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Abstract 
 
Although pipelining or C-slowing an FPGA-based 

application can potentially dramatically improve the 
performance, this poses a question for conventional 
reconfigurable architectures and CAD tools: what is the 
best way to support these new extra registers?  While 
there have been multiple research efforts to address this 
problem, they generally impose strict architectural 
requirements, offer limited retiming capabilities, or 
require multiple iterations with no guarantees regarding 
feasible implementations. 

In this paper we introduce a new simulated 
annealing-based placement and retiming approach that 
provides the capability to aggressive apply retiming on 
a wide range of netlists, for arbitrary architectures, 
while maintaining predictable results.  Our results show 
that for heavily pipelined applications, this methodology 
can produce netlists and placements with 1.65x better 
post-routing critical path delay as compared to the 
classical approach of retiming before timing-driven 
VPR placement, and 1.08x better than retiming before 
our improved timing-driven placer. 
 
1. Introduction 

Despite the inherent speed penalties generally 
associated with reconfigurable devices, the flexibility 
and low engineering effort of FPGA-based platforms 
have made them very popular for a wide variety of 
different applications.  To combat the naturally lower 
clock frequency of FPGA implementations, application 
developers often pipeline or C-slow their circuits 
whenever possible.  Retiming is a powerful optimization 
technique that can be applied to such registered netlists 
to help maximize the achievable clock frequency. 

One problem is that retiming is generally performed 
prior to packing, placement and routing.  Unfortunately, 
since interconnect delay often plays a major role in 
determining overall performance, accurate timing 
information can only be obtained after placement.  
Retiming is generally restricted to early parts of the 
CAD flow because, while retiming does not alter the 
logical behavior of the circuit, it can cause extensive 

changes to the structure of the netlist itself.  Retiming 
alters both the number and relative positioning of the 
registers between logical elements.   

For most reconfigurable architectures, this means that 
the placement must also be changed to accommodate the 
new registers.  Regrettably, this can lead to problems 
with timing stability and convergence since the new 
placement may not have the same timing characteristics 
as the original placement.  This means that we cannot 
guarantee the accuracy of the retiming, potentially 
slowing the circuit down instead of speeding it up.   

Multiple research groups have identified this issue 
and have suggested changes that can be made either to 
the underlying FPGA architecture or to the CAD tools.  
That said, the architectural solutions that have been 
proposed either have dramatic area overhead and latency 
restrictions that limit their practicality for non-pipelined 
netlists, or employ relatively exotic and piecemeal 
techniques that do not reflect the current trends seen in 
commercial devices.  On the other hand, the CAD 
approaches that have been suggested either take a very 
conservative tact, limiting the potential benefits of heavy 
pipelining, or risk changing the netlist considerably, 
potentially compromising the overall quality of the final 
implementation. 

In this paper we discuss the specific issues 
surrounding the aggressive application of retiming late 
in the CAD flow, and introduce a simulated-annealing 
based retiming methodology that integrates retiming and 
placement into a single unified tool. 

 
2. Implications for Practical Register-

Enhanced FPGAs  

Many applications, particularly those of interest to 
reconfigurable computing, can tolerate a great deal of 
pipelining or C-slowing.  While this can improve 
performance, it also produces netlists that are 
fundamentally different than conventional circuits.  
Some researchers have sought to meet these challenges 
with architectures specifically targeted to only heavily 
pipelined designs [12][14].  However, these devices 
have not become popular because, while they can 
provide an impressive performance boost, they also 



impose a large 2x-4x area penalty and require enormous 
latency compared to classical systems.  This makes these 
devices unsuitable to mainstream users, and thus we 
have not seen any commercial success on this front. 

An alternative, demonstrated by Brian Von Herzen 
[13], is to see how commodity FPGAs can be used for 
heavily pipelined applications.  Essentially, since we 
would like to completely pipeline all of the connections 
in the system, registers end up dominating the logic 
portion of the circuit. Thus, we end up using the vast 
majority of the CLBs in the target device only for their 
registers.  While this is a better approach since we are 
able to use a commodity device, in a sense we also pay a 
2x-4x area penalty when considering the logic resources 
of the system. 

We are working on a middle ground.  What if we 
could augment a commodity device with a relatively 
small number of additional registers?  These resources 
would only degrade the logic capacity of commodity 
devices by a few percent for standard users, but will 
allow these FPGAs to achieve very high clock rates for 
latency-tolerant designs.  In this way we can combine 
the two design philosophies we have discussed and 
produce a commodity-style architecture that leverages 
main-stream users for economies of scale, yet allows 
them to boast very high performance for heavily 
pipelined applications. 

This paper is one step in the pursuit of this ideal.  In 
previous work we have developed an architecture-
adaptive router for pipelined interconnects [9], as well as 
a timing-driven version of this tool [5].  In this paper we 
introduce an architecture-adaptive placer for pipelined 
FPGAs, leveraging our previous work on a much more 
efficient timing-driven placer for pipelined netlists [4].  
When combined, this provides a complete pipeline-
aware placement and routing tool suite for register-
enhanced commodity-style FPGAs.  Ultimately, we plan 
to use this toolflow in architectural studies to help 
design commercially viable register-rich architectures 
that can support both lightly and heavily pipelined 
netlists efficiently. 
 
3. Background 

Pipelining or C-slowing an application introduces 
additional registers into the netlist with the hope that this 
will increase the overall throughput of the system.  
However, since these new registers also increase the 
latency of the circuit, we must be careful to use these 
registers effectively in order to evenly distribute delay.  
The hope is that we can use these registers to achieve a 
sufficient improvement in critical path delay to offset 
the additional latency.  This is where retiming plays a 
crucial role. 
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Figure 1 – Pipelining and Retiming  
 

3.1 Classical Retiming 

Retiming improves a circuit’s critical path by better 
balancing the delay between different pipelining stages. 
It achieves this, without changing the external behavior 
of the circuit, by “pushing” registers through 
computational blocks.  For example, consider the design 
in Figure 1.  If we disregard interconnect delay for the 
moment, we see that the original netlist (Figure 1a) has a 
critical path delay of two adders, and a latency of one 
clock cycle.  However, when we pipeline the system 
(Figure 1b), we increase the latency by a clock cycle 
without improving the critical path delay.  We only see 
the benefits of pipelining when we apply retiming 
(Figure 1c).  Specifically, retiming works because we 
can generally replace a register on a logic block output 
with a register on each of the inputs without changing 
the observable behavior to the outside world.  By the 
same token we are also able to replace a register on each 
of the inputs of a logic block with a register on the 
output.   

First described in [7], the most popular method of 
retiming is the Leiserson/Saxe approach.  This is an 
iterative process that gradually pushes registers around a 
netlist until the provably minimum critical path delay is 
found.  Although the optimality of this approach is nice, 
this accuracy does not necessarily carry over when we 
actually apply retiming within an FPGA CAD flow.  
This is because retiming is generally performed as an 
isolated step prior to packing, placement and routing. 

The conventional toolflow has developers specify 
their application and compile it once, all the way from 
technology mapping though routing.  If the resulting 
implementation does not meet timing specifications, the 



developer might edit their HDL to increase the level of 
pipelining/C-slowing, or attempt to retime the original 
technology-mapped netlist for another run of packing, 
placement and routing. 

Unfortunately, this methodology can limit the 
advantages of retiming or create problems for timing 
closure.  First, without any placement information, we 
can only very roughly estimate delay.  Similar to the 
assumptions made for the example in Figure 1, we must 
retime using a simple unit delay model for logic blocks 
and largely ignore the potentially significant delay 
accumulated in the interconnect. 

However, it is also unclear how useful it might be to 
try and forward timing information from a previous 
placement and routing back to the retimer for another 
run of the CAD tools.  First, solely based on the 
algorithms discussed in [7], it is not necessarily obvious 
how Leiserson/Saxe retiming could represent 
interconnect delay.  That said, even if we could 
effectively forward timing numbers from previous 
implementations, we cannot guarantee the accuracy or 
relevancy of this information to the new netlist, since the 
system may change considerably in the meantime.  Nets 
that were timing critical in an earlier placement may not 
remain so, even if we do not change the netlist at all but 
simply re-run the simulated annealing.  Furthermore, we 
certainly do not have such information for newly created 
registers.  All of this puts an incredible burden on the 
retimer since additional registers may actually degrade 
performance if they are not distributed correctly. 
 
3.2 Previous Architectural Solutions 

One proposed solution to the problems associated 
with retiming and placement convergence is modifying 
the architecture itself to allow retiming to be performed 
after placement and routing, without disturbing the 
existing configuration.  For example, the system 
suggested in [11] is a track-graph FPGA that replaces 
some of its track domains with specialized optionally-
registered track domains that are specifically dedicated 
to retiming. 

The toolflow for this system begins with 
conventional timing-driven placement and routing, 
ignoring the registers embedded in the interconnect.  At 
this point, timing-critical links in the routed 
configuration are identified and singled out.  If they are 
not already connected via a wire domain that is outfitted 
with optional registers, the connection is swapped to an 
equivalent wire domain that does.  At this point, a 
restricted retiming algorithm is applied.  Instead of 
performing true Leiserson/Saxe retiming, this approach 
limits the number of registers that can be pushed onto a 
specific connection to the number of optional retiming 
registers that already exist along the current route. 

However, while this is a simple and closed-form 
solution, this greatly limits the optimizations available to 
the retimer.  First, this does not allow the system to 
utilize registering resources that might exist in 
neighboring switchboxes or logic blocks.  More 
importantly though, this approach requires a very 
specific and specialized registered interconnect 
structure. 
 
3.3 Previous CAD Solutions 

Supporting more general registering resources 
requires new CAD tools.  Towards this goal, there have 
been a number of research projects that have attempted 
to perform retiming during placement.  However, we 
believe that they do not necessarily adequately address 
the systematic issues created by retiming.  

For example, [2] was among the first efforts towards 
integrated placement and retiming.  Although this work 
actually involved floorplanning, it laid the groundwork 
for [3].  Here, the authors define a three-stage approach 
for retiming-aware placement.  They begin with a 
specialized timing-driven placement.  When the 
annealing is complete, they perform a classical retiming 
step to improve delay.  This is followed by a short 
simulated annealing process to re-distribute registers 
that were created or deleted.  Unfortunately, this work 
targets an ASIC development flow.  Since ASICs create 
completely custom chips, the CAD tools are able to 
create or delete resources at will.  Since FPGAs must 
use the finite resources offered by a specific 
architecture, there are strict limitations as to where we 
can and cannot create a register. 

Works such as [15] and [8] have attempted to address 
FPGA-specific concerns.  [15] suggests a two-phase 
approach.  The authors begin with a full simulated 
annealing placement, but then retiming is performed 
without any restrictions on the number of registers that 
can be placed on a given link.  This means that this 
methodology can create an unknown number of registers 
in potentially very sensitive areas of the array, with no 
good way of cleaning up the placement.  On the other 
hand, [8] suggested a very straightforward two-phase 
solution in which conventional placement is followed by 
a constrained retiming step.  Very similar to the work in 
[11], the retimer can only push a limited number of 
registers onto a specific link.  In this case, it could 
choose to either use or not use the flip-flops present in 
the CLBs already allocated by the placement phase. Of 
course, this approach suffers some of the same limited 
retiming capabilities as [11]. 

The most encouraging work to date on integrated 
FPGA placement and retiming is [10].  Much like the 
work in [3], they use a three-phase approach that begins 
with a specialized timing-driven simulated annealing  
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Figure 2 – Independently Accessible Flip-Flops 
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Figure 3 – Packing Implications for Heavily 
Registered Netlists 
 

placement.  This is followed by a heuristic retiming step 
that creates a new netlist given the timing and CLB 
occupancy of the existing placement.  Primarily, this 
heuristic tries to insert registers into the system, keeping 
in mind the CLB legalization issues faced by an 
architecture with logic blocks that do not have full input 
and output connectivity, like those in Figure 2a.  Any 
architectural violations in the placement of the retimed 
netlist are then resolved by a largely greedy legalization 
phase. 

However, this approach has two issues.  First, much 
of their work focuses on solving architecture-specific 
CLB input and output legalization problems that are not 
necessarily a concern for modern devices.  Current 
generation FPGAs such as the Virtex II do not require 
cluster legalization.  They not only provide independent 
access to LUTs and flip-flops (Figure 2b), they offer full 
input and output connectivity.  That is, if there are eight 
4-LUTs and eight flip-flops in a CLB, the logic blocks 
will have the capability to take 40 independent inputs 
and produce 16 independent outputs. 

More importantly, this methodology still may not 
produce feasible or convergent placements.  Since the 
retiming is wholly decoupled from the legalization 
phase, the retimer may produce a netlist that requires 
registers in an area that currently does not have any 
available in the existing placement.  At this point, the 
post-processing step has to choose between producing 
an illegal placement or risk disrupting the timing of the 
system. This situation is particularly likely given heavily 
pipelined netlists, since, by the very nature of the netlist 
itself, there might be relatively few empty register 
locations in the array and many of the nets may be 
critical or nearly critical. 

 
4. Simulated Annealing-Based Retiming 

Although the multi-stage approach of retiming 
followed by some sort of cleanup phase is very 
promising, the methodologies we have looked at so far 
still face many of the same problems associated with the 
conventional toolflow.  Taking a step back though, we 
can see that all of these complications stem from a 
single source – retiming cannot be performed as an 
isolated, single-shot optimization step if we want to 
provide the capability to aggressively retime while still 
maintaining a stable placement.  Thus, we suggest a 
fundamentally different approach that intersperses 
several small retiming steps within the framework of a 
full annealing-based placement tool.  This philosophy 
allows us to create a unified placement and retiming tool 
with smoother and more predictable behavior.   

We begin with a timing-driven simulated annealing 
placement tool.  Of course, it is clear that any 
optimizations we make, whether based on retiming or 
conventional placement, rely on good timing 
information.  As shown in our prior work [4], the 
methodologies that timing-driven placement tools such 
as VPR generally use to track net criticality during 
annealing can be highly inaccurate.  Primarily this is due 
to the computational requirements needed to perform 
static timing analysis and, subsequently, its infrequent 
application.  We demonstrated that the incremental slack 
analysis and cost function introduced in that paper 
produce vastly superior placements with minimal 
additional effort as compared to VPR. 

 
4.1 Flip-Flop Level Placement 

One issue that we should consider is the 
characteristics of heavily registered circuits and the role 
of logic block packing.  Conventional packing, such as 
the algorithm described in [1], generally attempts to 
pack flip-flops into the same CLB as their source LUT.  
While packing makes sense since it dramatically reduces 
the placement problem size, this can lead to problems 
when we consider deeply pipelined netlists. 

Packing interferes with retiming during placement 
because it locks registers into specific logic blocks early 
in the compilation process.  This can be seen in the 
example shown in Figure 3.  If we assume we are 
mapping to an architecture that has two LUTs and 2 FF 
per CLB, the packing tool will wrap LUT A and its two 
following flip-flops into a single atomic unit before 
placement.  This greatly limits the potential for these 
registers to mitigate interconnect delay.  Furthermore, 
packing can fuse unrelated logic blocks and FFs 
together.  In Figure 3, the third register on the output of 
LUT A cannot fit into the same CLB as its source, so it is 
arbitrarily combined with some other logic block before 



placement.  This limits the placer’s ability to use 
registers to pipeline the interconnect delay.  Lastly, if we 
are performing retiming during annealing we must also 
be able to integrate newly created registers into the 
system efficiently.  Putting these issues together, it is 
clear that to achieve the best performance the placer 
needs to have the ability to migrate critical flip-flops to 
different logic blocks without the strict assignments 
given during packing.   

However, we cannot simply revert to placement at 
the individual LUT and flip-flop level without raising 
serious concerns.  While this has obvious dramatic 
implications for the annealing runtime, we can also have 
problems simply finding high quality placements.  For 
the majority of registers it makes sense for a LUT and its 
companion flip-flop to reside in the same CLB.  
Specifically, this configuration is special because the 
connection between the LUT and flip-flop does not 
incur the delay or potential wiring congestion associated 
with exiting and re-entering a CLB.  However, if we 
only allow LUTs and flip-flops to move independently 
from one another, it makes it very easy for a LUT and 
flip-flop to separate, but much more difficult for them to 
reunite. 

Consider the two possible states that a LUT and flip-
flop can be in (together or apart), shown in Figure 4.  If 
we consider the LUT and flip-flop to be initially 
together within a 5x5 grid of CLBs, we can see that all 
possible moves of either the LUT or flip-flop will break 
them apart.  However, once in this state, only two in the 
48 possible moves will bring them back together.  
Furthermore, once they are together it is unlikely that we 
will be able to move the LUT/flip-flop pair to any other 
location after the annealing cools past a certain critical 
temperature. 

We solve both of these problems by adding a hybrid 
CLB/flip-flop-level move function to the placement tool 
described in [4].  As seen in Figure 5, we begin by 
selecting a random LUT or flip-flop in the netlist.  If we 
select a LUT, we perform the customary CLB-level 
swap.  However, if we select a flip-flop that is in the 
same CLB as its source and it is connected to a net that 
is at least 95% critical, we have a 10% chance to 
perform a flip-flop level move to separate the register 
(Figure 5, lines 4-9).  On the other hand, if we select a 
flip-flop that is not in the same CLB as its source, we 
have a 10% chance to reunite the flip-flop with its 
source (Figure 5, lines 11-15).  The exact criticality 
threshold and probabilities are not particularly sensitive, 
but empirically we have found that these values work 
well. 

 
4.2 Simulated Annealing-Based Retiming 

As we mentioned earlier, while Leiserson/Saxe retiming 
has some unique optimality characteristics, we believe 

that the key to better overall results is a more 
incremental approach.  Thus, we propose leveraging the 
inherently balanced optimization aspects of simulated 
annealing by applying conditional retiming moves 
alongside standard placement moves as an integral part 
of the annealing process.  To accomplish this we must 
define what a retiming move looks like.  When we 
attempt to retime a register backwards or forwards 
through a logic block, there are multiple issues that we 
must address.   

First, how do we deal with newly created registers?  
Moving between Figure 6a and Figure 6b, we must 
create two new registers on the inputs of LUT B to 
retime a register backwards.  Before we attempt this 
move, we must first ensure that retiming this logic block 
is feasible.  It is entirely possible that we simply do not 
have enough register locations available in the 
architecture.  If this is the case, we do not attempt this 
retiming move. However, if it is a feasible move, we 
place these new registers into the closest available 
register location to the source of their signal.  On the 
other hand, we might not have to create a register. 
Moving between Figure 6c and Figure 6d we see that 
one of the inputs to LUT B can share the input to LUT C. 
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Figure 4 – Lower-Level Placement Moves  
 

FF/CLB-Level Placement Move Function 
0  select random LUT or FF in netlist 
1  if selected LUT 
2   swap entire CLB contents with random CLB 
3  else  
4   if FF in same CLB as source 
5    if FF max link criticality >= 0.95 && 
      rand <= 0.1 (separation roll) 
6     swap FF with random FF 
7    else 
8     swap entire CLB contents with random CLB 
9    end if 
10   else 
11    if rand <= 0.1 (homing roll) 
12     swap FF with a FF in source CLB 
13    else 
14     swap FF with random FF 
15    end if 
16   end if 
17  end if 

Figure 5 – FF-Level Move Pseudo-Code 
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 Figure 6 – Incorporating New Registers 
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Figure 7 - Updating Timing Information 

 
Next, when we select a given logic block, how do we 

know when we should attempt a retiming move versus a 
placement move?  While we could simply flip a coin 
each time we select an eligible logic block, we have to 
consider the computational ramifications of performing 
a retiming move.  Specifically, the large quality benefit 
of the placement tool we started with relies on the more 
accurate timing information provided by the incremental 
slack analysis approach [4].  Therefore, we have to 
consider the impact that retiming moves have on the 
accuracy of timing information. 

Consider the retiming move performed in Figure 7.  
This move changes the slack (defined as the required 
time of the sink minus the departure time of the source) 
on all of the labeled nets.  We can recalculate the slack 
on nets 1’ and 4’ with very little error because the 
departure time of the sources do not change and we 

know that the required time of a registers is always 
equal to the critical path of the entire system.  We can 
also determine the new slack on nets 5 and 6 relatively 
accurately because the departure time for a register is 
always zero and we can relatively efficiently recalculate 
the required time of LUT B.  Lastly, we can also 
relatively accurately recalculate the slack on net 3’.  This 
is because the required time of the sink of net 3’ does 
not change, and we can relatively efficiently recalculate 
the departure time of LUT B. 

That said, because we may have changed the critical 
path of the netlist, we cannot be entirely certain of the 
accuracy of any of these values unless we perform full 
static timing analysis.  Unfortunately, as discussed in 
[4], static timing analysis is too computationally 
expensive to perform after every move during simulated 
annealing.  Since retiming moves can have a large 
impact on the critical path delay of the system, we group 
many of these move together and then perform full static 
timing analysis once the entire group has been 
completed. 

As can be seen in the pseudo-code of our complete 
approach in Figure 8, we include a retiming frequency 
factor as a parameter to our integrated retiming and 
placement approach.  Thus, although we continue to 
focus on performing conventional conditional placement 
moves, we also occasionally attempt to perform a 
concentrated suite of conditional retiming moves on the 
netlist.   

Also seen in Figure 8, we provide a retiming 
activation point and a retiming criticality threshold to 
our tool.  The retiming activation point controls when 
we actually begin to attempt retiming and placement, as 
opposed to placement only.  Since the annealing begins 
with an arbitrary initial placement, the early portion of 
the placement process is primarily devoted to simply 
roughing out the large-scale structure of the netlist.  
Since the placement can change dramatically during 
these early stages, retiming is not very productive.  In 
fact, the extra noise retiming creates in the netlist only 
serves to create problems for the placement tool.  
Instead, we would rather wait until the placement begins 
to settle down, and thus leave retiming to the later stages 
of the placement process. 

Although there are multiple ways we could define 
this activation point, the placement tool we used 
contains VPR’s adaptive temperature schedule [1].   The 
range limit window built into this approach is an easy 
way to gauge how far the overall annealing has 
progressed.  Thus, as seen in lines 2-4 of the pseudo-
code in Figure 8, the retiming activation point is simply 
an integer that can vary between the maximum size of 
the array, beginning retiming right from the start of 
placement, and one, beginning retiming relatively late 
during the annealing process.  We have empirically 
found an activation point of 1 to work well. 



Integrated Retiming and Placement 
0  numMovesPerRetiming =  numAnnealMovesPerTemp / 
        retiming frequency 
1  while (!exit) 
2   if range limit window <= retiming activation point  
3    activate retiming 
4   end if 
5   for i = 0 to numAnnealMovesPerTemp 
6    if retiming active && (i%numMovesPerRetiming == 0)  
7     for all logic blocks 
8      if max input criticality >= retimeCrit && can 

retime backwards 
9       try to retime once backwards 
10       accept or reject retiming(∆Cost, currTemp) 
11      end if 
12      if max output criticality >= retimeCrit && can 

retime backwards 
13       try to retime once forwards 
14       accept or reject retiming(∆Cost, currTemp) 
15      end if 
16     end for 
17     update critical path delay 
18    end if 
19    attempt placement move 
20    accept or reject move(∆Cost, currTemp) 
21   end for  
22   update critical path delay 
23   update currTemp 
24   update range limit window 
25   evaluate exit criteria 
26  end while 

Figure 8 – Simulated Annealing-Based 
Retiming & Placement Algorithm  
 
As seen in Figure 8, the retiming criticality threshold 

filters logic blocks that are eligible for retiming based 
upon the maximum criticality of their input or output 
connections.  Obviously, the more critical a given path 
is, the more important it becomes to retime the logic 
blocks along it.  Again, since we would like to disrupt 
the placement as little as possible, we avoid retiming 
logic blocks that are not along highly critical paths.  
Given our empirical testing, a value of 1.0 (only 
retiming logic blocks along the critical path) produced 
good results. 

That said, particularly for heavily pipelined netlists, 
our approach can leave logic blocks along highly critical 
paths unable to retime beyond a certain point because 
the necessary balancing registers along other, non-
critical paths do not advance.  Classical retiming 
approaches such as the Leiserson/Saxe techniques do not 
run into this problem because they perform systematic 
retiming.  In the future, we would like to investigate a 
mechanism that can identify this situation and efficiently 
allow critical paths to single out non-critical paths for 
retiming. 

Finally, once we have identified a good candidate for 
retiming we can actually perform the retiming move and 
restructure the netlist.  Because we are performing this 
retiming move within a larger simulated annealing 
framework, we evaluate the cost of the new placement 

and, based upon the current temperature and change in 
cost, probabilistically either accept or reject this 
retiming move.   

 

5. Testing & Results 

We tested our integrated retiming and placement 
approach on two sets of MCNC benchmarks that 
represented a wide range of pipeline resource 
requirements.  The first consisted of 10 sequential 
netlists out of the benchmarks included with the VPR 
tool suite.  Obviously, retiming cannot be performed on 
purely combinational circuits that have no registers at 
all, so we thus exclude half of the customary 
benchmarks.  The second group consisted of 21 original 
VPR benchmarks pipelined and/or C-slowed, then 
processed via conventional Leiserson/Saxe retiming to 
create circuits with a maximum logic depth of one LUT.   
Both sets of netlists were then packed into CLBs with T-
VPack. 

We placed these two groups of benchmarks with 
three different placement approaches: timing-driven 
VPR, our improved incremental slack timing-driven 
placement tool from [4], and our new simulated anneal-
based placement and retiming approach.  All three 
placement tools were followed by conventional timing-
driven routing with A* optimizations turned off (we did 
not use A* during any of our testing because A* is 
meant to strictly improve CAD runtime, not quality, and 
thus should not affect the results).  

The target architecture selected was VPR’s standard 
single 4-LUT, single flip-flop 4lut_sanitized 
architecture, with one modification.  Instead of logic 
blocks arranged as in Figure 1a, we provided logic 
blocks with independently accessible flip-flops like 
those shown in Figure 1b.  We believe that this type of 
flip-flop accessibility is important for any register-rich 
FPGA architecture, and is more representative of 
modern devices.  All testing was performed on 
minimum-sized architectures, with the customary low-
stress routing case of 1.2 times the minimum channel 
width as found by VPR.   

The placement parameters used for the incremental 
slack placement approach from [4] were the same 
suggested by that paper: λ=0.1, Crit_Exp=12.0 for the 
original MCNC netlists and λ=0.025, Crit_Exp=12.0 for 
the pipelined circuits.  The retiming parameters we used 
for our integrated placement and routing tool were: 
retiming activation point=1, retiming frequency 
factor=1, retiming criticality threshold=1.0.  To 
reiterate, this means that retiming began when the range 
limit window closed to a distance of one CLB, we 
performed a single retiming suite per temperature 
iteration, and we only considered retiming logic blocks 
that were 100% critical. 



Table 1 – Best of 10 Wire Cost and Post-Route Crit.  Path Delay Results for Original Sequential MCNC Ne tlists 
 Raw Results  Normalized Results  

 Retime First & 
VPR Place 

Increm. Slack 
Place Only 

Integr.  Retime 
& Placement 

Retime & 
VPR Place 

Increm. Slack 
Place Only 

Integr.  Retime 
& Placement 

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD 

bigkey 210.57 6.21E-8 242.72 4.23E-8 242.15 4.01E-8 1.04 0.89 1.00 1.00 0.99 0.93 
clma 1498.63 2.02E-7 1429.54 1.55E-7 1439.02 1.58E-7 1.08 0.94 1.00 1.00 0.99 0.94 
diffeq 157.87 6.03E-8 149.75 5.57E-8 150.30 5.67E-8 1.09 1.01 1.00 1.00 1.01 0.94 
dsip 194.34 6.12E-8 225.52 4.70E-8 238.64 3.61E-8 1.02 1.02 1.00 1.00 0.99 0.95 

elliptic 511.90 1.03E-7 470.71 9.20E-8 474.08 9.34E-8 1.05 1.08 1.00 1.00 1.00 1.02 
frisc 583.74 1.29E-7 535.74 1.27E-7 540.17 1.20E-7 0.97 1.10 1.00 1.00 0.98 0.88 

s1423 16.74 5.70E-8 16.14 6.43E-8 15.93 5.95E-8 1.09 1.12 1.00 1.00 1.01 1.02 
s298 228.50 1.29E-7 211.16 1.37E-7 209.49 1.29E-7 0.86 1.30 1.00 1.00 1.06 0.77 

s38417 672.72 9.47E-8 690.62 8.62E-8 675.62 7.55E-8 1.05 1.31 1.00 1.00 1.01 1.02 
tseng 100.75 5.29E-8 98.65 5.19E-8 97.58 4.95E-8 0.87 1.47 1.00 1.00 1.00 0.95 

GeoMean       1.01 1.11 1.00 1.00 1.00 0.93 

 
Table 2 – Best of 10 Wire Cost and Post-Route Crit.  Path Delay Results for Pipelined/C-Slowed MCNC Net lists 
 Raw Results  Normalized Results  

 Retime First & 
VPR Place 

Increm. Slack 
Place Only 

Integr.  Retime 
& Placement 

Retime & 
VPR Place 

Increm. Slack 
Place Only 

Integr.  Retime 
& Placement 

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD 

alu4 290.44 3.70E-8 254.17 3.15E-8 251.35 2.76E-8 1.14 1.17 1.00 1.00 0.99 0.88 
apex2 405.33 3.99E-8 365.82 2.44E-8 367.32 2.25E-8 1.11 1.64 1.00 1.00 1.00 0.92 
apex4 217.28 3.07E-8 200.46 2.44E-8 200.49 1.95E-8 1.08 1.26 1.00 1.00 1.00 0.80 
bigkey 267.07 4.37E-8 246.45 2.89E-8 247.90 2.94E-8 1.08 1.51 1.00 1.00 1.01 1.02 
clma 2379.44 8.46E-8 2105.72 6.45E-8 2107.38 6.33E-8 1.13 1.31 1.00 1.00 1.00 0.98 
des 354.80 4.29E-8 344.98 1.99E-8 340.84 2.22E-8 1.03 2.15 1.00 1.00 0.99 1.12 

diffeq 499.57 5.34E-8 460.58 2.82E-8 485.66 2.64E-8 1.08 1.89 1.00 1.00 1.05 0.94 
dsip 258.44 4.02E-8 207.41 3.36E-8 218.19 3.13E-8 1.25 1.20 1.00 1.00 1.05 0.93 
e64 45.27 1.93E-8 41.51 1.17E-8 42.16 1.11E-8 1.09 1.65 1.00 1.00 1.02 0.95 

elliptic 1408.34 7.67E-8 1326.81 4.54E-8 1329.50 4.36E-8 1.06 1.69 1.00 1.00 1.00 0.96 
ex1010 868.76 5.38E-8 796.30 3.64E-8 791.35 3.96E-8 1.09 1.48 1.00 1.00 0.99 1.09 
ex5p 223.66 2.42E-8 212.14 1.64E-8 211.88 1.68E-8 1.05 1.47 1.00 1.00 1.00 1.02 
frisc 1402.54 6.71E-8 1383.91 2.76E-8 1398.71 2.66E-8 1.01 2.43 1.00 1.00 1.01 0.96 

misex3 269.65 3.37E-8 240.00 2.73E-8 240.93 2.09E-8 1.12 1.23 1.00 1.00 1.00 0.76 
pdc 1210.80 5.67E-8 1108.66 3.39E-8 1103.05 3.25E-8 1.09 1.67 1.00 1.00 0.99 0.96 

S1423 70.24 1.88E-8 69.87 8.83E-9 69.30 8.77E-9 1.01 2.13 1.00 1.00 0.99 0.99 
s298 452.99 4.31E-8 417.91 2.76E-8 411.53 2.79E-8 1.08 1.56 1.00 1.00 0.98 1.01 

S38417 1969.65 6.83E-8 1898.96 3.29E-8 1965.55 3.04E-8 1.04 2.07 1.00 1.00 1.04 0.92 
seq 349.44 4.02E-8 326.53 2.68E-8 326.32 2.48E-8 1.07 1.50 1.00 1.00 1.00 0.93 
spla 851.73 5.15E-8 783.69 5.47E-8 780.89 3.20E-8 1.09 0.94 1.00 1.00 1.00 0.59 

tseng 316.46 3.60E-8 302.56 2.34E-8 307.18 2.23E-8 1.05 1.54 1.00 1.00 1.02 0.95 
GeoMean       1.09 1.53 1.00 1.00 1.01 0.93 

 
Table 3 – Critical Path Delay Comparison with Singh  and Brown Retiming Approach 

 Normalized to VPR Results 2 

Netlist Retime First & 
VPR Place 

Singh & Brown 
Retimer [10] 

Increm. Slack 
Place Only 

Integr.  Retime 
& Placement 

bigkey 1.00 0.93 0.66 0.67 
diffeq 1.00 0.96 0.53 0.50 
dsip 1.00 0.75 0.84 0.78 

elliptic 1.00 0.93 0.59 0.57 
frisc 1.00 0.90 0.41 0.40 

S38417 1.00 0.82 0.48 0.45 
tseng 1.00 0.91 0.65 0.62 

GeoMean 1.00 0.88 0.58 0.55 

 
1 Notice that in the Normalized to VPR Results, the Singh & Brown Retimer numbers from [10] have been normalized to the VPR 

results also reported in [10]. Our Incremental Slack Placement Only and Integrated Retime and Placement results have been 
normalized to VPR results given in Table 1. 

 



Table 1 and Table 2 show the best of ten placement 
attempts.  We report the raw and normalized geometric 
mean final placement wire cost and routed critical path 
delay for all three placement approaches.  Looking at 
these values, we can first verify that using the 
incremental slack placement methodology as a starting 
point for our retiming tool was indeed a wise choice.  By 
itself, it produced placements with 1.11x better critical 
path delay without affecting wirelength for the original 
sequential MCNC netlists and 1.53x better critical path 
delay with 1.09x better wirelength for the heavily 
pipelined circuits.  If we look at the results when we 
apply our simulated annealing-based retimer we see that 
the gap widens slightly to 1.19x better critical path delay 
for the original sequential MCNC netlists and 1.64x 
better critical path delay for the heavily pipelined 
circuits.   

If we consider the gains solely due to our retiming 
methodology, we see that both the original sequential 
MCNC netlists and the heavily pipelined circuits 
perform 1.08x faster.  These delay improvements came 
with no cost to routability.   

Unfortunately, any direct comparison to the Singh 
and Brown toolflow [10] is relatively difficult.  We do 
not have access to their code base and the paper is fairly 
vague regarding their exact testing conditions.  
Specifically, while not specified in the paper we believe 
they were mapping to an architecture similar to the 
clustered 4x4lut_sanitized system.  Furthermore, they 
also did not test on minimum-sized architectures, but on 
slightly oversized devices that provided additional 
registers. 

That said, they reported results for a subset of the 
sequential MCNC netlists that we used, with VPR as a 
comparison point.  Thus, while not ideal, we can get 
some idea of how the two methodologies line up if we 
normalize both sets of data to their respective VPR runs.  
We show these results in Table 3.  We can see that they 
achieved a 1.14x average improvement in critical path 
delay for these netlists while we achieved a 1.82x 
average improvement.  Thus, our simulated annealing 
retiming approach nearly doubles the performance of the 
conventional VPR approach.  That said, our incremental 
slack methodology by itself improves placements so 
much that it is much more difficult to achieve further 
gains.  We believe it is fair to claim that the approach 
suggested by Singh and Brown benefits from some of 
the optimization opportunities VPR leaves on the table. 

 
6. Implications 

The integrated retiming and placement technique that 
we have presented has several key advantages over 
previous methodologies: 

Our retiming is less disruptive and leads to more 
predictable results.  This is largely the product of three 

main issues.  First, because we perform multiple small 
retiming moves, we do not have to try and massively 
retime a single register through multiple levels of logic 
all at once.  Second, since our approach is based around 
simulated annealing, we can leverage many of the 
natural balancing aspects of the cost function and 
cooling schedule.  Third, each of these smaller retiming 
moves is smoothed into the rest of the placement using 
the well-understood aspects of full simulated annealing. 

Guaranteed legal placements, regardless of 
architecture. Since we never attempt to retime a logic 
block if it would create an illegal placement, we can 
never have problems with legalization.   

This is a one-pass CAD flow, with no convergence 
issues.  Since the retimer is built directly into the 
annealing process and is already naturally iterative, 
developers do not have to worry about not being happy 
with the final results, then attempting to re-run the tools 
and face problems with timing convergence.   
 
7. Conclusions 

In this paper we have investigated some of the issues 
surrounding registered netlists, placement tools and 
retiming methodologies.  Specifically, we identified a 
key characteristic of many existing CAD approaches 
that either limits the benefits of retiming or puts 
placement convergence at risk: we cannot apply 
aggressive retiming to a netlist as a separate, single-use 
step and then expect a post-processing phase to be able 
to clean up the results satisfactorily.   

As an alternative, we presented a new integrated 
approach that performs retiming during simulated-
annealing placement. This approach allows us to 
leverage many of the benefits of the simulated annealing 
framework to produce a minimally disruptive retimed 
netlist.  In our testing against VPR, we demonstrated 
that our technique produced 1.19x better critical path 
delay without negatively affecting routability for lightly 
registered netlists, and 1.64x better critical path delay 
with 1.09x better wirelength for heavily pipelined 
netlists.  Our approach produced 1.08x faster critical 
path delay than the highly-improved timing-driven 
placement tool it was based on for both lightly registered 
and heavily pipelined applications.   

Perhaps most importantly though, this integrated 
retiming technique is inherently convergent and 
architecture-independent.  Thus, it opens the door to the 
development of practical register-rich FPGAs. 
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