
SPR: An Architecture-Adaptive CGRA Mapping Tool

Stephen Friedman† Allan Carroll† Brian Van Essen†

Benjamin Ylvisaker† Carl Ebeling† Scott Hauck §

† Dept. of Computer Science and Engineering and § Dept. of Electrical Engineering
University of Washington, Seattle, WA 98195

{sfriedma, allanca, vanessen, ben8, ebeling}@cs.washington.edu
hauck@ee.washington.edu

ABSTRACT
In this paper we present SPR, a new architecture-adaptive
mapping tool for use with Coarse-Grained Reconfigurable
Architectures (CGRAs). It combines a VLIW style sched-
uler and FPGA style placement and pipelined routing algo-
rithms with novel mechanisms for integrating and adapting
the algorithms to CGRAs. We introduce a latency padding
technique that provides feedback from the placer to the
scheduler to meet the constraints of a fixed frequency de-
vice with configurable interconnect. Using a new dynamic
clustering method during placement, we achieved a 1.3x im-
provement in throughput of mapped designs. Finally, we
introduce an enhancement to the PathFinder algorithm for
targeting architectures with a mix of dynamically multi-
plexed and statically configurable interconnects. The en-
hanced algorithm is able to successfully share statically con-
figured interconnect in a time-multiplexed way, achieving
an average channel width reduction of .5x compared to non-
shared static interconnect.

Categories and Subject Descriptors
D.3.4 [Pro-cessors]: Retargetable compilers; B.7.2 [Design
Aids]: Placement and routing

General Terms
Algorithms, Design, Experimentation, Performance

1. INTRODUCTION
Interest in spatial computing is being revitalized because

sequential computing performance has been unable to keep
pace with increasing transistor density. Spatial comput-
ers use a large number of simple parallel processing ele-
ments, which operate concurrently, to execute a single ap-
plication or application kernel. Designers of traditional gen-
eral purpose processors are attempting to keep pace with
Moore’s Law by adding multiple processor cores, and are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02 ...$5.00.

rapidly moving from multi-core to many-core designs. Pro-
cessors will contain dozens, if not hundreds of cores in the
near future. However, communication, in the form of reg-
isters, memories, and wires dominates the area, power, and
performance budgets in these new devices. Existing spa-
tial processors, such as FPGAs, are adding more coarse-
grained, special purpose units, to minimize these communi-
cation and configuration overhead costs. At the collision of
the two trends lie Coarse-Grained Reconfigurable Architec-
tures (CGRAs).

CGRAs are spatial processors that consist of word-sized
computation and interconnect elements capable of reconfigu-
ration that are scheduled at compile time. Typical compute
elements are simple ALUs, multipliers, small CPUs, or even
custom logic for FFTs, encryption, or other application-
specific operations. CGRA interconnects are register rich
and pipelined to increase the possible clock speeds and make
time-multiplexing possible. Unlike FPGAs, which are tra-
ditionally load-time configurable, CGRAs loop through a
small set of configurations, time-multiplexing their resources.

Previously, a number of CGRA architectures have been
proposed, including RaPiD [6], ADRES [13], MATRIX [14],
Tartan [15], MorphoSys [18], and HSRA [19]. These ar-
chitectures sampled the possible design space and demon-
strated the power, performance, and programmability ben-
efits of using CGRAs.

Each of the previously mentioned CGRA projects required
custom mapping tools that supported a limited subset of
architectural features. We are developing a new adaptive
mapping tool to support a variety of CGRAs. We call this
architecture-adaptive mapping tool SPR (Schedule, Place,
and Route). SPR’s support for features unique to CGRAs
makes it a valuable tool for architecture exploration and
application mapping across the CGRA devices that have
and will be developed. In this paper, we describe tech-
niques in the SPR algorithms that support mapping for
statically-scheduled, time-multiplexed CGRAs. For each
stage of SPR, we provide an introduction to the base algo-
rithms, and then we describe enhancements for supporting
features of CGRAs.

2. RELATED WORK
Despite the large number of CGRAs that have been pro-

posed in the literature, little in the way of flexible tools has
been published. Most projects have mapping tools of some
form, but they are tied to a specific architecture and/or are
only simple assemblers that aid mapping by hand. The most
flexible are DRESC [12] and the tool in [9], both of which

only support architectures defined using their limited tem-
plates.

Of the existing tools, DRESC is the closest to SPR, as it is
also intended as a tool for architecture exploration and ap-
plication mapping for CGRAs. DRESC exploits loop-level
parallelism by pipelining the inner loop of an algorithm.
Operators are scheduled in time, placed on a device, and
routed simultaneously inside a Simulated Annealing frame-
work. Their results indicate good quality mappings, but
the slowdown from using scheduling, placement, and rout-
ing jointly within annealing makes it unusable for all but
the smallest architectures and algorithms. DRESC only
supports fully time-multiplexed resources, not more efficient
statically configured resources of architectures like RaPiD,
nor does its router handle pipelining in interconnect.

CGRA mapping algorithms draw from previous work on
compilers for FPGAs and VLIW processors, because CGRAs
share features with both devices. SPR uses Iterative Modulo
Scheduling [16] (IMS), Simulated Annealing [8] placement
with a cooling schedule inspired by VPR [3], and PathFinder
[11] and QuickRoute [10] for pipelined routing.

IMS is a VLIW inspired loop instruction scheduling al-
gorithm. IMS heuristically assigns operations to a schedule
specifying a start time for each instruction, taking into ac-
count resource constraints and data and control dependen-
cies. SPR uses IMS for initial operation scheduling, and we
have extended IMS to support rescheduling with feedback
from our placement algorithm, letting us handle the config-
urable interconnects of CGRAs.

FPGA mapping tools historically use Simulated Anneal-
ing for placement and PathFinder for routing. VPR, which
has become the de facto standard for FPGA architecture ex-
ploration, is similar to SPR in that it seeks to be a flexible
and open mapping tool that can provide high quality map-
pings and support a wide spectrum of architectural features.
Unfortunately, it only applies to FPGAs. With the success
of VPR, we have chosen to adopt the same base algorithms,
though we have extended them to CGRAs by supporting
multiplexing and solving the placement and routing issues
that arise when using a fixed frequency device.

SPR uses QuickRoute to solve the pipelined routing prob-
lem. More recently, QuickRoute was extended to perform
timing-driven routing [7] and have reduced memory com-
plexity [4]. SPR does not yet incorporate these extensions,
but we hope to support them in the near future.

2.1 Mosaic

Macah
Compiler

SPR: Schedule,
Place & Route

Simulator +
Power Analysis

Electric VLSI
Arch. Generator

power
analysis

resource usage,
throughput &

latency

Benchmarks

dataflow graph

mapped design

datapath graph

Architecture
Parameters

Figure 1: Mosaic project tool chain.

SPR is a component of a larger project called Mosaic [2].
The Mosaic project has started an exploration of architec-
tures and programming tools with the goal of quantifying
the architectural trade-offs and necessary innovations in tool
support for CGRAs. The project consists of three parts: a
new system level language, Macah, an architecture-adaptive
back-end mapping tool, SPR, and an architecture genera-
tion tool and characterization effort. Figure 1 shows a block
diagram of the Mosaic project tools. The final goal is to
produce a high-performance, low-power device and a set of
compiler tools that will ease the programming burden.

3. MAPPING APPLICATIONS TO CGRAS
As shown by the authors of DRESC [12], mapping applica-

tions to CGRAs has similarities to the problems of schedul-
ing computations on VLIW architectures and placing and
routing computations on FPGAs. The difficulty comes in
making these algorithms work together and adapting them
to the particulars of CGRAs. For mapping, we represent the
application as a dataflow graph (shown in Figure 2) and the
architecture into a datapath graph. We describe our archi-
tecture representation in Section 4.

+in
a

b
out

Figure 2: Example of a simple dataflow graph.

In DRESC, the authors chose to implement this mapping
process as a monolithic scheduling, placement, and routing
algorithm unified within a Simulated Annealing framework.
Integrating placement and routing this way was shown to be
significantly slower for FPGAs in Independence [17] when
compared to the separate stages of VPR [3]. We expect
the slowdown to be worse when you include the scheduling
for time-multiplexed coarse grain devices, so we avoid the
monolithic approach and divide the mapping process into
three closely coupled but distinct algorithms:

• Scheduling - ordering operations in time based on data
and control dependencies.

• Placing - assigning operations to functional units.

• Routing - mapping data signals between operations us-
ing wires and registers.

To illustrate how these algorithms are combined, the main
loop of SPR is shown in Figure 3. As you can see, it uses IMS
[16], Simulated Annealing [8] placement, and PathFinder
[11] with our extension that is described in Section 7.1. We
use QuickRoute [10] as the signal level router for PathFinder
to produce pipelined routes. This allows flexible use of inter-
connect registers during routing, rather than being limited
like DRESC is to fixed register placement in register files.

The other interesting subroutines are described through-
out the rest of this paper. The subroutine unrollGraph()

of the datapath graph handles translating our architecture
description into a graph suitable for placement and routing,
and is discussed in Section 5.1. The subroutine padSched-

ule() implements our latency padding technique which com-
municates the need for extra slack in placement back to the
scheduling stage, and is discussed in Section 6.1.

SPR(){
while(iterate){

minII = iterativeModuloSchedule(minII);
dataPathGraph.unrollGraph(minII);
placeSuccess = simAnnealingPlacement();
if(!placeSuccess){ padSchedule(); }
else{
routeSuccess = pathFinderRouting();
if(!routeSuccess) minII++;

}
sprIters++;
iterate = (!(placeSuccess && routeSuccess)

&& sprIters < maxIters);
}

}

Figure 3: Main body of SPR

SPR was designed with several assumptions based on the
types of programs it will map and the range of current
CGRAs. First, we assume we are mapping a kernel con-
sisting of a single loop which will be pipelined by SPR. Cur-
rently, a kernel can be described in the Macah language
using nested and sequenced loops, and the Macah com-
piler will turn them into a single loop dataflow graph [5].
Second, we assume we are mapping to a modulo-counter,
time-multiplexed architecture. That means the architecture
can switch an entire configuration per clock cycle using a
modulo-counter. Though some architectures support more
complex control, this simple multiplexing is the most fre-
quently implemented approach across a range of architec-
tures. Finally, SPR currently assumes a fixed frequency de-
vice where routes cannot be constructed that violate that
frequency. In the future we will look at lifting some of these
assumptions.

4. ABSTRACT REPRESENTATION
To achieve architecture-adaptability, SPR’s architecture

representation remains very abstract. An architecture is
represented as a datapath graph, which is defined in Ver-
ilog out of a few primitives. Verilog modules prefixed with
primitive are used to represent arbitrary functional units.
The Verilog is flattened into a directed graph. Primitive
Verilog modules form the nodes and wires form the arcs.
There are two types of distinguished primitives that receive
special treatment in this translation process:

• primitive register - A register to be used by the router
to route in time.

• primitive tap,primitive stap - A configurable connec-
tion between two wires (pass gate).

Registers are distinguished so that QuickRoute [10] can
use them for pipelined routing. Additionally, we improve
QuickRoute’s efficiency by not representing them as nodes,
but instead recording them as latency on arcs between nodes.

The connections in the interconnect that are controlled by
configuration bits are represented as tap and s-tap devices.
A primitive tap device is a dynamic connection, meaning
it has an array of bits controlling its configuration allowing
time multiplexing. A primitive stap device is a static con-
nection, meaning it has a single bit controlling its configura-
tion for the life of the application. Dynamic connections are
more flexible, but have higher area and power requirements
for storing and switching the configuration. Static connec-
tions can be more area and power efficient, but at the cost of

flexibility. A set of taps whose outputs are connected to the
same wire are aggregated into a logical mux by SPR to en-
sure that two taps are never made to drive the same wire at
the same time. With this representation, SPR can support
a mix of static and dynamic interconnect, like those found
in the RaPiD [6] and MATRIX [14] architectures. Example
static and dynamic muxes are shown in Figure 4.

[3][3][0][2]
[Phase]

Dynamic Mux Static Mux

[3]

Figure 4: Dynamic and static mux representation.

To support a specific architecture, four things need to be
done. First, the architecture must be described in Verilog
using primitive nodes as outlined above. Second, a function
to estimate the cost of routing from one node to another
must be created. This is used for placement cost calculations
and the A* search in QuickRoute. Additionally, many archi-
tectures support the notion of clusters with cheaper/faster
local interconnect and more expensive global interconnect.
This is represented in SPR by assigning every node a cluster
coordinate, where SPR assumes anything with the same co-
ordinate is in the same cluster. Third, a mapping between
dataflow graph operation types and primitive functional unit
types must be defined. This mapping is a many-to-many
relation, for example mapping either an ADD or an OR op-
eration onto an ALU functional unit, or mapping an ADD
operation to either an ALU or an ADDER functional unit.
Finally, a subroutine must be written for translating the
abstract internal configuration into an appropriate form for
the architecture, such as a bitstream. The second through
fourth items will eventually be handled by SPR plug-ins,
but are currently implemented using a simple API to java
objects. We believe this minimal amount of work to support
a new architecture will allow easy adaptation to a variety of
CGRAs. Now that we have described the main loop of SPR
and how it represents architectures, we can delve into the
details of each stage.

5. SCHEDULING
The scheduling problem is addressed in SPR using the

IMS [16] algorithm. The result is a complete schedule that
specifies when each operation can execute given the data
dependencies and architectural resource constraints. The
schedule repeats every II (Initiation Interval) cycles, with a
new iteration of the application loop starting each repeti-
tion. The II is determined by several things, and the reader
is directed to [16] for the details, but one that is important
to our discussion is the maximum recurrence loop. When
values from the current iteration are needed by future it-
erations, those values must be computed before the future
iteration needs them. This is called a recurrence loop or
loop carried dependence, and the largest recurrence loop is
a lower bound on the II. This will be important when we are
discussing our CGRA specific extentions to the placer.

Using IMS allows us to easily trade off between resource
constraints and throughput. To illustrate this, consider the
following examples. Table 1 shows a possible schedule for

our example dataflow graph from Figure 2. The target data-
path graph in this example contains one ALU, one stream-in
device, one stream-out device, and one constant device. In
this example we need two ALU operations and two con-
stants per iteration. However, our architecture only has one
of each, requiring that the schedule start an iteration every
other cycle, with a four cycle latency.

Table 1: Example schedule with II 2 and length 4.
Cycle alu str i str o cnst

0 in[0] a[0] It0
1 add[0] b[0]

2 sub[0] in[1] a[1] It1
3 add[1] out[0] b[1]

4 sub[1] in[2] a[2] It2
5 add[2] out[1] b[2]

If we increase the resources available by adding an ALU
and another constant, we get the schedule given in Table 2.
Our schedule length for a single iteration is still four cycles,
but we can initiate a new iteration every cycle, giving us an
II of one, thus doubling our throughput.

Table 2: Example schedule with II 1 and length 4.
Cycle alu0 alu1 str i str o cnst0 cnst1

0 in[0] a[0] It0

1 add[0] in[1] a[1] b[0] It1

2 add[1] sub[0] in[2] a[2] b[1] It2

3 add[2] sub[1] in[3] out[0] a[3] b[2] It3

Operators that do not fall on the critical scheduling path
may have some schedule slack that allows their start time
to change without violating any dependency constraints. In
these simple examples, b has some slack, and could be sched-
uled 1 cycle earlier. This schedule slack is preserved and
communicated forward to the placer to provide flexibility by
allowing moves in time within the slack window. Initially,
we produce a tightly packed schedule based on dependency
and resource count constraints. In a later stage, we may find
that placement or routing is not able to find a solution with
this optimistic schedule, and we will iterate to lengthen it.
This lengthening will produce more slack and possibly more
virtual resources via the unrolling process described in the
next section. This increases the chance of a successful place
and route, at the cost of latency and/or throughput.

5.1 Modulo Graph Unrolling
Once we have a schedule that meets dependency and re-

source usage constraints, we need to run placement and
routing. However, there is a mismatch between the assump-
tions for scheduling and the assumptions for standard FPGA
place and route algorithms. The scheduler assumes that all
resources can be made to do a different operation in each
cycle of the II; that is, it has virtualized the resources by
a factor of II. Standard FPGA place and route algorithms
do not support this type of virtualization. To overcome this
difference, SPR unrolls the architecture graph II times, mak-
ing one copy of the architecture for each cycle of the II. We
refer to each cycle within an II as a phase. It also re-maps
connections with non-zero latencies so that they cross the
appropriate number of phases, effectively routing forward in

time. Since we are implementing a modulo schedule, we cre-
ate a modulo graph by wrapping any connections beyond II
phases back around to the beginning. This datapath graph
transformation is legal as long as II is less than the depth of
the chip’s configuration memory, so we limit the unrolling
based on the architectures depth. Unrolling the graph turns
the CGRA’s time dimension into a third space dimension
from the point of view of the placer and router, as shown in
Figure 5, allowing standard algorithms to be used. In this
figure we see the usual spatial routing on wires and through
switch boxes, but registers actually route forward in time to
the next cycle, shown with dotted lines.

Cyc
le

0

Cyc
le

1

Figure 5: Unrolled datapath graph with mapped
dataflow graph.

We maintain information about which unrolled nodes cor-
respond to the same physical device, and the associated
phase of the virtual instance. Additionally, all dataflow
graph nodes are annotated with their start time and slack
from the schedule. This extra information will allow the
placement to restrict moves to phases of a device that pre-
serve a legal schedule, but still generate moves in both space
and a window of time.

At this point, it is important to note the difference be-
tween what we call stateful and stateless devices. For state-
less devices, such as an ALU, increasing the II adds another
virtual device, because it provides another schedule slot for
the physical device. However, this does not work for some
devices, such as memories, and we denote those as stateful.
An example of this would be a small block RAM, because
no matter how much you “unroll” the graph, the same data
will be in the same physical memory. With an increase in
II, the schedule gets more read and write accesses to the
block RAM, but it does not increase the storage capacity
of the memory. For these stateful devices, SPR handles the
constraints of keeping only one state element in a device,
but can virtualize accesses to the device. It groups these
accesses so they are mapped to the same physical device.

6. PLACEMENT
Like most FPGA tool flows, SPR’s placer uses Simulated

Annealing [8]. When using the Simulated Annealing frame-
work, you must define three key components for your prob-
lem: the cooling schedule, move function, and cost function.
We chose to adopt the cooling schedule used by VPR [3]
because it was shown to work well for FPGAs, and once we
have unrolled our architecture, it is very close to a standard
FPGA placement problem.

Our move function is more complicated than that for an
FPGA. We enforce our scheduling and stateful element con-
straints through the move function by only generating moves
that respect these constraints. We start by choosing a ran-
dom dataflow node to be moved. We then pick from the set
of physical datapath nodes with a compatible type. After
that, we choose a random phase from the set of phases in
the current schedule slack for this node. As a final check, we
ensure that the dataflow node at the destination datapath
node is compatible with the phase and type of our current
datapath node, and if so we have generated a successful swap
move. If not, we keep trying different destination datapath
nodes until we find a swap or exhaust all possibilities. In
the latter case, we try a different dataflow node and repeat
the process. In addition to this simple swap move, we have
implemented a more complicated clustering move function,
described in Section 6.2. We compare these two methods in
the evaluation section.

The last thing that needs to be defined is our cost function.
We use a routability driven cost function, with routability
estimates defined on a per architecture basis. For the archi-
tecture we used in our evaluation, this cost function is the
estimated number of muxes used to route a connection with
a given amount of clock latency. Once we have a function
to estimate the routing cost, the cost of a placement is the
sum of the routing cost over all connections in the architec-
ture, plus a penalty for each unroutable connection. These
unroutable connections arise because SPR targets fixed fre-
quency devices, and if a route must traverse a large portion
of the chip, there will be some forced registering along the
way to keep clock frequencies high. If a connection between
two operations doesn’t have the latency needed to meet the
forced register delay constraints, it is marked as “broken.”
These broken connections incur a penalty cost proportional
to the amount of latency that would need to be added to
meet the delay constraint.

6.1 Latency Padding
Our initial schedule optimistically assumes only operator

computation latency and ignores data movement latency in
connections to get the tightest schedule possible. Unfortu-
nately, the placer can’t always meet this optimistic schedule
because some longer range connections will have forced la-
tency in them due to registering. If there is slack available in
the schedule, the placer can shift the slack around so that it
is used to handle the forced latency of long wires. However,
if there isn’t enough slack, it needs to communicate this to
the scheduler.

We implemented latency padding to perform this commu-
nication. The placer is run to completion, and at the end
any connections that are considered unroutable by the ar-
chitecture specific cost function are candidates for padding.
By repeatedly querying the cost function with higher la-
tencies, we can find the minimum amount of extra latency
needed before the connection is considered routable. We
then add padding that looks like extra delay dependencies
to the scheduler, but is treated as slack by the placer. We
explored several options for how and where to add padding,
which are detailed along with the results in Section 8.4.

The goal of this padding is to directly add slack to prob-
lematic areas of the computation. This added padding will
affect the scheduling of all down-stream operations and could
affect up-stream operations and the II through recurrence

relationships. Thus, we must go all the way back to the
scheduling stage and start again. The padding tells the
scheduler where to insert more slack, and then the placer
uses that extra slack to span the long latency interconnect.
The next time around through the placer, the padding may
be needed on a different connection due to the random na-
ture of simulated annealing. Fortunately, padding appears
as slack to the placer, which can sometimes be moved from
the padded connection to where it is needed in the new place-
ment.

6.2 Dynamic Recurrence Clustering
Many architectures group resources into clusters with more

flexible and lower latency interconnect. This is found in ar-
chitectures like HSRA, MorphoSys, and Tartan. As we men-
tioned before, the largest recurrence loop in an application
sets a lower bound on its II. This means that these recur-
rence loops are effectively our critical path. In order to keep
our throughput high, we want to make sure any critical loops
in our application take advantage of the faster interconnect
offered by clustered nodes in the architecture.

The basic idea behind our clustering is that when attempt-
ing to move an operation from one cluster to another, it
might need to move nodes from the same recurrence loop
to the new cluster as well. This is to avoid higher II’s
due to inter-cluster communication in the critical loop. For
our clustering algorithm, we start out by marking all edges
in recurrence loops as clustering edges. Then, when the
placer is generating an inter-cluster move, it checks to see
which neighboring nodes should be moved to the new clus-
ter as well. If the clustering edges to any nodes in this clus-
ter would become unroutable, we attempt to include those
nodes in the move to the destination cluster. Of course,
the included neighbor’s neighbors may be part of the loop
and need to be moved as well, so we repeat this process re-
cursively until we have added no new nodes. We limit our
consideration of neighbors to nodes that start in the same
cluster, so the biggest move we could generate this way is
a full swap of two clusters. The key here is that we only
cluster when a connection would otherwise end up being
unroutable, which would result in latency padding and an
increase in II. This way, we only cluster what is necessary,
and we can still spread recurrence loops with enough slack
in them across clusters.

7. ROUTING
Routing the signals between the operators in a scheduled

and placed dataflow graph requires finding paths contain-
ing zero or more registers. To accomplish this, SPR uses
QuickRoute [10], a fast, heuristic algorithm that solves the
pipelined routing problem.

By using PathFinder [11] with QuickRoute, SPR has a
framework that negotiates resources conflicts. As a gen-
eral conflict solver, PathFinder can be applied to a range of
problems that can be framed as a negotiation. Originally,
PathFinder was used to optimize global routing by negoti-
ating wire congestion. We show that the same framework,
given the correct congestion metric, can be used to negotiate
between other conflicts such as those encountered when try-
ing to make use of a statically configured resource in a time
multiplexed system. When applied to our unrolled architec-
ture graphs, the original PathFinder will work unmodified
for dynamically configurable resources, where the configu-

ration can be changed on every tick of the clock. Many
reconfigurable systems, such as RaPiD [6], use more area-
efficient and power-efficient interconnect for portions of the
system that are set up statically before a computation. We
have extended PathFinder to allow sharing of both static
and dynamic muxes between signals in different clock cy-
cles. To see what this sharing means, consider the routes
shown in Figure 6 across different phases of the same mux.

Phase 0 Phase 1 Phase 2

Figure 6: Routes across different phases of a mux.

If this is a dynamic mux, all three signals can share this
mux. A static mux would allow sharing of the signals in
the first two phases because they share the same input,
even though their destinations may be different. The sig-
nal attempting to use the mux in Phase 2 would need to be
re-routed. Without enhancement, PathFinder is unable to
support this type of sharing in mixed static/dynamic archi-
tectures.

7.1 Control-based PathFinder
In our enhanced version of PathFinder, static and dy-

namic resources appear the same to the signal level Quick-
Route algorithm. The difference lies in the computation of
the congestion costs during the congestion negotiation. The
problem with using standard PathFinder is that we have
created virtual copies of static muxes that PathFinder sees
as completely disjoint routing resources. Even though all
virtual copies of a static mux need to have the same in-
put configuration to have a valid mapping, PathFinder will
obliviously route through different inputs in different phases.
On the other hand, dynamic muxes have no constraints on
the settings between phases, and so by simply unrolling
the graph, the original PathFinder formulation supports dy-
namic muxes. A straightforward PathFinder extention for
supporting static muxes is to simply allow only one signal
to ever use a particular static mux, effectively not unrolling
it. This can be accomplished by summing the signal counts
across the phases. This will only allow 1 signal to ever use
a static resource. However, we would instead like to put the
static resource into the most useful setting, and share that
setting amongst different signals in different phases.

Two observations lead us to our new PathFinder formu-
lation which can time-multiplex signals across static muxes.
The first is a simple optimization to PathFinder. We ob-
served that limiting PathFinder to negotiating between sig-
nals for the use of a mux output port is equivalent to Path-
Finder negotiating for the use of all the wire segments and
registers driven by that mux. This is because by choosing
which signal will occupy the output port of a mux, we have
implicitly chosen that the same signal will occupy all wire
segments connected to the port, either directly or indirectly
through a series of registers. This lets us dramatically re-
duce the number of resources we have to track PathFinder
negotiation information for.

The second observation is that when choosing which sig-
nal will occupy the output port of the mux, you are really
only choosing which input of the mux should be connected

to the output, i.e. what should the values of the configu-
ration bits for that mux be. This makes the relationship
between static and dynamic routing resources more appar-
ent. In the dynamic case, there is a separate configuration
available for each phase of the II, so a different input can be
chosen by the router in every phase. In the static case, the
router can only choose to have one input used for the life of
the program. Thus, PathFinder must negotiate for use of
the shared configuration bits among unrolled instances of a
static mux.

To allow for this new negotiation, we now have two differ-
ent kinds of congestion. The first is the original PathFinder
notion of signal congestion: two electrical signals cannot
be sent along the mux output wire at the same time. The
second is control congestion: two signals using a statically
configured mux cannot require two different configurations
in different phases, but both can use the output wire in dif-
ferent phases.

In the original PathFinder, congestion led to two types
of cost: the immediate sharing cost and the history sharing
cost. Now that we have two different types of congestion,
this leads to four costs to be monitored. We will begin with
the immediate sharing costs. The immediate sharing cost
for signal congestion remains unchanged from PathFinder,
and is the excess number of signals attempting to use a mux
in a given phase.

The immediate sharing cost for control congestion is the
excess number of configurations used by a mux across all
phases. For a dynamic mux, which can have a different
control setting in each phase, this will always be zero. How-
ever, for a static mux, only one setting is available, so any
excess settings needed by signals add to the immediate shar-
ing cost. An example of computing the congestion for the
different types of sharing on a 6 input static mux with an II
of 4 is depicted in Figure 7.

0

1

2

3

0 1 2 3 4 5

1

1

1

1

1

1

2

1

1

2

1

2

3

OR

+

+

Co
nt
ro
l

Co
ng
es
tio
n

Si
gn
al

Co
ng
es
tio
n

Input

Ph
as
e

Figure 7: Congestion calculation from signal usage.

The top half of the diagram illustrates the original Path-
Finder signal congestion costs for each unrolled instance of
the mux. By adding up the number of signals using the in-
puts, we see how many will be on the output. This leads
to signal congestion on the phase 1 mux and the phase 3
mux because there are two signals trying to use the mux
simultaneously.

The bottom half of our diagram illustrates our new con-
trol congestion for a static mux. For each input, we see if
that input is used in any phase, doing a logical OR across
phases. Then we sum across these OR’ed values to see how
many configurations are used across all phases, obtaining 3

in this example. Because this is a static mux, a maximum
uncongested value is 1 input, so the value of 3 here indi-
cates control congestion. Using both types of congestion in
PathFinder is straightforward, as PathFinder simply needs
to iterate until there is no congestion of either type.

Now let’s look at our new history sharing costs. Again, the
history sharing cost for signal congestion from PathFinder is
unchanged. The history cost for control congestion is a little
more subtle. For a fully dynamic mux, there is no control
congestion history to maintain.

For a single static mux, we would like to make the sig-
nals using the mux in different phases use the same inputs
through PathFinder negotiation. The history cost update
must be computed by looking at the mapped signals across
all phases of a mux with control congestion. Pseudo code for
this update is given in Figure 8. For each signal using one
of the unrolled muxes, there are two basic increases to the
control cost. The first is an increase to the cost of any input
other than the one the signal is currently using, represented
by the condition sig.input!=input. The second is an in-
crease to the cost of the current input and phase that a signal
is using, represented by the condition sig.input==input &&

sig.phase==phase.

updateControlHistory() {
foreach sig of signalsOnMux {
foreach phase of II{

foreach input of mux{
if(sig.input!=input ||

(sig.input==input &&
sig.phase==phase))

historyControlCost[phase][input]++;
}

}
}

}

Figure 8: Control congestion history pseudo-code.

The reasons for these two increases will be discussed in
the context of an example where two signals, A and B, are
using a 6 input static mux with an II of 4. The resulting
history cost increases are depicted in Figure 9. Inputs with
history cost increases from A are shaded in red(gray) and
increases from B are shaded in blue(black). Inputs that are
shaded by both will have their cost increased by twice as
much as those shaded by a single color.

A

B

Input

Ph
as
e

0 1 2 3 4 5

0

1

2

3

Figure 9: History updates for static control conges-
tion.

For the condition sig.input!=input, each signal increases
the cost of using a configuration (or input) other than its
own. This makes the inputs with signals already using them
in a different phase relatively less expensive in future itera-

tions. As the cost increases, either signal A or B could find a
cheaper alternate route through a different mux or an input
compatible with the other signal, for example A finding an
alternate route that uses input 3.

For the condition sig.input == input && sig.phase ==

phase, each of A and B increase the cost of their input in
the phase they use it. To see why signals increas the cost
of their current input, we will consider what would happen
if they didn’t. Suppose the depicted congestion of A and B
is the only congestion in the current routing. At this point,
the paths A and B are taking are the least cost paths from
their sources to their respective sinks. When each signal
only increases the cost for inputs it is not using, the cost of
the currently used inputs will increase at the same rate. The
cost of all others will increase at twice that rate. Since the
currently used inputs are penalized by the same amount,
neither signal has incentive to take a longer path to use
compatible inputs. The only way this congestion will be
resolved is if A or B move to a different mux altogether, not
through both using the same input.

When A and B do increase the cost of their input in the
phase they use it, each signal will notice that “the grass is
greener” on the input the other signal is using. Whichever
signal has a cheaper alternate route to the other input will
eventually move first, and the congestion will be resolved,
sharing the same input of the static mux in different phases.
In this way, we can have several signals sharing our static
resources cooperatively.

8. EVALUATION
To evaluate our enhancements, and to provide a tool for

the Mosaic architecture exploration [2], we implemented SPR
in Java using the schedule, place, and route algorithms de-
scribed in the previous sections. We used 8 benchmarks
that constitute a set of algorithms with loop-level parallelism
typically seen in embedded signal processing and scientific
computing applications. With only a few benchmarks, we
used a two-tailed paired T-test with p = .1 for establish-
ing significance in our results. Our architectures are defined
as structural Verilog suitable for simulation, generated by
the Mosaic Architecture Generator plug-in to the Electric
[1] VLSI Design System.

8.1 Architecture
For our experiments, we targeted a 2-D grid CGRA ar-

chitecture inspired by island-style FPGAs and grid style
CGRAs. It is made up of a 2-D array of clusters containing
4 ALUs, 4in/4out stream accessors, 4 structures for hold-
ing configured constants, and 2 local block RAMs. Inter-
nally, devices in a cluster are connected by a cross-bar. The
clusters are connected to each other with a pipelined grid
interconnect where we can vary the number of static and
dynamic channels. The grid interconnect employs Wilton
style switchboxes [20]. Unless otherwise stated, we use an
architecture made up of 16 clusters with a 16 track intercon-
nect. In total, our test architecture contains 288 functional
units, though we expect the algorithms to scale to thou-
sands of functional units on the basis of their lineage from
existing VLIW and FPGA algorithms. SPR will eventually
support pipelined functional units which take multiple clock
cycles for computation, but for our simple test architecture
we assume single cycle operations.

8.2 Benchmarks
The benchmarks were written in Macah with the main

loops designated as kernels. These kernels were translated
by the Macah compiler into a dataflow graph [5]. The data-
flow graph nodes are primitive operations. The nets are
either routable connections or dependency constraints, such
as sequential memory accesses, that must be respected by
the scheduler. A tech mapper translates compiler specific
nodes into SPR readable generics and maps from dataflow
graph node types to devices in the architecture.

The benchmarks include three simple signal processing
kernels: fir, convolution, and matrix multiply, and five more
complex kernels from the multimedia and scientific comput-
ing space: K-Means Clustering, Smith-Waterman, Matched
Filter, CORDIC and Heuristic Block Motion Estimation.

Table 3: Summary of Benchmarks
Kernel Nodes Nets II Latency

Motion Estimation 196 387 5 29
Smith-Waterman 214 468 9 58
2-D Convolution 518 1037 5 58
Matched Filter 406 801 4 48
Matrix Multiply 212 434 5 14
CORDIC 157 336 3 33
K-Means Clust. 449 998 7 30
Blocked FIR 255 506 3 46

Relevant statistics for our benchmarks are given in Table
3. The number of nodes and nets quantifies the size of our
benchmarks. Most of our benchmarks have adjustable sizes.
For example, the number of coefficients used in a FIR can
be changed. The minimum II is a lower bound set by both
the largest recurrence cycle (RecMinII) and the number of
resources needed by the application(ResMinII). Where pos-
sible, we scaled our benchmarks up as far as they would go
without increasing the ResMinII past the RecMinII. When
benchmark scaling increased the RecMinII faster than the
ResMinII, we scaled to just past 200 nodes instead. The
value for II and latency given in the table are the minimum
schedulable values for our 16 cluster architecture. These II’s
will also be increased as needed by the placement and rout-
ing stages to achieve a successful mapping, and the increase
above this baseline is what we measure in evaluating our
latency padding and clustering algorithms.

8.3 Graceful Scaling
One problem with using a system like an FPGA for an

accelerator is that if your computation doesn’t fit on the
particular chip you have, it won’t run without adjustment
of the application. Because SPR is designed for use in time
multiplexed systems, more virtual hardware resources can
be made available at the cost of slower execution. An exam-
ple is shown in Figure 10. As you can see, as we map the
same application to architectures with fewer resources, we
still get a valid mapping, but the II’s are increased to make
more resources available, with a corresponding decrease in
throughput. Similarly, we can put larger applications on
the same size architecture at the cost of throughput. In this
case, we increase the application size by using more coeffi-
cients in the FIR. The 40 coefficient FIR corresponds to the
size used in Table 3, so it consists of 255 nodes and 506 nets.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 9 16 25

In
iti

at
io

n
In

te
rv

al

Number of Clusters

10 coefficient FIR
20 coefficient FIR
40 coefficient FIR
60 coefficient FIR

Minimum FIR II

Figure 10: Scaling across architecture sizes.

8.4 Latency Padding Effects
Latency padding is an educated guess as to where more

latency in the schedule will aid in placement and routing.
It isn’t an exact guess, because adding latency for a given
placement will result in a new schedule and a new place-
ment, which may have different latency needs. Additionally,
because the placer works in both time and space, the latency
may be moved by the placer to make better use of it.

Given a “broken” connection (a single connection that is
unroutable due to forced latency constraints), there are sev-
eral possibilities for adding latency that may fix it on the
next scheduling and placement pass. One possibility is to
add padding latency only to the connection that is broken,
effectively spreading out the operations on both sides of the
connection. We will call this connection padding.

Another option that works well in the IMS [16] framework
is to pad by reserving more time for the source operation.
This has the advantage that there will be slack on all outputs
for the operation, which means the operation will be able to
be moved in time easily by shifting slack from all outputs to
all inputs. This gives the placer a little more flexibility in
the next pass, but there is potentially more latency added
to the system as a whole. We call this operation padding.

Once you choose what to pad, you also must choose how
much to pad. Even though we know how much latency is
needed to make the connection routable, that may not be
the best amount to pad by. If there are several broken con-
nections, adding padding to only one may fix all connections
if the placer can move the slack to a common ancestor of the
sinks. Another possibility is that adding less than the full
amount of padding may work because in the next pass, op-
erations that occur at the same time could be completely
changed, affecting the placement and the routing.

To get a minimal amount of padding, one could add only 1
cycle of latency at a time and re-run the schedule and place-
ment until it succeeds. These extra iterations cost extra
compilation time. To minimize the number of extra iter-
ations, one could pad by the full amount needed to meet
the interconnect latency constraints. In our case, we are
looking at applications where throughput matters more than
the overall latency. Thus, it should be fine to pad by the
full amount where the extra latency only affects the over-
all program latency, not the throughput. However, padding
a recurrence cycle could increase the II and decrease our
throughput. Therefore, conservative padding could be worth
extra compiler run-time for recurrence cycle connections.

We must decide between padding connections or opera-
tors, and we must choose either conservative or full padding

 0

 5

 10

 15

 20

 25

 30

II
In

cr
ea

se

Motion Estimation
Smith-Waterman
2-D Convolution
Matched Filter
Matrix Mult.
CORDIC
K-Means
FIR

 0

 100

 200

 300

 400

Consv. Connection

Full Connection

Consv. Operator

Full Operator

La
te

nc
y

 In
cr

ea
se

Figure 11: II and Latency effects across different
padding settings.

in recurrence cycles. The results of experiments run using
these 4 possibilities are shown in Figure 11. Note that some
applications don’t show up in the bars, and in this case, the
II was not increased over the baseline given in Table 3.

Connection based padding is the best option for keep-
ing throughput high, with the conservative padding produc-
ing slightly better results, as expected. However, if latency
is your primary concern, then conservative operator based
padding is the best solution.

8.5 Dynamic Recurrence Clustering
To test the effects of our dynamic recurrence clustering,

we ran our tool with it both on and off. The results are
shown in Figure 12.

 0

 2

 4

 6

FIRK-Means

CORDIC

Matrix Mult.

Matched Filter

2-D Convolution

Smith-Waterman

Motion Estimation

II
In

cr
ea

se

Clustering
No Clustering

Figure 12: Effects of Clustering on II.

The clustering allowed us to achieve improved IIs, trans-
lating into improved throughput, in six of our benchmarks.
For the remaining two, the results were the same for both
methods. Averaged across all benchmarks, this translates
into a significant improvement of 1.3x in throughput. The
lack of bars for the Clustering case in the chart indicates
that for most of the benchmarks, we were able to achieve
the minimum schedulable II when clustering was turned on.

8.6 Static/Dynamic Interconnect
To exercise our new static congestion negotiation algo-

rithm, we mapped our benchmarks on two different archi-
tectures, one with a fully dynamic global interconnect, and
one with a fully static global interconnect (with dynamic

cluster crossbars). To measure sharing, we count the num-
ber of signals mapped to a physical mux in different phases.

The fully dynamic run gives us our baseline for the amount
of sharing that would happen in the most flexible system
possible, given the actual application we are mapping. With
a fully dynamic interconnect, there are no constraints put on
signals sharing a mux in different phases. It is sharing neu-
tral, and should neither encourage nor discourage sharing.
On the other hand, the static interconnect has two forces at
work to perturb the amount of sharing. They both origi-
nate from the constraint that two signals who share a mux
in different phases must use the same input. This can work
to lower the amount of sharing in routing rich architectures,
because when there is a conflict, it is easier for one signal
to use a slightly longer but alternate route through empty
muxes than to use the same input as the competing signal.
As the routing resources become more scarce, there will be
fewer empty muxes to use and some sharing will be required.
Once you have negotiated to use the same input for one mux,
that means both signals are also using the same upstream
mux. In fact, this holds transitively, so if a mux is shared,
the same amount of sharing will be forced on all upstream
static muxes until a dynamic mux is reached. This will tend
to increase sharing.

We found the baseline dynamic sharing to be an average
of 1.35 signals/mux, for our benchmarks and a fixed chan-
nel width of 16. As a check to ensure this number is rea-
sonable, we calculated expected value of sharing given the
II, global interconnect utilization and assuming a uniform
distribution, and found it to be 1.21 signals/mux. The mea-
surements should be slightly higher because the actual dis-
tribution is not uniform. The fully static run shows that our
algorithm successfully allows sharing of statically configured
interconnect, demonstrating an impressive 1.32 signals/mux,
which is not a significant difference from the dynamic case.

 1

 10

 100

 1000

 1 2 3 4 5 6 7

N
um

be
r o

f M
ux

es

Number of Signals

Smith-Waterman Dyn.
Smith-Waterman Stat.

Matrix Mult Dyn.
Matrix Mult Stat.

Figure 13: Dynamic and static sharing using the
minimum routable static channel width.

If we examine sharing at the stress case of minimum rout-
able channel width, we begin to see more differentiation be-
tween static and dynamic resources. In this case, we expect
higher utilization to lead to higher amounts of sharing. The
tighter resources and higher utilization showed an increase in
sharing in the static interconnect to 1.52. As a comparison,
we also ran our benchmarks with a dynamic interconnect
sized to the minimum static channel width. Here we find
the dynamic has significantly lower sharing at 1.47. We be-
lieve that in the stress case, the upstream chaining is causing
the higher sharing when using static resources. A histogram
of the number of signals sharing a mux is plotted for two ap-
plications on both static and dynamic interconnect in Figure

13. The two applications shown provide a rough upper and
lower bound on the sharing across our applications.

Finally, we found the minimum routable channel width
for fully dynamic interconnect, static interconnect using our
sharing algorithm, and static interconnect disallowing shar-
ing. The average minimum channel width when using a
dynamic interconnect is 7.13 channels. Using a static inter-
connect with no sharing increased the width all the way to
20.1 channels. By allowing sharing, we reduce this greatly
to 10.5 channels on a fully static interconnect. This means
we gain all of the power and area savings of a statically con-
figured interconnect while reducing the associated channel
width to .5x of what we need without sharing.

9. CONCLUSION
In this paper, we described SPR, an efficient and flex-

ible architecture-adaptive mapping application for explor-
ing the CGRA architecture space. We found our latency
padding technique successful in bridging the gap between
the VLIW style scheduler and FPGA style placer to meet
the constraints of a fixed frequency device with configurable
interconnect. After evaluating several methods of padding,
we found that conservative padding on a per-unroutable con-
nection basis achieved the best throughput. We show an av-
erage improvement of 1.3x in throughput of mapped designs
by using a new dynamic clustering method during place-
ment. Finally, we showed that we can effectively share non-
multiplexed interconnect in a time-multiplexed system using
an enhancement to the PathFinder [11] algorithm. Our re-
sults indicate that SPR is capable of mapping a range of
applications while supporting unique features of CGRAs.

10. FUTURE WORK
SPR currently makes some limiting assumptions we will

lift moving forward. We plan to implement a more tim-
ing driven approach to scheduling, placement and routing
based off of the work in Armada [7]. We are also planning
to incorporate some control schemes that are more advanced
than a modulo scheduler, such as the nested-loop controller
of RaPiD [6], or the ability to create a program counter
out of logic in MATRIX [14]. As the Mosaic project moves
forward, SPR’s flexibility will be used to assess the architec-
tural trade-offs of dynamic and static interconnects to find
the proper mix of resources for target applications.

11. ACKNOWLEDGEMENTS
Department of Energy grant #DE-FG52-06NA27507, and

NSF grants #CCF0426147 and #CCF0702621 supported
this work. An NSEDG Fellowship supported Allan Carroll.

12. REFERENCES
[1] Electric VLSI Design System. Sun Microsystems and Static

Free Software. http://www.staticfreesoft.com/.
[2] Mosaic Research Group.

http://www.cs.washington.edu/research/lis/mosaic/.
[3] V. Betz and J. Rose. VPR: A New Packing, Placement and

Routing Tool for FPGA Research. In International
Workshop on Field-Programmable Logic and Applications,
1997.

[4] A. Carroll and C. Ebeling. Reducing the Space Complexity
of Pipelined Routing Using Modified Range Encoding. In
International Conference on Field-Programmable Logic
and Applications, 2006.

[5] A. Carroll, S. Friedman, B. Van Essen, A. Wood,
B. Ylvisaker, C. Ebeling, and S. Hauck. Designing a
Coarse-grained Reconfigurable Architecture for Power
Efficiency. Technical report, Department of Energy NA-22
University Information Technical Interchange Review
Meeting, 2007.

[6] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD -
Reconfigurable Pipelined Datapath. In International
Workshop on Field-Programmable Logic and Applications,
pages 126–135, 1996.

[7] K. Eguro and S. Hauck. Armada: Timing-driven
Pipeline-aware Routing for FPGAs. In ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pages 169–178, 2006.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by Simulated Annealing. Science,
220:671–680, 1983.

[9] J.-e. Lee, K. Choi, and N. Dutt. Compilation Approach for
Coarse-grained Reconfigurable Architectures. IEEE Design
& Test of Computers, 20(1):26–33, 2003.

[10] S. Li and C. Ebeling. QuickRoute: A Fast Routing
Algorithm for Pipelined Architectures. In IEEE
International Conference on Field-Programmable
Technology, pages 73–80, 2004.

[11] L. McMurchie and C. Ebeling. PathFinder: A
Negotiation-based Performance-driven Router for FPGAs.
In ACM International Symposium on Field-Programmable
Gate Arrays, pages 111–117, 1995.

[12] B. Mei, S. Vernalde, D. Verkest, H. De Man, and
R. Lauwereins. DRESC: A Retargetable Compiler for
Coarse-grained Reconfigurable Architectures. In IEEE
International Conference on Field-Programmable
Technology, pages 166–173, 2002.

[13] B. Mei, S. Vernalde, D. Verkest, H. De Man, and
R. Lauwereins. ADRES: An Architecture with Tightly
Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix. In International Conference on
Field-Programmable Logic and Applications, volume 2778,
pages 61–70, 2003.

[14] E. Mirsky and A. DeHon. MATRIX: a reconfigurable
computing architecture with configurable instruction
distribution and deployable resources. In IEEE Symposium
on Field-Programmable Custom Computing Machines,
pages 157–166, 1996.

[15] M. Mishra and S. C. Goldstein. Virtualization on the
Tartan Reconfigurable Architecture. In International
Conference on Field-Programmable Logic and
Applications, pages 323–330, 2007.

[16] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops. In International Symposium on
Microarchitecture, pages 63–74, 1994

[17] A. Sharma, S. Hauck, and C. Ebeling.
Architecture-adaptive Routability-driven Placement for
FPGAs. In International Conference on
Field-Programmable Logic and Applications, pages
427–432, 2005.

[18] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh,
and E. Chaves Filho. MorphoSys: An Integrated
Reconfigurable System for Data-parallel and
Computation-Intensive Applications. IEEE Transactions
on Computers, 49(5):465–481, 2000.

[19] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek, and A. DeHon.
HSRA: High-speed, Hierarchical Synchronous
Reconfigurable Array. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages
125–134, 1999.

[20] S. J. Wilton. Architecture and Algorithms for
Field-Programmable Gate Arrays with Embedded Memory.
PhD thesis, University of Toronto, 1997.

