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Abstract 
 

As technology scales, engineers are presented with the ability to integrate 
many devices onto a single chip, creating entire systems-on-a-chip.  When 
designing SOCs, a unique opportunity exists to add custom FPGA 
architectures, which will provide an efficient compromise between the 
flexibility of software and the performance of hardware, while at the same 
time allowing for post-fabrication modification of circuits.  Unfortunately, 
manually generating a custom FPGA architecture would make it 
impossible to meet any reasonable design cycle, while adding 
considerably to design costs.  Therefore, we present a system that 
automates the layout of reconfigurable subsystems for systems-on -a-chip.  

 

1. Introduction 
 

With the advent of new fabrication technologies, designers now have the ability to create 

integrated circuits utilizing over one hundred million gates, with operating frequencies in 

the GHz range.  This large increase in transistor count has increased the complexity of 

devices, but it is also enabling designers to move away from the well known system-on-

a-board to a heterogeneous system-on-a-chip (SOC) [1].  This evolution in integration is 

driven by the need to reduce the overall cost of the design, increase inter-device 

communication bandwidth, reduce power consumption, and remove pin limitations. 

 

Unfortunately, there are a number of drawbacks to the SOC design methodology.  

Designers of SOCs have a larger design space to consider, an increase in prototype cost, a 

more difficult job of interfacing components, and a longer time to market.  There is also a 

loss in post-fabrication flexibility.  In the system-on-a-board approach, designers have the 

ability to customize the system by careful selection of components, with easy component 

modification or replacement in late stages of the design cycle.  But in the current SOC 

design methodology framework, in which only ASIC type components are used, very 

tight integration is the goal.  Therefore, component changes late in the design cycle are 

not feasible.   

 

This loss of post-fabrication flexibility can be alleviated with the inclusion of FPGAs 

onto the SOC.  Unlike application specific integrated circuits (ASICs), by including 
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FPGAs, designers would gain the ability to alter the SOC to meet differing system 

requirements after the SOC has been fabricated.  However, FPGAs are often several 

times slower and larger and less energy efficient than ASICs, making them a less ideal 

choice for high performance, low power designs.  Domain-specific FPGAs can be 

utilized to bridge the gap that exists between flexible FPGAs and high performance 

ASICs. 

 

A domain-specific FPGA is a reconfigurable array that is targeted at specific application 

domains, instead of the multiple domains a reconfigurable processor targets.  Creating 

custom domain-specific FPGAs is possible when designing an SOC, since early in the 

design stage designers are aware of the computational domain in which the device will 

operate.  With this knowledge, designers could then remove from the reconfigurable 

array hardware and programming points that are not needed and would otherwise reduce 

system performance and increase the design area.  Architectures such as RaPiD [2], 

PipeRench [3], and Pleiades [4], have followed this design methodology in the digital 

signal processor (DSP) computational domain, and have shown improvements over 

reconfigurable processors within this space.  This ability to utilize custom arrays instead 

of ASICs in high performance SOC designs will provide the post-fabrication flexibility 

that FPGAs provide, while also meeting stringent performance requirements that until 

now could only be met by ASICs. 

 

Possible application domains could include signal processing, cryptography, image 

analysis, or any other computationally intensive area.  In essence, the more that is known 

about the target applications, the more inflexible and ASIC-like the custom array will be. 

On the other end of the spectrum, if the domain space is only vaguely known, then the 

custom array would need to provide the ability to run a wide range of applications, and 

thus be required to look and perform more like a standard FPGA.    

 

Since all of the components in an SOC need to be fabricated after integration, this 

provides designers with a unique opportunity to insert application specific FPGAs into 

their devices. Unfortunately, if designers were forced to create custom logic for each 
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domain-specific subsystem, it would be impossible to meet any reasonable design cycle. 

However, by automating the generation of the application specific FPGAs, designers 

would avoid this increased time to market and would also decrease the overall design 

cost.   

 

These factors have led us to start the Totem project, which has the ultimate goal of 

automatically generating custom reconfigurable architectures based upon the perceived 

application domain in which the device will be used.  Since the custom array will be 

optimized for a particular application domain, we expect that it will have a smaller area 

and perform better then a standard FPGA, while retaining all of the benefits of 

reconfigurability. 

 

First we present a short background on reconfigurable computing, including RaPiD and 

Totem.  Next, we provide a look at other work whose goal is to provide reconfigurability 

on SOC devices. We then examine the approach and experimental setup that I have taken 

to automate the layout of a domain-specific reconfigurable subsystem.  Finally, I will 

show how my approach was able to create circuits that perform within Totem’s design 

specifications, paving the way for future work in providing custom reconfigurable 

subsystems in SOCs.    

2. Background 
 

 The processing devices that the general public is most familiar with fall into the general-

purpose processor category.  General-purpose processors are able to run a wide range of 

applications since they are based upon a fixed, well-defined instruction set.  This 

computational model provides general-purpose processors with the ability to support 

basic computations in hardware, while running anything else the processor may 

encounter in software.  Unfortunately, this great flexibility comes at the price of reduced 

performance, since software solutions perform poorer than hardware solutions.  

 

When application requirements demand higher performance than a general-purpose 

processor can provide designers are forced to turn to hardware.  An ASIC is a circuit that 
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is designed to perform one application in hardware and to perform it well.  ASICs are 

typically able to outperform general-purpose processors by orders of magnitude.  But all 

of this computational power comes at the price of inflexibility, greatly increased design 

costs, and a very long design cycle.  This has created a market atmosphere such that, 

unless a design will be mass-produced, an ASIC solution is just too costly to implement.   

 

Reconfigurable computing is intended to fill the gap between the flexible and ubiquitous 

general-purpose processor and the expensive yet high performing ASIC.  To retain its 

flexibility, the FPGA must sacrifice area and performance, losing to ASICs in both cases.  

Yet, FPGAs are still capable of performance that is several orders of magnitude better 

than general-purpose processors on computationally intensive applications.  In addition, 

due to the fact that most commercial FPGAs are massed produced, it may be cheaper to 

implement an FPGA in place of an ASIC in certain design situations, such as a limited 

production design run. 

2.1. FPGA 

An FPGA is a multi-level logic device that can be reconfigured. Conceptually, an island-

style FPGA, which is the most common type of FPGA manufactured today, is an array of 

configurable logic blocks (CLBs) that are embedded within horizontal and vertical 

channels of routing [5].  The routing channels also have the capability to be personalized 

to interconnect any one CLB with any other CLB within the array by the use of 

switchboxes.  The configuration of the FPGA is commonly held in static RAM (SRAM) 

cells that are distributed across the chip.  By placing the configuration bits in SRAM 

cells, the programming of the FPGA is entirely electrical, providing the FPGA with the 

ability to run many different configurations, akin to how a general-purpose processor can 

run many different programs.  The ability of an FPGA to run such a wide range of 

programs is only limited by how many CLBs are in the array and by the richness of the 

routing fabric. Figure 2-1 shows an island-style FPGA, which was first developed by 

Xilinx in 1984 [6]. 
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Figure 2-1:  Xilinx style FPGA architecture.  It contains an array of CLBs, switchboxes, 

and vertical and horizontal routing channels. 

 

In an island-style FPGA, logic functions are typically implemented by means of 

multiplexers that have their control and possibly their data inputs connected to 

programming bits.  By controlling these muxes with the programming bits, different 

functional blocks within the CLB can be chosen, depending on the application that is 

being mapped onto the FPGA.  Logic functions can also be computed in a CLB by 

lookup-tables (LUTs), which are small memories that can be written to when the FPGA 

is configured.  Through the use of muxes and LUTs, FPGAs are capable of implementing 

arbitrary logic functions, which have usually no more then 3 or 4 inputs. 

 

2.2. RaPiD 

 
We are using the reconfigurable-pipelined datapath (RaPiD) architecture as a starting 

point for the circuits that we will be generating [2].  RaPiD is positioned between 

standard FPGAs and ASICs.  Its goal is to provide the performance of an ASIC while 
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maintaining reconfigurability.  RaPiD, like an FPGA, achieves reconfigurability through 

the use of block components such as memories, adders, multipliers, and pipeline 

registers.  But, unlike a commercial FPGA, RaPiD is not targeted at random logic, but at 

coarse-grained, computationally intensive functions like arithmetic. 

 

Also, RaPiD utilizes a one-dimensional structure to take advantage of the fact that all of 

its functional components are word-width computational devices.  One of the advantages 

of a one-dimensional structure is a reduction in the complexity, especially in the 

communications network.  Another advantage is the ability to map systolic arrays very 

efficiently, leveraging all of the research into the compilation of algorithms onto systolic 

arrays.  Finally, while a two dimensional RaPiD is possible, most two-dimensional 

algorithms can be mapped onto a one-dimensional array through the use of memory 

elements. 
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Figure 2-2:  A block diagram of a basic RaPiD cell.  Multiple cells are tiled along a one-

dimensional horizontal axis. 
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The version of RaPiD that we are benchmarking against, RaPiD I, consists of memories, 

ALUs, and multipliers that are all connected by a one-dimensional segmented routing 

structure.  Data flows through the array along the horizontal axis, with the vertical axis 

only being used to provide connections between functional units.  To create different 

versions of RaPiD that target different application domains, the following changes need 

to be made to the array: modify existing or add new functional units, change the width of 

the buses or the number of buses present, and modify the routing fabric.  Figure 2-2 

shows an example of one possible RaPiD cell.  Multiple cells are tiled along the 

horizontal axis. 

 

2.3. Totem 

 

Reconfigurable hardware is a very efficient bridge that fills the gap between software 

implementations running on general-purpose processors and ASIC implementations.  

But, standard reconfigurable hardware targets the general case, and therefore must 

contain a very generic mix of logic elements and routing resources that are capable of 

supporting all types of applications. This creates a device that is very flexible.  Yet, if the 

application domain is known in advance, optimizations can be made to make a compact 

design that is more efficient than commercial FPGAs.  While the benefits of creating a 

unique FPGA for each application domain are apparent, in practice the design of a new 

FPGA architecture for each and every application space would require an increase in 

design time and create significant additional design costs.  The goal of the Totem project 

is the automatic generation of domain-specific FPGAs, giving designers a tool that will 

enable them to benefit from a unique FPGA architecture without high cost and a lengthy 

design cycle.  The automatic generation of FPGAs can be broken into three major parts: 

high-level architecture generation, VLSI layout generation, and place-and-route tool 

creation.  Figure 2-3 shows the dependencies between the major parts of Totem. 
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Figure 2-3:  Totem dependency graph 

 

The high-level architecture generator will receive, as input from the designer, information 

about the set of applications that the SOC will target.  The architecture generator will 

then create a coarse-grained FPGA that consists of block components such as memories, 

adders, multipliers, and pipeline registers [7].  Routing resources will then connect these 

components to create a one-dimensional structure.  Extending Totem to create two-

dimensional arrays of functional units is possible, and will be explored in future research.  

 

TOTEMTOTEM

 

Figure 2-4: The Totem Project.  Totem creates structures that fall between ASICs and 
FPGAs. 

 

The final structure that is created will fall somewhere on the scale between ASICs and 

commercial FPGAs.  Where on this scale the final device will fall depends on how much 
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information the designer is able to provide in advance about the applications that will run 

on the reconfigurable hardware, and how similar those applications are in composition.  

If the designer can provide a lot of information, and the applications are similar in 

composition, then more hardware and connection points can be removed from the FPGA, 

thus generating a more compact and higher performing design.  On the other side of the 

scale, if the designer does not know which applications will run on the SOC, or the 

applications that will run on the SOC are very different, then more reconfigurable 

components will be needed to support a wider range of logic, causing the final design to 

be more like a commercial FPGA.  After the high-level architecture generator creates an 

architecture that is able to support the applications that will run on it, this information is 

disseminated to both the VLSI layout generator and the place and route tool generator. 

 

The VLSI layout generator has the task of creating a fabrication-ready layout for the 

custom device by using the specifications that were provided by the high-level 

architecture generator.  The layout generator will be able to create a layout for any 

possible architecture that the high-level architecture generator is capable of producing.  

The difficult task for the layout generator is creating efficient designs, so as not to 

squander any performance and area gains that the architecture generator was able to 

achieve over general-purpose FPGAs.  The layout generator will also need to be flexible 

enough to change over time to take advantage of smaller device sizes as process 

technology scales down. In addition, the layout generator will need to produce a bit-

stream format that the place and route tools will be able to use to configure the custom 

FPGA.  Three different methods are being explored to automate the layout process: 

template reduction, standard cells, and FPGA-specific circuit generators.  Each of these 

will be discussed in greater detail later in this thesis.   

 

Once the custom architecture is created, the end user will then need a tool set that will 

automatically generate mappings that target the custom array.  The place and route tool 

generator will create a physical mapping of a user application by using an architecture 

description that was created by the high-level architecture generator and the bit-stream 

format that was created by the VLSI layout generator.  It does this task by the use of a 
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placement tool, which is based on the simulated annealing algorithm, and a router that is 

an adaptation of the Pathfinder algorithm.  

3. Prior Work 

As the semiconductor industry moves to multi-million gate designs, the need to integrate 

reconfigurable logic onto SOCs is being addressed by more and more companies.  Most 

of the approaches that have been proposed so far include embedding current “off-the-

shelf” FPGA designs onto the SOC.  A few companies, though, are creating application 

specific reconfigurable cores, but they still do not have a more flexible standard cell 

implementation to serve as a safety net in case an application domain does not map onto 

an available template.  The following is a sampling of the projects on which industry and 

academia are currently working.  

3.1. Xilinx 

Xilinx is still sitting on the fence concerning the use of FPGA blocks in SOCs, but that 

stance is shifting.  As of June 22nd, Xilinx is in talks with ASIC vendors about licensing 

reconfigurable blocks [8].  One obvious candidate to begin embedding Xilinx’s FPGA 

architectures into SOCs is IBM Microelectronics, since a cross-licensing agreement 

between the two companies already exists.  It appears that the FPGAs blocks that will be 

provided by Xilinx will be “off-the-shelf” Xilinx cores. 

3.2. Actel 

Actel has taken a much more aggressive attitude towards embedding FPGA blocks in 

SOCs, and is currently offering numerous cores to its ASIC partners through its 

VariCore program.  Actel’s drive into the embedded FPGA market began on June 5th, 

2000 when it acquired intellectual property (IP) innovator, Prosys Technology.  To 

further strengthen their presence in the SOC market, on May 21st, 2001 Actel created a 

partnership with LogicVision to help solve the increasingly complex challenges of SOC 

design and test [9]. 

 



 14

VariCore logic contains highly efficient embedded FPGA cores (EPGA).  EPGA 

cores are fabrics of reconfigurable logic that are embedded throughout the SOC, upon 

which different applications are mapped.  The use of EPGA cores is akin to the “off the 

shelf” FPGA approach, but with the ability to partition the EPGA where needed [10]. 

3.3. LSI & Adaptive Silicon 

On June 12th, 2001, after two years of speculation, LSI Logic Corp, with partners 

Adaptive Silicon and Ericsson, finally began providing details about its LiquidLogic 

programmable core for use in SOCs [11].  LiquidLogic will enable designers to create a 

partition on an SOC that can be reprogrammed later to meet changing standards or 

customer specifications.  Currently, LiquidLogic is only targeted at third-generation 

(3G) wireless applications, with consumer electronics, printers, and storage-area-

networks as future targets.  LSI has produced cores on its G12 0.18-micron process, with 

its Gflex 0.13-micron process due next year.    

 

The LiquidLogic core consists of reconfigurable logic in the form of a Multi-Scale 

Array (MSA) and the input-output bank that interfaces with other ASIC circuitry on the 

SOC [12].  The smallest reconfigurable unit in a MSA is the Configurable Arithmetic 

Logic Units (CALU).  The CALU is logically a 4-bit ALU that is created by four 

function cells and an ALU controller.  To create an MSA, CALU are tiled in 16x16 

arrays called hex blocks, with the maximum size being a 4x4 array of hex blocks.  Refer 

to Figure 3-1 for an example of a MSA.  Once the reconfigurable logic is in place, 

various soft-cores can be downloaded to it.  This approach, like the one proposed by 

Actel, consists of tiling existing FPGA cells onto an SOC. 
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Figure 3-1: Configurable ALU (CALU) [12]. 

 

3.4. eASIC 

eASIC has an interesting approach to provide limited reconfigurability in an SOC.  

Through the use of an ultra-dense cell architecture that is based on commercial FPGAs, 

eASIC is capable of producing circuits that have a gate density that is as high as twenty 

times that of a conventional FPGA [13][14].  To achieve this density, eASIC has shifted 

all routing form the bottom layers of diffusion to the top four layers.  In effect, eASIC has 

removed most of the programmable interconnect while leaving the CLBs intact.  As a 

result, eASIC eliminates most of the area overhead associated with FPGAs, creating a 

reconfigurable device that is similar to an anti-fuse based design.  To route the FPGA, 

vias are inserted on the sixth layer of metal in the eight-metal-layer design.  This means 

that post-fabrication modification of the interconnect in the circuit is not possible.  

Reducing the interconnect enables designers to create very fast and efficient structures, 

but at the considerable loss of reconfigurability.  Even though the interconnect of the 

circuit is set after fabrication, the reconfigurable cells can still be mapped to as needed, 

and at the loss of logic density, some interconnect reconfigurability can be retained. 
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3.5. U. B. C. SOC Research Group 

The University of British Columbia’s SOC Research Group is currently exploring how to 

construct these massive and complex chips.  One problem that the UBC SOC Research 

Group has focused on is how to create reconfigurable subsystems on SOCs that have a 

variety of shapes and sizes [15].  Through the use of a new switch box, the area penalty 

for a design with an aspect ratio of 2:1 has been reduced to 1.6% and the performance 

penalty has been reduce to only 1.1%, when compared to a design that has a square core.  

This relatively minor area and performance penalty pave the way for cores that are 

radically different then the typical square cores of today’s FPGAs.  This will help ease 

the integration of reconfigurable subsystems into the design flow of SOCs. 

 

4. Approach 

 

Current design methodologies for the layout of circuits typically fall under either full-

custom design or standard-cells, with both of these approaches having associated pros 

and cons.  Producing a full-custom circuit is a labor-intensive task, which requires a very 

long and expensive design cycle.  However, the resulting circuit that is created is usually 

the fastest and the smallest that is possible at that time.  Generating a standard cell library 

can be a difficult endeavor, and therefore, companies that have extensive libraries 

vigorously guard them from competitors.  However, once the library is created, the ability 

for indefinite reuse and design automation justifies both the time and expense involved.  

Unfortunately, circuits that are created using standard cells can be, and often are, larger 

and slower than full-custom designs [5].  One of the goals of the Totem project is to 

automate the generation of FPGAs that begin to approach the level of performance that 

full-custom layouts currently enjoy. 

 

The Totem project has decided to investigate three different approaches to automate the 

layout process: standard cells, template reduction, and FPGA-specific circuit generators.  

A goal of the Totem project is to decide which of the three approaches should be used in 

a particular situation.  We may find that one approach is the best for all situations, or that 
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each approach has compelling characteristics that make it the best choice in a particular 

instance.  The goal of this thesis is to investigate the standard cell approach.  Towards 

this end, I present the creation of a standard cell tool flow and the investigation of how 

removal of logic from the standard and FPGA specific cell templates compares to a full 

custom RaPiD array. 

 

The approach that I am currently investigating is the use of standard cells.  I am further 

refining the standard cell approach by adding cells to the library that are specific to or 

used extensively in FPGA designs, thus creating an optimized library.  These include 

muxes, demuxes, and SRAM bits among others.  I predict that by adding a few critical 

cells, the results obtained can be enhanced.  The standard cell approach is flexible enough 

that various cell libraries can be swapped in and out, as circumstances dictate. 

 

The next implementation that will be evaluated is the use of a feature rich template that 

will be a superset of the required logic.  Once the actual application domain that the 

circuit is expected to operate in is known, logic that is not needed will be eliminated from 

the template.  This approach has the potential to deliver circuits that are very efficient, as 

long as the application domain is supported by the available templates. 

 

The final method that will be considered is the creation of FPGA-specific circuit 

generators, which will be akin to memory generators.  A custom circuit generator 

program will be created that will generate logic within the constraints of the overall 

architecture.  These three techniques will be explained in detail in the next sections. 

4.1. Standard Cell Implementation 

The use of template reduction produces very efficient implementations, but it only works 

well if the proposed architecture does not deviate significantly from the provided macro 

cells.  To fill the gaps that exist between templates’ domains, I have implemented a 

standard cell method of layout generation. This method will provide Totem with the 

ability to create a reconfigurable subsystem for any application domain. 
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 Using standard cells also creates an opportunity to more aggressively optimize logic than 

if templates were used, since the circuit can be built from the ground up.  It will also 

allow the designer to easily integrate this method into the normal SOC design flow.  In 

addition, the structures created will retain their reconfigurability since the CLBs and 

routing interconnect will be programmable.  This is achieved by creating a structural 

Verilog representation of the FPGA, and then generating a standard cell layout based 

upon that Verilog.  Since the Verilog design includes SRAM bits and programmability, 

the result is a reconfigurable ASIC. 

Unfortunately, this method also inherits all of the drawbacks introduced into a design by 

the use of standard cells, including increased circuit size and reduced performance.  To 

overcome these failings, we will create standard cells that are specific to or often used in 

FPGAs.  These cells will include LUTs, SRAM bits, muxes, demuxes, and other typical 

FPGA components.   Since these cells are used extensively in FPGAs, significant 

improvement could be attained.  In this thesis we compare a standard cell library and a 

more comprehensive optimized library. 

4.2. Template Reduction 

The template reduction method will leverage the performance edge that full-custom 

layouts provide, in an automated fashion.  This is achieved by using feature rich macro 

cells as templates that are reduced and compacted to form the final circuit.  Providing 

quality macro cells that can cover a wide range of applications is critical to the success of 

this method.  Therefore, extensive profiling of application domains will be required to 

establish what resource mixes are needed for each template.    

Figure 4-1 is an example of how a template is reduced.  The initial template has 

numerous muxes, along with a 2-input LUT and a DFF in each cell.   The high-level 

architecture generator finds two mappings that must be supported by the circuit to cover 

the application domain.  All resources that are not needed to support these two mappings 

are pruned from the initial template.  Therefore, any unused or under-utilized functional 

units are removed, like the DFFs, or modified, like the LUT, into an OR gate in cell two.  

Also, muxes become wires or have their number of inputs reduced, and wires that are not 
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needed are removed.  The final optimized template is then compacted to further increase 

performance. 

The potential exists to create designs that achieve a performance level that is at parity 

with that of ASICs.  But this is only possible if two conditions are met: the applications 

that the template needs to support are similar in composition, and the domain that 

contains the applications is a subset of the initial template.  The first condition implies 

that if a template is required to support a wide range of applications, then it will have to 

retain most of its reconfigurability.  This means that the performance of the final template 

will be near that of an FPGA, which, as noted earlier, is usually not optimal.  While the 

first condition may mean the final template may not perform well, the second condition, 

if not met, may mean that the applications specified cannot be mapped onto the initial 

template.  This could occur, for example, if the initial template does not contain a 

multiplier, but the applications that need to run on the template require one. 

With these conditions in mind, if the design specified by the architecture generator does 

not deviate significantly from the available macro cells, we can use the template 

reduction method to automate the layout generation in a fast and efficient manner without 

sacrificing performance.   Since our initial focus is on a one-dimensional array as our 

target FPGA, we will be using variations of the RaPiD architecture as a basis for our 

feature rich macro template. 
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Figure 4-1:  Simplified example of template reduction.  The initial template (top) is a 
modified version of the Xilinx XC6200.  The high-level architecture generator has found 
two target applications (middle).  Logic resources that are not needed, including routing 
resources, are removed from the initial template to create the optimized template 
(bottom).  Notice how both DFFs have been removed, and how the 2LUT in the right cell 
is reduced to an OR gate. 
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4.3. FPGA-specific Circuit Generators 

The standard cell design method is very flexible, and it gives the designer the ability to 

implement almost any circuit.  But one drawback associated with the flexibility of this 

design method is its inability to leverage the regularity that exists in FPGAs.  By taking 

advantage of this regularity, a method may produce designs that are of higher quality than 

standard cell based designs.   

One way of creating very regular circuits is through the use of generators.  Circuit 

generators are used to great effect in the memory industry, and it is our belief that we will 

be able to achieve similar results. FPGA components, like memories, have well-known, 

constrained structures, positioning them as viable candidates for circuit generators.  

Circuit generators will be able to create structures that are of higher quality than those 

created by the standard cell method.  However, unlike the template reduction method, the 

circuit generators will be able to handle a wider variety of possible architectures.  Thus, 

circuit generators will be positioned to fill the gap between the inflexible, but powerful, 

template reduction method and the very flexible, but less efficient, standard cell method.   

Circuit generators will be implemented to create the parts of the FPGA that inherently 

have regularity.  This includes generators for the routing channels, LUTs, and muxes and 

demuxes for routing interconnect.  To create an entire reconfigurable subsystem out of 

blocks of logic that circuit generators have created, one would only need to abut the 

blocks together.  Therefore, all of these generators will be combined to create a method 

that is capable of generating a complete reconfigurable subsystem.  

4.4. Expectations 
 
Graph 4-1 is an estimate of where we expect each approach to fall in the search space.  

The y-axis represents the cost of the architecture as measured by its area, performance, 

and power consumption, with a lower value meaning a higher quality design.  The x-axis 

represents how much a template utilizes the resources present in a superset reference 
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design.  A lower value implies that a template is more like the reference design, and 

increasing values represent templates that have more and more gates removed.   

 

Unused Template Resources
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0% 90%

 

Graph 4-1 This graph shows our initial guess of the cost of a given design vs. the 
utilization of template resources, defined by how many resources a given template 
contains, when compared to a reference macro cell.  A lower cost design is preferable.  

 

5. Experimental Setup and Procedure 

5.1. Setup 

Synopsys 

To retain as much flexibility as possible in our standard cell implementation, behavioral 

Verilog representations were created for all of the RaPiD components.  Therefore, 

Synopsys was used to synthesize the behavioral Verilog to produce structural Verilog that 

uses our standard cells [16].  This will enable us to swap out standard cell libraries, since 
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we would only need to re-synthesize the behavioral Verilog with a new library file 

generated for the new standard cell library.    

Silicon Ensemble 

Silicon Ensemble (SE) is a place-and-route tool that is part of the Cadence Envisia Tool 

Suite [17].  SE is capable of routing multiple layers of metal, including over-the-cell 

routing.  SE receives as input a file in the library exchange format (LEF) of the standard 

cells and a Verilog netlist representation of the circuit that will be placed and routed.  The 

final output of the tool is a design exchange format (DEF) file representation of the 

placed and routed array that is ready to be read back into Cadence.  One powerful feature 

of SE is its ability to run from macro files, minimizing the amount of user intervention.  

SE will be used to place-and-route all circuits that are created using the standard cells.  

Note that SE should not be confused with the Totem place-and-route tool, since Totem’s 

place-and-route tool maps netlists onto physical designs that are created by SE. 

Cadence 

Cadence was chosen as our schematic and layout editor because it is a very robust tool set 

that is widely used in industry [18].  Cadence also has tools for every aspect of the design 

flow.  We are currently using the TSMC 0.25micron design rules for all layouts created 

in Cadence.  As technology scales, we will be able to scale our layouts down without a 

loss of quality in our results, since all designs have been laid-out in the same technology. 

Therefore, any performance increases that could be achieved by scaling down to a more 

aggressive technology will be felt across all designs.   

RaPiD 

The RaPiD components that were used in benchmarking were laid out by Carl Ebeling’s 

group for the RaPiD I powertest.  All circuits were laid out using the Magic Layout 

Editor for the HP 0.35micron process.  The designs were ported over to Cadence and the 

TSMC 0.25micron process.   
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Tanner Standard Cells 

The choice of a standard cell library was based upon the need to find an industrial 

strength library that has been laid-out for the TSMC 0.25micron process.  This led us to 

the Tanner standard cell library that is available through the MOSIS prototyping 

production service [19].  This library has thirty-two basic blocks at its core, which can 

then be applied to produce any combination of the 1400+ functional blocks that Tanner 

provides in its Tanner SchemLib symbol library. 

Epic Tools 

We are using the Epic Tool Suite to analyze the performance and power consumption of 

all of the circuits that have been created.  Synopsys has developed the Epic Tool Suite as 

a robust circuit simulator that enables designers to verify circuit performance at both pre-

layout and post-layout without fabrication of the design [20].  The Epic tools use a 

version of the SPICE engine for circuit simulation, and they also use the SPICE netlist 

format as circuit input and the SPICE BSIM3V3 as a transistor model format.  The two 

tools that we will be mainly using from the tool suite are Pathmill and Powermill. 

Pathmill 

Pathmill is a transistor-level critical path and timing verifier for full chip circuit designs 

[21].  Pathmill can handle multiple circuit design styles, including static CMOS, domino 

logic, and pass-gate logic.  Through the use of the BSIM3V3 transistor models, Pathmill 

is able to provide transistor-level delay calculations that are equivalent to SPICE in 

accuracy.  We will use Pathmill to generate the timing numbers for the critical paths of 

all circuit designs. 

Powermill 

Powermill is a transistor-level power simulator and analyzer for full chip circuit designs 

[22].  Powermill is capable of running transistor-level simulations at high accuracy 10 to 

1000 times faster than SPICE, through the use of the BSIM3V3 transistor models.  By 

using Powermill, we will be able to estimate the power consumption of all circuit 

designs. 
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5.2. Procedure 

The experimental procedure was driven by our use of RaPiD as a starting point, and the 

use of the tools that were mentioned in the experimental setup section.  Figure 5-1 shows 

the tool flow.  While there is still considerable manual intervention involved in each step 

of the flow, our eventual goal is a truly automated process. 
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Figure 5-1: Tool-Flow for automating the creation of standard cell templates. 
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We first imported the RaPiD I powertest components from the Magic Layout Editor 

using a HP 0.35micron process to Cadence using a TSMC 0.25micron process.  To do 

this, the files were first exported out of the Magic Layout Editor in a CIF file.  We then 

proceeded to modify these CIF files to force compatibility with the TSMC 0.25micron 

process.  Once this was done, the files were then imported into Cadence, and all 

remaining design errors were corrected by hand.  Schematic and Verilog representation 

of the RaPiD components were also created. 

 

The next step was to find an appropriate standard cell library.  As stated above, we settled 

on the Tanner Standard Cell library.  Even though the library was targeted at the TSMC 

0.25micron process, the layouts were generated using the more aggressive deep sub-

micron version of the process with a lambda of 0.12microns. However, we are currently 

using the deep-micron version of the TSMC 0.25micron process with a lambda of 

0.15microns.  This caused some minor problems that were cleaned up by hand using pre-

import scripts and some post-import modifications.  A library information file 

representation of the Tanner Cells was also created for Synopsys.   

 

To generate the standard cell version of RaPiD, the tool-flow shown in figure 5 was used.  

A behavioral Verilog representation of RaPiD was first created.  Synopsys was then used 

to synthesize this Verilog file to create a structural Verilog file that used the Tanner 

standard-cells as modules.  With this structural Verilog, SE was able to then place-and-

route the entire design.  The utilization level of SE, which is an indication of how dense 

cells are packed in the placement array, was increased until the design could not be 

routed.  For most designs this level was set to 90%.  The aspect ratio of the chip was also 

adjusted from 1, which is a square, to 2, which is a rectangle that is twice as long as it is 

high, to find the smallest layout.  For all designs, an aspect ratio of 1 yielded the smallest 

layout.  Once SE was done creating the layout, the EPIC tool-set was used to evaluate the 

quality of the circuit that was created.   
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6. Results 

Graph 4-1 above shows what we initially expected.  Namely, that the full custom design 

would cost appreciably less than either version of the standard cells.  But as logic is 

reduced from the standard cell templates, the difference in cost becomes minimal.  We 

also expect that the FPGA standard cells would outperform the general standard cells.  

The following data show our actual results.  

6.1. Test Environment 

The tool-flow and procedure were discussed in detail in section 5.1 and 5.2 above.  The 

tools were run on nine Sun Ultra Five workstations, four machines with 512MB of 

memory and 5 machines with 384MB of memory.  The runtime of the entire tool-flow to 

generate each template was approximately six hours.   

 

As a template is customized towards an application domain, gains in performance and 

reductions in power and area are possible.  To test this, both the Tanner and FPGA 

standard cell templates were reduced to reflect possible design scenarios.  The scenarios 

included reducing the ALU to and adder, reducing the word size, reducing the number of 

pipeline registers, reducing the ALU size, and all of the associated cross products.  Table 

6-1 below describes the eight different designs that were created.  These designs were 

further implemented with 8 buses, 11 buses, and 14 buses for both the Tanner and FPGA 

standard cells.  Also, all designs were created with both an eight and a sixteen bit word 

size.   
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Template Description 

Not_reduced Full template 
PA Removed pipeline registers after the second ALU 
PB Removed pipeline registers before the first ALU 
ALU Converted the ALUs to adders 

PB_PA  
Removed pipeline registers before the first ALU and after 
the second ALU 

PA_ALU 
Removed pipeline registers after the second ALU and 
reduced the ALUs to adders 

PB_ALU 
Removed pipeline registers before the first ALU and 
reduced the ALUs to adders 

PB_PA_ALU 
Reduced the ALUs to adders and removed pipeline 
registers before the first ALU and after the second ALU 

Table 6-1 Template nomenclature and description. 

 

6.2. Area 

Graph 6-1 and Graph 6-2 and Table 6-2 through Table 6-8 show the area in microns2 of 

full custom RaPiD, the general standard-cell templates, and the FPGA standard cell 

templates.  The area of full custom RaPiD is smaller than all standard cell templates in all 

of the 16 bit cases. The 8 bit templates have lower area then full custom RaPiD about half 

the time.  Also, the FPGA standard cell templates are smaller than the Tanner standard 

cell templates overall.  
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Area Comparison of 16 Bit Templates to Full Custom RaPiD
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Graph 6-1 This graph shows the area of full custom RaPiD as well as all of the different 
versions of the 16 bit templates vs. unused template resources.  The x-axis is a list of each 
version of template, with the versions that do not have any logic units removed from 
them on the left, ranging to versions that have an increasing amount of logic removed 
from them. 
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Area Comparison of 8 Bit Templates to Full Custom Rapid
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Graph 6-2 This graph shows the area of full custom RaPiD as well as all of the different 
versions of the 8 bit templates vs. unused template resources.  The x-axis is a list of each 
version of template, with the versions that do not have any logic units removed from 
them on the left, ranging to versions that have an increasing amount of logic removed 
from them. 
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Full Custom RaPiD Area Comparison 
 Area 

(microns2) 
% Area Improvement 

over 14 Buses FPGA SC 
% Area Improvement 

over 14 Buses Tanner SC 

Full Custom RaPiD 210,577.050 57.7 63.6 

Table 6-2 Area of full custom RaPiD vs. the 14 buses not reduced FPGA standard cell 
template and the 14 buses not reduced Tanner standard cell template. 

 
16 Bit 8 Buses Area Comparison 

Templates 
 

% 
Utilization 

Area of 
FPGA SC 
(microns2) 

Area of 
Tanner SC 
(microns2) 

% Area 
Improvement of 

FPGA vs. Tanner 
Not_reduced 90 383,395.680 437,179.680 12.3 

PA 90 331,763.040 380,440.800 12.8 

PB 90 330,389.280 370,863.360 10.9 

ALU 89/90 304,702.560 355,687.200 14.3 

PB_PA  90 280,052.640 316,068.480 11.4 

PA_ALU 90 250,983.360 296,136.000 15.2 

PB_ALU 90 249,791.040 293,544.000 14.9 

PB_PA_ALU 90 197,134.560 237,362.400 16.9 

Table 6-3 Area comparison of Tanner standard cell templates vs. FPGA standard cell 
templates with 16 bits and 8 buses. Note that the ALU FPGA SC template was generated 
with 89% utilization while the Tanner standard cell was generated at 90% utilization.  
Utilization refers to the effort level of Silicon Ensemble to densely place cells. 

 
16 Bit 11 Buses Area Comparison 

Templates 
 

% 
Utilization 

Area of 
FPGA SC 
(microns2) 

Area of 
Tanner SC 
(microns2) 

% Area 
Improvement of 

FPGA vs. Tanner 
Not_reduced 90 480,245.760 557,111.520 13.8 

PA 90 423,792.000 496,173.600 14.6 

PB 90 409,082.400 478,586.880 14.5 

ALU 90 396,135.360 469,476.000 15.6 

PB_PA  85/90 380,440.800 412,140.960 7.7 

PA_ALU 90 343,621.440 412,140.960 16.6 

PB_ALU 90 329,015.520 394,632.000 16.6 

PB_PA_ALU 90 273,093.120 333,136.800 18.0 

Table 6-4 Area comparison of Tanner standard cell templates vs. FPGA standard cell 
templates with 16 bits and 11 buses. Note that the PB_PA FPGA SC template was 
generated with 85% utilization while the Tanner standard cell was generated at 90% 
utilization.  Utilization refers to the effort level of Silicon Ensemble to densely place 
cells. 
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16 Bit 14 Buses Area Comparison 

Templates 
 

% 
Utilization 

Area of 
FPGA SC 
(microns2) 

Area of 
Tanner SC  
(microns2) 

% Area 
Improvement of 

FPGA vs. Tanner 
Not_reduced 90 497,858.400 577,886.400 13.8 

PA 90 449,167.680 523,596.960 14.2 

PB 90 425,347.200 496,173.600 14.3 

ALU 90 420,681.600 497,858.400 15.5 

PB_PA  85/90 378,963.360 437,179.680 13.3 

PA_ALU 90 366,508.800 438,760.800 16.5 

PB_ALU 90 345,021.120 412,140.960 16.3 

PB_PA_ALU 90 293,544.000 357,112.800 17.8 

Table 6-5 Area comparison of Tanner standard cell templates vs. FPGA standard cell 
templates with 16 bits and 14 buses. Note that the PB_PA FPGA SC template was 
generated with 85% utilization while the Tanner standard cell was generated at 90% 
utilization.  Utilization refers to the effort level of Silicon Ensemble to densely place 
cells. 

 
 

8 Bit 8 Buses Area Comparison 

Templates 
 

% 
Utilization 

Area of 
FPGA SC 
(microns2) 

Area of 
Tanner SC 
(microns2) 

% Area 
Improvement of 

FPGA vs. Tanner 
Not_reduced 90 198,197.280 220,125.600 10.0 

PA 90 170,890.560 190,252.800 10.2 

PB 90 169,905.600 189,216.000 10.2 

ALU 90 152,565.120 178,378.200 14.5 

PB_PA  90 143,791.200 158,170.320 10.0 

PA_ALU 90 127,020.960 146,512.800 13.3 

PB_ALU 90 127,020.960 145,605.600 12.8 

PB_PA_ALU 90 98,845.920 115,305.120 14.3 

Table 6-6 Area comparison of Tanner standard cell templates vs. FPGA standard cell 
templates with 16 bits and 8 buses.  Utilization refers to the effort level of Silicon 
Ensemble to densely place cells. 
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8 Bit 11 Buses Area Comparison 

Templates 
 

% 
Utilization 

Area of 
FPGA SC 
(microns2) 

Area of 
Tanner SC 
(microns2) 

% Area 
Improvement of 

FPGA vs. Tanner 
Not_reduced 90 240,861.600 281,322.720 14.4 

PA 90 217,896.500 249,791.000 12.8 

PB 90 208,474.560 239,695.200 13.0 

ALU 90 198,197.300 237,362.400 16.5 

PB_PA  90 181,452.960 209,563.200 13.4 

PA_ALU 90 170,890.560 207,385.920 17.6 

PB_ALU 90 162,557.280 197,134.560 17.5 

PB_PA_ALU 90 137,039.040 168,920.640 18.9 

Table 6-7 Area comparison of Tanner standard cell templates vs. FPGA standard cell 
templates with 16 bits and 11 buses.  Utilization refers to the effort level of Silicon 
Ensemble to densely place cells. 

 

8 Bit 14 Buses Area Comparison 

Templates 
 

% 
Utilization 

Area of 
FPGA SC 
(microns2) 

Area of 
Tanner SC  
(microns2) 

% Area 
Improvement of 

FPGA vs. Tanner 
Not_reduced 90 257,657.760 293,544.000 12.2 

PA 90 227,525.760 262,530.720 13.3 

PB 90 217,896.480 250,983.360 13.2 

ALU 90 208,474.560 248,598.720 16.1 

PB_PA  90 190,252.800 220,125.600 13.6 

PA_ALU 90 180,442.080 219,011.040 17.6 

PB_ALU 90 171,875.520 207,385.920 17.1 

PB_PA_ALU 90 145,605.600 178,420.320 18.4 

Table 6-8 Area comparison of Tanner standard cell templates vs. FPGA standard cell 
templates with a word size of 14 bits.  Utilization refers to the effort level of Silicon 
Ensemble to densely place cells. 

 

. 
 
One conclusion that can be drawn from these results is that full custom RaPiD is smaller 

then almost all of the reduced templates.  But, as the application domain narrows, the 

standard cell methods create compelling designs.  Also, with a minimal investment in 

resources, the creation of a few FPGA specific cells greatly enhances the quality of the 
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designs generated, with reductions in area as high as 18.9%.  Therefore, an optimized 

standard cell library should be considered over a general standard cell library in all cases.   

 

6.3. Performance 
 
As described in section 5.1, performance numbers were generated using PathMill.  The 

following tables present the performance numbers for full custom RaPiD and all of the 

templates.   To measure performance, we have listed the critical paths of each design 

defined in nanoseconds.  The number of stages is the number of equivalent inverter 

delays the critical path equals.  Also listed is the ratio of full custom RaPiD’s longest 

delay to each template’s longest delay.  A value greater than one represents a template 

that has a shorter critical path than full custom RaPiD. 
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16 Bit 8 Buses Performance Comparison to Full Custom RaPiD  
 Longest Delay 

(ns) 
Number of Stages 

FC_RaPiD 8.875 128 
 

FPGA Standard Cells 
Template 

Longest 
Delay 
(ns) 

Number 
of Stages 

Ratio of FC RaPiD Longest 
Delay/FPGA SC Longest 

Delay 

Not_reduced 12.782 132 0.69 
PA 12.197 126 0.73 

PB 11.817 123 0.75 

ALU (89%) 8.960 98 0.99 

PB_PA 11.220 117 0.79 

PA_ALU 8.347 92 1.06 

PB_ALU 7.928 88 1.12 
PB_PA_ALU 7.335 82 1.21 

 
Tanner Standard Cells 

Template 

Longest 
Delay 
(ns) 

Number 
of Stages 

Ratio of FC RaPiD Longest 
Delay/Tanner SC Longest 

Delay 

Not_reduced 12.837 157 0.69 

PA 12.117 143 0.73 

PB 12.701 149 0.70 

ALU 9.572 126 0.93 
PB_PA 10.964 129 0.81 

PA_ALU 8.895 114 1.00 

PB_ALU 8.479 110 1.05 

PB_PA_ALU 7.793 98 1.14 

Table 6-9 Performance numbers for both versions of templates with 16 bits and 8 buses.  
Note that PathMill would not run PB. 
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16 Bit 11 Buses Performance Comparison to Full Custom RaPiD  
 Longest Delay 

(ns) 
Number of Stages 

FC_RaPiD 8.875 128 
 

FPGA Standard Cells 
Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/FPGA SC Longest 

Delay 

Not_reduced 13.836 140 0.64 
PA 13.247 134 0.67 

PB 12.681 131 0.70 

ALU 9.990 106 0.89 

PB_PA (85%) 12.076 123 0.73 

PA_ALU 9.407 100 0.94 

PB_ALU 8.821 94 1.01 
PB_PA_ALU 8.236 88 1.08 

 
Tanner Standard Cells 

Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/Tanner SC Longest 

Delay 

Not_reduced 13.963 181 0.64 

PA 13.254 169 0.67 

PB 12.644 161 0.70 

ALU 10.774 150 0.82 
PB_PA 11.920 149 0.74 

PA_ALU 10.100 138 0.88 

PB_ALU 9.474 130 0.94 

PB_PA_ALU 8.775 118 1.01 

Table 6-10: Performance numbers for both versions of templates with 16 bits and 11 
buses. 
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16 Bit 14 Buses Performance Comparison to Full Custom RaPiD  
 Longest Delay 

(ns) 
Number of Stages 

FC_RaPiD 8.875 128 
 

FPGA Standard Cells 
Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/FPGA SC Longest 

Delay 

Not_reduced 13.730 144 0.65 
PA 13.125 138 0.68 

PB 12.599 133 0.70 

ALU 9.889 110 0.90 

PB_PA (85%) 12.029 127 0.74 

PA_ALU 9.274 104 0.96 

PB_ALU 8.701 98 1.02 
PB_PA_ALU 8.134 92 1.09 

 
Tanner Standard Cells 

Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/Tanner SC Longest 

Delay 

Not_reduced 14.022 181 0.63 

PA 13.297 169 0.67 

PB 12.701 161 0.70 

ALU 10.921 150 0.81 
PB_PA 12.012 149 0.74 

PA_ALU 10.144 138 0.87 

PB_ALU 9.504 130 0.93 

PB_PA_ALU 9.159 118 0.97 

Table 6-11: Performance numbers for both versions of templates with 16 bits and 14 
buses. 
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8 Bit 8 Buses Performance Comparison to Full Custom RaPiD  
 Longest Delay 

(ns) 
Number of Stages 

FC_RaPiD 8.875 128 
 

FPGA Standard Cells 
Template 

Longest 
Delay 
(ns) 

Number 
of Stages 

Ratio of FC RaPiD Longest 
Delay/FPGA SC Longest 

Delay 

Not_reduced 10.973 116 0.81 
PA 10.337 110 0.86 

PB 9.980 107 0.89 

ALU  7.621 82 1.16 

PB_PA 9.381 101 0.95 

PA_ALU 7.033 76 1.26 

PB_ALU 6.596 72 1.35 
PB_PA_ALU 6.005 66 1.48 

 
Tanner Standard Cells 

Template 

Longest 
Delay 
(ns) 

Number 
of Stages 

Ratio of FC RaPiD Longest 
Delay/Tanner SC Longest 

Delay 

Not_reduced 12.121 135 0.73 

PA 11.077 127 0.80 

PB 10.617 124 0.84 

ALU 8.305 110 1.07 
PB_PA 10.049 101 0.88 

PA_ALU 7.591 98 1.17 

PB_ALU 7.204 94 1.23 

PB_PA_ALU 6.513 82 1.36 

Table 6-12 Performance numbers for both versions of templates with 8 bits and 8 buses.  
Note that PathMill would not run Tanner SC PB_PA. 
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8 Bit 11 Buses Performance Comparison to Full Custom RaPiD  

 Longest Delay 
(ns) 

Number of Stages 

FC_RaPiD 8.875 128 
 

FPGA Standard Cells 
Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/FPGA SC Longest 

Delay 

Not_reduced 11.925 128 0.74 
PA 10.337 110 0.86 

PB 10.743 115 0.82 

ALU 8.562 94 1.04 

PB_PA  10.158 111 0.87 

PA_ALU 7.966 88 1.11 

PB_ALU 7.398 82 1.20 
PB_PA_ALU 6.799 76 1.31 

 
Tanner Standard Cells 

Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/Tanner SC Longest 

Delay 

Not_reduced 13.056 164 0.68 

PA 12.236 151 0.73 

PB 11.600 144 0.77 

ALU 9.484 134 0.94 
PB_PA 10.881 131 0.82 

PA_ALU 8.784 122 1.01 

PB_ALU 8.179 114 1.09 

PB_PA_ALU 7.23 100 1.23 

Table 6-13 Performance numbers for both versions of templates with 8 bits and 11 buses.  
Note that PathMill would not run FPGA SC PA, ALU, PB_PA, and Tanner SC PA. 
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8 Bit 14 Buses Performance Comparison to Full Custom RaPiD  
 Longest Delay 

(ns) 
Number of Stages 

FC_RaPiD 8.875 128 
 

FPGA Standard Cells 
Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/FPGA SC Longest 

Delay 

Not_reduced 12.017 124 0.74 
PA 10.829 120 0.82 

PB 10.834 115 0.82 

ALU 8.373 100 1.06 

PB_PA  10.251 95 0.87 

PA_ALU 8.093 84 1.10 

PB_ALU 7.501 78 1.18 
PB_PA_ALU 6.918 72 1.28 

 
Tanner Standard Cells 

Template 

Longest 
Delay 
(ns) 

Number 
of 

Stages 

Ratio of FC RaPiD Longest 
Delay/Tanner SC Longest 

Delay 

Not_reduced 13.135   164 0.68 

PA 12.27 150 0.72 

PB 11.698 144 0.76 

ALU 9.521 134 0.93 
PB_PA 10.981 131 0.81 

PA_ALU 8.841 122 1.00 

PB_ALU 8.217 114 1.08 

PB_PA_ALU 7.540 102 1.18 

Table 6-14 Performance numbers for both versions of templates with 8 bits and 14 buses.  
Note that PathMill would not run FPGA SC PB and Tanner SC PB_PA_ALU. 

 
 

The performance results from Table 6-9 through Table 6-11 reflect what one would 

expect to see based upon the difference in area of each template, with a few exceptions.  

While there are only two 16-bit templates that have a smaller area than full custom 

RaPiD, there are eight FPGA standard cell templates and three Tanner standard cell 

templates that have a shorter critical path.  Also, the 8 bit templates routinely perform 

better then full custom RaPiD.  This is a very promising result, and can be attributed to 

SE’s aggressive place and route algorithms.   
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6.4. Power Utilization 
As described in section 5.1, power utilization numbers were generated using PowerMill.  

The following tables present the power utilization numbers for full custom RaPiD and all 

of the templates.   To measure power utilization, we have listed the average vdd and gnd 

current of each design defined in micro-amps.  Also listed is the ratio of full custom 

RaPiD’s power utilization to each template’s power utilization for both vdd and gnd.  A 

value greater than one represents a template that has a lower average current. 
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16 Bit 8 Buses Power Comparison to Full Custom RaPiD  
 GND Average Current 

(µµA) 
VDD Average Current 

(µµA) 
FC_RaPiD 6.37e+04 -6.37e+04 

 
FPGA Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 6.64e+02 95.93 -6.77e+02 94.09 

PA 6.68e+02 95.36 -6.80e+02 93.68 

PB 8.41e+02 75.74 -8.54e+02 74.59 

ALU 6.59e+02 96.66 -6.71e+02 94.93 

PB_PA (85%) 8.10e+02 78.64 -8.23e+02 77.40 
PA_ALU 6.73e+02 94.65 -6.85e+02 92.99 

PB_ALU 8.32e+02 76.56 -8.44e+02 75.47 

PB_PA_ALU 8.14e+02 78.62 -8.25e+02 77.21 
Tanner Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 6.96e+03 9.15 -6.96e+03 9.15 

PA 7.32e+03 8.70 -7.32e+03 8.70 
PB ND ND ND ND 

ALU 4.49e+03 14.19 -4.49e+03 14.19 

PB_PA 5.77e+03 11.04 -5.77e+03 11.04 

PA_ALU 4.17e+03 15.28 -4.17e+03 15.28 

PB_ALU 3.74e+03 17.03 -3.74e+03 17.03 

PB_PA_ALU 3.21e+03 19.84 -3.21e+03 19.84 

Table 6-15: Power numbers for both versions of templates with 16 bits and 8 buses.  
Note that PowerMill would not run PB. 
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16 Bit 11 Buses Power Comparison to Full Custom RaPiD 
 GND Average Current 

(µµA) 
VDD Average Current 

(µµA) 
FC_RaPiD 6.37e+04 -6.37e+04 

 
FPGA Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 1.61e+03 39.57 -1.63e+03 39.08 

PA 6.62e+03 9.62 -6.63e+03 9.61 

PB 7.85e+03 8.11 -7.87e+03 8.09 

ALU 2.28e+03 27.94 -2.30e+03 27.70 

PB_PA (85%) 4.42e+03 14.41 -4.44e+03 14.35 
PA_ALU 2.49e+03 25.58 -2.51e+03 25.38 

PB_ALU 1.62e+03 39.32 -1.64e+03 38.84 

PB_PA_ALU 1.78e+03 35.79 -1.80e+03 35.39 
Tanner Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 1.14e+03 55.88 -1.14e+03 55.88 

PA 1.12e+03 56.88 -1.12e+03 56.88 
PB 6.15e+03 10.36 -6.15e+03 10.36 

ALU 4.60e+03 13.85 -4.60e+03 13.85 

PB_PA 5.05e+03 12.61 -5.05e+03 12.61 

PA_ALU 3.37e+03 18.90 -3.37e+03 18.90 

PB_ALU 3.99e+03 15.96 -3.99e+03 15.96 

PB_PA_ALU 1.56e+03 40.83 -1.56e+03 40.83 

Table 6-16:  Power numbers for both versions of templates with 16 bits and 11 buses. 
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16 Bit 14 Buses Power Comparison to Full Custom RaPiD 
 GND Average Current 

(µµA) 
VDD Average Current 

(µµA) 
FC_RaPiD 6.37e+04 -6.37e+04 

 
FPGA Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 8.90e+02 71.57 -9.08e+02 70.15 

PA 8.50e+02 74.94 -8.68e+02 73.39 

PB 3.65e+03 17.45 -3.66e+03 17.40 

ALU 8.63e+02 73.81 -8.81e+02 72.30 

PB_PA (85%) 6.05e+03 10.53 -6.06e+03 10.51 
PA_ALU 8.77e+02 72.63 -8.96e+02 71.09 

PB_ALU 8.80e+02 72.39 -8.99e+02 70.86 

PB_PA_ALU 8.93e+02 71.33 -9.12e+02 69.85 
Tanner Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 1.18e+03 53.98 -1.18e+03 53.98 

PA 1.17e+03 54.44 -1.17e+03 54.44 
PB 1.21e+03 52.64 -1.21e+03 52.64 

ALU 1.14e+03 55.88 -1.14e+03 55.88 

PB_PA 6.80e+03 9.37 -6.80e+03 9.37 

PA_ALU 1.18e+03 53.98 -1.11e+03 53.98 

PB_ALU 3.41e+03 18.68 -3.41e+03 18.68 

PB_PA_ALU 2.58e+03 24.69 -2.58e+03 24.69 

Table 6-17: Power numbers for both versions of templates with 16 bits and 14 buses. 
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8 Bit 8 Buses Power Comparison to Full Custom RaPiD  
 GND Average Current 

(µµA) 
VDD Average Current 

(µµA) 
FC_RaPiD 6.37e+04 -6.37e+04 

 
FPGA Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 3.45e+02 184.64 -3.51e+02 181.48 

PA 3.31e+02 192.45 -3.38e+02 188.46 

PB 4.06e+02 156.90 -4.12e+02 154.61 

ALU 3.43e+02 185.71 -3.49e+02 182.52 

PB_PA  4.09e+02 155.75 -4.15e+02 153.49 
PA_ALU 3.33e+02 191.29 -3.40e+02 187.35 

PB_ALU 3.98e+02 160.05 -4.04e+02 157.67 

PB_PA_ALU 4.16e+02 153.13 -4.22e+02 150.95 
Tanner Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 9.78e+03 6.51 -9.78e+03 6.51 

PA 3.16e+03 20.16 -3.16e+03 20.16 
PB 3.27e+03 19.48 -3.27e+03 19.48 

ALU 2.29e+03 27.82 -2.29e+03 27.82 

PB_PA ND ND ND ND 

PA_ALU 1.84e+03 34.62 -1.84e+03 34.62 

PB_ALU 1.76e+03 36.19 -1.76e+03 36.19 

PB_PA_ALU 1.64e+03 38.84 -1.64e+03 38.84 

Table 6-18: Power numbers for both versions of templates with 8 bits and 8 buses.  Note 
that PowerMill would not run Tanner SC PB_PA. 
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8 Bit 11 Buses Power Comparison to Full Custom RaPiD 
 GND Average Current 

(µµA) 
VDD Average Current 

(µµA) 
FC_RaPiD 6.37e+04 -6.37e+04 

 
FPGA Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 2.39e+03 26.54 -2.40e+03 26.54 

PA ND ND ND ND 

PB 1.81e+03 35.19 -1.82e+03 35.00 

ALU ND ND ND ND 

PB_PA  ND ND ND ND 
PA_ALU 4.24e+02 150.24 -4.33e+02 147.11 

PB_ALU 1.33e+03 47.89 -1.33e+03 47.89 

PB_PA_ALU 4.09e+02 155.75 -4.19e+02 152.03 
Tanner Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 5.75e+02 110.78 -5.75e+02 110.78 

PA ND ND ND ND 
PB 3.71e+03 17.17 -3.71e+03 17.17 

ALU 2.12e+03 30.05 -2.12e+03 30.05 

PB_PA 5.98e+02 106.52 -5.98e+02 106.52 

PA_ALU 1.60e+03 39.81 -1.60e+03 39.81 

PB_ALU 6.01e+02 105.99 -6.01e+02 105.99 

PB_PA_ALU 1.29e+03 49.38 -1.29e+03 49.38 

Table 6-19:  Power numbers for both versions of templates with 8 bits and 11 buses. 
Note that PowerMill would not run FPGA SC PA, PB, and PB_PA, and Tanner SC PA. 
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8 Bit 14 Buses Power Comparison to Full Custom RaPiD 
 GND Average Current 

(µµA) 
VDD Average Current 

(µµA) 
FC_RaPiD 6.37e+04 -6.37e+04 

 
FPGA Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 2.39e+03 26.65 -2.40e+03 26.54 

PA 3.32e+02 191.87 -3.38e+02 191.87 

PB ND ND ND ND 

ALU 4.42e+02 144.12 -4.51e+02 144.12 

PB_PA  4.43e+02 143.79 -4.52e+02 143.79 
PA_ALU 8.08e+02 78.84 -8.17e+02 77.96 

PB_ALU 8.63e+02 73.81 -8.73e+02 72.96 

PB_PA_ALU 4.55e+02 140.00 -4.64e+02 152.03 
Tanner Standard 

Cell 
Template 

GND 
Average 
Current 

(µA) 

Ratio of Full 
Custom 

RaPiD GND 
Average 
Current/ 

FPGA SC 
Template 

VDD Average 
Current 
(µA) 

Ratio of Full 
Custom RaPiD 
GND Average 
Current/ FPGA 

SC 
Template 

Not_reduced 5.75e+02 110.78 -5.75e+02 110.78 

PA 5.71e+02 111.56 -5.71e+02 111.56 
PB 5.92e+02 107.60 -5.92e+02 107.60 

ALU 5.93e+02 107.42 -5.93e+02 107.42 

PB_PA 6.34e+02 100.47 -6.34e+02 106.52 

PA_ALU 1.75e+03 36.40 -1.75e+03 39.81 

PB_ALU 6.03e+02 105.64 -6.03e+02 105.64 

PB_PA_ALU 1.56e+03 40.83 -1.56e+03 40.83 

Table 6-20:  Power numbers for both versions of templates with 8 bits and 14 buses. 
Note that PowerMill would not run FPGA SC PB. 

 
 

The power results from Table 6-16 through Table 6-20 are very compelling.  The full 

custom RaPiD consumes on average an order of magnitude more power than any of the 
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templates. While the Tanner and FPGA standard cells were not developed as low power 

libraries, they consistently consume less power.  This was unexpected. One possible 

explanation is the extensive use of poly-silicon in the full customs RaPiD design as a 

means of routing signals, leading to high parasitic capacitance.  Also, since RaPiD is 

geared to high performance, a larger number of n-type transistors were used then p-type 

transistors.  This design choice meant that keeper-gates were needed to pull up the 

network, which could further increase the consumption of power.  Further investigation is 

required to come to a completely satisfactory answer.   

 

7. Conclusions 
As SOCs move into the mainstream, there is little doubt that FPGAs will play a major 

role in providing the post-fabrication modification that these devices will require.  This 

presents some interesting opportunities for creating high performance FPGAs that are 

targeted at specific application domains, instead of random logic.  To implement these 

new architectures in a timely fashion, automation of the design flow is a necessity.  

 

Table 7-1 summarizes the results of automating the design through the use of standard 

cells by providing an easy reference for choosing a particular optimization to reach 

specific design goal.  For example, if a design called for a reduction in area, and you do 

not need the functions that an adder can provide, than modifying ALUs to Adders would 

give you a 30% reduction in area, 40% increase in performance, and reduce power 

consumption by 40%.  
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 Improvements 
Basic Optimization Area Performance Power 

16 Bit to 8 Bit 2.0x 1.1x 1.1x 
ALU to Adder 1.3x 1.4x 1.4x 
Not Reduced to PA 1.1x 1.1x 0.8x 
Not Reduced to PB 1.2x 1.1x 0.4x 
Tanner SC to FPGA SC 1.2x 1.0x 2.0x 

 
SC to Full Custom 1.3x 1.2x 0.03x 

Table 7-1 Benefit gained by implementing a design for optimization. 

 

In this work we have shown that automation of layout generation for domain specific 

FPGAs is possible.  We have further shown that as a target application domain narrows, 

the savings gained from removing unused logic from a design enables a standard cell 

method of layout generation to approach that of a full custom layout in area and 

performance, and in some cases surpass them.  Finally, by adding to a standard cell 

library a few key cells that are used extensively in FPGAs, great improvements can be 

achieved.   

8. Future Work 

In the near future, we would like to replicate our work using various standard cell 

libraries.  For example, a low power library would be especially beneficial, since low 

power consumption is becoming increasingly important as technology scales.  We would 

also like to truly automate all of the tools, removing any manual intervention.   

 

In addition, we are going to begin exploring the template reduction method of automating 

layout.  We believe that this method would further improve upon the results presented 

and have the potential to create designs that achieve a performance level that is near 

ASICs. 

 

Finally, we will begin to develop circuit generators to create designs that are of higher 

quality than ones created by the standard cell method.  Therefore, we would further close 

the gap between our generated architectures and ASICs. 
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10. Appendix 

10.1. Base Verilog Code of RaPiD 
// 
//ALU 
// 
module alu(Ina, Inb, Cin, Arith, Function3, Function2, Function1, Function0, Cout, Overflow, Zero, Sign, 
Out); 
input [15:0] Ina;  
input [15:0] Inb; 
input Cin; 
input Arith; 
input Function3; 
input Function2; 
input Function1; 
input Function0; 
output Cout;  
output Overflow;  
output Zero;  
output Sign; 
output [15:0] Out; 
reg Cout, Overflow, Zero, Sign; 
reg [15:0] Out; 
 
always @(Cin or Ina or Inb or Arith or Function3 or Function2 or Function1 or Function0) 
begin 
casex ({Arith, Function3, Function2, Function1, Function0}) 
 5'b00000: {Cout,Out} = {1'b0,Ina}; 
 5'b00001: {Cout,Out} = {1'b0,Ina|Inb}; 
 5'b00010: {Cout,Out} = {1'b0,Ina&~Inb}; 
 5'b00011: {Cout,Out} = {1'b0,Ina^Inb}; 
 5'b00100: {Cout,Out} = {1'b0,Ina|~Inb}; 
 5'b00101: {Cout,Out} = {1'b0,{16{1'b1}}}; 
 5'b00110: {Cout,Out} = {1'b0,~Inb}; 
 5'b00111: {Cout,Out} = {1'b0,~(Ina&Inb)}; 
 5'b01000: {Cout,Out} = {1'b0,Ina&Inb}; 
 5'b01001: {Cout,Out} = {1'b0,Inb}; 
 5'b01010: {Cout,Out} = {1'b0,{16{1'b0}}}; 
 5'b01011: {Cout,Out} = {1'b0,~Ina&Inb}; 
 5'b01100: {Cout,Out} = {1'b0,Ina~^Inb}; 
 5'b01101: {Cout,Out} = {1'b0,~Ina|Inb}; 
 5'b01110: {Cout,Out} = {1'b0,~(Ina|Inb)}; 
 5'b01111: {Cout,Out} = {1'b0,~Ina}; 
           
 5'b10000: {Cout,Out} = {1'b0,Ina}+Cin; 
 5'b10001: {Cout,Out} = {1'b0,Ina|Inb}+Cin; 
 5'b10010: {Cout,Out} = {1'b0,(Ina&Inb)}+{1'b0,Ina}+Cin; 
 5'b10011: {Cout,Out} = {1'b0,Ina}+{1'b0,Inb}+Cin; 
 5'b10100: {Cout,Out} = {1'b0,Ina|~Inb}+Cin; 
 5'b10101: {Cout,Out} = {1'b0,{16{1'b1}}}+Cin; 
 5'b10110: {Cout,Out} = {1'b0,(Ina&Inb)}+{1'b0,(Ina|~Inb)}+Cin; 
 5'b10111: {Cout,Out} = {1'b0,(Ina&Inb)}+{1'b0,{16{1'b1}}}+Cin; 
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 5'b11000: {Cout,Out} = {1'b0,(Ina&~Inb)}+{1'b0,Ina}+Cin; 
 5'b11001: {Cout,Out} = {1'b0,(Ina&~Inb)}+{1'b0,(Ina|Inb)}+Cin; 
 5'b11010: {Cout,Out} = {1'b0,Ina}+{1'b0,Ina}+Cin; 
 5'b11011: {Cout,Out} = {1'b0,Ina}+{1'b0,(Ina|Inb)}+Cin; 
 5'b11100: {Cout,Out} = {1'b0,Ina}+{1'b0,~Inb}+Cin; 
 5'b11101: {Cout,Out} = {1'b0,(Ina&~Inb)}+{1'b0,{16{1'b1}}}+Cin; 
 5'b11110: {Cout,Out} = {1'b0,Ina}+{1'b0,(Ina|~Inb)}+Cin; 
 5'b11111: {Cout,Out} = {1'b0,Ina}+{1'b0,{16{1'b1}}}+Cin; 
endcase 
 
Overflow = (Ina[15]&Inb[15]&~Out[15])|(~Ina[15]&~Inb[15]&Out[15]); 
Zero = ( (Out == 0) && (Cout != 1) ) ? 1 : 0; 
Sign = Out[15]; 
 
end 
 
endmodule 
 
// 
//Delay_reg 
// 
module delay_reg(In, Delay, CLK, Out); 
 
input In; 
input [1:0] Delay; 
input CLK; 
output Out; 
reg Out; 
 
reg delay_reg_one; 
reg delay_reg_two; 
reg delay_reg_three; 
 
always @(In or Delay or delay_reg_one or delay_reg_two or delay_reg_three) 
begin 
case (Delay) 
 2'b00: begin Out = In; end 
 2'b01: begin Out = delay_reg_one; end 
 2'b10: begin Out = delay_reg_two; end 
 2'b11: begin Out = delay_reg_three; end 
endcase 
end 
 
always @(posedge CLK) 
begin 
 delay_reg_three = delay_reg_two; 
 delay_reg_two = delay_reg_one; 
 delay_reg_one = In; 
end 
 
endmodule 
 
// 
//Driver_three 
// 
module driver_three(In, Select, Out_bus); 
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// Port declarations 
input In; 
input [3:0] Select; 
output [13:0] Out_bus; 
 
assign Out_bus[0]  = In & (~Select[3] & ~Select[2] & ~Select[1] & ~Select[0]); 
assign Out_bus[1]  = In & (~Select[3] & ~Select[2] & ~Select[1] & Select[0]); 
assign Out_bus[2]  = In & (~Select[3] & ~Select[2] & Select[1] & ~Select[0]); 
assign Out_bus[3]  = In & (~Select[3] & ~Select[2] & Select[1] & Select[0]); 
assign Out_bus[4]  = In & (~Select[3] & Select[2] & ~Select[1] & ~Select[0]); 
assign Out_bus[5]  = In & (~Select[3] & Select[2] & ~Select[1] & Select[0]); 
assign Out_bus[6]  = In & (~Select[3] & Select[2] & Select[1] & ~Select[0]); 
assign Out_bus[7]  = In & (~Select[3] & Select[2] & Select[1] & Select[0]); 
assign Out_bus[8]  = In & (Select[3] & ~Select[2] & ~Select[1] & ~Select[0]); 
assign Out_bus[9]  = In & (Select[3] & ~Select[2] & ~Select[1] & Select[0]); 
assign Out_bus[10] = In & (Select[3] & ~Select[2] & Select[1] & ~Select[0]); 
assign Out_bus[11] = In & (Select[3] & ~Select[2] & Select[1] & Select[0]); 
assign Out_bus[12] = In & (Select[3] & Select[2] & ~Select[1] & ~Select[0]); 
assign Out_bus[13] = In & (Select[3] & Select[2] & ~Select[1] & Select[0]); 
 
endmodule 
 
// 
// 16-to-1 multiplexer 
// 
module mux16_to_1(In_bus, Select, Out); 
 
// Port declarations 
input [13:0] In_bus; 
input [3:0] Select; 
output  Out; 
//output declared as register 
reg Out; 
 
always @(In_bus or Select) 
begin 
  case (Select) 
    4'b0000: Out = 1'b0;  
    4'b0001: Out = 1'b1; 
    4'b0010: Out = In_bus[0];  
    4'b0011: Out = In_bus[1]; 
    4'b0100: Out = In_bus[2];  
    4'b0101: Out = In_bus[3]; 
    4'b0110: Out = In_bus[4];  
    4'b0111: Out = In_bus[5]; 
    4'b1000: Out = In_bus[6];  
    4'b1001: Out = In_bus[7]; 
    4'b1010: Out = In_bus[8];  
    4'b1011: Out = In_bus[9]; 
    4'b1100: Out = In_bus[10];  
    4'b1101: Out = In_bus[11]; 
    4'b1110: Out = In_bus[12];  
    4'b1111: Out = In_bus[13]; 
  endcase 
end 
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endmodule 
 
// 
//sc_test_one 
// 
//This is the verilog version of the Rapid powertest design 
//This is a one rapid-bit slice of the design up to the 
// first alu. 
//`include "delay_reg.v" 
//`include "driver_three.v" 
//`include "mux16_to_1.v" 
module sc_test_one(In_bus, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, Sel_delay3, 
Sel_drive2, Sel_mux3, Sel_mux4, Out_bus); 
 
// I/O port declerations 
input [13:0] In_bus; 
input CLK; 
input [3:0] Sel_mux1; 
input [1:0] Sel_delay1; 
input [3:0] Sel_drive1; 
input [3:0] Sel_mux2; 
input [1:0] Sel_delay2; 
input [1:0] Sel_delay3; 
input [3:0] Sel_drive2; 
input [3:0] Sel_mux3; 
input [3:0] Sel_mux4; 
output [1:0] Out_bus; 
 
//Internal nets 
wire muxw1, delayw1, muxw2, delayw2, delayw3; 
wire [13:0] drivebus1, drivebus2; 
 
//Instantiate the modules and connect them up 
mux16_to_1 mux1(In_bus, Sel_mux1, muxw1); 
delay_reg delay1(muxw1, Sel_delay1, CLK, delayw1); 
driver_three drive1(delayw1, Sel_drive1, drivebus1); 
mux16_to_1 mux2(drivebus1, Sel_mux2, muxw2); 
delay_reg delay2(muxw2, Sel_delay2, CLK, delayw2); 
delay_reg delay3(delayw2, Sel_delay3, CLK, delayw3); 
driver_three drive2(delayw3, Sel_drive2, drivebus2); 
mux16_to_1 mux3(drivebus2, Sel_mux3, Out_bus[0]); 
mux16_to_1 mux4(drivebus2, Sel_mux4, Out_bus[1]); 
 
endmodule 
 
// 
//sc_test_one_x_16 
// 
//This is the verilog version of the Rapid powertest design 
//This is a 16 wide high slice of rapid up to the first alu 
//`include "sc_test_one.v" 
module sc_test_one_x_16(In_bus1, In_bus2, In_bus3, In_bus4, In_bus5, In_bus6, In_bus7, In_bus8, 
In_bus9, In_bus10, In_bus11, In_bus12, In_bus13, In_bus14, In_bus15, In_bus16, CLK, Sel_mux1, 
Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus); 
 



 55

// I/O port declerations 
input [13:0] In_bus1; 
input [13:0] In_bus2; 
input [13:0] In_bus3; 
input [13:0] In_bus4; 
input [13:0] In_bus5; 
input [13:0] In_bus6; 
input [13:0] In_bus7; 
input [13:0] In_bus8; 
input [13:0] In_bus9; 
input [13:0] In_bus10; 
input [13:0] In_bus11; 
input [13:0] In_bus12; 
input [13:0] In_bus13; 
input [13:0] In_bus14; 
input [13:0] In_bus15; 
input [13:0] In_bus16; 
input CLK; 
input [3:0] Sel_mux1; 
input [1:0] Sel_delay1; 
input [3:0] Sel_drive1; 
input [3:0] Sel_mux2; 
input [1:0] Sel_delay2; 
input [1:0] Sel_delay3; 
input [3:0] Sel_drive2; 
input [3:0] Sel_mux3; 
input [3:0] Sel_mux4; 
output [31:0] Out_bus; 
 
//Internal nets 
 
//Instantiate the modules and connect them up 
sc_test_one col1_bus1(In_bus1, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[1:0]); 
sc_test_one col1_bus2(In_bus2, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[3:2]); 
sc_test_one col1_bus3(In_bus3, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[5:4]); 
sc_test_one col1_bus4(In_bus4, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[7:6]); 
sc_test_one col1_bus5(In_bus5, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[9:8]); 
sc_test_one col1_bus6(In_bus6, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[11:10]); 
sc_test_one col1_bus7(In_bus7, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[13:12]); 
sc_test_one col1_bus8(In_bus8, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[15:14]); 
sc_test_one col1_bus9(In_bus9, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[17:16]); 
sc_test_one col1_bus10(In_bus10, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[19:18]); 
sc_test_one col1_bus11(In_bus11, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[21:20]); 
sc_test_one col1_bus12(In_bus12, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[23:22]); 
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sc_test_one col1_bus13(In_bus13, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[25:24]); 
sc_test_one col1_bus14(In_bus14, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[27:26]); 
sc_test_one col1_bus15(In_bus15, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[29:28]); 
sc_test_one col1_bus16(In_bus16, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, 
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[31:30]); 
 
endmodule 
 
// 
//sc_test_two 
// 
//This is the verilog version of the Rapid powertest design 
//This is a one rapid-bit slice of the design up to the 
// first alu. 
//`include "delay_reg.v" 
//`include "driver_three.v" 
//`include "mux16_to_1.v" 
module sc_test_two(In, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, Out_bus); 
 
// I/O port declerations 
input In; 
input CLK; 
input [1:0] Sel_delay1; 
input [1:0] Sel_delay2; 
input [3:0] Sel_drive1; 
input [3:0] Sel_mux1; 
input [3:0] Sel_mux2; 
output [1:0] Out_bus; 
 
//Internal nets 
wire delayw1, delayw2, muxw1, muxw2; 
wire [13:0] drivebus1; 
 
//Instantiate the modules and connect them up 
 
delay_reg delay1(In, Sel_delay1, CLK, delayw1); 
delay_reg delay2(delayw1, Sel_delay2, CLK, delayw2); 
driver_three drive1(delayw2, Sel_drive1, drivebus1); 
mux16_to_1 mux1(drivebus1, Sel_mux1, Out_bus[0]); 
mux16_to_1 mux2(drivebus1, Sel_mux2, Out_bus[1]); 
 
endmodule 
 
// 
//sc_test_two_x_16 
// 
//This is the verilog version of the Rapid powertest design 
//This is a 16 wide high slice of rapid up to the first alu 
//`include "sc_test_two.v" 
module sc_test_two_x_16(In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15, 
In16, CLK, Sel_delay1,  Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, Out_bus); 
 
// I/O port declerations 
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input In1; 
input In2; 
input In3; 
input In4; 
input In5; 
input In6; 
input In7; 
input In8; 
input In9; 
input In10; 
input In11; 
input In12; 
input In13; 
input In14; 
input In15; 
input In16; 
input CLK; 
input [1:0] Sel_delay1; 
input [1:0] Sel_delay2; 
input [3:0] Sel_drive1; 
input [3:0] Sel_mux1; 
input [3:0] Sel_mux2; 
output [31:0] Out_bus; 
 
//Internal nets 
 
//Instantiate the modules and connect them up 
sc_test_two col2_bus1(In1, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[1:0]); 
sc_test_two col2_bus2(In2, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[3:2]); 
sc_test_two col2_bus3(In3, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[5:4]); 
sc_test_two col2_bus4(In4, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[7:6]); 
sc_test_two col2_bus5(In5, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[9:8]); 
sc_test_two col2_bus6(In6, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[11:10]); 
sc_test_two col2_bus7(In7, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[13:12]); 
sc_test_two col2_bus8(In8, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[15:14]); 
sc_test_two col2_bus9(In9, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[17:16]); 
sc_test_two col2_bus10(In10, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[19:18]); 
sc_test_two col2_bus11(In11, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[21:20]); 
sc_test_two col2_bus12(In12, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[23:22]); 
sc_test_two col2_bus13(In13, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[25:24]); 
sc_test_two col2_bus14(In14, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[27:26]); 
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sc_test_two col2_bus15(In15, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[29:28]); 
sc_test_two col2_bus16(In16, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, 
Out_bus[31:30]); 
 
endmodule 
 
// 
//sc_test_three 
// 
//This is the verilog version of the Rapid powertest design 
//This is a one rapid-bit slice of the design from the second alu 
// to the end of the array 
//`include "delay_reg.v" 
//`include "driver_three.v" 
//`include "mux16_to_1.v" 
module sc_test_three(In, CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, Sel_mux2, 
Sel_delay3, Sel_delay4, Sel_drive3, Out_bus); 
 
// I/O port declerations 
input In; 
input CLK; 
input [1:0] Sel_delay1; 
input [3:0] Sel_drive1; 
input [3:0] Sel_mux1; 
input [1:0] Sel_delay2; 
input [3:0] Sel_drive2; 
input [3:0] Sel_mux2; 
input [1:0] Sel_delay3; 
input [1:0] Sel_delay4; 
input [3:0] Sel_drive3; 
output [13:0] Out_bus; 
 
//Internal nets 
wire delayw1, muxw1, delayw2, muxw2, delayw3, delayw4; 
wire [13:0] drivebus1, drivebus2; 
 
//Instantiate the modules and connect them up 
delay_reg delay1(In, Sel_delay1, CLK, delayw1); 
driver_three drive1(delayw1, Sel_drive1, drivebus1); 
mux16_to_1 mux1(drivebus1, Sel_mux1, muxw1); 
delay_reg delay2(muxw1, Sel_delay2, CLK, delayw2); 
driver_three drive2(delayw2, Sel_drive2, drivebus2); 
mux16_to_1 mux2(drivebus2, Sel_mux2, muxw2); 
delay_reg delay3(muxw2, Sel_delay3, CLK, delayw3); 
delay_reg delay4(delayw3, Sel_delay4, CLK, delayw4); 
driver_three drive3(delayw4, Sel_drive3, Out_bus); 
 
endmodule 
 
// 
//sc_test_three_x_16 
// 
//This is the verilog version of the Rapid powertest design 
//This is a 16 wide high slice of rapid from the last alu  
// to the end of the array 
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//`include "sc_test_three.v" 
module sc_test_three_x_16(In_bus[15:0], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, 
Sel_drive2, Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus1, Out_bus2, Out_bus3, Out_bus4, 
Out_bus5, Out_bus6, Out_bus7, Out_bus8, Out_bus9, Out_bus10, Out_bus11, Out_bus12, Out_bus13, 
Out_bus14, Out_bus15, Out_bus16); 
 
// I/O port declerations 
input [15:0] In_bus; 
input CLK; 
input [1:0] Sel_delay1; 
input [3:0] Sel_drive1; 
input [3:0] Sel_mux1; 
input [1:0] Sel_delay2; 
input [3:0] Sel_drive2; 
input [3:0] Sel_mux2; 
input [1:0] Sel_delay3; 
input [1:0] Sel_delay4; 
input [3:0] Sel_drive3; 
output [13:0] Out_bus1; 
output [13:0] Out_bus2; 
output [13:0] Out_bus3; 
output [13:0] Out_bus4; 
output [13:0] Out_bus5; 
output [13:0] Out_bus6; 
output [13:0] Out_bus7; 
output [13:0] Out_bus8; 
output [13:0] Out_bus9; 
output [13:0] Out_bus10; 
output [13:0] Out_bus11; 
output [13:0] Out_bus12; 
output [13:0] Out_bus13; 
output [13:0] Out_bus14; 
output [13:0] Out_bus15; 
output [13:0] Out_bus16; 
 
//Internal nets 
 
//Instantiate the modules and connect them up 
sc_test_three col3_row1(In_bus[0], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus1); 
sc_test_three col3_row2(In_bus[1], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus2); 
sc_test_three col3_row3(In_bus[2], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus3); 
sc_test_three col3_row4(In_bus[3], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus4); 
sc_test_three col3_row5(In_bus[4], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus5); 
sc_test_three col3_row6(In_bus[5], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus6); 
sc_test_three col3_row7(In_bus[6], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus7); 
sc_test_three col3_row8(In_bus[7], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus8); 
sc_test_three col3_row9(In_bus[8], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus9); 
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sc_test_three col3_row10(In_bus[9], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus10); 
sc_test_three col3_row11(In_bus[10], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus11); 
sc_test_three col3_row12(In_bus[11], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus12); 
sc_test_three col3_row13(In_bus[12], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus13); 
sc_test_three col3_row14(In_bus[13], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus14); 
sc_test_three col3_row15(In_bus[14], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus15); 
sc_test_three col3_row16(In_bus[15], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, 
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus16); 
 
endmodule 
 
// 
//sc_test 
// 
//`include "sc_test_header.v" 
module sc_test(CLK, In_bus1, In_bus2, In_bus3, In_bus4, In_bus5, In_bus6, In_bus7, In_bus8, In_bus9, 
In_bus10, In_bus11, In_bus12, In_bus13, In_bus14, In_bus15, In_bus16, Sel_mux1_col1, 
Sel_delay1_col1, Sel_drive1_col1, Sel_mux2_col1, Sel_delay2_col1, Sel_delay3_col1, Sel_drive2_col1, 
Sel_mux3_col1, Sel_mux4_col1, Sel_delay1_col2,  Sel_delay2_col2, Sel_drive1_col2, Sel_mux1_col2, 
Sel_mux2_col2, Sel_delay1_col3, Sel_drive1_col3, Sel_mux1_col3, Sel_delay2_col3, Sel_drive2_col3, 
Sel_mux2_col3, Sel_delay3_col3, Sel_delay4_col3, Sel_drive3_col3, Cin_alu1, Arith_alu1, 
Function3_alu1, Function2_alu1, Function1_alu1, Function0_alu1, Cout_alu1, Overflow_alu1, Zero_alu1, 
Sign_alu1, Cin_alu2, Arith_alu2, Function3_alu2, Function2_alu2, Function1_alu2, Function0_alu2, 
Cout_alu2, Overflow_alu2, Zero_alu2, Sign_alu2, Out_bus1, Out_bus2, Out_bus3, Out_bus4, Out_bus5, 
Out_bus6, Out_bus7, Out_bus8, Out_bus9, Out_bus10, Out_bus11, Out_bus12, Out_bus13, Out_bus14, 
Out_bus15, Out_bus16); 
 
// I/O port declarations 
input CLK; 
input [13:0] In_bus1; 
input [13:0] In_bus2; 
input [13:0] In_bus3; 
input [13:0] In_bus4; 
input [13:0] In_bus5; 
input [13:0] In_bus6; 
input [13:0] In_bus7; 
input [13:0] In_bus8; 
input [13:0] In_bus9; 
input [13:0] In_bus10; 
input [13:0] In_bus11; 
input [13:0] In_bus12; 
input [13:0] In_bus13; 
input [13:0] In_bus14; 
input [13:0] In_bus15; 
input [13:0] In_bus16; 
input [3:0] Sel_mux1_col1; 
input [1:0] Sel_delay1_col1; 
input [3:0] Sel_drive1_col1; 
input [3:0] Sel_mux2_col1; 
input [1:0] Sel_delay2_col1; 
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input [1:0] Sel_delay3_col1; 
input [3:0] Sel_drive2_col1; 
input [3:0] Sel_mux3_col1; 
input [3:0] Sel_mux4_col1; 
input [1:0] Sel_delay1_col2; 
input [1:0] Sel_delay2_col2; 
input [3:0] Sel_drive1_col2; 
input [3:0] Sel_mux1_col2; 
input [3:0] Sel_mux2_col2; 
input [1:0] Sel_delay1_col3; 
input [3:0] Sel_drive1_col3; 
input [3:0] Sel_mux1_col3; 
input [1:0] Sel_delay2_col3; 
input [3:0] Sel_drive2_col3; 
input [3:0] Sel_mux2_col3; 
input [1:0] Sel_delay3_col3; 
input [1:0] Sel_delay4_col3; 
input [3:0] Sel_drive3_col3; 
input Cin_alu1; 
input Arith_alu1; 
input Function3_alu1; 
input Function2_alu1; 
input Function1_alu1; 
input Function0_alu1; 
output Cout_alu1;  
output Overflow_alu1;  
output Zero_alu1;  
output Sign_alu1; 
input Cin_alu2; 
input Arith_alu2; 
input Function3_alu2; 
input Function2_alu2; 
input Function1_alu2; 
input Function0_alu2; 
output Cout_alu2;  
output Overflow_alu2;  
output Zero_alu2;  
output Sign_alu2; 
output [13:0] Out_bus1; 
output [13:0] Out_bus2; 
output [13:0] Out_bus3; 
output [13:0] Out_bus4; 
output [13:0] Out_bus5; 
output [13:0] Out_bus6; 
output [13:0] Out_bus7; 
output [13:0] Out_bus8; 
output [13:0] Out_bus9; 
output [13:0] Out_bus10; 
output [13:0] Out_bus11; 
output [13:0] Out_bus12; 
output [13:0] Out_bus13; 
output [13:0] Out_bus14; 
output [13:0] Out_bus15; 
output [13:0] Out_bus16; 
 
//Internal nets 
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wire [31:0] Out_bus_Col1; 
wire [15:0] Out_Alu1; 
wire [31:0] Out_bus_Col2; 
wire [15:0] Out_Alu2; 
 
//Instantiate the modules and connect them up 
sc_test_one_x_16 Col1(In_bus1, In_bus2, In_bus3, In_bus4, In_bus5, In_bus6, In_bus7, In_bus8, In_bus9, 
In_bus10, In_bus11, In_bus12, In_bus13, In_bus14, In_bus15, In_bus16, CLK, Sel_mux1_col1, 
Sel_delay1_col1, Sel_drive1_col1, Sel_mux2_col1, Sel_delay2_col1, Sel_delay3_col1, Sel_drive2_col1, 
Sel_mux3_col1, Sel_mux4_col1, Out_bus_Col1); 
 
alu Alu1({Out_bus_Col1[30], Out_bus_Col1[28], Out_bus_Col1[26], Out_bus_Col1[24], 
Out_bus_Col1[22], Out_bus_Col1[20], Out_bus_Col1[18], Out_bus_Col1[16], Out_bus_Col1[14], 
Out_bus_Col1[12], Out_bus_Col1[10], Out_bus_Col1[8], Out_bus_Col1[6], Out_bus_Col1[4], 
Out_bus_Col1[2], Out_bus_Col1[0]}, {Out_bus_Col1[31], Out_bus_Col1[29], Out_bus_Col1[27], 
Out_bus_Col1[25], Out_bus_Col1[23], Out_bus_Col1[21], Out_bus_Col1[19], Out_bus_Col1[17], 
Out_bus_Col1[15], Out_bus_Col1[13], Out_bus_Col1[11], Out_bus_Col1[9], Out_bus_Col1[7], 
Out_bus_Col1[5], Out_bus_Col1[3], Out_bus_Col1[1]}, Cin_alu1, Arith_alu1, Function3_alu1, 
Function2_alu1, Function1_alu1, Function0_alu1, Cout_alu1, Overflow_alu1, Zero_alu1, Sign_alu1, 
Out_Alu1); 
 
sc_test_two_x_16 Col2(Out_Alu1[0], Out_Alu1[1], Out_Alu1[2], Out_Alu1[3], Out_Alu1[4], 
Out_Alu1[5], Out_Alu1[6], Out_Alu1[7], Out_Alu1[8], Out_Alu1[9], Out_Alu1[10], Out_Alu1[11], 
Out_Alu1[12], Out_Alu1[13], Out_Alu1[14], Out_Alu1[15], CLK, Sel_delay1_col2,  Sel_delay2_col2, 
Sel_drive1_col2, Sel_mux1_col2, Sel_mux2_col2, Out_bus_Col2); 
 
alu Alu2({Out_bus_Col2[30], Out_bus_Col2[28], Out_bus_Col2[26], Out_bus_Col2[24], 
Out_bus_Col2[22], Out_bus_Col2[20], Out_bus_Col2[18], Out_bus_Col2[16], Out_bus_Col2[14], 
Out_bus_Col2[12], Out_bus_Col2[10], Out_bus_Col2[8], Out_bus_Col2[6], Out_bus_Col2[4], 
Out_bus_Col2[2], Out_bus_Col2[0]}, {Out_bus_Col2[31], Out_bus_Col2[29], Out_bus_Col2[27], 
Out_bus_Col2[25], Out_bus_Col2[23], Out_bus_Col2[21], Out_bus_Col2[19], Out_bus_Col2[17], 
Out_bus_Col2[15], Out_bus_Col2[13], Out_bus_Col2[11], Out_bus_Col2[9], Out_bus_Col2[7], 
Out_bus_Col2[5], Out_bus_Col2[3], Out_bus_Col2[1]}, Cin_alu2, Arith_alu2, Function3_alu2, 
Function2_alu2, Function1_alu2, Function0_alu2, Cout_alu2, Overflow_alu2, Zero_alu2, Sign_alu2, 
Out_Alu2); 
 
 
sc_test_three_x_16 Col3(Out_Alu2, CLK, Sel_delay1_col3, Sel_drive1_col3, Sel_mux1_col3, 
Sel_delay2_col3, Sel_drive2_col3, Sel_mux2_col3, Sel_delay3_col3, Sel_delay4_col3, Sel_drive3_col3, 
Out_bus1, Out_bus2, Out_bus3, Out_bus4, Out_bus5, Out_bus6, Out_bus7, Out_bus8, Out_bus9, 
Out_bus10, Out_bus11, Out_bus12, Out_bus13, Out_bus14, Out_bus15, Out_bus16); 
 
endmodule 
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10.2. Layouts of Templates 
 

 
Figure 10-1 Full Custom RaPiD with an area of 680µm by 310µm.  Notice the 
amount of red representing the extensive use of polysilicon. 

 
 

 
Figure 10-2 FPGA Standard Cell Template with an area of 
709µm by 702µm. 
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Figure 10-3 General standard cell template with an area of 764µm by 
756µm. 

 

10.3. Layouts of FPGA specific Standard Cells 
 

 
Figure 10-4 DFF FPGA specific standard cell. 
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Figure 10-5 Driver 1-to-2 FPGA specific standard cell. 

 

 
Figure 10-6 Driver 1-to-4 FPGA specific standard cell. 
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Figure 10-7 Mux 2-to-1 FPGA specific standard cell. 

 

 
Figure 10-8 Mux 4-to-1 FPGA specific standard cell. 
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