
 1

Abstract— When designing systems-on-a-chip (SoCs), a unique

opportunity exists to generate custom FPGA architectures that are specific to
the application domain in which the device will be used. The inclusion of such
devices provides an efficient compromise between the flexibility of software
and the performance of hardware, while at the same time allowing for post-
fabrication modification of the SoC. To automate the layout of
reconfigurable subsystems for systems-on-a-chip, we present three
alternative methods, namely Template Reduction, Circuit Generator, and
Standard Cell methods. Template Reduction begins with a full-custom layout
as a template that is a superset of the required resources, and removes those
resources that are not needed by a given application domain. Circuit
Generator takes advantage of the regularity that exists in FPGAs by using
circuit generators to create the custom reconfigurable devices. Finally,
Standard Cell automates the creation of circuits by using a standard cell
library that has been optimized for reconfigurable devices. This paper
presents algorithms for each of these approaches, and quantifies the relative
quality in terms of area and delay.

Index Terms—Design Automation, Layout, Reconfigurable Architectures

I. INTRODUCTION

RADITIONAL FPGAs are a very effective bridge between software
running on a general-purpose processor (GPP) and application-

specific integrated circuits (ASIC). FPGAs are extremely flexible,
enabling one device to target multiple application domains. However, to
achieve this flexibility FPGAs must sacrifice size, performance, and
power consumption when compared to ASICs, making them less than
ideal for high performance designs. Domain-specific FPGAs can be
created to combine the flexibility of FPGAs with area and performance
near that of ASICs.

In the standard FPGA world, there is a limit to the number and variety
of FPGAs that can be supported – large nonrecurring-engineering (NRE)
costs due to custom fabrication costs and design complexity means that
only the most widely applicable devices are commercially viable.
However, a unique opportunity exists in the System-on-a-Chip (SoC)
world. Here, an entire system, including perhaps memories, processors,
DSPs, and ASIC logic are fabricated together on a single silicon die.
FPGAs have a role in this world as well, providing a region of
programmability in the SoC that can be used for run-time
reconfigurability, bug fixes, functionality improvements, multi-function
SoCs, and other situations that require post-fabrication customization of a

Layout Generation for Domain-Specific
FPGAs

Shawn Phillips1, Akshay Sharma2, Scott Hauck3
1 Annapolis Microsystems, Inc., Annapolis, MD, sphillips@annapmicro.com

2 Actel Corporation, Mountainview, CA, akshay.sharma@actel.com
3 University of Washington, Dept. of EE, Seattle, WA, hauck@ee.washington.edu

T

 2

hardware subsystem. This gives rise to an interesting opportunity. Since
the reconfigurable logic will need to be custom fabricated along with the
overall SoC, the reconfigurable logic can be optimized to the specific
demands of the SoC through the creation of domain-specific
reconfigurable devices.

A domain-specific FPGA is a reconfigurable array that is targeted at a
specific application domain, instead of the multiple domains a traditional
FPGA targets. Creating custom domain-specific FPGAs is possible when
designing an SoC, since even early in the design stage designers are
aware of the computational domain in which the device will operate.
With this knowledge, designers could then remove from the
reconfigurable array unneeded hardware and programming points that
would otherwise reduce system performance and increase the design area.
Architectures such as RaPiD [1, 2], PipeRench [3], and Pleiades [4], have
followed this design methodology in the digital signal processing (DSP)
computational domain, and have shown improvements over
reconfigurable processors. This ability to utilize custom arrays instead of
ASICs in high performance SoC designs will retain the post-fabrication
flexibility of FPGAs, while also meeting stringent performance
requirements that until now could only be met by ASICs.

Unfortunately, if designers were forced to create custom reconfigurable
logic for every new chip, it would be impossible to meet any reasonable
design cycle. However, by automating the generation of the domain-
specific FPGAs, designers would avoid this increased time to market and
would decrease the overall design cost.

The goal of the Totem project [5, 6, 7, 8, 9, 21] is to reduce the design
time and effort in the creation of a custom reconfigurable architecture.
The architectures that are created by Totem are based upon the
applications and constraints specified by the designer. Since the custom
architecture is optimized for a particular set of applications and
constraints, the designs are smaller in area and perform better than a
standard FPGA while retaining enough flexibility to support the specified
application set, with the possibility to support applications not foreseen
by the designer.

In this paper, we first present a short background on the RaPiD
architecture and on the Totem project. Next, we examine the approaches
used to automate the layout process, namely Template Reduction, Circuit
Generator, and Standard Cell methods. The experimental setup and
procedure that we have used to evaluate the designs created by the
various methods will then be presented. Finally, we will show how well
our approaches perform.

Fig. 1: Block diagram of one RaPiD II cell. Data flows through the array horizontally, with
vertical routing providing connections to functional units. The black boxes in the
interconnect represent bus connectors, which can be used to connect tracks into long lines
or to separate them into short lines.

 3

II. RAPID

The Reconfigurable-Pipelined Datapath (RaPiD) [1, 2] has been
chosen as a starting point for the architectures that are generated by the
Totem project. The goal of the RaPiD architecture is to provide
performance at or above the level of that of a dedicated ASIC, while also
retaining the flexibility that reconfigurability provides. RaPiD is able to
achieve these goals through the use of coarse-grain components, such as
memories, ALUs, multipliers, and pipelined data-registers. We use a
version of Rapid called RaPiD II (Fig. 1), with augmented resources to
better support the benchmarks considered in this paper. As such, it
represents our baseline for an optimized, fixed structure FPGA.

III. T OTEM

The Totem design flow attempts to improve the quality of
reconfigurable logic by providing only those resources required for a
given application domain. Totem automatically creates these custom
architectures. The overall Totem design flow (Fig. 2) can be broken into
three parts: architecture generation, VLSI layout generation, and place-
and-route tool generation.

Architecture
Generator

Architecture
Description

*

+ LUT

VLSI
Layout

Generator

P&R Tool
Generator

Place

Route

Circuit

10010110...

Constraints
Domain

Description

Fig. 2: Totem tool flow.

A. Architecture Generation

The first phase of creating a custom reconfigurable device is high-level
architecture generation [5, 6]. The Architecture Generator will receive, as
input from the designer, the target algorithms and any associated
constraints, such as area or performance. The high-level Architecture
Generator will then create a Verilog representation of the architecture that
meets all of the designer’s requirements. The more diverse the algorithms
specified by the designer, the more flexibility the final architecture will
have. The output of the architecture generator is the logic, routing, and
programming bits of the domain-specific FPGA. Once fabricated, the
architecture can be programmed to support the target or similar circuits.

B. VLSI Layout Generation

The next phase in generating the custom architecture is to
automatically create mask layouts, which is performed by the VLSI
layout generator. The layout generator will receive, as input from the
high-level Architecture Generator, the Verilog representation of the
custom circuit. The layout generator must be able to create layouts for
any conceivable circuit that the high-level architecture generator is
capable of producing. We have investigated three possible methods of
automating the layout process: Template Reduction [9], Circuit
Generators [10], and Standard Cells [7]. This paper is concerned with this
aspect of the Totem Project, and each of these methods will be discussed
in sections 4, 5, and 6 respectively.

C. Place and Route Tool Generation

The final phase in developing a custom architecture is to generate the

 4

place-and-route tools that will enable the designer to utilize the new
architecture [8]. The Place-and-Route Tool Generator creates mapping
tools by using the Verilog provided by the high-level Architecture
Generator. The placer uses simulated annealing [11] and a cutsize-based
metric to match RaPiD’s 1D routing structure [8]. The router uses the
Pathfinder algorithm [12], targeted to a routing graph extracted from the
Verilog produced by the Architecture Generator.

IV. TEMPLATE REDUCTION METHOD

The idea behind template reduction [9] is to start with a full-custom
layout that provides a superset of the required resources, and remove
those resources that are not needed by a given domain (Fig. 3). This is
done by actually editing the layout in an automated fashion to eliminate
the transistors and wires that form the unused resources, as well as
replacing programmable connections with fixed connections or breaks,
for flexibility that is not needed. In this way, we can get most of the
advantage of a full-custom layout, while still optimizing towards the
actual intended usage of the array. By using these techniques, we leverage
high-quality full custom layouts, while retaining the ability to remove
unneeded flexibility to create further gains in both area and performance.

Template reduction has been broken into three main tasks. The first is
the creation of a feature rich macro cell, which is used as an initial
template that will be reduced and compacted to form the final circuit. The
second is the creation of the reduction list that identifies the resources
that should be removed. This is generated by Totem’s place and route
tool, which seeks to increase the commonality of resource usage between
all of the mappings to the reconfigurable logic, and thus increase the
amount of resources that can be eliminated. The final task is the
implementation of the reductions on the template, followed by the
compaction of the resultant circuit. This involves automated layout
restructurings to edit the actual design files based upon the reduction list.
Each of these tasks will be outlined in the following sections.

A. Feature Rich Template

The creation of the feature rich template is the most critical aspect
related to the Template Reduction Method. A poor template will not be
able to support a wide range of applications, which in turn weakens the
effectiveness of the method. Therefore, we performed extensive profiling
of the potential benchmark sets to create the RaPiD II tile. We then
created a high-quality, full custom layout of the RaPiD II tile, which was
the feature rich template used for Template Reduction.

G
P

R

R
A

M

R
A

M

G
P

R

M
U

LT

G
P

R

A
L

U

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

G
P

R

R
A

M

R
A

M

G
P

R

M
U

LT

G
P

R

A
L

U

A
L

U

G
P

R

G
P

R

R
A

M

A
L

U

G
P

R

 5

G
P

R

R
A

M

G
P

R

M
U

L
T

A
L

U

G
P

R

G
P

R

R
A

M

G
P

R

G
P

R

R
A

M

G
P

R

M
U

L
T

A
L

U

G
P

R

G
P

R

R
A

M

G
P

R

G
P

R

R
A

M

G
P

R

M
U

L
T

A
L

U

G
P

R

G
P

R

R
A

M

G
P

R

G
P

R

R
A

M

G
P

R

M
U

L
T

A
L

U

G
P

R

G
P

R

R
A

M

G
P

R

Fig. 3: Template reduction in action. The block diagram of a feature rich macro cell is
shown on the top. In the middle, the macro cell has been reduced by the removal of routing
resources and functional units that are not needed to support the application domain. On
the bottom, the final compacted cell.

B. Reduction List Generation

The next task in template reduction is the creation of the reduction list
[13]. The creation of the reduction list is performed by a subtractive
scheme that eliminates as many functional units and routing resources
(functional units and routing resources are collectively called
“resources”) as possible while placing and routing a set of netlists onto
the template architecture. Individual netlists in the set are individually
placed and routed on the template architecture. At the end of this first
run, the fraction of netlists that used each resource in the template is
recorded, and a cost (referred to as usage_cost) is assigned to each
resource based on the fraction of netlists that used the resource during the
previous run. The usage_cost of a resource is inversely proportional to
the fraction of netlists that used the resource. Thus, the usage_cost of a
resource that was used by none of the netlists is highest, while the
usage_cost of a resource that was used by all netlists in the set is zero.

Functional Unit Usage - Initial Run

0 1 2 3+

Functional Unit Usage - 2nd Run

0 1 2 3+

Functional Unit Usage - 3rd Run

0 1 2 3+

Fig. 4: A comparison of the number of functional units used by zero, one, two, and three or
more netlists utilizing the RADAR, Image Processing, FIR, Matrix Multiply, and Sorters
application domains.

 6

Routing Resource Usage - Initial Run

0 1 2 3+

Routing Resource Usage - 2nd Run

0 1 2 3+

Routing Resource Usage - 3rd Run

0 1 2 3+

Fig. 5: A comparison of the number of routing resources used by zero, one, two, and three
or more netlists utilizing the RADAR, Image Processing, FIR, Matrix Multiply, and Sorters
application domains.

After completion of the first run on all netlists, a second run is
commenced during which the netlists in the set are individually placed
and routed again on the template architecture. However, for any given
netlist, the cost of using a resource during the second run is influenced by
the usage_cost of that resource. During placement, assigning a logic
block to a functional unit penalizes the cost of the placement by a factor
proportional to the usage_cost of the functional unit. The cost of
assigning a logic block to a functional unit with high usage_cost is higher
than the cost of assigning the logic block to a functional unit that has a
relatively lower usage_cost. Similarly, while routing a netlist, the base
cost of using a routing resource is proportional to the usage_cost of that
resource. In general, if the usage_cost of a resource is high (i.e. the
fraction of netlists that used this resource in the previous run was low),
the place-and-route tool is influenced to select another resource with a
lower usage_cost (i.e. a resource that was used by a large fraction of
netlists during the previous run). Thus, during the second run, we try to
direct the placement and routing of individual netlists toward using
resources that were used heavily during the previous run. At the same
time, we also attempt to drive down the fraction of netlists that use a
resource to zero, so that we can eliminate that resource eventually. At the
end of the second run, the usage_cost of each resource is again adjusted
in a manner identical to that at the end of the first run, and a third run is
begun. We are only reporting three runs, because the third run only
deviates slightly from the second run in increasing the amount of
resources that can be eliminated. Thus, any gains from subsequent runs
are negligible. Once the three runs are completed, we have a list of the
resources that can be eliminated from the template architecture. The
results of the forced sharing after each of the three runs are shown in Fig.
4 and Fig. 5.

Equation (1) describes the variation in the usage_cost with the fraction
of netlists that used that resource during the previous run.
usage_cost = k*(1 – f) 2 (1)
In equation (1), f is the frequency of resources used. For placement, the
value of k is chosen in a manner that ensures that the total usage_cost of a
placement never exceeds 20% of the total cost of a placement. For
routing, the value of k is selected so as to ensure that the usage_cost of a
routing resource never exceeds 10% of the base cost of the routing
resource.

C. Reduction and Compaction

Once the reduction list is generated, the final task is to actually edit the

 7

template in an automated fashion, followed by a compaction step to
reduce the template size. To reduce the template, the layouts were
automatically edited within the Cadence CAD tools. To achieve the
required automation, Cadence SKILL code [14] is created by a SKILL
code generator written in Perl. The SKILL code generator parses the
reduction list and automatically creates a list of SKILL code reductions.
Cadence SKILL Code enables interaction with the Cadence tools at a
very low level. Therefore, each reduction that the subtractive method is
able to perform has a corresponding SKILL routine that will implement
the reduction on the template.

To remove as much overhead as possible we have implemented a wide
range of reductions. First among them is the elimination of any unused
cells (that is, complete RaPiD II tiles). The next reduction is the
elimination of any functional units in any cell that are not needed. Next,
we remove any of the bidirectional bus-connectors that are not needed in
the interconnect. The final reduction is the removal of any unused wires.
When an unused wire is removed, the corresponding transistors and
programming bits in any muxes and drivers that the wire interacts with
are also removed.

The arrays were then compacted by the Cadence compactor along the
horizontal axis. Since some of the functional units are unaltered in
template reduction, these units dictate the height of the array, and thus
vertical compaction is not useful.

D. Template Reduction Summary

By leveraging a full custom layout structure, template reduction offers
the potential to achieve very high quality implementations. If a generated
architecture closely matches the full custom template, then Template
Reduction will likely outperform any other approach. However, the
approach also has significant limitations. First, if the desired architecture
requires more resources than are present in the template, there is no way
to add those resources. Also, while template reduction can make
modifications scattered throughout the array, turning the layout into
“swiss cheese”, the compactor will likely not be able to reduce the
resulting area of the overall design. Thus, while we may get performance
and power improvements by reducing capacitance in the array, we may
get lower area improvements for architectures significantly different than
the input template.

V. CIRCUIT GENERATOR METHOD

SRAM units in SoC designs are typically created by memory
generators. One reason why memory generators are so efficient is their
flexibility in tailoring the array to meet the design specifications, while at
the same time minimizing area and maximizing performance. The Circuit
Generator Method performs in much the same way (see Fig. 6). However,
instead of providing just a single memory generator, to create a full
RaPiD array we must provide a wide range of generators for all of the
RaPiD components.

The current approach for the Circuit Generator Method is a mix of two
types of generators. One type of generator enables the designer to modify
certain parameters for units like the mux, demux, pipeline register, and
bus connector. The other type of generator does not allow the designer to
modify any parameters for units like memory blocks, the ALU, and the
multiplier. This last type of generator is just placing the original full-
custom circuits into the array, with modified interconnect for the inputs
and outputs of the units that enable the unit to be tied into the overall

 8

array. This mix of approaches is necessary in our prototype system since
it was not feasible to create true generators that extract regularity from all
units.

Fig. 6: The top figure shows the initial generation of circuits by three generators. Once the
circuits have been generated, they are abutted together to create the functioning
reconfigurable array, which is shown in the bottom figure.

The height of the generated circuits are loosely fixed based upon the
number of buses and the number of bits on each bus needed to support
the specified architecture. In essence, the minimum number of tracks is
ascertained from the architecture description, which allows us to establish
the height of the array used by all of the generators.

A. Approach

The first step in the generation of circuits is to receive the Verilog
representation of the custom reconfigurable architecture from the
Architecture Generator [5]. The Verilog is then parsed into separate
generator calls, including any required parameters. For example, the
following Verilog code:
bus_mux16_28data_reg_0_In(.In0(ZERO),….,Out(WIRE));
would be parsed so that the MUX generator would create a structure that
contains sixteen 28-to-1 muxes that are stacked on top of each other with
their control tied together.

After the Verilog has been parsed, the tool automatically generates the
Cadence SKILL [14] code needed to implement the specified circuit.
This is done by using Cadence SKILL code generators written in Perl.
The Perl SKILL code generators call primitive Cadence SKILL functions
that are able to automatically do simple tasks in Cadence, including
opening, saving and closing files, drawing polygons in the layout, and
instantiating cells. The code generators create circuits for all of the units
needed to create the custom reconfigurable architectures, including
muxes, demuxes, pipelined registers, bus-connectors, ALUs, multipliers,
and SRAM blocks.

The generated circuits are targeted at the TSMC .18µm process. The
height of the generated circuits is set by the number of routing tracks
needed to support the number of bits per bus specified by the
architectural description. In the TSMC .18µm process, a minimum size
tristate inverter, laid out in a horizontal fashion, is equivalent in height to
three routing tracks. By using metal four and metal six for horizontal
routing, and layer five for vertical routing, three routing tracks are able to
support a maximum of five bits, which is also shown in Fig. 7.

 9

1

2 3

4 5

Fig. 7: One tristate inverter laid out in a horizontal fashion, which is the smallest building
block of both the muxes and demuxes, has enough length in the vertical direction to
support up to three horizontal routing tracks. Three routing tracks are able to support up to
five bits via multiple metal layers. The metal lines pictured in the figure are on the fourth
and sixth metal layers, of the six metal layer TSMC .18µm process.

Once the SKILL code has been generated that will produce the circuits,
the next phase of circuit generation involves the creation of SKILL code
that will automatically abut the generated circuits together. In the current
version of the Circuit Generator Method, we are only dealing with
circuits that utilize sixteen-bit functional units. Consequently, the routing
complexity is greatly reduced, since the vertical distance between units is
known in advance.

The last step is to actually run the Cadence SKILL code on Cadence to
automatically create the units and to place the generated units together
along the horizontal axis with the corresponding glue logic establishing
connections between the various generated units. It should be noted that
the Circuit Generator Method is highly automated. The designer only
needs to provide the Verilog file, which the Circuit Generator Method
uses to produce the mask layout with minimal user intervention.

Once the circuits are automatically generated by Cadence, wire lengths
are extracted to tune the Place-and-Route Tool Generator’s delay
estimator. The Place-and-Route tool maps the various netlists from the
application domains onto the architecture to determine the delay
numbers, using its detailed wire and functional unit models to compute
these numbers. The next sections will go over the various generators in
more detail.

B. Generators

We have created a generator for each of the components present in the
RaPiD II template. The mux and demux generators create arbitrary
interconnect structures tailored to the Architecture Generator’s
requirements. The BC and register file generators similarly allow for
arbitrary numbers of registers to be inserted, though currently we only use
1-delay and 3-delay structures. For the ALU, multiplier, and memory
generators, we combine fixed functional units with an interface to the
flexible interconnect structures.

The mux and demux generators are used to set the initial height of the
reconfigurable arrays that the Circuit Generator Method creates. One goal
of the Circuit Generators is to ensure that the capacitance and the delay of
the muxes and the demuxes that are generated are as similar as possible to
the full-custom muxes and demuxes used in the full-custom RaPiD II tile.
Towards this end, all muxes and demuxes that are generated use the same
full-custom tristate inverters that are used in the full-custom RaPiD II tile.

The process used in the generation of muxes and demuxes is modeled

 10

after the process used to create the full-custom muxes and demuxes in the
full-custom RaPiD II tile, only our approach is automated. The decision
to create a new row of mux bits (and thus increase the height of the mux)
is based on the number of metal wires that can fit in the vertical area of
one horizontally placed tristate inverter, which happens to be five bits.
The formula to determine the number of rows is max(1,floor((n+1)/5)).
Fig. 8 shows the configurations of muxes from 4 bits to 20 bits, in 4 bit
increments. When minimizing wasted area, the most efficient structures
are muxes or demuxes of bit size p, where p mod 5 is equal to zero, since
each horizontal tristate inverter is three tracks, or 5 bits, high. Structures
with size q, where q mod 5 is equal to one, are the most inefficient (the
16:1 mux case is an example).

Bit 1 Bit 2 Bit 3 Bit 4

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

Bit 6 Bit 7 Bit 8 Bit 9 Bit 10

Bit 16Bit 11 Bit 12 Bit 13 Bit 14 Bit 15

Bit 1

Bit 6

Bit 11

Bit 16

Bit 2

Bit 7

Bit 12

Bit 17

Bit 3

Bit 8

Bit 13

Bit 18

Bit 4

Bit 9

Bit 14

Bit 19

Bit 5

Bit 10

Bit 15

Bit 20

Fig. 8: Various configurations of muxes based upon the number of bits, and the number of
routing tracks. The top figure is a 4 bit mux, followed by 8, 12, 16, and 20. All of the
figures are to scale. Notice the increase in the width of the control routing channel as the
number of tristate rows increases, and the wasted space in the 16 bit mux.

C. Circuit Generators Summary

The Circuit Generator Method is able to leverage the regularity that
exists in FPGA designs in a method very similar to the creation of
memory arrays by memory generators. This method is able to create
circuits that perform better than that of the RaPiD II full custom fixed
tile, as long as the specified architecture does not require functional units
or routing resources that do not have a corresponding generator.
However, it can require significantly more effort to create a flexible
circuit generator than implementing a single instance of a circuit type for
a fixed architecture.

 11

VI. STANDARD CELL METHOD

Instead of creating a new flow to implement FPGAs, we can leverage
standard ASIC flows. If we take the Verilog produced by the Architecture
Generator and send it to a standard cell layout tool, we can get an
implementation of any architecture desired. However, even better results
can be achieved based on a simple observation: FPGAs are composed of
a relatively small number of basic elements, so there are significant
benefits to providing optimized implementations of these basic elements
within the standard cell library. Thus, an FPGA-optimized standard cell
library [7] would consist of optimized cells containing typical FPGA
components such as LUTs, SRAM bits, muxes, and demuxes.

A. Approach

To retain as much flexibility as possible in our standard cell
implementation, behavioral Verilog representations were created for all
of the RaPiD components. The Architecture Generator used these
behavioral components as leaf cells when it generated Verilog versions of
RaPiD that support a particular application domain. Synopsys was used to
synthesize the behavioral Verilog to produce structural Verilog that has
been mapped to our standard cell library [5]. This gives us the ability to
swap out standard cell libraries, since we would only need to re-
synthesize the behavioral Verilog with a new library file generated for the
new standard cell library. The ability to easily and efficiently use
different libraries is a very powerful feature of the Standard Cell Method.
It enables designers to choose different libraries that provide different
capabilities, such as lower power, smaller area, or higher performance.

Silicon Ensemble was used to place and route the cells. Silicon
Ensemble is part of the Cadence Envisia Tool Suite, and is capable of
routing multiple layers of metal, including routing over the cells. We used
the NCSU TSMC 0.18µm design rules for all layouts created in Cadence.

The choice of a standard cell library was based upon the need to find
an industrial strength library that has been laid-out for the TSMC 0.18µm
process. Unfortunately, we were not able to find a library targeted at the
TSMC 0.18µm process, but we were able to find two libraries targeted at
the TSMC 0.25µm process, namely the VTVT standard cell library and
the Tanner standard cell library [22]. We chose the VTVT standard cell
library, which was available from the Virginia Tech VLSI for
Telecommunications group [15, 16], over the Tanner standard cell
library. We arrived at this decision because the VTVT library also
included Synopsys synthesis files, VHDL simulation libraries, and LEF
files for Silicon Ensemble, while the Tanner library did not. The VTVT
library was then migrated to the TSMC 0.18µm process.

B. Standard Cell Summary

The greatest strength of this method is its high level of flexibility. This
method is always capable of producing a result, even when the other
methods fail. Also, with a wider range of libraries, including libraries
optimized for power, performance, and area, this method has a lot of
potential for improvement. However, the overheads of standard cells vs.
full custom design impose a significant penalty to this approach.

VII. T ESTING FRAMEWORK

A. Application Domains

To evaluate the automatic generation of domain-specific
reconfigurable circuits we used thirteen different application domains. All

 12

of the netlist sets that make up each application domain have been
compiled using the RaPiD compiler [17]. Two of the netlist sets, RADAR
and Image, are complete applications. The RADAR application is used to
observe the atmosphere using FM signals, while the Image application is
a minimal image processing library. The other eleven applications
represent the cross product of two domains, like the Image and RADAR
application, domains of similar netlists, like FIR, Matrix Multiply, and
Sorters, or reduced domains, like Reduced Image 1 through 4 and
Reduced RADAR 4 through 6. All of the application domains and their
member netlists are shown in Table 1. It should be noted that only five of
the thirteen application domains are run on the circuits created by the
Template Reduction due to limitations of the toolset.

TABLE I
APPLICATION DOMAINS

Application
Domain

Member Netlist Percent
Utilization

Reduced RADAR 6 decnsr, psd 20.92
FIR firsm2, firsm3, firsm4, firsymeven 28.90
Reduced Image 1 firtm_2nd, matmult 29.07
Reduced Image 2 1d_dct40, fft16_2nd, matmult 29.15
Sorters sort_g, sort_rb, sort_2d_g, sort_2d_rb 32.12
Image 1d_dct40, firtm_2nd, fft16_2nd,

matmult
37.05

Matrix Multiply limited, matmult, matmult4, vector 37.43
Image and RADAR 1d_dct40, fft16_2nd, firtm_2nd,

matmult
41.21

Reduced RADAR 4 decnsr, fft16_2nd 50.88
RADAR decnsr, fft16_2nd , psd 52.79
Reduced Image 4 1d_dct40, fft16_2nd 52.82
Reduced RADAR 5 fft16_2nd, psd 53.54
Reduced Image 3 1d_dct40, fft16_2nd, firtm_2nd 60.18

The benchmark application domains and their corresponding member netlists. The
applications are ordered in the table by their percent utilization, from lower to higher
values.

B. Percent Utilization

The netlists in Table 1 are ordered by their percent utilization. Percent
utilization is a measure of the resources that an array of full-custom fixed
tiles would need to support a particular application domain. Resources
include multipliers, ALUs, wires, bus connectors (BC), routing muxes
and demuxes, data and pipeline registers, and memories. For example, an
application domain that requires half of the resources provided by the
full-custom fixed tile would fall at 50% utilization. The percent
utilization calculated in Table 1 was generated using the RaPiD II fixed
tile. To actually calculate the percent utilization we use the place-and-
route tool to map the application domain onto an array of RaPiD II tiles.
The length of the RaPiD II array is determined by iteratively adding
another fixed RaPiD II tile to the array until the mapping is successful.

Once the array length is set, we look at all of the resources that are
used by the application domain mapping. In essence, if only one of the
netlists in an application domain uses any resource in the array, then that
resource is part of the percent utilization for that application domain. We
divide the sum of the area of all of the resources needed to support an
application domain by the total area of the RaPiD II array to arrive at the
value of the percent utilization for an application on a particular array of
fixed tiles. In essence, the percent utilization metric is a measure of how
well a fixed tile is tuned to a particular application domain. If the percent
utilization of an application domain is very high, then the resource mix of

 13

the fixed tile is well suited for that application domain. We use percent
utilization here because we intuitively felt that the quality of the various
implementation strategies would be highly correlated to percent
utilization.

VIII. RESULTS

A. Area and Delay Evaluation

To evaluate the three methods, we are concerned with two metrics,
namely the overall area of the generated circuits, and the delay of the
circuit when each of the application domains are mapped, as evaluated by
the static timing analyzer contained in the place and route tool. The area
of the generated circuits is evaluated by measuring the area of the layout
that is generated by each of the methods. This is a straightforward
process, since all three methods generate circuits using the NCSU CDK
[18] for the TSMC .18µm process.

The delay of each circuit is evaluated by using the Totem place and
route tool to map, or bind, each of the netlists in the application domain
onto the generated circuit. The place and route tool is then able to
determine the delay of the mapped netlists on the circuit by performing
static timing analysis of the critical path. The place and route tool is
aware of the critical path of the netlist since it places and routes all of
components and the signals that constitute a netlist. The models used in
the static timing analysis were created by running spice simulations of all
of the RaPiD components. It should be noted that this version of the place
and route tool is unable to retime signals. Therefore, any delay numbers
generated by the place and route tool should only be used for relative
comparisons of the three methods.

B. Area Comparison

The area of the circuits created varies greatly, depending on both the
specified application domain and the proposed method. The graph shown
in Fig. 9 presents the three methods, along with the original full custom
RaPiD II tile. The x-axis is percent utilization, which is an indication of
the amount of resources that an application domain would require to run
on the full custom RaPiD II template. The y-axis is the area normalized to
the full custom RaPiD II template. The points for the Circuit Generator
Method are an average of the AML, AMO, and GH Architecture
Generators, detailed further in [19]. The points for the Standard Cell
Method are an average of the generic VTVT standard cell library and a
modified VTVT standard cell library targeted at FPGAs, detailed further
in [7].

 14

0

0.5

1

1.5

2

2.5

3

152535455565

Percent Utilization

N
o

rm
al

iz
ed

 A
re

a

RaPiD II

SC AVG

SC FPGA AVG

CG AVG

TR

Fig. 9: Area comparison of the circuits created to support the benchmark sets.

It is evident from Fig. 9 that the Template Reduction and the Circuit
Generator Methods create circuits that are roughly comparable to each
other in area. The Template Reduction Method is more efficient when the
percent utilization is high, while the Circuit Generator Method is more
efficient when the percent utilization is lower. This is a strong showing
for the Circuit Generator Method, since it is creating circuits from scratch
that can compete with reduced full custom circuits. These results may be
an indication that the compaction of circuits is less efficient as the percent
utilization drops. This is because the circuits created by the Template
Reduction Method are becoming less and less regular. The Circuit
Generator Method is not affected by this, since it is creating circuits from
the ground up, as opposed to reducing existing structures.

Fig. 10: The thirteen application domains ordered along the horizontal axis by percent
utilization. The fft16_2nd and the matmult netlists dominate ten of the thirteen application
domains, which is indicated by the red and blue circles.

A noticeable feature of Fig. 9 is the fact that the benchmarks seem to
cluster into two groups, one group that has a high percent utilization, and
another that has a low percent utilization. This is due to the domination of
certain netlists in each application group, which can be seen more clearly
in Fig. 10. The first cluster is dominated by the fft16_2nd netlist, and the

 15

second cluster is dominated by the matmult netlist.

C. Delay Comparison

 Fig. 11 shows the delay of each benchmark set after it has been
normalized to the delay of the fixed RaPiD II tile, where lower delay
indicates a higher quality circuit. The delay results of the application
domains on the circuits created by the various methods, are more
scattered and do not show the same level of improvement as the area
improvements. The Standard Cell Method cannot overcome the overhead
associated with this method. Therefore, the circuits created by the
Standard Cell Method never perform better than the full-custom RaPiD II
tile, and are approximately 3.10 times to 1.40 times slower than the other
three methods. The shortcomings of the Standard Cell Method are even
more magnified when it is pointed out that the full-custom RaPiD II tile is
unaltered, and therefore capable of handling application domains that
require 100% utilization, while the circuits generated by the Standard
Cell Method have been reduced, and are therefore less capable.

0

0.5

1

1.5

2

2.5

3

3.5

152535455565

Percent Utilization

N
o

rm
al

iz
ed

 D
el

ay

RaPiD II

SC AVG

CG AVG

TR

Fig. 11: Delay comparison of the benchmarks run on the full-custom RaPiD II tile, and the
Template Reduction, the Circuit Generator, and the Standard Cell Methods. The y-axis is
the delay normalized to the RaPiD II cell, while the x-axis is the percent utilization.

The Circuit Generator and the Template Reduction Methods produce
circuits that have an average delay improvement of approximately 16% to
9% over the benchmarks run on the full custom RaPiD II tile. When the
percent utilization is high, the Template Reduction Method appears able
to produce higher performing circuits than the Circuit Generator Method.
When the percent utilization is low, the Circuit Generator Method is able
to produce circuits that perform better than the Template Reduction
Method. Once again, it should be noted that only five of the thirteen
application domains are run on the circuits created by the Template
Reduction due to limitations of the toolset.

 16

Once again, as seen in Fig. 9, the benchmarks are clustered into two
groups depending upon which netlists are dominating within the
application domains. Another feature that can be seen in the graph is the
fact that the performance of the benchmarks increases as percent
utilization decreases. This is an overall trend with some outliers, and
these results are highly dependent on the efficiency of the P&R tool. The
most noticeable outlier is the FIR application domain. Two netlists
dominate the performance of this application group, namely the firsm3
and the firsymenven, causing it to perform poorly.

IX. CONCLUSIONS

The focus of this work has been the automation of the layout portion of
the Totem design flow. Towards this end, we have implemented the VLSI
layout generator, which automates the creation of mask ready layouts
from the circuit descriptions provided by the Architecture generator. The
VLSI layout generator consists of three methods of automating the layout
process: Template Reduction, Circuit Generators, and Standard Cell
generation.

The Template Reduction Method is able to leverage full custom
designs, while still removing any resources that are not needed to support
the specified application domain. This enables the Template Reduction
Method to create circuits that perform at or better than that of the initial
full-custom template, with an average area decrease of approximately
48% and an average delay decrease of approximately 9%.

One of the drawbacks associated with the Template Reduction Method
is its reliance on the existence of a feature-rich macro cell that is a
superset of the specified application domain. The Circuit Generator
Method is able to produce efficient circuits in both area and performance
in an additive fashion, while removing the need for feature-rich
templates. Circuits created by the Circuit Generator Method are
approximately 46% smaller and 16% faster than the full custom RaPiD II
tile.

The Standard Cell Method, while extremely flexible, was able to
produce competitive circuits with regard to area, only when the resources
were reduced to approximately 25% of the full-custom template.
Unfortunately, the Standard Cell Method was never able to produce a
circuit that performed better than the full-custom RaPiD II template. The
Standard Cell Method is capable of producing circuits with areas ranging
from 2.45 times larger to 0.76 times smaller than comparable full-custom
circuits. The Standard Cell Method can also produce circuits with delays
ranging from 3.10 times to 1.40 times longer than comparable full-custom
circuits. However, the strength of the Standard Cell Method lies in its
ability to produce a circuit for any application domain, even when the
Template Reduction and Circuit Generator Methods fail.

Choosing an appropriate method is based on many factors. If a robust
template along with suitable reductions exists, then the Template
Reduction Method is quite capable of producing competitive circuits.
While this suggests that the Template Reduction Method should be
competitive with the other methods, we feel that it is the weakest method.
The Template Reduction Method is too inflexible. Its reliance on
templates is its biggest liability, since the generation of even one template
is a costly endeavor. In future systems, the designer might want to specify
certain design constraints, like low power, small area, or high
performance. This implies that a single template will not be able to cover
all of these design areas, forcing the Totem Project to have at its disposal

 17

multiple templates that have been laid out with different design goals in
mind. This would entail considerable effort, thus defeating the purpose of
the Totem Project to automatically provide custom reconfigurable circuits
in a timely fashion.

Another problem with the Template Reduction Method is its
propensity for causing errors in circuits. Of the three methods, the
Template Reduction Method was the most error prone method, and was
the most complicated method to implement and debug. In essence, the
Template Reduction Method is manipulating full-custom circuits at the
lowest level. This can lead to numerous DRC errors, including n-implant,
p-implant, and well errors. In addition, when manipulating full-custom
designs in this manner, the Template Reduction Method is changing the
dynamics of the circuits in potentially unforeseen ways. For example, the
transistors in a full-custom circuit are sized to ensure that they are
capable of driving their load in an efficient manner. By cutting out
transistors, wires, etc, the Template Reduction Method is altering those
loads, which can lead to a poorly performing circuit.

The Circuit Generator Method is able to leverage the regularity that
exists in FPGAs when creating RaPiD-like structures. It can create
structures that are more efficient than the Template Reduction Method,
while not being bound to a particular template. In addition, the Circuit
Generator Method is an additive method. Therefore, this method is less
error prone than the Template Reduction Method since we are not cutting
low-level components out of full-custom circuits.

However, the Circuit Generator Method has problems of its own. The
creation of a wide range of generators can be as costly a proposition as
creating a wide range of templates. But, to improve the Circuit Generator
Method, providing a wide range of different types of generators is
critical. To increase the quality of the circuits that the method creates, all
of the generators should be able to handle a wide range of parameters.
For example, in the current implementation of the Circuit Generator
Method, the generators that create the functional units are unable to
change the bit width of units that they create. However, it has been shown
in previous work [20] that the largest impact on area is achieved through
reducing the overall bit-width of the device that is created. Therefore, the
creation of generators that are able to modify the bit width of the
functional units could drastically increase the ability of the Circuit
Generator Method to create higher quality circuits. Finally, if the Circuit
Generator Method needs to create circuits that are targeted at low power,
high performance, or small area, even more types of generators will be
needed.

This leads us to the Standard Cell Method. As anticipated, the
Standard Cell Method has inherent inefficiencies that it must overcome to
become competitive with the other two methods. However, it is extremely
flexible and is able to create a circuit in any circumstance. This is
important because the overall goal of the Totem Project is to support any
designer defined application domain. To build upon this flexibility, the
ability to utilize a wide range of industrial strength standard cell libraries
is needed. With a wide range of libraries, the designer could select the
library most suited to the specifications of their design. Specifications
could include higher performance, lower power, or smaller area, and if
there was a corresponding library, the Standard Cell Method has the
potential to create high quality circuits with a minimal amount of effort.

X. ACKNOWLEDGMENTS

The authors would like to thank the RaPiD group, especially Carl

 18

Ebeling and Chris Fisher, for the RaPiD I layout used in this research.
We also are indebted to Larry McMurchie for support on the Cadence
tool-suite. This work was funded in part from grants from NSF and
NASA. Shawn Phillips was supported in part by a MIT Lincoln Labs
Research Fellowship. Scott Hauck was supported in part by an NSF
CAREER award and an Alfred P. Sloan Research Fellowship.

REFERENCES

[1] Darren C. Cronquist, Paul Franklin, Chris Fisher, Miguel Figueroa, and Carl Ebeling,
“Architecture Design of Reconfigurable Pipelined Datapaths”, Twentieth Anniversary
Conference on Advanced Research in VLSI, pp 23-40, 1999.

[2] C. Ebeling, D. C. Cronquist, P. Franklin, “RaPiD – Reconfigurable Pipelined
Datapath”, 6th Annual Workshop on Field Programmable Logic and Applications,
1996.

[3] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor, “PipeRench: An
Architecture and Compiler for Reconfigurable Computing”, IEEE Computer, 2000.

[4] A. Abnous and J. M. Rabaey, "Ultra-low-power domain-specific multimedia
processors," Proc. of IEEE VLSI Signal Processing Workshop, Oct. 1996.

[5] K. Compton, S. Hauck, "Totem: Custom Reconfigurable Array Generation", IEEE
Symposium on FPGAs for Custom Computing Machines Conference, 2001.

[6] K. Compton, A. Sharma, S. Phillips, S. Hauck, "Flexible Routing Architecture
Generation for Domain-Specific Reconfigurable Subsystems", International
Conference on Field Programmable Logic and Applications, pp. 59-68, 2002.

[7] S. Phillips, S. Hauck, "Automatic Layout of Domain-Specific Reconfigurable
Subsystems for System-on-a-Chip", ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, pp. 165-173, 2002.

[8] A. Sharma, C. Ebeling, S. Hauck, "PipeRoute: A Pipelining-Aware Router for
FPGAs", ACM/SIGDA Symposium on Field-Programmable Gate Arrays, pp. 68-77,
2003.

[9] S. Phillips, A. Sharma, S. Hauck, "Automating the Layout of Reconfigurable
Subsystems Via Template Reduction", International Symposium on Field-
Programmable Logic and Applications, pp. 857-861, 2004.

[10] S. Phillips, S. Hauck, "Automating the Layout of Reconfigurable Subsystems for
Systems-on-a-Chip", IEEE Symposium on FPGAs for Custom Computing Machines
Conference, 2005.

[11] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing, Kluwer
Academic Publishers, Boston, MA: 1988.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to
Algorithms, The MIT Press, Cambridge, MA, Prim’s algorithm, pp 505-510, 1990.

[13] A. Sharma, “Development of a Place and Route Tool for the RaPiD Architecture.”
M.S. Thesis, University of Washington, Dept. of EE, 2001.

[14] Cadence Design Systems, Inc., “Openbook”, version 4.1, release IC 4.4.5, 1999.
[15] J. B. Sulistyo, J. Perry, and D. S. Ha, "Developing Standard Cells for TSMC 0.25um

Technology under MOSIS DEEP Rules", Department of Electrical and Computer
Engineering, Virginia Tech, Technical Report VISC-2003-01, November 2003.

[16] Jos. B. Sulistyo and Dong S. Ha, "A New Characterization Method for Delay and
Power Dissipation of Standard Library Cells", VLSI Design 15 (3), pp. 667-678,
2002.

[17] D. C. Cronquist, P. Franklin, S.G. Berg, C. Ebeling, "Specifying and Compiling
Applications for RaPiD", IEEE Symposium on FPGAs for Custom Computing
Machines, 1998.

[18] Shaffer, Stanaski, Glaser, and Franzon, “The NCSU Design Kit for IC Fabrication
through MOSIS'', 1998 International Cadence User Group Conference in Austin,
Texas.

[19] K. Compton, “Architecture Generation of Customized Reconfigurable Hardware”,
Ph.D. Thesis, Northwestern University, Dept. of ECE, 2003.

[20] S. Phillips, “Automatic Layout of Domain-Specific Reconfigurable Subsystems for
System-on-a-Chip.” M.S. Thesis, Northwestern University, Dept. of ECE, July 2001.

[21] K. Eguro, S. Hauck, “Resource Allocation for Coarse-Grain FPGA development”,
IEEE TCAD, Vol 24, No 10.

