
Simultaneous Retiming and Placement for Pipelined Netlists

Ken Eguro and Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, WA 98195 USA

{eguro, hauck}@ee.washington.edu

Abstract

Although pipelining or C-slowing an FPGA-based

application can potentially dramatically improve the
performance, this poses a question for conventional
reconfigurable architectures and CAD tools: what is the
best way to support these new extra registers? While
there have been multiple research efforts to address this
problem, they generally impose strict architectural
requirements, offer limited retiming capabilities, or
require multiple iterations with no guarantees regarding
feasible implementations.

In this paper we introduce a new simulated
annealing-based placement and retiming approach that
provides the capability to aggressive apply retiming on
a wide range of netlists, for arbitrary architectures,
while maintaining predictable results. Our results show
that for heavily pipelined applications, this methodology
can produce netlists and placements with 1.65x better
post-routing critical path delay as compared to the
classical approach of retiming before timing-driven
VPR placement, and 1.08x better than retiming before
our improved timing-driven placer.

1. Introduction

Despite the inherent speed penalties generally
associated with reconfigurable devices, the flexibility
and low engineering effort of FPGA-based platforms
have made them very popular for a wide variety of
different applications. To combat the naturally lower
clock frequency of FPGA implementations, application
developers often pipeline or C-slow their circuits
whenever possible. Retiming is a powerful optimization
technique that can be applied to such registered netlists
to help maximize the achievable clock frequency.

One problem is that retiming is generally performed
prior to packing, placement and routing. Unfortunately,
since interconnect delay often plays a major role in
determining overall performance, accurate timing
information can only be obtained after placement.
Retiming is generally restricted to early parts of the
CAD flow because, while retiming does not alter the
logical behavior of the circuit, it can cause extensive

changes to the structure of the netlist itself. Retiming
alters both the number and relative positioning of the
registers between logical elements.

For most reconfigurable architectures, this means that
the placement must also be changed to accommodate the
new registers. Regrettably, this can lead to problems
with timing stability and convergence since the new
placement may not have the same timing characteristics
as the original placement. This means that we cannot
guarantee the accuracy of the retiming, potentially
slowing the circuit down instead of speeding it up.

Multiple research groups have identified this issue
and have suggested changes that can be made either to
the underlying FPGA architecture or to the CAD tools.
That said, the architectural solutions that have been
proposed either have dramatic area overhead and latency
restrictions that limit their practicality for non-pipelined
netlists, or employ relatively exotic and piecemeal
techniques that do not reflect the current trends seen in
commercial devices. On the other hand, the CAD
approaches that have been suggested either take a very
conservative tact, limiting the potential benefits of heavy
pipelining, or risk changing the netlist considerably,
potentially compromising the overall quality of the final
implementation.

In this paper we discuss the specific issues
surrounding the aggressive application of retiming late
in the CAD flow, and introduce a simulated-annealing
based retiming methodology that integrates retiming and
placement into a single unified tool.

2. Implications for Practical Register-

Enhanced FPGAs

Many applications, particularly those of interest to
reconfigurable computing, can tolerate a great deal of
pipelining or C-slowing. While this can improve
performance, it also produces netlists that are
fundamentally different than conventional circuits.
Some researchers have sought to meet these challenges
with architectures specifically targeted to only heavily
pipelined designs [12][14]. However, these devices
have not become popular because, while they can
provide an impressive performance boost, they also

impose a large 2x-4x area penalty and require enormous
latency compared to classical systems. This makes these
devices unsuitable to mainstream users, and thus we
have not seen any commercial success on this front.

An alternative, demonstrated by Brian Von Herzen
[13], is to see how commodity FPGAs can be used for
heavily pipelined applications. Essentially, since we
would like to completely pipeline all of the connections
in the system, registers end up dominating the logic
portion of the circuit. Thus, we end up using the vast
majority of the CLBs in the target device only for their
registers. While this is a better approach since we are
able to use a commodity device, in a sense we also pay a
2x-4x area penalty when considering the logic resources
of the system.

We are working on a middle ground. What if we
could augment a commodity device with a relatively
small number of additional registers? These resources
would only degrade the logic capacity of commodity
devices by a few percent for standard users, but will
allow these FPGAs to achieve very high clock rates for
latency-tolerant designs. In this way we can combine
the two design philosophies we have discussed and
produce a commodity-style architecture that leverages
main-stream users for economies of scale, yet allows
them to boast very high performance for heavily
pipelined applications.

This paper is one step in the pursuit of this ideal. In
previous work we have developed an architecture-
adaptive router for pipelined interconnects [9], as well as
a timing-driven version of this tool [5]. In this paper we
introduce an architecture-adaptive placer for pipelined
FPGAs, leveraging our previous work on a much more
efficient timing-driven placer for pipelined netlists [4].
When combined, this provides a complete pipeline-
aware placement and routing tool suite for register-
enhanced commodity-style FPGAs. Ultimately, we plan
to use this toolflow in architectural studies to help
design commercially viable register-rich architectures
that can support both lightly and heavily pipelined
netlists efficiently.

3. Background

Pipelining or C-slowing an application introduces
additional registers into the netlist with the hope that this
will increase the overall throughput of the system.
However, since these new registers also increase the
latency of the circuit, we must be careful to use these
registers effectively in order to evenly distribute delay.
The hope is that we can use these registers to achieve a
sufficient improvement in critical path delay to offset
the additional latency. This is where retiming plays a
crucial role.

+
+

+

+
+

+

+
+

+
Pipelining

Retiming

a)

b)

c)

Figure 1 – Pipelining and Retiming

3.1 Classical Retiming

Retiming improves a circuit’s critical path by better
balancing the delay between different pipelining stages.
It achieves this, without changing the external behavior
of the circuit, by “pushing” registers through
computational blocks. For example, consider the design
in Figure 1. If we disregard interconnect delay for the
moment, we see that the original netlist (Figure 1a) has a
critical path delay of two adders, and a latency of one
clock cycle. However, when we pipeline the system
(Figure 1b), we increase the latency by a clock cycle
without improving the critical path delay. We only see
the benefits of pipelining when we apply retiming
(Figure 1c). Specifically, retiming works because we
can generally replace a register on a logic block output
with a register on each of the inputs without changing
the observable behavior to the outside world. By the
same token we are also able to replace a register on each
of the inputs of a logic block with a register on the
output.

First described in [7], the most popular method of
retiming is the Leiserson/Saxe approach. This is an
iterative process that gradually pushes registers around a
netlist until the provably minimum critical path delay is
found. Although the optimality of this approach is nice,
this accuracy does not necessarily carry over when we
actually apply retiming within an FPGA CAD flow.
This is because retiming is generally performed as an
isolated step prior to packing, placement and routing.

The conventional toolflow has developers specify
their application and compile it once, all the way from
technology mapping though routing. If the resulting
implementation does not meet timing specifications, the

developer might edit their HDL to increase the level of
pipelining/C-slowing, or attempt to retime the original
technology-mapped netlist for another run of packing,
placement and routing.

Unfortunately, this methodology can limit the
advantages of retiming or create problems for timing
closure. First, without any placement information, we
can only very roughly estimate delay. Similar to the
assumptions made for the example in Figure 1, we must
retime using a simple unit delay model for logic blocks
and largely ignore the potentially significant delay
accumulated in the interconnect.

However, it is also unclear how useful it might be to
try and forward timing information from a previous
placement and routing back to the retimer for another
run of the CAD tools. First, solely based on the
algorithms discussed in [7], it is not necessarily obvious
how Leiserson/Saxe retiming could represent
interconnect delay. That said, even if we could
effectively forward timing numbers from previous
implementations, we cannot guarantee the accuracy or
relevancy of this information to the new netlist, since the
system may change considerably in the meantime. Nets
that were timing critical in an earlier placement may not
remain so, even if we do not change the netlist at all but
simply re-run the simulated annealing. Furthermore, we
certainly do not have such information for newly created
registers. All of this puts an incredible burden on the
retimer since additional registers may actually degrade
performance if they are not distributed correctly.

3.2 Previous Architectural Solutions

One proposed solution to the problems associated
with retiming and placement convergence is modifying
the architecture itself to allow retiming to be performed
after placement and routing, without disturbing the
existing configuration. For example, the system
suggested in [11] is a track-graph FPGA that replaces
some of its track domains with specialized optionally-
registered track domains that are specifically dedicated
to retiming.

The toolflow for this system begins with
conventional timing-driven placement and routing,
ignoring the registers embedded in the interconnect. At
this point, timing-critical links in the routed
configuration are identified and singled out. If they are
not already connected via a wire domain that is outfitted
with optional registers, the connection is swapped to an
equivalent wire domain that does. At this point, a
restricted retiming algorithm is applied. Instead of
performing true Leiserson/Saxe retiming, this approach
limits the number of registers that can be pushed onto a
specific connection to the number of optional retiming
registers that already exist along the current route.

However, while this is a simple and closed-form
solution, this greatly limits the optimizations available to
the retimer. First, this does not allow the system to
utilize registering resources that might exist in
neighboring switchboxes or logic blocks. More
importantly though, this approach requires a very
specific and specialized registered interconnect
structure.

3.3 Previous CAD Solutions

Supporting more general registering resources
requires new CAD tools. Towards this goal, there have
been a number of research projects that have attempted
to perform retiming during placement. However, we
believe that they do not necessarily adequately address
the systematic issues created by retiming.

For example, [2] was among the first efforts towards
integrated placement and retiming. Although this work
actually involved floorplanning, it laid the groundwork
for [3]. Here, the authors define a three-stage approach
for retiming-aware placement. They begin with a
specialized timing-driven placement. When the
annealing is complete, they perform a classical retiming
step to improve delay. This is followed by a short
simulated annealing process to re-distribute registers
that were created or deleted. Unfortunately, this work
targets an ASIC development flow. Since ASICs create
completely custom chips, the CAD tools are able to
create or delete resources at will. Since FPGAs must
use the finite resources offered by a specific
architecture, there are strict limitations as to where we
can and cannot create a register.

Works such as [15] and [8] have attempted to address
FPGA-specific concerns. [15] suggests a two-phase
approach. The authors begin with a full simulated
annealing placement, but then retiming is performed
without any restrictions on the number of registers that
can be placed on a given link. This means that this
methodology can create an unknown number of registers
in potentially very sensitive areas of the array, with no
good way of cleaning up the placement. On the other
hand, [8] suggested a very straightforward two-phase
solution in which conventional placement is followed by
a constrained retiming step. Very similar to the work in
[11], the retimer can only push a limited number of
registers onto a specific link. In this case, it could
choose to either use or not use the flip-flops present in
the CLBs already allocated by the placement phase. Of
course, this approach suffers some of the same limited
retiming capabilities as [11].

The most encouraging work to date on integrated
FPGA placement and retiming is [10]. Much like the
work in [3], they use a three-phase approach that begins
with a specialized timing-driven simulated annealing

4-LUT

4-LUT

a)

b)

Figure 2 – Independently Accessible Flip-Flops

LUT
A

LUT
B

Figure 3 – Packing Implications for Heavily
Registered Netlists

placement. This is followed by a heuristic retiming step
that creates a new netlist given the timing and CLB
occupancy of the existing placement. Primarily, this
heuristic tries to insert registers into the system, keeping
in mind the CLB legalization issues faced by an
architecture with logic blocks that do not have full input
and output connectivity, like those in Figure 2a. Any
architectural violations in the placement of the retimed
netlist are then resolved by a largely greedy legalization
phase.

However, this approach has two issues. First, much
of their work focuses on solving architecture-specific
CLB input and output legalization problems that are not
necessarily a concern for modern devices. Current
generation FPGAs such as the Virtex II do not require
cluster legalization. They not only provide independent
access to LUTs and flip-flops (Figure 2b), they offer full
input and output connectivity. That is, if there are eight
4-LUTs and eight flip-flops in a CLB, the logic blocks
will have the capability to take 40 independent inputs
and produce 16 independent outputs.

More importantly, this methodology still may not
produce feasible or convergent placements. Since the
retiming is wholly decoupled from the legalization
phase, the retimer may produce a netlist that requires
registers in an area that currently does not have any
available in the existing placement. At this point, the
post-processing step has to choose between producing
an illegal placement or risk disrupting the timing of the
system. This situation is particularly likely given heavily
pipelined netlists, since, by the very nature of the netlist
itself, there might be relatively few empty register
locations in the array and many of the nets may be
critical or nearly critical.

4. Simulated Annealing-Based Retiming

Although the multi-stage approach of retiming
followed by some sort of cleanup phase is very
promising, the methodologies we have looked at so far
still face many of the same problems associated with the
conventional toolflow. Taking a step back though, we
can see that all of these complications stem from a
single source – retiming cannot be performed as an
isolated, single-shot optimization step if we want to
provide the capability to aggressively retime while still
maintaining a stable placement. Thus, we suggest a
fundamentally different approach that intersperses
several small retiming steps within the framework of a
full annealing-based placement tool. This philosophy
allows us to create a unified placement and retiming tool
with smoother and more predictable behavior.

We begin with a timing-driven simulated annealing
placement tool. Of course, it is clear that any
optimizations we make, whether based on retiming or
conventional placement, rely on good timing
information. As shown in our prior work [4], the
methodologies that timing-driven placement tools such
as VPR generally use to track net criticality during
annealing can be highly inaccurate. Primarily this is due
to the computational requirements needed to perform
static timing analysis and, subsequently, its infrequent
application. We demonstrated that the incremental slack
analysis and cost function introduced in that paper
produce vastly superior placements with minimal
additional effort as compared to VPR.

4.1 Flip-Flop Level Placement

One issue that we should consider is the
characteristics of heavily registered circuits and the role
of logic block packing. Conventional packing, such as
the algorithm described in [1], generally attempts to
pack flip-flops into the same CLB as their source LUT.
While packing makes sense since it dramatically reduces
the placement problem size, this can lead to problems
when we consider deeply pipelined netlists.

Packing interferes with retiming during placement
because it locks registers into specific logic blocks early
in the compilation process. This can be seen in the
example shown in Figure 3. If we assume we are
mapping to an architecture that has two LUTs and 2 FF
per CLB, the packing tool will wrap LUT A and its two
following flip-flops into a single atomic unit before
placement. This greatly limits the potential for these
registers to mitigate interconnect delay. Furthermore,
packing can fuse unrelated logic blocks and FFs
together. In Figure 3, the third register on the output of
LUT A cannot fit into the same CLB as its source, so it is
arbitrarily combined with some other logic block before

placement. This limits the placer’s ability to use
registers to pipeline the interconnect delay. Lastly, if we
are performing retiming during annealing we must also
be able to integrate newly created registers into the
system efficiently. Putting these issues together, it is
clear that to achieve the best performance the placer
needs to have the ability to migrate critical flip-flops to
different logic blocks without the strict assignments
given during packing.

However, we cannot simply revert to placement at
the individual LUT and flip-flop level without raising
serious concerns. While this has obvious dramatic
implications for the annealing runtime, we can also have
problems simply finding high quality placements. For
the majority of registers it makes sense for a LUT and its
companion flip-flop to reside in the same CLB.
Specifically, this configuration is special because the
connection between the LUT and flip-flop does not
incur the delay or potential wiring congestion associated
with exiting and re-entering a CLB. However, if we
only allow LUTs and flip-flops to move independently
from one another, it makes it very easy for a LUT and
flip-flop to separate, but much more difficult for them to
reunite.

Consider the two possible states that a LUT and flip-
flop can be in (together or apart), shown in Figure 4. If
we consider the LUT and flip-flop to be initially
together within a 5x5 grid of CLBs, we can see that all
possible moves of either the LUT or flip-flop will break
them apart. However, once in this state, only two in the
48 possible moves will bring them back together.
Furthermore, once they are together it is unlikely that we
will be able to move the LUT/flip-flop pair to any other
location after the annealing cools past a certain critical
temperature.

We solve both of these problems by adding a hybrid
CLB/flip-flop-level move function to the placement tool
described in [4]. As seen in Figure 5, we begin by
selecting a random LUT or flip-flop in the netlist. If we
select a LUT, we perform the customary CLB-level
swap. However, if we select a flip-flop that is in the
same CLB as its source and it is connected to a net that
is at least 95% critical, we have a 10% chance to
perform a flip-flop level move to separate the register
(Figure 5, lines 4-9). On the other hand, if we select a
flip-flop that is not in the same CLB as its source, we
have a 10% chance to reunite the flip-flop with its
source (Figure 5, lines 11-15). The exact criticality
threshold and probabilities are not particularly sensitive,
but empirically we have found that these values work
well.

4.2 Simulated Annealing-Based Retiming

As we mentioned earlier, while Leiserson/Saxe retiming
has some unique optimality characteristics, we believe

that the key to better overall results is a more
incremental approach. Thus, we propose leveraging the
inherently balanced optimization aspects of simulated
annealing by applying conditional retiming moves
alongside standard placement moves as an integral part
of the annealing process. To accomplish this we must
define what a retiming move looks like. When we
attempt to retime a register backwards or forwards
through a logic block, there are multiple issues that we
must address.

First, how do we deal with newly created registers?
Moving between Figure 6a and Figure 6b, we must
create two new registers on the inputs of LUT B to
retime a register backwards. Before we attempt this
move, we must first ensure that retiming this logic block
is feasible. It is entirely possible that we simply do not
have enough register locations available in the
architecture. If this is the case, we do not attempt this
retiming move. However, if it is a feasible move, we
place these new registers into the closest available
register location to the source of their signal. On the
other hand, we might not have to create a register.
Moving between Figure 6c and Figure 6d we see that
one of the inputs to LUT B can share the input to LUT C.

LUT

LUT

48/ 482/ 48

46/ 48

Figure 4 – Lower-Level Placement Moves

FF/CLB-Level Placement Move Function
0 select random LUT or FF in netlist
1 if selected LUT
2 swap entire CLB contents with random CLB
3 else
4 if FF in same CLB as source
5 if FF max link criticality >= 0.95 &&
 rand <= 0.1 (separation roll)
6 swap FF with random FF
7 else
8 swap entire CLB contents with random CLB
9 end if
10 else
11 if rand <= 0.1 (homing roll)
12 swap FF with a FF in source CLB
13 else
14 swap FF with random FF
15 end if
16 end if
17 end if

Figure 5 – FF-Level Move Pseudo-Code

LUT
A

LUT
B

LUT
C

c)

d)
LUT
A

LUT
B

LUT
C

LUT
A

LUT
B

LUT
C

a)

b)
LUT
A

LUT
B

LUT
C

Retiming

Retiming

 Figure 6 – Incorporating New Registers

LUT
A

LUT
B

a)

b)
LUT
A

LUT
B

1 2 3
4

1’ 5
3’4’ 6

Figure 7 - Updating Timing Information

Next, when we select a given logic block, how do we

know when we should attempt a retiming move versus a
placement move? While we could simply flip a coin
each time we select an eligible logic block, we have to
consider the computational ramifications of performing
a retiming move. Specifically, the large quality benefit
of the placement tool we started with relies on the more
accurate timing information provided by the incremental
slack analysis approach [4]. Therefore, we have to
consider the impact that retiming moves have on the
accuracy of timing information.

Consider the retiming move performed in Figure 7.
This move changes the slack (defined as the required
time of the sink minus the departure time of the source)
on all of the labeled nets. We can recalculate the slack
on nets 1’ and 4’ with very little error because the
departure time of the sources do not change and we

know that the required time of a registers is always
equal to the critical path of the entire system. We can
also determine the new slack on nets 5 and 6 relatively
accurately because the departure time for a register is
always zero and we can relatively efficiently recalculate
the required time of LUT B. Lastly, we can also
relatively accurately recalculate the slack on net 3’. This
is because the required time of the sink of net 3’ does
not change, and we can relatively efficiently recalculate
the departure time of LUT B.

That said, because we may have changed the critical
path of the netlist, we cannot be entirely certain of the
accuracy of any of these values unless we perform full
static timing analysis. Unfortunately, as discussed in
[4], static timing analysis is too computationally
expensive to perform after every move during simulated
annealing. Since retiming moves can have a large
impact on the critical path delay of the system, we group
many of these move together and then perform full static
timing analysis once the entire group has been
completed.

As can be seen in the pseudo-code of our complete
approach in Figure 8, we include a retiming frequency
factor as a parameter to our integrated retiming and
placement approach. Thus, although we continue to
focus on performing conventional conditional placement
moves, we also occasionally attempt to perform a
concentrated suite of conditional retiming moves on the
netlist.

Also seen in Figure 8, we provide a retiming
activation point and a retiming criticality threshold to
our tool. The retiming activation point controls when
we actually begin to attempt retiming and placement, as
opposed to placement only. Since the annealing begins
with an arbitrary initial placement, the early portion of
the placement process is primarily devoted to simply
roughing out the large-scale structure of the netlist.
Since the placement can change dramatically during
these early stages, retiming is not very productive. In
fact, the extra noise retiming creates in the netlist only
serves to create problems for the placement tool.
Instead, we would rather wait until the placement begins
to settle down, and thus leave retiming to the later stages
of the placement process.

Although there are multiple ways we could define
this activation point, the placement tool we used
contains VPR’s adaptive temperature schedule [1]. The
range limit window built into this approach is an easy
way to gauge how far the overall annealing has
progressed. Thus, as seen in lines 2-4 of the pseudo-
code in Figure 8, the retiming activation point is simply
an integer that can vary between the maximum size of
the array, beginning retiming right from the start of
placement, and one, beginning retiming relatively late
during the annealing process. We have empirically
found an activation point of 1 to work well.

Integrated Retiming and Placement
0 numMovesPerRetiming = numAnnealMovesPerTemp /
 retiming frequency
1 while (!exit)
2 if range limit window <= retiming activation point
3 activate retiming
4 end if
5 for i = 0 to numAnnealMovesPerTemp
6 if retiming active && (i%numMovesPerRetiming == 0)
7 for all logic blocks
8 if max input criticality >= retimeCrit && can

retime backwards
9 try to retime once backwards
10 accept or reject retiming(∆Cost, currTemp)
11 end if
12 if max output criticality >= retimeCrit && can

retime backwards
13 try to retime once forwards
14 accept or reject retiming(∆Cost, currTemp)
15 end if
16 end for
17 update critical path delay
18 end if
19 attempt placement move
20 accept or reject move(∆Cost, currTemp)
21 end for
22 update critical path delay
23 update currTemp
24 update range limit window
25 evaluate exit criteria
26 end while

Figure 8 – Simulated Annealing-Based
Retiming & Placement Algorithm

As seen in Figure 8, the retiming criticality threshold

filters logic blocks that are eligible for retiming based
upon the maximum criticality of their input or output
connections. Obviously, the more critical a given path
is, the more important it becomes to retime the logic
blocks along it. Again, since we would like to disrupt
the placement as little as possible, we avoid retiming
logic blocks that are not along highly critical paths.
Given our empirical testing, a value of 1.0 (only
retiming logic blocks along the critical path) produced
good results.

That said, particularly for heavily pipelined netlists,
our approach can leave logic blocks along highly critical
paths unable to retime beyond a certain point because
the necessary balancing registers along other, non-
critical paths do not advance. Classical retiming
approaches such as the Leiserson/Saxe techniques do not
run into this problem because they perform systematic
retiming. In the future, we would like to investigate a
mechanism that can identify this situation and efficiently
allow critical paths to single out non-critical paths for
retiming.

Finally, once we have identified a good candidate for
retiming we can actually perform the retiming move and
restructure the netlist. Because we are performing this
retiming move within a larger simulated annealing
framework, we evaluate the cost of the new placement

and, based upon the current temperature and change in
cost, probabilistically either accept or reject this
retiming move.

5. Testing & Results

We tested our integrated retiming and placement
approach on two sets of MCNC benchmarks that
represented a wide range of pipeline resource
requirements. The first consisted of 10 sequential
netlists out of the benchmarks included with the VPR
tool suite. Obviously, retiming cannot be performed on
purely combinational circuits that have no registers at
all, so we thus exclude half of the customary
benchmarks. The second group consisted of 21 original
VPR benchmarks pipelined and/or C-slowed, then
processed via conventional Leiserson/Saxe retiming to
create circuits with a maximum logic depth of one LUT.
Both sets of netlists were then packed into CLBs with T-
VPack.

We placed these two groups of benchmarks with
three different placement approaches: timing-driven
VPR, our improved incremental slack timing-driven
placement tool from [4], and our new simulated anneal-
based placement and retiming approach. All three
placement tools were followed by conventional timing-
driven routing with A* optimizations turned off (we did
not use A* during any of our testing because A* is
meant to strictly improve CAD runtime, not quality, and
thus should not affect the results).

The target architecture selected was VPR’s standard
single 4-LUT, single flip-flop 4lut_sanitized
architecture, with one modification. Instead of logic
blocks arranged as in Figure 1a, we provided logic
blocks with independently accessible flip-flops like
those shown in Figure 1b. We believe that this type of
flip-flop accessibility is important for any register-rich
FPGA architecture, and is more representative of
modern devices. All testing was performed on
minimum-sized architectures, with the customary low-
stress routing case of 1.2 times the minimum channel
width as found by VPR.

The placement parameters used for the incremental
slack placement approach from [4] were the same
suggested by that paper: λ=0.1, Crit_Exp=12.0 for the
original MCNC netlists and λ=0.025, Crit_Exp=12.0 for
the pipelined circuits. The retiming parameters we used
for our integrated placement and routing tool were:
retiming activation point=1, retiming frequency
factor=1, retiming criticality threshold=1.0. To
reiterate, this means that retiming began when the range
limit window closed to a distance of one CLB, we
performed a single retiming suite per temperature
iteration, and we only considered retiming logic blocks
that were 100% critical.

Table 1 – Best of 10 Wire Cost and Post-Route Crit. Path Delay Results for Original Sequential MCNC Ne tlists
 Raw Results Normalized Results

 Retime First &
VPR Place

Increm. Slack
Place Only

Integr. Retime
& Placement

Retime &
VPR Place

Increm. Slack
Place Only

Integr. Retime
& Placement

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD

bigkey 210.57 6.21E-8 242.72 4.23E-8 242.15 4.01E-8 1.04 0.89 1.00 1.00 0.99 0.93
clma 1498.63 2.02E-7 1429.54 1.55E-7 1439.02 1.58E-7 1.08 0.94 1.00 1.00 0.99 0.94
diffeq 157.87 6.03E-8 149.75 5.57E-8 150.30 5.67E-8 1.09 1.01 1.00 1.00 1.01 0.94
dsip 194.34 6.12E-8 225.52 4.70E-8 238.64 3.61E-8 1.02 1.02 1.00 1.00 0.99 0.95

elliptic 511.90 1.03E-7 470.71 9.20E-8 474.08 9.34E-8 1.05 1.08 1.00 1.00 1.00 1.02
frisc 583.74 1.29E-7 535.74 1.27E-7 540.17 1.20E-7 0.97 1.10 1.00 1.00 0.98 0.88

s1423 16.74 5.70E-8 16.14 6.43E-8 15.93 5.95E-8 1.09 1.12 1.00 1.00 1.01 1.02
s298 228.50 1.29E-7 211.16 1.37E-7 209.49 1.29E-7 0.86 1.30 1.00 1.00 1.06 0.77

s38417 672.72 9.47E-8 690.62 8.62E-8 675.62 7.55E-8 1.05 1.31 1.00 1.00 1.01 1.02
tseng 100.75 5.29E-8 98.65 5.19E-8 97.58 4.95E-8 0.87 1.47 1.00 1.00 1.00 0.95

GeoMean 1.01 1.11 1.00 1.00 1.00 0.93

Table 2 – Best of 10 Wire Cost and Post-Route Crit. Path Delay Results for Pipelined/C-Slowed MCNC Net lists
 Raw Results Normalized Results

 Retime First &
VPR Place

Increm. Slack
Place Only

Integr. Retime
& Placement

Retime &
VPR Place

Increm. Slack
Place Only

Integr. Retime
& Placement

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD

alu4 290.44 3.70E-8 254.17 3.15E-8 251.35 2.76E-8 1.14 1.17 1.00 1.00 0.99 0.88
apex2 405.33 3.99E-8 365.82 2.44E-8 367.32 2.25E-8 1.11 1.64 1.00 1.00 1.00 0.92
apex4 217.28 3.07E-8 200.46 2.44E-8 200.49 1.95E-8 1.08 1.26 1.00 1.00 1.00 0.80
bigkey 267.07 4.37E-8 246.45 2.89E-8 247.90 2.94E-8 1.08 1.51 1.00 1.00 1.01 1.02
clma 2379.44 8.46E-8 2105.72 6.45E-8 2107.38 6.33E-8 1.13 1.31 1.00 1.00 1.00 0.98
des 354.80 4.29E-8 344.98 1.99E-8 340.84 2.22E-8 1.03 2.15 1.00 1.00 0.99 1.12

diffeq 499.57 5.34E-8 460.58 2.82E-8 485.66 2.64E-8 1.08 1.89 1.00 1.00 1.05 0.94
dsip 258.44 4.02E-8 207.41 3.36E-8 218.19 3.13E-8 1.25 1.20 1.00 1.00 1.05 0.93
e64 45.27 1.93E-8 41.51 1.17E-8 42.16 1.11E-8 1.09 1.65 1.00 1.00 1.02 0.95

elliptic 1408.34 7.67E-8 1326.81 4.54E-8 1329.50 4.36E-8 1.06 1.69 1.00 1.00 1.00 0.96
ex1010 868.76 5.38E-8 796.30 3.64E-8 791.35 3.96E-8 1.09 1.48 1.00 1.00 0.99 1.09
ex5p 223.66 2.42E-8 212.14 1.64E-8 211.88 1.68E-8 1.05 1.47 1.00 1.00 1.00 1.02
frisc 1402.54 6.71E-8 1383.91 2.76E-8 1398.71 2.66E-8 1.01 2.43 1.00 1.00 1.01 0.96

misex3 269.65 3.37E-8 240.00 2.73E-8 240.93 2.09E-8 1.12 1.23 1.00 1.00 1.00 0.76
pdc 1210.80 5.67E-8 1108.66 3.39E-8 1103.05 3.25E-8 1.09 1.67 1.00 1.00 0.99 0.96

S1423 70.24 1.88E-8 69.87 8.83E-9 69.30 8.77E-9 1.01 2.13 1.00 1.00 0.99 0.99
s298 452.99 4.31E-8 417.91 2.76E-8 411.53 2.79E-8 1.08 1.56 1.00 1.00 0.98 1.01

S38417 1969.65 6.83E-8 1898.96 3.29E-8 1965.55 3.04E-8 1.04 2.07 1.00 1.00 1.04 0.92
seq 349.44 4.02E-8 326.53 2.68E-8 326.32 2.48E-8 1.07 1.50 1.00 1.00 1.00 0.93
spla 851.73 5.15E-8 783.69 5.47E-8 780.89 3.20E-8 1.09 0.94 1.00 1.00 1.00 0.59

tseng 316.46 3.60E-8 302.56 2.34E-8 307.18 2.23E-8 1.05 1.54 1.00 1.00 1.02 0.95
GeoMean 1.09 1.53 1.00 1.00 1.01 0.93

Table 3 – Critical Path Delay Comparison with Singh and Brown Retiming Approach

 Normalized to VPR Results 2

Netlist Retime First &
VPR Place

Singh & Brown
Retimer [10]

Increm. Slack
Place Only

Integr. Retime
& Placement

bigkey 1.00 0.93 0.66 0.67
diffeq 1.00 0.96 0.53 0.50
dsip 1.00 0.75 0.84 0.78

elliptic 1.00 0.93 0.59 0.57
frisc 1.00 0.90 0.41 0.40

S38417 1.00 0.82 0.48 0.45
tseng 1.00 0.91 0.65 0.62

GeoMean 1.00 0.88 0.58 0.55

1 Notice that in the Normalized to VPR Results, the Singh & Brown Retimer numbers from [10] have been normalized to the VPR

results also reported in [10]. Our Incremental Slack Placement Only and Integrated Retime and Placement results have been
normalized to VPR results given in Table 1.

Table 1 and Table 2 show the best of ten placement
attempts. We report the raw and normalized geometric
mean final placement wire cost and routed critical path
delay for all three placement approaches. Looking at
these values, we can first verify that using the
incremental slack placement methodology as a starting
point for our retiming tool was indeed a wise choice. By
itself, it produced placements with 1.11x better critical
path delay without affecting wirelength for the original
sequential MCNC netlists and 1.53x better critical path
delay with 1.09x better wirelength for the heavily
pipelined circuits. If we look at the results when we
apply our simulated annealing-based retimer we see that
the gap widens slightly to 1.19x better critical path delay
for the original sequential MCNC netlists and 1.64x
better critical path delay for the heavily pipelined
circuits.

If we consider the gains solely due to our retiming
methodology, we see that both the original sequential
MCNC netlists and the heavily pipelined circuits
perform 1.08x faster. These delay improvements came
with no cost to routability.

Unfortunately, any direct comparison to the Singh
and Brown toolflow [10] is relatively difficult. We do
not have access to their code base and the paper is fairly
vague regarding their exact testing conditions.
Specifically, while not specified in the paper we believe
they were mapping to an architecture similar to the
clustered 4x4lut_sanitized system. Furthermore, they
also did not test on minimum-sized architectures, but on
slightly oversized devices that provided additional
registers.

That said, they reported results for a subset of the
sequential MCNC netlists that we used, with VPR as a
comparison point. Thus, while not ideal, we can get
some idea of how the two methodologies line up if we
normalize both sets of data to their respective VPR runs.
We show these results in Table 3. We can see that they
achieved a 1.14x average improvement in critical path
delay for these netlists while we achieved a 1.82x
average improvement. Thus, our simulated annealing
retiming approach nearly doubles the performance of the
conventional VPR approach. That said, our incremental
slack methodology by itself improves placements so
much that it is much more difficult to achieve further
gains. We believe it is fair to claim that the approach
suggested by Singh and Brown benefits from some of
the optimization opportunities VPR leaves on the table.

6. Implications

The integrated retiming and placement technique that
we have presented has several key advantages over
previous methodologies:

Our retiming is less disruptive and leads to more
predictable results. This is largely the product of three

main issues. First, because we perform multiple small
retiming moves, we do not have to try and massively
retime a single register through multiple levels of logic
all at once. Second, since our approach is based around
simulated annealing, we can leverage many of the
natural balancing aspects of the cost function and
cooling schedule. Third, each of these smaller retiming
moves is smoothed into the rest of the placement using
the well-understood aspects of full simulated annealing.

Guaranteed legal placements, regardless of
architecture. Since we never attempt to retime a logic
block if it would create an illegal placement, we can
never have problems with legalization.

This is a one-pass CAD flow, with no convergence
issues. Since the retimer is built directly into the
annealing process and is already naturally iterative,
developers do not have to worry about not being happy
with the final results, then attempting to re-run the tools
and face problems with timing convergence.

7. Conclusions

In this paper we have investigated some of the issues
surrounding registered netlists, placement tools and
retiming methodologies. Specifically, we identified a
key characteristic of many existing CAD approaches
that either limits the benefits of retiming or puts
placement convergence at risk: we cannot apply
aggressive retiming to a netlist as a separate, single-use
step and then expect a post-processing phase to be able
to clean up the results satisfactorily.

As an alternative, we presented a new integrated
approach that performs retiming during simulated-
annealing placement. This approach allows us to
leverage many of the benefits of the simulated annealing
framework to produce a minimally disruptive retimed
netlist. In our testing against VPR, we demonstrated
that our technique produced 1.19x better critical path
delay without negatively affecting routability for lightly
registered netlists, and 1.64x better critical path delay
with 1.09x better wirelength for heavily pipelined
netlists. Our approach produced 1.08x faster critical
path delay than the highly-improved timing-driven
placement tool it was based on for both lightly registered
and heavily pipelined applications.

Perhaps most importantly though, this integrated
retiming technique is inherently convergent and
architecture-independent. Thus, it opens the door to the
development of practical register-rich FPGAs.

8. Acknowledgments

This work was sponsored in part by grant
CCF0426147 from the National Science Foundation,
and grant DE-FG52-06NA27507 from the Department
of Energy. The authors would also like to thank Nikhil

Subramanian for his background research into the Xilinx
Virtex II architecture.

9. References

[1] Betz, V., J. Rose, and A. Marquardt, Architecture
and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[2] Cong, J. and S. Lim, “Physical Planning with
Retiming”, International Conference on Computer-
Aided Design, 2000: 2-7.

[3] Cong, J. and X. Yuan, “Multilevel Global
Placement with Retiming”, Design Automation
Conference, 2003: 208-13.

[4] Eguro, K. and S. Hauck, “Enhancing Timing-
Driven FPGA Placement for Pipelined Netlists”, to
Appear in Design Automation Conference, 2008.

[5] Eguro, K. and S. Hauck. “Armada: Timing-Driven
Pipeline-Aware Routing for FPGAs”,
ACM/SIGDA Symposium on Field-Programmable
Gate Arrays, 2006: 169-78.

[6] Marquardt, A., V. Betz and J. Rose, “Timing-
Driven Placement for FPGAs”, ACM/SIGDA
Symposium on Field Programmable Gate Arrays,
2000: 203-13.

[7] Leiserson, C. and J. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, Vol. 6, 1991: 5-35.

[8] Seidl, R., K. Eckl, and F. Johannes, “Performance-
directed Retiming for FPGAs using Post-placement
Delay Information”, Design, Automation and Test
in Europe Conference, 2003: 770-5.

[9] Sharma, A., C. Ebeling and S. Hauck. "PipeRoute:
A Pipelining-Aware Router for FPGAs",
ACM/SIGDA Symposium on Field-Programmable
Gate Arrays, 2003: 68-77.

[10] Singh, D. and S. Brown, “Integrated Retiming and
Placement for Field Programmable Gate Arrays”,
ACM/SIGDA Symposium on Field Programmable
Gate Arrays, 2002: 67-76.

[11] Singh, D. and S. Brown, “The Case for Registered
Routing Switches in Field Programmable Gate
Arrays”, ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, 2001: 161-9.

[12] Tsu, W., K. Macy, A. Joshi, R. Huang, N. Walker,
T. Tung, O. Rowhani, V. George, J. Wawrzynek,
and A. DeHon. "HSRA: High-Speed, Hierarchical
Synchronous Reconfigurable Array", ACM/SIGDA
Symposium on Field Programmable Gate Arrays,
1999: 125-34.

[13] Von Herzen, B., “Signal Processing at 250MHz
using High-Performance FPGA’s”, ACM
International Symposium on FPGAs. 1997, 62-8.

[14] Weaver, N., J. Hauser, and J. Wawrzynek, “The
SFRA: A Corner-Turn FPGA Architecture”,
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 2004: 3-12.

[15] Weaver, N., Y. Markovskiy, T. Patel, and J.
Wawrzynek, “Post-Placement C-slow Retiming for
the Xilinx Virtex FPGA”, ACM/SIGDA
Symposium on Field-Programmable Gate Arrays,
2003: 185-94.

