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Abstract— When designing systems-on-a-chip (SoCs), a unique 

opportunity exists to generate custom FPGA architectures that are specific to 
the application domain in which the device will be used. The inclusion of such 
devices provides an efficient compromise between the flexibility of software 
and the performance of hardware, while at the same time allowing for post-
fabrication modification of the SoC. To automate the layout of 
reconfigurable subsystems for systems-on-a-chip, we present three 
alternative methods, namely Template Reduction, Circuit Generator, and 
Standard Cell methods. Template Reduction begins with a full-custom layout 
as a template that is a superset of the required resources, and removes those 
resources that are not needed by a given application domain. Circuit 
Generator takes advantage of the regularity that exists in FPGAs by using 
circuit generators to create the custom reconfigurable devices. Finally, 
Standard Cell automates the creation of circuits by using a standard cell 
library that has been optimized for reconfigurable devices. This paper 
presents algorithms for each of these approaches, and quantifies the relative 
quality in terms of area and delay. 
 

Index Terms—Design Automation, Layout, Reconfigurable Architectures 
 

I. INTRODUCTION 

RADITIONAL FPGAs are a very effective bridge between software 
running on a general-purpose processor (GPP) and application-

specific integrated circuits (ASIC). FPGAs are extremely flexible, 
enabling one device to target multiple application domains. However, to 
achieve this flexibility FPGAs must sacrifice size, performance, and 
power consumption when compared to ASICs, making them less than 
ideal for high performance designs. Domain-specific FPGAs can be 
created to combine the flexibility of FPGAs with area and performance 
near that of ASICs. 

In the standard FPGA world, there is a limit to the number and variety 
of FPGAs that can be supported – large nonrecurring-engineering (NRE) 
costs due to custom fabrication costs and design complexity means that 
only the most widely applicable devices are commercially viable. 
However, a unique opportunity exists in the System-on-a-Chip (SoC) 
world. Here, an entire system, including perhaps memories, processors, 
DSPs, and ASIC logic are fabricated together on a single silicon die. 
FPGAs have a role in this world as well, providing a region of 
programmability in the SoC that can be used for run-time 
reconfigurability, bug fixes, functionality improvements, multi-function 
SoCs, and other situations that require post-fabrication customization of a 
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hardware subsystem. This gives rise to an interesting opportunity. Since 
the reconfigurable logic will need to be custom fabricated along with the 
overall SoC, the reconfigurable logic can be optimized to the specific 
demands of the SoC through the creation of domain-specific 
reconfigurable devices. 

A domain-specific FPGA is a reconfigurable array that is targeted at a 
specific application domain, instead of the multiple domains a traditional 
FPGA targets. Creating custom domain-specific FPGAs is possible when 
designing an SoC, since even early in the design stage designers are 
aware of the computational domain in which the device will operate. 
With this knowledge, designers could then remove from the 
reconfigurable array unneeded hardware and programming points that 
would otherwise reduce system performance and increase the design area. 
Architectures such as RaPiD [1, 2], PipeRench [3], and Pleiades [4], have 
followed this design methodology in the digital signal processing (DSP) 
computational domain, and have shown improvements over 
reconfigurable processors. This ability to utilize custom arrays instead of 
ASICs in high performance SoC designs will retain the post-fabrication 
flexibility of FPGAs, while also meeting stringent performance 
requirements that until now could only be met by ASICs. 

Unfortunately, if designers were forced to create custom reconfigurable 
logic for every new chip, it would be impossible to meet any reasonable 
design cycle. However, by automating the generation of the domain-
specific FPGAs, designers would avoid this increased time to market and 
would decrease the overall design cost. 

The goal of the Totem project [5, 6, 7, 8, 9, 21] is to reduce the design 
time and effort in the creation of a custom reconfigurable architecture. 
The architectures that are created by Totem are based upon the 
applications and constraints specified by the designer. Since the custom 
architecture is optimized for a particular set of applications and 
constraints, the designs are smaller in area and perform better than a 
standard FPGA while retaining enough flexibility to support the specified 
application set, with the possibility to support applications not foreseen 
by the designer. 

In this paper, we first present a short background on the RaPiD 
architecture and on the Totem project. Next, we examine the approaches 
used to automate the layout process, namely Template Reduction, Circuit 
Generator, and Standard Cell methods. The experimental setup and 
procedure that we have used to evaluate the designs created by the 
various methods will then be presented. Finally, we will show how well 
our approaches perform.  

 
Fig. 1: Block diagram of one RaPiD II cell. Data flows through the array horizontally, with 
vertical routing providing connections to functional units. The black boxes in the 
interconnect represent bus connectors, which can be used to connect tracks into long lines 
or to separate them into short lines. 
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II. RAPID 

The Reconfigurable-Pipelined Datapath (RaPiD) [1, 2] has been 
chosen as a starting point for the architectures that are generated by the 
Totem project. The goal of the RaPiD architecture is to provide 
performance at or above the level of that of a dedicated ASIC, while also 
retaining the flexibility that reconfigurability provides. RaPiD is able to 
achieve these goals through the use of coarse-grain components, such as 
memories, ALUs, multipliers, and pipelined data-registers. We use a 
version of Rapid called RaPiD II (Fig. 1), with augmented resources to 
better support the benchmarks considered in this paper. As such, it 
represents our baseline for an optimized, fixed structure FPGA. 

III. T OTEM 

The Totem design flow attempts to improve the quality of 
reconfigurable logic by providing only those resources required for a 
given application domain. Totem automatically creates these custom 
architectures. The overall Totem design flow (Fig. 2) can be broken into 
three parts: architecture generation, VLSI layout generation, and place-
and-route tool generation. 
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Fig. 2: Totem tool flow. 

A. Architecture Generation 

The first phase of creating a custom reconfigurable device is high-level 
architecture generation [5, 6]. The Architecture Generator will receive, as 
input from the designer, the target algorithms and any associated 
constraints, such as area or performance. The high-level Architecture 
Generator will then create a Verilog representation of the architecture that 
meets all of the designer’s requirements. The more diverse the algorithms 
specified by the designer, the more flexibility the final architecture will 
have.  The output of the architecture generator is the logic, routing, and 
programming bits of the domain-specific FPGA. Once fabricated, the 
architecture can be programmed to support the target or similar circuits. 

B. VLSI Layout Generation 

The next phase in generating the custom architecture is to 
automatically create mask layouts, which is performed by the VLSI 
layout generator. The layout generator will receive, as input from the 
high-level Architecture Generator, the Verilog representation of the 
custom circuit. The layout generator must be able to create layouts for 
any conceivable circuit that the high-level architecture generator is 
capable of producing. We have investigated three possible methods of 
automating the layout process: Template Reduction [9], Circuit 
Generators [10], and Standard Cells [7]. This paper is concerned with this 
aspect of the Totem Project, and each of these methods will be discussed 
in sections 4, 5, and 6 respectively. 

C. Place and Route Tool Generation 

The final phase in developing a custom architecture is to generate the 
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place-and-route tools that will enable the designer to utilize the new 
architecture [8]. The Place-and-Route Tool Generator creates mapping 
tools by using the Verilog provided by the high-level Architecture 
Generator. The placer uses simulated annealing [11] and a cutsize-based 
metric to match RaPiD’s 1D routing structure [8]. The router uses the 
Pathfinder algorithm [12], targeted to a routing graph extracted from the 
Verilog produced by the Architecture Generator. 

IV. TEMPLATE REDUCTION METHOD 

The idea behind template reduction [9] is to start with a full-custom 
layout that provides a superset of the required resources, and remove 
those resources that are not needed by a given domain (Fig. 3). This is 
done by actually editing the layout in an automated fashion to eliminate 
the transistors and wires that form the unused resources, as well as 
replacing programmable connections with fixed connections or breaks, 
for flexibility that is not needed. In this way, we can get most of the 
advantage of a full-custom layout, while still optimizing towards the 
actual intended usage of the array. By using these techniques, we leverage 
high-quality full custom layouts, while retaining the ability to remove 
unneeded flexibility to create further gains in both area and performance. 

Template reduction has been broken into three main tasks. The first is 
the creation of a feature rich macro cell, which is used as an initial 
template that will be reduced and compacted to form the final circuit. The 
second is the creation of the reduction list that identifies the resources 
that should be removed. This is generated by Totem’s place and route 
tool, which seeks to increase the commonality of resource usage between 
all of the mappings to the reconfigurable logic, and thus increase the 
amount of resources that can be eliminated. The final task is the 
implementation of the reductions on the template, followed by the 
compaction of the resultant circuit. This involves automated layout 
restructurings to edit the actual design files based upon the reduction list. 
Each of these tasks will be outlined in the following sections. 

A. Feature Rich Template 

The creation of the feature rich template is the most critical aspect 
related to the Template Reduction Method. A poor template will not be 
able to support a wide range of applications, which in turn weakens the 
effectiveness of the method. Therefore, we performed extensive profiling 
of the potential benchmark sets to create the RaPiD II tile. We then 
created a high-quality, full custom layout of the RaPiD II tile, which was 
the feature rich template used for Template Reduction. 
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Fig. 3: Template reduction in action. The block diagram of a feature rich macro cell is 
shown on the top. In the middle, the macro cell has been reduced by the removal of routing 
resources and functional units that are not needed to support the application domain. On 
the bottom, the final compacted cell. 

 

B. Reduction List Generation 

The next task in template reduction is the creation of the reduction list 
[13]. The creation of the reduction list is performed by a subtractive 
scheme that eliminates as many functional units and routing resources 
(functional units and routing resources are collectively called 
“resources”) as possible while placing and routing a set of netlists onto 
the template architecture. Individual netlists in the set are individually 
placed and routed on the template architecture. At the end of this first 
run, the fraction of netlists that used each resource in the template is 
recorded, and a cost (referred to as usage_cost) is assigned to each 
resource based on the fraction of netlists that used the resource during the 
previous run. The usage_cost of a resource is inversely proportional to 
the fraction of netlists that used the resource. Thus, the usage_cost of a 
resource that was used by none of the netlists is highest, while the 
usage_cost of a resource that was used by all netlists in the set is zero.  
 

Functional Unit Usage - Initial Run 

0 1 2 3+ 

Functional Unit Usage - 2nd Run 

0 1 2 3+ 

Functional Unit Usage - 3rd Run 

0 1 2 3+ 
 

Fig. 4: A comparison of the number of functional units used by zero, one, two, and three or 
more netlists utilizing the RADAR, Image Processing, FIR, Matrix Multiply, and Sorters 
application domains.  
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Routing Resource Usage - Initial Run 

0 1 2 3+ 

Routing Resource Usage - 2nd Run 

0 1 2 3+ 

Routing Resource Usage - 3rd Run 

0 1 2 3+ 
 

Fig. 5: A comparison of the number of routing resources used by zero, one, two, and three 
or more netlists utilizing the RADAR, Image Processing, FIR, Matrix Multiply, and Sorters 
application domains. 

After completion of the first run on all netlists, a second run is 
commenced during which the netlists in the set are individually placed 
and routed again on the template architecture. However, for any given 
netlist, the cost of using a resource during the second run is influenced by 
the usage_cost of that resource. During placement, assigning a logic 
block to a functional unit penalizes the cost of the placement by a factor 
proportional to the usage_cost of the functional unit. The cost of 
assigning a logic block to a functional unit with high usage_cost is higher 
than the cost of assigning the logic block to a functional unit that has a 
relatively lower usage_cost. Similarly, while routing a netlist, the base 
cost of using a routing resource is proportional to the usage_cost of that 
resource. In general, if the usage_cost of a resource is high (i.e. the 
fraction of netlists that used this resource in the previous run was low), 
the place-and-route tool is influenced to select another resource with a 
lower usage_cost (i.e. a resource that was used by a large fraction of 
netlists during the previous run). Thus, during the second run, we try to 
direct the placement and routing of individual netlists toward using 
resources that were used heavily during the previous run. At the same 
time, we also attempt to drive down the fraction of netlists that use a 
resource to zero, so that we can eliminate that resource eventually. At the 
end of the second run, the usage_cost of each resource is again adjusted 
in a manner identical to that at the end of the first run, and a third run is 
begun. We are only reporting three runs, because the third run only 
deviates slightly from the second run in increasing the amount of 
resources that can be eliminated. Thus, any gains from subsequent runs 
are negligible. Once the three runs are completed, we have a list of the 
resources that can be eliminated from the template architecture. The 
results of the forced sharing after each of the three runs are shown in Fig. 
4 and Fig. 5. 

Equation (1) describes the variation in the usage_cost with the fraction 
of netlists that used that resource during the previous run. 
usage_cost = k*(1 – f) 2 (1) 
In equation (1), f is the frequency of resources used. For placement, the 
value of k is chosen in a manner that ensures that the total usage_cost of a 
placement never exceeds 20% of the total cost of a placement. For 
routing, the value of k is selected so as to ensure that the usage_cost of a 
routing resource never exceeds 10% of the base cost of the routing 
resource. 

C. Reduction and Compaction 

Once the reduction list is generated, the final task is to actually edit the 
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template in an automated fashion, followed by a compaction step to 
reduce the template size. To reduce the template, the layouts were 
automatically edited within the Cadence CAD tools. To achieve the 
required automation, Cadence SKILL code [14] is created by a SKILL 
code generator written in Perl. The SKILL code generator parses the 
reduction list and automatically creates a list of SKILL code reductions. 
Cadence SKILL Code enables interaction with the Cadence tools at a 
very low level. Therefore, each reduction that the subtractive method is 
able to perform has a corresponding SKILL routine that will implement 
the reduction on the template. 

To remove as much overhead as possible we have implemented a wide 
range of reductions. First among them is the elimination of any unused 
cells (that is, complete RaPiD II tiles). The next reduction is the 
elimination of any functional units in any cell that are not needed. Next, 
we remove any of the bidirectional bus-connectors that are not needed in 
the interconnect. The final reduction is the removal of any unused wires. 
When an unused wire is removed, the corresponding transistors and 
programming bits in any muxes and drivers that the wire interacts with 
are also removed. 

The arrays were then compacted by the Cadence compactor along the 
horizontal axis. Since some of the functional units are unaltered in 
template reduction, these units dictate the height of the array, and thus 
vertical compaction is not useful. 

D. Template Reduction Summary 

By leveraging a full custom layout structure, template reduction offers 
the potential to achieve very high quality implementations. If a generated 
architecture closely matches the full custom template, then Template 
Reduction will likely outperform any other approach. However, the 
approach also has significant limitations. First, if the desired architecture 
requires more resources than are present in the template, there is no way 
to add those resources. Also, while template reduction can make 
modifications scattered throughout the array, turning the layout into 
“swiss cheese”, the compactor will likely not be able to reduce the 
resulting area of the overall design. Thus, while we may get performance 
and power improvements by reducing capacitance in the array, we may 
get lower area improvements for architectures significantly different than 
the input template. 

V. CIRCUIT GENERATOR METHOD 

SRAM units in SoC designs are typically created by memory 
generators. One reason why memory generators are so efficient is their 
flexibility in tailoring the array to meet the design specifications, while at 
the same time minimizing area and maximizing performance. The Circuit 
Generator Method performs in much the same way (see Fig. 6). However, 
instead of providing just a single memory generator, to create a full 
RaPiD array we must provide a wide range of generators for all of the 
RaPiD components. 

The current approach for the Circuit Generator Method is a mix of two 
types of generators. One type of generator enables the designer to modify 
certain parameters for units like the mux, demux, pipeline register, and 
bus connector. The other type of generator does not allow the designer to 
modify any parameters for units like memory blocks, the ALU, and the 
multiplier. This last type of generator is just placing the original full-
custom circuits into the array, with modified interconnect for the inputs 
and outputs of the units that enable the unit to be tied into the overall 
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array. This mix of approaches is necessary in our prototype system since 
it was not feasible to create true generators that extract regularity from all 
units. 

 
Fig. 6: The top figure shows the initial generation of circuits by three generators. Once the 
circuits have been generated, they are abutted together to create the functioning 
reconfigurable array, which is shown in the bottom figure. 

The height of the generated circuits are loosely fixed based upon the 
number of buses and the number of bits on each bus needed to support 
the specified architecture. In essence, the minimum number of tracks is 
ascertained from the architecture description, which allows us to establish 
the height of the array used by all of the generators. 

A. Approach 

The first step in the generation of circuits is to receive the Verilog 
representation of the custom reconfigurable architecture from the 
Architecture Generator [5]. The Verilog is then parsed into separate 
generator calls, including any required parameters. For example, the 
following Verilog code: 
bus_mux16_28data_reg_0_In(.In0(ZERO),….,Out(WIRE)); 
would be parsed so that the MUX generator would create a structure that 
contains sixteen 28-to-1 muxes that are stacked on top of each other with 
their control tied together. 

After the Verilog has been parsed, the tool automatically generates the 
Cadence SKILL [14] code needed to implement the specified circuit. 
This is done by using Cadence SKILL code generators written in Perl. 
The Perl SKILL code generators call primitive Cadence SKILL functions 
that are able to automatically do simple tasks in Cadence, including 
opening, saving and closing files, drawing polygons in the layout, and 
instantiating cells. The code generators create circuits for all of the units 
needed to create the custom reconfigurable architectures, including 
muxes, demuxes, pipelined registers, bus-connectors, ALUs, multipliers, 
and SRAM blocks. 

The generated circuits are targeted at the TSMC .18µm process. The 
height of the generated circuits is set by the number of routing tracks 
needed to support the number of bits per bus specified by the 
architectural description. In the TSMC .18µm process, a minimum size 
tristate inverter, laid out in a horizontal fashion, is equivalent in height to 
three routing tracks. By using metal four and metal six for horizontal 
routing, and layer five for vertical routing, three routing tracks are able to 
support a maximum of five bits, which is also shown in Fig. 7. 
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Fig. 7: One tristate inverter laid out in a horizontal fashion, which is the smallest building 
block of both the muxes and demuxes, has enough length in the vertical direction to 
support up to three horizontal routing tracks. Three routing tracks are able to support up to 
five bits via multiple metal layers. The metal lines pictured in the figure are on the fourth 
and sixth metal layers, of the six metal layer TSMC .18µm process. 

Once the SKILL code has been generated that will produce the circuits, 
the next phase of circuit generation involves the creation of SKILL code 
that will automatically abut the generated circuits together. In the current 
version of the Circuit Generator Method, we are only dealing with 
circuits that utilize sixteen-bit functional units. Consequently, the routing 
complexity is greatly reduced, since the vertical distance between units is 
known in advance.  

The last step is to actually run the Cadence SKILL code on Cadence to 
automatically create the units and to place the generated units together 
along the horizontal axis with the corresponding glue logic establishing 
connections between the various generated units. It should be noted that 
the Circuit Generator Method is highly automated. The designer only 
needs to provide the Verilog file, which the Circuit Generator Method 
uses to produce the mask layout with minimal user intervention. 

Once the circuits are automatically generated by Cadence, wire lengths 
are extracted to tune the Place-and-Route Tool Generator’s delay 
estimator. The Place-and-Route tool maps the various netlists from the 
application domains onto the architecture to determine the delay 
numbers, using its detailed wire and functional unit models to compute 
these numbers. The next sections will go over the various generators in 
more detail. 

B. Generators 

We have created a generator for each of the components present in the 
RaPiD II template. The mux and demux generators create arbitrary 
interconnect structures tailored to the Architecture Generator’s 
requirements. The BC and register file generators similarly allow for 
arbitrary numbers of registers to be inserted, though currently we only use 
1-delay and 3-delay structures. For the ALU, multiplier, and memory 
generators, we combine fixed functional units with an interface to the 
flexible interconnect structures. 

The mux and demux generators are used to set the initial height of the 
reconfigurable arrays that the Circuit Generator Method creates. One goal 
of the Circuit Generators is to ensure that the capacitance and the delay of 
the muxes and the demuxes that are generated are as similar as possible to 
the full-custom muxes and demuxes used in the full-custom RaPiD II tile. 
Towards this end, all muxes and demuxes that are generated use the same 
full-custom tristate inverters that are used in the full-custom RaPiD II tile. 

The process used in the generation of muxes and demuxes is modeled 
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after the process used to create the full-custom muxes and demuxes in the 
full-custom RaPiD II tile, only our approach is automated. The decision 
to create a new row of mux bits (and thus increase the height of the mux) 
is based on the number of metal wires that can fit in the vertical area of 
one horizontally placed tristate inverter, which happens to be five bits. 
The formula to determine the number of rows is max(1,floor((n+1)/5)). 
Fig. 8 shows the configurations of muxes from 4 bits to 20 bits, in 4 bit 
increments. When minimizing wasted area, the most efficient structures 
are muxes or demuxes of bit size p, where p mod 5 is equal to zero, since 
each horizontal tristate inverter is three tracks, or 5 bits, high. Structures 
with size q, where q mod 5 is equal to one, are the most inefficient (the 
16:1 mux case is an example). 

Bit 1 Bit 2 Bit 3 Bit 4

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

Bit 6 Bit 7 Bit 8 Bit 9 Bit 10

Bit 16Bit 11 Bit 12 Bit 13 Bit 14 Bit 15

Bit 1

Bit 6

Bit 11

Bit 16

Bit 2

Bit 7

Bit 12

Bit 17

Bit 3

Bit 8

Bit 13

Bit 18

Bit 4

Bit 9

Bit 14

Bit 19

Bit 5

Bit 10

Bit 15

Bit 20

 
Fig. 8: Various configurations of muxes based upon the number of bits, and the number of 
routing tracks. The top figure is a 4 bit mux, followed by 8, 12, 16, and 20. All of the 
figures are to scale. Notice the increase in the width of the control routing channel as the 
number of tristate rows increases, and the wasted space in the 16 bit mux. 

C. Circuit Generators Summary 

The Circuit Generator Method is able to leverage the regularity that 
exists in FPGA designs in a method very similar to the creation of 
memory arrays by memory generators. This method is able to create 
circuits that perform better than that of the RaPiD II full custom fixed 
tile, as long as the specified architecture does not require functional units 
or routing resources that do not have a corresponding generator. 
However, it can require significantly more effort to create a flexible 
circuit generator than implementing a single instance of a circuit type for 
a fixed architecture. 
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VI. STANDARD CELL METHOD 

Instead of creating a new flow to implement FPGAs, we can leverage 
standard ASIC flows. If we take the Verilog produced by the Architecture 
Generator and send it to a standard cell layout tool, we can get an 
implementation of any architecture desired. However, even better results 
can be achieved based on a simple observation: FPGAs are composed of 
a relatively small number of basic elements, so there are significant 
benefits to providing optimized implementations of these basic elements 
within the standard cell library. Thus, an FPGA-optimized standard cell 
library [7] would consist of optimized cells containing typical FPGA 
components such as LUTs, SRAM bits, muxes, and demuxes. 

A. Approach 

To retain as much flexibility as possible in our standard cell 
implementation, behavioral Verilog representations were created for all 
of the RaPiD components. The Architecture Generator used these 
behavioral components as leaf cells when it generated Verilog versions of 
RaPiD that support a particular application domain. Synopsys was used to 
synthesize the behavioral Verilog to produce structural Verilog that has 
been mapped to our standard cell library [5]. This gives us the ability to 
swap out standard cell libraries, since we would only need to re-
synthesize the behavioral Verilog with a new library file generated for the 
new standard cell library. The ability to easily and efficiently use 
different libraries is a very powerful feature of the Standard Cell Method. 
It enables designers to choose different libraries that provide different 
capabilities, such as lower power, smaller area, or higher performance.  

Silicon Ensemble was used to place and route the cells. Silicon 
Ensemble is part of the Cadence Envisia Tool Suite, and is capable of 
routing multiple layers of metal, including routing over the cells. We used 
the NCSU TSMC 0.18µm design rules for all layouts created in Cadence. 

The choice of a standard cell library was based upon the need to find 
an industrial strength library that has been laid-out for the TSMC 0.18µm 
process. Unfortunately, we were not able to find a library targeted at the 
TSMC 0.18µm process, but we were able to find two libraries targeted at 
the TSMC 0.25µm process, namely the VTVT standard cell library and 
the Tanner standard cell library [22]. We chose the VTVT standard cell 
library, which was available from the Virginia Tech VLSI for 
Telecommunications group [15, 16], over the Tanner standard cell 
library.  We arrived at this decision because the VTVT library also 
included Synopsys synthesis files, VHDL simulation libraries, and LEF 
files for Silicon Ensemble, while the Tanner library did not.  The VTVT 
library was then migrated to the TSMC 0.18µm process. 

B. Standard Cell Summary 

The greatest strength of this method is its high level of flexibility. This 
method is always capable of producing a result, even when the other 
methods fail. Also, with a wider range of libraries, including libraries 
optimized for power, performance, and area, this method has a lot of 
potential for improvement. However, the overheads of standard cells vs. 
full custom design impose a significant penalty to this approach. 

VII. T ESTING FRAMEWORK 

A. Application Domains 

To evaluate the automatic generation of domain-specific 
reconfigurable circuits we used thirteen different application domains. All 
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of the netlist sets that make up each application domain have been 
compiled using the RaPiD compiler [17]. Two of the netlist sets, RADAR 
and Image, are complete applications. The RADAR application is used to 
observe the atmosphere using FM signals, while the Image application is 
a minimal image processing library. The other eleven applications 
represent the cross product of two domains, like the Image and RADAR 
application, domains of similar netlists, like FIR, Matrix Multiply, and 
Sorters, or reduced domains, like Reduced Image 1 through 4 and 
Reduced RADAR 4 through 6. All of the application domains and their 
member netlists are shown in Table 1. It should be noted that only five of 
the thirteen application domains are run on the circuits created by the 
Template Reduction due to limitations of the toolset. 

TABLE I 
APPLICATION DOMAINS 

Application 
Domain 

Member Netlist Percent 
Utilization 

Reduced RADAR 6 decnsr, psd 20.92 
FIR firsm2, firsm3, firsm4, firsymeven 28.90 
Reduced Image 1 firtm_2nd, matmult 29.07 
Reduced Image 2 1d_dct40, fft16_2nd, matmult 29.15 
Sorters sort_g, sort_rb, sort_2d_g, sort_2d_rb 32.12 
Image 1d_dct40, firtm_2nd, fft16_2nd, 

matmult 
37.05 

Matrix Multiply limited, matmult, matmult4, vector 37.43 
Image and RADAR 1d_dct40, fft16_2nd, firtm_2nd, 

matmult 
41.21 

Reduced RADAR 4 decnsr, fft16_2nd 50.88 
RADAR decnsr, fft16_2nd , psd 52.79 
Reduced Image 4 1d_dct40, fft16_2nd  52.82 
Reduced RADAR 5 fft16_2nd, psd 53.54 
Reduced Image 3 1d_dct40, fft16_2nd, firtm_2nd 60.18 

The benchmark application domains and their corresponding member netlists. The 
applications are ordered in the table by their percent utilization, from lower to higher 
values. 

B. Percent Utilization 

The netlists in Table 1 are ordered by their percent utilization. Percent 
utilization is a measure of the resources that an array of full-custom fixed 
tiles would need to support a particular application domain. Resources 
include multipliers, ALUs, wires, bus connectors (BC), routing muxes 
and demuxes, data and pipeline registers, and memories. For example, an 
application domain that requires half of the resources provided by the 
full-custom fixed tile would fall at 50% utilization. The percent 
utilization calculated in Table 1 was generated using the RaPiD II fixed 
tile. To actually calculate the percent utilization we use the place-and-
route tool to map the application domain onto an array of RaPiD II tiles. 
The length of the RaPiD II array is determined by iteratively adding 
another fixed RaPiD II tile to the array until the mapping is successful. 

Once the array length is set, we look at all of the resources that are 
used by the application domain mapping. In essence, if only one of the 
netlists in an application domain uses any resource in the array, then that 
resource is part of the percent utilization for that application domain. We 
divide the sum of the area of all of the resources needed to support an 
application domain by the total area of the RaPiD II array to arrive at the 
value of the percent utilization for an application on a particular array of 
fixed tiles. In essence, the percent utilization metric is a measure of how 
well a fixed tile is tuned to a particular application domain. If the percent 
utilization of an application domain is very high, then the resource mix of 
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the fixed tile is well suited for that application domain. We use percent 
utilization here because we intuitively felt that the quality of the various 
implementation strategies would be highly correlated to percent 
utilization. 

VIII. RESULTS 

A. Area and Delay Evaluation 

To evaluate the three methods, we are concerned with two metrics, 
namely the overall area of the generated circuits, and the delay of the 
circuit when each of the application domains are mapped, as evaluated by 
the static timing analyzer contained in the place and route tool. The area 
of the generated circuits is evaluated by measuring the area of the layout 
that is generated by each of the methods. This is a straightforward 
process, since all three methods generate circuits using the NCSU CDK 
[18] for the TSMC .18µm process. 

The delay of each circuit is evaluated by using the Totem place and 
route tool to map, or bind, each of the netlists in the application domain 
onto the generated circuit. The place and route tool is then able to 
determine the delay of the mapped netlists on the circuit by performing 
static timing analysis of the critical path. The place and route tool is 
aware of the critical path of the netlist since it places and routes all of 
components and the signals that constitute a netlist. The models used in 
the static timing analysis were created by running spice simulations of all 
of the RaPiD components. It should be noted that this version of the place 
and route tool is unable to retime signals. Therefore, any delay numbers 
generated by the place and route tool should only be used for relative 
comparisons of the three methods. 

B. Area Comparison 

The area of the circuits created varies greatly, depending on both the 
specified application domain and the proposed method. The graph shown 
in Fig. 9 presents the three methods, along with the original full custom 
RaPiD II tile. The x-axis is percent utilization, which is an indication of 
the amount of resources that an application domain would require to run 
on the full custom RaPiD II template. The y-axis is the area normalized to 
the full custom RaPiD II template. The points for the Circuit Generator 
Method are an average of the AML, AMO, and GH Architecture 
Generators, detailed further in [19].  The points for the Standard Cell 
Method are an average of the generic VTVT standard cell library and a 
modified VTVT standard cell library targeted at FPGAs, detailed further 
in [7]. 
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Fig. 9: Area comparison of the circuits created to support the benchmark sets. 

It is evident from Fig. 9 that the Template Reduction and the Circuit 
Generator Methods create circuits that are roughly comparable to each 
other in area. The Template Reduction Method is more efficient when the 
percent utilization is high, while the Circuit Generator Method is more 
efficient when the percent utilization is lower. This is a strong showing 
for the Circuit Generator Method, since it is creating circuits from scratch 
that can compete with reduced full custom circuits. These results may be 
an indication that the compaction of circuits is less efficient as the percent 
utilization drops. This is because the circuits created by the Template 
Reduction Method are becoming less and less regular. The Circuit 
Generator Method is not affected by this, since it is creating circuits from 
the ground up, as opposed to reducing existing structures. 

 

Fig. 10: The thirteen application domains ordered along the horizontal axis by percent 
utilization. The fft16_2nd and the matmult netlists dominate ten of the thirteen application 
domains, which is indicated by the red and blue circles. 

A noticeable feature of Fig. 9 is the fact that the benchmarks seem to 
cluster into two groups, one group that has a high percent utilization, and 
another that has a low percent utilization. This is due to the domination of 
certain netlists in each application group, which can be seen more clearly 
in Fig. 10. The first cluster is dominated by the fft16_2nd netlist, and the 
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second cluster is dominated by the matmult netlist. 

C. Delay Comparison 

 Fig. 11 shows the delay of each benchmark set after it has been 
normalized to the delay of the fixed RaPiD II tile, where lower delay 
indicates a higher quality circuit. The delay results of the application 
domains on the circuits created by the various methods, are more 
scattered and do not show the same level of improvement as the area 
improvements. The Standard Cell Method cannot overcome the overhead 
associated with this method. Therefore, the circuits created by the 
Standard Cell Method never perform better than the full-custom RaPiD II 
tile, and are approximately 3.10 times to 1.40 times slower than the other 
three methods. The shortcomings of the Standard Cell Method are even 
more magnified when it is pointed out that the full-custom RaPiD II tile is 
unaltered, and therefore capable of handling application domains that 
require 100% utilization, while the circuits generated by the Standard 
Cell Method have been reduced, and are therefore less capable. 
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Fig. 11: Delay comparison of the benchmarks run on the full-custom RaPiD II tile, and the 
Template Reduction, the Circuit Generator, and the Standard Cell Methods. The y-axis is 
the delay normalized to the RaPiD II cell, while the x-axis is the percent utilization. 

The Circuit Generator and the Template Reduction Methods produce 
circuits that have an average delay improvement of approximately 16% to 
9% over the benchmarks run on the full custom RaPiD II tile. When the 
percent utilization is high, the Template Reduction Method appears able 
to produce higher performing circuits than the Circuit Generator Method. 
When the percent utilization is low, the Circuit Generator Method is able 
to produce circuits that perform better than the Template Reduction 
Method. Once again, it should be noted that only five of the thirteen 
application domains are run on the circuits created by the Template 
Reduction due to limitations of the toolset. 
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Once again, as seen in Fig. 9, the benchmarks are clustered into two 
groups depending upon which netlists are dominating within the 
application domains. Another feature that can be seen in the graph is the 
fact that the performance of the benchmarks increases as percent 
utilization decreases. This is an overall trend with some outliers, and 
these results are highly dependent on the efficiency of the P&R tool. The 
most noticeable outlier is the FIR application domain. Two netlists 
dominate the performance of this application group, namely the firsm3 
and the firsymenven, causing it to perform poorly. 

IX. CONCLUSIONS 

The focus of this work has been the automation of the layout portion of 
the Totem design flow. Towards this end, we have implemented the VLSI 
layout generator, which automates the creation of mask ready layouts 
from the circuit descriptions provided by the Architecture generator. The 
VLSI layout generator consists of three methods of automating the layout 
process: Template Reduction, Circuit Generators, and Standard Cell 
generation. 

The Template Reduction Method is able to leverage full custom 
designs, while still removing any resources that are not needed to support 
the specified application domain. This enables the Template Reduction 
Method to create circuits that perform at or better than that of the initial 
full-custom template, with an average area decrease of approximately 
48% and an average delay decrease of approximately 9%. 

One of the drawbacks associated with the Template Reduction Method 
is its reliance on the existence of a feature-rich macro cell that is a 
superset of the specified application domain. The Circuit Generator 
Method is able to produce efficient circuits in both area and performance 
in an additive fashion, while removing the need for feature-rich 
templates. Circuits created by the Circuit Generator Method are 
approximately 46% smaller and 16% faster than the full custom RaPiD II 
tile. 

The Standard Cell Method, while extremely flexible, was able to 
produce competitive circuits with regard to area, only when the resources 
were reduced to approximately 25% of the full-custom template. 
Unfortunately, the Standard Cell Method was never able to produce a 
circuit that performed better than the full-custom RaPiD II template. The 
Standard Cell Method is capable of producing circuits with areas ranging 
from 2.45 times larger to 0.76 times smaller than comparable full-custom 
circuits. The Standard Cell Method can also produce circuits with delays 
ranging from 3.10 times to 1.40 times longer than comparable full-custom 
circuits. However, the strength of the Standard Cell Method lies in its 
ability to produce a circuit for any application domain, even when the 
Template Reduction and Circuit Generator Methods fail. 

Choosing an appropriate method is based on many factors. If a robust 
template along with suitable reductions exists, then the Template 
Reduction Method is quite capable of producing competitive circuits. 
While this suggests that the Template Reduction Method should be 
competitive with the other methods, we feel that it is the weakest method. 
The Template Reduction Method is too inflexible. Its reliance on 
templates is its biggest liability, since the generation of even one template 
is a costly endeavor. In future systems, the designer might want to specify 
certain design constraints, like low power, small area, or high 
performance. This implies that a single template will not be able to cover 
all of these design areas, forcing the Totem Project to have at its disposal 
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multiple templates that have been laid out with different design goals in 
mind. This would entail considerable effort, thus defeating the purpose of 
the Totem Project to automatically provide custom reconfigurable circuits 
in a timely fashion. 

Another problem with the Template Reduction Method is its 
propensity for causing errors in circuits. Of the three methods, the 
Template Reduction Method was the most error prone method, and was 
the most complicated method to implement and debug. In essence, the 
Template Reduction Method is manipulating full-custom circuits at the 
lowest level. This can lead to numerous DRC errors, including n-implant, 
p-implant, and well errors. In addition, when manipulating full-custom 
designs in this manner, the Template Reduction Method is changing the 
dynamics of the circuits in potentially unforeseen ways. For example, the 
transistors in a full-custom circuit are sized to ensure that they are 
capable of driving their load in an efficient manner. By cutting out 
transistors, wires, etc, the Template Reduction Method is altering those 
loads, which can lead to a poorly performing circuit. 

The Circuit Generator Method is able to leverage the regularity that 
exists in FPGAs when creating RaPiD-like structures. It can create 
structures that are more efficient than the Template Reduction Method, 
while not being bound to a particular template. In addition, the Circuit 
Generator Method is an additive method. Therefore, this method is less 
error prone than the Template Reduction Method since we are not cutting 
low-level components out of full-custom circuits. 

However, the Circuit Generator Method has problems of its own. The 
creation of a wide range of generators can be as costly a proposition as 
creating a wide range of templates. But, to improve the Circuit Generator 
Method, providing a wide range of different types of generators is 
critical. To increase the quality of the circuits that the method creates, all 
of the generators should be able to handle a wide range of parameters. 
For example, in the current implementation of the Circuit Generator 
Method, the generators that create the functional units are unable to 
change the bit width of units that they create. However, it has been shown 
in previous work [20] that the largest impact on area is achieved through 
reducing the overall bit-width of the device that is created. Therefore, the 
creation of generators that are able to modify the bit width of the 
functional units could drastically increase the ability of the Circuit 
Generator Method to create higher quality circuits. Finally, if the Circuit 
Generator Method needs to create circuits that are targeted at low power, 
high performance, or small area, even more types of generators will be 
needed. 

This leads us to the Standard Cell Method. As anticipated, the 
Standard Cell Method has inherent inefficiencies that it must overcome to 
become competitive with the other two methods. However, it is extremely 
flexible and is able to create a circuit in any circumstance. This is 
important because the overall goal of the Totem Project is to support any 
designer defined application domain. To build upon this flexibility, the 
ability to utilize a wide range of industrial strength standard cell libraries 
is needed. With a wide range of libraries, the designer could select the 
library most suited to the specifications of their design. Specifications 
could include higher performance, lower power, or smaller area, and if 
there was a corresponding library, the Standard Cell Method has the 
potential to create high quality circuits with a minimal amount of effort. 
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