Simultaneous Retiming and Placement for Pipelined Netlists

Ken Eguro and Scott Hauck
Department of Electrical Engineering
University of Washington
Seattle, WA 98195 USA
{eguro, hauck}@ee.washington.edu

Abstract

Although pipelining or C-slowing an FPGA-based
application can potentially dramatically improve eth
performance, this poses a question for conventional
reconfigurable architectures and CAD tools: whathie
best way to support these new extra registers? leWhi
there have been multiple research efforts to addtkis
problem, they generally impose strict architectural
requirements, offer limited retiming capabilitiesy
require multiple iterations with no guarantees redjag
feasible implementations.

In this paper we introduce a new simulated
annealing-based placement and retiming approach tha
provides the capability to aggressive apply retignon
a wide range of netlists, for arbitrary architecas,
while maintaining predictable results. Our resutsow
that for heavily pipelined applications, this meatlotogy
can produce netlists and placements with 1.65xebett
post-routing critical path delay as compared to the
classical approach of retiming before timing-driven
VPR placement, and 1.08x better than retiming teefor
our improved timing-driven placer.

1. Introduction

Despite the inherent speed penalties generally
associated with reconfigurable devices, the fldikybi
and low engineering effort of FPGA-based platforms
have made them very popular for a wide variety of
different applications. To combat the naturallyvéw
clock frequency of FPGA implementations, applicatio
developers often pipeline or C-slow their circuits
whenever possible. Retiming is a powerful optinia
technique that can be applied to such registerdistse
to help maximize the achievable clock frequency.

One problem is that retiming is generally performed
prior to packing, placement and routing. Unfortieha
since interconnect delay often plays a major rale i
determining overall performance, accurate timing
information can only be obtained after placement.
Retiming is generally restricted to early parts tbé
CAD flow because, while retiming does not alter the
logical behavior of the circuit, it can cause exfea

changes to the structure of the netlist itself. tirRieg
alters both the number and relative positioningthef
registers between logical elements.

For most reconfigurable architectures, this mehas t
the placement must also be changed to accommduate t
new registers. Regrettably, this can lead to okl
with timing stability and convergence since the new
placement may not have the same timing charadterist
as the original placement. This means that we aann
guarantee the accuracy of the retiming, potentially
slowing the circuit down instead of speeding it up.

Multiple research groups have identified this issue
and have suggested changes that can be made teither
the underlying FPGA architecture or to the CAD #ool
That said, the architectural solutions that havenbe
proposed either have dramatic area overhead agmtiat
restrictions that limit their practicality for nguipelined
netlists, or employ relatively exotic and piecemeal
techniques that do not reflect the current trerensn
commercial devices. On the other hand, the CAD
approaches that have been suggested either takeya v
conservative tact, limiting the potential benefifheavy
pipelining, or risk changing the netlist considdyab
potentially compromising the overall quality of tfieal
implementation.

In this paper we discuss the specific issues
surrounding the aggressive application of retimiizig
in the CAD flow, and introduce a simulated-anneglin
based retiming methodology that integrates retinaind
placement into a single unified tool.

2. Implications for
Enhanced FPGAs

Practical Register-

Many applications, particularly those of interest t
reconfigurable computing, can tolerate a great ddal
pipelining or C-slowing. While this can improve
performance, it also produces netlists that are
fundamentally different than conventional circuits.
Some researchers have sought to meet these chedleng
with architectures specifically targeted to onlyahiéy
pipelined designs [12][14]. However, these devices
have not become popular because, while they can
provide an impressive performance boost, they also

impose a large 2x-4x area penalty and require eogsm
latency compared to classical systems. This mtlese
devices unsuitable to mainstream users, and thus we
have not seen any commercial success on this front.

An alternative, demonstrated by Brian Von Herzen
[13], is to see how commodity FPGAs can be used for
heavily pipelined applications. Essentially, since
would like to completely pipeline all of the contieas
in the system, registers end up dominating theclogi
portion of the circuit. Thus, we end up using thastv
majority of the CLBs in the target device only their
registers. While this is a better approach sinecane
able to use a commodity device, in a sense wepag@
2x-4x area penalty when considering the logic reses
of the system.

We are working on a middle ground. What if we
could augment a commodity device with a relatively
small number of additional registers? These ressur
would only degrade the logic capacity of commodity
devices by a few percent for standard users, bilit wi
allow these FPGAs to achieve very high clock rédtes
latency-tolerant designs. In this way we can combi
the two design philosophies we have discussed and
produce a commodity-style architecture that levesag
main-stream users for economies of scale, yet allow
them to boast very high performance for heavily
pipelined applications.

This paper is one step in the pursuit of this iddal
previous work we have developed an architecture-
adaptive router for pipelined interconnects [9]wedl as
a timing-driven version of this tool [5]. In thimper we
introduce an architecture-adaptive placer for el
FPGAs, leveraging our previous work on a much more
efficient timing-driven placer for pipelined netbs[4].
When combined, this provides a complete pipeline-
aware placement and routing tool suite for register
enhanced commaodity-style FPGAs. Ultimately, wenpla
to use this toolflow in architectural studies tolphe
design commercially viable register-rich architeetu
that can support both lightly and heavily pipelined
netlists efficiently.

3. Background

Pipelining or C-slowing an application introduces
additional registers into the netlist with the habpat this
will increase the overall throughput of the system.
However, since these new registers also increase th
latency of the circuit, we must be careful to ulest
registers effectively in order to evenly distributelay.
The hope is that we can use these registers teachi
sufficient improvement in critical path delay tofst
the additional latency. This is where retimingygsla
crucial role.

+ ||+ | [+]|+

T

b)

9)
+

Ly
+ —

Figure 1 — Pipelining and Retiming

bhdd dbid 4yl

3.1 Classical Retiming

Retiming improves a circuit’s critical path by hestt

balancing the delay between different pipelininggss.

It achieves this, without changing the externalawabr

of the circuit, by “pushing” registers through
computational blocks. For example, consider thegie
in Figure 1. If we disregard interconnect delay tle
moment, we see that the original netlist (FigurgHhes a
critical path delay of two adders, and a latencyoné
clock cycle. However, when we pipeline the system
(Figure 1b), we increase the latency by a clockecyc
without improving the critical path delay. We ordge
the benefits of pipelining when we apply retiming
(Figure 1c). Specifically, retiming works because
can generally replace a register on a logic bloatpuat
with a register on each of the inputs without cliagg
the observable behavior to the outside world. Bg t
same token we are also able to replace a registeach
of the inputs of a logic block with a register dmet
output.

First described in [7], the most popular method of
retiming is the Leiserson/Saxe approach. Thisns a
iterative process that gradually pushes registensral a
netlist until the provably minimum critical pathldg is
found. Although the optimality of this approachmise,
this accuracy does not necessarily carry over when
actually apply retiming within an FPGA CAD flow.
This is because retiming is generally performedanas
isolated step prior to packing, placement and nguti

The conventional toolflow has developers specify
their application and compile it once, all the wagm
technology mapping though routing. If the resgjtin
implementation does not meet timing specificatiahs,

developer might edit their HDL to increase the lesfe
pipelining/C-slowing, or attempt to retime the dong
technology-mapped netlist for another run of pagkin
placement and routing.

Unfortunately, this methodology can limit the
advantages of retiming or create problems for tgmin
closure. First, without any placement informatiove
can only very roughly estimate delay. Similar ke t
assumptions made for the example in Figure 1, wstmu
retime using a simple unit delay model for logiodis
and largely ignore the potentially significant dela
accumulated in the interconnect.

However, it is also unclear how useful it mighttbe
try and forward timing information from a previous
placement and routing back to the retimer for amoth
run of the CAD tools. First, solely based on the
algorithms discussed in [7], it is not necessanlhyious
how Leiserson/Saxe retiming could represent
interconnect delay. That said, even if we could
effectively forward timing numbers from previous
implementations, we cannot guarantee the accuracy o
relevancy of this information to the new netlishce the
system may change considerably in the meantimeds Ne
that were timing critical in an earlier placemeraymot
remain so, even if we do not change the netlistlaiut
simply re-run the simulated annealing. Furthermome
certainly do not have such information for newlgated
registers. All of this puts an incredible burdem the
retimer since additional registers may actuallyrddg
performance if they are not distributed correctly.

3.2 Previous Architectural Solutions

One proposed solution to the problems associated
with retiming and placement convergence is modgyin
the architecture itself to allow retiming to be foemed
after placement and routing, without disturbing the
existing configuration. For example, the system
suggested in [11] is a track-graph FPGA that regsac
some of its track domains with specialized optitnal
registered track domains that are specifically clateid

to retiming.
The toolflow for this system begins with
conventional timing-driven placement and routing,

ignoring the registers embedded in the interconnédt
this point, timing-critical links in the routed
configuration are identified and singled out. Héy are
not already connected via a wire domain that iitbed
with optional registers, the connection is swapfzedn
equivalent wire domain that does. At this point, a
restricted retiming algorithm is applied. Insteafl
performing true Leiserson/Saxe retiming, this appto
limits the number of registers that can be push&d a
specific connection to the number of optional rétign
registers that already exist along the currenterout

However, while this is a simple and closed-form
solution, this greatly limits the optimizations dahle to

the retimer. First, this does not allow the system
utilize registering resources that might exist in
neighboring switchboxes or logic blocks. More

importantly though, this approach requires a very

specific and specialized registered interconnect
structure.

3.3 Previous CAD Solutions

Supporting more general registering resources

requires new CAD tools. Towards this goal, theaigeh
been a number of research projects that have atemp
to perform retiming during placement. However, we
believe that they do not necessarily adequatelyessd
the systematic issues created by retiming.

For example, [2] was among the first efforts toveard
integrated placement and retiming. Although thirkv
actually involved floorplanning, it laid the groumdrk
for [3]. Here, the authors define a three-stager@gch
for retiming-aware placement. They begin with a
specialized timing-driven placement. When the
annealing is complete, they perform a classicamiat
step to improve delay. This is followed by a short
simulated annealing process to re-distribute regist
that were created or deleted. Unfortunately, thisk
targets an ASIC development flow. Since ASICs terea
completely custom chips, the CAD tools are able to
create or delete resources at will. Since FPGAstmu
use the finite resources offered by a specific
architecture, there are strict limitations as toerehwe
can and cannot create a register.

Works such as [15] and [8] have attempted to addres
FPGA-specific concerns. [15] suggests a two-phase
approach. The authors begin with a full simulated
annealing placement, but then retiming is performed
without any restrictions on the number of registibet
can be placed on a given link. This means that thi
methodology can create an unknown number of ragiste
in potentially very sensitive areas of the arrajthwo
good way of cleaning up the placement. On therothe
hand, [8] suggested a very straightforward two-phas
solution in which conventional placement is follaney
a constrained retiming step. Very similar to therkwin
[11], the retimer can only push a limited number of
registers onto a specific link. In this case, duld
choose to either use or not use the flip-flops gmesn
the CLBs already allocated by the placement ph@se.
course, this approach suffers some of the sameelimi
retiming capabilities as [11].

The most encouraging work to date on integrated
FPGA placement and retiming is [10]. Much like the
work in [3], they use a three-phase approach thgins
with a specialized timing-driven simulated anneglin

a)

4-LUT Iﬁbl_>

4-LUT

b)

\2222R222

Figure 2 — Independently Accessible Flip-Flops

-

iy gy AN

—p A Do i
— 0T
s B[

Figure 3 — Packing Implications for Heavily
Registered Netlists

placement. This is followed by a heuristic retimstep
that creates a new netlist given the timing and CLB
occupancy of the existing placement. Primarilyis th
heuristic tries to insert registers into the systkeeping

in mind the CLB legalization issues faced by an
architecture with logic blocks that do not havd faput
and output connectivity, like those in Figure 2any
architectural violations in the placement of thénmed
netlist are then resolved by a largely greedy iegtbn
phase.

However, this approach has two issues. First, much
of their work focuses on solving architecture-sfieci
CLB input and output legalization problems that acé
necessarily a concern for modern devices. Current
generation FPGAs such as the Virtex Il do not neui
cluster legalization. They not only provide indegent
access to LUTs and flip-flops (Figure 2b), theyeoffull
input and output connectivity. That is, if theme &ight
4-LUTs and eight flip-flops in a CLB, the logic lzls
will have the capability to take 40 independentuitsp
and produce 16 independent outputs.

More importantly, this methodology still may not
produce feasible or convergent placements. Sihee t
retiming is wholly decoupled from the legalization
phase, the retimer may produce a netlist that regui
registers in an area that currently does not hawe a
available in the existing placement. At this ppitite
post-processing step has to choose between pragucin
an illegal placement or risk disrupting the timiofythe
system. This situation is particularly likely givaeavily
pipelined netlists, since, by the very nature @f tietlist
itself, there might be relatively few empty registe
locations in the array and many of the nets may be
critical or nearly critical.

4. Simulated Annealing-Based Retiming

Although the multi-stage approach of retiming
followed by some sort of cleanup phase is very
promising, the methodologies we have looked ataso f
still face many of the same problems associatel thi
conventional toolflow. Taking a step back thougle
can see that all of these complications stem from a
single source — retiming cannot be performed as an
isolated, single-shot optimization step if we wadat
provide the capability to aggressively retime whstél
maintaining a stable placement. Thus, we suggest a
fundamentally different approach that intersperses
several small retiming steps within the framewoflao
full annealing-based placement tool. This phildsop
allows us to create a unified placement and retjndol
with smoother and more predictable behavior.

We begin with a timing-driven simulated annealing
placement tool. Of course, it is clear that any
optimizations we make, whether based on retiming or
conventional placement, rely on good timing
information. As shown in our prior work [4], the
methodologies that timing-driven placement toolshsu
as VPR generally use to track net criticality dgrin
annealing can be highly inaccurate. Primarily thidue
to the computational requirements needed to perform
static timing analysis and, subsequently, its ipfient
application. We demonstrated that the incremestéalk
analysis and cost function introduced in that paper
produce vastly superior placements with minimal
additional effort as compared to VPR.

4.1 Flip-Flop Level Placement

One issue that we should consider is the
characteristics of heavily registered circuits amel role
of logic block packing. Conventional packing, swuah
the algorithm described in [1], generally attemjs
pack flip-flops into the same CLB as their sourdgTL
While packing makes sense since it dramaticallyced
the placement problem size, this can lead to proble
when we consider deeply pipelined netlists.

Packing interferes with retiming during placement
because it locks registers into specific logic kearly
in the compilation process. This can be seen @& th
example shown in Figure 3. If we assume we are
mapping to an architecture that has two LUTs ard-2
per CLB, the packing tool will wrahUT A and its two
following flip-flops into a single atomic unit beafe
placement. This greatly limits the potential fivese
registers to mitigate interconnect delay. Furtheen
packing can fuse unrelated logic blocks and FFs
together. In Figure 3, the third register on tidpat of
LUT Acannot fit into the same CLB as its source, $® it
arbitrarily combined with some other logic blockidre

placement. This limits the placer's ability to use
registers to pipeline the interconnect delay. lyagtwe
are performing retiming during annealing we musbal
be able to integrate newly created registers i@ t
system efficiently. Putting these issues togetiteis
clear that to achieve the best performance theeplac
needs to have the ability to migrate critical flipps to
different logic blocks without the strict assignreen
given during packing.

However, we cannot simply revert to placement at
the individual LUT and flip-flop level without raisg
serious concerns. While this has obvious dramatic
implications for the annealing runtime, we can dlage
problems simply finding high quality placementsorF
the majority of registers it makes sense for a lagd its
companion flip-flop to reside in the same CLB.
Specifically, this configuration is special becaube
connection between the LUT and flip-flop does not
incur the delay or potential wiring congestion asated
with exiting and re-entering a CLB. However, if we
only allow LUTs and flip-flops to move independentl
from one another, it makes it very easy for a LUH a
flip-flop to separate, but much more difficult fitrem to
reunite.

Consider the two possible states that a LUT amd fli
flop can be in (together or apart), shown in Figdrelf
we consider the LUT and flip-flop to be initially
together within a 5x5 grid of CLBs, we can see thlat
possible moves of either the LUT or flip-flop wilkeak
them apart. However, once in this state, only itwthe
48 possible moves will bring them back together.
Furthermore, once they are together it is unlikbgt we
will be able to move the LUT/flip-flop pair to argther
location after the annealing cools past a certatical
temperature.

We solve both of these problems by adding a hybrid
CLB/flip-flop-level move function to the placemetatol
described in [4]. As seen in Figure 5, we begin by
selecting a random LUT or flip-flop in the netlisif we
select a LUT, we perform the customary CLB-level
swap. However, if we select a flip-flop that is time
same CLB as its source and it is connected to @hagt
is at least 95% critical, we have a 10% chance to
perform a flip-flop level move to separate the stgi
(Figure 5, lines 4-9). On the other hand, if weska
flip-flop that is not in the same CLB as its soyree
have a 10% chance to reunite the flip-flop with its
source (Figure 5, lines 11-15). The exact critigal
threshold and probabilities are not particularipstve,
but empirically we have found that these valueskwor
well.

4.2 Simulated Annealing-Based Retiming

As we mentioned earlier, while Leiserson/Saxe rgtim
has some unique optimality characteristics, weeleli

that the key to better overall results is a more
incremental approach. Thus, we propose leverattiag
inherently balanced optimization aspects of sinmadat
annealing by applying conditional retiming moves
alongside standard placement moves as an integral p
of the annealing process. To accomplish this wetmu
define what a retiming move looks like. When we
attempt to retime a register backwards or forwards
through a logic block, there are multiple issuest the
must address.

First, how do we deal with newly created registers?
Moving between Figure 6a and Figure 6b, we must
create two new registers on the inputsldfT B to
retime a register backwards. Before we attemp thi
move, we must first ensure that retiming this Idgicck
is feasible. It is entirely possible that we signdb not
have enough register locations available in the
architecture. If this is the case, we do not aptethis
retiming move. However, if it is a feasible movee w
place these new registers into the closest availabl
register location to the source of their signaln the
other hand, we might not have to create a register.
Moving between Figure 6¢ and Figure 6d we see that
one of the inputs taUT B can share the input taJT C.

| LuT { >
—»__| L

> LuT >[Ly
— > ¥ !

Figure 4 — Lower-Level Placement Moves

FF/CLB-Level Placement Move Function

0 select random LUT or FF in netlist

1 if selected LUT

2 swap entire CLB contents with random CLB

3 else

4 if FF in same CLB as source

5 if FF max link criticality >= 0.95 &&
rand <= 0.1 (separation roll)

6 swap FF with random FF

7 else

8 swap entire CLB contents with random CLB
9 end if

10 else

11 if rand <= 0.1 (homing roll)

12 swap FF with a FF in source CLB
13 else

14 swap FF with random FF

15 end if

16 end if

17 endif

Figure 5 — FF-Level Move Pseudo-Code

a)—_pl » LUT) |
LUT > B
—» A
—» LUT I
—» C
—Lh,
b »TUT >_| g LléT I
—>» A N
—» LUT |
—» C
O—>f LUT ’LET »[>
—» A g
> » LUT
S—»{ C ’
>
O—>LuT TR
—>» A . |_>
> » LUT
S C '
Figure 6 — Incorporating New Registers
1
2 3
A—»LUT| 4 r LET >E >
—» A
1 I 5 |
"—uT] 4 J | G»LET EEEIN
—» A A

Figure 7 - Updating Timing Information

Next, when we select a given logic block, how do we
know when we should attempt a retiming move veesus
placement move? While we could simply flip a coin
each time we select an eligible logic block, we en&w
consider the computational ramifications of perfimgn
a retiming move. Specifically, the large qualitgniefit
of the placement tool we started with relies onri@e
accurate timing information provided by the incremad
slack analysis approach [4]. Therefore, we have to
consider the impact that retiming moves have on the
accuracy of timing information.

Consider the retiming move performed in Figure 7.
This move changes the slack (defined as the redjuire
time of the sink minus the departure time of tharse)
on all of the labeled nets. We can recalculatesthek
on nets1l and 4’ with very little error because the
departure time of the sources do not change and we

know that the required time of a registers is alsvay
equal to the critical path of the entire system.e ¥an
also determine the new slack on ngtand6 relatively
accurately because the departure time for a registe
always zero and we can relatively efficiently recddte
the required time of LUTB. Lastly, we can also
relatively accurately recalculate the slack on3ietThis

is because the required time of the sink of 3ietloes
not change, and we can relatively efficiently reokdte
the departure time of LUB.

That said, because we may have changed the critical
path of the netlist, we cannot be entirely certafirthe
accuracy of any of these values unless we perfatn f
static timing analysis. Unfortunately, as discdsge
[4], static timing analysis is too computationally
expensive to perform after every move during sinada
annealing. Since retiming moves can have a large
impact on the critical path delay of the system,gr@up
many of these move together and then perform fatics
timing analysis once the entire group has been
completed.

As can be seen in the pseudo-code of our complete
approach in Figure 8, we includeretiming frequency
factor as a parameter to our integrated retiming and
placement approach. Thus, although we continue to
focus on performing conventional conditional plaesin
moves, we also occasionally attempt to perform a
concentrated suite of conditional retiming movesttos
netlist.

Also seen in Figure 8, we provide etiming
activation pointand aretiming criticality thresholdto
our tool. The retiming activation point controldhen
we actually begin to attempt retiming and placemast
opposed to placement only. Since the annealininbeg
with an arbitrary initial placement, the early pomnt of
the placement process is primarily devoted to sympl
roughing out the large-scale structure of the sietli
Since the placement can change dramatically during
these early stages, retiming is not very productive
fact, the extra noise retiming creates in the sietinly
serves to create problems for the placement tool.
Instead, we would rather wait until the placemesgibs
to settle down, and thus leave retiming to therlstages
of the placement process.

Although there are multiple ways we could define
this activation point, the placement tool we used
contains VPR'’s adaptive temperature schedule [The
range limit window built into this approach is aasg
way to gauge how far the overall annealing has
progressed. Thus, as seen in lines 2-4 of thedpseu
code in Figure 8, the retiming activation poinsisply
an integer that can vary between the maximum size o
the array, beginning retiming right from the staft
placement, and one, beginning retiming relativelie |
during the annealing process. We have empirically
found an activation point of 1 to work well.

Integrated Retiming and Placement
0 numMovesPerRetiming = numAnnealMovesPerTemp /
retiming frequency

1 while (lexit)

2 if range limit window <= retiming activation point

3 activate retiming

4 end if

5 for i = 0 to numAnnealMovesPerTemp

6 if retiming active && (i%numMovesPerRetiming == 0)

7 for all logic blocks

8 if max input criticality >= retimeCrit && can
retime backwards

9 try to retime once backwards

10 accept or reject retiming(ACost, currTemp)

11 end if

12 if max output criticality >= retimeCrit && can
retime backwards

13 try to retime once forwards

14 accept or reject retiming(ACost, currTemp)

15 end if

16 end for

17 update critical path delay

18 end if

19 attempt placement move

20 accept or reject move(ACost, currTemp)

21 end for

22 update critical path delay

23 update currTemp

24 update range limit window

25 evaluate exit criteria

26 end while
Figure 8 — Simulated Annealing-Based
Retiming & Placement Algorithm

As seen in Figure 8, the retiming criticality thnesd
filters logic blocks that are eligible for retimingased
upon the maximum criticality of their input or outp
connections. Obviously, the more critical a giyeath
is, the more important it becomes to retime theclog
blocks along it. Again, since we would like to rdist
the placement as little as possible, we avoid iagm
logic blocks that are not along highly critical lpsit
Given our empirical testing, a value of 1.0 (only
retiming logic blocks along the critical path) prmed
good results.

That said, particularly for heavily pipelined nst$,
our approach can leave logic blocks along highityoed
paths unable to retime beyond a certain point tmeau
the necessary balancing registers along other, non-
critical paths do not advance. Classical retiming
approaches such as the Leiserson/Saxe techniquest do
run into this problem because they perform systemat
retiming. In the future, we would like to invesiig a
mechanism that can identify this situation andcedfitly
allow critical paths to single out non-critical patfor
retiming.

Finally, once we have identified a good candidate f
retiming we can actually perform the retiming mavel
restructure the netlist. Because we are perforrttiig
retiming move within a larger simulated annealing
framework, we evaluate the cost of the new placémen

and, based upon the current temperature and change
cost, probabilistically either accept or reject sthi
retiming move.

5. Testing & Results

We tested our integrated retiming and placement
approach on two sets of MCNC benchmarks that
represented a wide range of pipeline resource
requirements. The first consisted of 10 sequential
netlists out of the benchmarks included with theRvP
tool suite. Obviously, retiming cannot be perfodhn
purely combinational circuits that have no registat
all, so we thus exclude half of the customary
benchmarks. The second group consisted of 21natigi
VPR benchmarks pipelined and/or C-slowed, then
processed via conventional Leiserson/Saxe retiniing
create circuits with a maximum logic depth of onéTL
Both sets of netlists were then packed into CLB Wi
VPack.

We placed these two groups of benchmarks with
three different placement approaches: timing-driven
VPR, our improved incremental slack timing-driven
placement tool from [4], and our new simulated ahne
based placement and retiming approach. All three
placement tools were followed by conventional tigain
driven routing with A* optimizations turned off (waid
not useA* during any of our testing because A* is
meant to strictly improve CAD runtime, not qualignd
thus should not affect the results).

The target architecture selected was VPR’s standard
single 4-LUT, single flip-flop 4lut_sanitized
architecture, with one modification. Instead ofito
blocks arranged as in Figurea,1we provided logic
blocks with independently accessible flip-flops elik
those shown in Figurebl We believe that this type of
flip-flop accessibility is important for any regestrich
FPGA architecture, and is more representative of
modern devices. All testing was performed on
minimum-sized architectures, with the customary-low
stress routing case of 1.2 times the minimum channe
width as found by VPR.

The placement parameters used for the incremental
slack placement approach from [4] were the same
suggested by that papet=0.1, Crit_ Exp=12.0 for the
original MCNC netlists and=0.025,Crit_Exp=12.0 for
the pipelined circuits. The retiming parametersused
for our integrated placement and routing tool were:
retiming activation pointl, retiming frequency
factor=1, retiming criticality thresholg1.0. To
reiterate, this means that retiming began whenahge
limit window closed to a distance of one CLB, we
performed a single retiming suite per temperature
iteration, and we only considered retiming logiodis
that were 100% critical.

Table 1 — Best of 10 Wire Cost and Post-Route Crit.

Path Delay Results for Original Sequential MCNC Ne

tlists

Raw Results Normalized Results
Retime First & Increm. Slack Integr. Retime Retime & Increm. Slack Integr. Retime
VPR Place Place Only & Placement VPR Place Place Only & Placement
Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD
bigkey 210.57 6.21E-8 242.72 4.23E-8 242.15 4.01E-8 | 1.04 0.89 1.00 1.00 0.99 0.93
clma 1498.63 2.02E-7 1429.54 1.55E-7 1439.02 1.58E-7 | 1.08 0.94 1.00 1.00 0.99 0.94
diffeq 157.87 6.03E-8 149.75 5.57E-8 150.30 5.67E-8 | 1.09 1.01 1.00 1.00 1.01 0.94
dsip 194.34 6.12E-8 225.52 4.70E-8 238.64 3.61E-8 | 1.02 1.02 1.00 1.00 0.99 0.95
elliptic 511.90 1.03E-7 470.71 9.20E-8 474.08 9.34E-8 | 1.05 1.08 1.00 1.00 1.00 1.02
frisc 583.74 1.29E-7 535.74 1.27E-7 540.17 1.20E-7 | 0.97 1.10 1.00 1.00 0.98 0.88
51423 16.74 5.70E-8 16.14 6.43E-8 15.93 5.95E-8 | 1.09 1.12 1.00 1.00 1.01 1.02
$298 228.50 1.29E-7 211.16 1.37E-7 209.49 1.29E-7 | 0.86 1.30 1.00 1.00 1.06 0.77
s38417 672.72 9.47E-8 690.62 8.62E-8 675.62 7.55E-8 | 1.05 1.31 1.00 1.00 1.01 1.02
tseng 100.75 5.29E-8 98.65 5.19E-8 97.58 4.95E-8 | 0.87 1.47 1.00 1.00 1.00 0.95
GeoMean 1.01 1.11 1.00 1.00 1.00 0.93

Table 2 — Best of 10 Wire Cost and Post-Route Crit.

Path Delay Results for Pipelined/C-Slowed MCNC Net

lists

Raw Results Normalized Results

Retime First & Increm. Slack Integr. Retime Retime & Increm. Slack Integr. Retime

VPR Place Place Only & Placement VPR Place Place Only & Placement
Netlist Wire CPD Wire CPD Wire CPD Wire CPD | Wire CPD Wire CPD
alu4 290.44 3.70E-8 254.17 3.15E-8 251.35 2.76E-8 | 1.14 1.17 1.00 1.00 0.99 0.88
apex2 405.33 3.99E-8 365.82 2.44E-8 367.32 2.25E-8] 111 1.64 1.00 1.00 1.00 0.92
apex4 217.28 3.07E-8 200.46 2.44E-8 200.49 1.95E-8 1.08 1.26 1.00 1.00 1.00 0.80
bigkey 267.07 4.37E-8 246.45 2.89E-8 247.90 2.94E-8 | 1.08 1.51 1.00 1.00 1.01 1.02
clma 2379.44 8.46E-8 2105.72 6.45E-8 2107.38 6.33E-8 1.13 1.31 1.00 1.00 1.00 0.98
des 354.80 4.29E-8 344.98 1.99E-8 340.84 2.22E-8 1.03 2.15 1.00 1.00 0.99 1.12
diffeq 499.57 5.34E-8 460.58 2.82E-8 485.66 2.64E-8 | 1.08 1.89 1.00 1.00 1.05 0.94
dsip 258.44 4.02E-8 207.41 3.36E-8 218.19 3.13E-8 1.25 1.20 1.00 1.00 1.05 0.93
e64 45.27 1.93E-8 4151 1.17E-8 42.16 1.11E-8 | 1.09 1.65 1.00 1.00 1.02 0.95
elliptic 1408.34 7.67E-8 1326.81 4.54E-8 1329.50 4.36E-8 1.06 1.69 1.00 1.00 1.00 0.96
ex1010 868.76 5.38E-8 796.30 3.64E-8 791.35 3.96E-8 | 1.09 1.48 1.00 1.00 0.99 1.09
ex5p 223.66 2.42E-8 212.14 1.64E-8 211.88 1.68E-8 | 1.05 1.47 1.00 1.00 1.00 1.02
frisc 1402.54 6.71E-8 1383.91 2.76E-8 1398.71 2.66E-8 1.01 2.43 1.00 1.00 1.01 0.96
misex3 269.65 3.37E-8 240.00 2.73E-8 240.93 2.09E-8 | 112 1.23 1.00 1.00 1.00 0.76
pdc 1210.80 5.67E-8 1108.66 3.39E-8 1103.05 3.25E-8 1.09 1.67 1.00 1.00 0.99 0.96
S1423 70.24 1.88E-8 69.87 8.83E-9 69.30 8.77E-9] 101 2.13 1.00 1.00 0.99 0.99
s298 452.99 4.31E-8 417.91 2.76E-8 411.53 2.79E-8 1.08 1.56 1.00 1.00 0.98 1.01
S38417 1969.65 6.83E-8 1898.96 3.29E-8 1965.55 3.04E-8 1.04 2.07 1.00 1.00 1.04 0.92
seq 349.44 4.02E-8 326.53 2.68E-8 326.32 2.48E-8 | 1.07 1.50 1.00 1.00 1.00 0.93
spla 851.73 5.15E-8 783.69 5.47E-8 780.89 3.20E-8 1.09 0.94 1.00 1.00 1.00 0.59
tseng 316.46 3.60E-8 302.56 2.34E-8 307.18 2.23E-8 | 1.05 1.54 1.00 1.00 1.02 0.95
GeoMean 1.09 1.53 1.00 1.00 1.01 0.93

Table 3 — Critical Path Delay Comparison with Singh

and Brown Retiming Approach

Normalized to VPR Results *
Netlist Retime First & Singh & Brown Increm. Slack Integr. Retime
VPR Place Retimer [10] Place Only & Placement
bigkey 1.00 0.93 0.66 0.67
diffeq 1.00 0.96 0.53 0.50
dsip 1.00 0.75 0.84 0.78
elliptic 1.00 0.93 0.59 0.57
frisc 1.00 0.90 0.41 0.40
S38417 1.00 0.82 0.48 0.45
tseng 1.00 0.91 0.65 0.62
GeoMean 1.00 0.88 0.58 0.55

! Notice that in theNormalized to VPR Resultthe Sngh & Brown Retimenumbers from [10] have been normalized to the VPR
results also reported in [10]. Olmcremental Slack Placement Ordyd Integrated Retime and Placememsults have been
normalized to VPR results given in Table 1.

Table 1 and Table 2 show the best of ten placement
attempts. We report the raw and normalized gedametr
mean final placement wire cost and routed critjzath
delay for all three placement approaches. Lookihg
these values, we can first verify that using the
incremental slack placement methodology as a starti
point for our retiming tool was indeed a wise cleoiBy
itself, it produced placements with 1.11x bettdtiaal
path delay without affecting wirelength for the ginial
sequential MCNC netlists and 1.53x better critigath
delay with 1.09x better wirelength for the heavily
pipelined circuits. If we look at the results whesm
apply our simulated annealing-based retimer wetlsae
the gap widens slightly to 1.19x better criticatipdelay
for the original sequential MCNC netlists and 1.64x
better critical path delay for the heavily pipeline
circuits.

If we consider the gains solely due to our retiming
methodology, we see that both the original segaknti
MCNC netlists and the heavily pipelined circuits
perform 1.08x faster. These delay improvementsecam
with no cost to routability.

Unfortunately, any direct comparison to the Singh
and Brown toolflow [10] is relatively difficult. W do
not have access to their code base and the pafaerys
vague regarding their exact testing conditions.
Specifically, while not specified in the paper waibve
they were mapping to an architecture similar to the
clustered4x4lut_sanitizedsystem. Furthermore, they
also did not test on minimum-sized architectures,dn
slightly oversized devices that provided additional
registers.

That said, they reported results for a subset ef th
sequential MCNC netlists that we used, with VPRaas
comparison point. Thus, while not ideal, we camh ge
some idea of how the two methodologies line up éf w
normalize both sets of data to their respective Viais.
We show these results in Table 3. We can sedhbgt
achieved a 1.14x average improvement in criticah pa
delay for these netlists while we achieved a 1.82x
average improvement. Thus, our simulated annealing
retiming approach nearly doubles the performandéef
conventional VPR approach. That said, our incraaien
slack methodology by itself improves placements so
much that it is much more difficult to achieve het
gains. We believe it is fair to claim that the egazh
suggested by Singh and Brown benefits from some of
the optimization opportunities VPR leaves on theda

6. Implications

The integrated retiming and placement technique tha
we have presented has several key advantages over
previous methodologies:

Our retiming is less disruptive and leads to more
predictable results. This is largely the product of three

main issues. First, because we perform multiplalsm
retiming moves, we do not have to try and massively
retime a single register through multiple levelslagfic

all at once. Second, since our approach is basecohé
simulated annealing, we can leverage many of the
natural balancing aspects of the cost function and
cooling schedule. Third, each of these smallémiag
moves is smoothed into the rest of the placemengus
the well-understood aspects of full simulated afinga

Guaranteed legal placements, regardless of
architecture. Since we never attempt to retime a logic
block if it would create an illegal placement, wanc
never have problems with legalization.

Thisis a one-pass CAD flow, with no convergence
issues. Since the retimer is built directly into the
annealing process and is already naturally itegativ
developers do not have to worry about not beingap
with the final results, then attempting to re-rtwe tools
and face problems with timing convergence.

7. Conclusions

In this paper we have investigated some of theessu
surrounding registered netlists, placement toolsl an
retiming methodologies. Specifically, we identifiea
key characteristic of many existing CAD approaches
that either limits the benefits of retiming or puts
placement convergence at risk: we cannot apply
aggressive retiming to a netlist as a separatglesimse
step and then expect a post-processing phase ablbe
to clean up the results satisfactorily.

As an alternative, we presented a new integrated
approach that performs retiming during simulated-
annealing placement. This approach allows us to
leverage many of the benefits of the simulated alimg
framework to produce a minimally disruptive retimed
netlist. In our testing against VPR, we demonsttat
that our technique produced 1.19x better criticathp
delay without negatively affecting routability foghtly
registered netlists, and 1.64x better critical pd#kay
with 1.09x better wirelength for heavily pipelined
netlists. Our approach produced 1.08x faster catiti
path delay than the highly-improved timing-driven
placement tool it was based on for both lightlyisezyed
and heavily pipelined applications.

Perhaps most importantly though, this integrated
retiming technique is inherently convergent and
architecture-independent. Thus, it opens the timohe
development of practical register-rich FPGAs.

8. Acknowledgments

This work was sponsored in part by grant
CCF0426147from the National Science Foundation,
and grantDE-FG52-06NA27507#rom the Department
of Energy. The authors would also like to thankhili

Subramanian for his background research into thiexXi
Virtex Il architecture.

9. References

[1] Betz, V., J. Rose, and A. Marquardt, Architecture
and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[2] Cong, J. and S. Lim, “Physical Planning with
Retiming”, International Conference on Computer-
Aided Design, 2000: 2-7.

[3] Cong, J. and X. Yuan,
Placement with Retiming”,
Conference, 2003: 208-13.

[4] Eguro, K. and S. Hauck, “Enhancing Timing-
Driven FPGA Placement for Pipelined Netlists”, to
Appear in Design Automation Conference, 2008.

[5] Eguro, K. and S. Hauck. “Armada: Timing-Driven
Pipeline-Aware Routing for FPGAs”,
ACM/SIGDA Symposium on Field-Programmable
Gate Arrays, 2006: 169-78.

[6] Marquardt, A., V. Betz and J. Rose, “Timing-
Driven Placement for FPGAs”, ACM/SIGDA
Symposium on Field Programmable Gate Arrays,
2000: 203-13.

[7] Leiserson, C. and J. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, Vol. 6, 1991: 5-35.

[8] Seidl, R., K. Eckl, and F. Johannes, “Performance-
directed Retiming for FPGAs using Post-placement
Delay Information”, Design, Automation and Test
in Europe Conference, 2003: 770-5.

“Multilevel Global
Design Automation

[9] Sharma, A., C. Ebeling and S. Hauck. "PipeRoute:
A Pipelining-Aware Router for FPGAs",
ACM/SIGDA Symposium on Field-Programmable
Gate Arrays2003: 68-77.

[10]Singh, D. and S. Brown, “Integrated Retiming and
Placement for Field Programmable Gate Arrays”,
ACM/SIGDA Symposium on Field Programmable
Gate Arrays, 2002: 67-76.

[11]Singh, D. and S. Brown, “The Case for Registered
Routing Switches in Field Programmable Gate
Arrays”, ACM/SIGDA Symposium on Field-
Programmable Gate Array2001: 161-9.

[12]Tsu, W., K. Macy, A. Joshi, R. Huang, N. Walker,
T. Tung, O. Rowhani, V. George, J. Wawrzynek,
and A. DeHon. "HSRA: High-Speed, Hierarchical
Synchronous Reconfigurable Array", ACM/SIGDA
Symposium on Field Programmable Gate Arrays,
1999: 125-34.

[13]Von Herzen, B., “Signal Processing at 250MHz
using High-Performance FPGA's”, ACM
International Symposium on FPGAs. 1997, 62-8.

[14]Weaver, N., J. Hauser, and J. Wawrzynek, “The
SFRA: A Corner-Turn FPGA Architecture”,
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 2004: 3-12.

[15]Weaver, N., Y. Markovskiy, T. Patel, and J.
Wawrzynek, “Post-Placement C-slow Retiming for
the Xilinx Virtex FPGA”, ACM/SIGDA
Symposium on Field-Programmable Gate Arrays,
2003: 185-94.

