithms are sequential in nature and do awottain enough parallelism to be

successfully accelerated with dedicated hardwaefore implementing this algorithm in
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hardware, we first considered many alternative @nm@ntations; however, it was necessary
to evaluate their parallelism and potential speaflegecuted on a hardware system. Some
of the alternative alignment methods that we careidd for implementation were the
Burrows-Wheeler based solution, as described irvipus sections, a seed and extend
method, which is similar to the BLAST alignmenttsadre [26], and some subtle changes to
our proposed algorithm, such as storing read datthe FPGA and iteratively streaming

reference data to the system.

4.1 Proposed Algorithm

The algorithm discussed in section 3 was spedgicdéveloped with the concepts of a

hardware system in mind. In this algorithm, weogrized the data parallelism implicit in

the alignment of a read to a CAL, the alignmentredds to different CALs, and the

alignment of reads to different partitions of thengme. These elements each lend
themselves to parallel computation, and therefoisge performance increase compared to

sequential execution.

Cells on the anti-diagonals of the Smith-WatermbBgnenent matrix are independent, and

therefore can be computed in parallel by using iplelcopies of a cell connected together to
form a systolic array. Reads are assumed to bentélom one location in the reference

genome, and therefore only one alignment shouldgignal; however, the scoring of the

alignment for a read at each CAL is independerd,tharefore the read can be aligned at all
CALs in parallel by using many Smith-Waterman cotepunits. Lastly, reads can be

aligned against multiple partitions of the genomepirallel, but the scores should be
aggregated at the end, and the location with thkdst score is declared the final alignment.
This parallelism allows numerous compute units ¢oelzecuting simultaneously, which is

what hardware is able to do very efficiently, thBreeducing the alignment time compared
to a processor executing sequential code.

4.2 Burrows-Wheeler Transform

The Burrows-Wheeler transform-based solutions entid system to very rapidly search an

index to find all locations of a substring. Howewaismatches in the read cause the search
space for the BWT based solutions to rapidly expaedause a single error could be located

at any of the bases of the current suffix. Thisansethat the algorithm must search all
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possible errors at all bases of the suffix, whieads to an unbounded search space. To
reduce this search space, software implementing@¥W@ based solution limits the number
of errors allowed per short read. This resultaahall short reads being aligned, which can

affect the quality of the overall mapping.

This algorithm can potentially rely on the indepence of read alignments in order to
simultaneously align a large number of reads. H@mneeach of these compute units must
be able to perform the full Burrows-Wheeler aldamt which requires accessing an index
stored in a memory that must be shared by all ceenpuits. Effective sharing of that
memory can be difficult, because each unit willuieg continuous accesses to random
portions of the memory, dependent upon the read ialigning. More importantly,
backtracking caused by read errors will requir@mlex state machine to search the entire
read for possible alignments. These two problerakenthe Burrows-Wheeler transform-

based solution difficult and costly to achieve @éaspeedup in a hardware system.

4.3 Seed and Extend

The alignment technique used by BLAST, known asl se®l extend, begins with a process
very similar to our suggested algorithm. This teégbe uses short subsequences of a read to
identify possible locations within the genome fartier processing, which is called the
seeding step. At each of those possible locatithms, algorithm attempts to grow the
subsequence of the short read that matches thremetegenome by iteratively adding bases
from the short read to the initial seed. The geexktended in a direction until the score has

fallen a specified distance below the prior maxialgjnment score for a shorter sequence.

This provides for very rapid identification of pdds matching locations for a read, and it
also aligns the read quickly at each of those lonat However, a single indel in a read can
cause the alignment score to be much worse thtoe ifame read were aligned at the same
location using a fully gapped alignment, such astisiWaterman. Therefore, the seed and
extend method could produce extremely rapid resyltisnplementing several compute units
on a single FPGA; however, they would all needftectively share the index, which maps
seeds to locations in the reference genome, asagéhe reference data. Also, inaccuracies

in the scoring system require a fully gapped aligntrio be performed.
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4.4 Reference Streaming

A simple change to the proposed algorithm fromisac8 would be to first compute
locations that each short read must be checkedastgdie reference genome. This can be
accomplished by using a table to map seeds toitmsatn the genome and then inverting
that information into a new table that maps logsiin the reference genome to reads that
should be aligned at that location, which we cdRead Position Table (RPT). Step two of
this algorithm would be to stream the referenceogento the system, continually reading
the RPT to find all reads to be aligned at eachtiposalong the streaming reference. Each
of the reads from the RPT would be loaded into @&lSkvaterman compute unit and aligned
during the appropriate section of the referencthaseference is streamed through an entire
pool of compute units. More information about thigorithm can be found in Ebeling’s
technical report [27].

Due to a finite amount of Smith-Waterman unitgrigton an FPGA, only a limited number
of reads can possibly be aligned during one paskeofeference streaming. Therefore, the
total set of reads will have to be aligned by stiea the reference multiple times through
the system. This reference streaming algorithrhregjuire very fast access to both the RPT,
in order to find which reads must be loaded int® 8mith-Waterman units for a section of
the reference, and to the reads data, which mustabsferred from a large memory to the
individual Smith-Waterman units. Also, this algbm will require a much larger memory
footprint, because the set of reads, which canbeéou30 times larger than the reference,
must now be stored in DRAM instead of the referegeeome.

5 System Design

The full genome mapping solution will be implemehten a system consisting of M503
boards, but a prototype system able to align 7@ hmsr reads to chromosome 21 was
implemented on a single M501 board. Chromosome #ing one of the smallest
chromosomes in the human genome, was chosen farobetype system because its index,
which consists of the reference, pointer table, @Ad. table, fits in the 512MB of available
DRAM on the M501 board.
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5.1 M501 Board

Pico Computing has provided a framework system if@tantiating user designs and
interfacing with both the memory and host procesddre M501 framework is a 128-bit bus
system, which instantiates a single memory comralesponsible for all accesses to the
DRAM. The memory interface has multiple ports farcess to the DRAM; each port
contains its own read and write ports, which alldarsmultiple user modules to access the
memory in one design. The memory controller irees with theMemory Interface
Generator (MIG), which is a Xilinx specific memory controtlecreated by the Xilinx

Integrated Software Environment (ISE).

The M501 uses a streaming model for data procesamigcommunication with the host
processor. The framework instantiates two stregrohannels for streaming data to and
from the DRAM by simply instantiating two large BB, one for each channel. The user
can also create their own streaming channels bgntiating streaming FIFOs in the logic.
Each channel is simply identified by a range ofradsles that all correspond to the channel.
Output channels dump data from the FIFO back tchthet when a read is asserted on that
channel. Input channels accept data from the ispem when the data is written to that
channel. Two PCle communication interfaces betwberhost and the FPGA system, one
for transferring data to the FPGA and one for negdiata from the FPGA, are each able to
support a continuous 600MB/s data transfer ratieis Togic is all instantiated on the Xilinx
LX240T, which is a medium sized FPGA containinguti®0,000 logic cells.

5.2 Host Software

The overall algorithm, which is shown in Figure &ecutes as a stream that begins and
ends in the host’'s main memory. The host softieseloads the FPGA’'s DRAM with the
precompiled tables from hard disk, which is donestigaming a binary file to a FIFO
attached to the write port of one of the portst@rmemory controller. Once the tables have
been loaded into memory, the reads can be aligngdansingle stream through the FPGA
system. At the input of the stream, a thread enhibst processor load reads from a file on
hard disk and sends them to the FPGA system via B@hsfer. On the output end of the
stream, a different thread on the host processatsralignments from the FPGA system via

PCle, and alignment results are written into maiemaory. To efficiently use the PCle
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communication, data must be transferred in largels, which must be approximately 16KB

per packet or greater.

Reads Thread

Host Processor FPGA DRAM

Results Thread

(8]

Figure 33: Steps for host software for the short rad mapping system. The host loads the DRAM
with the pointer table, CAL table, and reference déa. After the tables are loaded, one thread on
the host processor continuously streams reads froma file to the FPGA, and another thread
streams results from the FPGA to a file.

5.2.1 Index

A precompiled index table must be loaded into tiR&AR’'s DRAM before the short read
mapping algorithm can be run. This index tablestsis of the reference data for the current
portion of the reference genome to which readsbareg mapped, the CAL table, and the
pointer table. Of the three pieces of data, thé @hle is largest, because it must store more
than 32 bits for almost all positions in the refer® The reference data is the smallest,
because each base in the reference can be encsidgdwo bits, assuming the ‘N’ is treated

as an ‘A’ in the reference. The bit encodings usdtie system are shown in Figure 34.
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Base Encoding while Encoding while
Generating Seeds | Processing Reads
A 00 00
C 01 01
G 10 10
T 11 11
N invalid seed 00

Figure 34: Bases are encoded using two bits per leas Unknown bases, encoded as ‘N’ in the
reference and the reads files, are interpreted asna’A’ during reads processing, but cause seeds
containing one or more ‘N’ to not be added to the BL table.

The CAL and pointer tables are precompiled by weajkalong the reference genome. At
every position in the reference, the 22-base seedted, along with the current position in
the reference, to create a large array of seed-@aits. Any seed containing an ‘N’ base is
not added to the array. The array is then soryesebd, and to improve system performance,
seeds appearing more than 8 times in the referareeemoved, as done in the BFAST
software short read mapping tool [3]. The starhtas for each entry of the pointer table is
found by noting the index in the CAL array of thestf seed for a set of address bits. The
offsets associated with one start pointer aredigtethe pointer table for every combination
of tag bits. As the CAL table is traversed, thisets should list the number of CALs from
the index of the start pointer to the end of a GAhle bucket, where each of the CALs in a
bucket share the same set of address and tadnbw®ver, they may differ by their key bits.
In other words, the index of a seed that is thst fio contain a given set of address bits
should be noted as a full pointer into the CAL ¢alaind the index of a seed that is the first to
contain the next set of tag bits should be notednagffset from that start pointer. Once all
the pointers have been found, the address andita@fothe seeds in the large seed-CAL
array can be removed, leaving behind key-CAL phias make up the CAL table.

The CAL table, pointer table, and reference datatralli be packed into a memory designed
for 256-bit aligned accesses. While mapping réadshromosome 21, we decided to break
the seeds into 22 bits for address, 4 bits for aag, 18 bits for key. This created a pointer
table with 4M entries, where each entry contair32éit start pointer and sixteen 14-bit
offsets, resulting in a 128MB pointer table. Eaciry is therefore 256 bits, and can be read
with a single aligned read from DRAM, which is perhed with a 2x128-bit transfer from
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the multi-ported memory controller. Each entrytled CAL table stores an 18-bit key and a
32-bit CAL. For simplicity, four key-CAL pairs wermpacked into 256-bit boundaries, where
each key-CAL pair is aligned to a 64-bit boundéegpyving 14 bits of padding for every entry
in the CAL table. This packing scheme results RBbEMB CAL table, with 22% wasted in
padding. After packing the reference two bits pase, the resulting reference consumes
12MB of memory. The resulting index was packea itte 512MB of available DRAM as
shown in Figure 35.

address

—— 0x3FFFFFFF
unuged (35 NB)
CAL array (201 MB) 0x30000000
{ 2GB= 0x20000000
512 MB
unused (103 NB)
refer ata (23 N
reference data (23 MB) 0x10000000
pomter array (128 MB)
0x00000000

Figure 35: M501 512MB memory organization for chronesome 21 index. [28]

5.2.2 Sending Reads

One thread on the host processor is responsibleefudting reads to the FPGA system. The
thread reads blocks of data from a precompiledrpifiee from the hard disk into memory,
and drivers provided by the Pico infrastructurensrait these blocks of data to the input
stream FIFO via PCle. The original FASTQ file, alhiis a file format containing the reads
to be mapped, is pre-processed so each read amdueuD for each read are stored in 256
bits of data. The data for 76 base pair readoisedtin the least significant 152 bits, and the
ID is stored in the most significant 32 bits ofdetata, as seen in Figure 36.
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256-bit Read Input Stream Data
Read ID Reserved 72 bits MS Read Data
LS Read Data

Figure 36: Reads are transmitted to the FPGA in twd 28-bit transfers from the streaming FIFO,
where the least significant bits of read data arehie first data transferred to the system, followed
by the read ID and the most significant read bits.

5.2.3 Reading Alignments

Another thread on the host processor is responfiblesading alignments from the FPGA
system, once again via the PCle link. This threadls blocks of results, where each result is
128 bits of data consisting of the unique ID thaswent in with the read, the final alignment
location, and the score of the alignment. The $Donce again packed into the most
significant 32 bits, the alignment in the leastin#igant 32 bits, and the two’s complement

score in the next 9 bits, as shown in Figure 37.

128-bit Results Output Stream Data
Read ID | Reserved 64 bits Score Alignment

Figure 37: Result data streamed from the FPGA to th host can be packed into this 128-bit
structure seen here.

5.3 Hardware

The hardware system is responsible for taking réema the input stream and producing
alignments with scores at the output stream. Tbdutes that make up the hardware system
for the mapping algorithm can be broken up int@éhdistinct phases. The first phase finds
all CALs for each read, and the second phasediltes CALs to a set of unique CALs. The
final phase aligns the read at each of the CALssipg the alignment with the highest score
to the output. Th€ALFinder, which is the phase that finds all CALs for thadsg, and the
Aligner, which is the phase that actually aligns the réadee CALs, both need to access the
DRAM, which is done through the RamMultiHead modulehe CALFinder uses two of the
read ports from the RamMultiHead module, one tal rieam the pointer table and one to
read from the CAL table. The Aligner uses one otiead port to read reference data, and

one other port is available to the host processpisfreaming data to or from the DRAM.
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Figure 38 shows this view of the system implemémnatlong with the memory interfaces
on the M501 board.

M501
Virtex-6 FPGA

=t> CALFinder [ CALFilter > Aligner P

IT T T VT

Port 0 : Port1 Port 2 E Ports 3-6 i Port 7
| RamMultiHead | Unused i DRAM
: i Stream
Xilinx MIG
DRAM

Figure 38: Three of the eight read ports of the RamdultiHead module are used by the system to
access the pointer table, CAL table, and referencdata. One read and one write port of the
RamMultiHead module is used to stream data to andrém the DRAM.

5.3.1 CALFinder

The CALFinder module is further divided into thregb-modules that collectively perform
the required tasks, as shown in Figure 39. Thst fimodule, known as theeedFinder,
produces all seeds for a given read. THashLookup module, which is second in the
CALFinder pipeline, hashes each seed and lookbeipdshed seed in the pointer table. The
last module, known as thiedexLookup module, uses a pointer from the hashLookup module
as an index into the CAL table and outputs the CAssociated with the matching key bits

from the seed. FIFOs are used as the data pass&idganism between the modules.
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Figure 39: Block diagram of the CALFinder showing te seedFinder producing seeds to the
hashLookup module and reads to the output. The hatookup module reads from DRAM, passes
a pointer to the indexLookup module, which uses thpointer to access the CALs and pass them to
the output.

5.3.1.1 SeedFinder

The seedFinder module consists of a register tee dfee read ID, a parallel load shift
register, a counter, and some control logic, wigcih all be seen in Figure 40. Since the read
length is 76 bases, or 152 bits, the read mustrdesferred from the input FIFO to the
seedFinder’s shift register in two 128-bit trangaw. The first transfer loads the least
significant 128 bits of the read into the shift istgr. The second transfer loads the
remaining most significant bits of the read inte #hift register, and it also loads the 32 bits
of the read ID into the read ID register. The deuynwhich is used to track the position of
the current seed from the start of the read, getstrwhen the read is loaded into the shift

register.
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Figure 40: Block diagram of seedFinder module showg the read ID register, shift register, seed
position counter, and control logic.

After the read and read ID are loaded from the tirgoeam, the read and ID are written to
the read FIFO. The current seed is simply the miggtificant 44 bits of the shift register,
and the seed is updated by shifting the read twtbithe left and incrementing the seed
position counter. A firstSeed signal is assertadtlie first seed of every read and will be
used later to update the read and read ID fromethe FIFO.

5.3.1.2 HashLookup

The hashLookup module, as shown in Figure 41, asceds from the seedFinder module
and outputs to the indexLookup module a pointey the CAL table, as well as the number
of CALs to read from the CAL table. Before usimg tseed as an address into the pointer
table, it is first hashed by theshFunction module to randomly spread the seeds over all
possible CAL table buckets. The hashing functisaduhere consists of seven stages, where
each stage contains a random permutation of &l| futlowed by an XOR of the upper half
and the lower half of bits. Details of the hashingction can be found in the Appendix. An
asynchronous FIFO is used to cross a clock boundamythe DRAM’s clock domain, and
the hashed seed is then used byHghTablelnterface module to read one entry from the
pointer table, as described in section 3.2.1.
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Figure 41: Diagram of the hashLookup module showshe hashFunction, which hashes incoming
seeds to randomly distribute seeds among all CAL bde buckets, the asynchronous FIFO used to
cross into the DRAM’s clock domain, the hashTablelterface module that accesses the pointer
table, and the pointerFIFO that stores pointers bedre they are used to access the CAL table.

5.3.1.3 IndexLookup

The indexLookup module, as shown in Figure 42, aigep a memory interface to read from
the CAL table, an asynchronous FIFO to cross battkthe user logic clock domain, and a
module to filter out those CALs associated with kélyat do not match the target key. The
first module, called th€ALtablelnterface, accepts a pointer and a number of CALs to read
from the hashLookup module. The DRAM must be ralghed to a 256-bit boundary, so
this module first computes the starting addresthefread in DRAM, which denotes which
256-bit block of memory must be read first, and siee of the read, which tells how many

256-bit blocks of memory must be read to get allLE€Aor this pointer. Recall that each
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key-CAL pair is packed into 64 bits of DRAM, so éykCAL pairs are retrieved with each
block that is read from memory. The CALtablelnded does not begin the read until there is
enough space in the asynchronous FIFO at the qupat data count is passed back from the
FIFO to notify how many entries the FIFO currertblds. This interface outputs a dummy
firstCAL for the first CAL of every read, which issed later on as a signal to update the read
FIFO.

In the user clock domain, a module called kbgFinder parses through the key-CAL pairs
that were read from DRAM. The key from the curreaed is passed along through the
asynchronous FIFO, and it is utilized as the tasgeid by the keyFinder. CALs associated
with keys that match this target seed are outputigtie CALFilter, and they will eventually
be aligned by the Aligner. Since we must read DIRAM aligned to 256-bit boundaries,
accesses into the CAL table may return key-CALg#iat are not in the CAL table bucket
of the target seed. These key-CAL pairs that gad from DRAM but belong to other CAL
table buckets are calleabn-bucket CALs. This will cause extra work for the keyFinder,
which takes one clock cycle to process each key-@aL from the CAL table, resulting in a
worst case of six extra cycles for the keyFindeprtacess these non-bucket CALs per CAL
table access. No more than six non-bucket CALkewnér be read from the CAL table when
reading at a four CAL granularity (because DRAMdee® read in 256-bit granularity and
CAL table entries are 64 bits), because if so,llastep of non-bucket CALs must have been
read from DRAM. Reads to the CAL table in DRAM aemdom access and should take
many more than six cycles per access. Therefoesetnon-bucket CALs create unnecessary

work for the keyFinder, but they should not inceeagstem runtime.

However, if the seeds associated with these nokdb€ALs match the target key, they will
be interpreted as CALs that should be aligned Herdurrent read. The probability of any
two given keys matching is the inverse of the tptadsible keys, or 0.0061%. Assuming the
number of non-bucket CALs returned during a giveoeas to the CAL table is uniformly
distributed between zero and six, the expected eurmbnon-bucket CALs that are aligned
while mapping 200 million reads is approximatelptmillion CALs, which is 0.25% of the
full alignment time if we average four CALs per deaTherefore, we simplify the reading

from the CAL table at a very small system runtirostc
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Figure 42: Diagram of the indexLookup module contaiing the CALtablelnterface, for reading
from the CAL table, and the keyFinder, for parsingthe CALs from the CAL table.

5.3.2 CALFilter

The CALFilter module is responsible for reducing tket of CALs from the CALFinder
module to a set of unique CALs for each read. thelowords, CALs that have already been
passed to the Aligner for a read should be igndrétey are seen again for the same read.
This filtering process, which is described in satt.3, is performed using a hash table and a
version counter, and the block diagram is showigure 43. The hash table is implemented
using the block RAMs available on the FPGA. Eastryeof the hash table stores a 32-bit
CAL and a 32-bit version number. We hash the Céka tL0-bit value, and the resulting the
hash table contains 1024 total entries and cons@dids of block RAM space. Two 32kb
block RAMs on the LX240T are used for this singlemory.

The version counter in the CALFilter is used toidap erase the hash table by simply
incrementing the version number, versus havingrésesall entries of the hash table. The
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version number is chosen to be 32 bits so it vatl noll over unless mapping more than four
billion reads, because multiple reads sharing ai@ernumber could potentially result in a

CAL being filtered when it should actually be semthe Aligner. This version counter does

not require any correlation to a specific shortdre@ring the system runtime, but it must

simply be unique for four billion reads. This pé&ss to use a linear feedback shift register
instead of a standard counter, allowing the versmumter to operate at a much faster clock
frequency, due to the elimination of an adder'sycahain. When firstCALin is asserted, the

version counter is updated, the input CAL is igdoa@d not written into the hash table, and
the filter outputs a dummy firstCAL, which will lat be used to update the FIFO containing
the short reads.

Hash Table
Version
Counter
[ =]
- S
2 Z 2 5 2| 2|l = = 5
= >4 =
firstCALin firstCAL
Control
CALin CAL
I

Figure 43: Block diagram of the CALFilter hardware logic containing a hash table, which is
stored in block RAM, a version counter, which is inplemented using an LFSR and control logic.

5.3.3 Aligner
The Aligner module accepts CALs from the CALFilend reads with read IDs from the
CALFinder. On the first CAL of a new short readhieh is indicated by a firstCAL signal
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from the CALFilter, the Aligner grabs the next shagad and read ID from the read FIFO.
For every CAL of a short read, the Aligner reads BRAM through the RamMultiHead
module to find the reference data for the CALth#n loads the short read and the reference
data into a Smith-Waterman compute engine. Then&li contains a pool of Smith-
Waterman engines, so it distributes the work bylilog the read data into the next available
Smith-Waterman unit in the pool. This is done iroand-robin fashion, because the Smith-
Waterman comparison phase takes the same numblerc&fcycles for every CAL, which is
equal to the number of bases of the reference stgainich the short read is being aligned.
Results from all Smith-Waterman compute enginesreperted to a single score tracking
module, which then outputs the alignment and sobrthe CAL with the highest score for
each short read. More details of the Aligner’s lenpentation can be found in Maria Kim’s
Master’s thesis [25].

5.4 Results

5.4.1 Resources

The system described in the previous sections maéemented with an index constructed
for mapping short reads of length 75 base pairshtomosome 21. Chromosome 21 was
chosen for the prototype system because its indexfit in the 512MB of DRAM on the
M501 board. The system operates in three clockadlisn The main system clock runs at
250MHz, the memory interface clock at 266MHz, dmel mith-Waterman compute units at
125MHz, which is derived from the 250MHz main systelock. Table 1 and Figure 44
show the resources on the Virtex-6 FPGA used bl padion of the hardware system. The
Stream Loopback is the infrastructure required tfteg M501 system to allow the host

processor to communicate with the design on theA-Bx@l write the DRAM.
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Table 1: Table of the resources used in each stagéthe system. Infrastructure is the streaming
loopback system provided by Pico Computing. Eachnéry represents the resources used only for
that component of the system. The full system weaso synthesized with one and four Smith-
Waterman units to compare and identify the size o& single Smith-Waterman compute engine.

Stream . . 1S-W | 4S-W .
Loopback CALFinder CALFilter Unit Units Available
Slices 3,459 744 10 6,759 17,23P 37,680
LUTs 9,244 1,476 89 20,273 62,447 150,720
Registers 9,722 1,958 234 9,388 25,228 301,44D
RAMB36E1/
FIEO18E1 24 0 2 0 0 416
Resource Usage in Virtex-6 LX240T System
60.00%
4 S-W Units
50.00% 3 S-W Units
® 2 S-W Units
m 1 S-W Unit
40.00% B S-W Overhead
CALFilter
B CALFinder

u Stream Loopback
30.00%

20.00%

Usage of Available Resources (%)

10.00%

Slices LUTs Registers RAMB36E1/FIFO18El
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Figure 44: Resource usage of different stages ofeahsystem as a percentage of the available
resources on the Virtex-6 LX240T FPGA.

Figure 44 shows that approximately 20% of the FFEEEAJTs and 30% of its slices are used
once a single Smith-Waterman compute engine has ibgglemented, and those numbers
jump to approximately 50% and 55% respectivelyféar Smith-Waterman engines. This
means a single Smith-Waterman compute engine shaumsume approximately 10% of the

FPGAs LUTs, allowing a single FPGA to hold up tghtiof the currently designed compute
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engines. Extending this design to a four-boardesysindicates the resulting system can

contain up to 36 Smith-Waterman units.

5.4.2 System Runtime

The prototype system was run mapping short reagdhtomosome 21, and the results are
shown in Figure 45. For a comparison, the BFASfiwsre was also run on a pair of Intel
Xeon quad-core processors mapping the same setadd to chromosome 21. The runtime
is shown in the graph for both the prototype ar@BIFAST runs. The runtime includes the
time to load the index file into memory and to mseg all reads, for both the hardware and
the software versions. Once the index file is &mhthto memory in the hardware version,
many sets of reads can be mapped without havingltad the index. However, BFAST
loads the index every run, so it was included ithtgystems’ runtime here for the sake of a

fair comparison.

Mapping Reads to Chromosome 21
10,000

1,000 ——-BFAST

—#-Projected

100 HW

—4—Measured
HW

System Runtime (s)

——Measured
HW w/o
Index Load

10,000 100,000 1,000,000 10,000,000
Number of Short Reads Mapped

Figure 45: Projected and measured runtimes of the drdware system compared to measured
runtime of BFAST mapping reads to chromosome 21. Runtime includes the time to load the
index into memory, read short reads from disk, stram reads to the FPGA, align the reads, stream
the results back to the host, and write results tdisk.
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The hardware system performs well compared to tbegted throughput for aligning reads
to chromosome 21. Over the full sample set of sgadmap, the average runtime for the
hardware system is 10.33 times faster than BFASHh, aimaximum speedup of 14.86 when
mapping 10 million reads to chromosome 21. Thedpp is masked by the amount of time
to load the index file when mapping a low numberreds, but the speedup gradually
improves as the number of reads increases. Tetb load the DRAM has a large effect
on the performance of the system for a small nurobegads, but this would be negligible in

the hardware system, because the index can sinedlyadled once and left in the DRAM.

Boris Kogon mapped short reads to the full humanoge using BFAST on the same
processors as used when mapping short reads tmekome 21. BFAST maps short reads
to the full genome in numerous steps, but onlytiagch phase and align phases are used for
comparison here. The match phase took 5 hoursjidtes, and 3 seconds, and the align
phase completed in 57 minutes and 47 seconds, timiabaruntime of 6 hours, 15 minutes,

and 50 seconds (or 22,550 seconds).

For a comparison to the full genome read mappimging in hardware, which is described
in sections 6.2, the hardware system is projecedap 54 million reads in approximately 85
seconds. This runtime improvement equals a 262edsgecompared to BFAST. The large
speedup improvement when the dataset size increapasnarily because BFAST'’s runtime
scales super-linearly with the size of the refeeegenome, due to the increased size of the
index that must be searched and the increased mwhBALs per read that must be aligned.
Conversely, the runtime of the hardware systemesdatearly with the size of the reference
genome, resulting in a great improvement in thraugttompared to BFAST. As shown in
section 6.2, this speedup in system runtime alsolt®in a great improvement in the power
consumption for short read mapping, which is 19#slfor the FPGA system compared to
BFAST.

5.4.3 System Analysis

To determine where design effort should be focusedrder to improve the short read

mapping runtime, we now analyze the throughputefvtarious phases of the system. The
phases that must be analyzed are: streaming readltfrom the FPGA via PCle; aligning

the CALs for a read; and performing all of the rieggd DRAM accesses. The 600MB per



64

second PCle bandwidth for streaming to and frombiberd enables the streaming of up to
18.7 million reads per second. The CALFilter iea process one CAL per clock cycle, so
it should never be the bottleneck of the systenoweéter, aligning all the CALs for a read
takes many clock cycles per CAL, and therefore rbagome the system bottleneck.
Aligning one CAL with one Smith-Waterman computetfassuming the reference data has
already been read from DRAM) takes a number of 8lalzk cycles equal to the sum of the
length of the short read and the length of theregfee used in the comparison, which in our
case is 267 clock cycles. This means a singlesWrterman compute unit can align at
least 468 thousand CALs per second. If we assunmaarage of eight CALs per read, this
results in aligning 58.5 thousand reads per seqmerd Smith-Waterman compute unit.
Finally, the memory system must access the poialde 55 times per read, the CAL table 55
times per read, and the reference data eight fpeesead. These memory accesses result in
a read processing rate for the memory system dh@3sand reads per second per memory

controller.

Based on these throughput estimates, the memotgmnsyis the bottleneck of the entire
mapping algorithm (assuming we place at least twuotlBWaterman units per memory
controller on an FPGA). Adding more than two SAWhterman compute engines per
memory controller to the FPGA should have no eféecthe current system runtime, because
the memory cannot read reference data from DRAN dasugh to support more than two

Smith-Waterman units.

6 Future Improvements

The system described in the previous sections mpkemented for the purpose of producing
a prototype system able to align short reads tormbhsome 21 only. However, the goal of
this project is to align reads to the entire hurganome, which is about 66 times larger than
the prototype chromosome. This section describes necessary changes, both in the
algorithm and the hardware system, to be ableigm ab the full human genome. This

section also proposes some modifications to imptbeesystem runtime.
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6.1 Reverse Complement Strand

Short reads generated during the base calling stepgh occurs before the short read
mapping phase, may originate from either the foda@r the reverse complement strand of
the sample DNA sequence. Unfortunately, therenisvay to identify if a read comes from
the forward or reverse strand, and therefore eskoyt read must be aligned against both the
forward and reverse complement reference sequenths. prototype system neglects this
alignment, but it cannot be overlooked in the ighome system. The forward and reverse

complement of a read is shown in Figure 46.

Reference: CGAGTTGGATTTGAGACCCAGGAGTATGATCGCTGAGCGGCGTAAATAGCGCTATGACGT

Position : 000000000011111111112222222222333333333344444444445555555555
© 012345678901234567890123456789012345678901234567890123456789

Reverse Complement: ACGTCATAGCGCTATTTACGCCGCTCAGCGATCATACTCCTGGGTCTCAAATCCAACTCG

Position : 229255555544444444443333333333222222222211111111110000000000
© 987654321098765432109876543210987654321098765432109876543210

Figure 46: Reads may originate from the forward stand or the reverse complement strand, so
both must be indexed. When generating seeds fronhd reverse complement strand, CALs
associated with the seed are the position of theskabase in the reverse complement seed.

A simple way to map against the forward and reveeéerences would be to first align the
forward version of all reads, find the reverse clament of all reads, and then align the
reverse complements. This effectively doubles nthmber of short reads and causes the
system runtime to double as well. If we insteaty arse the forward version of all short
reads, we must index the forward and reverse camngie reference genomes. Looking up
the forward read in the index will return the CALsr both the forward and reverse
complement reference sequences, but at the cast@AL table that has doubled in size.
Once the index has been created for both directieash valid location in the reference
genome will appear twice in the CAL table, once tioe forward seed and again for the
reverse complement seed at that location. If weeataninate one of those CALs, we can
reduce the CAL table back to the original size.
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seed | CAL | revComp seed CAL | revComp

R Full Index
Z Sorted by 7
AATC 7 1 CAL

Reverse

Complement— | GATC | 27 1
Index

GATC | 27 0
Forward = 1| GaTT | 7 0
Index

Figure 47: Forward and reverse strand indexes areambined into a single table (left) and then
sorted by CAL (right). From this index, remove thelexicographically larger of the two seeds for
every CAL in the index (red). Seeds that are theiown reverse complement will have two entries
in the table for every CAL.

Before accessing the pointer table, we can contpeteesverse complement of a seed and use
the lexicographically smaller of the two for theokmip in the pointer table. All CALs
associated with the original seed and the revaysglement seed will be found in the CAL
table entry specified by the lexicographically skeral seed. We only use the
lexicographically smaller seed or reverse compldreead to access the index, so the entries
in the CAL table associated with all lexicograpliicéarger seeds can be deleted, resulting
in a CAL table with a size equal to the original ICfable that was created for the forward
reference only. Figure 47 shows the creation ef@AL table for the forward and reverse
complement references, and the seeds in red gaeddlom the CAL table before use. The
reverse complement of the reference is alignednagahe forward read during Smith-

Waterman alignment if:

» the forward seed is used during the index lookug @@ revComp bit is set for a
CAL;

* the reverse complement seed is used in the indgupoand the revComp bit is not
set for a CAL.

Otherwise, the forward read is aligned againstfoh@ard reference genome. The method of

accessing the newly created CAL table is showrigare 48.
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Index

seed CAL | revComp

Read: AAATCGATC

CAL =7
seed: AATC AATC 7 1 —
RevComp (seed) : GATT align reverse

complement

read to
GATC 27 1 reference
GATC 27 0

Figure 48: The lexicographically smaller seed or neerse complement of the seed should be used to
access the pointer table, followed by the CAL table If the forward seed is used and the reverse
complement bit is not set for a CAL, or if the revese complement seed is used and the revComp
bit is set for a CAL, the forward read is aligned gainst the forward reference genome.
Alternatively, the reverse complement of the readsi aligned against the forward reference for the
other two cases of seeds accessing the index.

This technique allows us to map forward and revemaplement reads at very little cost.
The number of memory accesses and size of the @Ble remain the unchanged, but short
reads get aligned to the forward and reverse camgié strands, which doubles the average

number of CALs per read, and will increase systentime if the Aligner is the bottleneck.

6.2 M503 System

Neither the M501 nor the M503 boards contain sigfit memory to store the index for the
full human genome, so one of two options must brsymd to map reads to the full genome.
The system must comprise either 40 M501 boards leraat three M503 boards to hold the
approximately 20GB reference genome index. EacB3viontains 8GB of DRAM, which
is split into two 4GB DIMMSs, which are controlled Beparate memory controllers. We are
able to store approximately one quarter of the dethome index in 8GB of DRAM, so four
M503 boards will be needed for the final systemy dhaining boards together, we can
stream reads into one board and results out andwb&rd, creating a pipeline of reads
aligning to different partitions of the referencengme, as shown in Figure 32. 1t is
necessary for boards that are not the first incthen to know the previous best score and
alignment, so that data is now passed into a beérdthe read and ID, and the read and ID
are also passed to the output, as shown in FiglireThe host software sends in the most

negative possible score with each read, and tlok treodule of each partition will be loaded
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with the current best score before performing aligneents. To avoid redundant work
(work that was already performed by a previous FP@A the Smith-Waterman compute
units, the CALs for a read can also be sent aloitlg thre read and then used to initialize the
CALFilter. This efficiency improvement may be nssary for systems that are limited by

the Smith-Waterman compute power, which is notentty the case in this system.

256-bit Stream Data
Read ID | Alignment | Score | Reserved 32 bits | MS Read Data
LS Read Data

Figure 49: Consistent streaming data structure to mable chaining of results from one FPGA to
provide the input data to another FPGA.

The infrastructure for the M503 is very similartt@t of the M501. However, the PicoBus,
which is used for the streaming communicationnigeéased to 256 bits, instead of the 128
bits on the M501 system. This bus width tends ¢okwvell for this algorithm, because 76
base reads now fit with their ID, score, and aligninocation in one transfer, and memory
accesses to DRAM are already performed in 256-itkds. With the 256-bit bus, the
seedFinder no longer needs to assemble reads, wieieh previously transmitted from the

input stream in two transfers.

When mapping to the full genome, we partition théex amongst N M503 cards and their
DRAM. One way to do this is to partition by CAlndawe can build an index for each set of
consecutive bases in the genome, where each partitintains 3,000,000,000/N CALs. This
means we need to store the full pointer table,dhef the full CAL table, and one'Nof the
reference data in each partition. If we insteadigien the data by the first Ig¢N) bits of a
seed, we store one™of the pointer table, one"Nof the CAL table, and the full reference in

each partition.

These two options require roughly the same memooypfint, because the CAL table for
each partition, which is the largest part of thaei, is one N of the original CAL table size

in both cases. However, the second option redilmesaumber of DRAM accesses in each
partition by a factor of N, because the pointetedand CAL table only need to be accessed
if the first log(N) bits of the seed are the target bits for tretipon. A problem with this
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implementation is that the distribution of basesotighout the reference genome is not
uniform, and therefore we could incur a load balagoroblem. Recall that the seed
hashing function was designed to randomize seeds,tlzerefore should handle the load

balancing issue.

The memory on the M503 is made up of two 4GB DRAKEGch with a separate memory
controller, effectively doubling the bandwidth teetmemory, as long as it is used efficiently.
If we have a system comprising four M503 boards,cae now partition the index eight
ways as described previously and achieve a faéteight memory bandwidth improvement.
Assuming the hashing function uniformly distribut@ALs across all seeds, the 20GB full
genome CAL table can be split into 8x2.5GB pantisio The 2GB pointer table is divided
into 0.25GB partitions, and the full reference dathich is approximately 1GB, is loaded
onto every partition, resulting in 3.75GB of theBIGRAM being filled in each partition.

This partitioning methodology creates an 8x improeat in memory bandwidth, which

should result in a similar speedup of the memanmjtéd system. This means full genome
short read mapping for 200 million reads shoule tagproximately 5.2 minutes. Comparing
this full genome runtime to the performance of BRASftware mapping, this hardware
system has a projected throughput that is 262x@réaan the BFAST software running on a
pair of Intel Xeon quad core processors with 24GRBwailable DRAM. The breakdown of

the projected runtime for each non-overlappingiporof the hardware system is shown in
Table 2.

Table 2: Full genome mapping time of 54 million sh reads using a system comprising four

M503 boards. System runtime is maximum time to pdorm any of these tasks, which can be
performed in parallel.

Task Runtime (s)
DRAM Accesses 85.91
Disk Access 8.71
Streaming Reads to Board 2.90
Streaming Results from System 1.45
Smith-Waterman Alignments 43.89
System Runtime 85.91
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The speedup here can not only yield a great impneve in the mapping time, but it can also
yield a large power savings used during the shead mapping. Assuming our host machine
consumes 400 Watts of power during operation, asilirming each M503 FPGA in the
system consumes 35 Watts of power during operati@can compute the total energy
consumption for the BFAST and the FPGA acceleratensions of the system. The BFAST
system, which ran for more than six hours to mapnifon short reads to the full genome,
consumes a total of 2.5kW-hours of power. Thi$ f@home FPGA system instead only
takes about 1.4 minutes and consumes 0.01kW-hdupower, which results in a 194x

improvement in power consumption for mapping 54iarmilreads.

6.3 Pipelined DRAM Reads

DRAM accesses are the bottleneck of this systenip smprove system runtime we need to
either reduce the number of accesses to memoryn@edse the memory bandwidth.
Previous sections have focused on reducing the auwibaccesses to the memory, so now
we focus on improving the bandwidth to the DRAM.heTRamMultiHead module only
allows one read command to be outstanding to thANDRt any one time. However, the
Xilinx memory interface generator (MIG) supportpglined read requests, meaning multiple
reads can be issued to the DRAM before the firt tareturned. Pipelining read requests to
the DRAM allows the user to hide communication naieto the DRAM with subsequent
reads.

The RamMultiHead module must be modified to enalgelining of read requests. It is still

necessary to handle the arbitration of multiplelnearts, but it should not require the address
and size to be held constant on the input for tiratébn of a read. Also, the controller needs
to direct returning read data from the DRAM to tloerect read port, because data returns in

the same order as the read request, but may beaingrof the read ports.

Once these changes have been implemented, assweiaige able to sustain N read requests
in flight to the DRAM at one time, the memory bandil should improve by a factor of N.
If N is equal to three, the memory bandwidth im@®Wwy a factor of three, and the memory
ceases to be the bottleneck of the FPGA systeme tihe to perform Smith-Waterman
alignments for all CALs becomes the bottleneck,cvhtan be reduced by increasing the

number of Smith-Waterman compute units on eachtijpaxt We are able to increase the
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number of Smith-Waterman compute units per FPGAnffour to six, because the pipelined
reads now allow for each memory controller to supfiee compute units. The increased
number of Smith-Waterman compute units per FPGAnsidhe memory system is once

again the bottleneck of the mapping system.

After these changes, the time required to map SHomireads to the full human genome
reduces to approximately 32 seconds. Comparing pibjection to the previously
determined runtime of the BFAST software, this fgknome hardware system has a
projected throughput that is 692x greater tharBRAST software running on a pair of Intel
Xeon quad core processors with 24GB of availabl&BR The breakdown of the projected
runtime for each non-overlapping portion of thedweare system is shown in Table 3. Once
again, this increased throughput also leads tonsepomprovement compared to the software
system. The system using pipelined DRAM reads has/513x lower energy consumption
compared to BFAST.
Table 3: System runtime for mapping 54 million reas assuming we can pipeline accesses to the

DRAM, assuming we can have three outstanding readequests at one time, and knowing we can
fit 6 Smith-Waterman compute engines per FPGA.

Task Runtime (s)
DRAM Accesses 32.57
Disk Access 8.71
Streaming Reads to Board 2.90
Streaming Results from System 1.45
Smith-Waterman Alignments 29.26
System Runtime 32.57

6.4 Pointer Table in SRAM

Recall that the M503 board contains three SRAM ghgach of which is 72Mb, for a total of
27MB per board. Another option to further increasadwidth to the tables in memory is to
utilize this much faster SRAM. Both the refereracel the CAL table, which are 1GB and
5GB per board respectively, are too large to beedtm the small SRAM. However, the size
of the pointer table can be reduced to a point w/itecan fit in this SRAM. Since we have
already partitioned the CAL table into two partitsoper board, we need to maintain two
pointer tables per board as well, one for eachitipgrt Hence, the pointer table must be

smaller than 13.5MB for one partition.



72

The original 2GB pointer table uses 26 bits forradd and 4 bits for tag. Partitioning the
CALs amongst eight memory controllers reduces thiatpr table to 256MB per patrtition.

In order to pack the pointer table into 13.5 MB, wan use five less bits for the address,
which reduces the pointer table by a factor of 8% to 8MB, assuming four bits are still
used for tag and each offset field is 14 bits.edth base in the reference genome has an
associated seed, which is not always accuratealthetexistence of large unknown sections
of chromosomes, three billion seeds get distribtibedugh 4M addresses, resulting in each
address pointing to an average of 1000 CALs. Tbere 14-bit offsets should be large

enough to offset between subsequent start poifit@rsthe pointer table.

However, by reducing the number of address bitshaxe increased the average number of
CALs that will have to be parsed for each reachef CAL table. Recall the keyFinder takes
a clock cycle to parse each result from the CAlUeabnd using 21 bits of the seed for
address and four bits for tag means the average @Ble bucket will contain 64 CALs.
Parsing 64 CALs for every CAL table access woutglnee two keyFinder modules working
in parallel to avoid slowing the system performanééowever, as can be seen in Table 4,
moving the pointer table into 27MB of SRAM actuadipws the performance of the system.
This is because the pointer table only fits witthiis SRAM if using 5 fewer bits for address,
and therefore almost 100 CALs get read from eaclh @hble access. The pointer table in
SRAM system still has a 289x speedup and a 214xggnenprovement compared to
BFAST.

Table 4: System runtime for mapping 54 million read to the full genome if the pointer table on
each M503 board is stored in the 27MB of availablISRAM.

Task Runtime (s)
DRAM Accesses 78.03
SRAM Accesses 5.99
Disk Access 8.71
Streaming Reads to Board 2.90
Streaming Results from System 1.45
Smith-Waterman Alignments 43.89
System Runtime 78.03
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If a future version of the M503 were to have 128MB SRAM, we could fit the two
partitioned pointer tables, 64MB each, in SRAM Isyng 24 bits for address. Using 24 bits
for address and four bits for tag implies we muatsp approximately 12 CALs per CAL
table access, which can be done easily in the nuofbaock cycles necessary to complete
each CAL table read. If this happens, each poiele access only takes one clock cycle
from the SRAM, and the CAL table accesses only esshihe DRAM controller with the
reference lookups. This leads to an improvememhaénreads per second throughput for the
memory system, as shown in Table 5, which can thgaport eight Smith-Waterman units
per FPGA. The new system with the pointer tabla large SRAM has a 981x speedup and
a 727x power reduction compared to BFAST.

Table 5: System runtime for mapping 54 million read to the full genome if the pointer table is
moved into a 128MB SRAM.

Task Runtime (s)
DRAM Accesses 22.99
SRAM Accesses 5.99
Disk Access 8.71
Streaming Reads to Board 2.90
Streaming Results from System 1.45
Smith-Waterman Alignments 21.94
System Runtime 22.99

6.5 CALFinder on Host

The major issue that we have addressed in thequevew sections is how to reduce the
number of accesses to the DRAM, as well as imprinee performance of the required
accesses. This is mainly due to the relatively mamdwidth between the FPGA and the
DRAM for random access reads of short burst lengthswever, up until this point, we have

neglected the large amount of high bandwidth mentioay is available on the host machine.
The host machine has two Nehalem 2.66GHz processach having four processing cores.
Each processor is paired with three memory comtr®llwhere each memory controller is
responsible for 4GB of main system memory, for taltof 24GB memory installed in the

system. This is ample space to store the indethé®ohuman genome.

If we pull the pointer and CAL table lookups backoi the host system, as shown in Figure

50, we can use the high-bandwidth memory on thet hospotentially improve the
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performance of the CALFinder. However some of dperations done in the CALFinder,
such as the hashing function, finding seeds, orputimg reverse complements of seeds, are
not as efficient on a software processor as ina#eld hardware. In other words, we want to
run the CALFinder on the host processor to takeaathge of the high-bandwidth memory,
but in doing so, we may not be able to generatdss&est enough to take advantage of the

memory speed improvements.

Processor

CORE
running
CALFinder

BackPlane

CORE
running
High CALFinder
Bandwidth
Memory

I

PCTe for reads and CALs
600MB/s
CORE

running
CALFinder

FPGA M503
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running
CALFinder

FPGA MS503

DDR3

Host

Processor
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running
CALFinder

FPGA M503
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High CALFinder | | |
Bandwidth
Memory

]

CORE
s PClIe for results

CALFinder 600MB/s

FPGA M503

DDR3

CORE || | .
running
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Figure 50: CALFinder running on the host to take ad/iantage of the high bandwidth memory on
the host system. The host must now transmit readand CALs to the system, which is only
responsible for computing Smith-Waterman alignmentsand reporting results back to the host.

For example, assume we could maintain 280 millioemory references per second per
processor, which is a very aggressive estimate,cantbe done by allowing several read

requests at a time. Using the bandwidth of botbcgssors yields 560 million memory
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references per second. Each seed must be lookedcepn the pointer table and once in the
CAL table, meaning 280 million seeds can be prambgser second, or five million short
reads per second, if using 76 base short read@2bdse seeds. Five million short reads per
second means that finding CALs for 200 million readll take 40 seconds. To confirm that
this will be the actual execution time of the systeith the CALFinder on the host, we must
ensure that we can generate seeds for the poatikr lbokup, transmit CALs to the FPGA
system, and align the CALs on the FPGA, all of ¢hesed to be done at a fast enough rate to

sustain the estimated memory bandwidth.

Generating seeds on the host is rather simple bygusome bit masking and shifting;
however, hashing the seed will take much too losiggia complex hashing function. At
280 million references per second on a 2.66GHzgasar, we need to generate a new seed
every nine clock cycles. However, by using allrfeares on the processor, we can instead
generate a new seed on a core every 36 clock ¢ynleghich time we must hash a seed,
generate the reverse complement of the hashed saed, determine which is
lexicographically smaller. A simple hashing funatioan be used to reduce the number of
cycles spent finding the hashed seed. Also, aupadé&ble can be utilized to quickly find the
reverse complement of a hashed seed. Howeverndeteg which seed is lexicographically

smaller may be difficult to accomplish in the render of the original 36 clock cycles.

Transmitting the read data and CALs to the FPGARGe will require five million reads
and 40 million CALs, assuming eight CALs per retmbe transmitted per second. We
already pack a read into 32 bytes for transferd,vam can easily pack the other eight CALs
into another 32 bytes, yielding 64 bytes per reddansmitting five million reads and their
CALs per second will then require approximately B@per second PCle bandwidth, which

should be easily attainable with the M503 board.

Lastly, we must align five million reads to eighfAIGs per read per second, so that we can
compute the total number of required Smith-Waterg@mpute engines. Each alignment for
a read to a CAL requires approximately 200 clockley, where the user clock is running at
125MHz, meaning the CAL alignment takes 1.6 miccosels. At that rate, aligning 40

million CALs takes 64 seconds; hence we must hav&i®ith-Waterman compute engines

operating in parallel in order to align five milliceads per second. Since finding the CALs
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is moved into the host memory for this analysisshememory controller can read enough
reference data from DRAM to support 36 Smith-Watamneompute engines (with DRAM
pipelining). However, that many Smith-Waterman pote engines cannot fit within a
single FPGA, given the resource data from secticghl5 To combat this problem, a
technique known as C-slowing can be used to irmedehe computation for two different
CALs while running on a clock that is double thégoral frequency. This technique can
improve the throughput of the system without gseattreasing the resource requirements
for the system. Using C-slowing, 64 Smith-Waterroaits can fit into two M503 Virtex-6
FPGAs, and therefore the memory system on therbostins the bottleneck for the system,
keeping the runtime at 40 seconds. If this systere to be used to map 54 million short
reads to the full genome, for a comparison to BFAEWould see a 2109x speedup and a

1795x reduction in energy.

6.6 Genomics System Architecture

The improvements discussed in the previous sectians aimed at improving the running
time of this algorithm on an existing system, whishcurrently the M503 board. Some
architectural changes can potentially lead to th&rrspeedup of system runtime, as well as a
general purpose reconfigurable system for accalgrgenomics applications; we name this

new system the Pico-Bio system and will furtherlesgit in this section.

The proposed architecture of the Pico-Bio systesnsheown in Figure 51, includes several
aspects of the original M503 board. For exampésheFPGA board in the new system
should contain a PCle interface, an interface tADIRand an SRAM. The SRAM on each

FPGA board should ideally be large enough to storaid-sized table, such as a 128MB
pointer table, instead of the 27MB available on M&03. The system should use a PCle
switch with a bus to and from the host and eadn®fPGAs, which can be programmed to
form various communication links; we will use it toeate a daisy-chain of the FPGAs,
which begins and ends at the host processor. Bgsaa the computational requirements of
the short read mapping algorithm, genomics applinatseem to be memory bandwidth
limited, so we must simply be able to keep the nmgmsgstem running at the full bandwidth

in order to accelerate these applications as mgcpoasible. Therefore, the most critical
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modification for a system such as the M503 is thprovement of the memory throughput

for random access patterns reading small amourttatafwith each access.

Scatter-gather DRAM units can provide greatly inya random access memory bandwidth
by efficiently performing DRAM reads and returnidgta in out of order execution. The
Convey HC-1 system uses a very intelligent memagstesn, consisting of eight memory
controllers, each controlling two 1.5GB scatterhgatDRAMs [29]. In the HC-1, each of
the FPGAs has a high-bandwidth link to each ofdigéatt memory controllers, resulting in a
peak system memory bandwidth of 80GB per secomdpleimenting this memory system
can greatly improve the performance of many gensragplications, including short read

full genome mapping.

Accelerator System

600MB/s PCle

Switch
600MB/s PCl¢g
SRAM SRAM SRAM SRAM
[ [ NI [
FPGA FPGA FPGA FPGA
Host

Controller Controller Controller Controller Controller Controller Controller Controller

SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM
SC-DIMM

Memory System

Figure 51: Proposed genomics accelerator system Inding four FPGAs, each paired with SRAM
and communication links to a PCle switch. The systn memory is comprises 16x1.5GB Scatter-
Gather DRAM, for a total of 24GB, and efficient menory controllers to handle out of order data
retrieval. Each FPGA is connected to each of the ®AM controllers through a high-bandwidth
communication channel.

Assuming we create the Pico-Bio hardware describetiis section, and assuming we are

able to implement an 80GB per second memory banbvwsdread over four FPGAs and
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these eight memory controllers, we can evaluatendve system runtime for mapping 200
million 76 base pair short reads. Presuming fow tloe memory system will still be the
bottleneck of the system (which may be wrong but loa adjusted later), each read requires
55 accesses to the pointer table, which may beditareither SRAM or DRAM. Each short
read requires 55 accesses to the CAL table in DRI eight reference lookups in DRAM

per short read.

Regardless of where we store the pointer tableinsisg we have eight CALs per short read,
we read 48 bytes of reference data from DRAM farhe@AL, or 384 bytes per short read.
If we store the pointer table in 128MB of SRAM gelPGA, we need to use 24 bits for
address; hence the CAL table stores an averagelo€ALs per CAL table bucket.
Expanding this result to the requirement for oneriskead means we need to read 4.9kB of
data from the CAL table in DRAM for every short deaThese requirements result in 5.3kB
of reference and CAL data being read from the DR#M 1.7kB of pointer table data being
read from the SRAM for every short read. At an BO@er second bandwidth for the
DRAM, this system can process 15 million short s2per second.

If we instead store the pointer table in DRAM, wanase 26 bits for address, and each
access to the CAL table returns an average of 3CAL24 bytes of CAL data. This means
each short read requires 1.2kB of CAL data to ael feom DRAM. Since we now store the
pointer table in DRAM as well, we must also read th7kB of pointer table data per short
read, bringing the total DRAM requirement per shiegd to 3.3kB. At an 80GB per second
bandwidth for the DRAM, this system can process/ 28illion short reads per second.
Therefore, the following analysis will assume tlenger table is also stored in DRAM. If
the memory truly is the system bottleneck, theltet@cution time for 200 million short

reads will be about 8.4 seconds.

In order for the memory system to be the bottlen¢ick PCle must be able to send 23.7
million reads worth of data to the system per sdc@amd the FPGAs must be able to align
23.7 million reads worth of data per second. Estubrt read is transmitted to the system in
32 bytes, which contains the read ID, the read,da best current alignment, and the

alignment score. Transmitting 23.7 million shagads per second means the PCle must be
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able to support a continuous transfer rate of 76(#Bsecond, which is slightly larger than
the 600MB per second PCle bandwidth of the cum#s@3 system.

In order to align 23 million short reads per second simply need to be able to fit enough
Smith-Waterman compute engines in each of the FPGBAsIr system. Since each short
read has an average of eight CALs, aligning 23ionilshort reads per second actually means
aligning 190 million CALs per second. Assuming @ith-Waterman engine clock rate of
125 MHz and that each alignment takes approximdi@®/clock cycles, which is determined
by the length of the reference against which thartstead is aligned, a short read can be
aligned against a single CAL by a Smith-Watermamgmate engine in 1.536 microseconds.
Given this compute time, aligning 184 million CAlger second requires 282 Smith-
Waterman compute engines in the full system. HaeA must then be able to fit 72
Smith-Waterman compute units in order to keep tlenory system the bottleneck. This
number of Smith-Waterman compute units is too laogt in a single FPGA, but using c-
slowing, we may be able to fit 32 compute units pBGA, which would result in 200
million reads being aligned in about 19 secondsintya larger FPGA that could hold more
Smith-Waterman compute units could potentially rsdthe runtime of the system by about

a factor of two, so that may be another optionuispe in the future.

Table 6: Table showing system runtime for mapping @0 million short reads using the proposed
Pico-Bio system with scatter-gather DRAM, enough SRM to hold a patrtition of the pointer table,
600MB per second PCle links, and four FPGAs with 35 mith-Waterman compute engines on

each FPGA.
Task Runtime (s)
DRAM Accesses 8.43
Streaming Reads and Results 10.67
Smith-Waterman Alignments 19.20
System Runtime (s) 19.20

7 Conclusion

This thesis has provided an algorithm for accelegashort read human genome mapping,
and it has demonstrated an implementation of tgerdhm mapping reads to chromosome
21 of the human genome. Comparisons to BFASTtilites not only a peak speedup for the

hardware system of 14.8x for mapping to chromos@tebut also a projected speedup for
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the full genome of 692x when the system is imple@@non the M503 boards. The
decreased system runtime when mapping with the M§8&m also yields a 513x reduction

in energy for mapping reads to the full human gemom

We proposed algorithmic changes to improve theoperdnce of the system when mapping
to the full genome. We also we described the hardvand components of a system that
would efficiently accelerate genomics applicationkjch we called the Pico-Bio system. A

summary of the proposed changes and the resulpiegdsip and power improvements when

mapping 54 million short reads to the human genocamebe seen in Figure 52.

M503 SRAM S-W Units . Energy
Approach Boards DRAM (each FPGA) | (each FPGA) Runtime (s) | Speedup Savings
BFAST - - - - 22,550 1x 1x
Full Genome 4 - - 4 85.91 262x 194x
System
Pipelined DRAM 4 3x pipelined - 6 32.57 692x 513x
reads
Pointer Table in
SRAM 4 - 27MB 2 106.51 211x 156x
Pointer Table in 3x pivelined
SRAM w/ 4 ‘r’e‘; " 27MB 4 78.03 289x 214x
pipelined DRAM
Pointer Table in .
Large SRAM 4 - 128MB 4 51.46 438x 324x
Pointer Table in 3x pielined
Large SRAM w/ 4 ? Iie‘; " 128MB 8 22.99 981x 727x
pipelined DRAM
Host CALs 4 - - 16 10.70 2109x 1562x
Host CALs w/ 3x pipelined \
pipelined DRAM 2 reads - 32 10.70 2109x 1795x
80GB/s
Pico-Bio 4 Scatter- - 32 5.23 4316x -
Gather
. . 80GB/s
Pico-Bio w/ 4 Scatter- 128MB 32 5.23 4316x -
SRAM
Gather
Pico-Bio w/ 80GB/s
SRAM and 4 Scatter- 128MB 72 2.32 9711x -
big FPGA Gather

Figure 52: This figure shows the projected runtime,computed speedup, and computed energy
savings versus BFAST when mapping 54 million shonteads to the human genome for various
proposed algorithmic changes. The Pico-Bio systesmows the largest speedup, but it also requires
the most work to achieve that speedup. The host @A option also produces a very large speedup,
but the changes required are much less than thoserfthe Pico-Bio system.
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Some of the proposed solutions, such as the Pios¥item, require a significant amount of
work to achieve a substantial speedup and energygsa However, other alternatives, such
as moving the finding of the CALs to the host pssw, can achieve a considerable speedup

compared to BFAST with much less design effort.
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8 Appendix

8.1 Hashing Function for Pointer Table

The following Verilog code is the actual code thats implemented in the hashFunction
module of the system and is based upon the hashimgion developed for this application
by Cooper Clauson. The hash function acceptscame returns a hashed seed. The hashed
seed is computed in a set of interleaved XOR amthyi&tion stages. This combinational
logic is reduced by the synthesis tools to credd@a@ean equation for each of the bits of the
hashed seed, based on bits of the original se&é.fifial hashed seed is simply the value of

the final permutation stage.

/1 PARAMETERS

par anet er SEED BI TS=44,
XOR_STAGES=6,
POS_BI TS=6;

/1 xorStage[0] is just the current seed bei ng hashed
reg [ SEED BI TS-1: 0] xor Stage [0: XOR_STACES-1];

/1 one nore permutation than XOR
wire [ SEED BI TS-1: 0] pernute [0: XOR _STAGES] ;

// if a seed is: ACCT, then the A is associated with the M5 bits of

/1 the seed

assign permute[ 0] = {xorStage[0][0],
xor St age[ 0] [ 207,
xor St age[ 0] [ 43] ,
xor St age[ 0] [ 36] ,
xor St age[ 0] [ 407,
xor St age[ 0] [ 18],
xor St age[ 0] [ 13],
xor St age[ 0] [ 6],
xor St age[ 0] [ 2],
xor St age[ 0] [ 8],
xor St age[ 0] [ 29] ,
xor St age[ 0] [ 19] ,
xor St age[ 0] [ 28],
xor St age[ 0] [ 34] ,
xor St age[ 0] [ 27] ,
xor St age[ 0] [ 35] ,
xor St age[ 0] [ 9],
xor St age[ 0] [ 32] ,
xor St age[ 0] [ 10] ,
xor St age[ 0] [ 3],
xor St age[ 0] [ 5],



xor St age[ 0] [ 21],
xor St age[ 0] [ 30],
xor St age[ 0] [ 23],
xor St age[ 0] [ 37],
xor St age[ 0] [ 39],
xor St age[ 0] [ 11],
xor St age[ 0] [ 1],
xor St age[ 0] [ 24] ,
xor St age[ 0] [ 25] ,
xor Stage[ 0] [ 7],
xor St age[ 0] [ 4],
xor St age[ 0] [ 14],
xor St age[ 0] [ 12] ,
xor St age[ 0] [ 38] ,
xor St age[ 0] [ 17] ,
xor St age[ 0] [ 42] ,
xor St age[ 0] [ 31] ,
xor St age[ 0] [ 15],
xor St age[ 0] [ 26] ,
xor St age[ 0] [ 41],
xor St age[ 0] [ 16] ,
xor St age[ 0] [ 33],
xor St age[ 0] [ 22] };
assign perrmute[ 1] = {xor Stage[1][10],
xor St age[ 1] [ 4],
xor St age[ 1] [ 38] ,
xor St age[ 1] [ 35] ,
xor St age[ 1] [ 15] ,
xor St age[ 1] [ 207,
xor St age[ 1] [12] ,
xor St age[ 1] [ 28],
xor St age[ 1] [ 31],
xor St age[ 1] [ 18],
xor Stage[ 1] [ 7],
xor St age[ 1] [ 42] ,
xor St age[ 1] [ 0],
xor St age[ 1] [ 14],
xor St age[ 1] [ 9],
xor St age[ 1] [ 19] ,
xor St age[ 1] [ 30],
xor St age[ 1] [ 22] ,
xor St age[ 1] [ 43] ,
xor St age[ 1] [ 33] ,
xor St age[ 1] [ 16],
xor St age[ 1] [ 5],
xor St age[ 1] [ 41],
xor Stage[ 1] [ 17],
xor St age[ 1] [ 25] ,
xor St age[ 1] [ 11],
xor St age[ 1] [ 2],
xor St age[ 1] [ 37],
xor St age[ 1] [ 24] ,



xor St age[ 1] [ 13],
xor St age[ 1] [ 23],
xor St age[ 1] [ 32] ,
xor St age[ 1] [ 21],
xor St age[ 1] [ 39],
xor St age[ 1] [ 6],
xor St age[ 1] [ 27] ,
xor St age[ 1] [ 8],
xor St age[ 1] [ 3],
xor St age[ 1] [ 4071,
xor St age[ 1] [ 1],
xor St age[ 1] [ 26] ,
xor St age[ 1] [ 29] ,
xor St age[ 1] [ 34],
xor St age[ 1] [ 36] };
assign perrmute[2] = {xor Stage[2]][8],
xor St age[ 2] [ 39],
xor St age[ 2] [ 207,
xor St age[ 2] [ 25] ,
xor St age[ 2] [ 4],
xor St age[ 2] [ 43],
xor St age[ 2] [ 14] ,
xor St age[ 2] [ 35],
xor St age[ 2] [ 30],
xor St age[ 2] [ 33],
xor St age[ 2] [ 38] ,
xor St age[ 2] [ 26] ,
xor St age[ 2] [ 19],
xor St age[ 2] [ 11],
xor St age[ 2] [ 27] ,
xor St age[ 2] [ 16],
xor St age[ 2] [ 13],
xor St age[ 2] [ 21],
xor St age[ 2] [ 41],
xor St age[ 2] [ 28],
xor St age[ 2] [ 31],
xor St age[ 2] [ 40],
xor Stage[ 2] [ 7],
xor St age[ 2] [ 2],
xor St age[ 2] [ 32],
xor St age[ 2] [ 22] ,
xor St age[ 2] [12],
xor St age[ 2] [ 1],
xor St age[ 2] [ 9],
xor St age[ 2] [42] ,
xor St age[ 2] [ 34],
xor St age[ 2] [ 29],
xor St age[ 2] [ 0],
xor St age[ 2] [ 15] ,
xor St age[ 2] [ 37],
xor St age[ 2] [ 24] ,
xor St age[ 2] [ 3],



xor St age[ 2] [ 5],
xor St age[ 2] [17],
xor St age[ 2] [ 36],
xor St age[ 2] [ 18],
xor St age[ 2] [ 10],
xor St age[ 2] [ 23],
xor Stage[ 2] [ 6]};
assign permute[ 3] = {xor Stage[3][30],
xor St age[ 3] [ 0],
xor St age[ 3] [ 36],
xor St age[ 3] [ 33],
xor St age[ 3] [ 6],
xor St age[ 3] [ 31],
xor St age[ 3] [ 10],
xor St age[ 3] [17],
xor St age[ 3] [ 22] ,
xor St age[ 3] [ 34] ,
xor St age[ 3] [ 41],
xor St age[ 3] [ 2],
xor St age[ 3] [ 13],
xor St age[ 3] [ 3],
xor St age[ 3] [ 15],
xor St age[ 3] [ 40],
xor St age[ 3] [ 43],
xor St age[ 3] [ 35],
xor St age[ 3] [ 26] ,
xor St age[ 3] [ 16],
xor St age[ 3] [12],
xor St age[ 3] [ 18],
xor St age[ 3] [ 27] ,
xor St age[ 3] [ 32] ,
xor St age[ 3] [ 24] ,
xor St age[ 3] [ 25],
xor St age[ 3] [ 29],
xor St age[ 3] [42],
xor St age[ 3] [ 20],
xor St age[ 3] [ 23],
xor St age[ 3] [ 14],
xor St age[ 3] [ 37],
xor St age[ 3] [ 11],
xor St age[ 3] [ 38] ,
xor St age[ 3] [ 5],
xor St age[ 3] [ 39],
xor St age[ 3] [ 1],
xor St age[ 3] [ 19],
xor St age[ 3] [ 21],
xor St age[ 3] [ 8],
xor St age[ 3] [ 4],
xor St age[ 3] [ 9],
xor St age[ 3] [ 28],
xor Stage[3][7]};
assign permute[4] = {xorStage[4][0],



xor St age[ 4] [ 36] ,
xor St age[ 4] [ 22] ,
xor St age[ 4] [42] ,
xor St age[ 4] [ 11],

xor St age[ 4] [ 4],

xor St age[ 4] [ 13] ,
xor St age[ 4] [12],
xor St age[ 4] [ 14],
xor St age[ 4] [ 15] ,
xor St age[ 4] [ 37],
xor St age[ 4] [ 28],
xor St age[ 4] [ 33],
xor St age[ 4] [ 29] ,
xor St age[ 4] [ 40] ,

xor St age[ 4] [ 5],

xor St age[ 4] [ 19],
xor St age[ 4] [ 23],
xor St age[ 4] [ 31],
xor St age[ 4] [ 25] ,
xor St age[ 4] [ 32] ,

xor St age[ 4] [ 3],

xor St age[ 4] [ 39],
xor St age[ 4] [ 35] ,
xor St age[ 4] [ 38],
xor St age[ 4] [ 18],
xor St age[ 4] [ 10],
xor St age[ 4] [ 21],
xor St age[ 4] [ 27] ,

xor St age[ 4] [ 1],
xor St age[ 4] [ 6],

xor St age[ 4] [ 16] ,
xor St age[ 4] [ 17] ,
xor St age[ 4] [ 34] ,
xor St age[ 4] [ 41],
xor St age[ 4] [ 24] ,

xor St age[ 4] [ 9],

xor St age[ 4] [ 26] ,
xor St age[ 4] [ 30],
xor St age[ 4] [ 43] ,

xor Stage[4][ 7],

xor St age[ 4] [ 20] ,

xor St age[ 4] [ 8],

xor St age[ 4] [ 2]};
assign perrmute[5] = {xor Stage[5][0],
xor St age[ 5] [ 21] ,
xor St age[ 5] [ 14],
xor St age[ 5] [ 16] ,
xor St age[ 5] [ 43] ,
xor St age[ 5] [ 37] ,

xor St age[ 5] [ 8],
xor St age[ 5] [ 5],

xor St age[ 5] [ 41] ,
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xor St age[ 5] [ 22] ,
xor St age[ 5] [12],
xor St age[ 5] [ 38],
xor St age[ 5] [ 31],
xor St age[ 5] [ 32] ,
xor St age[ 5] [ 13],
xor St age[ 5] [ 15] ,
xor St age[ 5] [ 23],
xor St age[ 5] [ 11],
xor St age[ 5] [ 40] ,
xor St age[ 5] [ 3],
xor St age[ 5] [ 18],
xor St age[ 5] [ 27] ,
xor St age[ 5] [ 10],
xor St age[ 5] [ 35] ,
xor St age[ 5] [ 2],
xor St age[ 5] [ 29] ,
xor St age[ 5] [ 24] ,
xor St age[ 5] [ 28],
xor St age[ 5] [ 9],
xor St age[ 5] [ 6],
xor St age[ 5] [ 30],
xor St age[ 5] [ 25] ,
xor St age[ 5] [ 4],
xor St age[ 5] [ 1],
xor St age[ 5] [17],
xor St age[ 5] [42] ,
xor St age[ 5] [ 26] ,
xor St age[ 5] [ 39],
xor St age[ 5] [ 20] ,
xor St age[ 5] [ 19],
xor St age[ 5] [ 34] ,
xor St age[ 5] [ 36] ,
xor St age[ 5] [ 7],
xor St age[ 5] [ 33] };
assign perrmute[ 6] = {xor Stage[6][ 18],
xor St age[ 6] [ 35] ,
xor St age[ 6] [ 11],
xor St age[ 6] [ 25] ,
xor St age[ 6] [ 8],
xor St age[ 6] [ 37],
xor St age[ 6] [ 6],
xor St age[ 6] [ 27] ,
xor St age[ 6] [ 39],
xor St age[ 6] [ 30],
xor St age[ 6] [ 28],
xor St age[ 6] [ 32] ,
xor St age[ 6] [ 42] ,
xor St age[ 6] [ 14] ,
xor St age[ 6] [ 9],
xor St age[ 6] [ 17],
xor St age[ 6] [ 23],



xor St age[ 6] [ 34] ,
xor St age[ 6] [ 40] ,
xor St age[ 6] [ 10] ,
xor St age[ 6] [ 7],
xor St age[ 6] [ 16] ,
xor St age[ 6] [ 33] ,
xor St age[ 6] [ 13],
xor St age[ 6] [ 22] ,
xor St age[ 6] [ 43] ,
xor St age[ 6] [ 36] ,
xor St age[ 6] [ 2],
xor St age[ 6] [ 4],
xor St age[ 6] [ 5],
xor St age[ 6] [ 20] ,
xor St age[ 6] [ 15] ,
xor St age[ 6] [ 31],
xor St age[ 6] [ 3],
xor St age[ 6] [ 21] ,
xor St age[ 6] [ 12] ,
xor St age[ 6] [ 24] ,
xor St age[ 6] [ 1],
xor St age[ 6] [ 0],
xor St age[ 6] [ 41],
xor St age[ 6] [ 26] ,
xor St age[ 6] [ 19],
xor St age[ 6] [ 38] ,
xor St age[ 6] [ 29] };
/1 XOR the M5 half of the previous pernute stage with the LS
/1 half of the previous pernute stage and store in the LS
/1 half of the current XOR stage
al ways @ (*) begin
xor St age[ 0] = current Seed;
for (i=1; i<=XOR_STAGES; i=i+l) begin
xorStage[i] = {permute[i-1][ SEED BI TS-1: SEED BI TS>>1],
pernmute[i-1][ SEED BI TS-1: SEED BI TS>>1]»
permute[i-1][(SEED Bl TS>>1)-1:0]};
end
end
assi gn hashedSeed = pernut e[ XOR_STAGES] ;
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