

Automatic Layout of Domain Specific Reconfigurable
Subsystems for System-on-a-Chip (SOC)

Master’s Thesis
July 2001

Shawn A. Phillips
Northwestern University

As submitted to

Northwestern University
Department of Electrical and

Computer Engineering
Evanston, IL USA

Advisor

Scott A. Hauck
University of Washington

Seattle, WA USA

 2

TABLE OF CONTENTS

ABSTRACT... 4

1. INTRODUCTION... 4

2. BACKGROUND ... 6

2.1. FPGA .. 7
2.2. RAPID ... 8
2.3. TOTEM ... 10

3. PRIOR WORK.. 13

3.1. XILINX ... 13
3.2. ACTEL.. 13
3.3. LSI & ADAPTIVE SILICON ... 14
3.4. EASIC.. 15
3.5. U. B. C. SOC RESEARCH GROUP .. 16

4. APPROACH .. 16

4.1. STANDARD CELL IMPLEMENTATION .. 17
4.2. TEMPLATE REDUCTION.. 18
4.3. FPGA-SPECIFIC CIRCUIT GENERATORS ... 21
4.4. EXPECTATIONS... 21

5. EXPERIMENTAL SETUP AND PROCEDURE.. 22

5.1. SETUP .. 22
5.2. PROCEDURE ... 25

6. RESULTS .. 27

6.1. TEST ENVIRONMENT .. 27
6.2. AREA ... 28
6.3. PERFORMANCE... 34
6.4. POWER UTILIZATION.. 41

7. CONCLUSIONS ... 48

8. FUTURE WORK.. 49

9. ACKNOWLEDGMENTS .. 50

10. APPENDIX.. 51

10.1. BASE VERILOG CODE OF RAPID .. 51
10.2. LAYOUTS OF TEMPLATES ... 63
10.3. LAYOUTS OF FPGA SPECIFIC STANDARD CELLS ... 64

 BIBLIOGRAPHY.. 67

 3

TABLE OF FIGURES

FIGURE 2-1: XILINX STYLE FPGA ARCHITECTURE. .. 8
FIGURE 2-2: A BLOCK DIAGRAM OF A BASIC RAPID CELL. ... 9
FIGURE 2-3: TOTEM DEPENDENCY GRAPH... 11
FIGURE 2-4: THE TOTEM PROJECT ... 11
FIGURE 3-1: CONFIGURABLE ALU (CALU) .. 15
FIGURE 4-1: SIMPLIFIED EXAMPLE OF TEMPLATE REDUCTION... 20
FIGURE 5-1: TOOL-FLOW... 25

TABLE OF GRAPHS

GRAPH 4-1 COST OF A GIVEN DESIGN VS. THE UTILIZATION OF TEMPLATE RESOURCES 22
GRAPH 6-1 AREA OF FULL CUSTOM RAPID AND THE DIFFERENT VERSIONS OF THE 16 BIT

TEMPLATES VS. UNUSED TEMPLATE RESOURCES. ... 29
GRAPH 6-2 AREA OF FULL CUSTOM RAPID AND THE DIFFERENT VERSIONS OF THE 8 BIT

TEMPLATES VS. UNUSED TEMPLATE RESOURCES. ... 30

TABLE OF TABLES

TABLE 6-1 TEMPLATE NOMENCLATURE AND DESCRIPTION.. 28
TABLE 6-2 AREA OF FULL CUSTOM RAPID VS. THE 14 BUSES NOT REDUCED FPGA

STANDARD CELL TEMPLATE AND THE 14 BUSES NOT REDUCED TANNER STANDARD

CELL TEMPLATE. .. 31
TABLE 6-3 AREA COMPARISON OF TANNER STANDARD CELL TEMPLATES VS. FPGA

STANDARD CELL TEMPLATES WITH 16 BITS AND 8 BUSES ... 31
TABLE 6-4 AREA COMPARISON OF TANNER STANDARD CELL TEMPLATES VS. FPGA

STANDARD CELL TEMPLATES WITH 16 BITS AND 11 BUSES... 31
TABLE 6-5 AREA COMPARISON OF TANNER STANDARD CELL TEMPLATES VS. FPGA

STANDARD CELL TEMPLATES WITH 16 BITS AND 14 BUSES... 32
TABLE 6-6 AREA COMPARISON OF TANNER STANDARD CELL TEMPLATES VS. FPGA

STANDARD CELL TEMPLATES WITH 16 BITS AND 8 BUSES... 32
TABLE 6-7 AREA COMPARISON OF TANNER STANDARD CELL TEMPLATES VS. FPGA

STANDARD CELL TEMPLATES WITH 16 BITS AND 11 BUSES... 33
TABLE 6-8 AREA COMPARISON OF TANNER STANDARD CELL TEMPLATES VS. FPGA

STANDARD CELL TEMPLATES WITH A WORD SIZE OF 14 BITS.. 33
TABLE 6-9 PERFORMANCE NUMBERS FOR TEMPLATES WITH 16 BITS AND 8 BUSES.. 35
TABLE 6-10: PERFORMANCE NUMBERS FOR TEMPLATES WITH 16 BITS AND 11 BUSES....... 36
TABLE 6-11: PERFORMANCE NUMBERS FOR TEMPLATES WITH 16 BITS AND 14 BUSES....... 37
TABLE 6-12 PERFORMANCE NUMBERS FOR TEMPLATES WITH 8 BITS AND 8 BUSES 38
TABLE 6-13 PERFORMANCE NUMBERS FOR TEMPLATES WITH 8 BITS AND 11 BUSES 39
TABLE 6-14 PERFORMANCE NUMBERS FOR TEMPLATES WITH 8 BITS AND 14 BUSES 40
TABLE 6-15: POWER NUMBERS FOR TEMPLATES WITH 16 BITS AND 8 BUSES 42
TABLE 6-16: POWER NUMBERS FOR TEMPLATES WITH 16 BITS AND 11 BUSES 43
TABLE 6-17: POWER NUMBERS FOR TEMPLATES WITH 16 BITS AND 14 BUSES 44
TABLE 6-18: POWER NUMBERS OF TEMPLATES WITH 8 BITS AND 8 BUSES 45
TABLE 6-19: POWER NUMBERS FOR OF TEMPLATES WITH 8 BITS AND 11 BUSES 46
TABLE 6-20: POWER NUMBERS FOR TEMPLATES WITH 8 BITS AND 11 BUSES 47
TABLE 7-1 BENEFIT GAINED BY IMPLEMENTING A DESIGN FOR OPTIMIZATION. 49

 4

Abstract

As technology scales, engineers are presented with the ability to integrate
many devices onto a single chip, creating entire systems-on-a-chip. When
designing SOCs, a unique opportunity exists to add custom FPGA
architectures, which will provide an efficient compromise between the
flexibility of software and the performance of hardware, while at the same
time allowing for post-fabrication modification of circuits. Unfortunately,
manually generating a custom FPGA architecture would make it
impossible to meet any reasonable design cycle, while adding
considerably to design costs. Therefore, we present a system that
automates the layout of reconfigurable subsystems for systems-on -a-chip.

1. Introduction

With the advent of new fabrication technologies, designers now have the ability to create

integrated circuits utilizing over one hundred million gates, with operating frequencies in

the GHz range. This large increase in transistor count has increased the complexity of

devices, but it is also enabling designers to move away from the well known system-on-

a-board to a heterogeneous system-on-a-chip (SOC) [1]. This evolution in integration is

driven by the need to reduce the overall cost of the design, increase inter-device

communication bandwidth, reduce power consumption, and remove pin limitations.

Unfortunately, there are a number of drawbacks to the SOC design methodology.

Designers of SOCs have a larger design space to consider, an increase in prototype cost, a

more difficult job of interfacing components, and a longer time to market. There is also a

loss in post-fabrication flexibility. In the system-on-a-board approach, designers have the

ability to customize the system by careful selection of components, with easy component

modification or replacement in late stages of the design cycle. But in the current SOC

design methodology framework, in which only ASIC type components are used, very

tight integration is the goal. Therefore, component changes late in the design cycle are

not feasible.

This loss of post-fabrication flexibility can be alleviated with the inclusion of FPGAs

onto the SOC. Unlike application specific integrated circuits (ASICs), by including

 5

FPGAs, designers would gain the ability to alter the SOC to meet differing system

requirements after the SOC has been fabricated. However, FPGAs are often several

times slower and larger and less energy efficient than ASICs, making them a less ideal

choice for high performance, low power designs. Domain-specific FPGAs can be

utilized to bridge the gap that exists between flexible FPGAs and high performance

ASICs.

A domain-specific FPGA is a reconfigurable array that is targeted at specific application

domains, instead of the multiple domains a reconfigurable processor targets. Creating

custom domain-specific FPGAs is possible when designing an SOC, since early in the

design stage designers are aware of the computational domain in which the device will

operate. With this knowledge, designers could then remove from the reconfigurable

array hardware and programming points that are not needed and would otherwise reduce

system performance and increase the design area. Architectures such as RaPiD [2],

PipeRench [3], and Pleiades [4], have followed this design methodology in the digital

signal processor (DSP) computational domain, and have shown improvements over

reconfigurable processors within this space. This ability to utilize custom arrays instead

of ASICs in high performance SOC designs will provide the post-fabrication flexibility

that FPGAs provide, while also meeting stringent performance requirements that until

now could only be met by ASICs.

Possible application domains could include signal processing, cryptography, image

analysis, or any other computationally intensive area. In essence, the more that is known

about the target applications, the more inflexible and ASIC-like the custom array will be.

On the other end of the spectrum, if the domain space is only vaguely known, then the

custom array would need to provide the ability to run a wide range of applications, and

thus be required to look and perform more like a standard FPGA.

Since all of the components in an SOC need to be fabricated after integration, this

provides designers with a unique opportunity to insert application specific FPGAs into

their devices. Unfortunately, if designers were forced to create custom logic for each

 6

domain-specific subsystem, it would be impossible to meet any reasonable design cycle.

However, by automating the generation of the application specific FPGAs, designers

would avoid this increased time to market and would also decrease the overall design

cost.

These factors have led us to start the Totem project, which has the ultimate goal of

automatically generating custom reconfigurable architectures based upon the perceived

application domain in which the device will be used. Since the custom array will be

optimized for a particular application domain, we expect that it will have a smaller area

and perform better then a standard FPGA, while retaining all of the benefits of

reconfigurability.

First we present a short background on reconfigurable computing, including RaPiD and

Totem. Next, we provide a look at other work whose goal is to provide reconfigurability

on SOC devices. We then examine the approach and experimental setup that I have taken

to automate the layout of a domain-specific reconfigurable subsystem. Finally, I will

show how my approach was able to create circuits that perform within Totem’s design

specifications, paving the way for future work in providing custom reconfigurable

subsystems in SOCs.

2. Background

 The processing devices that the general public is most familiar with fall into the general-

purpose processor category. General-purpose processors are able to run a wide range of

applications since they are based upon a fixed, well-defined instruction set. This

computational model provides general-purpose processors with the ability to support

basic computations in hardware, while running anything else the processor may

encounter in software. Unfortunately, this great flexibility comes at the price of reduced

performance, since software solutions perform poorer than hardware solutions.

When application requirements demand higher performance than a general-purpose

processor can provide designers are forced to turn to hardware. An ASIC is a circuit that

 7

is designed to perform one application in hardware and to perform it well. ASICs are

typically able to outperform general-purpose processors by orders of magnitude. But all

of this computational power comes at the price of inflexibility, greatly increased design

costs, and a very long design cycle. This has created a market atmosphere such that,

unless a design will be mass-produced, an ASIC solution is just too costly to implement.

Reconfigurable computing is intended to fill the gap between the flexible and ubiquitous

general-purpose processor and the expensive yet high performing ASIC. To retain its

flexibility, the FPGA must sacrifice area and performance, losing to ASICs in both cases.

Yet, FPGAs are still capable of performance that is several orders of magnitude better

than general-purpose processors on computationally intensive applications. In addition,

due to the fact that most commercial FPGAs are massed produced, it may be cheaper to

implement an FPGA in place of an ASIC in certain design situations, such as a limited

production design run.

2.1. FPGA

An FPGA is a multi-level logic device that can be reconfigured. Conceptually, an island-

style FPGA, which is the most common type of FPGA manufactured today, is an array of

configurable logic blocks (CLBs) that are embedded within horizontal and vertical

channels of routing [5]. The routing channels also have the capability to be personalized

to interconnect any one CLB with any other CLB within the array by the use of

switchboxes. The configuration of the FPGA is commonly held in static RAM (SRAM)

cells that are distributed across the chip. By placing the configuration bits in SRAM

cells, the programming of the FPGA is entirely electrical, providing the FPGA with the

ability to run many different configurations, akin to how a general-purpose processor can

run many different programs. The ability of an FPGA to run such a wide range of

programs is only limited by how many CLBs are in the array and by the richness of the

routing fabric. Figure 2-1 shows an island-style FPGA, which was first developed by

Xilinx in 1984 [6].

 8

Figure 2-1: Xilinx style FPGA architecture. It contains an array of CLBs, switchboxes,

and vertical and horizontal routing channels.

In an island-style FPGA, logic functions are typically implemented by means of

multiplexers that have their control and possibly their data inputs connected to

programming bits. By controlling these muxes with the programming bits, different

functional blocks within the CLB can be chosen, depending on the application that is

being mapped onto the FPGA. Logic functions can also be computed in a CLB by

lookup-tables (LUTs), which are small memories that can be written to when the FPGA

is configured. Through the use of muxes and LUTs, FPGAs are capable of implementing

arbitrary logic functions, which have usually no more then 3 or 4 inputs.

2.2. RaPiD

We are using the reconfigurable-pipelined datapath (RaPiD) architecture as a starting

point for the circuits that we will be generating [2]. RaPiD is positioned between

standard FPGAs and ASICs. Its goal is to provide the performance of an ASIC while

 9

maintaining reconfigurability. RaPiD, like an FPGA, achieves reconfigurability through

the use of block components such as memories, adders, multipliers, and pipeline

registers. But, unlike a commercial FPGA, RaPiD is not targeted at random logic, but at

coarse-grained, computationally intensive functions like arithmetic.

Also, RaPiD utilizes a one-dimensional structure to take advantage of the fact that all of

its functional components are word-width computational devices. One of the advantages

of a one-dimensional structure is a reduction in the complexity, especially in the

communications network. Another advantage is the ability to map systolic arrays very

efficiently, leveraging all of the research into the compilation of algorithms onto systolic

arrays. Finally, while a two dimensional RaPiD is possible, most two-dimensional

algorithms can be mapped onto a one-dimensional array through the use of memory

elements.

R
E
G

R
E
G

R
A
M R

E
G

R
E
G

R
A
M

R
A
MR

E
G

R
E
G

A
L
U

A
L
U

Multiplier

Figure 2-2: A block diagram of a basic RaPiD cell. Multiple cells are tiled along a one-

dimensional horizontal axis.

 10

The version of RaPiD that we are benchmarking against, RaPiD I, consists of memories,

ALUs, and multipliers that are all connected by a one-dimensional segmented routing

structure. Data flows through the array along the horizontal axis, with the vertical axis

only being used to provide connections between functional units. To create different

versions of RaPiD that target different application domains, the following changes need

to be made to the array: modify existing or add new functional units, change the width of

the buses or the number of buses present, and modify the routing fabric. Figure 2-2

shows an example of one possible RaPiD cell. Multiple cells are tiled along the

horizontal axis.

2.3. Totem

Reconfigurable hardware is a very efficient bridge that fills the gap between software

implementations running on general-purpose processors and ASIC implementations.

But, standard reconfigurable hardware targets the general case, and therefore must

contain a very generic mix of logic elements and routing resources that are capable of

supporting all types of applications. This creates a device that is very flexible. Yet, if the

application domain is known in advance, optimizations can be made to make a compact

design that is more efficient than commercial FPGAs. While the benefits of creating a

unique FPGA for each application domain are apparent, in practice the design of a new

FPGA architecture for each and every application space would require an increase in

design time and create significant additional design costs. The goal of the Totem project

is the automatic generation of domain-specific FPGAs, giving designers a tool that will

enable them to benefit from a unique FPGA architecture without high cost and a lengthy

design cycle. The automatic generation of FPGAs can be broken into three major parts:

high-level architecture generation, VLSI layout generation, and place-and-route tool

creation. Figure 2-3 shows the dependencies between the major parts of Totem.

 11

Place and
Route

Layout
Masks

P & R
Tools

Bitstream
Format

High Level
Arcitecture
Generator

VLSI
Layout

Generator

Figure 2-3: Totem dependency graph

The high-level architecture generator will receive, as input from the designer, information

about the set of applications that the SOC will target. The architecture generator will

then create a coarse-grained FPGA that consists of block components such as memories,

adders, multipliers, and pipeline registers [7]. Routing resources will then connect these

components to create a one-dimensional structure. Extending Totem to create two-

dimensional arrays of functional units is possible, and will be explored in future research.

TOTEMTOTEM

Figure 2-4: The Totem Project. Totem creates structures that fall between ASICs and
FPGAs.

The final structure that is created will fall somewhere on the scale between ASICs and

commercial FPGAs. Where on this scale the final device will fall depends on how much

 12

information the designer is able to provide in advance about the applications that will run

on the reconfigurable hardware, and how similar those applications are in composition.

If the designer can provide a lot of information, and the applications are similar in

composition, then more hardware and connection points can be removed from the FPGA,

thus generating a more compact and higher performing design. On the other side of the

scale, if the designer does not know which applications will run on the SOC, or the

applications that will run on the SOC are very different, then more reconfigurable

components will be needed to support a wider range of logic, causing the final design to

be more like a commercial FPGA. After the high-level architecture generator creates an

architecture that is able to support the applications that will run on it, this information is

disseminated to both the VLSI layout generator and the place and route tool generator.

The VLSI layout generator has the task of creating a fabrication-ready layout for the

custom device by using the specifications that were provided by the high-level

architecture generator. The layout generator will be able to create a layout for any

possible architecture that the high-level architecture generator is capable of producing.

The difficult task for the layout generator is creating efficient designs, so as not to

squander any performance and area gains that the architecture generator was able to

achieve over general-purpose FPGAs. The layout generator will also need to be flexible

enough to change over time to take advantage of smaller device sizes as process

technology scales down. In addition, the layout generator will need to produce a bit-

stream format that the place and route tools will be able to use to configure the custom

FPGA. Three different methods are being explored to automate the layout process:

template reduction, standard cells, and FPGA-specific circuit generators. Each of these

will be discussed in greater detail later in this thesis.

Once the custom architecture is created, the end user will then need a tool set that will

automatically generate mappings that target the custom array. The place and route tool

generator will create a physical mapping of a user application by using an architecture

description that was created by the high-level architecture generator and the bit-stream

format that was created by the VLSI layout generator. It does this task by the use of a

 13

placement tool, which is based on the simulated annealing algorithm, and a router that is

an adaptation of the Pathfinder algorithm.

3. Prior Work

As the semiconductor industry moves to multi-million gate designs, the need to integrate

reconfigurable logic onto SOCs is being addressed by more and more companies. Most

of the approaches that have been proposed so far include embedding current “off-the-

shelf” FPGA designs onto the SOC. A few companies, though, are creating application

specific reconfigurable cores, but they still do not have a more flexible standard cell

implementation to serve as a safety net in case an application domain does not map onto

an available template. The following is a sampling of the projects on which industry and

academia are currently working.

3.1. Xilinx

Xilinx is still sitting on the fence concerning the use of FPGA blocks in SOCs, but that

stance is shifting. As of June 22nd, Xilinx is in talks with ASIC vendors about licensing

reconfigurable blocks [8]. One obvious candidate to begin embedding Xilinx’s FPGA

architectures into SOCs is IBM Microelectronics, since a cross-licensing agreement

between the two companies already exists. It appears that the FPGAs blocks that will be

provided by Xilinx will be “off-the-shelf” Xilinx cores.

3.2. Actel

Actel has taken a much more aggressive attitude towards embedding FPGA blocks in

SOCs, and is currently offering numerous cores to its ASIC partners through its

VariCore program. Actel’s drive into the embedded FPGA market began on June 5th,

2000 when it acquired intellectual property (IP) innovator, Prosys Technology. To

further strengthen their presence in the SOC market, on May 21st, 2001 Actel created a

partnership with LogicVision to help solve the increasingly complex challenges of SOC

design and test [9].

 14

VariCore logic contains highly efficient embedded FPGA cores (EPGA). EPGA

cores are fabrics of reconfigurable logic that are embedded throughout the SOC, upon

which different applications are mapped. The use of EPGA cores is akin to the “off the

shelf” FPGA approach, but with the ability to partition the EPGA where needed [10].

3.3. LSI & Adaptive Silicon

On June 12th, 2001, after two years of speculation, LSI Logic Corp, with partners

Adaptive Silicon and Ericsson, finally began providing details about its LiquidLogic

programmable core for use in SOCs [11]. LiquidLogic will enable designers to create a

partition on an SOC that can be reprogrammed later to meet changing standards or

customer specifications. Currently, LiquidLogic is only targeted at third-generation

(3G) wireless applications, with consumer electronics, printers, and storage-area-

networks as future targets. LSI has produced cores on its G12 0.18-micron process, with

its Gflex 0.13-micron process due next year.

The LiquidLogic core consists of reconfigurable logic in the form of a Multi-Scale

Array (MSA) and the input-output bank that interfaces with other ASIC circuitry on the

SOC [12]. The smallest reconfigurable unit in a MSA is the Configurable Arithmetic

Logic Units (CALU). The CALU is logically a 4-bit ALU that is created by four

function cells and an ALU controller. To create an MSA, CALU are tiled in 16x16

arrays called hex blocks, with the maximum size being a 4x4 array of hex blocks. Refer

to Figure 3-1 for an example of a MSA. Once the reconfigurable logic is in place,

various soft-cores can be downloaded to it. This approach, like the one proposed by

Actel, consists of tiling existing FPGA cells onto an SOC.

 15

Figure 3-1: Configurable ALU (CALU) [12].

3.4. eASIC

eASIC has an interesting approach to provide limited reconfigurability in an SOC.

Through the use of an ultra-dense cell architecture that is based on commercial FPGAs,

eASIC is capable of producing circuits that have a gate density that is as high as twenty

times that of a conventional FPGA [13][14]. To achieve this density, eASIC has shifted

all routing form the bottom layers of diffusion to the top four layers. In effect, eASIC has

removed most of the programmable interconnect while leaving the CLBs intact. As a

result, eASIC eliminates most of the area overhead associated with FPGAs, creating a

reconfigurable device that is similar to an anti-fuse based design. To route the FPGA,

vias are inserted on the sixth layer of metal in the eight-metal-layer design. This means

that post-fabrication modification of the interconnect in the circuit is not possible.

Reducing the interconnect enables designers to create very fast and efficient structures,

but at the considerable loss of reconfigurability. Even though the interconnect of the

circuit is set after fabrication, the reconfigurable cells can still be mapped to as needed,

and at the loss of logic density, some interconnect reconfigurability can be retained.

 16

3.5. U. B. C. SOC Research Group

The University of British Columbia’s SOC Research Group is currently exploring how to

construct these massive and complex chips. One problem that the UBC SOC Research

Group has focused on is how to create reconfigurable subsystems on SOCs that have a

variety of shapes and sizes [15]. Through the use of a new switch box, the area penalty

for a design with an aspect ratio of 2:1 has been reduced to 1.6% and the performance

penalty has been reduce to only 1.1%, when compared to a design that has a square core.

This relatively minor area and performance penalty pave the way for cores that are

radically different then the typical square cores of today’s FPGAs. This will help ease

the integration of reconfigurable subsystems into the design flow of SOCs.

4. Approach

Current design methodologies for the layout of circuits typically fall under either full-

custom design or standard-cells, with both of these approaches having associated pros

and cons. Producing a full-custom circuit is a labor-intensive task, which requires a very

long and expensive design cycle. However, the resulting circuit that is created is usually

the fastest and the smallest that is possible at that time. Generating a standard cell library

can be a difficult endeavor, and therefore, companies that have extensive libraries

vigorously guard them from competitors. However, once the library is created, the ability

for indefinite reuse and design automation justifies both the time and expense involved.

Unfortunately, circuits that are created using standard cells can be, and often are, larger

and slower than full-custom designs [5]. One of the goals of the Totem project is to

automate the generation of FPGAs that begin to approach the level of performance that

full-custom layouts currently enjoy.

The Totem project has decided to investigate three different approaches to automate the

layout process: standard cells, template reduction, and FPGA-specific circuit generators.

A goal of the Totem project is to decide which of the three approaches should be used in

a particular situation. We may find that one approach is the best for all situations, or that

 17

each approach has compelling characteristics that make it the best choice in a particular

instance. The goal of this thesis is to investigate the standard cell approach. Towards

this end, I present the creation of a standard cell tool flow and the investigation of how

removal of logic from the standard and FPGA specific cell templates compares to a full

custom RaPiD array.

The approach that I am currently investigating is the use of standard cells. I am further

refining the standard cell approach by adding cells to the library that are specific to or

used extensively in FPGA designs, thus creating an optimized library. These include

muxes, demuxes, and SRAM bits among others. I predict that by adding a few critical

cells, the results obtained can be enhanced. The standard cell approach is flexible enough

that various cell libraries can be swapped in and out, as circumstances dictate.

The next implementation that will be evaluated is the use of a feature rich template that

will be a superset of the required logic. Once the actual application domain that the

circuit is expected to operate in is known, logic that is not needed will be eliminated from

the template. This approach has the potential to deliver circuits that are very efficient, as

long as the application domain is supported by the available templates.

The final method that will be considered is the creation of FPGA-specific circuit

generators, which will be akin to memory generators. A custom circuit generator

program will be created that will generate logic within the constraints of the overall

architecture. These three techniques will be explained in detail in the next sections.

4.1. Standard Cell Implementation

The use of template reduction produces very efficient implementations, but it only works

well if the proposed architecture does not deviate significantly from the provided macro

cells. To fill the gaps that exist between templates’ domains, I have implemented a

standard cell method of layout generation. This method will provide Totem with the

ability to create a reconfigurable subsystem for any application domain.

 18

 Using standard cells also creates an opportunity to more aggressively optimize logic than

if templates were used, since the circuit can be built from the ground up. It will also

allow the designer to easily integrate this method into the normal SOC design flow. In

addition, the structures created will retain their reconfigurability since the CLBs and

routing interconnect will be programmable. This is achieved by creating a structural

Verilog representation of the FPGA, and then generating a standard cell layout based

upon that Verilog. Since the Verilog design includes SRAM bits and programmability,

the result is a reconfigurable ASIC.

Unfortunately, this method also inherits all of the drawbacks introduced into a design by

the use of standard cells, including increased circuit size and reduced performance. To

overcome these failings, we will create standard cells that are specific to or often used in

FPGAs. These cells will include LUTs, SRAM bits, muxes, demuxes, and other typical

FPGA components. Since these cells are used extensively in FPGAs, significant

improvement could be attained. In this thesis we compare a standard cell library and a

more comprehensive optimized library.

4.2. Template Reduction

The template reduction method will leverage the performance edge that full-custom

layouts provide, in an automated fashion. This is achieved by using feature rich macro

cells as templates that are reduced and compacted to form the final circuit. Providing

quality macro cells that can cover a wide range of applications is critical to the success of

this method. Therefore, extensive profiling of application domains will be required to

establish what resource mixes are needed for each template.

Figure 4-1 is an example of how a template is reduced. The initial template has

numerous muxes, along with a 2-input LUT and a DFF in each cell. The high-level

architecture generator finds two mappings that must be supported by the circuit to cover

the application domain. All resources that are not needed to support these two mappings

are pruned from the initial template. Therefore, any unused or under-utilized functional

units are removed, like the DFFs, or modified, like the LUT, into an OR gate in cell two.

Also, muxes become wires or have their number of inputs reduced, and wires that are not

 19

needed are removed. The final optimized template is then compacted to further increase

performance.

The potential exists to create designs that achieve a performance level that is at parity

with that of ASICs. But this is only possible if two conditions are met: the applications

that the template needs to support are similar in composition, and the domain that

contains the applications is a subset of the initial template. The first condition implies

that if a template is required to support a wide range of applications, then it will have to

retain most of its reconfigurability. This means that the performance of the final template

will be near that of an FPGA, which, as noted earlier, is usually not optimal. While the

first condition may mean the final template may not perform well, the second condition,

if not met, may mean that the applications specified cannot be mapped onto the initial

template. This could occur, for example, if the initial template does not contain a

multiplier, but the applications that need to run on the template require one.

With these conditions in mind, if the design specified by the architecture generator does

not deviate significantly from the available macro cells, we can use the template

reduction method to automate the layout generation in a fast and efficient manner without

sacrificing performance. Since our initial focus is on a one-dimensional array as our

target FPGA, we will be using variations of the RaPiD architecture as a basis for our

feature rich macro template.

 20

Figure 4-1: Simplified example of template reduction. The initial template (top) is a
modified version of the Xilinx XC6200. The high-level architecture generator has found
two target applications (middle). Logic resources that are not needed, including routing
resources, are removed from the initial template to create the optimized template
(bottom). Notice how both DFFs have been removed, and how the 2LUT in the right cell
is reduced to an OR gate.

 21

4.3. FPGA-specific Circuit Generators

The standard cell design method is very flexible, and it gives the designer the ability to

implement almost any circuit. But one drawback associated with the flexibility of this

design method is its inability to leverage the regularity that exists in FPGAs. By taking

advantage of this regularity, a method may produce designs that are of higher quality than

standard cell based designs.

One way of creating very regular circuits is through the use of generators. Circuit

generators are used to great effect in the memory industry, and it is our belief that we will

be able to achieve similar results. FPGA components, like memories, have well-known,

constrained structures, positioning them as viable candidates for circuit generators.

Circuit generators will be able to create structures that are of higher quality than those

created by the standard cell method. However, unlike the template reduction method, the

circuit generators will be able to handle a wider variety of possible architectures. Thus,

circuit generators will be positioned to fill the gap between the inflexible, but powerful,

template reduction method and the very flexible, but less efficient, standard cell method.

Circuit generators will be implemented to create the parts of the FPGA that inherently

have regularity. This includes generators for the routing channels, LUTs, and muxes and

demuxes for routing interconnect. To create an entire reconfigurable subsystem out of

blocks of logic that circuit generators have created, one would only need to abut the

blocks together. Therefore, all of these generators will be combined to create a method

that is capable of generating a complete reconfigurable subsystem.

4.4. Expectations

Graph 4-1 is an estimate of where we expect each approach to fall in the search space.

The y-axis represents the cost of the architecture as measured by its area, performance,

and power consumption, with a lower value meaning a higher quality design. The x-axis

represents how much a template utilizes the resources present in a superset reference

 22

design. A lower value implies that a template is more like the reference design, and

increasing values represent templates that have more and more gates removed.

Unused Template Resources

Cost

Full Custom

General
Standard Cells

FPGA
Standard Cells

Template
Reduction

0% 90%

Graph 4-1 This graph shows our initial guess of the cost of a given design vs. the
utilization of template resources, defined by how many resources a given template
contains, when compared to a reference macro cell. A lower cost design is preferable.

5. Experimental Setup and Procedure

5.1. Setup

Synopsys

To retain as much flexibility as possible in our standard cell implementation, behavioral

Verilog representations were created for all of the RaPiD components. Therefore,

Synopsys was used to synthesize the behavioral Verilog to produce structural Verilog that

uses our standard cells [16]. This will enable us to swap out standard cell libraries, since

 23

we would only need to re-synthesize the behavioral Verilog with a new library file

generated for the new standard cell library.

Silicon Ensemble

Silicon Ensemble (SE) is a place-and-route tool that is part of the Cadence Envisia Tool

Suite [17]. SE is capable of routing multiple layers of metal, including over-the-cell

routing. SE receives as input a file in the library exchange format (LEF) of the standard

cells and a Verilog netlist representation of the circuit that will be placed and routed. The

final output of the tool is a design exchange format (DEF) file representation of the

placed and routed array that is ready to be read back into Cadence. One powerful feature

of SE is its ability to run from macro files, minimizing the amount of user intervention.

SE will be used to place-and-route all circuits that are created using the standard cells.

Note that SE should not be confused with the Totem place-and-route tool, since Totem’s

place-and-route tool maps netlists onto physical designs that are created by SE.

Cadence

Cadence was chosen as our schematic and layout editor because it is a very robust tool set

that is widely used in industry [18]. Cadence also has tools for every aspect of the design

flow. We are currently using the TSMC 0.25micron design rules for all layouts created

in Cadence. As technology scales, we will be able to scale our layouts down without a

loss of quality in our results, since all designs have been laid-out in the same technology.

Therefore, any performance increases that could be achieved by scaling down to a more

aggressive technology will be felt across all designs.

RaPiD

The RaPiD components that were used in benchmarking were laid out by Carl Ebeling’s

group for the RaPiD I powertest. All circuits were laid out using the Magic Layout

Editor for the HP 0.35micron process. The designs were ported over to Cadence and the

TSMC 0.25micron process.

 24

Tanner Standard Cells

The choice of a standard cell library was based upon the need to find an industrial

strength library that has been laid-out for the TSMC 0.25micron process. This led us to

the Tanner standard cell library that is available through the MOSIS prototyping

production service [19]. This library has thirty-two basic blocks at its core, which can

then be applied to produce any combination of the 1400+ functional blocks that Tanner

provides in its Tanner SchemLib symbol library.

Epic Tools

We are using the Epic Tool Suite to analyze the performance and power consumption of

all of the circuits that have been created. Synopsys has developed the Epic Tool Suite as

a robust circuit simulator that enables designers to verify circuit performance at both pre-

layout and post-layout without fabrication of the design [20]. The Epic tools use a

version of the SPICE engine for circuit simulation, and they also use the SPICE netlist

format as circuit input and the SPICE BSIM3V3 as a transistor model format. The two

tools that we will be mainly using from the tool suite are Pathmill and Powermill.

Pathmill

Pathmill is a transistor-level critical path and timing verifier for full chip circuit designs

[21]. Pathmill can handle multiple circuit design styles, including static CMOS, domino

logic, and pass-gate logic. Through the use of the BSIM3V3 transistor models, Pathmill

is able to provide transistor-level delay calculations that are equivalent to SPICE in

accuracy. We will use Pathmill to generate the timing numbers for the critical paths of

all circuit designs.

Powermill

Powermill is a transistor-level power simulator and analyzer for full chip circuit designs

[22]. Powermill is capable of running transistor-level simulations at high accuracy 10 to

1000 times faster than SPICE, through the use of the BSIM3V3 transistor models. By

using Powermill, we will be able to estimate the power consumption of all circuit

designs.

 25

5.2. Procedure

The experimental procedure was driven by our use of RaPiD as a starting point, and the

use of the tools that were mentioned in the experimental setup section. Figure 5-1 shows

the tool flow. While there is still considerable manual intervention involved in each step

of the flow, our eventual goal is a truly automated process.

Synopsys

Silicon
Ensemble

Cadence

PathMill PowerMill

Results

Behavioral
Verilog

Structual
Verilog

Standard
Cell Library

LEF File

DEF File

HSPICE
Netlist

Standard
Cell Library

File

Figure 5-1: Tool-Flow for automating the creation of standard cell templates.

 26

We first imported the RaPiD I powertest components from the Magic Layout Editor

using a HP 0.35micron process to Cadence using a TSMC 0.25micron process. To do

this, the files were first exported out of the Magic Layout Editor in a CIF file. We then

proceeded to modify these CIF files to force compatibility with the TSMC 0.25micron

process. Once this was done, the files were then imported into Cadence, and all

remaining design errors were corrected by hand. Schematic and Verilog representation

of the RaPiD components were also created.

The next step was to find an appropriate standard cell library. As stated above, we settled

on the Tanner Standard Cell library. Even though the library was targeted at the TSMC

0.25micron process, the layouts were generated using the more aggressive deep sub-

micron version of the process with a lambda of 0.12microns. However, we are currently

using the deep-micron version of the TSMC 0.25micron process with a lambda of

0.15microns. This caused some minor problems that were cleaned up by hand using pre-

import scripts and some post-import modifications. A library information file

representation of the Tanner Cells was also created for Synopsys.

To generate the standard cell version of RaPiD, the tool-flow shown in figure 5 was used.

A behavioral Verilog representation of RaPiD was first created. Synopsys was then used

to synthesize this Verilog file to create a structural Verilog file that used the Tanner

standard-cells as modules. With this structural Verilog, SE was able to then place-and-

route the entire design. The utilization level of SE, which is an indication of how dense

cells are packed in the placement array, was increased until the design could not be

routed. For most designs this level was set to 90%. The aspect ratio of the chip was also

adjusted from 1, which is a square, to 2, which is a rectangle that is twice as long as it is

high, to find the smallest layout. For all designs, an aspect ratio of 1 yielded the smallest

layout. Once SE was done creating the layout, the EPIC tool-set was used to evaluate the

quality of the circuit that was created.

 27

6. Results

Graph 4-1 above shows what we initially expected. Namely, that the full custom design

would cost appreciably less than either version of the standard cells. But as logic is

reduced from the standard cell templates, the difference in cost becomes minimal. We

also expect that the FPGA standard cells would outperform the general standard cells.

The following data show our actual results.

6.1. Test Environment

The tool-flow and procedure were discussed in detail in section 5.1 and 5.2 above. The

tools were run on nine Sun Ultra Five workstations, four machines with 512MB of

memory and 5 machines with 384MB of memory. The runtime of the entire tool-flow to

generate each template was approximately six hours.

As a template is customized towards an application domain, gains in performance and

reductions in power and area are possible. To test this, both the Tanner and FPGA

standard cell templates were reduced to reflect possible design scenarios. The scenarios

included reducing the ALU to and adder, reducing the word size, reducing the number of

pipeline registers, reducing the ALU size, and all of the associated cross products. Table

6-1 below describes the eight different designs that were created. These designs were

further implemented with 8 buses, 11 buses, and 14 buses for both the Tanner and FPGA

standard cells. Also, all designs were created with both an eight and a sixteen bit word

size.

 28

Template Description

Not_reduced Full template
PA Removed pipeline registers after the second ALU
PB Removed pipeline registers before the first ALU
ALU Converted the ALUs to adders

PB_PA
Removed pipeline registers before the first ALU and after
the second ALU

PA_ALU
Removed pipeline registers after the second ALU and
reduced the ALUs to adders

PB_ALU
Removed pipeline registers before the first ALU and
reduced the ALUs to adders

PB_PA_ALU
Reduced the ALUs to adders and removed pipeline
registers before the first ALU and after the second ALU

Table 6-1 Template nomenclature and description.

6.2. Area

Graph 6-1 and Graph 6-2 and Table 6-2 through Table 6-8 show the area in microns2 of

full custom RaPiD, the general standard-cell templates, and the FPGA standard cell

templates. The area of full custom RaPiD is smaller than all standard cell templates in all

of the 16 bit cases. The 8 bit templates have lower area then full custom RaPiD about half

the time. Also, the FPGA standard cell templates are smaller than the Tanner standard

cell templates overall.

 29

Area Comparison of 16 Bit Templates to Full Custom RaPiD

0

100000

200000

300000

400000

500000

600000

700000

N
ot

 R
ed

uc
ed P
A

P
B

A
LU

P
B

_
P

A

P
A

_A
LU

P
B

_A
LU

P
B

_P
A

_A
LU

Unused Template Resources

A
re

a
(m

ic
ro

ns
2)

14 Buses FPGA SC
11 Buses FPGA SC
8 Buses FPGA SC
14 Buses SC
11 Buses SC
8 Buses SC
Full Custom RaPiD

Graph 6-1 This graph shows the area of full custom RaPiD as well as all of the different
versions of the 16 bit templates vs. unused template resources. The x-axis is a list of each
version of template, with the versions that do not have any logic units removed from
them on the left, ranging to versions that have an increasing amount of logic removed
from them.

 30

Area Comparison of 8 Bit Templates to Full Custom Rapid

0

50000

100000

150000

200000

250000

300000

350000

N
ot

 R
ed

uc
ed P
A

P
B

A
LU

P
B

_
P

A

P
A

_A
LU

P
B

_A
LU

P
B

_P
A

_A
LU

Unused Template Resources

A
re

a
(m

ic
ro

ns
2
)

14 Buses FPGA SC
11Buses FPGA SC
8 Buses FPGA SC
14 Buses SC
11 Buses SC
8 Buses SC
Full Custom RaPiD

Graph 6-2 This graph shows the area of full custom RaPiD as well as all of the different
versions of the 8 bit templates vs. unused template resources. The x-axis is a list of each
version of template, with the versions that do not have any logic units removed from
them on the left, ranging to versions that have an increasing amount of logic removed
from them.

 31

Full Custom RaPiD Area Comparison
 Area

(microns2)
% Area Improvement

over 14 Buses FPGA SC
% Area Improvement

over 14 Buses Tanner SC

Full Custom RaPiD 210,577.050 57.7 63.6

Table 6-2 Area of full custom RaPiD vs. the 14 buses not reduced FPGA standard cell
template and the 14 buses not reduced Tanner standard cell template.

16 Bit 8 Buses Area Comparison

Templates

%
Utilization

Area of
FPGA SC
(microns2)

Area of
Tanner SC
(microns2)

% Area
Improvement of

FPGA vs. Tanner
Not_reduced 90 383,395.680 437,179.680 12.3

PA 90 331,763.040 380,440.800 12.8

PB 90 330,389.280 370,863.360 10.9

ALU 89/90 304,702.560 355,687.200 14.3

PB_PA 90 280,052.640 316,068.480 11.4

PA_ALU 90 250,983.360 296,136.000 15.2

PB_ALU 90 249,791.040 293,544.000 14.9

PB_PA_ALU 90 197,134.560 237,362.400 16.9

Table 6-3 Area comparison of Tanner standard cell templates vs. FPGA standard cell
templates with 16 bits and 8 buses. Note that the ALU FPGA SC template was generated
with 89% utilization while the Tanner standard cell was generated at 90% utilization.
Utilization refers to the effort level of Silicon Ensemble to densely place cells.

16 Bit 11 Buses Area Comparison

Templates

%
Utilization

Area of
FPGA SC
(microns2)

Area of
Tanner SC
(microns2)

% Area
Improvement of

FPGA vs. Tanner
Not_reduced 90 480,245.760 557,111.520 13.8

PA 90 423,792.000 496,173.600 14.6

PB 90 409,082.400 478,586.880 14.5

ALU 90 396,135.360 469,476.000 15.6

PB_PA 85/90 380,440.800 412,140.960 7.7

PA_ALU 90 343,621.440 412,140.960 16.6

PB_ALU 90 329,015.520 394,632.000 16.6

PB_PA_ALU 90 273,093.120 333,136.800 18.0

Table 6-4 Area comparison of Tanner standard cell templates vs. FPGA standard cell
templates with 16 bits and 11 buses. Note that the PB_PA FPGA SC template was
generated with 85% utilization while the Tanner standard cell was generated at 90%
utilization. Utilization refers to the effort level of Silicon Ensemble to densely place
cells.

 32

16 Bit 14 Buses Area Comparison

Templates

%
Utilization

Area of
FPGA SC
(microns2)

Area of
Tanner SC
(microns2)

% Area
Improvement of

FPGA vs. Tanner
Not_reduced 90 497,858.400 577,886.400 13.8

PA 90 449,167.680 523,596.960 14.2

PB 90 425,347.200 496,173.600 14.3

ALU 90 420,681.600 497,858.400 15.5

PB_PA 85/90 378,963.360 437,179.680 13.3

PA_ALU 90 366,508.800 438,760.800 16.5

PB_ALU 90 345,021.120 412,140.960 16.3

PB_PA_ALU 90 293,544.000 357,112.800 17.8

Table 6-5 Area comparison of Tanner standard cell templates vs. FPGA standard cell
templates with 16 bits and 14 buses. Note that the PB_PA FPGA SC template was
generated with 85% utilization while the Tanner standard cell was generated at 90%
utilization. Utilization refers to the effort level of Silicon Ensemble to densely place
cells.

8 Bit 8 Buses Area Comparison

Templates

%
Utilization

Area of
FPGA SC
(microns2)

Area of
Tanner SC
(microns2)

% Area
Improvement of

FPGA vs. Tanner
Not_reduced 90 198,197.280 220,125.600 10.0

PA 90 170,890.560 190,252.800 10.2

PB 90 169,905.600 189,216.000 10.2

ALU 90 152,565.120 178,378.200 14.5

PB_PA 90 143,791.200 158,170.320 10.0

PA_ALU 90 127,020.960 146,512.800 13.3

PB_ALU 90 127,020.960 145,605.600 12.8

PB_PA_ALU 90 98,845.920 115,305.120 14.3

Table 6-6 Area comparison of Tanner standard cell templates vs. FPGA standard cell
templates with 16 bits and 8 buses. Utilization refers to the effort level of Silicon
Ensemble to densely place cells.

 33

8 Bit 11 Buses Area Comparison

Templates

%
Utilization

Area of
FPGA SC
(microns2)

Area of
Tanner SC
(microns2)

% Area
Improvement of

FPGA vs. Tanner
Not_reduced 90 240,861.600 281,322.720 14.4

PA 90 217,896.500 249,791.000 12.8

PB 90 208,474.560 239,695.200 13.0

ALU 90 198,197.300 237,362.400 16.5

PB_PA 90 181,452.960 209,563.200 13.4

PA_ALU 90 170,890.560 207,385.920 17.6

PB_ALU 90 162,557.280 197,134.560 17.5

PB_PA_ALU 90 137,039.040 168,920.640 18.9

Table 6-7 Area comparison of Tanner standard cell templates vs. FPGA standard cell
templates with 16 bits and 11 buses. Utilization refers to the effort level of Silicon
Ensemble to densely place cells.

8 Bit 14 Buses Area Comparison

Templates

%
Utilization

Area of
FPGA SC
(microns2)

Area of
Tanner SC
(microns2)

% Area
Improvement of

FPGA vs. Tanner
Not_reduced 90 257,657.760 293,544.000 12.2

PA 90 227,525.760 262,530.720 13.3

PB 90 217,896.480 250,983.360 13.2

ALU 90 208,474.560 248,598.720 16.1

PB_PA 90 190,252.800 220,125.600 13.6

PA_ALU 90 180,442.080 219,011.040 17.6

PB_ALU 90 171,875.520 207,385.920 17.1

PB_PA_ALU 90 145,605.600 178,420.320 18.4

Table 6-8 Area comparison of Tanner standard cell templates vs. FPGA standard cell
templates with a word size of 14 bits. Utilization refers to the effort level of Silicon
Ensemble to densely place cells.

.

One conclusion that can be drawn from these results is that full custom RaPiD is smaller

then almost all of the reduced templates. But, as the application domain narrows, the

standard cell methods create compelling designs. Also, with a minimal investment in

resources, the creation of a few FPGA specific cells greatly enhances the quality of the

 34

designs generated, with reductions in area as high as 18.9%. Therefore, an optimized

standard cell library should be considered over a general standard cell library in all cases.

6.3. Performance

As described in section 5.1, performance numbers were generated using PathMill. The

following tables present the performance numbers for full custom RaPiD and all of the

templates. To measure performance, we have listed the critical paths of each design

defined in nanoseconds. The number of stages is the number of equivalent inverter

delays the critical path equals. Also listed is the ratio of full custom RaPiD’s longest

delay to each template’s longest delay. A value greater than one represents a template

that has a shorter critical path than full custom RaPiD.

 35

16 Bit 8 Buses Performance Comparison to Full Custom RaPiD
 Longest Delay

(ns)
Number of Stages

FC_RaPiD 8.875 128

FPGA Standard Cells
Template

Longest
Delay
(ns)

Number
of Stages

Ratio of FC RaPiD Longest
Delay/FPGA SC Longest

Delay

Not_reduced 12.782 132 0.69
PA 12.197 126 0.73

PB 11.817 123 0.75

ALU (89%) 8.960 98 0.99

PB_PA 11.220 117 0.79

PA_ALU 8.347 92 1.06

PB_ALU 7.928 88 1.12
PB_PA_ALU 7.335 82 1.21

Tanner Standard Cells

Template

Longest
Delay
(ns)

Number
of Stages

Ratio of FC RaPiD Longest
Delay/Tanner SC Longest

Delay

Not_reduced 12.837 157 0.69

PA 12.117 143 0.73

PB 12.701 149 0.70

ALU 9.572 126 0.93
PB_PA 10.964 129 0.81

PA_ALU 8.895 114 1.00

PB_ALU 8.479 110 1.05

PB_PA_ALU 7.793 98 1.14

Table 6-9 Performance numbers for both versions of templates with 16 bits and 8 buses.
Note that PathMill would not run PB.

 36

16 Bit 11 Buses Performance Comparison to Full Custom RaPiD
 Longest Delay

(ns)
Number of Stages

FC_RaPiD 8.875 128

FPGA Standard Cells
Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/FPGA SC Longest

Delay

Not_reduced 13.836 140 0.64
PA 13.247 134 0.67

PB 12.681 131 0.70

ALU 9.990 106 0.89

PB_PA (85%) 12.076 123 0.73

PA_ALU 9.407 100 0.94

PB_ALU 8.821 94 1.01
PB_PA_ALU 8.236 88 1.08

Tanner Standard Cells

Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/Tanner SC Longest

Delay

Not_reduced 13.963 181 0.64

PA 13.254 169 0.67

PB 12.644 161 0.70

ALU 10.774 150 0.82
PB_PA 11.920 149 0.74

PA_ALU 10.100 138 0.88

PB_ALU 9.474 130 0.94

PB_PA_ALU 8.775 118 1.01

Table 6-10: Performance numbers for both versions of templates with 16 bits and 11
buses.

 37

16 Bit 14 Buses Performance Comparison to Full Custom RaPiD
 Longest Delay

(ns)
Number of Stages

FC_RaPiD 8.875 128

FPGA Standard Cells
Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/FPGA SC Longest

Delay

Not_reduced 13.730 144 0.65
PA 13.125 138 0.68

PB 12.599 133 0.70

ALU 9.889 110 0.90

PB_PA (85%) 12.029 127 0.74

PA_ALU 9.274 104 0.96

PB_ALU 8.701 98 1.02
PB_PA_ALU 8.134 92 1.09

Tanner Standard Cells

Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/Tanner SC Longest

Delay

Not_reduced 14.022 181 0.63

PA 13.297 169 0.67

PB 12.701 161 0.70

ALU 10.921 150 0.81
PB_PA 12.012 149 0.74

PA_ALU 10.144 138 0.87

PB_ALU 9.504 130 0.93

PB_PA_ALU 9.159 118 0.97

Table 6-11: Performance numbers for both versions of templates with 16 bits and 14
buses.

 38

8 Bit 8 Buses Performance Comparison to Full Custom RaPiD
 Longest Delay

(ns)
Number of Stages

FC_RaPiD 8.875 128

FPGA Standard Cells
Template

Longest
Delay
(ns)

Number
of Stages

Ratio of FC RaPiD Longest
Delay/FPGA SC Longest

Delay

Not_reduced 10.973 116 0.81
PA 10.337 110 0.86

PB 9.980 107 0.89

ALU 7.621 82 1.16

PB_PA 9.381 101 0.95

PA_ALU 7.033 76 1.26

PB_ALU 6.596 72 1.35
PB_PA_ALU 6.005 66 1.48

Tanner Standard Cells

Template

Longest
Delay
(ns)

Number
of Stages

Ratio of FC RaPiD Longest
Delay/Tanner SC Longest

Delay

Not_reduced 12.121 135 0.73

PA 11.077 127 0.80

PB 10.617 124 0.84

ALU 8.305 110 1.07
PB_PA 10.049 101 0.88

PA_ALU 7.591 98 1.17

PB_ALU 7.204 94 1.23

PB_PA_ALU 6.513 82 1.36

Table 6-12 Performance numbers for both versions of templates with 8 bits and 8 buses.
Note that PathMill would not run Tanner SC PB_PA.

 39

8 Bit 11 Buses Performance Comparison to Full Custom RaPiD

 Longest Delay
(ns)

Number of Stages

FC_RaPiD 8.875 128

FPGA Standard Cells
Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/FPGA SC Longest

Delay

Not_reduced 11.925 128 0.74
PA 10.337 110 0.86

PB 10.743 115 0.82

ALU 8.562 94 1.04

PB_PA 10.158 111 0.87

PA_ALU 7.966 88 1.11

PB_ALU 7.398 82 1.20
PB_PA_ALU 6.799 76 1.31

Tanner Standard Cells

Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/Tanner SC Longest

Delay

Not_reduced 13.056 164 0.68

PA 12.236 151 0.73

PB 11.600 144 0.77

ALU 9.484 134 0.94
PB_PA 10.881 131 0.82

PA_ALU 8.784 122 1.01

PB_ALU 8.179 114 1.09

PB_PA_ALU 7.23 100 1.23

Table 6-13 Performance numbers for both versions of templates with 8 bits and 11 buses.
Note that PathMill would not run FPGA SC PA, ALU, PB_PA, and Tanner SC PA.

 40

8 Bit 14 Buses Performance Comparison to Full Custom RaPiD
 Longest Delay

(ns)
Number of Stages

FC_RaPiD 8.875 128

FPGA Standard Cells
Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/FPGA SC Longest

Delay

Not_reduced 12.017 124 0.74
PA 10.829 120 0.82

PB 10.834 115 0.82

ALU 8.373 100 1.06

PB_PA 10.251 95 0.87

PA_ALU 8.093 84 1.10

PB_ALU 7.501 78 1.18
PB_PA_ALU 6.918 72 1.28

Tanner Standard Cells

Template

Longest
Delay
(ns)

Number
of

Stages

Ratio of FC RaPiD Longest
Delay/Tanner SC Longest

Delay

Not_reduced 13.135 164 0.68

PA 12.27 150 0.72

PB 11.698 144 0.76

ALU 9.521 134 0.93
PB_PA 10.981 131 0.81

PA_ALU 8.841 122 1.00

PB_ALU 8.217 114 1.08

PB_PA_ALU 7.540 102 1.18

Table 6-14 Performance numbers for both versions of templates with 8 bits and 14 buses.
Note that PathMill would not run FPGA SC PB and Tanner SC PB_PA_ALU.

The performance results from Table 6-9 through Table 6-11 reflect what one would

expect to see based upon the difference in area of each template, with a few exceptions.

While there are only two 16-bit templates that have a smaller area than full custom

RaPiD, there are eight FPGA standard cell templates and three Tanner standard cell

templates that have a shorter critical path. Also, the 8 bit templates routinely perform

better then full custom RaPiD. This is a very promising result, and can be attributed to

SE’s aggressive place and route algorithms.

 41

6.4. Power Utilization
As described in section 5.1, power utilization numbers were generated using PowerMill.

The following tables present the power utilization numbers for full custom RaPiD and all

of the templates. To measure power utilization, we have listed the average vdd and gnd

current of each design defined in micro-amps. Also listed is the ratio of full custom

RaPiD’s power utilization to each template’s power utilization for both vdd and gnd. A

value greater than one represents a template that has a lower average current.

 42

16 Bit 8 Buses Power Comparison to Full Custom RaPiD
 GND Average Current

(µµA)
VDD Average Current

(µµA)
FC_RaPiD 6.37e+04 -6.37e+04

FPGA Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 6.64e+02 95.93 -6.77e+02 94.09

PA 6.68e+02 95.36 -6.80e+02 93.68

PB 8.41e+02 75.74 -8.54e+02 74.59

ALU 6.59e+02 96.66 -6.71e+02 94.93

PB_PA (85%) 8.10e+02 78.64 -8.23e+02 77.40
PA_ALU 6.73e+02 94.65 -6.85e+02 92.99

PB_ALU 8.32e+02 76.56 -8.44e+02 75.47

PB_PA_ALU 8.14e+02 78.62 -8.25e+02 77.21
Tanner Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 6.96e+03 9.15 -6.96e+03 9.15

PA 7.32e+03 8.70 -7.32e+03 8.70
PB ND ND ND ND

ALU 4.49e+03 14.19 -4.49e+03 14.19

PB_PA 5.77e+03 11.04 -5.77e+03 11.04

PA_ALU 4.17e+03 15.28 -4.17e+03 15.28

PB_ALU 3.74e+03 17.03 -3.74e+03 17.03

PB_PA_ALU 3.21e+03 19.84 -3.21e+03 19.84

Table 6-15: Power numbers for both versions of templates with 16 bits and 8 buses.
Note that PowerMill would not run PB.

 43

16 Bit 11 Buses Power Comparison to Full Custom RaPiD
 GND Average Current

(µµA)
VDD Average Current

(µµA)
FC_RaPiD 6.37e+04 -6.37e+04

FPGA Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 1.61e+03 39.57 -1.63e+03 39.08

PA 6.62e+03 9.62 -6.63e+03 9.61

PB 7.85e+03 8.11 -7.87e+03 8.09

ALU 2.28e+03 27.94 -2.30e+03 27.70

PB_PA (85%) 4.42e+03 14.41 -4.44e+03 14.35
PA_ALU 2.49e+03 25.58 -2.51e+03 25.38

PB_ALU 1.62e+03 39.32 -1.64e+03 38.84

PB_PA_ALU 1.78e+03 35.79 -1.80e+03 35.39
Tanner Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 1.14e+03 55.88 -1.14e+03 55.88

PA 1.12e+03 56.88 -1.12e+03 56.88
PB 6.15e+03 10.36 -6.15e+03 10.36

ALU 4.60e+03 13.85 -4.60e+03 13.85

PB_PA 5.05e+03 12.61 -5.05e+03 12.61

PA_ALU 3.37e+03 18.90 -3.37e+03 18.90

PB_ALU 3.99e+03 15.96 -3.99e+03 15.96

PB_PA_ALU 1.56e+03 40.83 -1.56e+03 40.83

Table 6-16: Power numbers for both versions of templates with 16 bits and 11 buses.

 44

16 Bit 14 Buses Power Comparison to Full Custom RaPiD
 GND Average Current

(µµA)
VDD Average Current

(µµA)
FC_RaPiD 6.37e+04 -6.37e+04

FPGA Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 8.90e+02 71.57 -9.08e+02 70.15

PA 8.50e+02 74.94 -8.68e+02 73.39

PB 3.65e+03 17.45 -3.66e+03 17.40

ALU 8.63e+02 73.81 -8.81e+02 72.30

PB_PA (85%) 6.05e+03 10.53 -6.06e+03 10.51
PA_ALU 8.77e+02 72.63 -8.96e+02 71.09

PB_ALU 8.80e+02 72.39 -8.99e+02 70.86

PB_PA_ALU 8.93e+02 71.33 -9.12e+02 69.85
Tanner Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 1.18e+03 53.98 -1.18e+03 53.98

PA 1.17e+03 54.44 -1.17e+03 54.44
PB 1.21e+03 52.64 -1.21e+03 52.64

ALU 1.14e+03 55.88 -1.14e+03 55.88

PB_PA 6.80e+03 9.37 -6.80e+03 9.37

PA_ALU 1.18e+03 53.98 -1.11e+03 53.98

PB_ALU 3.41e+03 18.68 -3.41e+03 18.68

PB_PA_ALU 2.58e+03 24.69 -2.58e+03 24.69

Table 6-17: Power numbers for both versions of templates with 16 bits and 14 buses.

 45

8 Bit 8 Buses Power Comparison to Full Custom RaPiD
 GND Average Current

(µµA)
VDD Average Current

(µµA)
FC_RaPiD 6.37e+04 -6.37e+04

FPGA Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 3.45e+02 184.64 -3.51e+02 181.48

PA 3.31e+02 192.45 -3.38e+02 188.46

PB 4.06e+02 156.90 -4.12e+02 154.61

ALU 3.43e+02 185.71 -3.49e+02 182.52

PB_PA 4.09e+02 155.75 -4.15e+02 153.49
PA_ALU 3.33e+02 191.29 -3.40e+02 187.35

PB_ALU 3.98e+02 160.05 -4.04e+02 157.67

PB_PA_ALU 4.16e+02 153.13 -4.22e+02 150.95
Tanner Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 9.78e+03 6.51 -9.78e+03 6.51

PA 3.16e+03 20.16 -3.16e+03 20.16
PB 3.27e+03 19.48 -3.27e+03 19.48

ALU 2.29e+03 27.82 -2.29e+03 27.82

PB_PA ND ND ND ND

PA_ALU 1.84e+03 34.62 -1.84e+03 34.62

PB_ALU 1.76e+03 36.19 -1.76e+03 36.19

PB_PA_ALU 1.64e+03 38.84 -1.64e+03 38.84

Table 6-18: Power numbers for both versions of templates with 8 bits and 8 buses. Note
that PowerMill would not run Tanner SC PB_PA.

 46

8 Bit 11 Buses Power Comparison to Full Custom RaPiD
 GND Average Current

(µµA)
VDD Average Current

(µµA)
FC_RaPiD 6.37e+04 -6.37e+04

FPGA Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 2.39e+03 26.54 -2.40e+03 26.54

PA ND ND ND ND

PB 1.81e+03 35.19 -1.82e+03 35.00

ALU ND ND ND ND

PB_PA ND ND ND ND
PA_ALU 4.24e+02 150.24 -4.33e+02 147.11

PB_ALU 1.33e+03 47.89 -1.33e+03 47.89

PB_PA_ALU 4.09e+02 155.75 -4.19e+02 152.03
Tanner Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 5.75e+02 110.78 -5.75e+02 110.78

PA ND ND ND ND
PB 3.71e+03 17.17 -3.71e+03 17.17

ALU 2.12e+03 30.05 -2.12e+03 30.05

PB_PA 5.98e+02 106.52 -5.98e+02 106.52

PA_ALU 1.60e+03 39.81 -1.60e+03 39.81

PB_ALU 6.01e+02 105.99 -6.01e+02 105.99

PB_PA_ALU 1.29e+03 49.38 -1.29e+03 49.38

Table 6-19: Power numbers for both versions of templates with 8 bits and 11 buses.
Note that PowerMill would not run FPGA SC PA, PB, and PB_PA, and Tanner SC PA.

 47

8 Bit 14 Buses Power Comparison to Full Custom RaPiD
 GND Average Current

(µµA)
VDD Average Current

(µµA)
FC_RaPiD 6.37e+04 -6.37e+04

FPGA Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 2.39e+03 26.65 -2.40e+03 26.54

PA 3.32e+02 191.87 -3.38e+02 191.87

PB ND ND ND ND

ALU 4.42e+02 144.12 -4.51e+02 144.12

PB_PA 4.43e+02 143.79 -4.52e+02 143.79
PA_ALU 8.08e+02 78.84 -8.17e+02 77.96

PB_ALU 8.63e+02 73.81 -8.73e+02 72.96

PB_PA_ALU 4.55e+02 140.00 -4.64e+02 152.03
Tanner Standard

Cell
Template

GND
Average
Current

(µA)

Ratio of Full
Custom

RaPiD GND
Average
Current/

FPGA SC
Template

VDD Average
Current
(µA)

Ratio of Full
Custom RaPiD
GND Average
Current/ FPGA

SC
Template

Not_reduced 5.75e+02 110.78 -5.75e+02 110.78

PA 5.71e+02 111.56 -5.71e+02 111.56
PB 5.92e+02 107.60 -5.92e+02 107.60

ALU 5.93e+02 107.42 -5.93e+02 107.42

PB_PA 6.34e+02 100.47 -6.34e+02 106.52

PA_ALU 1.75e+03 36.40 -1.75e+03 39.81

PB_ALU 6.03e+02 105.64 -6.03e+02 105.64

PB_PA_ALU 1.56e+03 40.83 -1.56e+03 40.83

Table 6-20: Power numbers for both versions of templates with 8 bits and 14 buses.
Note that PowerMill would not run FPGA SC PB.

The power results from Table 6-16 through Table 6-20 are very compelling. The full

custom RaPiD consumes on average an order of magnitude more power than any of the

 48

templates. While the Tanner and FPGA standard cells were not developed as low power

libraries, they consistently consume less power. This was unexpected. One possible

explanation is the extensive use of poly-silicon in the full customs RaPiD design as a

means of routing signals, leading to high parasitic capacitance. Also, since RaPiD is

geared to high performance, a larger number of n-type transistors were used then p-type

transistors. This design choice meant that keeper-gates were needed to pull up the

network, which could further increase the consumption of power. Further investigation is

required to come to a completely satisfactory answer.

7. Conclusions
As SOCs move into the mainstream, there is little doubt that FPGAs will play a major

role in providing the post-fabrication modification that these devices will require. This

presents some interesting opportunities for creating high performance FPGAs that are

targeted at specific application domains, instead of random logic. To implement these

new architectures in a timely fashion, automation of the design flow is a necessity.

Table 7-1 summarizes the results of automating the design through the use of standard

cells by providing an easy reference for choosing a particular optimization to reach

specific design goal. For example, if a design called for a reduction in area, and you do

not need the functions that an adder can provide, than modifying ALUs to Adders would

give you a 30% reduction in area, 40% increase in performance, and reduce power

consumption by 40%.

 49

 Improvements
Basic Optimization Area Performance Power

16 Bit to 8 Bit 2.0x 1.1x 1.1x
ALU to Adder 1.3x 1.4x 1.4x
Not Reduced to PA 1.1x 1.1x 0.8x
Not Reduced to PB 1.2x 1.1x 0.4x
Tanner SC to FPGA SC 1.2x 1.0x 2.0x

SC to Full Custom 1.3x 1.2x 0.03x

Table 7-1 Benefit gained by implementing a design for optimization.

In this work we have shown that automation of layout generation for domain specific

FPGAs is possible. We have further shown that as a target application domain narrows,

the savings gained from removing unused logic from a design enables a standard cell

method of layout generation to approach that of a full custom layout in area and

performance, and in some cases surpass them. Finally, by adding to a standard cell

library a few key cells that are used extensively in FPGAs, great improvements can be

achieved.

8. Future Work

In the near future, we would like to replicate our work using various standard cell

libraries. For example, a low power library would be especially beneficial, since low

power consumption is becoming increasingly important as technology scales. We would

also like to truly automate all of the tools, removing any manual intervention.

In addition, we are going to begin exploring the template reduction method of automating

layout. We believe that this method would further improve upon the results presented

and have the potential to create designs that achieve a performance level that is near

ASICs.

Finally, we will begin to develop circuit generators to create designs that are of higher

quality than ones created by the standard cell method. Therefore, we would further close

the gap between our generated architectures and ASICs.

 50

9. Acknowledgments

The author would first like to thank Prof. Herman Schmit for proposing the construction

of FPGAs from standard cells. The author would also like to thank the RaPiD team at the

CS department of the University of Washington, especially Chris Fisher who created the

layout of the original RaPiD I. The author would finally like to thank Larry McMurchie

who spent countless hours getting all of the tools in the tool-flow up and running, and

Joan Phillips for all of her support.

This research was funded by grants from the National Science Foundation (NSF) and by

the Defense Advanced Research Projects Agency (DARPA).

 51

10. Appendix

10.1. Base Verilog Code of RaPiD
//
//ALU
//
module alu(Ina, Inb, Cin, Arith, Function3, Function2, Function1, Function0, Cout, Overflow, Zero, Sign,
Out);
input [15:0] Ina;
input [15:0] Inb;
input Cin;
input Arith;
input Function3;
input Function2;
input Function1;
input Function0;
output Cout;
output Overflow;
output Zero;
output Sign;
output [15:0] Out;
reg Cout, Overflow, Zero, Sign;
reg [15:0] Out;

always @(Cin or Ina or Inb or Arith or Function3 or Function2 or Function1 or Function0)
begin
casex ({Arith, Function3, Function2, Function1, Function0})
 5'b00000: {Cout,Out} = {1'b0,Ina};
 5'b00001: {Cout,Out} = {1'b0,Ina|Inb};
 5'b00010: {Cout,Out} = {1'b0,Ina&~Inb};
 5'b00011: {Cout,Out} = {1'b0,Ina^Inb};
 5'b00100: {Cout,Out} = {1'b0,Ina|~Inb};
 5'b00101: {Cout,Out} = {1'b0,{16{1'b1}}};
 5'b00110: {Cout,Out} = {1'b0,~Inb};
 5'b00111: {Cout,Out} = {1'b0,~(Ina&Inb)};
 5'b01000: {Cout,Out} = {1'b0,Ina&Inb};
 5'b01001: {Cout,Out} = {1'b0,Inb};
 5'b01010: {Cout,Out} = {1'b0,{16{1'b0}}};
 5'b01011: {Cout,Out} = {1'b0,~Ina&Inb};
 5'b01100: {Cout,Out} = {1'b0,Ina~^Inb};
 5'b01101: {Cout,Out} = {1'b0,~Ina|Inb};
 5'b01110: {Cout,Out} = {1'b0,~(Ina|Inb)};
 5'b01111: {Cout,Out} = {1'b0,~Ina};

 5'b10000: {Cout,Out} = {1'b0,Ina}+Cin;
 5'b10001: {Cout,Out} = {1'b0,Ina|Inb}+Cin;
 5'b10010: {Cout,Out} = {1'b0,(Ina&Inb)}+{1'b0,Ina}+Cin;
 5'b10011: {Cout,Out} = {1'b0,Ina}+{1'b0,Inb}+Cin;
 5'b10100: {Cout,Out} = {1'b0,Ina|~Inb}+Cin;
 5'b10101: {Cout,Out} = {1'b0,{16{1'b1}}}+Cin;
 5'b10110: {Cout,Out} = {1'b0,(Ina&Inb)}+{1'b0,(Ina|~Inb)}+Cin;
 5'b10111: {Cout,Out} = {1'b0,(Ina&Inb)}+{1'b0,{16{1'b1}}}+Cin;

 52

 5'b11000: {Cout,Out} = {1'b0,(Ina&~Inb)}+{1'b0,Ina}+Cin;
 5'b11001: {Cout,Out} = {1'b0,(Ina&~Inb)}+{1'b0,(Ina|Inb)}+Cin;
 5'b11010: {Cout,Out} = {1'b0,Ina}+{1'b0,Ina}+Cin;
 5'b11011: {Cout,Out} = {1'b0,Ina}+{1'b0,(Ina|Inb)}+Cin;
 5'b11100: {Cout,Out} = {1'b0,Ina}+{1'b0,~Inb}+Cin;
 5'b11101: {Cout,Out} = {1'b0,(Ina&~Inb)}+{1'b0,{16{1'b1}}}+Cin;
 5'b11110: {Cout,Out} = {1'b0,Ina}+{1'b0,(Ina|~Inb)}+Cin;
 5'b11111: {Cout,Out} = {1'b0,Ina}+{1'b0,{16{1'b1}}}+Cin;
endcase

Overflow = (Ina[15]&Inb[15]&~Out[15])|(~Ina[15]&~Inb[15]&Out[15]);
Zero = ((Out == 0) && (Cout != 1)) ? 1 : 0;
Sign = Out[15];

end

endmodule

//
//Delay_reg
//
module delay_reg(In, Delay, CLK, Out);

input In;
input [1:0] Delay;
input CLK;
output Out;
reg Out;

reg delay_reg_one;
reg delay_reg_two;
reg delay_reg_three;

always @(In or Delay or delay_reg_one or delay_reg_two or delay_reg_three)
begin
case (Delay)
 2'b00: begin Out = In; end
 2'b01: begin Out = delay_reg_one; end
 2'b10: begin Out = delay_reg_two; end
 2'b11: begin Out = delay_reg_three; end
endcase
end

always @(posedge CLK)
begin
 delay_reg_three = delay_reg_two;
 delay_reg_two = delay_reg_one;
 delay_reg_one = In;
end

endmodule

//
//Driver_three
//
module driver_three(In, Select, Out_bus);

 53

// Port declarations
input In;
input [3:0] Select;
output [13:0] Out_bus;

assign Out_bus[0] = In & (~Select[3] & ~Select[2] & ~Select[1] & ~Select[0]);
assign Out_bus[1] = In & (~Select[3] & ~Select[2] & ~Select[1] & Select[0]);
assign Out_bus[2] = In & (~Select[3] & ~Select[2] & Select[1] & ~Select[0]);
assign Out_bus[3] = In & (~Select[3] & ~Select[2] & Select[1] & Select[0]);
assign Out_bus[4] = In & (~Select[3] & Select[2] & ~Select[1] & ~Select[0]);
assign Out_bus[5] = In & (~Select[3] & Select[2] & ~Select[1] & Select[0]);
assign Out_bus[6] = In & (~Select[3] & Select[2] & Select[1] & ~Select[0]);
assign Out_bus[7] = In & (~Select[3] & Select[2] & Select[1] & Select[0]);
assign Out_bus[8] = In & (Select[3] & ~Select[2] & ~Select[1] & ~Select[0]);
assign Out_bus[9] = In & (Select[3] & ~Select[2] & ~Select[1] & Select[0]);
assign Out_bus[10] = In & (Select[3] & ~Select[2] & Select[1] & ~Select[0]);
assign Out_bus[11] = In & (Select[3] & ~Select[2] & Select[1] & Select[0]);
assign Out_bus[12] = In & (Select[3] & Select[2] & ~Select[1] & ~Select[0]);
assign Out_bus[13] = In & (Select[3] & Select[2] & ~Select[1] & Select[0]);

endmodule

//
// 16-to-1 multiplexer
//
module mux16_to_1(In_bus, Select, Out);

// Port declarations
input [13:0] In_bus;
input [3:0] Select;
output Out;
//output declared as register
reg Out;

always @(In_bus or Select)
begin
 case (Select)
 4'b0000: Out = 1'b0;
 4'b0001: Out = 1'b1;
 4'b0010: Out = In_bus[0];
 4'b0011: Out = In_bus[1];
 4'b0100: Out = In_bus[2];
 4'b0101: Out = In_bus[3];
 4'b0110: Out = In_bus[4];
 4'b0111: Out = In_bus[5];
 4'b1000: Out = In_bus[6];
 4'b1001: Out = In_bus[7];
 4'b1010: Out = In_bus[8];
 4'b1011: Out = In_bus[9];
 4'b1100: Out = In_bus[10];
 4'b1101: Out = In_bus[11];
 4'b1110: Out = In_bus[12];
 4'b1111: Out = In_bus[13];
 endcase
end

 54

endmodule

//
//sc_test_one
//
//This is the verilog version of the Rapid powertest design
//This is a one rapid-bit slice of the design up to the
// first alu.
//`include "delay_reg.v"
//`include "driver_three.v"
//`include "mux16_to_1.v"
module sc_test_one(In_bus, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, Sel_delay3,
Sel_drive2, Sel_mux3, Sel_mux4, Out_bus);

// I/O port declerations
input [13:0] In_bus;
input CLK;
input [3:0] Sel_mux1;
input [1:0] Sel_delay1;
input [3:0] Sel_drive1;
input [3:0] Sel_mux2;
input [1:0] Sel_delay2;
input [1:0] Sel_delay3;
input [3:0] Sel_drive2;
input [3:0] Sel_mux3;
input [3:0] Sel_mux4;
output [1:0] Out_bus;

//Internal nets
wire muxw1, delayw1, muxw2, delayw2, delayw3;
wire [13:0] drivebus1, drivebus2;

//Instantiate the modules and connect them up
mux16_to_1 mux1(In_bus, Sel_mux1, muxw1);
delay_reg delay1(muxw1, Sel_delay1, CLK, delayw1);
driver_three drive1(delayw1, Sel_drive1, drivebus1);
mux16_to_1 mux2(drivebus1, Sel_mux2, muxw2);
delay_reg delay2(muxw2, Sel_delay2, CLK, delayw2);
delay_reg delay3(delayw2, Sel_delay3, CLK, delayw3);
driver_three drive2(delayw3, Sel_drive2, drivebus2);
mux16_to_1 mux3(drivebus2, Sel_mux3, Out_bus[0]);
mux16_to_1 mux4(drivebus2, Sel_mux4, Out_bus[1]);

endmodule

//
//sc_test_one_x_16
//
//This is the verilog version of the Rapid powertest design
//This is a 16 wide high slice of rapid up to the first alu
//`include "sc_test_one.v"
module sc_test_one_x_16(In_bus1, In_bus2, In_bus3, In_bus4, In_bus5, In_bus6, In_bus7, In_bus8,
In_bus9, In_bus10, In_bus11, In_bus12, In_bus13, In_bus14, In_bus15, In_bus16, CLK, Sel_mux1,
Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2, Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus);

 55

// I/O port declerations
input [13:0] In_bus1;
input [13:0] In_bus2;
input [13:0] In_bus3;
input [13:0] In_bus4;
input [13:0] In_bus5;
input [13:0] In_bus6;
input [13:0] In_bus7;
input [13:0] In_bus8;
input [13:0] In_bus9;
input [13:0] In_bus10;
input [13:0] In_bus11;
input [13:0] In_bus12;
input [13:0] In_bus13;
input [13:0] In_bus14;
input [13:0] In_bus15;
input [13:0] In_bus16;
input CLK;
input [3:0] Sel_mux1;
input [1:0] Sel_delay1;
input [3:0] Sel_drive1;
input [3:0] Sel_mux2;
input [1:0] Sel_delay2;
input [1:0] Sel_delay3;
input [3:0] Sel_drive2;
input [3:0] Sel_mux3;
input [3:0] Sel_mux4;
output [31:0] Out_bus;

//Internal nets

//Instantiate the modules and connect them up
sc_test_one col1_bus1(In_bus1, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[1:0]);
sc_test_one col1_bus2(In_bus2, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[3:2]);
sc_test_one col1_bus3(In_bus3, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[5:4]);
sc_test_one col1_bus4(In_bus4, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[7:6]);
sc_test_one col1_bus5(In_bus5, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[9:8]);
sc_test_one col1_bus6(In_bus6, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[11:10]);
sc_test_one col1_bus7(In_bus7, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[13:12]);
sc_test_one col1_bus8(In_bus8, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[15:14]);
sc_test_one col1_bus9(In_bus9, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[17:16]);
sc_test_one col1_bus10(In_bus10, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[19:18]);
sc_test_one col1_bus11(In_bus11, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[21:20]);
sc_test_one col1_bus12(In_bus12, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[23:22]);

 56

sc_test_one col1_bus13(In_bus13, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[25:24]);
sc_test_one col1_bus14(In_bus14, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[27:26]);
sc_test_one col1_bus15(In_bus15, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[29:28]);
sc_test_one col1_bus16(In_bus16, CLK, Sel_mux1, Sel_delay1, Sel_drive1, Sel_mux2, Sel_delay2,
Sel_delay3, Sel_drive2, Sel_mux3, Sel_mux4, Out_bus[31:30]);

endmodule

//
//sc_test_two
//
//This is the verilog version of the Rapid powertest design
//This is a one rapid-bit slice of the design up to the
// first alu.
//`include "delay_reg.v"
//`include "driver_three.v"
//`include "mux16_to_1.v"
module sc_test_two(In, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, Out_bus);

// I/O port declerations
input In;
input CLK;
input [1:0] Sel_delay1;
input [1:0] Sel_delay2;
input [3:0] Sel_drive1;
input [3:0] Sel_mux1;
input [3:0] Sel_mux2;
output [1:0] Out_bus;

//Internal nets
wire delayw1, delayw2, muxw1, muxw2;
wire [13:0] drivebus1;

//Instantiate the modules and connect them up

delay_reg delay1(In, Sel_delay1, CLK, delayw1);
delay_reg delay2(delayw1, Sel_delay2, CLK, delayw2);
driver_three drive1(delayw2, Sel_drive1, drivebus1);
mux16_to_1 mux1(drivebus1, Sel_mux1, Out_bus[0]);
mux16_to_1 mux2(drivebus1, Sel_mux2, Out_bus[1]);

endmodule

//
//sc_test_two_x_16
//
//This is the verilog version of the Rapid powertest design
//This is a 16 wide high slice of rapid up to the first alu
//`include "sc_test_two.v"
module sc_test_two_x_16(In1, In2, In3, In4, In5, In6, In7, In8, In9, In10, In11, In12, In13, In14, In15,
In16, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2, Out_bus);

// I/O port declerations

 57

input In1;
input In2;
input In3;
input In4;
input In5;
input In6;
input In7;
input In8;
input In9;
input In10;
input In11;
input In12;
input In13;
input In14;
input In15;
input In16;
input CLK;
input [1:0] Sel_delay1;
input [1:0] Sel_delay2;
input [3:0] Sel_drive1;
input [3:0] Sel_mux1;
input [3:0] Sel_mux2;
output [31:0] Out_bus;

//Internal nets

//Instantiate the modules and connect them up
sc_test_two col2_bus1(In1, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[1:0]);
sc_test_two col2_bus2(In2, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[3:2]);
sc_test_two col2_bus3(In3, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[5:4]);
sc_test_two col2_bus4(In4, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[7:6]);
sc_test_two col2_bus5(In5, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[9:8]);
sc_test_two col2_bus6(In6, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[11:10]);
sc_test_two col2_bus7(In7, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[13:12]);
sc_test_two col2_bus8(In8, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[15:14]);
sc_test_two col2_bus9(In9, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[17:16]);
sc_test_two col2_bus10(In10, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[19:18]);
sc_test_two col2_bus11(In11, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[21:20]);
sc_test_two col2_bus12(In12, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[23:22]);
sc_test_two col2_bus13(In13, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[25:24]);
sc_test_two col2_bus14(In14, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[27:26]);

 58

sc_test_two col2_bus15(In15, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[29:28]);
sc_test_two col2_bus16(In16, CLK, Sel_delay1, Sel_delay2, Sel_drive1, Sel_mux1, Sel_mux2,
Out_bus[31:30]);

endmodule

//
//sc_test_three
//
//This is the verilog version of the Rapid powertest design
//This is a one rapid-bit slice of the design from the second alu
// to the end of the array
//`include "delay_reg.v"
//`include "driver_three.v"
//`include "mux16_to_1.v"
module sc_test_three(In, CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2, Sel_mux2,
Sel_delay3, Sel_delay4, Sel_drive3, Out_bus);

// I/O port declerations
input In;
input CLK;
input [1:0] Sel_delay1;
input [3:0] Sel_drive1;
input [3:0] Sel_mux1;
input [1:0] Sel_delay2;
input [3:0] Sel_drive2;
input [3:0] Sel_mux2;
input [1:0] Sel_delay3;
input [1:0] Sel_delay4;
input [3:0] Sel_drive3;
output [13:0] Out_bus;

//Internal nets
wire delayw1, muxw1, delayw2, muxw2, delayw3, delayw4;
wire [13:0] drivebus1, drivebus2;

//Instantiate the modules and connect them up
delay_reg delay1(In, Sel_delay1, CLK, delayw1);
driver_three drive1(delayw1, Sel_drive1, drivebus1);
mux16_to_1 mux1(drivebus1, Sel_mux1, muxw1);
delay_reg delay2(muxw1, Sel_delay2, CLK, delayw2);
driver_three drive2(delayw2, Sel_drive2, drivebus2);
mux16_to_1 mux2(drivebus2, Sel_mux2, muxw2);
delay_reg delay3(muxw2, Sel_delay3, CLK, delayw3);
delay_reg delay4(delayw3, Sel_delay4, CLK, delayw4);
driver_three drive3(delayw4, Sel_drive3, Out_bus);

endmodule

//
//sc_test_three_x_16
//
//This is the verilog version of the Rapid powertest design
//This is a 16 wide high slice of rapid from the last alu
// to the end of the array

 59

//`include "sc_test_three.v"
module sc_test_three_x_16(In_bus[15:0], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2,
Sel_drive2, Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus1, Out_bus2, Out_bus3, Out_bus4,
Out_bus5, Out_bus6, Out_bus7, Out_bus8, Out_bus9, Out_bus10, Out_bus11, Out_bus12, Out_bus13,
Out_bus14, Out_bus15, Out_bus16);

// I/O port declerations
input [15:0] In_bus;
input CLK;
input [1:0] Sel_delay1;
input [3:0] Sel_drive1;
input [3:0] Sel_mux1;
input [1:0] Sel_delay2;
input [3:0] Sel_drive2;
input [3:0] Sel_mux2;
input [1:0] Sel_delay3;
input [1:0] Sel_delay4;
input [3:0] Sel_drive3;
output [13:0] Out_bus1;
output [13:0] Out_bus2;
output [13:0] Out_bus3;
output [13:0] Out_bus4;
output [13:0] Out_bus5;
output [13:0] Out_bus6;
output [13:0] Out_bus7;
output [13:0] Out_bus8;
output [13:0] Out_bus9;
output [13:0] Out_bus10;
output [13:0] Out_bus11;
output [13:0] Out_bus12;
output [13:0] Out_bus13;
output [13:0] Out_bus14;
output [13:0] Out_bus15;
output [13:0] Out_bus16;

//Internal nets

//Instantiate the modules and connect them up
sc_test_three col3_row1(In_bus[0], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus1);
sc_test_three col3_row2(In_bus[1], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus2);
sc_test_three col3_row3(In_bus[2], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus3);
sc_test_three col3_row4(In_bus[3], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus4);
sc_test_three col3_row5(In_bus[4], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus5);
sc_test_three col3_row6(In_bus[5], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus6);
sc_test_three col3_row7(In_bus[6], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus7);
sc_test_three col3_row8(In_bus[7], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus8);
sc_test_three col3_row9(In_bus[8], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus9);

 60

sc_test_three col3_row10(In_bus[9], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus10);
sc_test_three col3_row11(In_bus[10], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus11);
sc_test_three col3_row12(In_bus[11], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus12);
sc_test_three col3_row13(In_bus[12], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus13);
sc_test_three col3_row14(In_bus[13], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus14);
sc_test_three col3_row15(In_bus[14], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus15);
sc_test_three col3_row16(In_bus[15], CLK, Sel_delay1, Sel_drive1, Sel_mux1, Sel_delay2, Sel_drive2,
Sel_mux2, Sel_delay3, Sel_delay4, Sel_drive3, Out_bus16);

endmodule

//
//sc_test
//
//`include "sc_test_header.v"
module sc_test(CLK, In_bus1, In_bus2, In_bus3, In_bus4, In_bus5, In_bus6, In_bus7, In_bus8, In_bus9,
In_bus10, In_bus11, In_bus12, In_bus13, In_bus14, In_bus15, In_bus16, Sel_mux1_col1,
Sel_delay1_col1, Sel_drive1_col1, Sel_mux2_col1, Sel_delay2_col1, Sel_delay3_col1, Sel_drive2_col1,
Sel_mux3_col1, Sel_mux4_col1, Sel_delay1_col2, Sel_delay2_col2, Sel_drive1_col2, Sel_mux1_col2,
Sel_mux2_col2, Sel_delay1_col3, Sel_drive1_col3, Sel_mux1_col3, Sel_delay2_col3, Sel_drive2_col3,
Sel_mux2_col3, Sel_delay3_col3, Sel_delay4_col3, Sel_drive3_col3, Cin_alu1, Arith_alu1,
Function3_alu1, Function2_alu1, Function1_alu1, Function0_alu1, Cout_alu1, Overflow_alu1, Zero_alu1,
Sign_alu1, Cin_alu2, Arith_alu2, Function3_alu2, Function2_alu2, Function1_alu2, Function0_alu2,
Cout_alu2, Overflow_alu2, Zero_alu2, Sign_alu2, Out_bus1, Out_bus2, Out_bus3, Out_bus4, Out_bus5,
Out_bus6, Out_bus7, Out_bus8, Out_bus9, Out_bus10, Out_bus11, Out_bus12, Out_bus13, Out_bus14,
Out_bus15, Out_bus16);

// I/O port declarations
input CLK;
input [13:0] In_bus1;
input [13:0] In_bus2;
input [13:0] In_bus3;
input [13:0] In_bus4;
input [13:0] In_bus5;
input [13:0] In_bus6;
input [13:0] In_bus7;
input [13:0] In_bus8;
input [13:0] In_bus9;
input [13:0] In_bus10;
input [13:0] In_bus11;
input [13:0] In_bus12;
input [13:0] In_bus13;
input [13:0] In_bus14;
input [13:0] In_bus15;
input [13:0] In_bus16;
input [3:0] Sel_mux1_col1;
input [1:0] Sel_delay1_col1;
input [3:0] Sel_drive1_col1;
input [3:0] Sel_mux2_col1;
input [1:0] Sel_delay2_col1;

 61

input [1:0] Sel_delay3_col1;
input [3:0] Sel_drive2_col1;
input [3:0] Sel_mux3_col1;
input [3:0] Sel_mux4_col1;
input [1:0] Sel_delay1_col2;
input [1:0] Sel_delay2_col2;
input [3:0] Sel_drive1_col2;
input [3:0] Sel_mux1_col2;
input [3:0] Sel_mux2_col2;
input [1:0] Sel_delay1_col3;
input [3:0] Sel_drive1_col3;
input [3:0] Sel_mux1_col3;
input [1:0] Sel_delay2_col3;
input [3:0] Sel_drive2_col3;
input [3:0] Sel_mux2_col3;
input [1:0] Sel_delay3_col3;
input [1:0] Sel_delay4_col3;
input [3:0] Sel_drive3_col3;
input Cin_alu1;
input Arith_alu1;
input Function3_alu1;
input Function2_alu1;
input Function1_alu1;
input Function0_alu1;
output Cout_alu1;
output Overflow_alu1;
output Zero_alu1;
output Sign_alu1;
input Cin_alu2;
input Arith_alu2;
input Function3_alu2;
input Function2_alu2;
input Function1_alu2;
input Function0_alu2;
output Cout_alu2;
output Overflow_alu2;
output Zero_alu2;
output Sign_alu2;
output [13:0] Out_bus1;
output [13:0] Out_bus2;
output [13:0] Out_bus3;
output [13:0] Out_bus4;
output [13:0] Out_bus5;
output [13:0] Out_bus6;
output [13:0] Out_bus7;
output [13:0] Out_bus8;
output [13:0] Out_bus9;
output [13:0] Out_bus10;
output [13:0] Out_bus11;
output [13:0] Out_bus12;
output [13:0] Out_bus13;
output [13:0] Out_bus14;
output [13:0] Out_bus15;
output [13:0] Out_bus16;

//Internal nets

 62

wire [31:0] Out_bus_Col1;
wire [15:0] Out_Alu1;
wire [31:0] Out_bus_Col2;
wire [15:0] Out_Alu2;

//Instantiate the modules and connect them up
sc_test_one_x_16 Col1(In_bus1, In_bus2, In_bus3, In_bus4, In_bus5, In_bus6, In_bus7, In_bus8, In_bus9,
In_bus10, In_bus11, In_bus12, In_bus13, In_bus14, In_bus15, In_bus16, CLK, Sel_mux1_col1,
Sel_delay1_col1, Sel_drive1_col1, Sel_mux2_col1, Sel_delay2_col1, Sel_delay3_col1, Sel_drive2_col1,
Sel_mux3_col1, Sel_mux4_col1, Out_bus_Col1);

alu Alu1({Out_bus_Col1[30], Out_bus_Col1[28], Out_bus_Col1[26], Out_bus_Col1[24],
Out_bus_Col1[22], Out_bus_Col1[20], Out_bus_Col1[18], Out_bus_Col1[16], Out_bus_Col1[14],
Out_bus_Col1[12], Out_bus_Col1[10], Out_bus_Col1[8], Out_bus_Col1[6], Out_bus_Col1[4],
Out_bus_Col1[2], Out_bus_Col1[0]}, {Out_bus_Col1[31], Out_bus_Col1[29], Out_bus_Col1[27],
Out_bus_Col1[25], Out_bus_Col1[23], Out_bus_Col1[21], Out_bus_Col1[19], Out_bus_Col1[17],
Out_bus_Col1[15], Out_bus_Col1[13], Out_bus_Col1[11], Out_bus_Col1[9], Out_bus_Col1[7],
Out_bus_Col1[5], Out_bus_Col1[3], Out_bus_Col1[1]}, Cin_alu1, Arith_alu1, Function3_alu1,
Function2_alu1, Function1_alu1, Function0_alu1, Cout_alu1, Overflow_alu1, Zero_alu1, Sign_alu1,
Out_Alu1);

sc_test_two_x_16 Col2(Out_Alu1[0], Out_Alu1[1], Out_Alu1[2], Out_Alu1[3], Out_Alu1[4],
Out_Alu1[5], Out_Alu1[6], Out_Alu1[7], Out_Alu1[8], Out_Alu1[9], Out_Alu1[10], Out_Alu1[11],
Out_Alu1[12], Out_Alu1[13], Out_Alu1[14], Out_Alu1[15], CLK, Sel_delay1_col2, Sel_delay2_col2,
Sel_drive1_col2, Sel_mux1_col2, Sel_mux2_col2, Out_bus_Col2);

alu Alu2({Out_bus_Col2[30], Out_bus_Col2[28], Out_bus_Col2[26], Out_bus_Col2[24],
Out_bus_Col2[22], Out_bus_Col2[20], Out_bus_Col2[18], Out_bus_Col2[16], Out_bus_Col2[14],
Out_bus_Col2[12], Out_bus_Col2[10], Out_bus_Col2[8], Out_bus_Col2[6], Out_bus_Col2[4],
Out_bus_Col2[2], Out_bus_Col2[0]}, {Out_bus_Col2[31], Out_bus_Col2[29], Out_bus_Col2[27],
Out_bus_Col2[25], Out_bus_Col2[23], Out_bus_Col2[21], Out_bus_Col2[19], Out_bus_Col2[17],
Out_bus_Col2[15], Out_bus_Col2[13], Out_bus_Col2[11], Out_bus_Col2[9], Out_bus_Col2[7],
Out_bus_Col2[5], Out_bus_Col2[3], Out_bus_Col2[1]}, Cin_alu2, Arith_alu2, Function3_alu2,
Function2_alu2, Function1_alu2, Function0_alu2, Cout_alu2, Overflow_alu2, Zero_alu2, Sign_alu2,
Out_Alu2);

sc_test_three_x_16 Col3(Out_Alu2, CLK, Sel_delay1_col3, Sel_drive1_col3, Sel_mux1_col3,
Sel_delay2_col3, Sel_drive2_col3, Sel_mux2_col3, Sel_delay3_col3, Sel_delay4_col3, Sel_drive3_col3,
Out_bus1, Out_bus2, Out_bus3, Out_bus4, Out_bus5, Out_bus6, Out_bus7, Out_bus8, Out_bus9,
Out_bus10, Out_bus11, Out_bus12, Out_bus13, Out_bus14, Out_bus15, Out_bus16);

endmodule

 63

10.2. Layouts of Templates

Figure 10-1 Full Custom RaPiD with an area of 680µm by 310µm. Notice the
amount of red representing the extensive use of polysilicon.

Figure 10-2 FPGA Standard Cell Template with an area of
709µm by 702µm.

 64

Figure 10-3 General standard cell template with an area of 764µm by
756µm.

10.3. Layouts of FPGA specific Standard Cells

Figure 10-4 DFF FPGA specific standard cell.

 65

Figure 10-5 Driver 1-to-2 FPGA specific standard cell.

Figure 10-6 Driver 1-to-4 FPGA specific standard cell.

 66

Figure 10-7 Mux 2-to-1 FPGA specific standard cell.

Figure 10-8 Mux 4-to-1 FPGA specific standard cell.

 67

Bibliography

[1] Tilman Glökler, “System –on-a-Chip Case Study: ADSL-Receiver”,

http://www.ert.rwth-aachen.de/Projekte/VLSI/soc.html.

[2] C. Ebeling, D. C. Cronquist, P. Franklin, “RaPiD – Reconfigurable Pipelined

Datapath”, 6th Annual Workshop on Field Programmable Logic and Applications,
1996.

[3] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Taylor, “PipeRench:
An Architecture and Compiler for Reconfigurable Computing”, IEEE Computer,
2000.

[4] A. Abnous and J. M. Rabaey, "Ultra-low-power domain-specific multimedia
processors," Proc. of IEEE VLSI Signal Processing Workshop, Oct. 1996.

[5] Neil H. E. Weste, Kamran Eshraghian, Principles of CMOS VLSI Design: A
Systems Perspective, Addison-Wesely Publishing Company, 1993.

[6] Xilinx Inc., “About Xilinx”, http://www.xilinx.com/company/about.htm.

[7] K. Compton, S. Hauck, “Totem: Custom Reconfigurable Array Generation”,
FCCM Conference, 2001.

[8] Peter Clarke, “Xilinx, ASIC Vendors Talk Licensing”,

http://www.siliconstrategies.com/story/OEG20010622S0091, 2001.

[9] Actel and Logicvision Partner to Deliver a Complete Embedded Test Solution for

Varicore EPGA IP Cores,
http://www.actel.com/pressroom/2001pr/LogicVision.html, 2001.

[10] Actel Corporation, “VariCore™ Embedded Programmability - Flexible by

Design”, http://varicore.actel.com/cgi-bin/varicore.cgi?page=overview.

[11] Brian Fuller, “LSI, Partners Dial Programmable Core into ASICs”,

http://www.eetimes.com/story/OEG20010611S0133, 2001.

[12] Advanced Products: Introducing LiquidLogic Embedded Programmable Logic

Core http://www.lsilogic.com/products/asic/advanced_products.html.

[13] Anthony Cataldo, “Startup stakes out ground between FPGAs and ASICs”
http://www.eetimes.com/story/OEG20010709S0075, 2001.

[14] http://www.easic.com/products/easicore018.html.

 68

[15] P. Hallschmid, S.J.E. Wilton, “Detailed Routing Architectures for Embedded
Programmable Logic IP Cores”, ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2001.

[16] Synopsys, Inc., “Synopsys Online Documentation”, version 2000.05, 2000.

[17] Synopsys, Inc., “Envisia Ultra Reference Manual”, version 2.2, 1999.

[18] Cadence Design Systems, Inc., “Openbook”, version 4.1, release IC 4.4.5, 1999.

[19] Tanner Research, Inc., “Tanner CES Products”,

http://www.tanner.com/CES/products/files_now/dit_std_cell.htm.

[20] Synopsys, Inc., “Epic Tools User Manual”

[21] Synopsys, Inc., “Pathmill User Guide”, release 5.4, 2000.

[22] Synopsys, Inc., “Powermill User Guide”, release 5.4, 2000.

