
Low-latency Calorimetry Clustering 
at the LHC with SPVCNN
ALEX SCHUY 1,  ZHIJIAN LIU 2,  JEFF KRUPA 2,  PATRICK MCCORMACK 2,  
PHIL HARRIS 2,  SHIH-CHIEH HSU1,  SCOTT HAUCK 1,  SONG HAN 2

10/4/2022 FASTML WORKSHOP 2022 1

UNIVERSITY OF WASHINGTON 1,  MIT2



Calorimetry
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Physics Event
Goal: record properties of 
the ‘final state’ particles 
produced in a collision:
◦ Type (Proton, Electron, 

Photon, etc.)

◦ Energy

◦ Momenta

◦ Path through the detector 
(incl. origin: ‘vertex’)
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Calorimeter

◦

◦ Energy

◦

◦
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Calorimeter
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Two types of calorimeters:

o Electromagnetic
o Absorbs photons, 

electrons

o Hadronic
o Absorbs protons, 

neutrons, pions, jets, etc.

o More challenging



Calorimeter
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Calorimeter Clustering

10/4/2022 FASTML WORKSHOP 2022 7

Digital readouts are converted 
into ‘hits’ that look like this…

Multiple hits correspond to a 
single truth particle

Goal: ‘reconstruct’ energy of 
original particles by clustering 
hits

Size of bubble = energy
Color = cluster



Triggering and Data Acquisition
◦ ~1 billion proton-proton interactions occur per 

second inside the CMS detector.

◦ Infeasible to store that much data and much of it is 
uninteresting, anyway.

◦ The trigger system identifies interesting events, 
while enforcing a maximum event rate.
◦ L1 trigger – ~100 kHz

◦ High Level Trigger (HLT) – ~1 kHz
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SPVCNN
• MOTIVATION

• IMPLEMENTATION
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SPVCNN Motivation

Need models for 3D tasks with:
◦ Low latency

◦ High computational efficiency

◦ High accuracy

Original motivating problem was driverless cars.

Reconstruction in particle physics shares many of the same requirements.
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Previous 
Approaches

Fall into two categories:
◦ Point cloud models

◦ Voxel models
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Limitations of Previous Approaches
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Point-Voxel Convolution (PVConv)
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Sparse Point-Voxel Convolution 
(SPVConv)
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o Simply replaces upper branch with sparse convolution.
o Some details with normalization/voxelization and devoxelization/fusion:

o Hashing, trilinear interpolation



Sparse Point-Voxel Convolution 
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o Simply replaces upper branch with sparse convolution.
o Some details with normalization/voxelization and devoxelization/fusion:

o Hashing, trilinear interpolation



Voxelization
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Sparse Point-Voxel Convolution 
(SPVConv)
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o Simply replaces upper branch with sparse convolution.
o Some details with normalization/voxelization and devoxelization/fusion:

o Hashing, trilinear interpolation



Generalized Sparse Convolution
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o Sparse convolutions operate directly on sparse tensors.

o Avoids wasted computation and allows for higher 
resolution.

o Naïve implementations (top) would quickly reduce sparsity.

o Modern implementations (bottom) allow for arbitrary input 
(𝑐𝑖𝑛) and output (𝑐𝑜𝑢𝑡) coordinates. The example shown is a 
‘submanifold sparse convolution’, which sets 𝑐𝑖𝑛 = 𝑐𝑜𝑢𝑡, 
thus preserving sparsity. This is (almost) used in SPVCNN.



Devoxelization
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• Simply replaces upper branch with sparse convolution.
• Some details with normalization/voxelization and devoxelization/fusion:

• Hashing, trilinear interpolation



Object Condensation
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1. Filter – predict semantic labels, 

discard noise

2. Embed – map to embedded 

space + predict ‘condensation’ 

score

3. Condense – bounded nearest-

neighbor search in embedded 

space around points with high 

condensation score

See object condensation paper: 2002.03605.pdf (arxiv.org)

https://arxiv.org/pdf/2002.03605.pdf


HGCAL
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CMS High-Granularity 
Calorimeter (HGCAL)

Major upgrade for HL-LHC: 6.5M 
channels, 50 layers.

Finer granularity, timing resolution 
→ greater benefit from 3D deep 
learning.

Despite increased data volume, 
cannot sacrifice latency.
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HGCAL Samples
Zero pileup, double-tau dataset.

CMS detector simulation with GEANT4.

Simulation-level energy deposits are mapped 
onto reconstructed energy deposits to form the 
truth definition.

Inseparable showers (due to overlap) are 
merged. 

Each event has ~20K hits.

See CR2022_033.pdf (cern.ch) for detailed 
description of samples.
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https://cds.cern.ch/record/2803236/files/CR2022_033.pdf


HGCAL Results
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First, a disclaimer:
o For some of these results, we compare against a GNN-based method. 
o There have been further improvements in GNN-based approaches (as discussed 

in other talks at this workshop) since this comparison, and there are pros and 
cons of each.

o The primary purpose is to show that both methods are competitive.



HGCAL Results
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Left – predicted clusters from SPVCNN.
Right – event display from HGCAL.

Each point represents an energy deposit in the calorimeter. Each color corresponds to a cluster.



HGCAL Results

10/4/2022 FASTML WORKSHOP 2022 26

IoU – measure of overlap between predicted and true classes (signal and noise).
SQ – average overlap between predicted and true clusters for each semantic class.
RQ – fraction of clusters for each semantic class that were matched.
PQ – product of SQ and RQ.



HGCAL
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Right: ratio of predicted to true 
energy for each predicted 
cluster, split into four types:
o Electromagnetic (EM) 

particles
o Hadronic (HAD) particles
o Minimum-ionizing particles 

(MIP)
o A mixture of the above (MIX)



HCAL
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CMS Hadronic Calorimeter 
(HCAL)

◦ ~16k channels, ~18 layers

◦ More challenging for ML-based method, due to reduced 
information

HCAL Digis HCAL RecHits HCAL Clusters Particle

Template fit/ 
NN (FACILE)

Clustering 
algorithm

Rule-based algo/
NN (MLPF)

Ultimate goal is to build clusters from low-level charge collected in 25 ns windows in a single step 



HCAL Samples
o Zero pileup, ttbar dataset.

o CMS detector simulation with GEANT4.

o Simulation-level energy deposits are mapped onto reconstructed energy deposits to 
form the truth definition.

o The details of truth matching are a bit different than for HGCAL – see backup slides 
for more details.
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HCAL Results
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o Right: jet 𝑝𝑇 reconstructed w/ CMS 
toolchain, using various HCAL clusters 
as input:

o Yellow and red lines use SPVCNN 
clusters with different clustering 
hyperparameters. 

o Purple lines use the existing 
particle flow (PF) method.

o Finally, the black points use the 
true clusters.

o Similar performance between the 
methods.

o Could be useful to have dynamic 
clustering parameters.



HCAL Results
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o Right: jet 𝜂 reconstructed w/ CMS 
toolchain, using various HCAL clusters 
as input:

o Yellow and red lines use SPVCNN 
clusters with different clustering 
hyperparameters. 

o Purple lines use the existing 
particle flow (PF) method.

o Finally, the black points use the 
true clusters.

o Note the spurious peak at 𝜂 ≈ 3 for 
PF.



Main Takeaways
Modern convolutional approaches that exploit tricks for efficient 
computation are competitive with current clustering methods and 
other proposed ML methods at calorimeters.

Latency at the level needed for the HLT (~ms) is currently achievable 
with GPU accelerators. Beyond this level, further innovations are 
probably required, e.g., exploiting FPGAs and ASICs.

For now, only looked at CMS detectors – could expand in the future 
(e.g., to ATLAS).
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Links & References
PVCNN – [1907.03739] Point-Voxel CNN for Efficient 3D Deep Learning (arxiv.org)

SPVNAS – [2007.16100] Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution 
(arxiv.org)

CMS GNN – https://cds.cern.ch/record/2803236/files/CR2022_033.pdf

Object condensation – 2002.03605.pdf (arxiv.org)
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https://arxiv.org/abs/1907.03739
https://arxiv.org/abs/2007.16100
https://cds.cern.ch/record/2803236/files/CR2022_033.pdf
https://arxiv.org/pdf/2002.03605.pdf


Backup
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HCAL Truth Definition
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Needed objects in CMSSW
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• Collection of Simulated Hits (simHits). A simHit has the following info:

• An associated detector ID (takes a bit of massaging to get this info in the right format)

• A GEANT Track ID. Every time a particle branches or interacts, its daughter particles are assigned unique IDs, and the parent information is

preserved via its association with a GEANT vertex. The simHit does not have info about the parent though, just its own associated track ID

• simHit energy, depth, and time information

• Collection of “simulated tracks” (simTracks). These are for the GEANT tracks discussed above, which are basically simulated
particles. A simTrack has:

• A GEANT track ID

• A GEANT vertex ID, which is where the simulated particle was created

• Collection of “simulated vertices” (simVertices). These are the points at which GEANT decays happen. simVertices have:
• An associated parent particle ID (which is the GEANT track ID of the particle that was in the initial state of the vertex)

• Vertex position information (This is not currently used in my code, but it could be)

• Collection of reconstructed hits (recHits). This is reconstructed information, i.e. an emulation of the information that you would

have for a data event. recHits have:

• Associated detector ID information

• Energy, time, position, etc. information. When I get the truth information for training purposes, the recHits have already gone through default PF

HCAL clustering, so each recHit also has an associated PF cluster



Truth-based clustering concept

10/4/2022 FASTML WORKSHOP 2022 38

• The truth-based clustering concept is relatively straightforward, but 
possibly too naïve:
• For a given recHit, find the simHit that contributed the most energy to that recHit
• Trace back along the GEANT daughter->parent relationships until we get to parents 

with ID = -1. These are the “stable” particles that resulted from simulated process

• Notes:
• We are considering only tracing back until we get to the GEANT vertex closest to

the inner edge of the HCAL. Some discussions with Jan have led us to think that
this might be a better truth-clustering definition

• The scheme as described above was motivated by the desire to associate a stable 
particle (which would give a reco track for charged particles) with a single cluster 
containing all daughter particles (and thus as much of the stable particle’s energy as 
possible)



Simulation
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• The following studies were performed 
using pythia 8 ttbar samples with the 
settings shown on the right

• Showering through the CMS simulation is 
performed with GEANT



Truth-based clustering in practice
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Reconstructed 
hit

Simulated hit (technically there 
might be multiple simHits 

contributing to a single recHit, 
but associated is to the most 

energetic simHit)

Simulated 
stable particle

Simulated GEANT 
Particle (simTrack). I.e. 

the particle that created 
the simHit

Simulated GEANT vertex 
(simVertex)



Truth-based clustering vs PF
clustering
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• This parent particle (ID 267) contributed the leading energy deposition to 10 recHit. In my truth-
based clustering, these would all be clustered together. In default PF clustering, 7 of the recHits
are put into a cluster with ID 6, one is put into a cluster with ID 30, and two are unassigned to a
cluster (ID -1)
• You can inspect the hits’ x, y, z, eta, phi, and depth information

• Conversely, one additional recHit, which is linked to the parent particle with ID 237, is grouped
into cluster 6 based on default PF clustering
• PF Cluster 30 has only the 1 hit

recHit 
energy

recHit 
xPos

recHit 
yPos

recHit 
zPos

recHit 
eta

recHit 
phi

recHit 
depth

recHit 
parent 

(based on 
my truth 

clustering)

recHit 
cluster 

(based on 
default PF 
clustering)

simHit 
energy



Another comparison
• Next slide has a table from a different event

• You can see that there are 16 recHits that I’ve assigned to parent particle
267

• These end up getting grouped into clusters 92, 13, 12, 8, and 14 based
on default PF clustering (and 4 are unassigned)

• I’ve included the other recHits that contribute to clusters 92, 13, 12, 8, and
14

• I’m showing this event since it’s got about twice as many hits as the previous example and

has a bit more of a non-trivial truth-based to pf-clustering mapping
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Number of recHits per
event
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recHit energy
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recHit depth
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recHit in barrel? (0 means endcap, 1
means barrel)
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recHit z and eta
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Number of truth-based clusters
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NOTE: noise hits (those with parentParticle = -1) are not included in this distribution


