Layout Generation for Domain-Specific
FPGAS

Shawn Phillip, Akshay Sharnfa Scott Hauck
1 Annapolis Microsystems, Inc., Annapolis, MD, sfipé @annapmicro.com
2 Actel Corporation, Mountainview, CA, akshay.sha@actel.com
3 University of Washington, Dept. of EE, SeattleAWauck@ee.washington.edu

Abstract— When designing systems-on-a-chip (SoCs), a unique
opportunity exists to generate custom FPGA architeares that are specific to
the application domain in which the device will baused. The inclusion of such
devices provides an efficient compromise betweendHflexibility of software
and the performance of hardware, while at the saméme allowing for post-
fabrication modification of the SoC. To automate tle layout of
reconfigurable subsystems for systems-on-a-chip, wepresent three
alternative methods, namely Template Reduction, Ceuit Generator, and
Standard Cell methods. Template Reduction begins i a full-custom layout
as a template that is a superset of the required seurces, and removes those
resources that are not needed by a given applicatiodomain. Circuit
Generator takes advantage of the regularity that eists in FPGAs by using
circuit generators to create the custom reconfigurble devices. Finally,
Standard Cell automates the creation of circuits byusing a standard cell
library that has been optimized for reconfigurable devices. This paper
presents algorithms for each of these approachesna quantifies the relative
quality in terms of area and delay.

Index Terms—Design Automation, Layout, Reconfigurable Architetures

I. INTRODUCTION

RADITIONAL FPGAs are a very effective bridge betwesoftware

running on a general-purpose processor (GPP) amdicaon-
specific integrated circuits (ASIC). FPGAs are eriely flexible,
enabling one device to target multiple applicatitmains. However, to
achieve this flexibility FPGAs must sacrifice sizgerformance, and
power consumption when compared to ASICs, makimgnthess than
ideal for high performance designs. Domain-specKRGAs can be
created to combine the flexibility of FPGAs withearand performance
near that of ASICs.

In the standard FPGA world, there is a limit to thenber and variety
of FPGAs that can be supported — large nonrecuaigineering (NRE)
costs due to custom fabrication costs and desigmplexity means that
only the most widely applicable devices are comimélyc viable.
However, a unique opportunity exists in the Systewa-Chip (SoC)
world. Here, an entire system, including perhapsnorées, processors,
DSPs, and ASIC logic are fabricated together oringles silicon die.
FPGAs have a role in this world as well, providiag region of
programmability in the SoC that can be wused for -tmne
reconfigurability, bug fixes, functionality impromeents, multi-function
SoCs, and other situations that require post-fabidn customization of a

hardware subsystem. This gives rise to an intexg@sipportunity. Since
the reconfigurable logic will need to be customriedited along with the
overall SoC, the reconfigurable logic can be optedi to the specific
demands of the SoC through the creation of doncific
reconfigurable devices.

A domain-specific FPGA is a reconfigurable arrasttis targeted at a
specific application domain, instead of the muétilomains a traditional
FPGA targets. Creating custom domain-specific FP&EAmssible when
designing an SoC, since even early in the desiggestlesigners are
aware of the computational domain in which the dewvill operate.
With this knowledge, designers could then removemfr the
reconfigurable array unneeded hardware and progiagnpoints that
would otherwise reduce system performance andaseréhe design area.
Architectures such as RaPiD [1, 2], PipeRenchdB{l Pleiades [4], have
followed this design methodology in the digital redd) processing (DSP)
computational domain, and have shown improvementger o
reconfigurable processors. This ability to utilagstom arrays instead of
ASICs in high performance SoC designs will retdia post-fabrication
flexibility of FPGAs, while also meeting stringenperformance
requirements that until now could only be met by@$

Unfortunately, if designers were forced to creatsteam reconfigurable
logic for every new chip, it would be impossiblerteet any reasonable
design cycle. However, by automating the generatibrthe domain-
specific FPGAs, designers would avoid this incrdasee to market and
would decrease the overall design cost.

The goal of the Totem project [5, 6, 7, 8, 9, Zl{d reduce the design
time and effort in the creation of a custom reogunfable architecture.
The architectures that are created by Totem areedbagpon the
applications and constraints specified by the desigSince the custom
architecture is optimized for a particular set gbplications and
constraints, the designs are smaller in area amfibrpe better than a
standard FPGA while retaining enough flexibilitysapport the specified
application set, with the possibility to supporiphpations not foreseen
by the designer.

In this paper, we first present a short backgrowndthe RaPiD
architecture and on the Totem project. Next, warema the approaches
used to automate the layout process, namely TeenRlatluction, Circuit
Generator, and Standard Cell methods. The expet@inesetup and
procedure that we have used to evaluate the desigrated by the
various methods will then be presented. Finally,wilé show how well
our approaches perform.

1HIENEEE Y S HE s
UBL LB
e L= L Ll B
1_'I :..I: ..l : ..l:t7
mamiEE e
> .I. - ...E—

Fig. 1: Block diagram of one RaPiD Il cell. Dataviis through the array horizontally, with

vertical routing providing connections to functibnanits. The black boxes in the

interconnect represent bus connectors, which camsbd to connect tracks into long lines
or to separate them into short lines.

Il. RAPID

The Reconfigurable-Pipelined Datapath (RaPiD) [], has been
chosen as a starting point for the architecturas ahe generated by the
Totem project. The goal of the RaPiD architectuse td provide
performance at or above the level of that of acidd ASIC, while also
retaining the flexibility that reconfigurability pvides. RaPiD is able to
achieve these goals through the use of coarse-geanponents, such as
memories, ALUs, multipliers, and pipelined dataisegys. We use a
version of Rapid called RaPiD Il (Fig. 1), with amgnted resources to
better support the benchmarks considered in thigemaAs such, it
represents our baseline for an optimized, fixedcstire FPGA.

. TOTEM

The Totem design flow attempts to improve the dyalof
reconfigurable logic by providing only those resms required for a
given application domain. Totem automatically cesathese custom
architectures. The overall Totem design flow (FAcan be broken into
three parts: architecture generation, VLSI layoemeyation, and place-
and-route tool generation.

Domain
Description Consfraints

o &= :

Architecture >
Description % W
E o

10010110...

Fig. 2: Totem tool flow.

A. Architecture Generation

The first phase of creating a custom reconfiguralelce is high-level
architecture generation [5, 6]. The Architecturen@ator will receive, as
input from the designer, the target algorithms aamy associated
constraints, such as area or performance. The leigh-Architecture
Generator will then create a Verilog representatibtine architecture that
meets all of the designer’s requirements. The rdarerse the algorithms
specified by the designer, the more flexibility teal architecture will
have. The output of the architecture generatoheaslogic, routing, and
programming bits of the domain-specific FPGA. Oriabricated, the
architecture can be programmed to support thettarggmilar circuits.

B. VLSI Layout Generation

The next phase in generating the custom archiectisr to
automatically create mask layouts, which is perganby the VLSI
layout generator. The layout generator will receiae input from the
high-level Architecture Generator, the Verilog reggntation of the
custom circuit. The layout generator must be ablereate layouts for
any conceivable circuit that the high-level arctiitee generator is
capable of producing. We have investigated thressipte methods of
automating the layout process: Template Reducti®h [Circuit
Generators [10], and Standard Cells [7]. This p@peoncerned with this
aspect of the Totem Project, and each of theseadstwill be discussed
in sections 4, 5, and 6 respectively.

C. Place and Route Tool Generation
The final phase in developing a custom architecisite generate the

place-and-route tools that will enable the desigientilize the new

architecture [8]. The Place-and-Route Tool Generateates mapping
tools by using the Verilog provided by the highdévArchitecture

Generator. The placer uses simulated annealingdid]a cutsize-based
metric to match RaPiD’s 1D routing structure [8heTrouter uses the
Pathfinder algorithm [12], targeted to a routingn extracted from the
Verilog produced by the Architecture Generator.

IV. TEMPLATE REDUCTION METHOD

The idea behind template reduction [9] is to steith a full-custom
layout that provides a superset of the requiredue®s, and remove
those resources that are not needed by a giveniddfig. 3). This is
done by actually editing the layout in an automédteshion to eliminate
the transistors and wires that form the unuseduress, as well as
replacing programmable connections with fixed catioes or breaks,
for flexibility that is not needed. In this way, wman get most of the
advantage of a full-custom layout, while still opizing towards the
actual intended usage of the array. By using thed@iques, we leverage
high-quality full custom layouts, while retaininet ability to remove
unneeded flexibility to create further gains infbatea and performance.

Template reduction has been broken into three maaiks. The first is
the creation of a feature rich macro cell, whichused as an initial
template that will be reduced and compacted to fim@rfinal circuit. The
second is the creation of the reduction list tlintifies the resources
that should be removed. This is generated by Tagrtdce and route
tool, which seeks to increase the commonality sbuece usage between
all of the mappings to the reconfigurable logicd ahus increase the
amount of resources that can be eliminated. Thal fitask is the
implementation of the reductions on the templatdofved by the
compaction of the resultant circuit. This involvastomated layout
restructurings to edit the actual design files Haggon the reduction list.
Each of these tasks will be outlined in the follogvsections.

A. Feature Rich Template

The creation of the feature rich template is thestraitical aspect
related to the Template Reduction Method. A poanptate will not be
able to support a wide range of applications, whickurn weakens the
effectiveness of the method. Therefore, we perfdredensive profiling
of the potential benchmark sets to create the RdPifile. We then
created a high-quality, full custom layout of thaFRD Il tile, which was
the feature rich template used for Template Redncti

%

O N 0 O
| |)

niv
niv

o

1IN
[Cado)
niv

0

0

0

0

0

0

0

0

o |37 o = o 2| o 2| @
ohiZnren 1 S h o ERIE 120 e
cUIRIESIRIPy 5 T 3| ||]| |[D
15
0

o 1T o | 2| o |2 o 3 o

ohAZhiohn & noha=n o2 h o

o/ =Z RS RS Rl=Z]]m

15
— 0

Fig. 3: Template reduction in action. The blockglaan of a feature rich macro cell is
shown on the top. In the middle, the macro celltheen reduced by the removal of routing
resources and functional units that are not ne¢dedipport the application domain. On
the bottom, the final compacted cell.

B. Reduction List Generation

The next task in template reduction is the creatibthe reduction list
[13]. The creation of the reduction list is perfeunby a subtractive
scheme that eliminates as many functional units rauding resources
(functional units and routing resources are cdllety called
“resources”) as possible while placing and routinget of netlists onto
the template architecture. Individual netlists e tset are individually
placed and routed on the template architecturethédtend of this first
run, the fraction of netlists that used each resoiun the template is
recorded, and a cost (referred to as usage cosipsgned to each
resource based on the fraction of netlists thad tise resource during the
previous run. The usage_cost of a resource is ssleproportional to
the fraction of netlists that used the resourceusTlhe usage cost of a
resource that was used by none of the netlistsighebt, while the
usage_cost of a resource that was used by alstseitii the set is zero.

Functional Unit Usage - Initial Run Functional Unit Usage - 2nd Run

-

oom10203+ 0010203+

Fig. 4: A comparison of the number of functionaitamused by zero, one, two, and three or
more netlists utilizing the RADAR, Image ProcessiftR, Matrix Multiply, and Sorters
application domains.

Functional Unit Usage - 3rd Run

oom1 0203+

Routing Resource Usage - Initial Run Routing Resource Usage - 2nd Run
oom10203+ oom10203+

Fig. 5: A comparison of the number of routing reses used by zero, one, two, and three
or more netlists utilizing the RADAR, Image Prodags FIR, Matrix Multiply, and Sorters
application domains.

After completion of the first run on all netlistg, second run is
commenced during which the netlists in the setiadévidually placed
and routed again on the template architecture. Meweor any given
netlist, the cost of using a resource during ttoesé run is influenced by
the usage_cost of that resource. During placenssgigning a logic
block to a functional unit penalizes the cost & thacement by a factor
proportional to the usage_cost of the functionalt.umhe cost of
assigning a logic block to a functional unit witiglh usage_cost is higher
than the cost of assigning the logic block to acfiomal unit that has a
relatively lower usage_cost. Similarly, while ragia netlist, the base
cost of using a routing resource is proportionathi® usage_cost of that
resource. In general, if the usage_cost of a resoig high (i.e. the
fraction of netlists that used this resource in phevious run was low),
the place-and-route tool is influenced to seleditlaer resource with a
lower usage_cost (i.e. a resource that was used layge fraction of
netlists during the previous run). Thus, during seeond run, we try to
direct the placement and routing of individual is¢$l toward using
resources that were used heavily during the previom. At the same
time, we also attempt to drive down the fractionnetlists that use a
resource to zero, so that we can eliminate thatures eventually. At the
end of the second run, the usage_cost of eachrmes@iagain adjusted
in a manner identical to that at the end of thst fiun, and a third run is
begun. We are only reporting three runs, becausethtid run only
deviates slightly from the second run in increasihg amount of
resources that can be eliminated. Thus, any gaims Subsequent runs
are negligible. Once the three runs are completedhave a list of the
resources that can be eliminated from the tempdathitecture. The
results of the forced sharing after each of theghuns are shown in Fig.
4 and Fig. 5.

Equation (1) describes the variation in the usagst with the fraction
of netlists that used that resource during theiptesvrun.
usage_cost = k*(1 — (1)

In equation (1), f is the frequency of resourcesdug-or placement, the
value of k is chosen in a manner that ensureghlkeabtal usage_cost of a
placement never exceeds 20% of the total cost plagement. For
routing, the value of k is selected so as to enthaethe usage_cost of a
routing resource never exceeds 10% of the base afogte routing
resource.

C. Reduction and Compaction
Once the reduction list is generated, the findt tado actually edit the

Routing Resource Usage - 3rd Run

e

oom10203+

template in an automated fashion, followed by a maction step to
reduce the template size. To reduce the templaie, layouts were
automatically edited within the Cadence CAD todl® achieve the
required automation, Cadence SKILL code [14] isated by a SKILL
code generator written in Perl. The SKILL code gater parses the
reduction list and automatically creates a lisS8iLL code reductions.
Cadence SKILL Code enables interaction with the ébad tools at a
very low level. Therefore, each reduction that shibtractive method is
able to perform has a corresponding SKILL routinat twill implement
the reduction on the template.

To remove as much overhead as possible we havernmepited a wide
range of reductions. First among them is the elnim of any unused
cells (that is, complete RaPiD Il tiles). The nengduction is the
elimination of any functional units in any cell trere not needed. Next,
we remove any of the bidirectional bus-connectbas &re not needed in
the interconnect. The final reduction is the rem@faany unused wires.
When an unused wire is removed, the correspondiagsistors and
programming bits in any muxes and drivers thatwive interacts with
are also removed.

The arrays were then compacted by the Cadence cbongEong the
horizontal axis. Since some of the functional urdt® unaltered in
template reduction, these units dictate the heijithe array, and thus
vertical compaction is not useful.

D. Template Reduction Summary

By leveraging a full custom layout structure, teatplreduction offers
the potential to achieve very high quality impletagions. If a generated
architecture closely matches the full custom teteplahen Template
Reduction will likely outperform any other approacHowever, the
approach also has significant limitations. Firthe desired architecture
requires more resources than are present in thelaeamthere is no way
to add those resources. Also, while template régluctan make
modifications scattered throughout the array, agnihe layout into
“swiss cheese”, the compactor will likely not beleatho reduce the
resulting area of the overall design. Thus, whilemay get performance
and power improvements by reducing capacitancéenatray, we may
get lower area improvements for architectures Saaitly different than
the input template.

V. CIRCUIT GENERATORMETHOD

SRAM wunits in SoC designs are typically created tmgmory
generators. One reason why memory generators aedffis@nt is their
flexibility in tailoring the array to meet the dgsispecifications, while at
the same time minimizing area and maximizing penfomce. The Circuit
Generator Method performs in much the same wayRKgpe). However,
instead of providing just a single memory genetator create a full
RaPiD array we must provide a wide range of geoesdbor all of the
RaPiD components.

The current approach for the Circuit Generator Mdtts a mix of two
types of generators. One type of generator endtiedesigner to modify
certain parameters for units like the mux, demugeline register, and
bus connector. The other type of generator doeallmt the designer to
modify any parameters for units like memory blodke ALU, and the
multiplier. This last type of generator is just gfey the original full-
custom circuits into the array, with modified irdennect for the inputs
and outputs of the units that enable the unit taide into the overall

array. This mix of approaches is necessary in ootopype system since
it was not feasible to create true generatorsdktmact regularity from all
units.

Fig. 6: The top figure shows the initial generatadrcircuits by three generators. Once the
circuits have been generated, they are abuttedthgeo create the functioning
reconfigurable array, which is shown in the botfigure.

The height of the generated circuits are looselgdibased upon the
number of buses and the number of bits on eacmbeded to support
the specified architecture. In essence, the minimumber of tracks is
ascertained from the architecture description, vlaidows us to establish
the height of the array used by all of the genesato

A. Approach

The first step in the generation of circuits isrézeive the Verilog
representation of the custom reconfigurable archite from the
Architecture Generator [5]. The Verilog is then gt into separate
generator calls, including any required parametéis. example, the
following Verilog code:
bus_mux16 28data_reg 0 In(.InO(ZERO),....,Out(WIRE));
would be parsed so that the MUX generator wouldter@ structure that
contains sixteen 28-to-1 muxes that are stackepiof each other with
their control tied together.

After the Verilog has been parsed, the tool autaaby generates the
Cadence SKILL [14] code needed to implement thecifipd circuit.
This is done by using Cadence SKILL code generatgsitten in Perl.
The Perl SKILL code generators call primitive CackeiSKILL functions
that are able to automatically do simple tasks adeédce, including
opening, saving and closing files, drawing polygamghe layout, and
instantiating cells. The code generators creatauits for all of the units
needed to create the custom reconfigurable arthits; including
muxes, demuxes, pipelined registers, bus-connecinds, multipliers,
and SRAM blocks.

The generated circuits are targeted at the TSM@nil@rocess. The
height of the generated circuits is set by the remdf routing tracks
needed to support the number of bits per bus spdciby the
architectural description. In the TSMC .18um praces minimum size
tristate inverter, laid out in a horizontal fashi@mequivalent in height to
three routing tracks. By using metal four and meial for horizontal
routing, and layer five for vertical routing, thremuting tracks are able to
support a maximum of five bits, which is also shawifrig. 7.

Fig. 7: One tristate inverter laid out in a horitarfashion, which is the smallest building
block of both the muxes and demuxes, has enougitheim the vertical direction to
support up to three horizontal routing tracks. Emeuting tracks are able to support up to
five bits via multiple metal layers. The metal knpictured in the figure are on the fourth
and sixth metal layers, of the six metal layer TSMBum process.

Once the SKILL code has been generated that valiypce the circuits,
the next phase of circuit generation involves treaton of SKILL code
that will automatically abut the generated circtitgether. In the current
version of the Circuit Generator Method, we areyodkaling with
circuits that utilize sixteen-bit functional unitSonsequently, the routing
complexity is greatly reduced, since the vertidatahce between units is
known in advance.

The last step is to actually run the Cadence SkKibte on Cadence to
automatically create the units and to place theegead units together
along the horizontal axis with the correspondingeglogic establishing
connections between the various generated unigholtild be noted that
the Circuit Generator Method is highly automatethe Tdesigner only
needs to provide the Verilog file, which the Citc@enerator Method
uses to produce the mask layout with minimal uservention.

Once the circuits are automatically generated bye@ee, wire lengths
are extracted to tune the Place-and-Route Tool @en&s delay
estimator. The Place-and-Route tool maps the variwilists from the
application domains onto the architecture to detmemthe delay
numbers, using its detailed wire and functionalt umbdels to compute
these numbers. The next sections will go over #gous generators in
more detail.

B. Generators

We have created a generator for each of the commp®peesent in the
RaPiD Il template. The mux and demux generatoraterarbitrary
interconnect structures tailored to the ArchiteetuGenerator’s
requirements. The BC and register file generatarslasly allow for
arbitrary numbers of registers to be inserted, ghozurrently we only use
1-delay and 3-delay structures. For the ALU, mlittip and memory
generators, we combine fixed functional units wath interface to the
flexible interconnect structures.

The mux and demux generators are used to setitie height of the
reconfigurable arrays that the Circuit Generatothdd creates. One goal
of the Circuit Generators is to ensure that theaca@nce and the delay of
the muxes and the demuxes that are generated simikes as possible to
the full-custom muxes and demuxes used in thecfistom RaPiD 1l tile.
Towards this end, all muxes and demuxes that arergted use the same
full-custom tristate inverters that are used inftlecustom RaPiD Il tile.

The process used in the generation of muxes andpdesmis modeled

10

after the process used to create the full-custoxesiand demuxes in the
full-custom RaPiD Il tile, only our approach is antated. The decision
to create a new row of mux bits (and thus increhseheight of the mux)
is based on the number of metal wires that cam fibe vertical area of
one horizontally placed tristate inverter, whiclppens to be five bits.
The formula to determine the number of rows is rhdhqor((n+1)/5)).
Fig. 8 shows the configurations of muxes from 4 bt 20 bits, in 4 bit
increments. When minimizing wasted area, the mffstient structures
are muxes or demuxes of bit size p, where p madeguial to zero, since
each horizontal tristate inverter is three tracks5 bits, high. Structures
with size g, where g mod 5 is equal to one, arentbst inefficient (the
16:1 mux case is an example).

a3 .. 4 2

Fig. 8: Various configurations of muxes based ug@number of bits, and the number of
routing tracks. The top figure is a 4 bit mux, delled by 8, 12, 16, and 20. All of the
figures are to scale. Notice the increase in trathwof the control routing channel as the
number of tristate rows increases, and the wagtadesin the 16 bit mux.

C. Circuit Generators Summary

The Circuit Generator Method is able to leverage rigularity that
exists in FPGA designs in a method very similarthe creation of
memory arrays by memory generators. This methodbis to create
circuits that perform better than that of the RaRiBull custom fixed
tile, as long as the specified architecture doe@geguire functional units
or routing resources that do not have a correspgndjenerator.
However, it can require significantly more effod treate a flexible
circuit generator than implementing a single inséaof a circuit type for
a fixed architecture.

11

VI. STANDARD CELL METHOD

Instead of creating a new flow to implement FPGWs,can leverage
standard ASIC flows. If we take the Verilog proddid®y the Architecture
Generator and send it to a standard cell layoul, twe can get an
implementation of any architecture desired. Howgegen better results
can be achieved based on a simple observation: ERGAcomposed of
a relatively small number of basic elements, saeth@re significant
benefits to providing optimized implementationstlaése basic elements
within the standard cell library. Thus, an FPGAumized standard cell
library [7] would consist of optimized cells comaig typical FPGA
components such as LUTs, SRAM bits, muxes, and gesiu

A. Approach

To retain as much flexibility as possible in ourarstard cell
implementation, behavioral Verilog representatiorese created for all
of the RaPiD components. The Architecture Generatsed these
behavioral components as leaf cells when it geedrderilog versions of
RaPiD that support a particular application dom&ynopsys was used to
synthesize the behavioral Verilog to produce stnadtVerilog that has
been mapped to our standard cell library [5]. Tdiiges us the ability to
swap out standard cell libraries, since we wouldy omeed to re-
synthesize the behavioral Verilog with a new liprfile generated for the
new standard cell library. The ability to easilydaefficiently use
different libraries is a very powerful feature bétStandard Cell Method.
It enables designers to choose different libratfeg provide different
capabilities, such as lower power, smaller are&jgirer performance.

Silicon Ensemble was used to place and route this. c8ilicon
Ensemble is part of the Cadence Envisia Tool Saitel is capable of
routing multiple layers of metal, including routioger the cells. We used
the NCSU TSMC 0.18m design rules for all layouts created in Cadence.

The choice of a standard cell library was basechupe need to find
an industrial strength library that has been laitifor the TSMC 0.18m
process. Unfortunately, we were not able to firlbeary targeted at the
TSMC 0.18&m process, but we were able to find two libraregeted at
the TSMC 0.2hm process, namely the VTVT standard cell librard an
the Tanner standard cell library [22]. We chose\WH&/T standard cell
library, which was available from the Virginia TecWLSI for
Telecommunications group [15, 16], over the Tans&ndard cell
library. We arrived at this decision because tHEVV library also
included Synopsys synthesis files, VHDL simulatidraries, and LEF
files for Silicon Ensemble, while the Tanner libyratid not. The VTVT
library was then migrated to the TSMC Qui8process.

B. Standard Cell Summary

The greatest strength of this method is its higkllef flexibility. This
method is always capable of producing a resulthewben the other
methods fail. Also, with a wider range of librarigacluding libraries
optimized for power, performance, and area, thishow has a lot of
potential for improvement. However, the overheafistandard cells vs.
full custom design impose a significant penaltyhis approach.

VII. TESTINGFRAMEWORK

A. Application Domains

To evaluate the automatic generation of domainifipec
reconfigurable circuits we used thirteen differapplication domains. All

12

of the netlist sets that make up each applicatiomain have been
compiled using the RaPiD compiler [17]. Two of tietlist sets, RADAR
and Image, are complete applications. The RADARiegion is used to
observe the atmosphere using FM signals, whildrttagje application is
a minimal image processing library. The other etewapplications
represent the cross product of two domains, likelthage and RADAR
application, domains of similar netlists, like FIRatrix Multiply, and
Sorters, or reduced domains, like Reduced Imagérdugh 4 and
Reduced RADAR 4 through 6. All of the applicatioonghins and their
member netlists are shown in Table 1. It shouladited that only five of
the thirteen application domains are run on theudis created by the
Template Reduction due to limitations of the toblse

TABLE |
APPLICATION DOMAINS
Application Member Netlist Percent
Domain Utilization
Reduced RADAR 6 decnsr, psd 20.92
FIR firsm2, firsm3, firsm4, firsymeven 28.90
Reduced Image 1 firtm_2nd, matmult 29.07
Reduced Image 2 1d_dct40, fft16_2nd, matmult 29.15
Sorters sort_g, sort_rb, sort_2d_g, sort_2d_rb 2.1
Image 1d_dct40, firtm_2nd, fft16_2nd, 37.05
matmult
Matrix Multiply limited, matmult, matmult4, vector 37.43
Image and RADAR 1d_dct40, fft16_2nd, firtm_2nd, 41.21
matmult
Reduced RADAR 4 decnsr, fﬁlG’f‘Z 50.88
RADAR decnsr, fft16_2nd , psd 52.79
Reduced Image 4 1d_dct40, fft16_2nd 52.82
Reduced RADAR 5 fft16_2nd, psd 53.54
Reduced Image 3 1d_dct40, fft16_2nd, firt®f 2 60.18

The benchmark application domains and their comeding member netlists. The
applications are ordered in the table by their @erautilization, from lower to higher
values.

B. Percent Utilization

The netlists in Table 1 are ordered by their peragihzation. Percent
utilization is a measure of the resources thatreayaf full-custom fixed
tiles would need to support a particular applicatdomain. Resources
include multipliers, ALUs, wires, bus connectorsC)B routing muxes
and demuxes, data and pipeline registers, and niesnéor example, an
application domain that requires half of the researprovided by the
full-custom fixed tile would fall at 50% utilizatio The percent
utilization calculated in Table 1 was generatechgishe RaPiD Il fixed
tile. To actually calculate the percent utilizatiore use the place-and-
route tool to map the application domain onto amyaof RaPiD Il tiles.
The length of the RaPiD Il array is determined toratively adding
another fixed RaPiD Il tile to the array until thepping is successful.

Once the array length is set, we look at all of thgources that are
used by the application domain mapping. In esseificmly one of the
netlists in an application domain uses any resourdbe array, then that
resource is part of the percent utilization fort thpplication domain. We
divide the sum of the area of all of the resouncesded to support an
application domain by the total area of the RaRiBrtay to arrive at the
value of the percent utilization for an applicatiom a particular array of
fixed tiles. In essence, the percent utilizatiortrinds a measure of how
well a fixed tile is tuned to a particular applicat domain. If the percent
utilization of an application domain is very highen the resource mix of

13

the fixed tile is well suited for that applicati@lomain. We use percent
utilization here because we intuitively felt thhetquality of the various
implementation strategies would be highly correlatéo percent

utilization.

VIIl. RESULTS

A. Area and Delay Evaluation

To evaluate the three methods, we are concerndd twit metrics,
namely the overall area of the generated circaitg] the delay of the
circuit when each of the application domains arpmea, as evaluated by
the static timing analyzer contained in the placé eute tool. The area
of the generated circuits is evaluated by measutiagarea of the layout
that is generated by each of the methods. This &raghtforward
process, since all three methods generate cirasitgy the NCSU CDK
[18] for the TSMC .18m process.

The delay of each circuit is evaluated by using Tléem place and
route tool to map, or bind, each of the netlistshie application domain
onto the generated circuit. The place and routé i®cahen able to
determine the delay of the mapped netlists on itwaiit by performing
static timing analysis of the critical path. Theagg and route tool is
aware of the critical path of the netlist sincepliices and routes all of
components and the signals that constitute a theflie models used in
the static timing analysis were created by rungipige simulations of all
of the RaPiD components. It should be noted thatvwtrsion of the place
and route tool is unable to retime signals. Thesfany delay numbers
generated by the place and route tool should oalyused for relative
comparisons of the three methods.

B. Area Comparison

The area of the circuits created varies greatlpedding on both the
specified application domain and the proposed naktihibe graph shown
in Fig. 9 presents the three methods, along wighatiginal full custom
RaPiD Il tile. The x-axis is percent utilizationhigh is an indication of
the amount of resources that an application domaind require to run
on the full custom RaPiD Il template. The y-axishis area normalized to
the full custom RaPiD Il template. The points foe tCircuit Generator
Method are an average of the AML, AMO, and GH Aretiure
Generators, detailed further in [19]. The poirds the Standard Cell
Method are an average of the generic VTVT standettlibrary and a
modified VTVT standard cell library targeted at B detailed further
in [7].

14

3
== RaPiD II
% B SCAVG 25
[
n SC FPGA AVG
® CGAVG 2 g
¢ TR <
©
[0}
- - 15 N
B T
[- £
: =t — —_ 4 1 2
[}
° ’.
s o ¢ - 0.5
o ® (]
L4 °
; ; ; ; 0
65 55 45 35 25 15

Percent Utilization

Fig. 9: Area comparison of the circuits createdupport the benchmark sets.

It is evident from Fig. 9 that the Template Reducttand the Circuit
Generator Methods create circuits that are rougblyparable to each
other in area. The Template Reduction Method isenefiicient when the
percent utilization is high, while the Circuit Geawr Method is more
efficient when the percent utilization is lower.i3hs a strong showing
for the Circuit Generator Method, since it is ciegicircuits from scratch
that can compete with reduced full custom circuitsese results may be
an indication that the compaction of circuits isslefficient as the percent
utilization drops. This is because the circuitsated by the Template
Reduction Method are becoming less and less regilae Circuit
Generator Method is not affected by this, sinde d@reating circuits from
the ground up, as opposed to reducing existingtsires.

o
0 L=}
2 z 2 z
2) =z a8
E = = 3 z
g e @ = g
= 5< = = S
3 32 g = 8
i rx = b= 4
; H— : H ;
P g
o
g 3 E
E < =
8
fit16_2nd 2 § matmult_unr
¢ g
i
65 60 55 50 45 40 35 30 3% 30 25

Percent Utilization

Fig. 10: The thirteen application domains orderémh@ the horizontal axis by percent
utilization. The fft16_2nd and the matmult netligtsminate ten of the thirteen application
domains, which is indicated by the red and blueles:

A noticeable feature of Fig. 9 is the fact that Benchmarks seem to
cluster into two groups, one group that has a pigteent utilization, and
another that has a low percent utilization. Thidus to the domination of
certain netlists in each application group, whiah be seen more clearly
in Fig. 10. The first cluster is dominated by tft&6 2nd netlist, and the

15

second cluster is dominated by the matmult netlist.

C. Delay Comparison
Fig. 11 shows the delay of each benchmark set @fthas been

normalized to the delay of the fixed RaPiD Il tilghere lower delay
indicates a higher quality circuit. The delay réswf the application
domains on the circuits created by the various oush are more
scattered and do not show the same level of impnewt as the area
improvements. The Standard Cell Method cannot mreecthe overhead
associated with this method. Therefore, the ciscuiteated by the
Standard Cell Method never perform better tharfulleeustom RaPiD |l

tile, and are approximately 3.10 times to 1.40 Sralwer than the other
three methods. The shortcomings of the StandartiMizthod are even
more magnified when it is pointed out that the-fulstom RaPiD Il tile is
unaltered, and therefore capable of handling agidioc domains that
require 100% utilization, while the circuits gertech by the Standard
Cell Method have been reduced, and are therefeseclapable.

35
—+—RaPiD Il
- B SCAVG ,
® CGAVGIT
. ‘. e TR
=
L 25
3
()
> 0
3
m . N
- | 15 g
m m £
2
° °
. X) . ° .
. S —y——> .
* o
o & o hd 05
‘ ‘ ‘ ‘ 0
65 55 45 35 25 15

Percent Utilization

Fig. 11: Delay comparison of the benchmarks runhenfull-custom RaPiD Il tile, and the
Template Reduction, the Circuit Generator, andStendard Cell Methods. The y-axis is
the delay normalized to the RaPiD Il cell, while thraxis is the percent utilization.

The Circuit Generator and the Template Reductiothblds produce
circuits that have an average delay improvemeappfoximately 16% to
9% over the benchmarks run on the full custom RdPiite. When the
percent utilization is high, the Template Reductiethod appears able
to produce higher performing circuits than the GiréGenerator Method.
When the percent utilization is low, the Circuitr@eator Method is able
to produce circuits that perform better than thempkate Reduction
Method. Once again, it should be noted that onlg fof the thirteen
application domains are run on the circuits credtgdthe Template
Reduction due to limitations of the toolset.

16

Once again, as seen in Fig. 9, the benchmarkslased into two
groups depending upon which netlists are dominatmithin the
application domains. Another feature that can lem e the graph is the
fact that the performance of the benchmarks ineeaas percent
utilization decreases. This is an overall trendhvébme outliers, and
these results are highly dependent on the effigiefithe P&R tool. The
most noticeable outlier is the FIR application deamalwo netlists
dominate the performance of this application grongmnely the firsm3
and the firsymenven, causing it to perform poorly.

IX. CONCLUSIONS

The focus of this work has been the automatiomeflayout portion of
the Totem design flow. Towards this end, we hayalémented the VLSI
layout generator, which automates the creation agkmready layouts
from the circuit descriptions provided by the Atelsture generator. The
VLSI layout generator consists of three methodautdmating the layout
process: Template Reduction, Circuit Generatorgl Standard Cell
generation.

The Template Reduction Method is able to leveragié dustom
designs, while still removing any resources thatrat needed to support
the specified application domain. This enablesThenplate Reduction
Method to create circuits that perform at or betim that of the initial
full-custom template, with an average area decredisapproximately
48% and an average delay decrease of approxing#ely

One of the drawbacks associated with the Templatiu&ion Method
is its reliance on the existence of a feature-michcro cell that is a
superset of the specified application domain. Thecu@ Generator
Method is able to produce efficient circuits inlbarea and performance
in an additive fashion, while removing the need fieature-rich
templates. Circuits created by the Circuit Generalidethod are
approximately 46% smaller and 16% faster than tliecéistom RaPiD Il
tile.

The Standard Cell Method, while extremely flexiblgas able to
produce competitive circuits with regard to areayavhen the resources
were reduced to approximately 25% of the full-costdemplate.
Unfortunately, the Standard Cell Method was neude do produce a
circuit that performed better than the full-cust®aPiD Il template. The
Standard Cell Method is capable of producing ctecuiith areas ranging
from 2.45 times larger to 0.76 times smaller thamparable full-custom
circuits. The Standard Cell Method can also produariits with delays
ranging from 3.10 times to 1.40 times longer thamparable full-custom
circuits. However, the strength of the Standard ®®thod lies in its
ability to produce a circuit for any applicationndain, even when the
Template Reduction and Circuit Generator Methods fa

Choosing an appropriate method is based on mangrfadf a robust
template along with suitable reductions exists,nththe Template
Reduction Method is quite capable of producing cetitige circuits.
While this suggests that the Template Reductionhbiktshould be
competitive with the other methods, we feel thas the weakest method.
The Template Reduction Method is too inflexibles lIteliance on
templates is its biggest liability, since the gatien of even one template
is a costly endeavor. In future systems, the desigright want to specify
certain design constraints, like low power, smalieaa or high
performance. This implies that a single templatk wat be able to cover
all of these design areas, forcing the Totem Ptdagebave at its disposal

17

multiple templates that have been laid out withedént design goals in
mind. This would entail considerable effort, thusedhting the purpose of
the Totem Project to automatically provide custeconfigurable circuits
in a timely fashion.

Another problem with the Template Reduction Meth&d its
propensity for causing errors in circuits. Of thwee methods, the
Template Reduction Method was the most error proathod, and was
the most complicated method to implement and debugssence, the
Template Reduction Method is manipulating full-custcircuits at the
lowest level. This can lead to numerous DRC eriiaduding n-implant,
p-implant, and well errors. In addition, when mandgting full-custom
designs in this manner, the Template Reduction bteik changing the
dynamics of the circuits in potentially unforeseeays. For example, the
transistors in a full-custom circuit are sized tos@re that they are
capable of driving their load in an efficient mann8y cutting out
transistors, wires, etc, the Template Reductionhigiettis altering those
loads, which can lead to a poorly performing circui

The Circuit Generator Method is able to leverage rigularity that
exists in FPGAs when creating RaPiD-like structurdscan create
structures that are more efficient than the TerspR¢duction Method,
while not being bound to a particular template atidition, the Circuit
Generator Method is an additive method. Thereftitis, method is less
error prone than the Template Reduction Methodesime are not cutting
low-level components out of full-custom circuits.

However, the Circuit Generator Method has problefigs own. The
creation of a wide range of generators can be sdyca proposition as
creating a wide range of templates. But, to impriheCircuit Generator
Method, providing a wide range of different typek generators is
critical. To increase the quality of the circuitet the method creates, all
of the generators should be able to handle a vadge of parameters.
For example, in the current implementation of thiec@t Generator
Method, the generators that create the functioméds uare unable to
change the bit width of units that they create. Eesv, it has been shown
in previous work [20] that the largest impact omaais achieved through
reducing the overall bit-width of the device thatreated. Therefore, the
creation of generators that are able to modify Hlite width of the
functional units could drastically increase the ligbiof the Circuit
Generator Method to create higher quality circiisally, if the Circuit
Generator Method needs to create circuits thataageted at low power,
high performance, or small area, even more typegeakrators will be
needed.

This leads us to the Standard Cell Method. As gaied, the
Standard Cell Method has inherent inefficiencieg thmust overcome to
become competitive with the other two methods. Hargit is extremely
flexible and is able to create a circuit in anycainstance. This is
important because the overall goal of the Totenjdetas to support any
designer defined application domain. To build uplois flexibility, the
ability to utilize a wide range of industrial stgth standard cell libraries
is needed. With a wide range of libraries, the gie=i could select the
library most suited to the specifications of thd@sign. Specifications
could include higher performance, lower power, maker area, and if
there was a corresponding library, the Standard Kethod has the
potential to create high quality circuits with animal amount of effort.

X. ACKNOWLEDGMENTS
The authors would like to thank the RaPiD groumpeeglly Carl

18

Ebeling and Chris Fisher, for the RaPiD | layouédisn this research.
We also are indebted to Larry McMurchie for suppamtthe Cadence
tool-suite. This work was funded in part from gegaritom NSF and
NASA. Shawn Phillips was supported in part by a Mlihcoln Labs
Research Fellowship. Scott Hauck was supportedait py an NSF
CAREER award and an Alfred P. Sloan Research Fshgw

(1]

(2]

(3]
(4]
(5]
(6]

[7]

9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]
[20]

[21]

REFERENCES

Darren C. Cronquist, Paul Franklin, Chris Fishdiguel Figueroa, and Carl Ebeling,
“Architecture Design of Reconfigurable Pipelinedt&zaths”, Twentieth Anniversary
Conference on Advanced Research in VpgI23-40, 1999.

C. Ebeling, D. C. Cronquist, P. Franklin, “RBPi Reconfigurable Pipelined
Datapath”,6" Annual Workshop on Field Programmable Logic angli&ations
1996.

S. Goldstein, H. Schmit, M. Budiu, S. Cadami¥li, Moe, R. Taylor, “PipeRench: An
Architecture and Compiler for Reconfigurable Conipgt, IEEE Computer2000.

A. Abnous and J. M. Rabaey, "Ultra-low-power namin-specific multimedia
processors,Proc. of IEEE VLSI Signal Processing WorkshOpt. 1996.

K. Compton, S. Hauck, "Totem: Custom Reconfale Array Generation"|EEE
Symposium on FPGAs for Custom Computing Machinese@nce 2001.

K. Compton, A. Sharma, S. Phillips, S. Haucllekible Routing Architecture
Generation for Domain-Specific Reconfigurable Ssbayps”, International
Conference on Field Programmable Logic and Applareg pp. 59-68, 2002.

S. Phillips, S. Hauck, "Automatic Layout of Dam-Specific Reconfigurable
Subsystems for System-on-a-Chip"ACM/SIGDA Symposium on Field-
Programmable Gate Arraypp. 165-173, 2002.

A. Sharma, C. Ebeling, S. Hauck, "PipeRoute:P#pelining-Aware Router for
FPGAs",ACM/SIGDA Symposium on Field-Programmable Gate ygrpp. 68-77,
2003.

S. Phillips, A. Sharma, S. Hauck, "Automatinget Layout of Reconfigurable
Subsystems Via Template Reductionlnternational Symposium on Field-
Programmable Logic and Applicationgp. 857-861, 2004.

S. Phillips, S. Hauck, "Automating the Layoof Reconfigurable Subsystems for
Systems-on-a-Chip'lEEE Symposium on FPGAs for Custom Computing Mashin
Conference2005.

C. Sechen, VLSI Placement and Global Routirsing Simulated Annealindluwer
Academic Publishers, Boston, MA: 1988.

Thomas H. Cormen, Charles E. Leiserson, andaRbL. Rivest,_Introduction to
Algorithms The MIT Press, Cambridge, MA, Prim’s algorithrp, $05-510, 1990.

A. Sharma, “Development of a Place and Routel Tor the RaPiD Architecture.”
M.S. Thesis, University of Washington, Dept. of 2B01.

Cadence Design Systems, Inc., “Openbook”,ivard.1, release IC 4.4.5, 1999.

J. B. Sulistyo, J. Perry, and D. S. Ha, "Depéhg Standard Cells for TSMC 0.25um
Technology under MOSIS DEEP Rules", Department letctical and Computer
Engineering, Virginia Tech, Technical Report VISG93-01, November 2003.

Jos. B. Sulistyo and Dong S. Ha, "A New Chégezation Method for Delay and
Power Dissipation of Standard Library Cells", VLBesign 15(3), pp. 667-678,
2002.

D. C. Cronquist, P. Franklin, S.G. Berg, C.elihg, "Specifying and Compiling
Applications for RaPiD",IEEE Symposium on FPGAs for Custom Computing
Machines 1998.

Shaffer, Stanaski, Glaser, and Franzon, “TH&SN Design Kit for IC Fabrication
through MOSIS", 1998 International Cadence Usepsu@rConference in Austin,
Texas.

K. Compton, Architecture Generation of Customized Reconfigugabhrdwaré,
Ph.D. Thesis, Northwestern University, Dept. of EQE&03.

S. Phillips, “Automatic Layout of Domain-Spéci Reconfigurable Subsystems for
System-on-a-Chip.” M.S. Thesis, Northwestern Ursitgr Dept. of ECE, July 2001.
K. Eguro, S. Hauck, “Resource Allocation fop@se-Grain FPGA development”,
IEEE TCAD, Vol 24, No 10.

