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ABSTRACT 
NASA’s satellites currently do not make use of 
advanced image compression techniques during data 
transmission to earth because of limitations in the 
available platforms. With the advent of Field 
Programmable Gate Arrays (FPGAs) and Adaptive 
Computing technologies it is now possible to construct a 
system, which compresses the data stream before down 
linking. Our work is part of a NASA-sponsored study 
on the design and implementation of FPGA-based 
Hyperspectral Image Compression algorithms for use in 
space. 

In this paper we present an implementation of the 
SPIHT image compression routine in reconfigurable 
logic. SPIHT is a progressive wavelet-based image 
compression coder. It first converts the image into its 
wavelet transform and then transmits information about 
the wavelet coefficients. We discuss both memory 
storage considerations and optimizations to the original 
SPIHT algorithm for use in hardware. To fully utilize all 
of the memory bits for each wavelet coefficient and 
reduce memory usage, we introduce the concept of 
Variable Fixed-Point representation. 

The paper also presents a modification to the original 
SPIHT algorithm needed to parallelize the computation. 
The architecture of the SPIHT engine is based upon 
Fixed-Order SPIHT, developed specifically for use 
within adaptive hardware. For an N x N image, Fixed-
Order SPIHT may be calculated in N2/4 cycles. Square 
images which are powers of 2 up to 1024 x 1024 are 
supported by the architecture we implemented. Our 
system was developed and tested on an Annapolis 
Microsystems WildStar board populated with Xilinx 
Virtex-E parts. 

1. Introduction 
As NASA deploys satellites with more sensors, 
capturing an ever-larger number of spectral bands, the 
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volume of data being collected is beginning to outstrip 
satellite’s transmition channels. At the same time the 
volume of data being collected is growing at a faster 
rate than improvements in transmition capabilities, 
making methods of compressing images prior to down 
linking necessary. 

Current technologies are unable to provide NASA with 
a viable platform to process data in space. Software 
solutions suffer from performance limitations and power 
requirements. At the same time traditional hardware 
platforms lack the required flexibility needed for post-
launch modifications. By implementing an image 
compression kernel in a reconfigurable system, it is 
possible to overcome these shortcomings. Since such a 
system may be reprogrammed after launch, it does not 
suffer from conventional hardware’s inherit 
inflexibility. Yet the algorithm is computing in custom 
hardware and can perform at the required rates, while 
consuming less power than a traditional software 
implementation. 

Our work is part of a NASA-sponsored investigation 
into the design and implementation of a space-bound 
FPGA-based Hyperspectral Image Compression 
algorithm. We have selected the Set Partitioning in 
Hierarchical Trees (SPIHT) compression routine and 
optimized the algorithm for implementation in 
hardware. This thesis describes our work towards this 
effort and provides a description of our results. 

2 Description of the Algorithm 

SPIHT is a wavelet-based image compression coder. It 
first converts the image into its wavelet transform and 
then transmits information about the wavelet 
coefficients. The decoder uses the received signal to 
reconstruct the wavelet and performs an inverse 
transform to recover the image. We selected SPIHT 
because it displays exceptional characteristics over 
several properties all at once [4]. They include: 

• Good image quality with a high PSNR 
• Fast coding and decoding 
• A fully progressive bit-stream 
• Can be used for lossless compression 
• May be combined with error protection 
• Ability to code for exact bit rate or PSNR 



SPIHT is a method of coding and decoding the wavelet 
transform of an image. By coding and transmitting 
information about the wavelet coefficients, it is possible 
for a decoder to perform an inverse transformation on 
the wavelet and reconstruct the original image. The 
entire wavelet does not need to be transmitted in order 
to recover the image. Instead, as the decoder receives 
more information about the wavelet, the inverse-
transformation will yield a better quality reconstruction 
of the original image [3]. 

SPIHT codes a wavelet by transmitting information 
about the significance of a pixel compared to some 
threshold, thus implying some information about the 
pixel’s value. To take advantage of redundancies within 
a wavelet, SPIHT transmits information stating whether 
a pixel or any of its descendants are above a threshold. 
At the end of each pass the threshold is divided by two 
and the algorithm continues. By proceeding in this 
manner, information about the most significant bits of 
the wavelet coefficients will always precede information 
on lower order significant bits, which is referred to as 
bit plane ordering. 

In addition to transmitting wavelet coefficients in a bit 
plane ordering, the SPIHT algorithm develops an 
individual order to transmit information within each bit 
plane. The ordering is implicitly created from the 
threshold information discussed above and by a set of 
rules which both the encoder and decoder agree upon. 
Thus each image will transmit wavelet coefficients in a 
variable order dependent upon the image’s wavelet 
transform. Slightly better Peak Signal to Noise Ratios 
(PSNR) are achieved by using this dynamic ordering of 
the wavelet coefficients. The trade-off for the 
improvement are increased run-times for both the 
encoder and decoder since the order must be considered. 

3 Design Considerations and 
Modifications 

In order to fully take advantage of the high performance 
a custom hardware implementation of SPIHT can yield, 
the software specifications must be examined and 
adjusted where they either perform poorly in hardware 
or do not make the most of the resources available. Here 
we discuss both memory storage considerations and 
optimizations to the original SPIHT algorithm for use in 
hardware. 

3.1 Variable Fixed-Point 

The discrete wavelet transform produces real numbers 
as wavelet coefficients. Traditionally FPGAs do not 
employ the use of floating-point numbers because of 
their lower performance and consumption of hardware 
resources. Since coefficients at each wavelet level of the 

DWT have a fixed numerical range, we opted for a 
fixed-point numerical representation.  

One property of the DWT is the numerical range of 
numbers possible within each wavelet level is fixed, yet 
varies between levels due to the 2-D low-pass FIR filter. 
As a result, coefficients at various wavelet levels require 
a variable number of bits above the decimal point to 
cover their possible ranges. Another property of the 
DWT is the number of bits used to represent each 
coefficient impacts the Peak Signal-to-Noise Ratio 
(PSNR) of the resulting image. Figure 1 shows the 
average PSNR of several images coded with a variable 
number of bits. An assignment of 16 bits per coefficient 
most accurately matches the full precision floating-point 
coefficients used in software and was selected. 
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Figure 1: PSNR vs. bit-rate for various coefficient 

sizes 

To fully utilize all the bits for each wavelet coefficient, 
we introduce the concept of Variable Fixed-Point 
representation. With Variable Fixed-Point we assign a 
fixed-point numerical representation for each wavelet 
level optimized for the expected data. In addition, each 
representation differs from one another, meaning we 
employ a different fixed-point scheme for each wavelet 
level. Doing so allows us to optimize both memory 
storage and I/O at each wavelet level to yield maximum 
performance. 

3.2 Fixed Order SPIHT 

As discussed within Section 2 the SPIHT algorithm 
computes a dynamic ordering of the wavelet 
coefficients as it progresses. Such an ordering will yield 
better image quality for bit-streams which end within 
the middle of a bit-plane. The drawback of this ordering 
is that every image will have a unique list order 
determined by the image’s wavelet coefficient values. 

Yet, the data that a block of coefficients contributes to 
the final SPIHT bit-stream is fully determined by a set 
localized information. Thus, every block of coefficients 
may be calculated independently and in parallel of one 



another. However, the order that a block’s data is 
inserted into the bit-stream is not known since this order 
is dependent upon the image’s unique ordering. 
However the algorithm employed to calculate the 
ordering of coefficients is sequential in nature and can 
not be parallelized in hardware, significantly limiting 
the throughput of any implementation. 

We propose a modification to the original SPIHT 
algorithm called Fixed Order SPIHT. In Fixed Order 
SPIHT the order in which blocks of coefficients are 
transmitted is fixed before hand. Doing so removes the 
need to calculate the ordering of coefficients within 
each bit-plane and allows us to create a fully parallel 
version of the original SPIHT algorithm. Such a 
modification increases the through put of a hardware 
encoder by greater than an order of magnitude, at the 
cost of a slightly lower PSNR within each bit-plane 
(approximately 0.1 – 0.2 dB). For a more complete 
discussion on Fixed Order SPIHT refer to Fry et al. [2]. 
4 Architecture 
4.1 Target Platform 

Our target platform is the WildStar FPGA processor 
board developed by Annapolis Micro Systems [1]. The 
board consists of three Xilinx Virtex 2000E FPGAs. It 
operates at rates up to 133MHz with 48MBytes of 
memory available through 12 independent ports.  

4.2 Design Overview 

Our architecture consists of three phases: Wavelet 
Transformation, Maximum Magnitude Calculation and 
Fixed Order SPIHT Coding. Each phase is implemented 
in one of the three Virtex chips. By instantiating each 
phase on a separate chip, separate images can be 
operated upon in parallel. Data is transferred from one 
phase to the next through the shared memories. By 
coding a different image in each phase simultaneously, 
the throughput of the system is determined by the 
slowest phase, while the latency of the architecture is 
the sum of the three phases. Figure 2 illustrates the 
architecture of the system. 
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Figure 2: Overview of the architecture 

5.3 DWT Phase 

For the DWT phase we designed a folded architecture 
which processes one dimension of a single wavelet 
level. Pixels are read in horizontally from one memory 
port and written directly to a second memory port. In 

addition pixels are written to memory in columns, 
inverting the image along the 45-degree line. By 
utilizing the same addressing logic, pixels are again read 
in horizontally and written vertically. However, since 
the image was inverted along its diagonal, the second 
pass will calculate the vertical dimension of the wavelet 
and restore the image to its original orientation. Each 
dimension of the image is reduced by half and the 
process iteratively continues for each wavelet level. To 
speed up the DWT, the design reads and writes four 
rows at a time. Figure 3 illustrates the architecture of the 
discrete wavelet transform phase. 

Since every pixel is read and written once and the 
design processes four rows at a time, for an N x N size 
image both dimensions in the lowest wavelet level will 
compute in N/4 clock cycles. Similarly, the next wavelet 
level will process the image in ¼ the number of clock 
cycles as the previous level. With an infinite number of 
wavelet levels the image will process in: 
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Thus bounding the runtime of the DWT engine is 
bounded by ¾th a clock cycle per pixel in the image.  
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Figure 3: DWT Architecture 

5.4 Maximum Magnitude Phase 

The maximum magnitude phase calculates and 
rearranges the following information for the SPIHT 
phase. 1) The maximum magnitude of each of the 4 
child trees 2) The maximum magnitude of the current 
tree 3) Threshold and Sign data of each of the 16 child 
coefficients and 4) Re-orders the wavelet coefficients 
into a Morton Scan ordering. It does do by 
implementing a stack and reads each pixel in a depth 
first search ordering so that child pixels are always read 
before parent pixels. 

5.5 SPIHT Phase 



The final SPIHT Coding phase essentially computes the 
parallelize algorithm. Coefficient blocks are read from 
the highest wavelet level to the lowest. As information 
is loaded from memory it is shifted from the Variable 
Fixed Point representation to a common fixed point 
representation for every wavelet level. Once each block 
has been adjusted to the same numerical representation, 
the parallel version of SPIHT is used to calculate what 
information each block will contribute to each bit plane.  

The information is grouped and counted before being 
added to three separate variable FIFOs for each bit 
plane. The data which the variable FIFO components 
receive varies in size, ranging from zero bits to thirty-
seven bits. The variable FIFOs are used to arrange the 
block data into regular sized 32-bit sized words for 
memory accesses. Care is also taken to stall the 
algorithm if anyone of the variable FIFOs becomes too 
full. The block diagram for the SPIHT coding phase is 
given in Figure 4. 
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Figure 4: SPIHT Coding Phase Block Diagram 

6 Design Results 
Our system was designed using VHDL with models 
provided from Annapolis Micro Systems to access the 
PCI bus and memory ports. Simulations for debugging 
purposes were done with ModelSim EE 5.4e from 
Mentor Graphics. Synplify 6.2 from Synplicity was 
used to compile the VHDL code and generate a net list. 
The Xilinx Foundation Series 3.1i tool set was used to 
both place and route the design. Lastly the peutil.exe 
utility from Annapolis Micro Systems generated the 
FPGA configuration streams.  

Table 1 shows the speed and runtime specifications of 
our architecture. All performance numbers are measured 
results from the actual hardware implementations. Each 
phase computes on separate memory blocks, which can 
operate at different clock rates. The design can process 
any square image where the dimensions are a power of 
2: 16 by 16, 32 by 32 up to 1024 by 1024. 

We compared our results to the original software 
version of SPIHT provided on the SPIHT website [4]. 
The comparison was made without arithmetic coding 
since our hardware implementation currently does not 
perform any arithmetic coding on the final bit-stream. 
An Ultra 5 SPARC  workstation was used for the 
comparison and we used a combination of satellite 
images from NASA’s website and standard image 
compression benchmark images. The software version 
of SPIHT compressed a 512 x 512 image in 1.14 
seconds on average. The wavelet phase, which 
constrains the hardware implementation, computes in 
2.48 milliseconds, yielding a speedup of 457 times for 
the SPIHT engine. In addition, by creating more 
parallelized implementation of the wavelet phase, 
further improvements to the runtimes of the SPIHT 
engine are possible. 

7 Conclusions 
In this paper we demonstrated a viable image 
compression routine on a reconfigurable platform. We 
showed how by analyzing the range of data processed 
by each section of the algorithm, it is advantageous to 
create optimized memory structures as with our 
Variable Fixed Point work. Doing so minimizes 
memory usage and yields the utmost usefulness of 
transferred data. (i.e. each bit transferred between 
memory and the processor board directly impacts the 
final result.) In addition our Fixed Order SPIHT work 
illustrates how by making slight adjustments to an 
existing algorithm, it is possible to dramatically increase 
the performance of a custom hardware implementation 
and simultaneously yield essentially identical results. 
With Fixed Order SPIHT the throughput of the system 
increases by more than two orders of magnitude while 
still matching the original algorithm’s PSNR curve. 

 

Table 1: Performance Numbers  

Phase Clock Cycles per 
512x512 image 

Clock Cycles 
per Pixel 

Clock Rate Throughput FPGA Area

Wavelet 182465 3/4 75 MHz 100 MBytes/sec 62% 
Magnitude 131132 1/2 73 MHz 146 MBytes/sec 34% 

SPIHT 65793 1/4 56 MHz 224 MBytes/sec 98% 
 



Our SPIHT work is part of an ongoing development 
effort funded by NASA. Future work will to address 
how lossy image compression will affect downstream 
processing. The level of lossy image compression that is 
tolerable before later processing begins to yield false 
results needs to be analyzed and dealt with. Lastly 
improvements to SPIHT and the consequences to a 
hardware implementation will be studied. Modifications 
to Fixed Order SPIHT including adding error protection 
to the bit-stream and region of interest coding will be 
considered.  
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